xref: /linux/mm/page_alloc.c (revision 25aee3debe0464f6c680173041fa3de30ec9ff54)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 	[N_CPU] = { { [0] = 1UL } },
94 #endif	/* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97 
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101  * When calculating the number of globally allowed dirty pages, there
102  * is a certain number of per-zone reserves that should not be
103  * considered dirtyable memory.  This is the sum of those reserves
104  * over all existing zones that contribute dirtyable memory.
105  */
106 unsigned long dirty_balance_reserve __read_mostly;
107 
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110 
111 #ifdef CONFIG_PM_SLEEP
112 /*
113  * The following functions are used by the suspend/hibernate code to temporarily
114  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115  * while devices are suspended.  To avoid races with the suspend/hibernate code,
116  * they should always be called with pm_mutex held (gfp_allowed_mask also should
117  * only be modified with pm_mutex held, unless the suspend/hibernate code is
118  * guaranteed not to run in parallel with that modification).
119  */
120 
121 static gfp_t saved_gfp_mask;
122 
123 void pm_restore_gfp_mask(void)
124 {
125 	WARN_ON(!mutex_is_locked(&pm_mutex));
126 	if (saved_gfp_mask) {
127 		gfp_allowed_mask = saved_gfp_mask;
128 		saved_gfp_mask = 0;
129 	}
130 }
131 
132 void pm_restrict_gfp_mask(void)
133 {
134 	WARN_ON(!mutex_is_locked(&pm_mutex));
135 	WARN_ON(saved_gfp_mask);
136 	saved_gfp_mask = gfp_allowed_mask;
137 	gfp_allowed_mask &= ~GFP_IOFS;
138 }
139 
140 bool pm_suspended_storage(void)
141 {
142 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 		return false;
144 	return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147 
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151 
152 static void __free_pages_ok(struct page *page, unsigned int order);
153 
154 /*
155  * results with 256, 32 in the lowmem_reserve sysctl:
156  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157  *	1G machine -> (16M dma, 784M normal, 224M high)
158  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161  *
162  * TBD: should special case ZONE_DMA32 machines here - in those we normally
163  * don't need any ZONE_NORMAL reservation
164  */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 	 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 	 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 	 32,
174 #endif
175 	 32,
176 };
177 
178 EXPORT_SYMBOL(totalram_pages);
179 
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 	 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 	 "DMA32",
186 #endif
187 	 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 	 "HighMem",
190 #endif
191 	 "Movable",
192 };
193 
194 int min_free_kbytes = 1024;
195 
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199 
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206 
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211 
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218 
219 int page_group_by_mobility_disabled __read_mostly;
220 
221 /*
222  * NOTE:
223  * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224  * Instead, use {un}set_pageblock_isolate.
225  */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228 
229 	if (unlikely(page_group_by_mobility_disabled))
230 		migratetype = MIGRATE_UNMOVABLE;
231 
232 	set_pageblock_flags_group(page, (unsigned long)migratetype,
233 					PB_migrate, PB_migrate_end);
234 }
235 
236 bool oom_killer_disabled __read_mostly;
237 
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 	int ret = 0;
242 	unsigned seq;
243 	unsigned long pfn = page_to_pfn(page);
244 
245 	do {
246 		seq = zone_span_seqbegin(zone);
247 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 			ret = 1;
249 		else if (pfn < zone->zone_start_pfn)
250 			ret = 1;
251 	} while (zone_span_seqretry(zone, seq));
252 
253 	return ret;
254 }
255 
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 	if (!pfn_valid_within(page_to_pfn(page)))
259 		return 0;
260 	if (zone != page_zone(page))
261 		return 0;
262 
263 	return 1;
264 }
265 /*
266  * Temporary debugging check for pages not lying within a given zone.
267  */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 	if (page_outside_zone_boundaries(zone, page))
271 		return 1;
272 	if (!page_is_consistent(zone, page))
273 		return 1;
274 
275 	return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 	return 0;
281 }
282 #endif
283 
284 static void bad_page(struct page *page)
285 {
286 	static unsigned long resume;
287 	static unsigned long nr_shown;
288 	static unsigned long nr_unshown;
289 
290 	/* Don't complain about poisoned pages */
291 	if (PageHWPoison(page)) {
292 		reset_page_mapcount(page); /* remove PageBuddy */
293 		return;
294 	}
295 
296 	/*
297 	 * Allow a burst of 60 reports, then keep quiet for that minute;
298 	 * or allow a steady drip of one report per second.
299 	 */
300 	if (nr_shown == 60) {
301 		if (time_before(jiffies, resume)) {
302 			nr_unshown++;
303 			goto out;
304 		}
305 		if (nr_unshown) {
306 			printk(KERN_ALERT
307 			      "BUG: Bad page state: %lu messages suppressed\n",
308 				nr_unshown);
309 			nr_unshown = 0;
310 		}
311 		nr_shown = 0;
312 	}
313 	if (nr_shown++ == 0)
314 		resume = jiffies + 60 * HZ;
315 
316 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
317 		current->comm, page_to_pfn(page));
318 	dump_page(page);
319 
320 	print_modules();
321 	dump_stack();
322 out:
323 	/* Leave bad fields for debug, except PageBuddy could make trouble */
324 	reset_page_mapcount(page); /* remove PageBuddy */
325 	add_taint(TAINT_BAD_PAGE);
326 }
327 
328 /*
329  * Higher-order pages are called "compound pages".  They are structured thusly:
330  *
331  * The first PAGE_SIZE page is called the "head page".
332  *
333  * The remaining PAGE_SIZE pages are called "tail pages".
334  *
335  * All pages have PG_compound set.  All tail pages have their ->first_page
336  * pointing at the head page.
337  *
338  * The first tail page's ->lru.next holds the address of the compound page's
339  * put_page() function.  Its ->lru.prev holds the order of allocation.
340  * This usage means that zero-order pages may not be compound.
341  */
342 
343 static void free_compound_page(struct page *page)
344 {
345 	__free_pages_ok(page, compound_order(page));
346 }
347 
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 	int i;
351 	int nr_pages = 1 << order;
352 
353 	set_compound_page_dtor(page, free_compound_page);
354 	set_compound_order(page, order);
355 	__SetPageHead(page);
356 	for (i = 1; i < nr_pages; i++) {
357 		struct page *p = page + i;
358 		__SetPageTail(p);
359 		set_page_count(p, 0);
360 		p->first_page = page;
361 	}
362 }
363 
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 	int bad = 0;
370 
371 	if (unlikely(compound_order(page) != order) ||
372 	    unlikely(!PageHead(page))) {
373 		bad_page(page);
374 		bad++;
375 	}
376 
377 	__ClearPageHead(page);
378 
379 	for (i = 1; i < nr_pages; i++) {
380 		struct page *p = page + i;
381 
382 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 			bad_page(page);
384 			bad++;
385 		}
386 		__ClearPageTail(p);
387 	}
388 
389 	return bad;
390 }
391 
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 	int i;
395 
396 	/*
397 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 	 */
400 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 	for (i = 0; i < (1 << order); i++)
402 		clear_highpage(page + i);
403 }
404 
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407 
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 	unsigned long res;
411 
412 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
413 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 		return 0;
415 	}
416 	_debug_guardpage_minorder = res;
417 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 	return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421 
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426 
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435 
436 static inline void set_page_order(struct page *page, int order)
437 {
438 	set_page_private(page, order);
439 	__SetPageBuddy(page);
440 }
441 
442 static inline void rmv_page_order(struct page *page)
443 {
444 	__ClearPageBuddy(page);
445 	set_page_private(page, 0);
446 }
447 
448 /*
449  * Locate the struct page for both the matching buddy in our
450  * pair (buddy1) and the combined O(n+1) page they form (page).
451  *
452  * 1) Any buddy B1 will have an order O twin B2 which satisfies
453  * the following equation:
454  *     B2 = B1 ^ (1 << O)
455  * For example, if the starting buddy (buddy2) is #8 its order
456  * 1 buddy is #10:
457  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458  *
459  * 2) Any buddy B will have an order O+1 parent P which
460  * satisfies the following equation:
461  *     P = B & ~(1 << O)
462  *
463  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464  */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 	return page_idx ^ (1 << order);
469 }
470 
471 /*
472  * This function checks whether a page is free && is the buddy
473  * we can do coalesce a page and its buddy if
474  * (a) the buddy is not in a hole &&
475  * (b) the buddy is in the buddy system &&
476  * (c) a page and its buddy have the same order &&
477  * (d) a page and its buddy are in the same zone.
478  *
479  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481  *
482  * For recording page's order, we use page_private(page).
483  */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 								int order)
486 {
487 	if (!pfn_valid_within(page_to_pfn(buddy)))
488 		return 0;
489 
490 	if (page_zone_id(page) != page_zone_id(buddy))
491 		return 0;
492 
493 	if (page_is_guard(buddy) && page_order(buddy) == order) {
494 		VM_BUG_ON(page_count(buddy) != 0);
495 		return 1;
496 	}
497 
498 	if (PageBuddy(buddy) && page_order(buddy) == order) {
499 		VM_BUG_ON(page_count(buddy) != 0);
500 		return 1;
501 	}
502 	return 0;
503 }
504 
505 /*
506  * Freeing function for a buddy system allocator.
507  *
508  * The concept of a buddy system is to maintain direct-mapped table
509  * (containing bit values) for memory blocks of various "orders".
510  * The bottom level table contains the map for the smallest allocatable
511  * units of memory (here, pages), and each level above it describes
512  * pairs of units from the levels below, hence, "buddies".
513  * At a high level, all that happens here is marking the table entry
514  * at the bottom level available, and propagating the changes upward
515  * as necessary, plus some accounting needed to play nicely with other
516  * parts of the VM system.
517  * At each level, we keep a list of pages, which are heads of continuous
518  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519  * order is recorded in page_private(page) field.
520  * So when we are allocating or freeing one, we can derive the state of the
521  * other.  That is, if we allocate a small block, and both were
522  * free, the remainder of the region must be split into blocks.
523  * If a block is freed, and its buddy is also free, then this
524  * triggers coalescing into a block of larger size.
525  *
526  * -- wli
527  */
528 
529 static inline void __free_one_page(struct page *page,
530 		struct zone *zone, unsigned int order,
531 		int migratetype)
532 {
533 	unsigned long page_idx;
534 	unsigned long combined_idx;
535 	unsigned long uninitialized_var(buddy_idx);
536 	struct page *buddy;
537 
538 	if (unlikely(PageCompound(page)))
539 		if (unlikely(destroy_compound_page(page, order)))
540 			return;
541 
542 	VM_BUG_ON(migratetype == -1);
543 
544 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545 
546 	VM_BUG_ON(page_idx & ((1 << order) - 1));
547 	VM_BUG_ON(bad_range(zone, page));
548 
549 	while (order < MAX_ORDER-1) {
550 		buddy_idx = __find_buddy_index(page_idx, order);
551 		buddy = page + (buddy_idx - page_idx);
552 		if (!page_is_buddy(page, buddy, order))
553 			break;
554 		/*
555 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 		 * merge with it and move up one order.
557 		 */
558 		if (page_is_guard(buddy)) {
559 			clear_page_guard_flag(buddy);
560 			set_page_private(page, 0);
561 			__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 		} else {
563 			list_del(&buddy->lru);
564 			zone->free_area[order].nr_free--;
565 			rmv_page_order(buddy);
566 		}
567 		combined_idx = buddy_idx & page_idx;
568 		page = page + (combined_idx - page_idx);
569 		page_idx = combined_idx;
570 		order++;
571 	}
572 	set_page_order(page, order);
573 
574 	/*
575 	 * If this is not the largest possible page, check if the buddy
576 	 * of the next-highest order is free. If it is, it's possible
577 	 * that pages are being freed that will coalesce soon. In case,
578 	 * that is happening, add the free page to the tail of the list
579 	 * so it's less likely to be used soon and more likely to be merged
580 	 * as a higher order page
581 	 */
582 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
583 		struct page *higher_page, *higher_buddy;
584 		combined_idx = buddy_idx & page_idx;
585 		higher_page = page + (combined_idx - page_idx);
586 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
587 		higher_buddy = page + (buddy_idx - combined_idx);
588 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 			list_add_tail(&page->lru,
590 				&zone->free_area[order].free_list[migratetype]);
591 			goto out;
592 		}
593 	}
594 
595 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596 out:
597 	zone->free_area[order].nr_free++;
598 }
599 
600 /*
601  * free_page_mlock() -- clean up attempts to free and mlocked() page.
602  * Page should not be on lru, so no need to fix that up.
603  * free_pages_check() will verify...
604  */
605 static inline void free_page_mlock(struct page *page)
606 {
607 	__dec_zone_page_state(page, NR_MLOCK);
608 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
609 }
610 
611 static inline int free_pages_check(struct page *page)
612 {
613 	if (unlikely(page_mapcount(page) |
614 		(page->mapping != NULL)  |
615 		(atomic_read(&page->_count) != 0) |
616 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 		(mem_cgroup_bad_page_check(page)))) {
618 		bad_page(page);
619 		return 1;
620 	}
621 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 	return 0;
624 }
625 
626 /*
627  * Frees a number of pages from the PCP lists
628  * Assumes all pages on list are in same zone, and of same order.
629  * count is the number of pages to free.
630  *
631  * If the zone was previously in an "all pages pinned" state then look to
632  * see if this freeing clears that state.
633  *
634  * And clear the zone's pages_scanned counter, to hold off the "all pages are
635  * pinned" detection logic.
636  */
637 static void free_pcppages_bulk(struct zone *zone, int count,
638 					struct per_cpu_pages *pcp)
639 {
640 	int migratetype = 0;
641 	int batch_free = 0;
642 	int to_free = count;
643 
644 	spin_lock(&zone->lock);
645 	zone->all_unreclaimable = 0;
646 	zone->pages_scanned = 0;
647 
648 	while (to_free) {
649 		struct page *page;
650 		struct list_head *list;
651 
652 		/*
653 		 * Remove pages from lists in a round-robin fashion. A
654 		 * batch_free count is maintained that is incremented when an
655 		 * empty list is encountered.  This is so more pages are freed
656 		 * off fuller lists instead of spinning excessively around empty
657 		 * lists
658 		 */
659 		do {
660 			batch_free++;
661 			if (++migratetype == MIGRATE_PCPTYPES)
662 				migratetype = 0;
663 			list = &pcp->lists[migratetype];
664 		} while (list_empty(list));
665 
666 		/* This is the only non-empty list. Free them all. */
667 		if (batch_free == MIGRATE_PCPTYPES)
668 			batch_free = to_free;
669 
670 		do {
671 			page = list_entry(list->prev, struct page, lru);
672 			/* must delete as __free_one_page list manipulates */
673 			list_del(&page->lru);
674 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 			__free_one_page(page, zone, 0, page_private(page));
676 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
677 		} while (--to_free && --batch_free && !list_empty(list));
678 	}
679 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
680 	spin_unlock(&zone->lock);
681 }
682 
683 static void free_one_page(struct zone *zone, struct page *page, int order,
684 				int migratetype)
685 {
686 	spin_lock(&zone->lock);
687 	zone->all_unreclaimable = 0;
688 	zone->pages_scanned = 0;
689 
690 	__free_one_page(page, zone, order, migratetype);
691 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
692 	spin_unlock(&zone->lock);
693 }
694 
695 static bool free_pages_prepare(struct page *page, unsigned int order)
696 {
697 	int i;
698 	int bad = 0;
699 
700 	trace_mm_page_free(page, order);
701 	kmemcheck_free_shadow(page, order);
702 
703 	if (PageAnon(page))
704 		page->mapping = NULL;
705 	for (i = 0; i < (1 << order); i++)
706 		bad += free_pages_check(page + i);
707 	if (bad)
708 		return false;
709 
710 	if (!PageHighMem(page)) {
711 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
712 		debug_check_no_obj_freed(page_address(page),
713 					   PAGE_SIZE << order);
714 	}
715 	arch_free_page(page, order);
716 	kernel_map_pages(page, 1 << order, 0);
717 
718 	return true;
719 }
720 
721 static void __free_pages_ok(struct page *page, unsigned int order)
722 {
723 	unsigned long flags;
724 	int wasMlocked = __TestClearPageMlocked(page);
725 
726 	if (!free_pages_prepare(page, order))
727 		return;
728 
729 	local_irq_save(flags);
730 	if (unlikely(wasMlocked))
731 		free_page_mlock(page);
732 	__count_vm_events(PGFREE, 1 << order);
733 	free_one_page(page_zone(page), page, order,
734 					get_pageblock_migratetype(page));
735 	local_irq_restore(flags);
736 }
737 
738 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
739 {
740 	unsigned int nr_pages = 1 << order;
741 	unsigned int loop;
742 
743 	prefetchw(page);
744 	for (loop = 0; loop < nr_pages; loop++) {
745 		struct page *p = &page[loop];
746 
747 		if (loop + 1 < nr_pages)
748 			prefetchw(p + 1);
749 		__ClearPageReserved(p);
750 		set_page_count(p, 0);
751 	}
752 
753 	set_page_refcounted(page);
754 	__free_pages(page, order);
755 }
756 
757 #ifdef CONFIG_CMA
758 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759 void __init init_cma_reserved_pageblock(struct page *page)
760 {
761 	unsigned i = pageblock_nr_pages;
762 	struct page *p = page;
763 
764 	do {
765 		__ClearPageReserved(p);
766 		set_page_count(p, 0);
767 	} while (++p, --i);
768 
769 	set_page_refcounted(page);
770 	set_pageblock_migratetype(page, MIGRATE_CMA);
771 	__free_pages(page, pageblock_order);
772 	totalram_pages += pageblock_nr_pages;
773 }
774 #endif
775 
776 /*
777  * The order of subdivision here is critical for the IO subsystem.
778  * Please do not alter this order without good reasons and regression
779  * testing. Specifically, as large blocks of memory are subdivided,
780  * the order in which smaller blocks are delivered depends on the order
781  * they're subdivided in this function. This is the primary factor
782  * influencing the order in which pages are delivered to the IO
783  * subsystem according to empirical testing, and this is also justified
784  * by considering the behavior of a buddy system containing a single
785  * large block of memory acted on by a series of small allocations.
786  * This behavior is a critical factor in sglist merging's success.
787  *
788  * -- wli
789  */
790 static inline void expand(struct zone *zone, struct page *page,
791 	int low, int high, struct free_area *area,
792 	int migratetype)
793 {
794 	unsigned long size = 1 << high;
795 
796 	while (high > low) {
797 		area--;
798 		high--;
799 		size >>= 1;
800 		VM_BUG_ON(bad_range(zone, &page[size]));
801 
802 #ifdef CONFIG_DEBUG_PAGEALLOC
803 		if (high < debug_guardpage_minorder()) {
804 			/*
805 			 * Mark as guard pages (or page), that will allow to
806 			 * merge back to allocator when buddy will be freed.
807 			 * Corresponding page table entries will not be touched,
808 			 * pages will stay not present in virtual address space
809 			 */
810 			INIT_LIST_HEAD(&page[size].lru);
811 			set_page_guard_flag(&page[size]);
812 			set_page_private(&page[size], high);
813 			/* Guard pages are not available for any usage */
814 			__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
815 			continue;
816 		}
817 #endif
818 		list_add(&page[size].lru, &area->free_list[migratetype]);
819 		area->nr_free++;
820 		set_page_order(&page[size], high);
821 	}
822 }
823 
824 /*
825  * This page is about to be returned from the page allocator
826  */
827 static inline int check_new_page(struct page *page)
828 {
829 	if (unlikely(page_mapcount(page) |
830 		(page->mapping != NULL)  |
831 		(atomic_read(&page->_count) != 0)  |
832 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
833 		(mem_cgroup_bad_page_check(page)))) {
834 		bad_page(page);
835 		return 1;
836 	}
837 	return 0;
838 }
839 
840 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
841 {
842 	int i;
843 
844 	for (i = 0; i < (1 << order); i++) {
845 		struct page *p = page + i;
846 		if (unlikely(check_new_page(p)))
847 			return 1;
848 	}
849 
850 	set_page_private(page, 0);
851 	set_page_refcounted(page);
852 
853 	arch_alloc_page(page, order);
854 	kernel_map_pages(page, 1 << order, 1);
855 
856 	if (gfp_flags & __GFP_ZERO)
857 		prep_zero_page(page, order, gfp_flags);
858 
859 	if (order && (gfp_flags & __GFP_COMP))
860 		prep_compound_page(page, order);
861 
862 	return 0;
863 }
864 
865 /*
866  * Go through the free lists for the given migratetype and remove
867  * the smallest available page from the freelists
868  */
869 static inline
870 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
871 						int migratetype)
872 {
873 	unsigned int current_order;
874 	struct free_area * area;
875 	struct page *page;
876 
877 	/* Find a page of the appropriate size in the preferred list */
878 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
879 		area = &(zone->free_area[current_order]);
880 		if (list_empty(&area->free_list[migratetype]))
881 			continue;
882 
883 		page = list_entry(area->free_list[migratetype].next,
884 							struct page, lru);
885 		list_del(&page->lru);
886 		rmv_page_order(page);
887 		area->nr_free--;
888 		expand(zone, page, order, current_order, area, migratetype);
889 		return page;
890 	}
891 
892 	return NULL;
893 }
894 
895 
896 /*
897  * This array describes the order lists are fallen back to when
898  * the free lists for the desirable migrate type are depleted
899  */
900 static int fallbacks[MIGRATE_TYPES][4] = {
901 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
902 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
903 #ifdef CONFIG_CMA
904 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
905 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
906 #else
907 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
908 #endif
909 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
910 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
911 };
912 
913 /*
914  * Move the free pages in a range to the free lists of the requested type.
915  * Note that start_page and end_pages are not aligned on a pageblock
916  * boundary. If alignment is required, use move_freepages_block()
917  */
918 static int move_freepages(struct zone *zone,
919 			  struct page *start_page, struct page *end_page,
920 			  int migratetype)
921 {
922 	struct page *page;
923 	unsigned long order;
924 	int pages_moved = 0;
925 
926 #ifndef CONFIG_HOLES_IN_ZONE
927 	/*
928 	 * page_zone is not safe to call in this context when
929 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 	 * anyway as we check zone boundaries in move_freepages_block().
931 	 * Remove at a later date when no bug reports exist related to
932 	 * grouping pages by mobility
933 	 */
934 	BUG_ON(page_zone(start_page) != page_zone(end_page));
935 #endif
936 
937 	for (page = start_page; page <= end_page;) {
938 		/* Make sure we are not inadvertently changing nodes */
939 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
940 
941 		if (!pfn_valid_within(page_to_pfn(page))) {
942 			page++;
943 			continue;
944 		}
945 
946 		if (!PageBuddy(page)) {
947 			page++;
948 			continue;
949 		}
950 
951 		order = page_order(page);
952 		list_move(&page->lru,
953 			  &zone->free_area[order].free_list[migratetype]);
954 		page += 1 << order;
955 		pages_moved += 1 << order;
956 	}
957 
958 	return pages_moved;
959 }
960 
961 int move_freepages_block(struct zone *zone, struct page *page,
962 				int migratetype)
963 {
964 	unsigned long start_pfn, end_pfn;
965 	struct page *start_page, *end_page;
966 
967 	start_pfn = page_to_pfn(page);
968 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
969 	start_page = pfn_to_page(start_pfn);
970 	end_page = start_page + pageblock_nr_pages - 1;
971 	end_pfn = start_pfn + pageblock_nr_pages - 1;
972 
973 	/* Do not cross zone boundaries */
974 	if (start_pfn < zone->zone_start_pfn)
975 		start_page = page;
976 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
977 		return 0;
978 
979 	return move_freepages(zone, start_page, end_page, migratetype);
980 }
981 
982 static void change_pageblock_range(struct page *pageblock_page,
983 					int start_order, int migratetype)
984 {
985 	int nr_pageblocks = 1 << (start_order - pageblock_order);
986 
987 	while (nr_pageblocks--) {
988 		set_pageblock_migratetype(pageblock_page, migratetype);
989 		pageblock_page += pageblock_nr_pages;
990 	}
991 }
992 
993 /* Remove an element from the buddy allocator from the fallback list */
994 static inline struct page *
995 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
996 {
997 	struct free_area * area;
998 	int current_order;
999 	struct page *page;
1000 	int migratetype, i;
1001 
1002 	/* Find the largest possible block of pages in the other list */
1003 	for (current_order = MAX_ORDER-1; current_order >= order;
1004 						--current_order) {
1005 		for (i = 0;; i++) {
1006 			migratetype = fallbacks[start_migratetype][i];
1007 
1008 			/* MIGRATE_RESERVE handled later if necessary */
1009 			if (migratetype == MIGRATE_RESERVE)
1010 				break;
1011 
1012 			area = &(zone->free_area[current_order]);
1013 			if (list_empty(&area->free_list[migratetype]))
1014 				continue;
1015 
1016 			page = list_entry(area->free_list[migratetype].next,
1017 					struct page, lru);
1018 			area->nr_free--;
1019 
1020 			/*
1021 			 * If breaking a large block of pages, move all free
1022 			 * pages to the preferred allocation list. If falling
1023 			 * back for a reclaimable kernel allocation, be more
1024 			 * aggressive about taking ownership of free pages
1025 			 *
1026 			 * On the other hand, never change migration
1027 			 * type of MIGRATE_CMA pageblocks nor move CMA
1028 			 * pages on different free lists. We don't
1029 			 * want unmovable pages to be allocated from
1030 			 * MIGRATE_CMA areas.
1031 			 */
1032 			if (!is_migrate_cma(migratetype) &&
1033 			    (unlikely(current_order >= pageblock_order / 2) ||
1034 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1035 			     page_group_by_mobility_disabled)) {
1036 				int pages;
1037 				pages = move_freepages_block(zone, page,
1038 								start_migratetype);
1039 
1040 				/* Claim the whole block if over half of it is free */
1041 				if (pages >= (1 << (pageblock_order-1)) ||
1042 						page_group_by_mobility_disabled)
1043 					set_pageblock_migratetype(page,
1044 								start_migratetype);
1045 
1046 				migratetype = start_migratetype;
1047 			}
1048 
1049 			/* Remove the page from the freelists */
1050 			list_del(&page->lru);
1051 			rmv_page_order(page);
1052 
1053 			/* Take ownership for orders >= pageblock_order */
1054 			if (current_order >= pageblock_order &&
1055 			    !is_migrate_cma(migratetype))
1056 				change_pageblock_range(page, current_order,
1057 							start_migratetype);
1058 
1059 			expand(zone, page, order, current_order, area,
1060 			       is_migrate_cma(migratetype)
1061 			     ? migratetype : start_migratetype);
1062 
1063 			trace_mm_page_alloc_extfrag(page, order, current_order,
1064 				start_migratetype, migratetype);
1065 
1066 			return page;
1067 		}
1068 	}
1069 
1070 	return NULL;
1071 }
1072 
1073 /*
1074  * Do the hard work of removing an element from the buddy allocator.
1075  * Call me with the zone->lock already held.
1076  */
1077 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1078 						int migratetype)
1079 {
1080 	struct page *page;
1081 
1082 retry_reserve:
1083 	page = __rmqueue_smallest(zone, order, migratetype);
1084 
1085 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1086 		page = __rmqueue_fallback(zone, order, migratetype);
1087 
1088 		/*
1089 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 		 * is used because __rmqueue_smallest is an inline function
1091 		 * and we want just one call site
1092 		 */
1093 		if (!page) {
1094 			migratetype = MIGRATE_RESERVE;
1095 			goto retry_reserve;
1096 		}
1097 	}
1098 
1099 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1100 	return page;
1101 }
1102 
1103 /*
1104  * Obtain a specified number of elements from the buddy allocator, all under
1105  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1106  * Returns the number of new pages which were placed at *list.
1107  */
1108 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1109 			unsigned long count, struct list_head *list,
1110 			int migratetype, int cold)
1111 {
1112 	int mt = migratetype, i;
1113 
1114 	spin_lock(&zone->lock);
1115 	for (i = 0; i < count; ++i) {
1116 		struct page *page = __rmqueue(zone, order, migratetype);
1117 		if (unlikely(page == NULL))
1118 			break;
1119 
1120 		/*
1121 		 * Split buddy pages returned by expand() are received here
1122 		 * in physical page order. The page is added to the callers and
1123 		 * list and the list head then moves forward. From the callers
1124 		 * perspective, the linked list is ordered by page number in
1125 		 * some conditions. This is useful for IO devices that can
1126 		 * merge IO requests if the physical pages are ordered
1127 		 * properly.
1128 		 */
1129 		if (likely(cold == 0))
1130 			list_add(&page->lru, list);
1131 		else
1132 			list_add_tail(&page->lru, list);
1133 		if (IS_ENABLED(CONFIG_CMA)) {
1134 			mt = get_pageblock_migratetype(page);
1135 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1136 				mt = migratetype;
1137 		}
1138 		set_page_private(page, mt);
1139 		list = &page->lru;
1140 	}
1141 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 	spin_unlock(&zone->lock);
1143 	return i;
1144 }
1145 
1146 #ifdef CONFIG_NUMA
1147 /*
1148  * Called from the vmstat counter updater to drain pagesets of this
1149  * currently executing processor on remote nodes after they have
1150  * expired.
1151  *
1152  * Note that this function must be called with the thread pinned to
1153  * a single processor.
1154  */
1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1156 {
1157 	unsigned long flags;
1158 	int to_drain;
1159 
1160 	local_irq_save(flags);
1161 	if (pcp->count >= pcp->batch)
1162 		to_drain = pcp->batch;
1163 	else
1164 		to_drain = pcp->count;
1165 	if (to_drain > 0) {
1166 		free_pcppages_bulk(zone, to_drain, pcp);
1167 		pcp->count -= to_drain;
1168 	}
1169 	local_irq_restore(flags);
1170 }
1171 #endif
1172 
1173 /*
1174  * Drain pages of the indicated processor.
1175  *
1176  * The processor must either be the current processor and the
1177  * thread pinned to the current processor or a processor that
1178  * is not online.
1179  */
1180 static void drain_pages(unsigned int cpu)
1181 {
1182 	unsigned long flags;
1183 	struct zone *zone;
1184 
1185 	for_each_populated_zone(zone) {
1186 		struct per_cpu_pageset *pset;
1187 		struct per_cpu_pages *pcp;
1188 
1189 		local_irq_save(flags);
1190 		pset = per_cpu_ptr(zone->pageset, cpu);
1191 
1192 		pcp = &pset->pcp;
1193 		if (pcp->count) {
1194 			free_pcppages_bulk(zone, pcp->count, pcp);
1195 			pcp->count = 0;
1196 		}
1197 		local_irq_restore(flags);
1198 	}
1199 }
1200 
1201 /*
1202  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203  */
1204 void drain_local_pages(void *arg)
1205 {
1206 	drain_pages(smp_processor_id());
1207 }
1208 
1209 /*
1210  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211  *
1212  * Note that this code is protected against sending an IPI to an offline
1213  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215  * nothing keeps CPUs from showing up after we populated the cpumask and
1216  * before the call to on_each_cpu_mask().
1217  */
1218 void drain_all_pages(void)
1219 {
1220 	int cpu;
1221 	struct per_cpu_pageset *pcp;
1222 	struct zone *zone;
1223 
1224 	/*
1225 	 * Allocate in the BSS so we wont require allocation in
1226 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 	 */
1228 	static cpumask_t cpus_with_pcps;
1229 
1230 	/*
1231 	 * We don't care about racing with CPU hotplug event
1232 	 * as offline notification will cause the notified
1233 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 	 * disables preemption as part of its processing
1235 	 */
1236 	for_each_online_cpu(cpu) {
1237 		bool has_pcps = false;
1238 		for_each_populated_zone(zone) {
1239 			pcp = per_cpu_ptr(zone->pageset, cpu);
1240 			if (pcp->pcp.count) {
1241 				has_pcps = true;
1242 				break;
1243 			}
1244 		}
1245 		if (has_pcps)
1246 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 		else
1248 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 	}
1250 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1251 }
1252 
1253 #ifdef CONFIG_HIBERNATION
1254 
1255 void mark_free_pages(struct zone *zone)
1256 {
1257 	unsigned long pfn, max_zone_pfn;
1258 	unsigned long flags;
1259 	int order, t;
1260 	struct list_head *curr;
1261 
1262 	if (!zone->spanned_pages)
1263 		return;
1264 
1265 	spin_lock_irqsave(&zone->lock, flags);
1266 
1267 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 		if (pfn_valid(pfn)) {
1270 			struct page *page = pfn_to_page(pfn);
1271 
1272 			if (!swsusp_page_is_forbidden(page))
1273 				swsusp_unset_page_free(page);
1274 		}
1275 
1276 	for_each_migratetype_order(order, t) {
1277 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 			unsigned long i;
1279 
1280 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 			for (i = 0; i < (1UL << order); i++)
1282 				swsusp_set_page_free(pfn_to_page(pfn + i));
1283 		}
1284 	}
1285 	spin_unlock_irqrestore(&zone->lock, flags);
1286 }
1287 #endif /* CONFIG_PM */
1288 
1289 /*
1290  * Free a 0-order page
1291  * cold == 1 ? free a cold page : free a hot page
1292  */
1293 void free_hot_cold_page(struct page *page, int cold)
1294 {
1295 	struct zone *zone = page_zone(page);
1296 	struct per_cpu_pages *pcp;
1297 	unsigned long flags;
1298 	int migratetype;
1299 	int wasMlocked = __TestClearPageMlocked(page);
1300 
1301 	if (!free_pages_prepare(page, 0))
1302 		return;
1303 
1304 	migratetype = get_pageblock_migratetype(page);
1305 	set_page_private(page, migratetype);
1306 	local_irq_save(flags);
1307 	if (unlikely(wasMlocked))
1308 		free_page_mlock(page);
1309 	__count_vm_event(PGFREE);
1310 
1311 	/*
1312 	 * We only track unmovable, reclaimable and movable on pcp lists.
1313 	 * Free ISOLATE pages back to the allocator because they are being
1314 	 * offlined but treat RESERVE as movable pages so we can get those
1315 	 * areas back if necessary. Otherwise, we may have to free
1316 	 * excessively into the page allocator
1317 	 */
1318 	if (migratetype >= MIGRATE_PCPTYPES) {
1319 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1320 			free_one_page(zone, page, 0, migratetype);
1321 			goto out;
1322 		}
1323 		migratetype = MIGRATE_MOVABLE;
1324 	}
1325 
1326 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1327 	if (cold)
1328 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1329 	else
1330 		list_add(&page->lru, &pcp->lists[migratetype]);
1331 	pcp->count++;
1332 	if (pcp->count >= pcp->high) {
1333 		free_pcppages_bulk(zone, pcp->batch, pcp);
1334 		pcp->count -= pcp->batch;
1335 	}
1336 
1337 out:
1338 	local_irq_restore(flags);
1339 }
1340 
1341 /*
1342  * Free a list of 0-order pages
1343  */
1344 void free_hot_cold_page_list(struct list_head *list, int cold)
1345 {
1346 	struct page *page, *next;
1347 
1348 	list_for_each_entry_safe(page, next, list, lru) {
1349 		trace_mm_page_free_batched(page, cold);
1350 		free_hot_cold_page(page, cold);
1351 	}
1352 }
1353 
1354 /*
1355  * split_page takes a non-compound higher-order page, and splits it into
1356  * n (1<<order) sub-pages: page[0..n]
1357  * Each sub-page must be freed individually.
1358  *
1359  * Note: this is probably too low level an operation for use in drivers.
1360  * Please consult with lkml before using this in your driver.
1361  */
1362 void split_page(struct page *page, unsigned int order)
1363 {
1364 	int i;
1365 
1366 	VM_BUG_ON(PageCompound(page));
1367 	VM_BUG_ON(!page_count(page));
1368 
1369 #ifdef CONFIG_KMEMCHECK
1370 	/*
1371 	 * Split shadow pages too, because free(page[0]) would
1372 	 * otherwise free the whole shadow.
1373 	 */
1374 	if (kmemcheck_page_is_tracked(page))
1375 		split_page(virt_to_page(page[0].shadow), order);
1376 #endif
1377 
1378 	for (i = 1; i < (1 << order); i++)
1379 		set_page_refcounted(page + i);
1380 }
1381 
1382 /*
1383  * Similar to split_page except the page is already free. As this is only
1384  * being used for migration, the migratetype of the block also changes.
1385  * As this is called with interrupts disabled, the caller is responsible
1386  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1387  * are enabled.
1388  *
1389  * Note: this is probably too low level an operation for use in drivers.
1390  * Please consult with lkml before using this in your driver.
1391  */
1392 int split_free_page(struct page *page)
1393 {
1394 	unsigned int order;
1395 	unsigned long watermark;
1396 	struct zone *zone;
1397 
1398 	BUG_ON(!PageBuddy(page));
1399 
1400 	zone = page_zone(page);
1401 	order = page_order(page);
1402 
1403 	/* Obey watermarks as if the page was being allocated */
1404 	watermark = low_wmark_pages(zone) + (1 << order);
1405 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 		return 0;
1407 
1408 	/* Remove page from free list */
1409 	list_del(&page->lru);
1410 	zone->free_area[order].nr_free--;
1411 	rmv_page_order(page);
1412 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1413 
1414 	/* Split into individual pages */
1415 	set_page_refcounted(page);
1416 	split_page(page, order);
1417 
1418 	if (order >= pageblock_order - 1) {
1419 		struct page *endpage = page + (1 << order) - 1;
1420 		for (; page < endpage; page += pageblock_nr_pages) {
1421 			int mt = get_pageblock_migratetype(page);
1422 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 				set_pageblock_migratetype(page,
1424 							  MIGRATE_MOVABLE);
1425 		}
1426 	}
1427 
1428 	return 1 << order;
1429 }
1430 
1431 /*
1432  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1433  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1434  * or two.
1435  */
1436 static inline
1437 struct page *buffered_rmqueue(struct zone *preferred_zone,
1438 			struct zone *zone, int order, gfp_t gfp_flags,
1439 			int migratetype)
1440 {
1441 	unsigned long flags;
1442 	struct page *page;
1443 	int cold = !!(gfp_flags & __GFP_COLD);
1444 
1445 again:
1446 	if (likely(order == 0)) {
1447 		struct per_cpu_pages *pcp;
1448 		struct list_head *list;
1449 
1450 		local_irq_save(flags);
1451 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1452 		list = &pcp->lists[migratetype];
1453 		if (list_empty(list)) {
1454 			pcp->count += rmqueue_bulk(zone, 0,
1455 					pcp->batch, list,
1456 					migratetype, cold);
1457 			if (unlikely(list_empty(list)))
1458 				goto failed;
1459 		}
1460 
1461 		if (cold)
1462 			page = list_entry(list->prev, struct page, lru);
1463 		else
1464 			page = list_entry(list->next, struct page, lru);
1465 
1466 		list_del(&page->lru);
1467 		pcp->count--;
1468 	} else {
1469 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1470 			/*
1471 			 * __GFP_NOFAIL is not to be used in new code.
1472 			 *
1473 			 * All __GFP_NOFAIL callers should be fixed so that they
1474 			 * properly detect and handle allocation failures.
1475 			 *
1476 			 * We most definitely don't want callers attempting to
1477 			 * allocate greater than order-1 page units with
1478 			 * __GFP_NOFAIL.
1479 			 */
1480 			WARN_ON_ONCE(order > 1);
1481 		}
1482 		spin_lock_irqsave(&zone->lock, flags);
1483 		page = __rmqueue(zone, order, migratetype);
1484 		spin_unlock(&zone->lock);
1485 		if (!page)
1486 			goto failed;
1487 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1488 	}
1489 
1490 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1491 	zone_statistics(preferred_zone, zone, gfp_flags);
1492 	local_irq_restore(flags);
1493 
1494 	VM_BUG_ON(bad_range(zone, page));
1495 	if (prep_new_page(page, order, gfp_flags))
1496 		goto again;
1497 	return page;
1498 
1499 failed:
1500 	local_irq_restore(flags);
1501 	return NULL;
1502 }
1503 
1504 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1505 #define ALLOC_WMARK_MIN		WMARK_MIN
1506 #define ALLOC_WMARK_LOW		WMARK_LOW
1507 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1508 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1509 
1510 /* Mask to get the watermark bits */
1511 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1512 
1513 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1514 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1515 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1516 
1517 #ifdef CONFIG_FAIL_PAGE_ALLOC
1518 
1519 static struct {
1520 	struct fault_attr attr;
1521 
1522 	u32 ignore_gfp_highmem;
1523 	u32 ignore_gfp_wait;
1524 	u32 min_order;
1525 } fail_page_alloc = {
1526 	.attr = FAULT_ATTR_INITIALIZER,
1527 	.ignore_gfp_wait = 1,
1528 	.ignore_gfp_highmem = 1,
1529 	.min_order = 1,
1530 };
1531 
1532 static int __init setup_fail_page_alloc(char *str)
1533 {
1534 	return setup_fault_attr(&fail_page_alloc.attr, str);
1535 }
1536 __setup("fail_page_alloc=", setup_fail_page_alloc);
1537 
1538 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1539 {
1540 	if (order < fail_page_alloc.min_order)
1541 		return false;
1542 	if (gfp_mask & __GFP_NOFAIL)
1543 		return false;
1544 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1545 		return false;
1546 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1547 		return false;
1548 
1549 	return should_fail(&fail_page_alloc.attr, 1 << order);
1550 }
1551 
1552 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1553 
1554 static int __init fail_page_alloc_debugfs(void)
1555 {
1556 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1557 	struct dentry *dir;
1558 
1559 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1560 					&fail_page_alloc.attr);
1561 	if (IS_ERR(dir))
1562 		return PTR_ERR(dir);
1563 
1564 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1565 				&fail_page_alloc.ignore_gfp_wait))
1566 		goto fail;
1567 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1568 				&fail_page_alloc.ignore_gfp_highmem))
1569 		goto fail;
1570 	if (!debugfs_create_u32("min-order", mode, dir,
1571 				&fail_page_alloc.min_order))
1572 		goto fail;
1573 
1574 	return 0;
1575 fail:
1576 	debugfs_remove_recursive(dir);
1577 
1578 	return -ENOMEM;
1579 }
1580 
1581 late_initcall(fail_page_alloc_debugfs);
1582 
1583 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1584 
1585 #else /* CONFIG_FAIL_PAGE_ALLOC */
1586 
1587 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1588 {
1589 	return false;
1590 }
1591 
1592 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1593 
1594 /*
1595  * Return true if free pages are above 'mark'. This takes into account the order
1596  * of the allocation.
1597  */
1598 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1599 		      int classzone_idx, int alloc_flags, long free_pages)
1600 {
1601 	/* free_pages my go negative - that's OK */
1602 	long min = mark;
1603 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1604 	int o;
1605 
1606 	free_pages -= (1 << order) - 1;
1607 	if (alloc_flags & ALLOC_HIGH)
1608 		min -= min / 2;
1609 	if (alloc_flags & ALLOC_HARDER)
1610 		min -= min / 4;
1611 
1612 	if (free_pages <= min + lowmem_reserve)
1613 		return false;
1614 	for (o = 0; o < order; o++) {
1615 		/* At the next order, this order's pages become unavailable */
1616 		free_pages -= z->free_area[o].nr_free << o;
1617 
1618 		/* Require fewer higher order pages to be free */
1619 		min >>= 1;
1620 
1621 		if (free_pages <= min)
1622 			return false;
1623 	}
1624 	return true;
1625 }
1626 
1627 #ifdef CONFIG_MEMORY_ISOLATION
1628 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1629 {
1630 	if (unlikely(zone->nr_pageblock_isolate))
1631 		return zone->nr_pageblock_isolate * pageblock_nr_pages;
1632 	return 0;
1633 }
1634 #else
1635 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1636 {
1637 	return 0;
1638 }
1639 #endif
1640 
1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1642 		      int classzone_idx, int alloc_flags)
1643 {
1644 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1645 					zone_page_state(z, NR_FREE_PAGES));
1646 }
1647 
1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1649 		      int classzone_idx, int alloc_flags)
1650 {
1651 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1652 
1653 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1654 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1655 
1656 	/*
1657 	 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1658 	 * it.  nr_zone_isolate_freepages is never accurate so kswapd might not
1659 	 * sleep although it could do so.  But this is more desirable for memory
1660 	 * hotplug than sleeping which can cause a livelock in the direct
1661 	 * reclaim path.
1662 	 */
1663 	free_pages -= nr_zone_isolate_freepages(z);
1664 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1665 								free_pages);
1666 }
1667 
1668 #ifdef CONFIG_NUMA
1669 /*
1670  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1671  * skip over zones that are not allowed by the cpuset, or that have
1672  * been recently (in last second) found to be nearly full.  See further
1673  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1674  * that have to skip over a lot of full or unallowed zones.
1675  *
1676  * If the zonelist cache is present in the passed in zonelist, then
1677  * returns a pointer to the allowed node mask (either the current
1678  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1679  *
1680  * If the zonelist cache is not available for this zonelist, does
1681  * nothing and returns NULL.
1682  *
1683  * If the fullzones BITMAP in the zonelist cache is stale (more than
1684  * a second since last zap'd) then we zap it out (clear its bits.)
1685  *
1686  * We hold off even calling zlc_setup, until after we've checked the
1687  * first zone in the zonelist, on the theory that most allocations will
1688  * be satisfied from that first zone, so best to examine that zone as
1689  * quickly as we can.
1690  */
1691 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1692 {
1693 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1694 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1695 
1696 	zlc = zonelist->zlcache_ptr;
1697 	if (!zlc)
1698 		return NULL;
1699 
1700 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1701 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1702 		zlc->last_full_zap = jiffies;
1703 	}
1704 
1705 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1706 					&cpuset_current_mems_allowed :
1707 					&node_states[N_HIGH_MEMORY];
1708 	return allowednodes;
1709 }
1710 
1711 /*
1712  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1713  * if it is worth looking at further for free memory:
1714  *  1) Check that the zone isn't thought to be full (doesn't have its
1715  *     bit set in the zonelist_cache fullzones BITMAP).
1716  *  2) Check that the zones node (obtained from the zonelist_cache
1717  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1718  * Return true (non-zero) if zone is worth looking at further, or
1719  * else return false (zero) if it is not.
1720  *
1721  * This check -ignores- the distinction between various watermarks,
1722  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1723  * found to be full for any variation of these watermarks, it will
1724  * be considered full for up to one second by all requests, unless
1725  * we are so low on memory on all allowed nodes that we are forced
1726  * into the second scan of the zonelist.
1727  *
1728  * In the second scan we ignore this zonelist cache and exactly
1729  * apply the watermarks to all zones, even it is slower to do so.
1730  * We are low on memory in the second scan, and should leave no stone
1731  * unturned looking for a free page.
1732  */
1733 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1734 						nodemask_t *allowednodes)
1735 {
1736 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1737 	int i;				/* index of *z in zonelist zones */
1738 	int n;				/* node that zone *z is on */
1739 
1740 	zlc = zonelist->zlcache_ptr;
1741 	if (!zlc)
1742 		return 1;
1743 
1744 	i = z - zonelist->_zonerefs;
1745 	n = zlc->z_to_n[i];
1746 
1747 	/* This zone is worth trying if it is allowed but not full */
1748 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1749 }
1750 
1751 /*
1752  * Given 'z' scanning a zonelist, set the corresponding bit in
1753  * zlc->fullzones, so that subsequent attempts to allocate a page
1754  * from that zone don't waste time re-examining it.
1755  */
1756 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1757 {
1758 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1759 	int i;				/* index of *z in zonelist zones */
1760 
1761 	zlc = zonelist->zlcache_ptr;
1762 	if (!zlc)
1763 		return;
1764 
1765 	i = z - zonelist->_zonerefs;
1766 
1767 	set_bit(i, zlc->fullzones);
1768 }
1769 
1770 /*
1771  * clear all zones full, called after direct reclaim makes progress so that
1772  * a zone that was recently full is not skipped over for up to a second
1773  */
1774 static void zlc_clear_zones_full(struct zonelist *zonelist)
1775 {
1776 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1777 
1778 	zlc = zonelist->zlcache_ptr;
1779 	if (!zlc)
1780 		return;
1781 
1782 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1783 }
1784 
1785 #else	/* CONFIG_NUMA */
1786 
1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1788 {
1789 	return NULL;
1790 }
1791 
1792 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1793 				nodemask_t *allowednodes)
1794 {
1795 	return 1;
1796 }
1797 
1798 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1799 {
1800 }
1801 
1802 static void zlc_clear_zones_full(struct zonelist *zonelist)
1803 {
1804 }
1805 #endif	/* CONFIG_NUMA */
1806 
1807 /*
1808  * get_page_from_freelist goes through the zonelist trying to allocate
1809  * a page.
1810  */
1811 static struct page *
1812 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1813 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1814 		struct zone *preferred_zone, int migratetype)
1815 {
1816 	struct zoneref *z;
1817 	struct page *page = NULL;
1818 	int classzone_idx;
1819 	struct zone *zone;
1820 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1821 	int zlc_active = 0;		/* set if using zonelist_cache */
1822 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1823 
1824 	classzone_idx = zone_idx(preferred_zone);
1825 zonelist_scan:
1826 	/*
1827 	 * Scan zonelist, looking for a zone with enough free.
1828 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1829 	 */
1830 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1831 						high_zoneidx, nodemask) {
1832 		if (NUMA_BUILD && zlc_active &&
1833 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1834 				continue;
1835 		if ((alloc_flags & ALLOC_CPUSET) &&
1836 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1837 				continue;
1838 		/*
1839 		 * When allocating a page cache page for writing, we
1840 		 * want to get it from a zone that is within its dirty
1841 		 * limit, such that no single zone holds more than its
1842 		 * proportional share of globally allowed dirty pages.
1843 		 * The dirty limits take into account the zone's
1844 		 * lowmem reserves and high watermark so that kswapd
1845 		 * should be able to balance it without having to
1846 		 * write pages from its LRU list.
1847 		 *
1848 		 * This may look like it could increase pressure on
1849 		 * lower zones by failing allocations in higher zones
1850 		 * before they are full.  But the pages that do spill
1851 		 * over are limited as the lower zones are protected
1852 		 * by this very same mechanism.  It should not become
1853 		 * a practical burden to them.
1854 		 *
1855 		 * XXX: For now, allow allocations to potentially
1856 		 * exceed the per-zone dirty limit in the slowpath
1857 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1858 		 * which is important when on a NUMA setup the allowed
1859 		 * zones are together not big enough to reach the
1860 		 * global limit.  The proper fix for these situations
1861 		 * will require awareness of zones in the
1862 		 * dirty-throttling and the flusher threads.
1863 		 */
1864 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1865 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1866 			goto this_zone_full;
1867 
1868 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1869 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1870 			unsigned long mark;
1871 			int ret;
1872 
1873 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1874 			if (zone_watermark_ok(zone, order, mark,
1875 				    classzone_idx, alloc_flags))
1876 				goto try_this_zone;
1877 
1878 			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1879 				/*
1880 				 * we do zlc_setup if there are multiple nodes
1881 				 * and before considering the first zone allowed
1882 				 * by the cpuset.
1883 				 */
1884 				allowednodes = zlc_setup(zonelist, alloc_flags);
1885 				zlc_active = 1;
1886 				did_zlc_setup = 1;
1887 			}
1888 
1889 			if (zone_reclaim_mode == 0)
1890 				goto this_zone_full;
1891 
1892 			/*
1893 			 * As we may have just activated ZLC, check if the first
1894 			 * eligible zone has failed zone_reclaim recently.
1895 			 */
1896 			if (NUMA_BUILD && zlc_active &&
1897 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1898 				continue;
1899 
1900 			ret = zone_reclaim(zone, gfp_mask, order);
1901 			switch (ret) {
1902 			case ZONE_RECLAIM_NOSCAN:
1903 				/* did not scan */
1904 				continue;
1905 			case ZONE_RECLAIM_FULL:
1906 				/* scanned but unreclaimable */
1907 				continue;
1908 			default:
1909 				/* did we reclaim enough */
1910 				if (!zone_watermark_ok(zone, order, mark,
1911 						classzone_idx, alloc_flags))
1912 					goto this_zone_full;
1913 			}
1914 		}
1915 
1916 try_this_zone:
1917 		page = buffered_rmqueue(preferred_zone, zone, order,
1918 						gfp_mask, migratetype);
1919 		if (page)
1920 			break;
1921 this_zone_full:
1922 		if (NUMA_BUILD)
1923 			zlc_mark_zone_full(zonelist, z);
1924 	}
1925 
1926 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1927 		/* Disable zlc cache for second zonelist scan */
1928 		zlc_active = 0;
1929 		goto zonelist_scan;
1930 	}
1931 	return page;
1932 }
1933 
1934 /*
1935  * Large machines with many possible nodes should not always dump per-node
1936  * meminfo in irq context.
1937  */
1938 static inline bool should_suppress_show_mem(void)
1939 {
1940 	bool ret = false;
1941 
1942 #if NODES_SHIFT > 8
1943 	ret = in_interrupt();
1944 #endif
1945 	return ret;
1946 }
1947 
1948 static DEFINE_RATELIMIT_STATE(nopage_rs,
1949 		DEFAULT_RATELIMIT_INTERVAL,
1950 		DEFAULT_RATELIMIT_BURST);
1951 
1952 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1953 {
1954 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1955 
1956 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1957 	    debug_guardpage_minorder() > 0)
1958 		return;
1959 
1960 	/*
1961 	 * This documents exceptions given to allocations in certain
1962 	 * contexts that are allowed to allocate outside current's set
1963 	 * of allowed nodes.
1964 	 */
1965 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1966 		if (test_thread_flag(TIF_MEMDIE) ||
1967 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1968 			filter &= ~SHOW_MEM_FILTER_NODES;
1969 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1970 		filter &= ~SHOW_MEM_FILTER_NODES;
1971 
1972 	if (fmt) {
1973 		struct va_format vaf;
1974 		va_list args;
1975 
1976 		va_start(args, fmt);
1977 
1978 		vaf.fmt = fmt;
1979 		vaf.va = &args;
1980 
1981 		pr_warn("%pV", &vaf);
1982 
1983 		va_end(args);
1984 	}
1985 
1986 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1987 		current->comm, order, gfp_mask);
1988 
1989 	dump_stack();
1990 	if (!should_suppress_show_mem())
1991 		show_mem(filter);
1992 }
1993 
1994 static inline int
1995 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1996 				unsigned long did_some_progress,
1997 				unsigned long pages_reclaimed)
1998 {
1999 	/* Do not loop if specifically requested */
2000 	if (gfp_mask & __GFP_NORETRY)
2001 		return 0;
2002 
2003 	/* Always retry if specifically requested */
2004 	if (gfp_mask & __GFP_NOFAIL)
2005 		return 1;
2006 
2007 	/*
2008 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2009 	 * making forward progress without invoking OOM. Suspend also disables
2010 	 * storage devices so kswapd will not help. Bail if we are suspending.
2011 	 */
2012 	if (!did_some_progress && pm_suspended_storage())
2013 		return 0;
2014 
2015 	/*
2016 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2017 	 * means __GFP_NOFAIL, but that may not be true in other
2018 	 * implementations.
2019 	 */
2020 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2021 		return 1;
2022 
2023 	/*
2024 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2025 	 * specified, then we retry until we no longer reclaim any pages
2026 	 * (above), or we've reclaimed an order of pages at least as
2027 	 * large as the allocation's order. In both cases, if the
2028 	 * allocation still fails, we stop retrying.
2029 	 */
2030 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2031 		return 1;
2032 
2033 	return 0;
2034 }
2035 
2036 static inline struct page *
2037 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2038 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2039 	nodemask_t *nodemask, struct zone *preferred_zone,
2040 	int migratetype)
2041 {
2042 	struct page *page;
2043 
2044 	/* Acquire the OOM killer lock for the zones in zonelist */
2045 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2046 		schedule_timeout_uninterruptible(1);
2047 		return NULL;
2048 	}
2049 
2050 	/*
2051 	 * Go through the zonelist yet one more time, keep very high watermark
2052 	 * here, this is only to catch a parallel oom killing, we must fail if
2053 	 * we're still under heavy pressure.
2054 	 */
2055 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2056 		order, zonelist, high_zoneidx,
2057 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2058 		preferred_zone, migratetype);
2059 	if (page)
2060 		goto out;
2061 
2062 	if (!(gfp_mask & __GFP_NOFAIL)) {
2063 		/* The OOM killer will not help higher order allocs */
2064 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2065 			goto out;
2066 		/* The OOM killer does not needlessly kill tasks for lowmem */
2067 		if (high_zoneidx < ZONE_NORMAL)
2068 			goto out;
2069 		/*
2070 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2071 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2072 		 * The caller should handle page allocation failure by itself if
2073 		 * it specifies __GFP_THISNODE.
2074 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2075 		 */
2076 		if (gfp_mask & __GFP_THISNODE)
2077 			goto out;
2078 	}
2079 	/* Exhausted what can be done so it's blamo time */
2080 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2081 
2082 out:
2083 	clear_zonelist_oom(zonelist, gfp_mask);
2084 	return page;
2085 }
2086 
2087 #ifdef CONFIG_COMPACTION
2088 /* Try memory compaction for high-order allocations before reclaim */
2089 static struct page *
2090 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2091 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2092 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2093 	int migratetype, bool sync_migration,
2094 	bool *deferred_compaction,
2095 	unsigned long *did_some_progress)
2096 {
2097 	struct page *page;
2098 
2099 	if (!order)
2100 		return NULL;
2101 
2102 	if (compaction_deferred(preferred_zone, order)) {
2103 		*deferred_compaction = true;
2104 		return NULL;
2105 	}
2106 
2107 	current->flags |= PF_MEMALLOC;
2108 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2109 						nodemask, sync_migration);
2110 	current->flags &= ~PF_MEMALLOC;
2111 	if (*did_some_progress != COMPACT_SKIPPED) {
2112 
2113 		/* Page migration frees to the PCP lists but we want merging */
2114 		drain_pages(get_cpu());
2115 		put_cpu();
2116 
2117 		page = get_page_from_freelist(gfp_mask, nodemask,
2118 				order, zonelist, high_zoneidx,
2119 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2120 				preferred_zone, migratetype);
2121 		if (page) {
2122 			preferred_zone->compact_considered = 0;
2123 			preferred_zone->compact_defer_shift = 0;
2124 			if (order >= preferred_zone->compact_order_failed)
2125 				preferred_zone->compact_order_failed = order + 1;
2126 			count_vm_event(COMPACTSUCCESS);
2127 			return page;
2128 		}
2129 
2130 		/*
2131 		 * It's bad if compaction run occurs and fails.
2132 		 * The most likely reason is that pages exist,
2133 		 * but not enough to satisfy watermarks.
2134 		 */
2135 		count_vm_event(COMPACTFAIL);
2136 
2137 		/*
2138 		 * As async compaction considers a subset of pageblocks, only
2139 		 * defer if the failure was a sync compaction failure.
2140 		 */
2141 		if (sync_migration)
2142 			defer_compaction(preferred_zone, order);
2143 
2144 		cond_resched();
2145 	}
2146 
2147 	return NULL;
2148 }
2149 #else
2150 static inline struct page *
2151 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2152 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2153 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2154 	int migratetype, bool sync_migration,
2155 	bool *deferred_compaction,
2156 	unsigned long *did_some_progress)
2157 {
2158 	return NULL;
2159 }
2160 #endif /* CONFIG_COMPACTION */
2161 
2162 /* Perform direct synchronous page reclaim */
2163 static int
2164 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2165 		  nodemask_t *nodemask)
2166 {
2167 	struct reclaim_state reclaim_state;
2168 	int progress;
2169 
2170 	cond_resched();
2171 
2172 	/* We now go into synchronous reclaim */
2173 	cpuset_memory_pressure_bump();
2174 	current->flags |= PF_MEMALLOC;
2175 	lockdep_set_current_reclaim_state(gfp_mask);
2176 	reclaim_state.reclaimed_slab = 0;
2177 	current->reclaim_state = &reclaim_state;
2178 
2179 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2180 
2181 	current->reclaim_state = NULL;
2182 	lockdep_clear_current_reclaim_state();
2183 	current->flags &= ~PF_MEMALLOC;
2184 
2185 	cond_resched();
2186 
2187 	return progress;
2188 }
2189 
2190 /* The really slow allocator path where we enter direct reclaim */
2191 static inline struct page *
2192 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2193 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2194 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2195 	int migratetype, unsigned long *did_some_progress)
2196 {
2197 	struct page *page = NULL;
2198 	bool drained = false;
2199 
2200 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2201 					       nodemask);
2202 	if (unlikely(!(*did_some_progress)))
2203 		return NULL;
2204 
2205 	/* After successful reclaim, reconsider all zones for allocation */
2206 	if (NUMA_BUILD)
2207 		zlc_clear_zones_full(zonelist);
2208 
2209 retry:
2210 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2211 					zonelist, high_zoneidx,
2212 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2213 					preferred_zone, migratetype);
2214 
2215 	/*
2216 	 * If an allocation failed after direct reclaim, it could be because
2217 	 * pages are pinned on the per-cpu lists. Drain them and try again
2218 	 */
2219 	if (!page && !drained) {
2220 		drain_all_pages();
2221 		drained = true;
2222 		goto retry;
2223 	}
2224 
2225 	return page;
2226 }
2227 
2228 /*
2229  * This is called in the allocator slow-path if the allocation request is of
2230  * sufficient urgency to ignore watermarks and take other desperate measures
2231  */
2232 static inline struct page *
2233 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2234 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2235 	nodemask_t *nodemask, struct zone *preferred_zone,
2236 	int migratetype)
2237 {
2238 	struct page *page;
2239 
2240 	do {
2241 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2242 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2243 			preferred_zone, migratetype);
2244 
2245 		if (!page && gfp_mask & __GFP_NOFAIL)
2246 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2247 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2248 
2249 	return page;
2250 }
2251 
2252 static inline
2253 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2254 						enum zone_type high_zoneidx,
2255 						enum zone_type classzone_idx)
2256 {
2257 	struct zoneref *z;
2258 	struct zone *zone;
2259 
2260 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2261 		wakeup_kswapd(zone, order, classzone_idx);
2262 }
2263 
2264 static inline int
2265 gfp_to_alloc_flags(gfp_t gfp_mask)
2266 {
2267 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2268 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2269 
2270 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2271 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2272 
2273 	/*
2274 	 * The caller may dip into page reserves a bit more if the caller
2275 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2276 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2277 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2278 	 */
2279 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2280 
2281 	if (!wait) {
2282 		/*
2283 		 * Not worth trying to allocate harder for
2284 		 * __GFP_NOMEMALLOC even if it can't schedule.
2285 		 */
2286 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2287 			alloc_flags |= ALLOC_HARDER;
2288 		/*
2289 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2290 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2291 		 */
2292 		alloc_flags &= ~ALLOC_CPUSET;
2293 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2294 		alloc_flags |= ALLOC_HARDER;
2295 
2296 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2297 		if (gfp_mask & __GFP_MEMALLOC)
2298 			alloc_flags |= ALLOC_NO_WATERMARKS;
2299 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2300 			alloc_flags |= ALLOC_NO_WATERMARKS;
2301 		else if (!in_interrupt() &&
2302 				((current->flags & PF_MEMALLOC) ||
2303 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2304 			alloc_flags |= ALLOC_NO_WATERMARKS;
2305 	}
2306 
2307 	return alloc_flags;
2308 }
2309 
2310 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2311 {
2312 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2313 }
2314 
2315 static inline struct page *
2316 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2317 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2318 	nodemask_t *nodemask, struct zone *preferred_zone,
2319 	int migratetype)
2320 {
2321 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2322 	struct page *page = NULL;
2323 	int alloc_flags;
2324 	unsigned long pages_reclaimed = 0;
2325 	unsigned long did_some_progress;
2326 	bool sync_migration = false;
2327 	bool deferred_compaction = false;
2328 
2329 	/*
2330 	 * In the slowpath, we sanity check order to avoid ever trying to
2331 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2332 	 * be using allocators in order of preference for an area that is
2333 	 * too large.
2334 	 */
2335 	if (order >= MAX_ORDER) {
2336 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2337 		return NULL;
2338 	}
2339 
2340 	/*
2341 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2342 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2343 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2344 	 * using a larger set of nodes after it has established that the
2345 	 * allowed per node queues are empty and that nodes are
2346 	 * over allocated.
2347 	 */
2348 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2349 		goto nopage;
2350 
2351 restart:
2352 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2353 		wake_all_kswapd(order, zonelist, high_zoneidx,
2354 						zone_idx(preferred_zone));
2355 
2356 	/*
2357 	 * OK, we're below the kswapd watermark and have kicked background
2358 	 * reclaim. Now things get more complex, so set up alloc_flags according
2359 	 * to how we want to proceed.
2360 	 */
2361 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2362 
2363 	/*
2364 	 * Find the true preferred zone if the allocation is unconstrained by
2365 	 * cpusets.
2366 	 */
2367 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2368 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2369 					&preferred_zone);
2370 
2371 rebalance:
2372 	/* This is the last chance, in general, before the goto nopage. */
2373 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2374 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2375 			preferred_zone, migratetype);
2376 	if (page)
2377 		goto got_pg;
2378 
2379 	/* Allocate without watermarks if the context allows */
2380 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2381 		/*
2382 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2383 		 * the allocation is high priority and these type of
2384 		 * allocations are system rather than user orientated
2385 		 */
2386 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2387 
2388 		page = __alloc_pages_high_priority(gfp_mask, order,
2389 				zonelist, high_zoneidx, nodemask,
2390 				preferred_zone, migratetype);
2391 		if (page) {
2392 			/*
2393 			 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2394 			 * necessary to allocate the page. The expectation is
2395 			 * that the caller is taking steps that will free more
2396 			 * memory. The caller should avoid the page being used
2397 			 * for !PFMEMALLOC purposes.
2398 			 */
2399 			page->pfmemalloc = true;
2400 			goto got_pg;
2401 		}
2402 	}
2403 
2404 	/* Atomic allocations - we can't balance anything */
2405 	if (!wait)
2406 		goto nopage;
2407 
2408 	/* Avoid recursion of direct reclaim */
2409 	if (current->flags & PF_MEMALLOC)
2410 		goto nopage;
2411 
2412 	/* Avoid allocations with no watermarks from looping endlessly */
2413 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2414 		goto nopage;
2415 
2416 	/*
2417 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2418 	 * attempts after direct reclaim are synchronous
2419 	 */
2420 	page = __alloc_pages_direct_compact(gfp_mask, order,
2421 					zonelist, high_zoneidx,
2422 					nodemask,
2423 					alloc_flags, preferred_zone,
2424 					migratetype, sync_migration,
2425 					&deferred_compaction,
2426 					&did_some_progress);
2427 	if (page)
2428 		goto got_pg;
2429 	sync_migration = true;
2430 
2431 	/*
2432 	 * If compaction is deferred for high-order allocations, it is because
2433 	 * sync compaction recently failed. In this is the case and the caller
2434 	 * has requested the system not be heavily disrupted, fail the
2435 	 * allocation now instead of entering direct reclaim
2436 	 */
2437 	if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2438 		goto nopage;
2439 
2440 	/* Try direct reclaim and then allocating */
2441 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2442 					zonelist, high_zoneidx,
2443 					nodemask,
2444 					alloc_flags, preferred_zone,
2445 					migratetype, &did_some_progress);
2446 	if (page)
2447 		goto got_pg;
2448 
2449 	/*
2450 	 * If we failed to make any progress reclaiming, then we are
2451 	 * running out of options and have to consider going OOM
2452 	 */
2453 	if (!did_some_progress) {
2454 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2455 			if (oom_killer_disabled)
2456 				goto nopage;
2457 			/* Coredumps can quickly deplete all memory reserves */
2458 			if ((current->flags & PF_DUMPCORE) &&
2459 			    !(gfp_mask & __GFP_NOFAIL))
2460 				goto nopage;
2461 			page = __alloc_pages_may_oom(gfp_mask, order,
2462 					zonelist, high_zoneidx,
2463 					nodemask, preferred_zone,
2464 					migratetype);
2465 			if (page)
2466 				goto got_pg;
2467 
2468 			if (!(gfp_mask & __GFP_NOFAIL)) {
2469 				/*
2470 				 * The oom killer is not called for high-order
2471 				 * allocations that may fail, so if no progress
2472 				 * is being made, there are no other options and
2473 				 * retrying is unlikely to help.
2474 				 */
2475 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2476 					goto nopage;
2477 				/*
2478 				 * The oom killer is not called for lowmem
2479 				 * allocations to prevent needlessly killing
2480 				 * innocent tasks.
2481 				 */
2482 				if (high_zoneidx < ZONE_NORMAL)
2483 					goto nopage;
2484 			}
2485 
2486 			goto restart;
2487 		}
2488 	}
2489 
2490 	/* Check if we should retry the allocation */
2491 	pages_reclaimed += did_some_progress;
2492 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2493 						pages_reclaimed)) {
2494 		/* Wait for some write requests to complete then retry */
2495 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2496 		goto rebalance;
2497 	} else {
2498 		/*
2499 		 * High-order allocations do not necessarily loop after
2500 		 * direct reclaim and reclaim/compaction depends on compaction
2501 		 * being called after reclaim so call directly if necessary
2502 		 */
2503 		page = __alloc_pages_direct_compact(gfp_mask, order,
2504 					zonelist, high_zoneidx,
2505 					nodemask,
2506 					alloc_flags, preferred_zone,
2507 					migratetype, sync_migration,
2508 					&deferred_compaction,
2509 					&did_some_progress);
2510 		if (page)
2511 			goto got_pg;
2512 	}
2513 
2514 nopage:
2515 	warn_alloc_failed(gfp_mask, order, NULL);
2516 	return page;
2517 got_pg:
2518 	if (kmemcheck_enabled)
2519 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2520 
2521 	return page;
2522 }
2523 
2524 /*
2525  * This is the 'heart' of the zoned buddy allocator.
2526  */
2527 struct page *
2528 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2529 			struct zonelist *zonelist, nodemask_t *nodemask)
2530 {
2531 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2532 	struct zone *preferred_zone;
2533 	struct page *page = NULL;
2534 	int migratetype = allocflags_to_migratetype(gfp_mask);
2535 	unsigned int cpuset_mems_cookie;
2536 
2537 	gfp_mask &= gfp_allowed_mask;
2538 
2539 	lockdep_trace_alloc(gfp_mask);
2540 
2541 	might_sleep_if(gfp_mask & __GFP_WAIT);
2542 
2543 	if (should_fail_alloc_page(gfp_mask, order))
2544 		return NULL;
2545 
2546 	/*
2547 	 * Check the zones suitable for the gfp_mask contain at least one
2548 	 * valid zone. It's possible to have an empty zonelist as a result
2549 	 * of GFP_THISNODE and a memoryless node
2550 	 */
2551 	if (unlikely(!zonelist->_zonerefs->zone))
2552 		return NULL;
2553 
2554 retry_cpuset:
2555 	cpuset_mems_cookie = get_mems_allowed();
2556 
2557 	/* The preferred zone is used for statistics later */
2558 	first_zones_zonelist(zonelist, high_zoneidx,
2559 				nodemask ? : &cpuset_current_mems_allowed,
2560 				&preferred_zone);
2561 	if (!preferred_zone)
2562 		goto out;
2563 
2564 	/* First allocation attempt */
2565 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2566 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2567 			preferred_zone, migratetype);
2568 	if (unlikely(!page))
2569 		page = __alloc_pages_slowpath(gfp_mask, order,
2570 				zonelist, high_zoneidx, nodemask,
2571 				preferred_zone, migratetype);
2572 	else
2573 		page->pfmemalloc = false;
2574 
2575 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2576 
2577 out:
2578 	/*
2579 	 * When updating a task's mems_allowed, it is possible to race with
2580 	 * parallel threads in such a way that an allocation can fail while
2581 	 * the mask is being updated. If a page allocation is about to fail,
2582 	 * check if the cpuset changed during allocation and if so, retry.
2583 	 */
2584 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2585 		goto retry_cpuset;
2586 
2587 	return page;
2588 }
2589 EXPORT_SYMBOL(__alloc_pages_nodemask);
2590 
2591 /*
2592  * Common helper functions.
2593  */
2594 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2595 {
2596 	struct page *page;
2597 
2598 	/*
2599 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2600 	 * a highmem page
2601 	 */
2602 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2603 
2604 	page = alloc_pages(gfp_mask, order);
2605 	if (!page)
2606 		return 0;
2607 	return (unsigned long) page_address(page);
2608 }
2609 EXPORT_SYMBOL(__get_free_pages);
2610 
2611 unsigned long get_zeroed_page(gfp_t gfp_mask)
2612 {
2613 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2614 }
2615 EXPORT_SYMBOL(get_zeroed_page);
2616 
2617 void __free_pages(struct page *page, unsigned int order)
2618 {
2619 	if (put_page_testzero(page)) {
2620 		if (order == 0)
2621 			free_hot_cold_page(page, 0);
2622 		else
2623 			__free_pages_ok(page, order);
2624 	}
2625 }
2626 
2627 EXPORT_SYMBOL(__free_pages);
2628 
2629 void free_pages(unsigned long addr, unsigned int order)
2630 {
2631 	if (addr != 0) {
2632 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2633 		__free_pages(virt_to_page((void *)addr), order);
2634 	}
2635 }
2636 
2637 EXPORT_SYMBOL(free_pages);
2638 
2639 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2640 {
2641 	if (addr) {
2642 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2643 		unsigned long used = addr + PAGE_ALIGN(size);
2644 
2645 		split_page(virt_to_page((void *)addr), order);
2646 		while (used < alloc_end) {
2647 			free_page(used);
2648 			used += PAGE_SIZE;
2649 		}
2650 	}
2651 	return (void *)addr;
2652 }
2653 
2654 /**
2655  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2656  * @size: the number of bytes to allocate
2657  * @gfp_mask: GFP flags for the allocation
2658  *
2659  * This function is similar to alloc_pages(), except that it allocates the
2660  * minimum number of pages to satisfy the request.  alloc_pages() can only
2661  * allocate memory in power-of-two pages.
2662  *
2663  * This function is also limited by MAX_ORDER.
2664  *
2665  * Memory allocated by this function must be released by free_pages_exact().
2666  */
2667 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2668 {
2669 	unsigned int order = get_order(size);
2670 	unsigned long addr;
2671 
2672 	addr = __get_free_pages(gfp_mask, order);
2673 	return make_alloc_exact(addr, order, size);
2674 }
2675 EXPORT_SYMBOL(alloc_pages_exact);
2676 
2677 /**
2678  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2679  *			   pages on a node.
2680  * @nid: the preferred node ID where memory should be allocated
2681  * @size: the number of bytes to allocate
2682  * @gfp_mask: GFP flags for the allocation
2683  *
2684  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2685  * back.
2686  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2687  * but is not exact.
2688  */
2689 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2690 {
2691 	unsigned order = get_order(size);
2692 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2693 	if (!p)
2694 		return NULL;
2695 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2696 }
2697 EXPORT_SYMBOL(alloc_pages_exact_nid);
2698 
2699 /**
2700  * free_pages_exact - release memory allocated via alloc_pages_exact()
2701  * @virt: the value returned by alloc_pages_exact.
2702  * @size: size of allocation, same value as passed to alloc_pages_exact().
2703  *
2704  * Release the memory allocated by a previous call to alloc_pages_exact.
2705  */
2706 void free_pages_exact(void *virt, size_t size)
2707 {
2708 	unsigned long addr = (unsigned long)virt;
2709 	unsigned long end = addr + PAGE_ALIGN(size);
2710 
2711 	while (addr < end) {
2712 		free_page(addr);
2713 		addr += PAGE_SIZE;
2714 	}
2715 }
2716 EXPORT_SYMBOL(free_pages_exact);
2717 
2718 static unsigned int nr_free_zone_pages(int offset)
2719 {
2720 	struct zoneref *z;
2721 	struct zone *zone;
2722 
2723 	/* Just pick one node, since fallback list is circular */
2724 	unsigned int sum = 0;
2725 
2726 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2727 
2728 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2729 		unsigned long size = zone->present_pages;
2730 		unsigned long high = high_wmark_pages(zone);
2731 		if (size > high)
2732 			sum += size - high;
2733 	}
2734 
2735 	return sum;
2736 }
2737 
2738 /*
2739  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2740  */
2741 unsigned int nr_free_buffer_pages(void)
2742 {
2743 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2744 }
2745 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2746 
2747 /*
2748  * Amount of free RAM allocatable within all zones
2749  */
2750 unsigned int nr_free_pagecache_pages(void)
2751 {
2752 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2753 }
2754 
2755 static inline void show_node(struct zone *zone)
2756 {
2757 	if (NUMA_BUILD)
2758 		printk("Node %d ", zone_to_nid(zone));
2759 }
2760 
2761 void si_meminfo(struct sysinfo *val)
2762 {
2763 	val->totalram = totalram_pages;
2764 	val->sharedram = 0;
2765 	val->freeram = global_page_state(NR_FREE_PAGES);
2766 	val->bufferram = nr_blockdev_pages();
2767 	val->totalhigh = totalhigh_pages;
2768 	val->freehigh = nr_free_highpages();
2769 	val->mem_unit = PAGE_SIZE;
2770 }
2771 
2772 EXPORT_SYMBOL(si_meminfo);
2773 
2774 #ifdef CONFIG_NUMA
2775 void si_meminfo_node(struct sysinfo *val, int nid)
2776 {
2777 	pg_data_t *pgdat = NODE_DATA(nid);
2778 
2779 	val->totalram = pgdat->node_present_pages;
2780 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2781 #ifdef CONFIG_HIGHMEM
2782 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2783 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2784 			NR_FREE_PAGES);
2785 #else
2786 	val->totalhigh = 0;
2787 	val->freehigh = 0;
2788 #endif
2789 	val->mem_unit = PAGE_SIZE;
2790 }
2791 #endif
2792 
2793 /*
2794  * Determine whether the node should be displayed or not, depending on whether
2795  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2796  */
2797 bool skip_free_areas_node(unsigned int flags, int nid)
2798 {
2799 	bool ret = false;
2800 	unsigned int cpuset_mems_cookie;
2801 
2802 	if (!(flags & SHOW_MEM_FILTER_NODES))
2803 		goto out;
2804 
2805 	do {
2806 		cpuset_mems_cookie = get_mems_allowed();
2807 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2808 	} while (!put_mems_allowed(cpuset_mems_cookie));
2809 out:
2810 	return ret;
2811 }
2812 
2813 #define K(x) ((x) << (PAGE_SHIFT-10))
2814 
2815 /*
2816  * Show free area list (used inside shift_scroll-lock stuff)
2817  * We also calculate the percentage fragmentation. We do this by counting the
2818  * memory on each free list with the exception of the first item on the list.
2819  * Suppresses nodes that are not allowed by current's cpuset if
2820  * SHOW_MEM_FILTER_NODES is passed.
2821  */
2822 void show_free_areas(unsigned int filter)
2823 {
2824 	int cpu;
2825 	struct zone *zone;
2826 
2827 	for_each_populated_zone(zone) {
2828 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2829 			continue;
2830 		show_node(zone);
2831 		printk("%s per-cpu:\n", zone->name);
2832 
2833 		for_each_online_cpu(cpu) {
2834 			struct per_cpu_pageset *pageset;
2835 
2836 			pageset = per_cpu_ptr(zone->pageset, cpu);
2837 
2838 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2839 			       cpu, pageset->pcp.high,
2840 			       pageset->pcp.batch, pageset->pcp.count);
2841 		}
2842 	}
2843 
2844 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2845 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2846 		" unevictable:%lu"
2847 		" dirty:%lu writeback:%lu unstable:%lu\n"
2848 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2849 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2850 		global_page_state(NR_ACTIVE_ANON),
2851 		global_page_state(NR_INACTIVE_ANON),
2852 		global_page_state(NR_ISOLATED_ANON),
2853 		global_page_state(NR_ACTIVE_FILE),
2854 		global_page_state(NR_INACTIVE_FILE),
2855 		global_page_state(NR_ISOLATED_FILE),
2856 		global_page_state(NR_UNEVICTABLE),
2857 		global_page_state(NR_FILE_DIRTY),
2858 		global_page_state(NR_WRITEBACK),
2859 		global_page_state(NR_UNSTABLE_NFS),
2860 		global_page_state(NR_FREE_PAGES),
2861 		global_page_state(NR_SLAB_RECLAIMABLE),
2862 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2863 		global_page_state(NR_FILE_MAPPED),
2864 		global_page_state(NR_SHMEM),
2865 		global_page_state(NR_PAGETABLE),
2866 		global_page_state(NR_BOUNCE));
2867 
2868 	for_each_populated_zone(zone) {
2869 		int i;
2870 
2871 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2872 			continue;
2873 		show_node(zone);
2874 		printk("%s"
2875 			" free:%lukB"
2876 			" min:%lukB"
2877 			" low:%lukB"
2878 			" high:%lukB"
2879 			" active_anon:%lukB"
2880 			" inactive_anon:%lukB"
2881 			" active_file:%lukB"
2882 			" inactive_file:%lukB"
2883 			" unevictable:%lukB"
2884 			" isolated(anon):%lukB"
2885 			" isolated(file):%lukB"
2886 			" present:%lukB"
2887 			" mlocked:%lukB"
2888 			" dirty:%lukB"
2889 			" writeback:%lukB"
2890 			" mapped:%lukB"
2891 			" shmem:%lukB"
2892 			" slab_reclaimable:%lukB"
2893 			" slab_unreclaimable:%lukB"
2894 			" kernel_stack:%lukB"
2895 			" pagetables:%lukB"
2896 			" unstable:%lukB"
2897 			" bounce:%lukB"
2898 			" writeback_tmp:%lukB"
2899 			" pages_scanned:%lu"
2900 			" all_unreclaimable? %s"
2901 			"\n",
2902 			zone->name,
2903 			K(zone_page_state(zone, NR_FREE_PAGES)),
2904 			K(min_wmark_pages(zone)),
2905 			K(low_wmark_pages(zone)),
2906 			K(high_wmark_pages(zone)),
2907 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2908 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2909 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2910 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2911 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2912 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2913 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2914 			K(zone->present_pages),
2915 			K(zone_page_state(zone, NR_MLOCK)),
2916 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2917 			K(zone_page_state(zone, NR_WRITEBACK)),
2918 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2919 			K(zone_page_state(zone, NR_SHMEM)),
2920 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2921 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2922 			zone_page_state(zone, NR_KERNEL_STACK) *
2923 				THREAD_SIZE / 1024,
2924 			K(zone_page_state(zone, NR_PAGETABLE)),
2925 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2926 			K(zone_page_state(zone, NR_BOUNCE)),
2927 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2928 			zone->pages_scanned,
2929 			(zone->all_unreclaimable ? "yes" : "no")
2930 			);
2931 		printk("lowmem_reserve[]:");
2932 		for (i = 0; i < MAX_NR_ZONES; i++)
2933 			printk(" %lu", zone->lowmem_reserve[i]);
2934 		printk("\n");
2935 	}
2936 
2937 	for_each_populated_zone(zone) {
2938  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2939 
2940 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2941 			continue;
2942 		show_node(zone);
2943 		printk("%s: ", zone->name);
2944 
2945 		spin_lock_irqsave(&zone->lock, flags);
2946 		for (order = 0; order < MAX_ORDER; order++) {
2947 			nr[order] = zone->free_area[order].nr_free;
2948 			total += nr[order] << order;
2949 		}
2950 		spin_unlock_irqrestore(&zone->lock, flags);
2951 		for (order = 0; order < MAX_ORDER; order++)
2952 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2953 		printk("= %lukB\n", K(total));
2954 	}
2955 
2956 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2957 
2958 	show_swap_cache_info();
2959 }
2960 
2961 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2962 {
2963 	zoneref->zone = zone;
2964 	zoneref->zone_idx = zone_idx(zone);
2965 }
2966 
2967 /*
2968  * Builds allocation fallback zone lists.
2969  *
2970  * Add all populated zones of a node to the zonelist.
2971  */
2972 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2973 				int nr_zones, enum zone_type zone_type)
2974 {
2975 	struct zone *zone;
2976 
2977 	BUG_ON(zone_type >= MAX_NR_ZONES);
2978 	zone_type++;
2979 
2980 	do {
2981 		zone_type--;
2982 		zone = pgdat->node_zones + zone_type;
2983 		if (populated_zone(zone)) {
2984 			zoneref_set_zone(zone,
2985 				&zonelist->_zonerefs[nr_zones++]);
2986 			check_highest_zone(zone_type);
2987 		}
2988 
2989 	} while (zone_type);
2990 	return nr_zones;
2991 }
2992 
2993 
2994 /*
2995  *  zonelist_order:
2996  *  0 = automatic detection of better ordering.
2997  *  1 = order by ([node] distance, -zonetype)
2998  *  2 = order by (-zonetype, [node] distance)
2999  *
3000  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3001  *  the same zonelist. So only NUMA can configure this param.
3002  */
3003 #define ZONELIST_ORDER_DEFAULT  0
3004 #define ZONELIST_ORDER_NODE     1
3005 #define ZONELIST_ORDER_ZONE     2
3006 
3007 /* zonelist order in the kernel.
3008  * set_zonelist_order() will set this to NODE or ZONE.
3009  */
3010 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3011 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3012 
3013 
3014 #ifdef CONFIG_NUMA
3015 /* The value user specified ....changed by config */
3016 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3017 /* string for sysctl */
3018 #define NUMA_ZONELIST_ORDER_LEN	16
3019 char numa_zonelist_order[16] = "default";
3020 
3021 /*
3022  * interface for configure zonelist ordering.
3023  * command line option "numa_zonelist_order"
3024  *	= "[dD]efault	- default, automatic configuration.
3025  *	= "[nN]ode 	- order by node locality, then by zone within node
3026  *	= "[zZ]one      - order by zone, then by locality within zone
3027  */
3028 
3029 static int __parse_numa_zonelist_order(char *s)
3030 {
3031 	if (*s == 'd' || *s == 'D') {
3032 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3033 	} else if (*s == 'n' || *s == 'N') {
3034 		user_zonelist_order = ZONELIST_ORDER_NODE;
3035 	} else if (*s == 'z' || *s == 'Z') {
3036 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3037 	} else {
3038 		printk(KERN_WARNING
3039 			"Ignoring invalid numa_zonelist_order value:  "
3040 			"%s\n", s);
3041 		return -EINVAL;
3042 	}
3043 	return 0;
3044 }
3045 
3046 static __init int setup_numa_zonelist_order(char *s)
3047 {
3048 	int ret;
3049 
3050 	if (!s)
3051 		return 0;
3052 
3053 	ret = __parse_numa_zonelist_order(s);
3054 	if (ret == 0)
3055 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3056 
3057 	return ret;
3058 }
3059 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3060 
3061 /*
3062  * sysctl handler for numa_zonelist_order
3063  */
3064 int numa_zonelist_order_handler(ctl_table *table, int write,
3065 		void __user *buffer, size_t *length,
3066 		loff_t *ppos)
3067 {
3068 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3069 	int ret;
3070 	static DEFINE_MUTEX(zl_order_mutex);
3071 
3072 	mutex_lock(&zl_order_mutex);
3073 	if (write)
3074 		strcpy(saved_string, (char*)table->data);
3075 	ret = proc_dostring(table, write, buffer, length, ppos);
3076 	if (ret)
3077 		goto out;
3078 	if (write) {
3079 		int oldval = user_zonelist_order;
3080 		if (__parse_numa_zonelist_order((char*)table->data)) {
3081 			/*
3082 			 * bogus value.  restore saved string
3083 			 */
3084 			strncpy((char*)table->data, saved_string,
3085 				NUMA_ZONELIST_ORDER_LEN);
3086 			user_zonelist_order = oldval;
3087 		} else if (oldval != user_zonelist_order) {
3088 			mutex_lock(&zonelists_mutex);
3089 			build_all_zonelists(NULL, NULL);
3090 			mutex_unlock(&zonelists_mutex);
3091 		}
3092 	}
3093 out:
3094 	mutex_unlock(&zl_order_mutex);
3095 	return ret;
3096 }
3097 
3098 
3099 #define MAX_NODE_LOAD (nr_online_nodes)
3100 static int node_load[MAX_NUMNODES];
3101 
3102 /**
3103  * find_next_best_node - find the next node that should appear in a given node's fallback list
3104  * @node: node whose fallback list we're appending
3105  * @used_node_mask: nodemask_t of already used nodes
3106  *
3107  * We use a number of factors to determine which is the next node that should
3108  * appear on a given node's fallback list.  The node should not have appeared
3109  * already in @node's fallback list, and it should be the next closest node
3110  * according to the distance array (which contains arbitrary distance values
3111  * from each node to each node in the system), and should also prefer nodes
3112  * with no CPUs, since presumably they'll have very little allocation pressure
3113  * on them otherwise.
3114  * It returns -1 if no node is found.
3115  */
3116 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3117 {
3118 	int n, val;
3119 	int min_val = INT_MAX;
3120 	int best_node = -1;
3121 	const struct cpumask *tmp = cpumask_of_node(0);
3122 
3123 	/* Use the local node if we haven't already */
3124 	if (!node_isset(node, *used_node_mask)) {
3125 		node_set(node, *used_node_mask);
3126 		return node;
3127 	}
3128 
3129 	for_each_node_state(n, N_HIGH_MEMORY) {
3130 
3131 		/* Don't want a node to appear more than once */
3132 		if (node_isset(n, *used_node_mask))
3133 			continue;
3134 
3135 		/* Use the distance array to find the distance */
3136 		val = node_distance(node, n);
3137 
3138 		/* Penalize nodes under us ("prefer the next node") */
3139 		val += (n < node);
3140 
3141 		/* Give preference to headless and unused nodes */
3142 		tmp = cpumask_of_node(n);
3143 		if (!cpumask_empty(tmp))
3144 			val += PENALTY_FOR_NODE_WITH_CPUS;
3145 
3146 		/* Slight preference for less loaded node */
3147 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3148 		val += node_load[n];
3149 
3150 		if (val < min_val) {
3151 			min_val = val;
3152 			best_node = n;
3153 		}
3154 	}
3155 
3156 	if (best_node >= 0)
3157 		node_set(best_node, *used_node_mask);
3158 
3159 	return best_node;
3160 }
3161 
3162 
3163 /*
3164  * Build zonelists ordered by node and zones within node.
3165  * This results in maximum locality--normal zone overflows into local
3166  * DMA zone, if any--but risks exhausting DMA zone.
3167  */
3168 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3169 {
3170 	int j;
3171 	struct zonelist *zonelist;
3172 
3173 	zonelist = &pgdat->node_zonelists[0];
3174 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3175 		;
3176 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3177 							MAX_NR_ZONES - 1);
3178 	zonelist->_zonerefs[j].zone = NULL;
3179 	zonelist->_zonerefs[j].zone_idx = 0;
3180 }
3181 
3182 /*
3183  * Build gfp_thisnode zonelists
3184  */
3185 static void build_thisnode_zonelists(pg_data_t *pgdat)
3186 {
3187 	int j;
3188 	struct zonelist *zonelist;
3189 
3190 	zonelist = &pgdat->node_zonelists[1];
3191 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3192 	zonelist->_zonerefs[j].zone = NULL;
3193 	zonelist->_zonerefs[j].zone_idx = 0;
3194 }
3195 
3196 /*
3197  * Build zonelists ordered by zone and nodes within zones.
3198  * This results in conserving DMA zone[s] until all Normal memory is
3199  * exhausted, but results in overflowing to remote node while memory
3200  * may still exist in local DMA zone.
3201  */
3202 static int node_order[MAX_NUMNODES];
3203 
3204 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3205 {
3206 	int pos, j, node;
3207 	int zone_type;		/* needs to be signed */
3208 	struct zone *z;
3209 	struct zonelist *zonelist;
3210 
3211 	zonelist = &pgdat->node_zonelists[0];
3212 	pos = 0;
3213 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3214 		for (j = 0; j < nr_nodes; j++) {
3215 			node = node_order[j];
3216 			z = &NODE_DATA(node)->node_zones[zone_type];
3217 			if (populated_zone(z)) {
3218 				zoneref_set_zone(z,
3219 					&zonelist->_zonerefs[pos++]);
3220 				check_highest_zone(zone_type);
3221 			}
3222 		}
3223 	}
3224 	zonelist->_zonerefs[pos].zone = NULL;
3225 	zonelist->_zonerefs[pos].zone_idx = 0;
3226 }
3227 
3228 static int default_zonelist_order(void)
3229 {
3230 	int nid, zone_type;
3231 	unsigned long low_kmem_size,total_size;
3232 	struct zone *z;
3233 	int average_size;
3234 	/*
3235          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3236 	 * If they are really small and used heavily, the system can fall
3237 	 * into OOM very easily.
3238 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3239 	 */
3240 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3241 	low_kmem_size = 0;
3242 	total_size = 0;
3243 	for_each_online_node(nid) {
3244 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3245 			z = &NODE_DATA(nid)->node_zones[zone_type];
3246 			if (populated_zone(z)) {
3247 				if (zone_type < ZONE_NORMAL)
3248 					low_kmem_size += z->present_pages;
3249 				total_size += z->present_pages;
3250 			} else if (zone_type == ZONE_NORMAL) {
3251 				/*
3252 				 * If any node has only lowmem, then node order
3253 				 * is preferred to allow kernel allocations
3254 				 * locally; otherwise, they can easily infringe
3255 				 * on other nodes when there is an abundance of
3256 				 * lowmem available to allocate from.
3257 				 */
3258 				return ZONELIST_ORDER_NODE;
3259 			}
3260 		}
3261 	}
3262 	if (!low_kmem_size ||  /* there are no DMA area. */
3263 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3264 		return ZONELIST_ORDER_NODE;
3265 	/*
3266 	 * look into each node's config.
3267   	 * If there is a node whose DMA/DMA32 memory is very big area on
3268  	 * local memory, NODE_ORDER may be suitable.
3269          */
3270 	average_size = total_size /
3271 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3272 	for_each_online_node(nid) {
3273 		low_kmem_size = 0;
3274 		total_size = 0;
3275 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3276 			z = &NODE_DATA(nid)->node_zones[zone_type];
3277 			if (populated_zone(z)) {
3278 				if (zone_type < ZONE_NORMAL)
3279 					low_kmem_size += z->present_pages;
3280 				total_size += z->present_pages;
3281 			}
3282 		}
3283 		if (low_kmem_size &&
3284 		    total_size > average_size && /* ignore small node */
3285 		    low_kmem_size > total_size * 70/100)
3286 			return ZONELIST_ORDER_NODE;
3287 	}
3288 	return ZONELIST_ORDER_ZONE;
3289 }
3290 
3291 static void set_zonelist_order(void)
3292 {
3293 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3294 		current_zonelist_order = default_zonelist_order();
3295 	else
3296 		current_zonelist_order = user_zonelist_order;
3297 }
3298 
3299 static void build_zonelists(pg_data_t *pgdat)
3300 {
3301 	int j, node, load;
3302 	enum zone_type i;
3303 	nodemask_t used_mask;
3304 	int local_node, prev_node;
3305 	struct zonelist *zonelist;
3306 	int order = current_zonelist_order;
3307 
3308 	/* initialize zonelists */
3309 	for (i = 0; i < MAX_ZONELISTS; i++) {
3310 		zonelist = pgdat->node_zonelists + i;
3311 		zonelist->_zonerefs[0].zone = NULL;
3312 		zonelist->_zonerefs[0].zone_idx = 0;
3313 	}
3314 
3315 	/* NUMA-aware ordering of nodes */
3316 	local_node = pgdat->node_id;
3317 	load = nr_online_nodes;
3318 	prev_node = local_node;
3319 	nodes_clear(used_mask);
3320 
3321 	memset(node_order, 0, sizeof(node_order));
3322 	j = 0;
3323 
3324 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3325 		int distance = node_distance(local_node, node);
3326 
3327 		/*
3328 		 * If another node is sufficiently far away then it is better
3329 		 * to reclaim pages in a zone before going off node.
3330 		 */
3331 		if (distance > RECLAIM_DISTANCE)
3332 			zone_reclaim_mode = 1;
3333 
3334 		/*
3335 		 * We don't want to pressure a particular node.
3336 		 * So adding penalty to the first node in same
3337 		 * distance group to make it round-robin.
3338 		 */
3339 		if (distance != node_distance(local_node, prev_node))
3340 			node_load[node] = load;
3341 
3342 		prev_node = node;
3343 		load--;
3344 		if (order == ZONELIST_ORDER_NODE)
3345 			build_zonelists_in_node_order(pgdat, node);
3346 		else
3347 			node_order[j++] = node;	/* remember order */
3348 	}
3349 
3350 	if (order == ZONELIST_ORDER_ZONE) {
3351 		/* calculate node order -- i.e., DMA last! */
3352 		build_zonelists_in_zone_order(pgdat, j);
3353 	}
3354 
3355 	build_thisnode_zonelists(pgdat);
3356 }
3357 
3358 /* Construct the zonelist performance cache - see further mmzone.h */
3359 static void build_zonelist_cache(pg_data_t *pgdat)
3360 {
3361 	struct zonelist *zonelist;
3362 	struct zonelist_cache *zlc;
3363 	struct zoneref *z;
3364 
3365 	zonelist = &pgdat->node_zonelists[0];
3366 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3367 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3368 	for (z = zonelist->_zonerefs; z->zone; z++)
3369 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3370 }
3371 
3372 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3373 /*
3374  * Return node id of node used for "local" allocations.
3375  * I.e., first node id of first zone in arg node's generic zonelist.
3376  * Used for initializing percpu 'numa_mem', which is used primarily
3377  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3378  */
3379 int local_memory_node(int node)
3380 {
3381 	struct zone *zone;
3382 
3383 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3384 				   gfp_zone(GFP_KERNEL),
3385 				   NULL,
3386 				   &zone);
3387 	return zone->node;
3388 }
3389 #endif
3390 
3391 #else	/* CONFIG_NUMA */
3392 
3393 static void set_zonelist_order(void)
3394 {
3395 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3396 }
3397 
3398 static void build_zonelists(pg_data_t *pgdat)
3399 {
3400 	int node, local_node;
3401 	enum zone_type j;
3402 	struct zonelist *zonelist;
3403 
3404 	local_node = pgdat->node_id;
3405 
3406 	zonelist = &pgdat->node_zonelists[0];
3407 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3408 
3409 	/*
3410 	 * Now we build the zonelist so that it contains the zones
3411 	 * of all the other nodes.
3412 	 * We don't want to pressure a particular node, so when
3413 	 * building the zones for node N, we make sure that the
3414 	 * zones coming right after the local ones are those from
3415 	 * node N+1 (modulo N)
3416 	 */
3417 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3418 		if (!node_online(node))
3419 			continue;
3420 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3421 							MAX_NR_ZONES - 1);
3422 	}
3423 	for (node = 0; node < local_node; node++) {
3424 		if (!node_online(node))
3425 			continue;
3426 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3427 							MAX_NR_ZONES - 1);
3428 	}
3429 
3430 	zonelist->_zonerefs[j].zone = NULL;
3431 	zonelist->_zonerefs[j].zone_idx = 0;
3432 }
3433 
3434 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3435 static void build_zonelist_cache(pg_data_t *pgdat)
3436 {
3437 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3438 }
3439 
3440 #endif	/* CONFIG_NUMA */
3441 
3442 /*
3443  * Boot pageset table. One per cpu which is going to be used for all
3444  * zones and all nodes. The parameters will be set in such a way
3445  * that an item put on a list will immediately be handed over to
3446  * the buddy list. This is safe since pageset manipulation is done
3447  * with interrupts disabled.
3448  *
3449  * The boot_pagesets must be kept even after bootup is complete for
3450  * unused processors and/or zones. They do play a role for bootstrapping
3451  * hotplugged processors.
3452  *
3453  * zoneinfo_show() and maybe other functions do
3454  * not check if the processor is online before following the pageset pointer.
3455  * Other parts of the kernel may not check if the zone is available.
3456  */
3457 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3458 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3459 static void setup_zone_pageset(struct zone *zone);
3460 
3461 /*
3462  * Global mutex to protect against size modification of zonelists
3463  * as well as to serialize pageset setup for the new populated zone.
3464  */
3465 DEFINE_MUTEX(zonelists_mutex);
3466 
3467 /* return values int ....just for stop_machine() */
3468 static int __build_all_zonelists(void *data)
3469 {
3470 	int nid;
3471 	int cpu;
3472 	pg_data_t *self = data;
3473 
3474 #ifdef CONFIG_NUMA
3475 	memset(node_load, 0, sizeof(node_load));
3476 #endif
3477 
3478 	if (self && !node_online(self->node_id)) {
3479 		build_zonelists(self);
3480 		build_zonelist_cache(self);
3481 	}
3482 
3483 	for_each_online_node(nid) {
3484 		pg_data_t *pgdat = NODE_DATA(nid);
3485 
3486 		build_zonelists(pgdat);
3487 		build_zonelist_cache(pgdat);
3488 	}
3489 
3490 	/*
3491 	 * Initialize the boot_pagesets that are going to be used
3492 	 * for bootstrapping processors. The real pagesets for
3493 	 * each zone will be allocated later when the per cpu
3494 	 * allocator is available.
3495 	 *
3496 	 * boot_pagesets are used also for bootstrapping offline
3497 	 * cpus if the system is already booted because the pagesets
3498 	 * are needed to initialize allocators on a specific cpu too.
3499 	 * F.e. the percpu allocator needs the page allocator which
3500 	 * needs the percpu allocator in order to allocate its pagesets
3501 	 * (a chicken-egg dilemma).
3502 	 */
3503 	for_each_possible_cpu(cpu) {
3504 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3505 
3506 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3507 		/*
3508 		 * We now know the "local memory node" for each node--
3509 		 * i.e., the node of the first zone in the generic zonelist.
3510 		 * Set up numa_mem percpu variable for on-line cpus.  During
3511 		 * boot, only the boot cpu should be on-line;  we'll init the
3512 		 * secondary cpus' numa_mem as they come on-line.  During
3513 		 * node/memory hotplug, we'll fixup all on-line cpus.
3514 		 */
3515 		if (cpu_online(cpu))
3516 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3517 #endif
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 /*
3524  * Called with zonelists_mutex held always
3525  * unless system_state == SYSTEM_BOOTING.
3526  */
3527 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3528 {
3529 	set_zonelist_order();
3530 
3531 	if (system_state == SYSTEM_BOOTING) {
3532 		__build_all_zonelists(NULL);
3533 		mminit_verify_zonelist();
3534 		cpuset_init_current_mems_allowed();
3535 	} else {
3536 		/* we have to stop all cpus to guarantee there is no user
3537 		   of zonelist */
3538 #ifdef CONFIG_MEMORY_HOTPLUG
3539 		if (zone)
3540 			setup_zone_pageset(zone);
3541 #endif
3542 		stop_machine(__build_all_zonelists, pgdat, NULL);
3543 		/* cpuset refresh routine should be here */
3544 	}
3545 	vm_total_pages = nr_free_pagecache_pages();
3546 	/*
3547 	 * Disable grouping by mobility if the number of pages in the
3548 	 * system is too low to allow the mechanism to work. It would be
3549 	 * more accurate, but expensive to check per-zone. This check is
3550 	 * made on memory-hotadd so a system can start with mobility
3551 	 * disabled and enable it later
3552 	 */
3553 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3554 		page_group_by_mobility_disabled = 1;
3555 	else
3556 		page_group_by_mobility_disabled = 0;
3557 
3558 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3559 		"Total pages: %ld\n",
3560 			nr_online_nodes,
3561 			zonelist_order_name[current_zonelist_order],
3562 			page_group_by_mobility_disabled ? "off" : "on",
3563 			vm_total_pages);
3564 #ifdef CONFIG_NUMA
3565 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3566 #endif
3567 }
3568 
3569 /*
3570  * Helper functions to size the waitqueue hash table.
3571  * Essentially these want to choose hash table sizes sufficiently
3572  * large so that collisions trying to wait on pages are rare.
3573  * But in fact, the number of active page waitqueues on typical
3574  * systems is ridiculously low, less than 200. So this is even
3575  * conservative, even though it seems large.
3576  *
3577  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3578  * waitqueues, i.e. the size of the waitq table given the number of pages.
3579  */
3580 #define PAGES_PER_WAITQUEUE	256
3581 
3582 #ifndef CONFIG_MEMORY_HOTPLUG
3583 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3584 {
3585 	unsigned long size = 1;
3586 
3587 	pages /= PAGES_PER_WAITQUEUE;
3588 
3589 	while (size < pages)
3590 		size <<= 1;
3591 
3592 	/*
3593 	 * Once we have dozens or even hundreds of threads sleeping
3594 	 * on IO we've got bigger problems than wait queue collision.
3595 	 * Limit the size of the wait table to a reasonable size.
3596 	 */
3597 	size = min(size, 4096UL);
3598 
3599 	return max(size, 4UL);
3600 }
3601 #else
3602 /*
3603  * A zone's size might be changed by hot-add, so it is not possible to determine
3604  * a suitable size for its wait_table.  So we use the maximum size now.
3605  *
3606  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3607  *
3608  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3609  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3610  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3611  *
3612  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3613  * or more by the traditional way. (See above).  It equals:
3614  *
3615  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3616  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3617  *    powerpc (64K page size)             : =  (32G +16M)byte.
3618  */
3619 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3620 {
3621 	return 4096UL;
3622 }
3623 #endif
3624 
3625 /*
3626  * This is an integer logarithm so that shifts can be used later
3627  * to extract the more random high bits from the multiplicative
3628  * hash function before the remainder is taken.
3629  */
3630 static inline unsigned long wait_table_bits(unsigned long size)
3631 {
3632 	return ffz(~size);
3633 }
3634 
3635 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3636 
3637 /*
3638  * Check if a pageblock contains reserved pages
3639  */
3640 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3641 {
3642 	unsigned long pfn;
3643 
3644 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3645 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3646 			return 1;
3647 	}
3648 	return 0;
3649 }
3650 
3651 /*
3652  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3653  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3654  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3655  * higher will lead to a bigger reserve which will get freed as contiguous
3656  * blocks as reclaim kicks in
3657  */
3658 static void setup_zone_migrate_reserve(struct zone *zone)
3659 {
3660 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3661 	struct page *page;
3662 	unsigned long block_migratetype;
3663 	int reserve;
3664 
3665 	/*
3666 	 * Get the start pfn, end pfn and the number of blocks to reserve
3667 	 * We have to be careful to be aligned to pageblock_nr_pages to
3668 	 * make sure that we always check pfn_valid for the first page in
3669 	 * the block.
3670 	 */
3671 	start_pfn = zone->zone_start_pfn;
3672 	end_pfn = start_pfn + zone->spanned_pages;
3673 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3674 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3675 							pageblock_order;
3676 
3677 	/*
3678 	 * Reserve blocks are generally in place to help high-order atomic
3679 	 * allocations that are short-lived. A min_free_kbytes value that
3680 	 * would result in more than 2 reserve blocks for atomic allocations
3681 	 * is assumed to be in place to help anti-fragmentation for the
3682 	 * future allocation of hugepages at runtime.
3683 	 */
3684 	reserve = min(2, reserve);
3685 
3686 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3687 		if (!pfn_valid(pfn))
3688 			continue;
3689 		page = pfn_to_page(pfn);
3690 
3691 		/* Watch out for overlapping nodes */
3692 		if (page_to_nid(page) != zone_to_nid(zone))
3693 			continue;
3694 
3695 		block_migratetype = get_pageblock_migratetype(page);
3696 
3697 		/* Only test what is necessary when the reserves are not met */
3698 		if (reserve > 0) {
3699 			/*
3700 			 * Blocks with reserved pages will never free, skip
3701 			 * them.
3702 			 */
3703 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3704 			if (pageblock_is_reserved(pfn, block_end_pfn))
3705 				continue;
3706 
3707 			/* If this block is reserved, account for it */
3708 			if (block_migratetype == MIGRATE_RESERVE) {
3709 				reserve--;
3710 				continue;
3711 			}
3712 
3713 			/* Suitable for reserving if this block is movable */
3714 			if (block_migratetype == MIGRATE_MOVABLE) {
3715 				set_pageblock_migratetype(page,
3716 							MIGRATE_RESERVE);
3717 				move_freepages_block(zone, page,
3718 							MIGRATE_RESERVE);
3719 				reserve--;
3720 				continue;
3721 			}
3722 		}
3723 
3724 		/*
3725 		 * If the reserve is met and this is a previous reserved block,
3726 		 * take it back
3727 		 */
3728 		if (block_migratetype == MIGRATE_RESERVE) {
3729 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3730 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3731 		}
3732 	}
3733 }
3734 
3735 /*
3736  * Initially all pages are reserved - free ones are freed
3737  * up by free_all_bootmem() once the early boot process is
3738  * done. Non-atomic initialization, single-pass.
3739  */
3740 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3741 		unsigned long start_pfn, enum memmap_context context)
3742 {
3743 	struct page *page;
3744 	unsigned long end_pfn = start_pfn + size;
3745 	unsigned long pfn;
3746 	struct zone *z;
3747 
3748 	if (highest_memmap_pfn < end_pfn - 1)
3749 		highest_memmap_pfn = end_pfn - 1;
3750 
3751 	z = &NODE_DATA(nid)->node_zones[zone];
3752 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3753 		/*
3754 		 * There can be holes in boot-time mem_map[]s
3755 		 * handed to this function.  They do not
3756 		 * exist on hotplugged memory.
3757 		 */
3758 		if (context == MEMMAP_EARLY) {
3759 			if (!early_pfn_valid(pfn))
3760 				continue;
3761 			if (!early_pfn_in_nid(pfn, nid))
3762 				continue;
3763 		}
3764 		page = pfn_to_page(pfn);
3765 		set_page_links(page, zone, nid, pfn);
3766 		mminit_verify_page_links(page, zone, nid, pfn);
3767 		init_page_count(page);
3768 		reset_page_mapcount(page);
3769 		SetPageReserved(page);
3770 		/*
3771 		 * Mark the block movable so that blocks are reserved for
3772 		 * movable at startup. This will force kernel allocations
3773 		 * to reserve their blocks rather than leaking throughout
3774 		 * the address space during boot when many long-lived
3775 		 * kernel allocations are made. Later some blocks near
3776 		 * the start are marked MIGRATE_RESERVE by
3777 		 * setup_zone_migrate_reserve()
3778 		 *
3779 		 * bitmap is created for zone's valid pfn range. but memmap
3780 		 * can be created for invalid pages (for alignment)
3781 		 * check here not to call set_pageblock_migratetype() against
3782 		 * pfn out of zone.
3783 		 */
3784 		if ((z->zone_start_pfn <= pfn)
3785 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3786 		    && !(pfn & (pageblock_nr_pages - 1)))
3787 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3788 
3789 		INIT_LIST_HEAD(&page->lru);
3790 #ifdef WANT_PAGE_VIRTUAL
3791 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3792 		if (!is_highmem_idx(zone))
3793 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3794 #endif
3795 	}
3796 }
3797 
3798 static void __meminit zone_init_free_lists(struct zone *zone)
3799 {
3800 	int order, t;
3801 	for_each_migratetype_order(order, t) {
3802 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3803 		zone->free_area[order].nr_free = 0;
3804 	}
3805 }
3806 
3807 #ifndef __HAVE_ARCH_MEMMAP_INIT
3808 #define memmap_init(size, nid, zone, start_pfn) \
3809 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3810 #endif
3811 
3812 static int __meminit zone_batchsize(struct zone *zone)
3813 {
3814 #ifdef CONFIG_MMU
3815 	int batch;
3816 
3817 	/*
3818 	 * The per-cpu-pages pools are set to around 1000th of the
3819 	 * size of the zone.  But no more than 1/2 of a meg.
3820 	 *
3821 	 * OK, so we don't know how big the cache is.  So guess.
3822 	 */
3823 	batch = zone->present_pages / 1024;
3824 	if (batch * PAGE_SIZE > 512 * 1024)
3825 		batch = (512 * 1024) / PAGE_SIZE;
3826 	batch /= 4;		/* We effectively *= 4 below */
3827 	if (batch < 1)
3828 		batch = 1;
3829 
3830 	/*
3831 	 * Clamp the batch to a 2^n - 1 value. Having a power
3832 	 * of 2 value was found to be more likely to have
3833 	 * suboptimal cache aliasing properties in some cases.
3834 	 *
3835 	 * For example if 2 tasks are alternately allocating
3836 	 * batches of pages, one task can end up with a lot
3837 	 * of pages of one half of the possible page colors
3838 	 * and the other with pages of the other colors.
3839 	 */
3840 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3841 
3842 	return batch;
3843 
3844 #else
3845 	/* The deferral and batching of frees should be suppressed under NOMMU
3846 	 * conditions.
3847 	 *
3848 	 * The problem is that NOMMU needs to be able to allocate large chunks
3849 	 * of contiguous memory as there's no hardware page translation to
3850 	 * assemble apparent contiguous memory from discontiguous pages.
3851 	 *
3852 	 * Queueing large contiguous runs of pages for batching, however,
3853 	 * causes the pages to actually be freed in smaller chunks.  As there
3854 	 * can be a significant delay between the individual batches being
3855 	 * recycled, this leads to the once large chunks of space being
3856 	 * fragmented and becoming unavailable for high-order allocations.
3857 	 */
3858 	return 0;
3859 #endif
3860 }
3861 
3862 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3863 {
3864 	struct per_cpu_pages *pcp;
3865 	int migratetype;
3866 
3867 	memset(p, 0, sizeof(*p));
3868 
3869 	pcp = &p->pcp;
3870 	pcp->count = 0;
3871 	pcp->high = 6 * batch;
3872 	pcp->batch = max(1UL, 1 * batch);
3873 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3874 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3875 }
3876 
3877 /*
3878  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3879  * to the value high for the pageset p.
3880  */
3881 
3882 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3883 				unsigned long high)
3884 {
3885 	struct per_cpu_pages *pcp;
3886 
3887 	pcp = &p->pcp;
3888 	pcp->high = high;
3889 	pcp->batch = max(1UL, high/4);
3890 	if ((high/4) > (PAGE_SHIFT * 8))
3891 		pcp->batch = PAGE_SHIFT * 8;
3892 }
3893 
3894 static void __meminit setup_zone_pageset(struct zone *zone)
3895 {
3896 	int cpu;
3897 
3898 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3899 
3900 	for_each_possible_cpu(cpu) {
3901 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3902 
3903 		setup_pageset(pcp, zone_batchsize(zone));
3904 
3905 		if (percpu_pagelist_fraction)
3906 			setup_pagelist_highmark(pcp,
3907 				(zone->present_pages /
3908 					percpu_pagelist_fraction));
3909 	}
3910 }
3911 
3912 /*
3913  * Allocate per cpu pagesets and initialize them.
3914  * Before this call only boot pagesets were available.
3915  */
3916 void __init setup_per_cpu_pageset(void)
3917 {
3918 	struct zone *zone;
3919 
3920 	for_each_populated_zone(zone)
3921 		setup_zone_pageset(zone);
3922 }
3923 
3924 static noinline __init_refok
3925 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3926 {
3927 	int i;
3928 	struct pglist_data *pgdat = zone->zone_pgdat;
3929 	size_t alloc_size;
3930 
3931 	/*
3932 	 * The per-page waitqueue mechanism uses hashed waitqueues
3933 	 * per zone.
3934 	 */
3935 	zone->wait_table_hash_nr_entries =
3936 		 wait_table_hash_nr_entries(zone_size_pages);
3937 	zone->wait_table_bits =
3938 		wait_table_bits(zone->wait_table_hash_nr_entries);
3939 	alloc_size = zone->wait_table_hash_nr_entries
3940 					* sizeof(wait_queue_head_t);
3941 
3942 	if (!slab_is_available()) {
3943 		zone->wait_table = (wait_queue_head_t *)
3944 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3945 	} else {
3946 		/*
3947 		 * This case means that a zone whose size was 0 gets new memory
3948 		 * via memory hot-add.
3949 		 * But it may be the case that a new node was hot-added.  In
3950 		 * this case vmalloc() will not be able to use this new node's
3951 		 * memory - this wait_table must be initialized to use this new
3952 		 * node itself as well.
3953 		 * To use this new node's memory, further consideration will be
3954 		 * necessary.
3955 		 */
3956 		zone->wait_table = vmalloc(alloc_size);
3957 	}
3958 	if (!zone->wait_table)
3959 		return -ENOMEM;
3960 
3961 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3962 		init_waitqueue_head(zone->wait_table + i);
3963 
3964 	return 0;
3965 }
3966 
3967 static __meminit void zone_pcp_init(struct zone *zone)
3968 {
3969 	/*
3970 	 * per cpu subsystem is not up at this point. The following code
3971 	 * relies on the ability of the linker to provide the
3972 	 * offset of a (static) per cpu variable into the per cpu area.
3973 	 */
3974 	zone->pageset = &boot_pageset;
3975 
3976 	if (zone->present_pages)
3977 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3978 			zone->name, zone->present_pages,
3979 					 zone_batchsize(zone));
3980 }
3981 
3982 int __meminit init_currently_empty_zone(struct zone *zone,
3983 					unsigned long zone_start_pfn,
3984 					unsigned long size,
3985 					enum memmap_context context)
3986 {
3987 	struct pglist_data *pgdat = zone->zone_pgdat;
3988 	int ret;
3989 	ret = zone_wait_table_init(zone, size);
3990 	if (ret)
3991 		return ret;
3992 	pgdat->nr_zones = zone_idx(zone) + 1;
3993 
3994 	zone->zone_start_pfn = zone_start_pfn;
3995 
3996 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3997 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3998 			pgdat->node_id,
3999 			(unsigned long)zone_idx(zone),
4000 			zone_start_pfn, (zone_start_pfn + size));
4001 
4002 	zone_init_free_lists(zone);
4003 
4004 	return 0;
4005 }
4006 
4007 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4008 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4009 /*
4010  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4011  * Architectures may implement their own version but if add_active_range()
4012  * was used and there are no special requirements, this is a convenient
4013  * alternative
4014  */
4015 int __meminit __early_pfn_to_nid(unsigned long pfn)
4016 {
4017 	unsigned long start_pfn, end_pfn;
4018 	int i, nid;
4019 
4020 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4021 		if (start_pfn <= pfn && pfn < end_pfn)
4022 			return nid;
4023 	/* This is a memory hole */
4024 	return -1;
4025 }
4026 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4027 
4028 int __meminit early_pfn_to_nid(unsigned long pfn)
4029 {
4030 	int nid;
4031 
4032 	nid = __early_pfn_to_nid(pfn);
4033 	if (nid >= 0)
4034 		return nid;
4035 	/* just returns 0 */
4036 	return 0;
4037 }
4038 
4039 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4040 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4041 {
4042 	int nid;
4043 
4044 	nid = __early_pfn_to_nid(pfn);
4045 	if (nid >= 0 && nid != node)
4046 		return false;
4047 	return true;
4048 }
4049 #endif
4050 
4051 /**
4052  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4053  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4054  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4055  *
4056  * If an architecture guarantees that all ranges registered with
4057  * add_active_ranges() contain no holes and may be freed, this
4058  * this function may be used instead of calling free_bootmem() manually.
4059  */
4060 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4061 {
4062 	unsigned long start_pfn, end_pfn;
4063 	int i, this_nid;
4064 
4065 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4066 		start_pfn = min(start_pfn, max_low_pfn);
4067 		end_pfn = min(end_pfn, max_low_pfn);
4068 
4069 		if (start_pfn < end_pfn)
4070 			free_bootmem_node(NODE_DATA(this_nid),
4071 					  PFN_PHYS(start_pfn),
4072 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4073 	}
4074 }
4075 
4076 /**
4077  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4078  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4079  *
4080  * If an architecture guarantees that all ranges registered with
4081  * add_active_ranges() contain no holes and may be freed, this
4082  * function may be used instead of calling memory_present() manually.
4083  */
4084 void __init sparse_memory_present_with_active_regions(int nid)
4085 {
4086 	unsigned long start_pfn, end_pfn;
4087 	int i, this_nid;
4088 
4089 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4090 		memory_present(this_nid, start_pfn, end_pfn);
4091 }
4092 
4093 /**
4094  * get_pfn_range_for_nid - Return the start and end page frames for a node
4095  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4096  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4097  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4098  *
4099  * It returns the start and end page frame of a node based on information
4100  * provided by an arch calling add_active_range(). If called for a node
4101  * with no available memory, a warning is printed and the start and end
4102  * PFNs will be 0.
4103  */
4104 void __meminit get_pfn_range_for_nid(unsigned int nid,
4105 			unsigned long *start_pfn, unsigned long *end_pfn)
4106 {
4107 	unsigned long this_start_pfn, this_end_pfn;
4108 	int i;
4109 
4110 	*start_pfn = -1UL;
4111 	*end_pfn = 0;
4112 
4113 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4114 		*start_pfn = min(*start_pfn, this_start_pfn);
4115 		*end_pfn = max(*end_pfn, this_end_pfn);
4116 	}
4117 
4118 	if (*start_pfn == -1UL)
4119 		*start_pfn = 0;
4120 }
4121 
4122 /*
4123  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4124  * assumption is made that zones within a node are ordered in monotonic
4125  * increasing memory addresses so that the "highest" populated zone is used
4126  */
4127 static void __init find_usable_zone_for_movable(void)
4128 {
4129 	int zone_index;
4130 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4131 		if (zone_index == ZONE_MOVABLE)
4132 			continue;
4133 
4134 		if (arch_zone_highest_possible_pfn[zone_index] >
4135 				arch_zone_lowest_possible_pfn[zone_index])
4136 			break;
4137 	}
4138 
4139 	VM_BUG_ON(zone_index == -1);
4140 	movable_zone = zone_index;
4141 }
4142 
4143 /*
4144  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4145  * because it is sized independent of architecture. Unlike the other zones,
4146  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4147  * in each node depending on the size of each node and how evenly kernelcore
4148  * is distributed. This helper function adjusts the zone ranges
4149  * provided by the architecture for a given node by using the end of the
4150  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4151  * zones within a node are in order of monotonic increases memory addresses
4152  */
4153 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4154 					unsigned long zone_type,
4155 					unsigned long node_start_pfn,
4156 					unsigned long node_end_pfn,
4157 					unsigned long *zone_start_pfn,
4158 					unsigned long *zone_end_pfn)
4159 {
4160 	/* Only adjust if ZONE_MOVABLE is on this node */
4161 	if (zone_movable_pfn[nid]) {
4162 		/* Size ZONE_MOVABLE */
4163 		if (zone_type == ZONE_MOVABLE) {
4164 			*zone_start_pfn = zone_movable_pfn[nid];
4165 			*zone_end_pfn = min(node_end_pfn,
4166 				arch_zone_highest_possible_pfn[movable_zone]);
4167 
4168 		/* Adjust for ZONE_MOVABLE starting within this range */
4169 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4170 				*zone_end_pfn > zone_movable_pfn[nid]) {
4171 			*zone_end_pfn = zone_movable_pfn[nid];
4172 
4173 		/* Check if this whole range is within ZONE_MOVABLE */
4174 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4175 			*zone_start_pfn = *zone_end_pfn;
4176 	}
4177 }
4178 
4179 /*
4180  * Return the number of pages a zone spans in a node, including holes
4181  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4182  */
4183 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4184 					unsigned long zone_type,
4185 					unsigned long *ignored)
4186 {
4187 	unsigned long node_start_pfn, node_end_pfn;
4188 	unsigned long zone_start_pfn, zone_end_pfn;
4189 
4190 	/* Get the start and end of the node and zone */
4191 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4192 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4193 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4194 	adjust_zone_range_for_zone_movable(nid, zone_type,
4195 				node_start_pfn, node_end_pfn,
4196 				&zone_start_pfn, &zone_end_pfn);
4197 
4198 	/* Check that this node has pages within the zone's required range */
4199 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4200 		return 0;
4201 
4202 	/* Move the zone boundaries inside the node if necessary */
4203 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4204 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4205 
4206 	/* Return the spanned pages */
4207 	return zone_end_pfn - zone_start_pfn;
4208 }
4209 
4210 /*
4211  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4212  * then all holes in the requested range will be accounted for.
4213  */
4214 unsigned long __meminit __absent_pages_in_range(int nid,
4215 				unsigned long range_start_pfn,
4216 				unsigned long range_end_pfn)
4217 {
4218 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4219 	unsigned long start_pfn, end_pfn;
4220 	int i;
4221 
4222 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4223 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4224 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4225 		nr_absent -= end_pfn - start_pfn;
4226 	}
4227 	return nr_absent;
4228 }
4229 
4230 /**
4231  * absent_pages_in_range - Return number of page frames in holes within a range
4232  * @start_pfn: The start PFN to start searching for holes
4233  * @end_pfn: The end PFN to stop searching for holes
4234  *
4235  * It returns the number of pages frames in memory holes within a range.
4236  */
4237 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4238 							unsigned long end_pfn)
4239 {
4240 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4241 }
4242 
4243 /* Return the number of page frames in holes in a zone on a node */
4244 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4245 					unsigned long zone_type,
4246 					unsigned long *ignored)
4247 {
4248 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4249 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4250 	unsigned long node_start_pfn, node_end_pfn;
4251 	unsigned long zone_start_pfn, zone_end_pfn;
4252 
4253 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4254 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4255 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4256 
4257 	adjust_zone_range_for_zone_movable(nid, zone_type,
4258 			node_start_pfn, node_end_pfn,
4259 			&zone_start_pfn, &zone_end_pfn);
4260 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4261 }
4262 
4263 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4264 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4265 					unsigned long zone_type,
4266 					unsigned long *zones_size)
4267 {
4268 	return zones_size[zone_type];
4269 }
4270 
4271 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4272 						unsigned long zone_type,
4273 						unsigned long *zholes_size)
4274 {
4275 	if (!zholes_size)
4276 		return 0;
4277 
4278 	return zholes_size[zone_type];
4279 }
4280 
4281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4282 
4283 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4284 		unsigned long *zones_size, unsigned long *zholes_size)
4285 {
4286 	unsigned long realtotalpages, totalpages = 0;
4287 	enum zone_type i;
4288 
4289 	for (i = 0; i < MAX_NR_ZONES; i++)
4290 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4291 								zones_size);
4292 	pgdat->node_spanned_pages = totalpages;
4293 
4294 	realtotalpages = totalpages;
4295 	for (i = 0; i < MAX_NR_ZONES; i++)
4296 		realtotalpages -=
4297 			zone_absent_pages_in_node(pgdat->node_id, i,
4298 								zholes_size);
4299 	pgdat->node_present_pages = realtotalpages;
4300 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4301 							realtotalpages);
4302 }
4303 
4304 #ifndef CONFIG_SPARSEMEM
4305 /*
4306  * Calculate the size of the zone->blockflags rounded to an unsigned long
4307  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4308  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4309  * round what is now in bits to nearest long in bits, then return it in
4310  * bytes.
4311  */
4312 static unsigned long __init usemap_size(unsigned long zonesize)
4313 {
4314 	unsigned long usemapsize;
4315 
4316 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4317 	usemapsize = usemapsize >> pageblock_order;
4318 	usemapsize *= NR_PAGEBLOCK_BITS;
4319 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4320 
4321 	return usemapsize / 8;
4322 }
4323 
4324 static void __init setup_usemap(struct pglist_data *pgdat,
4325 				struct zone *zone, unsigned long zonesize)
4326 {
4327 	unsigned long usemapsize = usemap_size(zonesize);
4328 	zone->pageblock_flags = NULL;
4329 	if (usemapsize)
4330 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4331 								   usemapsize);
4332 }
4333 #else
4334 static inline void setup_usemap(struct pglist_data *pgdat,
4335 				struct zone *zone, unsigned long zonesize) {}
4336 #endif /* CONFIG_SPARSEMEM */
4337 
4338 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4339 
4340 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4341 void __init set_pageblock_order(void)
4342 {
4343 	unsigned int order;
4344 
4345 	/* Check that pageblock_nr_pages has not already been setup */
4346 	if (pageblock_order)
4347 		return;
4348 
4349 	if (HPAGE_SHIFT > PAGE_SHIFT)
4350 		order = HUGETLB_PAGE_ORDER;
4351 	else
4352 		order = MAX_ORDER - 1;
4353 
4354 	/*
4355 	 * Assume the largest contiguous order of interest is a huge page.
4356 	 * This value may be variable depending on boot parameters on IA64 and
4357 	 * powerpc.
4358 	 */
4359 	pageblock_order = order;
4360 }
4361 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4362 
4363 /*
4364  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4365  * is unused as pageblock_order is set at compile-time. See
4366  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4367  * the kernel config
4368  */
4369 void __init set_pageblock_order(void)
4370 {
4371 }
4372 
4373 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4374 
4375 /*
4376  * Set up the zone data structures:
4377  *   - mark all pages reserved
4378  *   - mark all memory queues empty
4379  *   - clear the memory bitmaps
4380  *
4381  * NOTE: pgdat should get zeroed by caller.
4382  */
4383 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4384 		unsigned long *zones_size, unsigned long *zholes_size)
4385 {
4386 	enum zone_type j;
4387 	int nid = pgdat->node_id;
4388 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4389 	int ret;
4390 
4391 	pgdat_resize_init(pgdat);
4392 	init_waitqueue_head(&pgdat->kswapd_wait);
4393 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4394 	pgdat_page_cgroup_init(pgdat);
4395 
4396 	for (j = 0; j < MAX_NR_ZONES; j++) {
4397 		struct zone *zone = pgdat->node_zones + j;
4398 		unsigned long size, realsize, memmap_pages;
4399 
4400 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4401 		realsize = size - zone_absent_pages_in_node(nid, j,
4402 								zholes_size);
4403 
4404 		/*
4405 		 * Adjust realsize so that it accounts for how much memory
4406 		 * is used by this zone for memmap. This affects the watermark
4407 		 * and per-cpu initialisations
4408 		 */
4409 		memmap_pages =
4410 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4411 		if (realsize >= memmap_pages) {
4412 			realsize -= memmap_pages;
4413 			if (memmap_pages)
4414 				printk(KERN_DEBUG
4415 				       "  %s zone: %lu pages used for memmap\n",
4416 				       zone_names[j], memmap_pages);
4417 		} else
4418 			printk(KERN_WARNING
4419 				"  %s zone: %lu pages exceeds realsize %lu\n",
4420 				zone_names[j], memmap_pages, realsize);
4421 
4422 		/* Account for reserved pages */
4423 		if (j == 0 && realsize > dma_reserve) {
4424 			realsize -= dma_reserve;
4425 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4426 					zone_names[0], dma_reserve);
4427 		}
4428 
4429 		if (!is_highmem_idx(j))
4430 			nr_kernel_pages += realsize;
4431 		nr_all_pages += realsize;
4432 
4433 		zone->spanned_pages = size;
4434 		zone->present_pages = realsize;
4435 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
4436 		zone->compact_cached_free_pfn = zone->zone_start_pfn +
4437 						zone->spanned_pages;
4438 		zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4439 #endif
4440 #ifdef CONFIG_NUMA
4441 		zone->node = nid;
4442 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4443 						/ 100;
4444 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4445 #endif
4446 		zone->name = zone_names[j];
4447 		spin_lock_init(&zone->lock);
4448 		spin_lock_init(&zone->lru_lock);
4449 		zone_seqlock_init(zone);
4450 		zone->zone_pgdat = pgdat;
4451 
4452 		zone_pcp_init(zone);
4453 		lruvec_init(&zone->lruvec, zone);
4454 		if (!size)
4455 			continue;
4456 
4457 		set_pageblock_order();
4458 		setup_usemap(pgdat, zone, size);
4459 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4460 						size, MEMMAP_EARLY);
4461 		BUG_ON(ret);
4462 		memmap_init(size, nid, j, zone_start_pfn);
4463 		zone_start_pfn += size;
4464 	}
4465 }
4466 
4467 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4468 {
4469 	/* Skip empty nodes */
4470 	if (!pgdat->node_spanned_pages)
4471 		return;
4472 
4473 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4474 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4475 	if (!pgdat->node_mem_map) {
4476 		unsigned long size, start, end;
4477 		struct page *map;
4478 
4479 		/*
4480 		 * The zone's endpoints aren't required to be MAX_ORDER
4481 		 * aligned but the node_mem_map endpoints must be in order
4482 		 * for the buddy allocator to function correctly.
4483 		 */
4484 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4485 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4486 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4487 		size =  (end - start) * sizeof(struct page);
4488 		map = alloc_remap(pgdat->node_id, size);
4489 		if (!map)
4490 			map = alloc_bootmem_node_nopanic(pgdat, size);
4491 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4492 	}
4493 #ifndef CONFIG_NEED_MULTIPLE_NODES
4494 	/*
4495 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4496 	 */
4497 	if (pgdat == NODE_DATA(0)) {
4498 		mem_map = NODE_DATA(0)->node_mem_map;
4499 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4500 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4501 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4502 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4503 	}
4504 #endif
4505 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4506 }
4507 
4508 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4509 		unsigned long node_start_pfn, unsigned long *zholes_size)
4510 {
4511 	pg_data_t *pgdat = NODE_DATA(nid);
4512 
4513 	/* pg_data_t should be reset to zero when it's allocated */
4514 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4515 
4516 	pgdat->node_id = nid;
4517 	pgdat->node_start_pfn = node_start_pfn;
4518 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4519 
4520 	alloc_node_mem_map(pgdat);
4521 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4522 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4523 		nid, (unsigned long)pgdat,
4524 		(unsigned long)pgdat->node_mem_map);
4525 #endif
4526 
4527 	free_area_init_core(pgdat, zones_size, zholes_size);
4528 }
4529 
4530 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4531 
4532 #if MAX_NUMNODES > 1
4533 /*
4534  * Figure out the number of possible node ids.
4535  */
4536 static void __init setup_nr_node_ids(void)
4537 {
4538 	unsigned int node;
4539 	unsigned int highest = 0;
4540 
4541 	for_each_node_mask(node, node_possible_map)
4542 		highest = node;
4543 	nr_node_ids = highest + 1;
4544 }
4545 #else
4546 static inline void setup_nr_node_ids(void)
4547 {
4548 }
4549 #endif
4550 
4551 /**
4552  * node_map_pfn_alignment - determine the maximum internode alignment
4553  *
4554  * This function should be called after node map is populated and sorted.
4555  * It calculates the maximum power of two alignment which can distinguish
4556  * all the nodes.
4557  *
4558  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4559  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4560  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4561  * shifted, 1GiB is enough and this function will indicate so.
4562  *
4563  * This is used to test whether pfn -> nid mapping of the chosen memory
4564  * model has fine enough granularity to avoid incorrect mapping for the
4565  * populated node map.
4566  *
4567  * Returns the determined alignment in pfn's.  0 if there is no alignment
4568  * requirement (single node).
4569  */
4570 unsigned long __init node_map_pfn_alignment(void)
4571 {
4572 	unsigned long accl_mask = 0, last_end = 0;
4573 	unsigned long start, end, mask;
4574 	int last_nid = -1;
4575 	int i, nid;
4576 
4577 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4578 		if (!start || last_nid < 0 || last_nid == nid) {
4579 			last_nid = nid;
4580 			last_end = end;
4581 			continue;
4582 		}
4583 
4584 		/*
4585 		 * Start with a mask granular enough to pin-point to the
4586 		 * start pfn and tick off bits one-by-one until it becomes
4587 		 * too coarse to separate the current node from the last.
4588 		 */
4589 		mask = ~((1 << __ffs(start)) - 1);
4590 		while (mask && last_end <= (start & (mask << 1)))
4591 			mask <<= 1;
4592 
4593 		/* accumulate all internode masks */
4594 		accl_mask |= mask;
4595 	}
4596 
4597 	/* convert mask to number of pages */
4598 	return ~accl_mask + 1;
4599 }
4600 
4601 /* Find the lowest pfn for a node */
4602 static unsigned long __init find_min_pfn_for_node(int nid)
4603 {
4604 	unsigned long min_pfn = ULONG_MAX;
4605 	unsigned long start_pfn;
4606 	int i;
4607 
4608 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4609 		min_pfn = min(min_pfn, start_pfn);
4610 
4611 	if (min_pfn == ULONG_MAX) {
4612 		printk(KERN_WARNING
4613 			"Could not find start_pfn for node %d\n", nid);
4614 		return 0;
4615 	}
4616 
4617 	return min_pfn;
4618 }
4619 
4620 /**
4621  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4622  *
4623  * It returns the minimum PFN based on information provided via
4624  * add_active_range().
4625  */
4626 unsigned long __init find_min_pfn_with_active_regions(void)
4627 {
4628 	return find_min_pfn_for_node(MAX_NUMNODES);
4629 }
4630 
4631 /*
4632  * early_calculate_totalpages()
4633  * Sum pages in active regions for movable zone.
4634  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4635  */
4636 static unsigned long __init early_calculate_totalpages(void)
4637 {
4638 	unsigned long totalpages = 0;
4639 	unsigned long start_pfn, end_pfn;
4640 	int i, nid;
4641 
4642 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4643 		unsigned long pages = end_pfn - start_pfn;
4644 
4645 		totalpages += pages;
4646 		if (pages)
4647 			node_set_state(nid, N_HIGH_MEMORY);
4648 	}
4649   	return totalpages;
4650 }
4651 
4652 /*
4653  * Find the PFN the Movable zone begins in each node. Kernel memory
4654  * is spread evenly between nodes as long as the nodes have enough
4655  * memory. When they don't, some nodes will have more kernelcore than
4656  * others
4657  */
4658 static void __init find_zone_movable_pfns_for_nodes(void)
4659 {
4660 	int i, nid;
4661 	unsigned long usable_startpfn;
4662 	unsigned long kernelcore_node, kernelcore_remaining;
4663 	/* save the state before borrow the nodemask */
4664 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4665 	unsigned long totalpages = early_calculate_totalpages();
4666 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4667 
4668 	/*
4669 	 * If movablecore was specified, calculate what size of
4670 	 * kernelcore that corresponds so that memory usable for
4671 	 * any allocation type is evenly spread. If both kernelcore
4672 	 * and movablecore are specified, then the value of kernelcore
4673 	 * will be used for required_kernelcore if it's greater than
4674 	 * what movablecore would have allowed.
4675 	 */
4676 	if (required_movablecore) {
4677 		unsigned long corepages;
4678 
4679 		/*
4680 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4681 		 * was requested by the user
4682 		 */
4683 		required_movablecore =
4684 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4685 		corepages = totalpages - required_movablecore;
4686 
4687 		required_kernelcore = max(required_kernelcore, corepages);
4688 	}
4689 
4690 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4691 	if (!required_kernelcore)
4692 		goto out;
4693 
4694 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4695 	find_usable_zone_for_movable();
4696 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4697 
4698 restart:
4699 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4700 	kernelcore_node = required_kernelcore / usable_nodes;
4701 	for_each_node_state(nid, N_HIGH_MEMORY) {
4702 		unsigned long start_pfn, end_pfn;
4703 
4704 		/*
4705 		 * Recalculate kernelcore_node if the division per node
4706 		 * now exceeds what is necessary to satisfy the requested
4707 		 * amount of memory for the kernel
4708 		 */
4709 		if (required_kernelcore < kernelcore_node)
4710 			kernelcore_node = required_kernelcore / usable_nodes;
4711 
4712 		/*
4713 		 * As the map is walked, we track how much memory is usable
4714 		 * by the kernel using kernelcore_remaining. When it is
4715 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4716 		 */
4717 		kernelcore_remaining = kernelcore_node;
4718 
4719 		/* Go through each range of PFNs within this node */
4720 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4721 			unsigned long size_pages;
4722 
4723 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4724 			if (start_pfn >= end_pfn)
4725 				continue;
4726 
4727 			/* Account for what is only usable for kernelcore */
4728 			if (start_pfn < usable_startpfn) {
4729 				unsigned long kernel_pages;
4730 				kernel_pages = min(end_pfn, usable_startpfn)
4731 								- start_pfn;
4732 
4733 				kernelcore_remaining -= min(kernel_pages,
4734 							kernelcore_remaining);
4735 				required_kernelcore -= min(kernel_pages,
4736 							required_kernelcore);
4737 
4738 				/* Continue if range is now fully accounted */
4739 				if (end_pfn <= usable_startpfn) {
4740 
4741 					/*
4742 					 * Push zone_movable_pfn to the end so
4743 					 * that if we have to rebalance
4744 					 * kernelcore across nodes, we will
4745 					 * not double account here
4746 					 */
4747 					zone_movable_pfn[nid] = end_pfn;
4748 					continue;
4749 				}
4750 				start_pfn = usable_startpfn;
4751 			}
4752 
4753 			/*
4754 			 * The usable PFN range for ZONE_MOVABLE is from
4755 			 * start_pfn->end_pfn. Calculate size_pages as the
4756 			 * number of pages used as kernelcore
4757 			 */
4758 			size_pages = end_pfn - start_pfn;
4759 			if (size_pages > kernelcore_remaining)
4760 				size_pages = kernelcore_remaining;
4761 			zone_movable_pfn[nid] = start_pfn + size_pages;
4762 
4763 			/*
4764 			 * Some kernelcore has been met, update counts and
4765 			 * break if the kernelcore for this node has been
4766 			 * satisified
4767 			 */
4768 			required_kernelcore -= min(required_kernelcore,
4769 								size_pages);
4770 			kernelcore_remaining -= size_pages;
4771 			if (!kernelcore_remaining)
4772 				break;
4773 		}
4774 	}
4775 
4776 	/*
4777 	 * If there is still required_kernelcore, we do another pass with one
4778 	 * less node in the count. This will push zone_movable_pfn[nid] further
4779 	 * along on the nodes that still have memory until kernelcore is
4780 	 * satisified
4781 	 */
4782 	usable_nodes--;
4783 	if (usable_nodes && required_kernelcore > usable_nodes)
4784 		goto restart;
4785 
4786 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4787 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4788 		zone_movable_pfn[nid] =
4789 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4790 
4791 out:
4792 	/* restore the node_state */
4793 	node_states[N_HIGH_MEMORY] = saved_node_state;
4794 }
4795 
4796 /* Any regular memory on that node ? */
4797 static void __init check_for_regular_memory(pg_data_t *pgdat)
4798 {
4799 #ifdef CONFIG_HIGHMEM
4800 	enum zone_type zone_type;
4801 
4802 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4803 		struct zone *zone = &pgdat->node_zones[zone_type];
4804 		if (zone->present_pages) {
4805 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4806 			break;
4807 		}
4808 	}
4809 #endif
4810 }
4811 
4812 /**
4813  * free_area_init_nodes - Initialise all pg_data_t and zone data
4814  * @max_zone_pfn: an array of max PFNs for each zone
4815  *
4816  * This will call free_area_init_node() for each active node in the system.
4817  * Using the page ranges provided by add_active_range(), the size of each
4818  * zone in each node and their holes is calculated. If the maximum PFN
4819  * between two adjacent zones match, it is assumed that the zone is empty.
4820  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4821  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4822  * starts where the previous one ended. For example, ZONE_DMA32 starts
4823  * at arch_max_dma_pfn.
4824  */
4825 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4826 {
4827 	unsigned long start_pfn, end_pfn;
4828 	int i, nid;
4829 
4830 	/* Record where the zone boundaries are */
4831 	memset(arch_zone_lowest_possible_pfn, 0,
4832 				sizeof(arch_zone_lowest_possible_pfn));
4833 	memset(arch_zone_highest_possible_pfn, 0,
4834 				sizeof(arch_zone_highest_possible_pfn));
4835 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4836 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4837 	for (i = 1; i < MAX_NR_ZONES; i++) {
4838 		if (i == ZONE_MOVABLE)
4839 			continue;
4840 		arch_zone_lowest_possible_pfn[i] =
4841 			arch_zone_highest_possible_pfn[i-1];
4842 		arch_zone_highest_possible_pfn[i] =
4843 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4844 	}
4845 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4846 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4847 
4848 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4849 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4850 	find_zone_movable_pfns_for_nodes();
4851 
4852 	/* Print out the zone ranges */
4853 	printk("Zone ranges:\n");
4854 	for (i = 0; i < MAX_NR_ZONES; i++) {
4855 		if (i == ZONE_MOVABLE)
4856 			continue;
4857 		printk(KERN_CONT "  %-8s ", zone_names[i]);
4858 		if (arch_zone_lowest_possible_pfn[i] ==
4859 				arch_zone_highest_possible_pfn[i])
4860 			printk(KERN_CONT "empty\n");
4861 		else
4862 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4863 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4864 				(arch_zone_highest_possible_pfn[i]
4865 					<< PAGE_SHIFT) - 1);
4866 	}
4867 
4868 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4869 	printk("Movable zone start for each node\n");
4870 	for (i = 0; i < MAX_NUMNODES; i++) {
4871 		if (zone_movable_pfn[i])
4872 			printk("  Node %d: %#010lx\n", i,
4873 			       zone_movable_pfn[i] << PAGE_SHIFT);
4874 	}
4875 
4876 	/* Print out the early_node_map[] */
4877 	printk("Early memory node ranges\n");
4878 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4879 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
4880 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4881 
4882 	/* Initialise every node */
4883 	mminit_verify_pageflags_layout();
4884 	setup_nr_node_ids();
4885 	for_each_online_node(nid) {
4886 		pg_data_t *pgdat = NODE_DATA(nid);
4887 		free_area_init_node(nid, NULL,
4888 				find_min_pfn_for_node(nid), NULL);
4889 
4890 		/* Any memory on that node */
4891 		if (pgdat->node_present_pages)
4892 			node_set_state(nid, N_HIGH_MEMORY);
4893 		check_for_regular_memory(pgdat);
4894 	}
4895 }
4896 
4897 static int __init cmdline_parse_core(char *p, unsigned long *core)
4898 {
4899 	unsigned long long coremem;
4900 	if (!p)
4901 		return -EINVAL;
4902 
4903 	coremem = memparse(p, &p);
4904 	*core = coremem >> PAGE_SHIFT;
4905 
4906 	/* Paranoid check that UL is enough for the coremem value */
4907 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4908 
4909 	return 0;
4910 }
4911 
4912 /*
4913  * kernelcore=size sets the amount of memory for use for allocations that
4914  * cannot be reclaimed or migrated.
4915  */
4916 static int __init cmdline_parse_kernelcore(char *p)
4917 {
4918 	return cmdline_parse_core(p, &required_kernelcore);
4919 }
4920 
4921 /*
4922  * movablecore=size sets the amount of memory for use for allocations that
4923  * can be reclaimed or migrated.
4924  */
4925 static int __init cmdline_parse_movablecore(char *p)
4926 {
4927 	return cmdline_parse_core(p, &required_movablecore);
4928 }
4929 
4930 early_param("kernelcore", cmdline_parse_kernelcore);
4931 early_param("movablecore", cmdline_parse_movablecore);
4932 
4933 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4934 
4935 /**
4936  * set_dma_reserve - set the specified number of pages reserved in the first zone
4937  * @new_dma_reserve: The number of pages to mark reserved
4938  *
4939  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4940  * In the DMA zone, a significant percentage may be consumed by kernel image
4941  * and other unfreeable allocations which can skew the watermarks badly. This
4942  * function may optionally be used to account for unfreeable pages in the
4943  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4944  * smaller per-cpu batchsize.
4945  */
4946 void __init set_dma_reserve(unsigned long new_dma_reserve)
4947 {
4948 	dma_reserve = new_dma_reserve;
4949 }
4950 
4951 void __init free_area_init(unsigned long *zones_size)
4952 {
4953 	free_area_init_node(0, zones_size,
4954 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4955 }
4956 
4957 static int page_alloc_cpu_notify(struct notifier_block *self,
4958 				 unsigned long action, void *hcpu)
4959 {
4960 	int cpu = (unsigned long)hcpu;
4961 
4962 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4963 		lru_add_drain_cpu(cpu);
4964 		drain_pages(cpu);
4965 
4966 		/*
4967 		 * Spill the event counters of the dead processor
4968 		 * into the current processors event counters.
4969 		 * This artificially elevates the count of the current
4970 		 * processor.
4971 		 */
4972 		vm_events_fold_cpu(cpu);
4973 
4974 		/*
4975 		 * Zero the differential counters of the dead processor
4976 		 * so that the vm statistics are consistent.
4977 		 *
4978 		 * This is only okay since the processor is dead and cannot
4979 		 * race with what we are doing.
4980 		 */
4981 		refresh_cpu_vm_stats(cpu);
4982 	}
4983 	return NOTIFY_OK;
4984 }
4985 
4986 void __init page_alloc_init(void)
4987 {
4988 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4989 }
4990 
4991 /*
4992  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4993  *	or min_free_kbytes changes.
4994  */
4995 static void calculate_totalreserve_pages(void)
4996 {
4997 	struct pglist_data *pgdat;
4998 	unsigned long reserve_pages = 0;
4999 	enum zone_type i, j;
5000 
5001 	for_each_online_pgdat(pgdat) {
5002 		for (i = 0; i < MAX_NR_ZONES; i++) {
5003 			struct zone *zone = pgdat->node_zones + i;
5004 			unsigned long max = 0;
5005 
5006 			/* Find valid and maximum lowmem_reserve in the zone */
5007 			for (j = i; j < MAX_NR_ZONES; j++) {
5008 				if (zone->lowmem_reserve[j] > max)
5009 					max = zone->lowmem_reserve[j];
5010 			}
5011 
5012 			/* we treat the high watermark as reserved pages. */
5013 			max += high_wmark_pages(zone);
5014 
5015 			if (max > zone->present_pages)
5016 				max = zone->present_pages;
5017 			reserve_pages += max;
5018 			/*
5019 			 * Lowmem reserves are not available to
5020 			 * GFP_HIGHUSER page cache allocations and
5021 			 * kswapd tries to balance zones to their high
5022 			 * watermark.  As a result, neither should be
5023 			 * regarded as dirtyable memory, to prevent a
5024 			 * situation where reclaim has to clean pages
5025 			 * in order to balance the zones.
5026 			 */
5027 			zone->dirty_balance_reserve = max;
5028 		}
5029 	}
5030 	dirty_balance_reserve = reserve_pages;
5031 	totalreserve_pages = reserve_pages;
5032 }
5033 
5034 /*
5035  * setup_per_zone_lowmem_reserve - called whenever
5036  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5037  *	has a correct pages reserved value, so an adequate number of
5038  *	pages are left in the zone after a successful __alloc_pages().
5039  */
5040 static void setup_per_zone_lowmem_reserve(void)
5041 {
5042 	struct pglist_data *pgdat;
5043 	enum zone_type j, idx;
5044 
5045 	for_each_online_pgdat(pgdat) {
5046 		for (j = 0; j < MAX_NR_ZONES; j++) {
5047 			struct zone *zone = pgdat->node_zones + j;
5048 			unsigned long present_pages = zone->present_pages;
5049 
5050 			zone->lowmem_reserve[j] = 0;
5051 
5052 			idx = j;
5053 			while (idx) {
5054 				struct zone *lower_zone;
5055 
5056 				idx--;
5057 
5058 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5059 					sysctl_lowmem_reserve_ratio[idx] = 1;
5060 
5061 				lower_zone = pgdat->node_zones + idx;
5062 				lower_zone->lowmem_reserve[j] = present_pages /
5063 					sysctl_lowmem_reserve_ratio[idx];
5064 				present_pages += lower_zone->present_pages;
5065 			}
5066 		}
5067 	}
5068 
5069 	/* update totalreserve_pages */
5070 	calculate_totalreserve_pages();
5071 }
5072 
5073 static void __setup_per_zone_wmarks(void)
5074 {
5075 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5076 	unsigned long lowmem_pages = 0;
5077 	struct zone *zone;
5078 	unsigned long flags;
5079 
5080 	/* Calculate total number of !ZONE_HIGHMEM pages */
5081 	for_each_zone(zone) {
5082 		if (!is_highmem(zone))
5083 			lowmem_pages += zone->present_pages;
5084 	}
5085 
5086 	for_each_zone(zone) {
5087 		u64 tmp;
5088 
5089 		spin_lock_irqsave(&zone->lock, flags);
5090 		tmp = (u64)pages_min * zone->present_pages;
5091 		do_div(tmp, lowmem_pages);
5092 		if (is_highmem(zone)) {
5093 			/*
5094 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5095 			 * need highmem pages, so cap pages_min to a small
5096 			 * value here.
5097 			 *
5098 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5099 			 * deltas controls asynch page reclaim, and so should
5100 			 * not be capped for highmem.
5101 			 */
5102 			int min_pages;
5103 
5104 			min_pages = zone->present_pages / 1024;
5105 			if (min_pages < SWAP_CLUSTER_MAX)
5106 				min_pages = SWAP_CLUSTER_MAX;
5107 			if (min_pages > 128)
5108 				min_pages = 128;
5109 			zone->watermark[WMARK_MIN] = min_pages;
5110 		} else {
5111 			/*
5112 			 * If it's a lowmem zone, reserve a number of pages
5113 			 * proportionate to the zone's size.
5114 			 */
5115 			zone->watermark[WMARK_MIN] = tmp;
5116 		}
5117 
5118 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5119 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5120 
5121 		zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5122 		zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5123 		zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5124 
5125 		setup_zone_migrate_reserve(zone);
5126 		spin_unlock_irqrestore(&zone->lock, flags);
5127 	}
5128 
5129 	/* update totalreserve_pages */
5130 	calculate_totalreserve_pages();
5131 }
5132 
5133 /**
5134  * setup_per_zone_wmarks - called when min_free_kbytes changes
5135  * or when memory is hot-{added|removed}
5136  *
5137  * Ensures that the watermark[min,low,high] values for each zone are set
5138  * correctly with respect to min_free_kbytes.
5139  */
5140 void setup_per_zone_wmarks(void)
5141 {
5142 	mutex_lock(&zonelists_mutex);
5143 	__setup_per_zone_wmarks();
5144 	mutex_unlock(&zonelists_mutex);
5145 }
5146 
5147 /*
5148  * The inactive anon list should be small enough that the VM never has to
5149  * do too much work, but large enough that each inactive page has a chance
5150  * to be referenced again before it is swapped out.
5151  *
5152  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5153  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5154  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5155  * the anonymous pages are kept on the inactive list.
5156  *
5157  * total     target    max
5158  * memory    ratio     inactive anon
5159  * -------------------------------------
5160  *   10MB       1         5MB
5161  *  100MB       1        50MB
5162  *    1GB       3       250MB
5163  *   10GB      10       0.9GB
5164  *  100GB      31         3GB
5165  *    1TB     101        10GB
5166  *   10TB     320        32GB
5167  */
5168 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5169 {
5170 	unsigned int gb, ratio;
5171 
5172 	/* Zone size in gigabytes */
5173 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5174 	if (gb)
5175 		ratio = int_sqrt(10 * gb);
5176 	else
5177 		ratio = 1;
5178 
5179 	zone->inactive_ratio = ratio;
5180 }
5181 
5182 static void __meminit setup_per_zone_inactive_ratio(void)
5183 {
5184 	struct zone *zone;
5185 
5186 	for_each_zone(zone)
5187 		calculate_zone_inactive_ratio(zone);
5188 }
5189 
5190 /*
5191  * Initialise min_free_kbytes.
5192  *
5193  * For small machines we want it small (128k min).  For large machines
5194  * we want it large (64MB max).  But it is not linear, because network
5195  * bandwidth does not increase linearly with machine size.  We use
5196  *
5197  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5198  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5199  *
5200  * which yields
5201  *
5202  * 16MB:	512k
5203  * 32MB:	724k
5204  * 64MB:	1024k
5205  * 128MB:	1448k
5206  * 256MB:	2048k
5207  * 512MB:	2896k
5208  * 1024MB:	4096k
5209  * 2048MB:	5792k
5210  * 4096MB:	8192k
5211  * 8192MB:	11584k
5212  * 16384MB:	16384k
5213  */
5214 int __meminit init_per_zone_wmark_min(void)
5215 {
5216 	unsigned long lowmem_kbytes;
5217 
5218 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5219 
5220 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5221 	if (min_free_kbytes < 128)
5222 		min_free_kbytes = 128;
5223 	if (min_free_kbytes > 65536)
5224 		min_free_kbytes = 65536;
5225 	setup_per_zone_wmarks();
5226 	refresh_zone_stat_thresholds();
5227 	setup_per_zone_lowmem_reserve();
5228 	setup_per_zone_inactive_ratio();
5229 	return 0;
5230 }
5231 module_init(init_per_zone_wmark_min)
5232 
5233 /*
5234  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5235  *	that we can call two helper functions whenever min_free_kbytes
5236  *	changes.
5237  */
5238 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5239 	void __user *buffer, size_t *length, loff_t *ppos)
5240 {
5241 	proc_dointvec(table, write, buffer, length, ppos);
5242 	if (write)
5243 		setup_per_zone_wmarks();
5244 	return 0;
5245 }
5246 
5247 #ifdef CONFIG_NUMA
5248 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5249 	void __user *buffer, size_t *length, loff_t *ppos)
5250 {
5251 	struct zone *zone;
5252 	int rc;
5253 
5254 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5255 	if (rc)
5256 		return rc;
5257 
5258 	for_each_zone(zone)
5259 		zone->min_unmapped_pages = (zone->present_pages *
5260 				sysctl_min_unmapped_ratio) / 100;
5261 	return 0;
5262 }
5263 
5264 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5265 	void __user *buffer, size_t *length, loff_t *ppos)
5266 {
5267 	struct zone *zone;
5268 	int rc;
5269 
5270 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5271 	if (rc)
5272 		return rc;
5273 
5274 	for_each_zone(zone)
5275 		zone->min_slab_pages = (zone->present_pages *
5276 				sysctl_min_slab_ratio) / 100;
5277 	return 0;
5278 }
5279 #endif
5280 
5281 /*
5282  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5283  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5284  *	whenever sysctl_lowmem_reserve_ratio changes.
5285  *
5286  * The reserve ratio obviously has absolutely no relation with the
5287  * minimum watermarks. The lowmem reserve ratio can only make sense
5288  * if in function of the boot time zone sizes.
5289  */
5290 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5291 	void __user *buffer, size_t *length, loff_t *ppos)
5292 {
5293 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5294 	setup_per_zone_lowmem_reserve();
5295 	return 0;
5296 }
5297 
5298 /*
5299  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5300  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5301  * can have before it gets flushed back to buddy allocator.
5302  */
5303 
5304 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5305 	void __user *buffer, size_t *length, loff_t *ppos)
5306 {
5307 	struct zone *zone;
5308 	unsigned int cpu;
5309 	int ret;
5310 
5311 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5312 	if (!write || (ret < 0))
5313 		return ret;
5314 	for_each_populated_zone(zone) {
5315 		for_each_possible_cpu(cpu) {
5316 			unsigned long  high;
5317 			high = zone->present_pages / percpu_pagelist_fraction;
5318 			setup_pagelist_highmark(
5319 				per_cpu_ptr(zone->pageset, cpu), high);
5320 		}
5321 	}
5322 	return 0;
5323 }
5324 
5325 int hashdist = HASHDIST_DEFAULT;
5326 
5327 #ifdef CONFIG_NUMA
5328 static int __init set_hashdist(char *str)
5329 {
5330 	if (!str)
5331 		return 0;
5332 	hashdist = simple_strtoul(str, &str, 0);
5333 	return 1;
5334 }
5335 __setup("hashdist=", set_hashdist);
5336 #endif
5337 
5338 /*
5339  * allocate a large system hash table from bootmem
5340  * - it is assumed that the hash table must contain an exact power-of-2
5341  *   quantity of entries
5342  * - limit is the number of hash buckets, not the total allocation size
5343  */
5344 void *__init alloc_large_system_hash(const char *tablename,
5345 				     unsigned long bucketsize,
5346 				     unsigned long numentries,
5347 				     int scale,
5348 				     int flags,
5349 				     unsigned int *_hash_shift,
5350 				     unsigned int *_hash_mask,
5351 				     unsigned long low_limit,
5352 				     unsigned long high_limit)
5353 {
5354 	unsigned long long max = high_limit;
5355 	unsigned long log2qty, size;
5356 	void *table = NULL;
5357 
5358 	/* allow the kernel cmdline to have a say */
5359 	if (!numentries) {
5360 		/* round applicable memory size up to nearest megabyte */
5361 		numentries = nr_kernel_pages;
5362 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5363 		numentries >>= 20 - PAGE_SHIFT;
5364 		numentries <<= 20 - PAGE_SHIFT;
5365 
5366 		/* limit to 1 bucket per 2^scale bytes of low memory */
5367 		if (scale > PAGE_SHIFT)
5368 			numentries >>= (scale - PAGE_SHIFT);
5369 		else
5370 			numentries <<= (PAGE_SHIFT - scale);
5371 
5372 		/* Make sure we've got at least a 0-order allocation.. */
5373 		if (unlikely(flags & HASH_SMALL)) {
5374 			/* Makes no sense without HASH_EARLY */
5375 			WARN_ON(!(flags & HASH_EARLY));
5376 			if (!(numentries >> *_hash_shift)) {
5377 				numentries = 1UL << *_hash_shift;
5378 				BUG_ON(!numentries);
5379 			}
5380 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5381 			numentries = PAGE_SIZE / bucketsize;
5382 	}
5383 	numentries = roundup_pow_of_two(numentries);
5384 
5385 	/* limit allocation size to 1/16 total memory by default */
5386 	if (max == 0) {
5387 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5388 		do_div(max, bucketsize);
5389 	}
5390 	max = min(max, 0x80000000ULL);
5391 
5392 	if (numentries < low_limit)
5393 		numentries = low_limit;
5394 	if (numentries > max)
5395 		numentries = max;
5396 
5397 	log2qty = ilog2(numentries);
5398 
5399 	do {
5400 		size = bucketsize << log2qty;
5401 		if (flags & HASH_EARLY)
5402 			table = alloc_bootmem_nopanic(size);
5403 		else if (hashdist)
5404 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5405 		else {
5406 			/*
5407 			 * If bucketsize is not a power-of-two, we may free
5408 			 * some pages at the end of hash table which
5409 			 * alloc_pages_exact() automatically does
5410 			 */
5411 			if (get_order(size) < MAX_ORDER) {
5412 				table = alloc_pages_exact(size, GFP_ATOMIC);
5413 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5414 			}
5415 		}
5416 	} while (!table && size > PAGE_SIZE && --log2qty);
5417 
5418 	if (!table)
5419 		panic("Failed to allocate %s hash table\n", tablename);
5420 
5421 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5422 	       tablename,
5423 	       (1UL << log2qty),
5424 	       ilog2(size) - PAGE_SHIFT,
5425 	       size);
5426 
5427 	if (_hash_shift)
5428 		*_hash_shift = log2qty;
5429 	if (_hash_mask)
5430 		*_hash_mask = (1 << log2qty) - 1;
5431 
5432 	return table;
5433 }
5434 
5435 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5436 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5437 							unsigned long pfn)
5438 {
5439 #ifdef CONFIG_SPARSEMEM
5440 	return __pfn_to_section(pfn)->pageblock_flags;
5441 #else
5442 	return zone->pageblock_flags;
5443 #endif /* CONFIG_SPARSEMEM */
5444 }
5445 
5446 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5447 {
5448 #ifdef CONFIG_SPARSEMEM
5449 	pfn &= (PAGES_PER_SECTION-1);
5450 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5451 #else
5452 	pfn = pfn - zone->zone_start_pfn;
5453 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5454 #endif /* CONFIG_SPARSEMEM */
5455 }
5456 
5457 /**
5458  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5459  * @page: The page within the block of interest
5460  * @start_bitidx: The first bit of interest to retrieve
5461  * @end_bitidx: The last bit of interest
5462  * returns pageblock_bits flags
5463  */
5464 unsigned long get_pageblock_flags_group(struct page *page,
5465 					int start_bitidx, int end_bitidx)
5466 {
5467 	struct zone *zone;
5468 	unsigned long *bitmap;
5469 	unsigned long pfn, bitidx;
5470 	unsigned long flags = 0;
5471 	unsigned long value = 1;
5472 
5473 	zone = page_zone(page);
5474 	pfn = page_to_pfn(page);
5475 	bitmap = get_pageblock_bitmap(zone, pfn);
5476 	bitidx = pfn_to_bitidx(zone, pfn);
5477 
5478 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5479 		if (test_bit(bitidx + start_bitidx, bitmap))
5480 			flags |= value;
5481 
5482 	return flags;
5483 }
5484 
5485 /**
5486  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5487  * @page: The page within the block of interest
5488  * @start_bitidx: The first bit of interest
5489  * @end_bitidx: The last bit of interest
5490  * @flags: The flags to set
5491  */
5492 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5493 					int start_bitidx, int end_bitidx)
5494 {
5495 	struct zone *zone;
5496 	unsigned long *bitmap;
5497 	unsigned long pfn, bitidx;
5498 	unsigned long value = 1;
5499 
5500 	zone = page_zone(page);
5501 	pfn = page_to_pfn(page);
5502 	bitmap = get_pageblock_bitmap(zone, pfn);
5503 	bitidx = pfn_to_bitidx(zone, pfn);
5504 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5505 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5506 
5507 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5508 		if (flags & value)
5509 			__set_bit(bitidx + start_bitidx, bitmap);
5510 		else
5511 			__clear_bit(bitidx + start_bitidx, bitmap);
5512 }
5513 
5514 /*
5515  * This function checks whether pageblock includes unmovable pages or not.
5516  * If @count is not zero, it is okay to include less @count unmovable pages
5517  *
5518  * PageLRU check wihtout isolation or lru_lock could race so that
5519  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5520  * expect this function should be exact.
5521  */
5522 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5523 {
5524 	unsigned long pfn, iter, found;
5525 	int mt;
5526 
5527 	/*
5528 	 * For avoiding noise data, lru_add_drain_all() should be called
5529 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5530 	 */
5531 	if (zone_idx(zone) == ZONE_MOVABLE)
5532 		return false;
5533 	mt = get_pageblock_migratetype(page);
5534 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5535 		return false;
5536 
5537 	pfn = page_to_pfn(page);
5538 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5539 		unsigned long check = pfn + iter;
5540 
5541 		if (!pfn_valid_within(check))
5542 			continue;
5543 
5544 		page = pfn_to_page(check);
5545 		/*
5546 		 * We can't use page_count without pin a page
5547 		 * because another CPU can free compound page.
5548 		 * This check already skips compound tails of THP
5549 		 * because their page->_count is zero at all time.
5550 		 */
5551 		if (!atomic_read(&page->_count)) {
5552 			if (PageBuddy(page))
5553 				iter += (1 << page_order(page)) - 1;
5554 			continue;
5555 		}
5556 
5557 		if (!PageLRU(page))
5558 			found++;
5559 		/*
5560 		 * If there are RECLAIMABLE pages, we need to check it.
5561 		 * But now, memory offline itself doesn't call shrink_slab()
5562 		 * and it still to be fixed.
5563 		 */
5564 		/*
5565 		 * If the page is not RAM, page_count()should be 0.
5566 		 * we don't need more check. This is an _used_ not-movable page.
5567 		 *
5568 		 * The problematic thing here is PG_reserved pages. PG_reserved
5569 		 * is set to both of a memory hole page and a _used_ kernel
5570 		 * page at boot.
5571 		 */
5572 		if (found > count)
5573 			return true;
5574 	}
5575 	return false;
5576 }
5577 
5578 bool is_pageblock_removable_nolock(struct page *page)
5579 {
5580 	struct zone *zone;
5581 	unsigned long pfn;
5582 
5583 	/*
5584 	 * We have to be careful here because we are iterating over memory
5585 	 * sections which are not zone aware so we might end up outside of
5586 	 * the zone but still within the section.
5587 	 * We have to take care about the node as well. If the node is offline
5588 	 * its NODE_DATA will be NULL - see page_zone.
5589 	 */
5590 	if (!node_online(page_to_nid(page)))
5591 		return false;
5592 
5593 	zone = page_zone(page);
5594 	pfn = page_to_pfn(page);
5595 	if (zone->zone_start_pfn > pfn ||
5596 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5597 		return false;
5598 
5599 	return !has_unmovable_pages(zone, page, 0);
5600 }
5601 
5602 #ifdef CONFIG_CMA
5603 
5604 static unsigned long pfn_max_align_down(unsigned long pfn)
5605 {
5606 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5607 			     pageblock_nr_pages) - 1);
5608 }
5609 
5610 static unsigned long pfn_max_align_up(unsigned long pfn)
5611 {
5612 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5613 				pageblock_nr_pages));
5614 }
5615 
5616 static struct page *
5617 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5618 			     int **resultp)
5619 {
5620 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5621 
5622 	if (PageHighMem(page))
5623 		gfp_mask |= __GFP_HIGHMEM;
5624 
5625 	return alloc_page(gfp_mask);
5626 }
5627 
5628 /* [start, end) must belong to a single zone. */
5629 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5630 {
5631 	/* This function is based on compact_zone() from compaction.c. */
5632 
5633 	unsigned long pfn = start;
5634 	unsigned int tries = 0;
5635 	int ret = 0;
5636 
5637 	struct compact_control cc = {
5638 		.nr_migratepages = 0,
5639 		.order = -1,
5640 		.zone = page_zone(pfn_to_page(start)),
5641 		.sync = true,
5642 	};
5643 	INIT_LIST_HEAD(&cc.migratepages);
5644 
5645 	migrate_prep_local();
5646 
5647 	while (pfn < end || !list_empty(&cc.migratepages)) {
5648 		if (fatal_signal_pending(current)) {
5649 			ret = -EINTR;
5650 			break;
5651 		}
5652 
5653 		if (list_empty(&cc.migratepages)) {
5654 			cc.nr_migratepages = 0;
5655 			pfn = isolate_migratepages_range(cc.zone, &cc,
5656 							 pfn, end);
5657 			if (!pfn) {
5658 				ret = -EINTR;
5659 				break;
5660 			}
5661 			tries = 0;
5662 		} else if (++tries == 5) {
5663 			ret = ret < 0 ? ret : -EBUSY;
5664 			break;
5665 		}
5666 
5667 		ret = migrate_pages(&cc.migratepages,
5668 				    __alloc_contig_migrate_alloc,
5669 				    0, false, MIGRATE_SYNC);
5670 	}
5671 
5672 	putback_lru_pages(&cc.migratepages);
5673 	return ret > 0 ? 0 : ret;
5674 }
5675 
5676 /*
5677  * Update zone's cma pages counter used for watermark level calculation.
5678  */
5679 static inline void __update_cma_watermarks(struct zone *zone, int count)
5680 {
5681 	unsigned long flags;
5682 	spin_lock_irqsave(&zone->lock, flags);
5683 	zone->min_cma_pages += count;
5684 	spin_unlock_irqrestore(&zone->lock, flags);
5685 	setup_per_zone_wmarks();
5686 }
5687 
5688 /*
5689  * Trigger memory pressure bump to reclaim some pages in order to be able to
5690  * allocate 'count' pages in single page units. Does similar work as
5691  *__alloc_pages_slowpath() function.
5692  */
5693 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5694 {
5695 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5696 	struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5697 	int did_some_progress = 0;
5698 	int order = 1;
5699 
5700 	/*
5701 	 * Increase level of watermarks to force kswapd do his job
5702 	 * to stabilise at new watermark level.
5703 	 */
5704 	__update_cma_watermarks(zone, count);
5705 
5706 	/* Obey watermarks as if the page was being allocated */
5707 	while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5708 		wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5709 
5710 		did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5711 						      NULL);
5712 		if (!did_some_progress) {
5713 			/* Exhausted what can be done so it's blamo time */
5714 			out_of_memory(zonelist, gfp_mask, order, NULL, false);
5715 		}
5716 	}
5717 
5718 	/* Restore original watermark levels. */
5719 	__update_cma_watermarks(zone, -count);
5720 
5721 	return count;
5722 }
5723 
5724 /**
5725  * alloc_contig_range() -- tries to allocate given range of pages
5726  * @start:	start PFN to allocate
5727  * @end:	one-past-the-last PFN to allocate
5728  * @migratetype:	migratetype of the underlaying pageblocks (either
5729  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5730  *			in range must have the same migratetype and it must
5731  *			be either of the two.
5732  *
5733  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5734  * aligned, however it's the caller's responsibility to guarantee that
5735  * we are the only thread that changes migrate type of pageblocks the
5736  * pages fall in.
5737  *
5738  * The PFN range must belong to a single zone.
5739  *
5740  * Returns zero on success or negative error code.  On success all
5741  * pages which PFN is in [start, end) are allocated for the caller and
5742  * need to be freed with free_contig_range().
5743  */
5744 int alloc_contig_range(unsigned long start, unsigned long end,
5745 		       unsigned migratetype)
5746 {
5747 	struct zone *zone = page_zone(pfn_to_page(start));
5748 	unsigned long outer_start, outer_end;
5749 	int ret = 0, order;
5750 
5751 	/*
5752 	 * What we do here is we mark all pageblocks in range as
5753 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5754 	 * have different sizes, and due to the way page allocator
5755 	 * work, we align the range to biggest of the two pages so
5756 	 * that page allocator won't try to merge buddies from
5757 	 * different pageblocks and change MIGRATE_ISOLATE to some
5758 	 * other migration type.
5759 	 *
5760 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5761 	 * migrate the pages from an unaligned range (ie. pages that
5762 	 * we are interested in).  This will put all the pages in
5763 	 * range back to page allocator as MIGRATE_ISOLATE.
5764 	 *
5765 	 * When this is done, we take the pages in range from page
5766 	 * allocator removing them from the buddy system.  This way
5767 	 * page allocator will never consider using them.
5768 	 *
5769 	 * This lets us mark the pageblocks back as
5770 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5771 	 * aligned range but not in the unaligned, original range are
5772 	 * put back to page allocator so that buddy can use them.
5773 	 */
5774 
5775 	ret = start_isolate_page_range(pfn_max_align_down(start),
5776 				       pfn_max_align_up(end), migratetype);
5777 	if (ret)
5778 		goto done;
5779 
5780 	ret = __alloc_contig_migrate_range(start, end);
5781 	if (ret)
5782 		goto done;
5783 
5784 	/*
5785 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5786 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5787 	 * more, all pages in [start, end) are free in page allocator.
5788 	 * What we are going to do is to allocate all pages from
5789 	 * [start, end) (that is remove them from page allocator).
5790 	 *
5791 	 * The only problem is that pages at the beginning and at the
5792 	 * end of interesting range may be not aligned with pages that
5793 	 * page allocator holds, ie. they can be part of higher order
5794 	 * pages.  Because of this, we reserve the bigger range and
5795 	 * once this is done free the pages we are not interested in.
5796 	 *
5797 	 * We don't have to hold zone->lock here because the pages are
5798 	 * isolated thus they won't get removed from buddy.
5799 	 */
5800 
5801 	lru_add_drain_all();
5802 	drain_all_pages();
5803 
5804 	order = 0;
5805 	outer_start = start;
5806 	while (!PageBuddy(pfn_to_page(outer_start))) {
5807 		if (++order >= MAX_ORDER) {
5808 			ret = -EBUSY;
5809 			goto done;
5810 		}
5811 		outer_start &= ~0UL << order;
5812 	}
5813 
5814 	/* Make sure the range is really isolated. */
5815 	if (test_pages_isolated(outer_start, end)) {
5816 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5817 		       outer_start, end);
5818 		ret = -EBUSY;
5819 		goto done;
5820 	}
5821 
5822 	/*
5823 	 * Reclaim enough pages to make sure that contiguous allocation
5824 	 * will not starve the system.
5825 	 */
5826 	__reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5827 
5828 	/* Grab isolated pages from freelists. */
5829 	outer_end = isolate_freepages_range(outer_start, end);
5830 	if (!outer_end) {
5831 		ret = -EBUSY;
5832 		goto done;
5833 	}
5834 
5835 	/* Free head and tail (if any) */
5836 	if (start != outer_start)
5837 		free_contig_range(outer_start, start - outer_start);
5838 	if (end != outer_end)
5839 		free_contig_range(end, outer_end - end);
5840 
5841 done:
5842 	undo_isolate_page_range(pfn_max_align_down(start),
5843 				pfn_max_align_up(end), migratetype);
5844 	return ret;
5845 }
5846 
5847 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5848 {
5849 	for (; nr_pages--; ++pfn)
5850 		__free_page(pfn_to_page(pfn));
5851 }
5852 #endif
5853 
5854 #ifdef CONFIG_MEMORY_HOTPLUG
5855 static int __meminit __zone_pcp_update(void *data)
5856 {
5857 	struct zone *zone = data;
5858 	int cpu;
5859 	unsigned long batch = zone_batchsize(zone), flags;
5860 
5861 	for_each_possible_cpu(cpu) {
5862 		struct per_cpu_pageset *pset;
5863 		struct per_cpu_pages *pcp;
5864 
5865 		pset = per_cpu_ptr(zone->pageset, cpu);
5866 		pcp = &pset->pcp;
5867 
5868 		local_irq_save(flags);
5869 		if (pcp->count > 0)
5870 			free_pcppages_bulk(zone, pcp->count, pcp);
5871 		setup_pageset(pset, batch);
5872 		local_irq_restore(flags);
5873 	}
5874 	return 0;
5875 }
5876 
5877 void __meminit zone_pcp_update(struct zone *zone)
5878 {
5879 	stop_machine(__zone_pcp_update, zone, NULL);
5880 }
5881 #endif
5882 
5883 #ifdef CONFIG_MEMORY_HOTREMOVE
5884 void zone_pcp_reset(struct zone *zone)
5885 {
5886 	unsigned long flags;
5887 
5888 	/* avoid races with drain_pages()  */
5889 	local_irq_save(flags);
5890 	if (zone->pageset != &boot_pageset) {
5891 		free_percpu(zone->pageset);
5892 		zone->pageset = &boot_pageset;
5893 	}
5894 	local_irq_restore(flags);
5895 }
5896 
5897 /*
5898  * All pages in the range must be isolated before calling this.
5899  */
5900 void
5901 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5902 {
5903 	struct page *page;
5904 	struct zone *zone;
5905 	int order, i;
5906 	unsigned long pfn;
5907 	unsigned long flags;
5908 	/* find the first valid pfn */
5909 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5910 		if (pfn_valid(pfn))
5911 			break;
5912 	if (pfn == end_pfn)
5913 		return;
5914 	zone = page_zone(pfn_to_page(pfn));
5915 	spin_lock_irqsave(&zone->lock, flags);
5916 	pfn = start_pfn;
5917 	while (pfn < end_pfn) {
5918 		if (!pfn_valid(pfn)) {
5919 			pfn++;
5920 			continue;
5921 		}
5922 		page = pfn_to_page(pfn);
5923 		BUG_ON(page_count(page));
5924 		BUG_ON(!PageBuddy(page));
5925 		order = page_order(page);
5926 #ifdef CONFIG_DEBUG_VM
5927 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5928 		       pfn, 1 << order, end_pfn);
5929 #endif
5930 		list_del(&page->lru);
5931 		rmv_page_order(page);
5932 		zone->free_area[order].nr_free--;
5933 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5934 				      - (1UL << order));
5935 		for (i = 0; i < (1 << order); i++)
5936 			SetPageReserved((page+i));
5937 		pfn += (1 << order);
5938 	}
5939 	spin_unlock_irqrestore(&zone->lock, flags);
5940 }
5941 #endif
5942 
5943 #ifdef CONFIG_MEMORY_FAILURE
5944 bool is_free_buddy_page(struct page *page)
5945 {
5946 	struct zone *zone = page_zone(page);
5947 	unsigned long pfn = page_to_pfn(page);
5948 	unsigned long flags;
5949 	int order;
5950 
5951 	spin_lock_irqsave(&zone->lock, flags);
5952 	for (order = 0; order < MAX_ORDER; order++) {
5953 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5954 
5955 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5956 			break;
5957 	}
5958 	spin_unlock_irqrestore(&zone->lock, flags);
5959 
5960 	return order < MAX_ORDER;
5961 }
5962 #endif
5963 
5964 static const struct trace_print_flags pageflag_names[] = {
5965 	{1UL << PG_locked,		"locked"	},
5966 	{1UL << PG_error,		"error"		},
5967 	{1UL << PG_referenced,		"referenced"	},
5968 	{1UL << PG_uptodate,		"uptodate"	},
5969 	{1UL << PG_dirty,		"dirty"		},
5970 	{1UL << PG_lru,			"lru"		},
5971 	{1UL << PG_active,		"active"	},
5972 	{1UL << PG_slab,		"slab"		},
5973 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5974 	{1UL << PG_arch_1,		"arch_1"	},
5975 	{1UL << PG_reserved,		"reserved"	},
5976 	{1UL << PG_private,		"private"	},
5977 	{1UL << PG_private_2,		"private_2"	},
5978 	{1UL << PG_writeback,		"writeback"	},
5979 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5980 	{1UL << PG_head,		"head"		},
5981 	{1UL << PG_tail,		"tail"		},
5982 #else
5983 	{1UL << PG_compound,		"compound"	},
5984 #endif
5985 	{1UL << PG_swapcache,		"swapcache"	},
5986 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5987 	{1UL << PG_reclaim,		"reclaim"	},
5988 	{1UL << PG_swapbacked,		"swapbacked"	},
5989 	{1UL << PG_unevictable,		"unevictable"	},
5990 #ifdef CONFIG_MMU
5991 	{1UL << PG_mlocked,		"mlocked"	},
5992 #endif
5993 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5994 	{1UL << PG_uncached,		"uncached"	},
5995 #endif
5996 #ifdef CONFIG_MEMORY_FAILURE
5997 	{1UL << PG_hwpoison,		"hwpoison"	},
5998 #endif
5999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6000 	{1UL << PG_compound_lock,	"compound_lock"	},
6001 #endif
6002 };
6003 
6004 static void dump_page_flags(unsigned long flags)
6005 {
6006 	const char *delim = "";
6007 	unsigned long mask;
6008 	int i;
6009 
6010 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6011 
6012 	printk(KERN_ALERT "page flags: %#lx(", flags);
6013 
6014 	/* remove zone id */
6015 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6016 
6017 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6018 
6019 		mask = pageflag_names[i].mask;
6020 		if ((flags & mask) != mask)
6021 			continue;
6022 
6023 		flags &= ~mask;
6024 		printk("%s%s", delim, pageflag_names[i].name);
6025 		delim = "|";
6026 	}
6027 
6028 	/* check for left over flags */
6029 	if (flags)
6030 		printk("%s%#lx", delim, flags);
6031 
6032 	printk(")\n");
6033 }
6034 
6035 void dump_page(struct page *page)
6036 {
6037 	printk(KERN_ALERT
6038 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6039 		page, atomic_read(&page->_count), page_mapcount(page),
6040 		page->mapping, page->index);
6041 	dump_page_flags(page->flags);
6042 	mem_cgroup_print_bad_page(page);
6043 }
6044