1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 [N_CPU] = { { [0] = 1UL } }, 94 #endif /* NUMA */ 95 }; 96 EXPORT_SYMBOL(node_states); 97 98 unsigned long totalram_pages __read_mostly; 99 unsigned long totalreserve_pages __read_mostly; 100 /* 101 * When calculating the number of globally allowed dirty pages, there 102 * is a certain number of per-zone reserves that should not be 103 * considered dirtyable memory. This is the sum of those reserves 104 * over all existing zones that contribute dirtyable memory. 105 */ 106 unsigned long dirty_balance_reserve __read_mostly; 107 108 int percpu_pagelist_fraction; 109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 110 111 #ifdef CONFIG_PM_SLEEP 112 /* 113 * The following functions are used by the suspend/hibernate code to temporarily 114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 115 * while devices are suspended. To avoid races with the suspend/hibernate code, 116 * they should always be called with pm_mutex held (gfp_allowed_mask also should 117 * only be modified with pm_mutex held, unless the suspend/hibernate code is 118 * guaranteed not to run in parallel with that modification). 119 */ 120 121 static gfp_t saved_gfp_mask; 122 123 void pm_restore_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 if (saved_gfp_mask) { 127 gfp_allowed_mask = saved_gfp_mask; 128 saved_gfp_mask = 0; 129 } 130 } 131 132 void pm_restrict_gfp_mask(void) 133 { 134 WARN_ON(!mutex_is_locked(&pm_mutex)); 135 WARN_ON(saved_gfp_mask); 136 saved_gfp_mask = gfp_allowed_mask; 137 gfp_allowed_mask &= ~GFP_IOFS; 138 } 139 140 bool pm_suspended_storage(void) 141 { 142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 143 return false; 144 return true; 145 } 146 #endif /* CONFIG_PM_SLEEP */ 147 148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 149 int pageblock_order __read_mostly; 150 #endif 151 152 static void __free_pages_ok(struct page *page, unsigned int order); 153 154 /* 155 * results with 256, 32 in the lowmem_reserve sysctl: 156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 157 * 1G machine -> (16M dma, 784M normal, 224M high) 158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 161 * 162 * TBD: should special case ZONE_DMA32 machines here - in those we normally 163 * don't need any ZONE_NORMAL reservation 164 */ 165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 166 #ifdef CONFIG_ZONE_DMA 167 256, 168 #endif 169 #ifdef CONFIG_ZONE_DMA32 170 256, 171 #endif 172 #ifdef CONFIG_HIGHMEM 173 32, 174 #endif 175 32, 176 }; 177 178 EXPORT_SYMBOL(totalram_pages); 179 180 static char * const zone_names[MAX_NR_ZONES] = { 181 #ifdef CONFIG_ZONE_DMA 182 "DMA", 183 #endif 184 #ifdef CONFIG_ZONE_DMA32 185 "DMA32", 186 #endif 187 "Normal", 188 #ifdef CONFIG_HIGHMEM 189 "HighMem", 190 #endif 191 "Movable", 192 }; 193 194 int min_free_kbytes = 1024; 195 196 static unsigned long __meminitdata nr_kernel_pages; 197 static unsigned long __meminitdata nr_all_pages; 198 static unsigned long __meminitdata dma_reserve; 199 200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 203 static unsigned long __initdata required_kernelcore; 204 static unsigned long __initdata required_movablecore; 205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 206 207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 208 int movable_zone; 209 EXPORT_SYMBOL(movable_zone); 210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 211 212 #if MAX_NUMNODES > 1 213 int nr_node_ids __read_mostly = MAX_NUMNODES; 214 int nr_online_nodes __read_mostly = 1; 215 EXPORT_SYMBOL(nr_node_ids); 216 EXPORT_SYMBOL(nr_online_nodes); 217 #endif 218 219 int page_group_by_mobility_disabled __read_mostly; 220 221 /* 222 * NOTE: 223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly. 224 * Instead, use {un}set_pageblock_isolate. 225 */ 226 void set_pageblock_migratetype(struct page *page, int migratetype) 227 { 228 229 if (unlikely(page_group_by_mobility_disabled)) 230 migratetype = MIGRATE_UNMOVABLE; 231 232 set_pageblock_flags_group(page, (unsigned long)migratetype, 233 PB_migrate, PB_migrate_end); 234 } 235 236 bool oom_killer_disabled __read_mostly; 237 238 #ifdef CONFIG_DEBUG_VM 239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 240 { 241 int ret = 0; 242 unsigned seq; 243 unsigned long pfn = page_to_pfn(page); 244 245 do { 246 seq = zone_span_seqbegin(zone); 247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 248 ret = 1; 249 else if (pfn < zone->zone_start_pfn) 250 ret = 1; 251 } while (zone_span_seqretry(zone, seq)); 252 253 return ret; 254 } 255 256 static int page_is_consistent(struct zone *zone, struct page *page) 257 { 258 if (!pfn_valid_within(page_to_pfn(page))) 259 return 0; 260 if (zone != page_zone(page)) 261 return 0; 262 263 return 1; 264 } 265 /* 266 * Temporary debugging check for pages not lying within a given zone. 267 */ 268 static int bad_range(struct zone *zone, struct page *page) 269 { 270 if (page_outside_zone_boundaries(zone, page)) 271 return 1; 272 if (!page_is_consistent(zone, page)) 273 return 1; 274 275 return 0; 276 } 277 #else 278 static inline int bad_range(struct zone *zone, struct page *page) 279 { 280 return 0; 281 } 282 #endif 283 284 static void bad_page(struct page *page) 285 { 286 static unsigned long resume; 287 static unsigned long nr_shown; 288 static unsigned long nr_unshown; 289 290 /* Don't complain about poisoned pages */ 291 if (PageHWPoison(page)) { 292 reset_page_mapcount(page); /* remove PageBuddy */ 293 return; 294 } 295 296 /* 297 * Allow a burst of 60 reports, then keep quiet for that minute; 298 * or allow a steady drip of one report per second. 299 */ 300 if (nr_shown == 60) { 301 if (time_before(jiffies, resume)) { 302 nr_unshown++; 303 goto out; 304 } 305 if (nr_unshown) { 306 printk(KERN_ALERT 307 "BUG: Bad page state: %lu messages suppressed\n", 308 nr_unshown); 309 nr_unshown = 0; 310 } 311 nr_shown = 0; 312 } 313 if (nr_shown++ == 0) 314 resume = jiffies + 60 * HZ; 315 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 317 current->comm, page_to_pfn(page)); 318 dump_page(page); 319 320 print_modules(); 321 dump_stack(); 322 out: 323 /* Leave bad fields for debug, except PageBuddy could make trouble */ 324 reset_page_mapcount(page); /* remove PageBuddy */ 325 add_taint(TAINT_BAD_PAGE); 326 } 327 328 /* 329 * Higher-order pages are called "compound pages". They are structured thusly: 330 * 331 * The first PAGE_SIZE page is called the "head page". 332 * 333 * The remaining PAGE_SIZE pages are called "tail pages". 334 * 335 * All pages have PG_compound set. All tail pages have their ->first_page 336 * pointing at the head page. 337 * 338 * The first tail page's ->lru.next holds the address of the compound page's 339 * put_page() function. Its ->lru.prev holds the order of allocation. 340 * This usage means that zero-order pages may not be compound. 341 */ 342 343 static void free_compound_page(struct page *page) 344 { 345 __free_pages_ok(page, compound_order(page)); 346 } 347 348 void prep_compound_page(struct page *page, unsigned long order) 349 { 350 int i; 351 int nr_pages = 1 << order; 352 353 set_compound_page_dtor(page, free_compound_page); 354 set_compound_order(page, order); 355 __SetPageHead(page); 356 for (i = 1; i < nr_pages; i++) { 357 struct page *p = page + i; 358 __SetPageTail(p); 359 set_page_count(p, 0); 360 p->first_page = page; 361 } 362 } 363 364 /* update __split_huge_page_refcount if you change this function */ 365 static int destroy_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 int bad = 0; 370 371 if (unlikely(compound_order(page) != order) || 372 unlikely(!PageHead(page))) { 373 bad_page(page); 374 bad++; 375 } 376 377 __ClearPageHead(page); 378 379 for (i = 1; i < nr_pages; i++) { 380 struct page *p = page + i; 381 382 if (unlikely(!PageTail(p) || (p->first_page != page))) { 383 bad_page(page); 384 bad++; 385 } 386 __ClearPageTail(p); 387 } 388 389 return bad; 390 } 391 392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 393 { 394 int i; 395 396 /* 397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 398 * and __GFP_HIGHMEM from hard or soft interrupt context. 399 */ 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 401 for (i = 0; i < (1 << order); i++) 402 clear_highpage(page + i); 403 } 404 405 #ifdef CONFIG_DEBUG_PAGEALLOC 406 unsigned int _debug_guardpage_minorder; 407 408 static int __init debug_guardpage_minorder_setup(char *buf) 409 { 410 unsigned long res; 411 412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 414 return 0; 415 } 416 _debug_guardpage_minorder = res; 417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 418 return 0; 419 } 420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 421 422 static inline void set_page_guard_flag(struct page *page) 423 { 424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 425 } 426 427 static inline void clear_page_guard_flag(struct page *page) 428 { 429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 430 } 431 #else 432 static inline void set_page_guard_flag(struct page *page) { } 433 static inline void clear_page_guard_flag(struct page *page) { } 434 #endif 435 436 static inline void set_page_order(struct page *page, int order) 437 { 438 set_page_private(page, order); 439 __SetPageBuddy(page); 440 } 441 442 static inline void rmv_page_order(struct page *page) 443 { 444 __ClearPageBuddy(page); 445 set_page_private(page, 0); 446 } 447 448 /* 449 * Locate the struct page for both the matching buddy in our 450 * pair (buddy1) and the combined O(n+1) page they form (page). 451 * 452 * 1) Any buddy B1 will have an order O twin B2 which satisfies 453 * the following equation: 454 * B2 = B1 ^ (1 << O) 455 * For example, if the starting buddy (buddy2) is #8 its order 456 * 1 buddy is #10: 457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 458 * 459 * 2) Any buddy B will have an order O+1 parent P which 460 * satisfies the following equation: 461 * P = B & ~(1 << O) 462 * 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 464 */ 465 static inline unsigned long 466 __find_buddy_index(unsigned long page_idx, unsigned int order) 467 { 468 return page_idx ^ (1 << order); 469 } 470 471 /* 472 * This function checks whether a page is free && is the buddy 473 * we can do coalesce a page and its buddy if 474 * (a) the buddy is not in a hole && 475 * (b) the buddy is in the buddy system && 476 * (c) a page and its buddy have the same order && 477 * (d) a page and its buddy are in the same zone. 478 * 479 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 481 * 482 * For recording page's order, we use page_private(page). 483 */ 484 static inline int page_is_buddy(struct page *page, struct page *buddy, 485 int order) 486 { 487 if (!pfn_valid_within(page_to_pfn(buddy))) 488 return 0; 489 490 if (page_zone_id(page) != page_zone_id(buddy)) 491 return 0; 492 493 if (page_is_guard(buddy) && page_order(buddy) == order) { 494 VM_BUG_ON(page_count(buddy) != 0); 495 return 1; 496 } 497 498 if (PageBuddy(buddy) && page_order(buddy) == order) { 499 VM_BUG_ON(page_count(buddy) != 0); 500 return 1; 501 } 502 return 0; 503 } 504 505 /* 506 * Freeing function for a buddy system allocator. 507 * 508 * The concept of a buddy system is to maintain direct-mapped table 509 * (containing bit values) for memory blocks of various "orders". 510 * The bottom level table contains the map for the smallest allocatable 511 * units of memory (here, pages), and each level above it describes 512 * pairs of units from the levels below, hence, "buddies". 513 * At a high level, all that happens here is marking the table entry 514 * at the bottom level available, and propagating the changes upward 515 * as necessary, plus some accounting needed to play nicely with other 516 * parts of the VM system. 517 * At each level, we keep a list of pages, which are heads of continuous 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 519 * order is recorded in page_private(page) field. 520 * So when we are allocating or freeing one, we can derive the state of the 521 * other. That is, if we allocate a small block, and both were 522 * free, the remainder of the region must be split into blocks. 523 * If a block is freed, and its buddy is also free, then this 524 * triggers coalescing into a block of larger size. 525 * 526 * -- wli 527 */ 528 529 static inline void __free_one_page(struct page *page, 530 struct zone *zone, unsigned int order, 531 int migratetype) 532 { 533 unsigned long page_idx; 534 unsigned long combined_idx; 535 unsigned long uninitialized_var(buddy_idx); 536 struct page *buddy; 537 538 if (unlikely(PageCompound(page))) 539 if (unlikely(destroy_compound_page(page, order))) 540 return; 541 542 VM_BUG_ON(migratetype == -1); 543 544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 545 546 VM_BUG_ON(page_idx & ((1 << order) - 1)); 547 VM_BUG_ON(bad_range(zone, page)); 548 549 while (order < MAX_ORDER-1) { 550 buddy_idx = __find_buddy_index(page_idx, order); 551 buddy = page + (buddy_idx - page_idx); 552 if (!page_is_buddy(page, buddy, order)) 553 break; 554 /* 555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 556 * merge with it and move up one order. 557 */ 558 if (page_is_guard(buddy)) { 559 clear_page_guard_flag(buddy); 560 set_page_private(page, 0); 561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 562 } else { 563 list_del(&buddy->lru); 564 zone->free_area[order].nr_free--; 565 rmv_page_order(buddy); 566 } 567 combined_idx = buddy_idx & page_idx; 568 page = page + (combined_idx - page_idx); 569 page_idx = combined_idx; 570 order++; 571 } 572 set_page_order(page, order); 573 574 /* 575 * If this is not the largest possible page, check if the buddy 576 * of the next-highest order is free. If it is, it's possible 577 * that pages are being freed that will coalesce soon. In case, 578 * that is happening, add the free page to the tail of the list 579 * so it's less likely to be used soon and more likely to be merged 580 * as a higher order page 581 */ 582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 583 struct page *higher_page, *higher_buddy; 584 combined_idx = buddy_idx & page_idx; 585 higher_page = page + (combined_idx - page_idx); 586 buddy_idx = __find_buddy_index(combined_idx, order + 1); 587 higher_buddy = page + (buddy_idx - combined_idx); 588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 589 list_add_tail(&page->lru, 590 &zone->free_area[order].free_list[migratetype]); 591 goto out; 592 } 593 } 594 595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 596 out: 597 zone->free_area[order].nr_free++; 598 } 599 600 /* 601 * free_page_mlock() -- clean up attempts to free and mlocked() page. 602 * Page should not be on lru, so no need to fix that up. 603 * free_pages_check() will verify... 604 */ 605 static inline void free_page_mlock(struct page *page) 606 { 607 __dec_zone_page_state(page, NR_MLOCK); 608 __count_vm_event(UNEVICTABLE_MLOCKFREED); 609 } 610 611 static inline int free_pages_check(struct page *page) 612 { 613 if (unlikely(page_mapcount(page) | 614 (page->mapping != NULL) | 615 (atomic_read(&page->_count) != 0) | 616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 617 (mem_cgroup_bad_page_check(page)))) { 618 bad_page(page); 619 return 1; 620 } 621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 623 return 0; 624 } 625 626 /* 627 * Frees a number of pages from the PCP lists 628 * Assumes all pages on list are in same zone, and of same order. 629 * count is the number of pages to free. 630 * 631 * If the zone was previously in an "all pages pinned" state then look to 632 * see if this freeing clears that state. 633 * 634 * And clear the zone's pages_scanned counter, to hold off the "all pages are 635 * pinned" detection logic. 636 */ 637 static void free_pcppages_bulk(struct zone *zone, int count, 638 struct per_cpu_pages *pcp) 639 { 640 int migratetype = 0; 641 int batch_free = 0; 642 int to_free = count; 643 644 spin_lock(&zone->lock); 645 zone->all_unreclaimable = 0; 646 zone->pages_scanned = 0; 647 648 while (to_free) { 649 struct page *page; 650 struct list_head *list; 651 652 /* 653 * Remove pages from lists in a round-robin fashion. A 654 * batch_free count is maintained that is incremented when an 655 * empty list is encountered. This is so more pages are freed 656 * off fuller lists instead of spinning excessively around empty 657 * lists 658 */ 659 do { 660 batch_free++; 661 if (++migratetype == MIGRATE_PCPTYPES) 662 migratetype = 0; 663 list = &pcp->lists[migratetype]; 664 } while (list_empty(list)); 665 666 /* This is the only non-empty list. Free them all. */ 667 if (batch_free == MIGRATE_PCPTYPES) 668 batch_free = to_free; 669 670 do { 671 page = list_entry(list->prev, struct page, lru); 672 /* must delete as __free_one_page list manipulates */ 673 list_del(&page->lru); 674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 675 __free_one_page(page, zone, 0, page_private(page)); 676 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 677 } while (--to_free && --batch_free && !list_empty(list)); 678 } 679 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 680 spin_unlock(&zone->lock); 681 } 682 683 static void free_one_page(struct zone *zone, struct page *page, int order, 684 int migratetype) 685 { 686 spin_lock(&zone->lock); 687 zone->all_unreclaimable = 0; 688 zone->pages_scanned = 0; 689 690 __free_one_page(page, zone, order, migratetype); 691 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 692 spin_unlock(&zone->lock); 693 } 694 695 static bool free_pages_prepare(struct page *page, unsigned int order) 696 { 697 int i; 698 int bad = 0; 699 700 trace_mm_page_free(page, order); 701 kmemcheck_free_shadow(page, order); 702 703 if (PageAnon(page)) 704 page->mapping = NULL; 705 for (i = 0; i < (1 << order); i++) 706 bad += free_pages_check(page + i); 707 if (bad) 708 return false; 709 710 if (!PageHighMem(page)) { 711 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 712 debug_check_no_obj_freed(page_address(page), 713 PAGE_SIZE << order); 714 } 715 arch_free_page(page, order); 716 kernel_map_pages(page, 1 << order, 0); 717 718 return true; 719 } 720 721 static void __free_pages_ok(struct page *page, unsigned int order) 722 { 723 unsigned long flags; 724 int wasMlocked = __TestClearPageMlocked(page); 725 726 if (!free_pages_prepare(page, order)) 727 return; 728 729 local_irq_save(flags); 730 if (unlikely(wasMlocked)) 731 free_page_mlock(page); 732 __count_vm_events(PGFREE, 1 << order); 733 free_one_page(page_zone(page), page, order, 734 get_pageblock_migratetype(page)); 735 local_irq_restore(flags); 736 } 737 738 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 739 { 740 unsigned int nr_pages = 1 << order; 741 unsigned int loop; 742 743 prefetchw(page); 744 for (loop = 0; loop < nr_pages; loop++) { 745 struct page *p = &page[loop]; 746 747 if (loop + 1 < nr_pages) 748 prefetchw(p + 1); 749 __ClearPageReserved(p); 750 set_page_count(p, 0); 751 } 752 753 set_page_refcounted(page); 754 __free_pages(page, order); 755 } 756 757 #ifdef CONFIG_CMA 758 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 759 void __init init_cma_reserved_pageblock(struct page *page) 760 { 761 unsigned i = pageblock_nr_pages; 762 struct page *p = page; 763 764 do { 765 __ClearPageReserved(p); 766 set_page_count(p, 0); 767 } while (++p, --i); 768 769 set_page_refcounted(page); 770 set_pageblock_migratetype(page, MIGRATE_CMA); 771 __free_pages(page, pageblock_order); 772 totalram_pages += pageblock_nr_pages; 773 } 774 #endif 775 776 /* 777 * The order of subdivision here is critical for the IO subsystem. 778 * Please do not alter this order without good reasons and regression 779 * testing. Specifically, as large blocks of memory are subdivided, 780 * the order in which smaller blocks are delivered depends on the order 781 * they're subdivided in this function. This is the primary factor 782 * influencing the order in which pages are delivered to the IO 783 * subsystem according to empirical testing, and this is also justified 784 * by considering the behavior of a buddy system containing a single 785 * large block of memory acted on by a series of small allocations. 786 * This behavior is a critical factor in sglist merging's success. 787 * 788 * -- wli 789 */ 790 static inline void expand(struct zone *zone, struct page *page, 791 int low, int high, struct free_area *area, 792 int migratetype) 793 { 794 unsigned long size = 1 << high; 795 796 while (high > low) { 797 area--; 798 high--; 799 size >>= 1; 800 VM_BUG_ON(bad_range(zone, &page[size])); 801 802 #ifdef CONFIG_DEBUG_PAGEALLOC 803 if (high < debug_guardpage_minorder()) { 804 /* 805 * Mark as guard pages (or page), that will allow to 806 * merge back to allocator when buddy will be freed. 807 * Corresponding page table entries will not be touched, 808 * pages will stay not present in virtual address space 809 */ 810 INIT_LIST_HEAD(&page[size].lru); 811 set_page_guard_flag(&page[size]); 812 set_page_private(&page[size], high); 813 /* Guard pages are not available for any usage */ 814 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high)); 815 continue; 816 } 817 #endif 818 list_add(&page[size].lru, &area->free_list[migratetype]); 819 area->nr_free++; 820 set_page_order(&page[size], high); 821 } 822 } 823 824 /* 825 * This page is about to be returned from the page allocator 826 */ 827 static inline int check_new_page(struct page *page) 828 { 829 if (unlikely(page_mapcount(page) | 830 (page->mapping != NULL) | 831 (atomic_read(&page->_count) != 0) | 832 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 833 (mem_cgroup_bad_page_check(page)))) { 834 bad_page(page); 835 return 1; 836 } 837 return 0; 838 } 839 840 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 841 { 842 int i; 843 844 for (i = 0; i < (1 << order); i++) { 845 struct page *p = page + i; 846 if (unlikely(check_new_page(p))) 847 return 1; 848 } 849 850 set_page_private(page, 0); 851 set_page_refcounted(page); 852 853 arch_alloc_page(page, order); 854 kernel_map_pages(page, 1 << order, 1); 855 856 if (gfp_flags & __GFP_ZERO) 857 prep_zero_page(page, order, gfp_flags); 858 859 if (order && (gfp_flags & __GFP_COMP)) 860 prep_compound_page(page, order); 861 862 return 0; 863 } 864 865 /* 866 * Go through the free lists for the given migratetype and remove 867 * the smallest available page from the freelists 868 */ 869 static inline 870 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 871 int migratetype) 872 { 873 unsigned int current_order; 874 struct free_area * area; 875 struct page *page; 876 877 /* Find a page of the appropriate size in the preferred list */ 878 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 879 area = &(zone->free_area[current_order]); 880 if (list_empty(&area->free_list[migratetype])) 881 continue; 882 883 page = list_entry(area->free_list[migratetype].next, 884 struct page, lru); 885 list_del(&page->lru); 886 rmv_page_order(page); 887 area->nr_free--; 888 expand(zone, page, order, current_order, area, migratetype); 889 return page; 890 } 891 892 return NULL; 893 } 894 895 896 /* 897 * This array describes the order lists are fallen back to when 898 * the free lists for the desirable migrate type are depleted 899 */ 900 static int fallbacks[MIGRATE_TYPES][4] = { 901 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 902 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 903 #ifdef CONFIG_CMA 904 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 905 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 906 #else 907 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 908 #endif 909 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 910 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 911 }; 912 913 /* 914 * Move the free pages in a range to the free lists of the requested type. 915 * Note that start_page and end_pages are not aligned on a pageblock 916 * boundary. If alignment is required, use move_freepages_block() 917 */ 918 static int move_freepages(struct zone *zone, 919 struct page *start_page, struct page *end_page, 920 int migratetype) 921 { 922 struct page *page; 923 unsigned long order; 924 int pages_moved = 0; 925 926 #ifndef CONFIG_HOLES_IN_ZONE 927 /* 928 * page_zone is not safe to call in this context when 929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 930 * anyway as we check zone boundaries in move_freepages_block(). 931 * Remove at a later date when no bug reports exist related to 932 * grouping pages by mobility 933 */ 934 BUG_ON(page_zone(start_page) != page_zone(end_page)); 935 #endif 936 937 for (page = start_page; page <= end_page;) { 938 /* Make sure we are not inadvertently changing nodes */ 939 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 940 941 if (!pfn_valid_within(page_to_pfn(page))) { 942 page++; 943 continue; 944 } 945 946 if (!PageBuddy(page)) { 947 page++; 948 continue; 949 } 950 951 order = page_order(page); 952 list_move(&page->lru, 953 &zone->free_area[order].free_list[migratetype]); 954 page += 1 << order; 955 pages_moved += 1 << order; 956 } 957 958 return pages_moved; 959 } 960 961 int move_freepages_block(struct zone *zone, struct page *page, 962 int migratetype) 963 { 964 unsigned long start_pfn, end_pfn; 965 struct page *start_page, *end_page; 966 967 start_pfn = page_to_pfn(page); 968 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 969 start_page = pfn_to_page(start_pfn); 970 end_page = start_page + pageblock_nr_pages - 1; 971 end_pfn = start_pfn + pageblock_nr_pages - 1; 972 973 /* Do not cross zone boundaries */ 974 if (start_pfn < zone->zone_start_pfn) 975 start_page = page; 976 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 977 return 0; 978 979 return move_freepages(zone, start_page, end_page, migratetype); 980 } 981 982 static void change_pageblock_range(struct page *pageblock_page, 983 int start_order, int migratetype) 984 { 985 int nr_pageblocks = 1 << (start_order - pageblock_order); 986 987 while (nr_pageblocks--) { 988 set_pageblock_migratetype(pageblock_page, migratetype); 989 pageblock_page += pageblock_nr_pages; 990 } 991 } 992 993 /* Remove an element from the buddy allocator from the fallback list */ 994 static inline struct page * 995 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 996 { 997 struct free_area * area; 998 int current_order; 999 struct page *page; 1000 int migratetype, i; 1001 1002 /* Find the largest possible block of pages in the other list */ 1003 for (current_order = MAX_ORDER-1; current_order >= order; 1004 --current_order) { 1005 for (i = 0;; i++) { 1006 migratetype = fallbacks[start_migratetype][i]; 1007 1008 /* MIGRATE_RESERVE handled later if necessary */ 1009 if (migratetype == MIGRATE_RESERVE) 1010 break; 1011 1012 area = &(zone->free_area[current_order]); 1013 if (list_empty(&area->free_list[migratetype])) 1014 continue; 1015 1016 page = list_entry(area->free_list[migratetype].next, 1017 struct page, lru); 1018 area->nr_free--; 1019 1020 /* 1021 * If breaking a large block of pages, move all free 1022 * pages to the preferred allocation list. If falling 1023 * back for a reclaimable kernel allocation, be more 1024 * aggressive about taking ownership of free pages 1025 * 1026 * On the other hand, never change migration 1027 * type of MIGRATE_CMA pageblocks nor move CMA 1028 * pages on different free lists. We don't 1029 * want unmovable pages to be allocated from 1030 * MIGRATE_CMA areas. 1031 */ 1032 if (!is_migrate_cma(migratetype) && 1033 (unlikely(current_order >= pageblock_order / 2) || 1034 start_migratetype == MIGRATE_RECLAIMABLE || 1035 page_group_by_mobility_disabled)) { 1036 int pages; 1037 pages = move_freepages_block(zone, page, 1038 start_migratetype); 1039 1040 /* Claim the whole block if over half of it is free */ 1041 if (pages >= (1 << (pageblock_order-1)) || 1042 page_group_by_mobility_disabled) 1043 set_pageblock_migratetype(page, 1044 start_migratetype); 1045 1046 migratetype = start_migratetype; 1047 } 1048 1049 /* Remove the page from the freelists */ 1050 list_del(&page->lru); 1051 rmv_page_order(page); 1052 1053 /* Take ownership for orders >= pageblock_order */ 1054 if (current_order >= pageblock_order && 1055 !is_migrate_cma(migratetype)) 1056 change_pageblock_range(page, current_order, 1057 start_migratetype); 1058 1059 expand(zone, page, order, current_order, area, 1060 is_migrate_cma(migratetype) 1061 ? migratetype : start_migratetype); 1062 1063 trace_mm_page_alloc_extfrag(page, order, current_order, 1064 start_migratetype, migratetype); 1065 1066 return page; 1067 } 1068 } 1069 1070 return NULL; 1071 } 1072 1073 /* 1074 * Do the hard work of removing an element from the buddy allocator. 1075 * Call me with the zone->lock already held. 1076 */ 1077 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1078 int migratetype) 1079 { 1080 struct page *page; 1081 1082 retry_reserve: 1083 page = __rmqueue_smallest(zone, order, migratetype); 1084 1085 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1086 page = __rmqueue_fallback(zone, order, migratetype); 1087 1088 /* 1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1090 * is used because __rmqueue_smallest is an inline function 1091 * and we want just one call site 1092 */ 1093 if (!page) { 1094 migratetype = MIGRATE_RESERVE; 1095 goto retry_reserve; 1096 } 1097 } 1098 1099 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1100 return page; 1101 } 1102 1103 /* 1104 * Obtain a specified number of elements from the buddy allocator, all under 1105 * a single hold of the lock, for efficiency. Add them to the supplied list. 1106 * Returns the number of new pages which were placed at *list. 1107 */ 1108 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1109 unsigned long count, struct list_head *list, 1110 int migratetype, int cold) 1111 { 1112 int mt = migratetype, i; 1113 1114 spin_lock(&zone->lock); 1115 for (i = 0; i < count; ++i) { 1116 struct page *page = __rmqueue(zone, order, migratetype); 1117 if (unlikely(page == NULL)) 1118 break; 1119 1120 /* 1121 * Split buddy pages returned by expand() are received here 1122 * in physical page order. The page is added to the callers and 1123 * list and the list head then moves forward. From the callers 1124 * perspective, the linked list is ordered by page number in 1125 * some conditions. This is useful for IO devices that can 1126 * merge IO requests if the physical pages are ordered 1127 * properly. 1128 */ 1129 if (likely(cold == 0)) 1130 list_add(&page->lru, list); 1131 else 1132 list_add_tail(&page->lru, list); 1133 if (IS_ENABLED(CONFIG_CMA)) { 1134 mt = get_pageblock_migratetype(page); 1135 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1136 mt = migratetype; 1137 } 1138 set_page_private(page, mt); 1139 list = &page->lru; 1140 } 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1142 spin_unlock(&zone->lock); 1143 return i; 1144 } 1145 1146 #ifdef CONFIG_NUMA 1147 /* 1148 * Called from the vmstat counter updater to drain pagesets of this 1149 * currently executing processor on remote nodes after they have 1150 * expired. 1151 * 1152 * Note that this function must be called with the thread pinned to 1153 * a single processor. 1154 */ 1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1156 { 1157 unsigned long flags; 1158 int to_drain; 1159 1160 local_irq_save(flags); 1161 if (pcp->count >= pcp->batch) 1162 to_drain = pcp->batch; 1163 else 1164 to_drain = pcp->count; 1165 if (to_drain > 0) { 1166 free_pcppages_bulk(zone, to_drain, pcp); 1167 pcp->count -= to_drain; 1168 } 1169 local_irq_restore(flags); 1170 } 1171 #endif 1172 1173 /* 1174 * Drain pages of the indicated processor. 1175 * 1176 * The processor must either be the current processor and the 1177 * thread pinned to the current processor or a processor that 1178 * is not online. 1179 */ 1180 static void drain_pages(unsigned int cpu) 1181 { 1182 unsigned long flags; 1183 struct zone *zone; 1184 1185 for_each_populated_zone(zone) { 1186 struct per_cpu_pageset *pset; 1187 struct per_cpu_pages *pcp; 1188 1189 local_irq_save(flags); 1190 pset = per_cpu_ptr(zone->pageset, cpu); 1191 1192 pcp = &pset->pcp; 1193 if (pcp->count) { 1194 free_pcppages_bulk(zone, pcp->count, pcp); 1195 pcp->count = 0; 1196 } 1197 local_irq_restore(flags); 1198 } 1199 } 1200 1201 /* 1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1203 */ 1204 void drain_local_pages(void *arg) 1205 { 1206 drain_pages(smp_processor_id()); 1207 } 1208 1209 /* 1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1211 * 1212 * Note that this code is protected against sending an IPI to an offline 1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1215 * nothing keeps CPUs from showing up after we populated the cpumask and 1216 * before the call to on_each_cpu_mask(). 1217 */ 1218 void drain_all_pages(void) 1219 { 1220 int cpu; 1221 struct per_cpu_pageset *pcp; 1222 struct zone *zone; 1223 1224 /* 1225 * Allocate in the BSS so we wont require allocation in 1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1227 */ 1228 static cpumask_t cpus_with_pcps; 1229 1230 /* 1231 * We don't care about racing with CPU hotplug event 1232 * as offline notification will cause the notified 1233 * cpu to drain that CPU pcps and on_each_cpu_mask 1234 * disables preemption as part of its processing 1235 */ 1236 for_each_online_cpu(cpu) { 1237 bool has_pcps = false; 1238 for_each_populated_zone(zone) { 1239 pcp = per_cpu_ptr(zone->pageset, cpu); 1240 if (pcp->pcp.count) { 1241 has_pcps = true; 1242 break; 1243 } 1244 } 1245 if (has_pcps) 1246 cpumask_set_cpu(cpu, &cpus_with_pcps); 1247 else 1248 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1249 } 1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1251 } 1252 1253 #ifdef CONFIG_HIBERNATION 1254 1255 void mark_free_pages(struct zone *zone) 1256 { 1257 unsigned long pfn, max_zone_pfn; 1258 unsigned long flags; 1259 int order, t; 1260 struct list_head *curr; 1261 1262 if (!zone->spanned_pages) 1263 return; 1264 1265 spin_lock_irqsave(&zone->lock, flags); 1266 1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1269 if (pfn_valid(pfn)) { 1270 struct page *page = pfn_to_page(pfn); 1271 1272 if (!swsusp_page_is_forbidden(page)) 1273 swsusp_unset_page_free(page); 1274 } 1275 1276 for_each_migratetype_order(order, t) { 1277 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1278 unsigned long i; 1279 1280 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1281 for (i = 0; i < (1UL << order); i++) 1282 swsusp_set_page_free(pfn_to_page(pfn + i)); 1283 } 1284 } 1285 spin_unlock_irqrestore(&zone->lock, flags); 1286 } 1287 #endif /* CONFIG_PM */ 1288 1289 /* 1290 * Free a 0-order page 1291 * cold == 1 ? free a cold page : free a hot page 1292 */ 1293 void free_hot_cold_page(struct page *page, int cold) 1294 { 1295 struct zone *zone = page_zone(page); 1296 struct per_cpu_pages *pcp; 1297 unsigned long flags; 1298 int migratetype; 1299 int wasMlocked = __TestClearPageMlocked(page); 1300 1301 if (!free_pages_prepare(page, 0)) 1302 return; 1303 1304 migratetype = get_pageblock_migratetype(page); 1305 set_page_private(page, migratetype); 1306 local_irq_save(flags); 1307 if (unlikely(wasMlocked)) 1308 free_page_mlock(page); 1309 __count_vm_event(PGFREE); 1310 1311 /* 1312 * We only track unmovable, reclaimable and movable on pcp lists. 1313 * Free ISOLATE pages back to the allocator because they are being 1314 * offlined but treat RESERVE as movable pages so we can get those 1315 * areas back if necessary. Otherwise, we may have to free 1316 * excessively into the page allocator 1317 */ 1318 if (migratetype >= MIGRATE_PCPTYPES) { 1319 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1320 free_one_page(zone, page, 0, migratetype); 1321 goto out; 1322 } 1323 migratetype = MIGRATE_MOVABLE; 1324 } 1325 1326 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1327 if (cold) 1328 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1329 else 1330 list_add(&page->lru, &pcp->lists[migratetype]); 1331 pcp->count++; 1332 if (pcp->count >= pcp->high) { 1333 free_pcppages_bulk(zone, pcp->batch, pcp); 1334 pcp->count -= pcp->batch; 1335 } 1336 1337 out: 1338 local_irq_restore(flags); 1339 } 1340 1341 /* 1342 * Free a list of 0-order pages 1343 */ 1344 void free_hot_cold_page_list(struct list_head *list, int cold) 1345 { 1346 struct page *page, *next; 1347 1348 list_for_each_entry_safe(page, next, list, lru) { 1349 trace_mm_page_free_batched(page, cold); 1350 free_hot_cold_page(page, cold); 1351 } 1352 } 1353 1354 /* 1355 * split_page takes a non-compound higher-order page, and splits it into 1356 * n (1<<order) sub-pages: page[0..n] 1357 * Each sub-page must be freed individually. 1358 * 1359 * Note: this is probably too low level an operation for use in drivers. 1360 * Please consult with lkml before using this in your driver. 1361 */ 1362 void split_page(struct page *page, unsigned int order) 1363 { 1364 int i; 1365 1366 VM_BUG_ON(PageCompound(page)); 1367 VM_BUG_ON(!page_count(page)); 1368 1369 #ifdef CONFIG_KMEMCHECK 1370 /* 1371 * Split shadow pages too, because free(page[0]) would 1372 * otherwise free the whole shadow. 1373 */ 1374 if (kmemcheck_page_is_tracked(page)) 1375 split_page(virt_to_page(page[0].shadow), order); 1376 #endif 1377 1378 for (i = 1; i < (1 << order); i++) 1379 set_page_refcounted(page + i); 1380 } 1381 1382 /* 1383 * Similar to split_page except the page is already free. As this is only 1384 * being used for migration, the migratetype of the block also changes. 1385 * As this is called with interrupts disabled, the caller is responsible 1386 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1387 * are enabled. 1388 * 1389 * Note: this is probably too low level an operation for use in drivers. 1390 * Please consult with lkml before using this in your driver. 1391 */ 1392 int split_free_page(struct page *page) 1393 { 1394 unsigned int order; 1395 unsigned long watermark; 1396 struct zone *zone; 1397 1398 BUG_ON(!PageBuddy(page)); 1399 1400 zone = page_zone(page); 1401 order = page_order(page); 1402 1403 /* Obey watermarks as if the page was being allocated */ 1404 watermark = low_wmark_pages(zone) + (1 << order); 1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1406 return 0; 1407 1408 /* Remove page from free list */ 1409 list_del(&page->lru); 1410 zone->free_area[order].nr_free--; 1411 rmv_page_order(page); 1412 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1413 1414 /* Split into individual pages */ 1415 set_page_refcounted(page); 1416 split_page(page, order); 1417 1418 if (order >= pageblock_order - 1) { 1419 struct page *endpage = page + (1 << order) - 1; 1420 for (; page < endpage; page += pageblock_nr_pages) { 1421 int mt = get_pageblock_migratetype(page); 1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1423 set_pageblock_migratetype(page, 1424 MIGRATE_MOVABLE); 1425 } 1426 } 1427 1428 return 1 << order; 1429 } 1430 1431 /* 1432 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1433 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1434 * or two. 1435 */ 1436 static inline 1437 struct page *buffered_rmqueue(struct zone *preferred_zone, 1438 struct zone *zone, int order, gfp_t gfp_flags, 1439 int migratetype) 1440 { 1441 unsigned long flags; 1442 struct page *page; 1443 int cold = !!(gfp_flags & __GFP_COLD); 1444 1445 again: 1446 if (likely(order == 0)) { 1447 struct per_cpu_pages *pcp; 1448 struct list_head *list; 1449 1450 local_irq_save(flags); 1451 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1452 list = &pcp->lists[migratetype]; 1453 if (list_empty(list)) { 1454 pcp->count += rmqueue_bulk(zone, 0, 1455 pcp->batch, list, 1456 migratetype, cold); 1457 if (unlikely(list_empty(list))) 1458 goto failed; 1459 } 1460 1461 if (cold) 1462 page = list_entry(list->prev, struct page, lru); 1463 else 1464 page = list_entry(list->next, struct page, lru); 1465 1466 list_del(&page->lru); 1467 pcp->count--; 1468 } else { 1469 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1470 /* 1471 * __GFP_NOFAIL is not to be used in new code. 1472 * 1473 * All __GFP_NOFAIL callers should be fixed so that they 1474 * properly detect and handle allocation failures. 1475 * 1476 * We most definitely don't want callers attempting to 1477 * allocate greater than order-1 page units with 1478 * __GFP_NOFAIL. 1479 */ 1480 WARN_ON_ONCE(order > 1); 1481 } 1482 spin_lock_irqsave(&zone->lock, flags); 1483 page = __rmqueue(zone, order, migratetype); 1484 spin_unlock(&zone->lock); 1485 if (!page) 1486 goto failed; 1487 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1488 } 1489 1490 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1491 zone_statistics(preferred_zone, zone, gfp_flags); 1492 local_irq_restore(flags); 1493 1494 VM_BUG_ON(bad_range(zone, page)); 1495 if (prep_new_page(page, order, gfp_flags)) 1496 goto again; 1497 return page; 1498 1499 failed: 1500 local_irq_restore(flags); 1501 return NULL; 1502 } 1503 1504 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1505 #define ALLOC_WMARK_MIN WMARK_MIN 1506 #define ALLOC_WMARK_LOW WMARK_LOW 1507 #define ALLOC_WMARK_HIGH WMARK_HIGH 1508 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1509 1510 /* Mask to get the watermark bits */ 1511 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1512 1513 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1514 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1515 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1516 1517 #ifdef CONFIG_FAIL_PAGE_ALLOC 1518 1519 static struct { 1520 struct fault_attr attr; 1521 1522 u32 ignore_gfp_highmem; 1523 u32 ignore_gfp_wait; 1524 u32 min_order; 1525 } fail_page_alloc = { 1526 .attr = FAULT_ATTR_INITIALIZER, 1527 .ignore_gfp_wait = 1, 1528 .ignore_gfp_highmem = 1, 1529 .min_order = 1, 1530 }; 1531 1532 static int __init setup_fail_page_alloc(char *str) 1533 { 1534 return setup_fault_attr(&fail_page_alloc.attr, str); 1535 } 1536 __setup("fail_page_alloc=", setup_fail_page_alloc); 1537 1538 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1539 { 1540 if (order < fail_page_alloc.min_order) 1541 return false; 1542 if (gfp_mask & __GFP_NOFAIL) 1543 return false; 1544 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1545 return false; 1546 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1547 return false; 1548 1549 return should_fail(&fail_page_alloc.attr, 1 << order); 1550 } 1551 1552 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1553 1554 static int __init fail_page_alloc_debugfs(void) 1555 { 1556 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1557 struct dentry *dir; 1558 1559 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1560 &fail_page_alloc.attr); 1561 if (IS_ERR(dir)) 1562 return PTR_ERR(dir); 1563 1564 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1565 &fail_page_alloc.ignore_gfp_wait)) 1566 goto fail; 1567 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1568 &fail_page_alloc.ignore_gfp_highmem)) 1569 goto fail; 1570 if (!debugfs_create_u32("min-order", mode, dir, 1571 &fail_page_alloc.min_order)) 1572 goto fail; 1573 1574 return 0; 1575 fail: 1576 debugfs_remove_recursive(dir); 1577 1578 return -ENOMEM; 1579 } 1580 1581 late_initcall(fail_page_alloc_debugfs); 1582 1583 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1584 1585 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1586 1587 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1588 { 1589 return false; 1590 } 1591 1592 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1593 1594 /* 1595 * Return true if free pages are above 'mark'. This takes into account the order 1596 * of the allocation. 1597 */ 1598 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1599 int classzone_idx, int alloc_flags, long free_pages) 1600 { 1601 /* free_pages my go negative - that's OK */ 1602 long min = mark; 1603 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1604 int o; 1605 1606 free_pages -= (1 << order) - 1; 1607 if (alloc_flags & ALLOC_HIGH) 1608 min -= min / 2; 1609 if (alloc_flags & ALLOC_HARDER) 1610 min -= min / 4; 1611 1612 if (free_pages <= min + lowmem_reserve) 1613 return false; 1614 for (o = 0; o < order; o++) { 1615 /* At the next order, this order's pages become unavailable */ 1616 free_pages -= z->free_area[o].nr_free << o; 1617 1618 /* Require fewer higher order pages to be free */ 1619 min >>= 1; 1620 1621 if (free_pages <= min) 1622 return false; 1623 } 1624 return true; 1625 } 1626 1627 #ifdef CONFIG_MEMORY_ISOLATION 1628 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1629 { 1630 if (unlikely(zone->nr_pageblock_isolate)) 1631 return zone->nr_pageblock_isolate * pageblock_nr_pages; 1632 return 0; 1633 } 1634 #else 1635 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1636 { 1637 return 0; 1638 } 1639 #endif 1640 1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1642 int classzone_idx, int alloc_flags) 1643 { 1644 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1645 zone_page_state(z, NR_FREE_PAGES)); 1646 } 1647 1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1649 int classzone_idx, int alloc_flags) 1650 { 1651 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1652 1653 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1654 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1655 1656 /* 1657 * If the zone has MIGRATE_ISOLATE type free pages, we should consider 1658 * it. nr_zone_isolate_freepages is never accurate so kswapd might not 1659 * sleep although it could do so. But this is more desirable for memory 1660 * hotplug than sleeping which can cause a livelock in the direct 1661 * reclaim path. 1662 */ 1663 free_pages -= nr_zone_isolate_freepages(z); 1664 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1665 free_pages); 1666 } 1667 1668 #ifdef CONFIG_NUMA 1669 /* 1670 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1671 * skip over zones that are not allowed by the cpuset, or that have 1672 * been recently (in last second) found to be nearly full. See further 1673 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1674 * that have to skip over a lot of full or unallowed zones. 1675 * 1676 * If the zonelist cache is present in the passed in zonelist, then 1677 * returns a pointer to the allowed node mask (either the current 1678 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1679 * 1680 * If the zonelist cache is not available for this zonelist, does 1681 * nothing and returns NULL. 1682 * 1683 * If the fullzones BITMAP in the zonelist cache is stale (more than 1684 * a second since last zap'd) then we zap it out (clear its bits.) 1685 * 1686 * We hold off even calling zlc_setup, until after we've checked the 1687 * first zone in the zonelist, on the theory that most allocations will 1688 * be satisfied from that first zone, so best to examine that zone as 1689 * quickly as we can. 1690 */ 1691 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1692 { 1693 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1694 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1695 1696 zlc = zonelist->zlcache_ptr; 1697 if (!zlc) 1698 return NULL; 1699 1700 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1701 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1702 zlc->last_full_zap = jiffies; 1703 } 1704 1705 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1706 &cpuset_current_mems_allowed : 1707 &node_states[N_HIGH_MEMORY]; 1708 return allowednodes; 1709 } 1710 1711 /* 1712 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1713 * if it is worth looking at further for free memory: 1714 * 1) Check that the zone isn't thought to be full (doesn't have its 1715 * bit set in the zonelist_cache fullzones BITMAP). 1716 * 2) Check that the zones node (obtained from the zonelist_cache 1717 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1718 * Return true (non-zero) if zone is worth looking at further, or 1719 * else return false (zero) if it is not. 1720 * 1721 * This check -ignores- the distinction between various watermarks, 1722 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1723 * found to be full for any variation of these watermarks, it will 1724 * be considered full for up to one second by all requests, unless 1725 * we are so low on memory on all allowed nodes that we are forced 1726 * into the second scan of the zonelist. 1727 * 1728 * In the second scan we ignore this zonelist cache and exactly 1729 * apply the watermarks to all zones, even it is slower to do so. 1730 * We are low on memory in the second scan, and should leave no stone 1731 * unturned looking for a free page. 1732 */ 1733 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1734 nodemask_t *allowednodes) 1735 { 1736 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1737 int i; /* index of *z in zonelist zones */ 1738 int n; /* node that zone *z is on */ 1739 1740 zlc = zonelist->zlcache_ptr; 1741 if (!zlc) 1742 return 1; 1743 1744 i = z - zonelist->_zonerefs; 1745 n = zlc->z_to_n[i]; 1746 1747 /* This zone is worth trying if it is allowed but not full */ 1748 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1749 } 1750 1751 /* 1752 * Given 'z' scanning a zonelist, set the corresponding bit in 1753 * zlc->fullzones, so that subsequent attempts to allocate a page 1754 * from that zone don't waste time re-examining it. 1755 */ 1756 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1757 { 1758 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1759 int i; /* index of *z in zonelist zones */ 1760 1761 zlc = zonelist->zlcache_ptr; 1762 if (!zlc) 1763 return; 1764 1765 i = z - zonelist->_zonerefs; 1766 1767 set_bit(i, zlc->fullzones); 1768 } 1769 1770 /* 1771 * clear all zones full, called after direct reclaim makes progress so that 1772 * a zone that was recently full is not skipped over for up to a second 1773 */ 1774 static void zlc_clear_zones_full(struct zonelist *zonelist) 1775 { 1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1777 1778 zlc = zonelist->zlcache_ptr; 1779 if (!zlc) 1780 return; 1781 1782 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1783 } 1784 1785 #else /* CONFIG_NUMA */ 1786 1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1788 { 1789 return NULL; 1790 } 1791 1792 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1793 nodemask_t *allowednodes) 1794 { 1795 return 1; 1796 } 1797 1798 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1799 { 1800 } 1801 1802 static void zlc_clear_zones_full(struct zonelist *zonelist) 1803 { 1804 } 1805 #endif /* CONFIG_NUMA */ 1806 1807 /* 1808 * get_page_from_freelist goes through the zonelist trying to allocate 1809 * a page. 1810 */ 1811 static struct page * 1812 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1813 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1814 struct zone *preferred_zone, int migratetype) 1815 { 1816 struct zoneref *z; 1817 struct page *page = NULL; 1818 int classzone_idx; 1819 struct zone *zone; 1820 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1821 int zlc_active = 0; /* set if using zonelist_cache */ 1822 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1823 1824 classzone_idx = zone_idx(preferred_zone); 1825 zonelist_scan: 1826 /* 1827 * Scan zonelist, looking for a zone with enough free. 1828 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1829 */ 1830 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1831 high_zoneidx, nodemask) { 1832 if (NUMA_BUILD && zlc_active && 1833 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1834 continue; 1835 if ((alloc_flags & ALLOC_CPUSET) && 1836 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1837 continue; 1838 /* 1839 * When allocating a page cache page for writing, we 1840 * want to get it from a zone that is within its dirty 1841 * limit, such that no single zone holds more than its 1842 * proportional share of globally allowed dirty pages. 1843 * The dirty limits take into account the zone's 1844 * lowmem reserves and high watermark so that kswapd 1845 * should be able to balance it without having to 1846 * write pages from its LRU list. 1847 * 1848 * This may look like it could increase pressure on 1849 * lower zones by failing allocations in higher zones 1850 * before they are full. But the pages that do spill 1851 * over are limited as the lower zones are protected 1852 * by this very same mechanism. It should not become 1853 * a practical burden to them. 1854 * 1855 * XXX: For now, allow allocations to potentially 1856 * exceed the per-zone dirty limit in the slowpath 1857 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1858 * which is important when on a NUMA setup the allowed 1859 * zones are together not big enough to reach the 1860 * global limit. The proper fix for these situations 1861 * will require awareness of zones in the 1862 * dirty-throttling and the flusher threads. 1863 */ 1864 if ((alloc_flags & ALLOC_WMARK_LOW) && 1865 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1866 goto this_zone_full; 1867 1868 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1869 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1870 unsigned long mark; 1871 int ret; 1872 1873 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1874 if (zone_watermark_ok(zone, order, mark, 1875 classzone_idx, alloc_flags)) 1876 goto try_this_zone; 1877 1878 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1879 /* 1880 * we do zlc_setup if there are multiple nodes 1881 * and before considering the first zone allowed 1882 * by the cpuset. 1883 */ 1884 allowednodes = zlc_setup(zonelist, alloc_flags); 1885 zlc_active = 1; 1886 did_zlc_setup = 1; 1887 } 1888 1889 if (zone_reclaim_mode == 0) 1890 goto this_zone_full; 1891 1892 /* 1893 * As we may have just activated ZLC, check if the first 1894 * eligible zone has failed zone_reclaim recently. 1895 */ 1896 if (NUMA_BUILD && zlc_active && 1897 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1898 continue; 1899 1900 ret = zone_reclaim(zone, gfp_mask, order); 1901 switch (ret) { 1902 case ZONE_RECLAIM_NOSCAN: 1903 /* did not scan */ 1904 continue; 1905 case ZONE_RECLAIM_FULL: 1906 /* scanned but unreclaimable */ 1907 continue; 1908 default: 1909 /* did we reclaim enough */ 1910 if (!zone_watermark_ok(zone, order, mark, 1911 classzone_idx, alloc_flags)) 1912 goto this_zone_full; 1913 } 1914 } 1915 1916 try_this_zone: 1917 page = buffered_rmqueue(preferred_zone, zone, order, 1918 gfp_mask, migratetype); 1919 if (page) 1920 break; 1921 this_zone_full: 1922 if (NUMA_BUILD) 1923 zlc_mark_zone_full(zonelist, z); 1924 } 1925 1926 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1927 /* Disable zlc cache for second zonelist scan */ 1928 zlc_active = 0; 1929 goto zonelist_scan; 1930 } 1931 return page; 1932 } 1933 1934 /* 1935 * Large machines with many possible nodes should not always dump per-node 1936 * meminfo in irq context. 1937 */ 1938 static inline bool should_suppress_show_mem(void) 1939 { 1940 bool ret = false; 1941 1942 #if NODES_SHIFT > 8 1943 ret = in_interrupt(); 1944 #endif 1945 return ret; 1946 } 1947 1948 static DEFINE_RATELIMIT_STATE(nopage_rs, 1949 DEFAULT_RATELIMIT_INTERVAL, 1950 DEFAULT_RATELIMIT_BURST); 1951 1952 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 1953 { 1954 unsigned int filter = SHOW_MEM_FILTER_NODES; 1955 1956 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 1957 debug_guardpage_minorder() > 0) 1958 return; 1959 1960 /* 1961 * This documents exceptions given to allocations in certain 1962 * contexts that are allowed to allocate outside current's set 1963 * of allowed nodes. 1964 */ 1965 if (!(gfp_mask & __GFP_NOMEMALLOC)) 1966 if (test_thread_flag(TIF_MEMDIE) || 1967 (current->flags & (PF_MEMALLOC | PF_EXITING))) 1968 filter &= ~SHOW_MEM_FILTER_NODES; 1969 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 1970 filter &= ~SHOW_MEM_FILTER_NODES; 1971 1972 if (fmt) { 1973 struct va_format vaf; 1974 va_list args; 1975 1976 va_start(args, fmt); 1977 1978 vaf.fmt = fmt; 1979 vaf.va = &args; 1980 1981 pr_warn("%pV", &vaf); 1982 1983 va_end(args); 1984 } 1985 1986 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 1987 current->comm, order, gfp_mask); 1988 1989 dump_stack(); 1990 if (!should_suppress_show_mem()) 1991 show_mem(filter); 1992 } 1993 1994 static inline int 1995 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1996 unsigned long did_some_progress, 1997 unsigned long pages_reclaimed) 1998 { 1999 /* Do not loop if specifically requested */ 2000 if (gfp_mask & __GFP_NORETRY) 2001 return 0; 2002 2003 /* Always retry if specifically requested */ 2004 if (gfp_mask & __GFP_NOFAIL) 2005 return 1; 2006 2007 /* 2008 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2009 * making forward progress without invoking OOM. Suspend also disables 2010 * storage devices so kswapd will not help. Bail if we are suspending. 2011 */ 2012 if (!did_some_progress && pm_suspended_storage()) 2013 return 0; 2014 2015 /* 2016 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2017 * means __GFP_NOFAIL, but that may not be true in other 2018 * implementations. 2019 */ 2020 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2021 return 1; 2022 2023 /* 2024 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2025 * specified, then we retry until we no longer reclaim any pages 2026 * (above), or we've reclaimed an order of pages at least as 2027 * large as the allocation's order. In both cases, if the 2028 * allocation still fails, we stop retrying. 2029 */ 2030 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2031 return 1; 2032 2033 return 0; 2034 } 2035 2036 static inline struct page * 2037 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2038 struct zonelist *zonelist, enum zone_type high_zoneidx, 2039 nodemask_t *nodemask, struct zone *preferred_zone, 2040 int migratetype) 2041 { 2042 struct page *page; 2043 2044 /* Acquire the OOM killer lock for the zones in zonelist */ 2045 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2046 schedule_timeout_uninterruptible(1); 2047 return NULL; 2048 } 2049 2050 /* 2051 * Go through the zonelist yet one more time, keep very high watermark 2052 * here, this is only to catch a parallel oom killing, we must fail if 2053 * we're still under heavy pressure. 2054 */ 2055 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2056 order, zonelist, high_zoneidx, 2057 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2058 preferred_zone, migratetype); 2059 if (page) 2060 goto out; 2061 2062 if (!(gfp_mask & __GFP_NOFAIL)) { 2063 /* The OOM killer will not help higher order allocs */ 2064 if (order > PAGE_ALLOC_COSTLY_ORDER) 2065 goto out; 2066 /* The OOM killer does not needlessly kill tasks for lowmem */ 2067 if (high_zoneidx < ZONE_NORMAL) 2068 goto out; 2069 /* 2070 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2071 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2072 * The caller should handle page allocation failure by itself if 2073 * it specifies __GFP_THISNODE. 2074 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2075 */ 2076 if (gfp_mask & __GFP_THISNODE) 2077 goto out; 2078 } 2079 /* Exhausted what can be done so it's blamo time */ 2080 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2081 2082 out: 2083 clear_zonelist_oom(zonelist, gfp_mask); 2084 return page; 2085 } 2086 2087 #ifdef CONFIG_COMPACTION 2088 /* Try memory compaction for high-order allocations before reclaim */ 2089 static struct page * 2090 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2091 struct zonelist *zonelist, enum zone_type high_zoneidx, 2092 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2093 int migratetype, bool sync_migration, 2094 bool *deferred_compaction, 2095 unsigned long *did_some_progress) 2096 { 2097 struct page *page; 2098 2099 if (!order) 2100 return NULL; 2101 2102 if (compaction_deferred(preferred_zone, order)) { 2103 *deferred_compaction = true; 2104 return NULL; 2105 } 2106 2107 current->flags |= PF_MEMALLOC; 2108 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2109 nodemask, sync_migration); 2110 current->flags &= ~PF_MEMALLOC; 2111 if (*did_some_progress != COMPACT_SKIPPED) { 2112 2113 /* Page migration frees to the PCP lists but we want merging */ 2114 drain_pages(get_cpu()); 2115 put_cpu(); 2116 2117 page = get_page_from_freelist(gfp_mask, nodemask, 2118 order, zonelist, high_zoneidx, 2119 alloc_flags & ~ALLOC_NO_WATERMARKS, 2120 preferred_zone, migratetype); 2121 if (page) { 2122 preferred_zone->compact_considered = 0; 2123 preferred_zone->compact_defer_shift = 0; 2124 if (order >= preferred_zone->compact_order_failed) 2125 preferred_zone->compact_order_failed = order + 1; 2126 count_vm_event(COMPACTSUCCESS); 2127 return page; 2128 } 2129 2130 /* 2131 * It's bad if compaction run occurs and fails. 2132 * The most likely reason is that pages exist, 2133 * but not enough to satisfy watermarks. 2134 */ 2135 count_vm_event(COMPACTFAIL); 2136 2137 /* 2138 * As async compaction considers a subset of pageblocks, only 2139 * defer if the failure was a sync compaction failure. 2140 */ 2141 if (sync_migration) 2142 defer_compaction(preferred_zone, order); 2143 2144 cond_resched(); 2145 } 2146 2147 return NULL; 2148 } 2149 #else 2150 static inline struct page * 2151 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2152 struct zonelist *zonelist, enum zone_type high_zoneidx, 2153 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2154 int migratetype, bool sync_migration, 2155 bool *deferred_compaction, 2156 unsigned long *did_some_progress) 2157 { 2158 return NULL; 2159 } 2160 #endif /* CONFIG_COMPACTION */ 2161 2162 /* Perform direct synchronous page reclaim */ 2163 static int 2164 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2165 nodemask_t *nodemask) 2166 { 2167 struct reclaim_state reclaim_state; 2168 int progress; 2169 2170 cond_resched(); 2171 2172 /* We now go into synchronous reclaim */ 2173 cpuset_memory_pressure_bump(); 2174 current->flags |= PF_MEMALLOC; 2175 lockdep_set_current_reclaim_state(gfp_mask); 2176 reclaim_state.reclaimed_slab = 0; 2177 current->reclaim_state = &reclaim_state; 2178 2179 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2180 2181 current->reclaim_state = NULL; 2182 lockdep_clear_current_reclaim_state(); 2183 current->flags &= ~PF_MEMALLOC; 2184 2185 cond_resched(); 2186 2187 return progress; 2188 } 2189 2190 /* The really slow allocator path where we enter direct reclaim */ 2191 static inline struct page * 2192 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2193 struct zonelist *zonelist, enum zone_type high_zoneidx, 2194 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2195 int migratetype, unsigned long *did_some_progress) 2196 { 2197 struct page *page = NULL; 2198 bool drained = false; 2199 2200 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2201 nodemask); 2202 if (unlikely(!(*did_some_progress))) 2203 return NULL; 2204 2205 /* After successful reclaim, reconsider all zones for allocation */ 2206 if (NUMA_BUILD) 2207 zlc_clear_zones_full(zonelist); 2208 2209 retry: 2210 page = get_page_from_freelist(gfp_mask, nodemask, order, 2211 zonelist, high_zoneidx, 2212 alloc_flags & ~ALLOC_NO_WATERMARKS, 2213 preferred_zone, migratetype); 2214 2215 /* 2216 * If an allocation failed after direct reclaim, it could be because 2217 * pages are pinned on the per-cpu lists. Drain them and try again 2218 */ 2219 if (!page && !drained) { 2220 drain_all_pages(); 2221 drained = true; 2222 goto retry; 2223 } 2224 2225 return page; 2226 } 2227 2228 /* 2229 * This is called in the allocator slow-path if the allocation request is of 2230 * sufficient urgency to ignore watermarks and take other desperate measures 2231 */ 2232 static inline struct page * 2233 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2234 struct zonelist *zonelist, enum zone_type high_zoneidx, 2235 nodemask_t *nodemask, struct zone *preferred_zone, 2236 int migratetype) 2237 { 2238 struct page *page; 2239 2240 do { 2241 page = get_page_from_freelist(gfp_mask, nodemask, order, 2242 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2243 preferred_zone, migratetype); 2244 2245 if (!page && gfp_mask & __GFP_NOFAIL) 2246 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2247 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2248 2249 return page; 2250 } 2251 2252 static inline 2253 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2254 enum zone_type high_zoneidx, 2255 enum zone_type classzone_idx) 2256 { 2257 struct zoneref *z; 2258 struct zone *zone; 2259 2260 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2261 wakeup_kswapd(zone, order, classzone_idx); 2262 } 2263 2264 static inline int 2265 gfp_to_alloc_flags(gfp_t gfp_mask) 2266 { 2267 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2268 const gfp_t wait = gfp_mask & __GFP_WAIT; 2269 2270 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2271 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2272 2273 /* 2274 * The caller may dip into page reserves a bit more if the caller 2275 * cannot run direct reclaim, or if the caller has realtime scheduling 2276 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2277 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2278 */ 2279 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2280 2281 if (!wait) { 2282 /* 2283 * Not worth trying to allocate harder for 2284 * __GFP_NOMEMALLOC even if it can't schedule. 2285 */ 2286 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2287 alloc_flags |= ALLOC_HARDER; 2288 /* 2289 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2290 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2291 */ 2292 alloc_flags &= ~ALLOC_CPUSET; 2293 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2294 alloc_flags |= ALLOC_HARDER; 2295 2296 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2297 if (gfp_mask & __GFP_MEMALLOC) 2298 alloc_flags |= ALLOC_NO_WATERMARKS; 2299 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2300 alloc_flags |= ALLOC_NO_WATERMARKS; 2301 else if (!in_interrupt() && 2302 ((current->flags & PF_MEMALLOC) || 2303 unlikely(test_thread_flag(TIF_MEMDIE)))) 2304 alloc_flags |= ALLOC_NO_WATERMARKS; 2305 } 2306 2307 return alloc_flags; 2308 } 2309 2310 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2311 { 2312 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2313 } 2314 2315 static inline struct page * 2316 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2317 struct zonelist *zonelist, enum zone_type high_zoneidx, 2318 nodemask_t *nodemask, struct zone *preferred_zone, 2319 int migratetype) 2320 { 2321 const gfp_t wait = gfp_mask & __GFP_WAIT; 2322 struct page *page = NULL; 2323 int alloc_flags; 2324 unsigned long pages_reclaimed = 0; 2325 unsigned long did_some_progress; 2326 bool sync_migration = false; 2327 bool deferred_compaction = false; 2328 2329 /* 2330 * In the slowpath, we sanity check order to avoid ever trying to 2331 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2332 * be using allocators in order of preference for an area that is 2333 * too large. 2334 */ 2335 if (order >= MAX_ORDER) { 2336 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2337 return NULL; 2338 } 2339 2340 /* 2341 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2342 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2343 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2344 * using a larger set of nodes after it has established that the 2345 * allowed per node queues are empty and that nodes are 2346 * over allocated. 2347 */ 2348 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2349 goto nopage; 2350 2351 restart: 2352 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2353 wake_all_kswapd(order, zonelist, high_zoneidx, 2354 zone_idx(preferred_zone)); 2355 2356 /* 2357 * OK, we're below the kswapd watermark and have kicked background 2358 * reclaim. Now things get more complex, so set up alloc_flags according 2359 * to how we want to proceed. 2360 */ 2361 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2362 2363 /* 2364 * Find the true preferred zone if the allocation is unconstrained by 2365 * cpusets. 2366 */ 2367 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2368 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2369 &preferred_zone); 2370 2371 rebalance: 2372 /* This is the last chance, in general, before the goto nopage. */ 2373 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2374 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2375 preferred_zone, migratetype); 2376 if (page) 2377 goto got_pg; 2378 2379 /* Allocate without watermarks if the context allows */ 2380 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2381 /* 2382 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2383 * the allocation is high priority and these type of 2384 * allocations are system rather than user orientated 2385 */ 2386 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2387 2388 page = __alloc_pages_high_priority(gfp_mask, order, 2389 zonelist, high_zoneidx, nodemask, 2390 preferred_zone, migratetype); 2391 if (page) { 2392 /* 2393 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 2394 * necessary to allocate the page. The expectation is 2395 * that the caller is taking steps that will free more 2396 * memory. The caller should avoid the page being used 2397 * for !PFMEMALLOC purposes. 2398 */ 2399 page->pfmemalloc = true; 2400 goto got_pg; 2401 } 2402 } 2403 2404 /* Atomic allocations - we can't balance anything */ 2405 if (!wait) 2406 goto nopage; 2407 2408 /* Avoid recursion of direct reclaim */ 2409 if (current->flags & PF_MEMALLOC) 2410 goto nopage; 2411 2412 /* Avoid allocations with no watermarks from looping endlessly */ 2413 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2414 goto nopage; 2415 2416 /* 2417 * Try direct compaction. The first pass is asynchronous. Subsequent 2418 * attempts after direct reclaim are synchronous 2419 */ 2420 page = __alloc_pages_direct_compact(gfp_mask, order, 2421 zonelist, high_zoneidx, 2422 nodemask, 2423 alloc_flags, preferred_zone, 2424 migratetype, sync_migration, 2425 &deferred_compaction, 2426 &did_some_progress); 2427 if (page) 2428 goto got_pg; 2429 sync_migration = true; 2430 2431 /* 2432 * If compaction is deferred for high-order allocations, it is because 2433 * sync compaction recently failed. In this is the case and the caller 2434 * has requested the system not be heavily disrupted, fail the 2435 * allocation now instead of entering direct reclaim 2436 */ 2437 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD)) 2438 goto nopage; 2439 2440 /* Try direct reclaim and then allocating */ 2441 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2442 zonelist, high_zoneidx, 2443 nodemask, 2444 alloc_flags, preferred_zone, 2445 migratetype, &did_some_progress); 2446 if (page) 2447 goto got_pg; 2448 2449 /* 2450 * If we failed to make any progress reclaiming, then we are 2451 * running out of options and have to consider going OOM 2452 */ 2453 if (!did_some_progress) { 2454 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2455 if (oom_killer_disabled) 2456 goto nopage; 2457 /* Coredumps can quickly deplete all memory reserves */ 2458 if ((current->flags & PF_DUMPCORE) && 2459 !(gfp_mask & __GFP_NOFAIL)) 2460 goto nopage; 2461 page = __alloc_pages_may_oom(gfp_mask, order, 2462 zonelist, high_zoneidx, 2463 nodemask, preferred_zone, 2464 migratetype); 2465 if (page) 2466 goto got_pg; 2467 2468 if (!(gfp_mask & __GFP_NOFAIL)) { 2469 /* 2470 * The oom killer is not called for high-order 2471 * allocations that may fail, so if no progress 2472 * is being made, there are no other options and 2473 * retrying is unlikely to help. 2474 */ 2475 if (order > PAGE_ALLOC_COSTLY_ORDER) 2476 goto nopage; 2477 /* 2478 * The oom killer is not called for lowmem 2479 * allocations to prevent needlessly killing 2480 * innocent tasks. 2481 */ 2482 if (high_zoneidx < ZONE_NORMAL) 2483 goto nopage; 2484 } 2485 2486 goto restart; 2487 } 2488 } 2489 2490 /* Check if we should retry the allocation */ 2491 pages_reclaimed += did_some_progress; 2492 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2493 pages_reclaimed)) { 2494 /* Wait for some write requests to complete then retry */ 2495 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2496 goto rebalance; 2497 } else { 2498 /* 2499 * High-order allocations do not necessarily loop after 2500 * direct reclaim and reclaim/compaction depends on compaction 2501 * being called after reclaim so call directly if necessary 2502 */ 2503 page = __alloc_pages_direct_compact(gfp_mask, order, 2504 zonelist, high_zoneidx, 2505 nodemask, 2506 alloc_flags, preferred_zone, 2507 migratetype, sync_migration, 2508 &deferred_compaction, 2509 &did_some_progress); 2510 if (page) 2511 goto got_pg; 2512 } 2513 2514 nopage: 2515 warn_alloc_failed(gfp_mask, order, NULL); 2516 return page; 2517 got_pg: 2518 if (kmemcheck_enabled) 2519 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2520 2521 return page; 2522 } 2523 2524 /* 2525 * This is the 'heart' of the zoned buddy allocator. 2526 */ 2527 struct page * 2528 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2529 struct zonelist *zonelist, nodemask_t *nodemask) 2530 { 2531 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2532 struct zone *preferred_zone; 2533 struct page *page = NULL; 2534 int migratetype = allocflags_to_migratetype(gfp_mask); 2535 unsigned int cpuset_mems_cookie; 2536 2537 gfp_mask &= gfp_allowed_mask; 2538 2539 lockdep_trace_alloc(gfp_mask); 2540 2541 might_sleep_if(gfp_mask & __GFP_WAIT); 2542 2543 if (should_fail_alloc_page(gfp_mask, order)) 2544 return NULL; 2545 2546 /* 2547 * Check the zones suitable for the gfp_mask contain at least one 2548 * valid zone. It's possible to have an empty zonelist as a result 2549 * of GFP_THISNODE and a memoryless node 2550 */ 2551 if (unlikely(!zonelist->_zonerefs->zone)) 2552 return NULL; 2553 2554 retry_cpuset: 2555 cpuset_mems_cookie = get_mems_allowed(); 2556 2557 /* The preferred zone is used for statistics later */ 2558 first_zones_zonelist(zonelist, high_zoneidx, 2559 nodemask ? : &cpuset_current_mems_allowed, 2560 &preferred_zone); 2561 if (!preferred_zone) 2562 goto out; 2563 2564 /* First allocation attempt */ 2565 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2566 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2567 preferred_zone, migratetype); 2568 if (unlikely(!page)) 2569 page = __alloc_pages_slowpath(gfp_mask, order, 2570 zonelist, high_zoneidx, nodemask, 2571 preferred_zone, migratetype); 2572 else 2573 page->pfmemalloc = false; 2574 2575 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2576 2577 out: 2578 /* 2579 * When updating a task's mems_allowed, it is possible to race with 2580 * parallel threads in such a way that an allocation can fail while 2581 * the mask is being updated. If a page allocation is about to fail, 2582 * check if the cpuset changed during allocation and if so, retry. 2583 */ 2584 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2585 goto retry_cpuset; 2586 2587 return page; 2588 } 2589 EXPORT_SYMBOL(__alloc_pages_nodemask); 2590 2591 /* 2592 * Common helper functions. 2593 */ 2594 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2595 { 2596 struct page *page; 2597 2598 /* 2599 * __get_free_pages() returns a 32-bit address, which cannot represent 2600 * a highmem page 2601 */ 2602 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2603 2604 page = alloc_pages(gfp_mask, order); 2605 if (!page) 2606 return 0; 2607 return (unsigned long) page_address(page); 2608 } 2609 EXPORT_SYMBOL(__get_free_pages); 2610 2611 unsigned long get_zeroed_page(gfp_t gfp_mask) 2612 { 2613 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2614 } 2615 EXPORT_SYMBOL(get_zeroed_page); 2616 2617 void __free_pages(struct page *page, unsigned int order) 2618 { 2619 if (put_page_testzero(page)) { 2620 if (order == 0) 2621 free_hot_cold_page(page, 0); 2622 else 2623 __free_pages_ok(page, order); 2624 } 2625 } 2626 2627 EXPORT_SYMBOL(__free_pages); 2628 2629 void free_pages(unsigned long addr, unsigned int order) 2630 { 2631 if (addr != 0) { 2632 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2633 __free_pages(virt_to_page((void *)addr), order); 2634 } 2635 } 2636 2637 EXPORT_SYMBOL(free_pages); 2638 2639 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2640 { 2641 if (addr) { 2642 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2643 unsigned long used = addr + PAGE_ALIGN(size); 2644 2645 split_page(virt_to_page((void *)addr), order); 2646 while (used < alloc_end) { 2647 free_page(used); 2648 used += PAGE_SIZE; 2649 } 2650 } 2651 return (void *)addr; 2652 } 2653 2654 /** 2655 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2656 * @size: the number of bytes to allocate 2657 * @gfp_mask: GFP flags for the allocation 2658 * 2659 * This function is similar to alloc_pages(), except that it allocates the 2660 * minimum number of pages to satisfy the request. alloc_pages() can only 2661 * allocate memory in power-of-two pages. 2662 * 2663 * This function is also limited by MAX_ORDER. 2664 * 2665 * Memory allocated by this function must be released by free_pages_exact(). 2666 */ 2667 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2668 { 2669 unsigned int order = get_order(size); 2670 unsigned long addr; 2671 2672 addr = __get_free_pages(gfp_mask, order); 2673 return make_alloc_exact(addr, order, size); 2674 } 2675 EXPORT_SYMBOL(alloc_pages_exact); 2676 2677 /** 2678 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2679 * pages on a node. 2680 * @nid: the preferred node ID where memory should be allocated 2681 * @size: the number of bytes to allocate 2682 * @gfp_mask: GFP flags for the allocation 2683 * 2684 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2685 * back. 2686 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2687 * but is not exact. 2688 */ 2689 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2690 { 2691 unsigned order = get_order(size); 2692 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2693 if (!p) 2694 return NULL; 2695 return make_alloc_exact((unsigned long)page_address(p), order, size); 2696 } 2697 EXPORT_SYMBOL(alloc_pages_exact_nid); 2698 2699 /** 2700 * free_pages_exact - release memory allocated via alloc_pages_exact() 2701 * @virt: the value returned by alloc_pages_exact. 2702 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2703 * 2704 * Release the memory allocated by a previous call to alloc_pages_exact. 2705 */ 2706 void free_pages_exact(void *virt, size_t size) 2707 { 2708 unsigned long addr = (unsigned long)virt; 2709 unsigned long end = addr + PAGE_ALIGN(size); 2710 2711 while (addr < end) { 2712 free_page(addr); 2713 addr += PAGE_SIZE; 2714 } 2715 } 2716 EXPORT_SYMBOL(free_pages_exact); 2717 2718 static unsigned int nr_free_zone_pages(int offset) 2719 { 2720 struct zoneref *z; 2721 struct zone *zone; 2722 2723 /* Just pick one node, since fallback list is circular */ 2724 unsigned int sum = 0; 2725 2726 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2727 2728 for_each_zone_zonelist(zone, z, zonelist, offset) { 2729 unsigned long size = zone->present_pages; 2730 unsigned long high = high_wmark_pages(zone); 2731 if (size > high) 2732 sum += size - high; 2733 } 2734 2735 return sum; 2736 } 2737 2738 /* 2739 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2740 */ 2741 unsigned int nr_free_buffer_pages(void) 2742 { 2743 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2744 } 2745 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2746 2747 /* 2748 * Amount of free RAM allocatable within all zones 2749 */ 2750 unsigned int nr_free_pagecache_pages(void) 2751 { 2752 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2753 } 2754 2755 static inline void show_node(struct zone *zone) 2756 { 2757 if (NUMA_BUILD) 2758 printk("Node %d ", zone_to_nid(zone)); 2759 } 2760 2761 void si_meminfo(struct sysinfo *val) 2762 { 2763 val->totalram = totalram_pages; 2764 val->sharedram = 0; 2765 val->freeram = global_page_state(NR_FREE_PAGES); 2766 val->bufferram = nr_blockdev_pages(); 2767 val->totalhigh = totalhigh_pages; 2768 val->freehigh = nr_free_highpages(); 2769 val->mem_unit = PAGE_SIZE; 2770 } 2771 2772 EXPORT_SYMBOL(si_meminfo); 2773 2774 #ifdef CONFIG_NUMA 2775 void si_meminfo_node(struct sysinfo *val, int nid) 2776 { 2777 pg_data_t *pgdat = NODE_DATA(nid); 2778 2779 val->totalram = pgdat->node_present_pages; 2780 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2781 #ifdef CONFIG_HIGHMEM 2782 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2783 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2784 NR_FREE_PAGES); 2785 #else 2786 val->totalhigh = 0; 2787 val->freehigh = 0; 2788 #endif 2789 val->mem_unit = PAGE_SIZE; 2790 } 2791 #endif 2792 2793 /* 2794 * Determine whether the node should be displayed or not, depending on whether 2795 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2796 */ 2797 bool skip_free_areas_node(unsigned int flags, int nid) 2798 { 2799 bool ret = false; 2800 unsigned int cpuset_mems_cookie; 2801 2802 if (!(flags & SHOW_MEM_FILTER_NODES)) 2803 goto out; 2804 2805 do { 2806 cpuset_mems_cookie = get_mems_allowed(); 2807 ret = !node_isset(nid, cpuset_current_mems_allowed); 2808 } while (!put_mems_allowed(cpuset_mems_cookie)); 2809 out: 2810 return ret; 2811 } 2812 2813 #define K(x) ((x) << (PAGE_SHIFT-10)) 2814 2815 /* 2816 * Show free area list (used inside shift_scroll-lock stuff) 2817 * We also calculate the percentage fragmentation. We do this by counting the 2818 * memory on each free list with the exception of the first item on the list. 2819 * Suppresses nodes that are not allowed by current's cpuset if 2820 * SHOW_MEM_FILTER_NODES is passed. 2821 */ 2822 void show_free_areas(unsigned int filter) 2823 { 2824 int cpu; 2825 struct zone *zone; 2826 2827 for_each_populated_zone(zone) { 2828 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2829 continue; 2830 show_node(zone); 2831 printk("%s per-cpu:\n", zone->name); 2832 2833 for_each_online_cpu(cpu) { 2834 struct per_cpu_pageset *pageset; 2835 2836 pageset = per_cpu_ptr(zone->pageset, cpu); 2837 2838 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2839 cpu, pageset->pcp.high, 2840 pageset->pcp.batch, pageset->pcp.count); 2841 } 2842 } 2843 2844 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2845 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2846 " unevictable:%lu" 2847 " dirty:%lu writeback:%lu unstable:%lu\n" 2848 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2849 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2850 global_page_state(NR_ACTIVE_ANON), 2851 global_page_state(NR_INACTIVE_ANON), 2852 global_page_state(NR_ISOLATED_ANON), 2853 global_page_state(NR_ACTIVE_FILE), 2854 global_page_state(NR_INACTIVE_FILE), 2855 global_page_state(NR_ISOLATED_FILE), 2856 global_page_state(NR_UNEVICTABLE), 2857 global_page_state(NR_FILE_DIRTY), 2858 global_page_state(NR_WRITEBACK), 2859 global_page_state(NR_UNSTABLE_NFS), 2860 global_page_state(NR_FREE_PAGES), 2861 global_page_state(NR_SLAB_RECLAIMABLE), 2862 global_page_state(NR_SLAB_UNRECLAIMABLE), 2863 global_page_state(NR_FILE_MAPPED), 2864 global_page_state(NR_SHMEM), 2865 global_page_state(NR_PAGETABLE), 2866 global_page_state(NR_BOUNCE)); 2867 2868 for_each_populated_zone(zone) { 2869 int i; 2870 2871 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2872 continue; 2873 show_node(zone); 2874 printk("%s" 2875 " free:%lukB" 2876 " min:%lukB" 2877 " low:%lukB" 2878 " high:%lukB" 2879 " active_anon:%lukB" 2880 " inactive_anon:%lukB" 2881 " active_file:%lukB" 2882 " inactive_file:%lukB" 2883 " unevictable:%lukB" 2884 " isolated(anon):%lukB" 2885 " isolated(file):%lukB" 2886 " present:%lukB" 2887 " mlocked:%lukB" 2888 " dirty:%lukB" 2889 " writeback:%lukB" 2890 " mapped:%lukB" 2891 " shmem:%lukB" 2892 " slab_reclaimable:%lukB" 2893 " slab_unreclaimable:%lukB" 2894 " kernel_stack:%lukB" 2895 " pagetables:%lukB" 2896 " unstable:%lukB" 2897 " bounce:%lukB" 2898 " writeback_tmp:%lukB" 2899 " pages_scanned:%lu" 2900 " all_unreclaimable? %s" 2901 "\n", 2902 zone->name, 2903 K(zone_page_state(zone, NR_FREE_PAGES)), 2904 K(min_wmark_pages(zone)), 2905 K(low_wmark_pages(zone)), 2906 K(high_wmark_pages(zone)), 2907 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2908 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2909 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2910 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2911 K(zone_page_state(zone, NR_UNEVICTABLE)), 2912 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2913 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2914 K(zone->present_pages), 2915 K(zone_page_state(zone, NR_MLOCK)), 2916 K(zone_page_state(zone, NR_FILE_DIRTY)), 2917 K(zone_page_state(zone, NR_WRITEBACK)), 2918 K(zone_page_state(zone, NR_FILE_MAPPED)), 2919 K(zone_page_state(zone, NR_SHMEM)), 2920 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2921 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2922 zone_page_state(zone, NR_KERNEL_STACK) * 2923 THREAD_SIZE / 1024, 2924 K(zone_page_state(zone, NR_PAGETABLE)), 2925 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2926 K(zone_page_state(zone, NR_BOUNCE)), 2927 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2928 zone->pages_scanned, 2929 (zone->all_unreclaimable ? "yes" : "no") 2930 ); 2931 printk("lowmem_reserve[]:"); 2932 for (i = 0; i < MAX_NR_ZONES; i++) 2933 printk(" %lu", zone->lowmem_reserve[i]); 2934 printk("\n"); 2935 } 2936 2937 for_each_populated_zone(zone) { 2938 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2939 2940 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2941 continue; 2942 show_node(zone); 2943 printk("%s: ", zone->name); 2944 2945 spin_lock_irqsave(&zone->lock, flags); 2946 for (order = 0; order < MAX_ORDER; order++) { 2947 nr[order] = zone->free_area[order].nr_free; 2948 total += nr[order] << order; 2949 } 2950 spin_unlock_irqrestore(&zone->lock, flags); 2951 for (order = 0; order < MAX_ORDER; order++) 2952 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2953 printk("= %lukB\n", K(total)); 2954 } 2955 2956 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2957 2958 show_swap_cache_info(); 2959 } 2960 2961 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2962 { 2963 zoneref->zone = zone; 2964 zoneref->zone_idx = zone_idx(zone); 2965 } 2966 2967 /* 2968 * Builds allocation fallback zone lists. 2969 * 2970 * Add all populated zones of a node to the zonelist. 2971 */ 2972 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2973 int nr_zones, enum zone_type zone_type) 2974 { 2975 struct zone *zone; 2976 2977 BUG_ON(zone_type >= MAX_NR_ZONES); 2978 zone_type++; 2979 2980 do { 2981 zone_type--; 2982 zone = pgdat->node_zones + zone_type; 2983 if (populated_zone(zone)) { 2984 zoneref_set_zone(zone, 2985 &zonelist->_zonerefs[nr_zones++]); 2986 check_highest_zone(zone_type); 2987 } 2988 2989 } while (zone_type); 2990 return nr_zones; 2991 } 2992 2993 2994 /* 2995 * zonelist_order: 2996 * 0 = automatic detection of better ordering. 2997 * 1 = order by ([node] distance, -zonetype) 2998 * 2 = order by (-zonetype, [node] distance) 2999 * 3000 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3001 * the same zonelist. So only NUMA can configure this param. 3002 */ 3003 #define ZONELIST_ORDER_DEFAULT 0 3004 #define ZONELIST_ORDER_NODE 1 3005 #define ZONELIST_ORDER_ZONE 2 3006 3007 /* zonelist order in the kernel. 3008 * set_zonelist_order() will set this to NODE or ZONE. 3009 */ 3010 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3011 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3012 3013 3014 #ifdef CONFIG_NUMA 3015 /* The value user specified ....changed by config */ 3016 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3017 /* string for sysctl */ 3018 #define NUMA_ZONELIST_ORDER_LEN 16 3019 char numa_zonelist_order[16] = "default"; 3020 3021 /* 3022 * interface for configure zonelist ordering. 3023 * command line option "numa_zonelist_order" 3024 * = "[dD]efault - default, automatic configuration. 3025 * = "[nN]ode - order by node locality, then by zone within node 3026 * = "[zZ]one - order by zone, then by locality within zone 3027 */ 3028 3029 static int __parse_numa_zonelist_order(char *s) 3030 { 3031 if (*s == 'd' || *s == 'D') { 3032 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3033 } else if (*s == 'n' || *s == 'N') { 3034 user_zonelist_order = ZONELIST_ORDER_NODE; 3035 } else if (*s == 'z' || *s == 'Z') { 3036 user_zonelist_order = ZONELIST_ORDER_ZONE; 3037 } else { 3038 printk(KERN_WARNING 3039 "Ignoring invalid numa_zonelist_order value: " 3040 "%s\n", s); 3041 return -EINVAL; 3042 } 3043 return 0; 3044 } 3045 3046 static __init int setup_numa_zonelist_order(char *s) 3047 { 3048 int ret; 3049 3050 if (!s) 3051 return 0; 3052 3053 ret = __parse_numa_zonelist_order(s); 3054 if (ret == 0) 3055 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3056 3057 return ret; 3058 } 3059 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3060 3061 /* 3062 * sysctl handler for numa_zonelist_order 3063 */ 3064 int numa_zonelist_order_handler(ctl_table *table, int write, 3065 void __user *buffer, size_t *length, 3066 loff_t *ppos) 3067 { 3068 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3069 int ret; 3070 static DEFINE_MUTEX(zl_order_mutex); 3071 3072 mutex_lock(&zl_order_mutex); 3073 if (write) 3074 strcpy(saved_string, (char*)table->data); 3075 ret = proc_dostring(table, write, buffer, length, ppos); 3076 if (ret) 3077 goto out; 3078 if (write) { 3079 int oldval = user_zonelist_order; 3080 if (__parse_numa_zonelist_order((char*)table->data)) { 3081 /* 3082 * bogus value. restore saved string 3083 */ 3084 strncpy((char*)table->data, saved_string, 3085 NUMA_ZONELIST_ORDER_LEN); 3086 user_zonelist_order = oldval; 3087 } else if (oldval != user_zonelist_order) { 3088 mutex_lock(&zonelists_mutex); 3089 build_all_zonelists(NULL, NULL); 3090 mutex_unlock(&zonelists_mutex); 3091 } 3092 } 3093 out: 3094 mutex_unlock(&zl_order_mutex); 3095 return ret; 3096 } 3097 3098 3099 #define MAX_NODE_LOAD (nr_online_nodes) 3100 static int node_load[MAX_NUMNODES]; 3101 3102 /** 3103 * find_next_best_node - find the next node that should appear in a given node's fallback list 3104 * @node: node whose fallback list we're appending 3105 * @used_node_mask: nodemask_t of already used nodes 3106 * 3107 * We use a number of factors to determine which is the next node that should 3108 * appear on a given node's fallback list. The node should not have appeared 3109 * already in @node's fallback list, and it should be the next closest node 3110 * according to the distance array (which contains arbitrary distance values 3111 * from each node to each node in the system), and should also prefer nodes 3112 * with no CPUs, since presumably they'll have very little allocation pressure 3113 * on them otherwise. 3114 * It returns -1 if no node is found. 3115 */ 3116 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3117 { 3118 int n, val; 3119 int min_val = INT_MAX; 3120 int best_node = -1; 3121 const struct cpumask *tmp = cpumask_of_node(0); 3122 3123 /* Use the local node if we haven't already */ 3124 if (!node_isset(node, *used_node_mask)) { 3125 node_set(node, *used_node_mask); 3126 return node; 3127 } 3128 3129 for_each_node_state(n, N_HIGH_MEMORY) { 3130 3131 /* Don't want a node to appear more than once */ 3132 if (node_isset(n, *used_node_mask)) 3133 continue; 3134 3135 /* Use the distance array to find the distance */ 3136 val = node_distance(node, n); 3137 3138 /* Penalize nodes under us ("prefer the next node") */ 3139 val += (n < node); 3140 3141 /* Give preference to headless and unused nodes */ 3142 tmp = cpumask_of_node(n); 3143 if (!cpumask_empty(tmp)) 3144 val += PENALTY_FOR_NODE_WITH_CPUS; 3145 3146 /* Slight preference for less loaded node */ 3147 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3148 val += node_load[n]; 3149 3150 if (val < min_val) { 3151 min_val = val; 3152 best_node = n; 3153 } 3154 } 3155 3156 if (best_node >= 0) 3157 node_set(best_node, *used_node_mask); 3158 3159 return best_node; 3160 } 3161 3162 3163 /* 3164 * Build zonelists ordered by node and zones within node. 3165 * This results in maximum locality--normal zone overflows into local 3166 * DMA zone, if any--but risks exhausting DMA zone. 3167 */ 3168 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3169 { 3170 int j; 3171 struct zonelist *zonelist; 3172 3173 zonelist = &pgdat->node_zonelists[0]; 3174 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3175 ; 3176 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3177 MAX_NR_ZONES - 1); 3178 zonelist->_zonerefs[j].zone = NULL; 3179 zonelist->_zonerefs[j].zone_idx = 0; 3180 } 3181 3182 /* 3183 * Build gfp_thisnode zonelists 3184 */ 3185 static void build_thisnode_zonelists(pg_data_t *pgdat) 3186 { 3187 int j; 3188 struct zonelist *zonelist; 3189 3190 zonelist = &pgdat->node_zonelists[1]; 3191 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3192 zonelist->_zonerefs[j].zone = NULL; 3193 zonelist->_zonerefs[j].zone_idx = 0; 3194 } 3195 3196 /* 3197 * Build zonelists ordered by zone and nodes within zones. 3198 * This results in conserving DMA zone[s] until all Normal memory is 3199 * exhausted, but results in overflowing to remote node while memory 3200 * may still exist in local DMA zone. 3201 */ 3202 static int node_order[MAX_NUMNODES]; 3203 3204 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3205 { 3206 int pos, j, node; 3207 int zone_type; /* needs to be signed */ 3208 struct zone *z; 3209 struct zonelist *zonelist; 3210 3211 zonelist = &pgdat->node_zonelists[0]; 3212 pos = 0; 3213 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3214 for (j = 0; j < nr_nodes; j++) { 3215 node = node_order[j]; 3216 z = &NODE_DATA(node)->node_zones[zone_type]; 3217 if (populated_zone(z)) { 3218 zoneref_set_zone(z, 3219 &zonelist->_zonerefs[pos++]); 3220 check_highest_zone(zone_type); 3221 } 3222 } 3223 } 3224 zonelist->_zonerefs[pos].zone = NULL; 3225 zonelist->_zonerefs[pos].zone_idx = 0; 3226 } 3227 3228 static int default_zonelist_order(void) 3229 { 3230 int nid, zone_type; 3231 unsigned long low_kmem_size,total_size; 3232 struct zone *z; 3233 int average_size; 3234 /* 3235 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3236 * If they are really small and used heavily, the system can fall 3237 * into OOM very easily. 3238 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3239 */ 3240 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3241 low_kmem_size = 0; 3242 total_size = 0; 3243 for_each_online_node(nid) { 3244 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3245 z = &NODE_DATA(nid)->node_zones[zone_type]; 3246 if (populated_zone(z)) { 3247 if (zone_type < ZONE_NORMAL) 3248 low_kmem_size += z->present_pages; 3249 total_size += z->present_pages; 3250 } else if (zone_type == ZONE_NORMAL) { 3251 /* 3252 * If any node has only lowmem, then node order 3253 * is preferred to allow kernel allocations 3254 * locally; otherwise, they can easily infringe 3255 * on other nodes when there is an abundance of 3256 * lowmem available to allocate from. 3257 */ 3258 return ZONELIST_ORDER_NODE; 3259 } 3260 } 3261 } 3262 if (!low_kmem_size || /* there are no DMA area. */ 3263 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3264 return ZONELIST_ORDER_NODE; 3265 /* 3266 * look into each node's config. 3267 * If there is a node whose DMA/DMA32 memory is very big area on 3268 * local memory, NODE_ORDER may be suitable. 3269 */ 3270 average_size = total_size / 3271 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 3272 for_each_online_node(nid) { 3273 low_kmem_size = 0; 3274 total_size = 0; 3275 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3276 z = &NODE_DATA(nid)->node_zones[zone_type]; 3277 if (populated_zone(z)) { 3278 if (zone_type < ZONE_NORMAL) 3279 low_kmem_size += z->present_pages; 3280 total_size += z->present_pages; 3281 } 3282 } 3283 if (low_kmem_size && 3284 total_size > average_size && /* ignore small node */ 3285 low_kmem_size > total_size * 70/100) 3286 return ZONELIST_ORDER_NODE; 3287 } 3288 return ZONELIST_ORDER_ZONE; 3289 } 3290 3291 static void set_zonelist_order(void) 3292 { 3293 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3294 current_zonelist_order = default_zonelist_order(); 3295 else 3296 current_zonelist_order = user_zonelist_order; 3297 } 3298 3299 static void build_zonelists(pg_data_t *pgdat) 3300 { 3301 int j, node, load; 3302 enum zone_type i; 3303 nodemask_t used_mask; 3304 int local_node, prev_node; 3305 struct zonelist *zonelist; 3306 int order = current_zonelist_order; 3307 3308 /* initialize zonelists */ 3309 for (i = 0; i < MAX_ZONELISTS; i++) { 3310 zonelist = pgdat->node_zonelists + i; 3311 zonelist->_zonerefs[0].zone = NULL; 3312 zonelist->_zonerefs[0].zone_idx = 0; 3313 } 3314 3315 /* NUMA-aware ordering of nodes */ 3316 local_node = pgdat->node_id; 3317 load = nr_online_nodes; 3318 prev_node = local_node; 3319 nodes_clear(used_mask); 3320 3321 memset(node_order, 0, sizeof(node_order)); 3322 j = 0; 3323 3324 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3325 int distance = node_distance(local_node, node); 3326 3327 /* 3328 * If another node is sufficiently far away then it is better 3329 * to reclaim pages in a zone before going off node. 3330 */ 3331 if (distance > RECLAIM_DISTANCE) 3332 zone_reclaim_mode = 1; 3333 3334 /* 3335 * We don't want to pressure a particular node. 3336 * So adding penalty to the first node in same 3337 * distance group to make it round-robin. 3338 */ 3339 if (distance != node_distance(local_node, prev_node)) 3340 node_load[node] = load; 3341 3342 prev_node = node; 3343 load--; 3344 if (order == ZONELIST_ORDER_NODE) 3345 build_zonelists_in_node_order(pgdat, node); 3346 else 3347 node_order[j++] = node; /* remember order */ 3348 } 3349 3350 if (order == ZONELIST_ORDER_ZONE) { 3351 /* calculate node order -- i.e., DMA last! */ 3352 build_zonelists_in_zone_order(pgdat, j); 3353 } 3354 3355 build_thisnode_zonelists(pgdat); 3356 } 3357 3358 /* Construct the zonelist performance cache - see further mmzone.h */ 3359 static void build_zonelist_cache(pg_data_t *pgdat) 3360 { 3361 struct zonelist *zonelist; 3362 struct zonelist_cache *zlc; 3363 struct zoneref *z; 3364 3365 zonelist = &pgdat->node_zonelists[0]; 3366 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3367 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3368 for (z = zonelist->_zonerefs; z->zone; z++) 3369 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3370 } 3371 3372 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3373 /* 3374 * Return node id of node used for "local" allocations. 3375 * I.e., first node id of first zone in arg node's generic zonelist. 3376 * Used for initializing percpu 'numa_mem', which is used primarily 3377 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3378 */ 3379 int local_memory_node(int node) 3380 { 3381 struct zone *zone; 3382 3383 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3384 gfp_zone(GFP_KERNEL), 3385 NULL, 3386 &zone); 3387 return zone->node; 3388 } 3389 #endif 3390 3391 #else /* CONFIG_NUMA */ 3392 3393 static void set_zonelist_order(void) 3394 { 3395 current_zonelist_order = ZONELIST_ORDER_ZONE; 3396 } 3397 3398 static void build_zonelists(pg_data_t *pgdat) 3399 { 3400 int node, local_node; 3401 enum zone_type j; 3402 struct zonelist *zonelist; 3403 3404 local_node = pgdat->node_id; 3405 3406 zonelist = &pgdat->node_zonelists[0]; 3407 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3408 3409 /* 3410 * Now we build the zonelist so that it contains the zones 3411 * of all the other nodes. 3412 * We don't want to pressure a particular node, so when 3413 * building the zones for node N, we make sure that the 3414 * zones coming right after the local ones are those from 3415 * node N+1 (modulo N) 3416 */ 3417 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3418 if (!node_online(node)) 3419 continue; 3420 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3421 MAX_NR_ZONES - 1); 3422 } 3423 for (node = 0; node < local_node; node++) { 3424 if (!node_online(node)) 3425 continue; 3426 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3427 MAX_NR_ZONES - 1); 3428 } 3429 3430 zonelist->_zonerefs[j].zone = NULL; 3431 zonelist->_zonerefs[j].zone_idx = 0; 3432 } 3433 3434 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3435 static void build_zonelist_cache(pg_data_t *pgdat) 3436 { 3437 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3438 } 3439 3440 #endif /* CONFIG_NUMA */ 3441 3442 /* 3443 * Boot pageset table. One per cpu which is going to be used for all 3444 * zones and all nodes. The parameters will be set in such a way 3445 * that an item put on a list will immediately be handed over to 3446 * the buddy list. This is safe since pageset manipulation is done 3447 * with interrupts disabled. 3448 * 3449 * The boot_pagesets must be kept even after bootup is complete for 3450 * unused processors and/or zones. They do play a role for bootstrapping 3451 * hotplugged processors. 3452 * 3453 * zoneinfo_show() and maybe other functions do 3454 * not check if the processor is online before following the pageset pointer. 3455 * Other parts of the kernel may not check if the zone is available. 3456 */ 3457 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3458 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3459 static void setup_zone_pageset(struct zone *zone); 3460 3461 /* 3462 * Global mutex to protect against size modification of zonelists 3463 * as well as to serialize pageset setup for the new populated zone. 3464 */ 3465 DEFINE_MUTEX(zonelists_mutex); 3466 3467 /* return values int ....just for stop_machine() */ 3468 static int __build_all_zonelists(void *data) 3469 { 3470 int nid; 3471 int cpu; 3472 pg_data_t *self = data; 3473 3474 #ifdef CONFIG_NUMA 3475 memset(node_load, 0, sizeof(node_load)); 3476 #endif 3477 3478 if (self && !node_online(self->node_id)) { 3479 build_zonelists(self); 3480 build_zonelist_cache(self); 3481 } 3482 3483 for_each_online_node(nid) { 3484 pg_data_t *pgdat = NODE_DATA(nid); 3485 3486 build_zonelists(pgdat); 3487 build_zonelist_cache(pgdat); 3488 } 3489 3490 /* 3491 * Initialize the boot_pagesets that are going to be used 3492 * for bootstrapping processors. The real pagesets for 3493 * each zone will be allocated later when the per cpu 3494 * allocator is available. 3495 * 3496 * boot_pagesets are used also for bootstrapping offline 3497 * cpus if the system is already booted because the pagesets 3498 * are needed to initialize allocators on a specific cpu too. 3499 * F.e. the percpu allocator needs the page allocator which 3500 * needs the percpu allocator in order to allocate its pagesets 3501 * (a chicken-egg dilemma). 3502 */ 3503 for_each_possible_cpu(cpu) { 3504 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3505 3506 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3507 /* 3508 * We now know the "local memory node" for each node-- 3509 * i.e., the node of the first zone in the generic zonelist. 3510 * Set up numa_mem percpu variable for on-line cpus. During 3511 * boot, only the boot cpu should be on-line; we'll init the 3512 * secondary cpus' numa_mem as they come on-line. During 3513 * node/memory hotplug, we'll fixup all on-line cpus. 3514 */ 3515 if (cpu_online(cpu)) 3516 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3517 #endif 3518 } 3519 3520 return 0; 3521 } 3522 3523 /* 3524 * Called with zonelists_mutex held always 3525 * unless system_state == SYSTEM_BOOTING. 3526 */ 3527 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3528 { 3529 set_zonelist_order(); 3530 3531 if (system_state == SYSTEM_BOOTING) { 3532 __build_all_zonelists(NULL); 3533 mminit_verify_zonelist(); 3534 cpuset_init_current_mems_allowed(); 3535 } else { 3536 /* we have to stop all cpus to guarantee there is no user 3537 of zonelist */ 3538 #ifdef CONFIG_MEMORY_HOTPLUG 3539 if (zone) 3540 setup_zone_pageset(zone); 3541 #endif 3542 stop_machine(__build_all_zonelists, pgdat, NULL); 3543 /* cpuset refresh routine should be here */ 3544 } 3545 vm_total_pages = nr_free_pagecache_pages(); 3546 /* 3547 * Disable grouping by mobility if the number of pages in the 3548 * system is too low to allow the mechanism to work. It would be 3549 * more accurate, but expensive to check per-zone. This check is 3550 * made on memory-hotadd so a system can start with mobility 3551 * disabled and enable it later 3552 */ 3553 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3554 page_group_by_mobility_disabled = 1; 3555 else 3556 page_group_by_mobility_disabled = 0; 3557 3558 printk("Built %i zonelists in %s order, mobility grouping %s. " 3559 "Total pages: %ld\n", 3560 nr_online_nodes, 3561 zonelist_order_name[current_zonelist_order], 3562 page_group_by_mobility_disabled ? "off" : "on", 3563 vm_total_pages); 3564 #ifdef CONFIG_NUMA 3565 printk("Policy zone: %s\n", zone_names[policy_zone]); 3566 #endif 3567 } 3568 3569 /* 3570 * Helper functions to size the waitqueue hash table. 3571 * Essentially these want to choose hash table sizes sufficiently 3572 * large so that collisions trying to wait on pages are rare. 3573 * But in fact, the number of active page waitqueues on typical 3574 * systems is ridiculously low, less than 200. So this is even 3575 * conservative, even though it seems large. 3576 * 3577 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3578 * waitqueues, i.e. the size of the waitq table given the number of pages. 3579 */ 3580 #define PAGES_PER_WAITQUEUE 256 3581 3582 #ifndef CONFIG_MEMORY_HOTPLUG 3583 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3584 { 3585 unsigned long size = 1; 3586 3587 pages /= PAGES_PER_WAITQUEUE; 3588 3589 while (size < pages) 3590 size <<= 1; 3591 3592 /* 3593 * Once we have dozens or even hundreds of threads sleeping 3594 * on IO we've got bigger problems than wait queue collision. 3595 * Limit the size of the wait table to a reasonable size. 3596 */ 3597 size = min(size, 4096UL); 3598 3599 return max(size, 4UL); 3600 } 3601 #else 3602 /* 3603 * A zone's size might be changed by hot-add, so it is not possible to determine 3604 * a suitable size for its wait_table. So we use the maximum size now. 3605 * 3606 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3607 * 3608 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3609 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3610 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3611 * 3612 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3613 * or more by the traditional way. (See above). It equals: 3614 * 3615 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3616 * ia64(16K page size) : = ( 8G + 4M)byte. 3617 * powerpc (64K page size) : = (32G +16M)byte. 3618 */ 3619 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3620 { 3621 return 4096UL; 3622 } 3623 #endif 3624 3625 /* 3626 * This is an integer logarithm so that shifts can be used later 3627 * to extract the more random high bits from the multiplicative 3628 * hash function before the remainder is taken. 3629 */ 3630 static inline unsigned long wait_table_bits(unsigned long size) 3631 { 3632 return ffz(~size); 3633 } 3634 3635 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3636 3637 /* 3638 * Check if a pageblock contains reserved pages 3639 */ 3640 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3641 { 3642 unsigned long pfn; 3643 3644 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3645 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3646 return 1; 3647 } 3648 return 0; 3649 } 3650 3651 /* 3652 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3653 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3654 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3655 * higher will lead to a bigger reserve which will get freed as contiguous 3656 * blocks as reclaim kicks in 3657 */ 3658 static void setup_zone_migrate_reserve(struct zone *zone) 3659 { 3660 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3661 struct page *page; 3662 unsigned long block_migratetype; 3663 int reserve; 3664 3665 /* 3666 * Get the start pfn, end pfn and the number of blocks to reserve 3667 * We have to be careful to be aligned to pageblock_nr_pages to 3668 * make sure that we always check pfn_valid for the first page in 3669 * the block. 3670 */ 3671 start_pfn = zone->zone_start_pfn; 3672 end_pfn = start_pfn + zone->spanned_pages; 3673 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3674 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3675 pageblock_order; 3676 3677 /* 3678 * Reserve blocks are generally in place to help high-order atomic 3679 * allocations that are short-lived. A min_free_kbytes value that 3680 * would result in more than 2 reserve blocks for atomic allocations 3681 * is assumed to be in place to help anti-fragmentation for the 3682 * future allocation of hugepages at runtime. 3683 */ 3684 reserve = min(2, reserve); 3685 3686 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3687 if (!pfn_valid(pfn)) 3688 continue; 3689 page = pfn_to_page(pfn); 3690 3691 /* Watch out for overlapping nodes */ 3692 if (page_to_nid(page) != zone_to_nid(zone)) 3693 continue; 3694 3695 block_migratetype = get_pageblock_migratetype(page); 3696 3697 /* Only test what is necessary when the reserves are not met */ 3698 if (reserve > 0) { 3699 /* 3700 * Blocks with reserved pages will never free, skip 3701 * them. 3702 */ 3703 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3704 if (pageblock_is_reserved(pfn, block_end_pfn)) 3705 continue; 3706 3707 /* If this block is reserved, account for it */ 3708 if (block_migratetype == MIGRATE_RESERVE) { 3709 reserve--; 3710 continue; 3711 } 3712 3713 /* Suitable for reserving if this block is movable */ 3714 if (block_migratetype == MIGRATE_MOVABLE) { 3715 set_pageblock_migratetype(page, 3716 MIGRATE_RESERVE); 3717 move_freepages_block(zone, page, 3718 MIGRATE_RESERVE); 3719 reserve--; 3720 continue; 3721 } 3722 } 3723 3724 /* 3725 * If the reserve is met and this is a previous reserved block, 3726 * take it back 3727 */ 3728 if (block_migratetype == MIGRATE_RESERVE) { 3729 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3730 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3731 } 3732 } 3733 } 3734 3735 /* 3736 * Initially all pages are reserved - free ones are freed 3737 * up by free_all_bootmem() once the early boot process is 3738 * done. Non-atomic initialization, single-pass. 3739 */ 3740 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3741 unsigned long start_pfn, enum memmap_context context) 3742 { 3743 struct page *page; 3744 unsigned long end_pfn = start_pfn + size; 3745 unsigned long pfn; 3746 struct zone *z; 3747 3748 if (highest_memmap_pfn < end_pfn - 1) 3749 highest_memmap_pfn = end_pfn - 1; 3750 3751 z = &NODE_DATA(nid)->node_zones[zone]; 3752 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3753 /* 3754 * There can be holes in boot-time mem_map[]s 3755 * handed to this function. They do not 3756 * exist on hotplugged memory. 3757 */ 3758 if (context == MEMMAP_EARLY) { 3759 if (!early_pfn_valid(pfn)) 3760 continue; 3761 if (!early_pfn_in_nid(pfn, nid)) 3762 continue; 3763 } 3764 page = pfn_to_page(pfn); 3765 set_page_links(page, zone, nid, pfn); 3766 mminit_verify_page_links(page, zone, nid, pfn); 3767 init_page_count(page); 3768 reset_page_mapcount(page); 3769 SetPageReserved(page); 3770 /* 3771 * Mark the block movable so that blocks are reserved for 3772 * movable at startup. This will force kernel allocations 3773 * to reserve their blocks rather than leaking throughout 3774 * the address space during boot when many long-lived 3775 * kernel allocations are made. Later some blocks near 3776 * the start are marked MIGRATE_RESERVE by 3777 * setup_zone_migrate_reserve() 3778 * 3779 * bitmap is created for zone's valid pfn range. but memmap 3780 * can be created for invalid pages (for alignment) 3781 * check here not to call set_pageblock_migratetype() against 3782 * pfn out of zone. 3783 */ 3784 if ((z->zone_start_pfn <= pfn) 3785 && (pfn < z->zone_start_pfn + z->spanned_pages) 3786 && !(pfn & (pageblock_nr_pages - 1))) 3787 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3788 3789 INIT_LIST_HEAD(&page->lru); 3790 #ifdef WANT_PAGE_VIRTUAL 3791 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3792 if (!is_highmem_idx(zone)) 3793 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3794 #endif 3795 } 3796 } 3797 3798 static void __meminit zone_init_free_lists(struct zone *zone) 3799 { 3800 int order, t; 3801 for_each_migratetype_order(order, t) { 3802 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3803 zone->free_area[order].nr_free = 0; 3804 } 3805 } 3806 3807 #ifndef __HAVE_ARCH_MEMMAP_INIT 3808 #define memmap_init(size, nid, zone, start_pfn) \ 3809 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3810 #endif 3811 3812 static int __meminit zone_batchsize(struct zone *zone) 3813 { 3814 #ifdef CONFIG_MMU 3815 int batch; 3816 3817 /* 3818 * The per-cpu-pages pools are set to around 1000th of the 3819 * size of the zone. But no more than 1/2 of a meg. 3820 * 3821 * OK, so we don't know how big the cache is. So guess. 3822 */ 3823 batch = zone->present_pages / 1024; 3824 if (batch * PAGE_SIZE > 512 * 1024) 3825 batch = (512 * 1024) / PAGE_SIZE; 3826 batch /= 4; /* We effectively *= 4 below */ 3827 if (batch < 1) 3828 batch = 1; 3829 3830 /* 3831 * Clamp the batch to a 2^n - 1 value. Having a power 3832 * of 2 value was found to be more likely to have 3833 * suboptimal cache aliasing properties in some cases. 3834 * 3835 * For example if 2 tasks are alternately allocating 3836 * batches of pages, one task can end up with a lot 3837 * of pages of one half of the possible page colors 3838 * and the other with pages of the other colors. 3839 */ 3840 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3841 3842 return batch; 3843 3844 #else 3845 /* The deferral and batching of frees should be suppressed under NOMMU 3846 * conditions. 3847 * 3848 * The problem is that NOMMU needs to be able to allocate large chunks 3849 * of contiguous memory as there's no hardware page translation to 3850 * assemble apparent contiguous memory from discontiguous pages. 3851 * 3852 * Queueing large contiguous runs of pages for batching, however, 3853 * causes the pages to actually be freed in smaller chunks. As there 3854 * can be a significant delay between the individual batches being 3855 * recycled, this leads to the once large chunks of space being 3856 * fragmented and becoming unavailable for high-order allocations. 3857 */ 3858 return 0; 3859 #endif 3860 } 3861 3862 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3863 { 3864 struct per_cpu_pages *pcp; 3865 int migratetype; 3866 3867 memset(p, 0, sizeof(*p)); 3868 3869 pcp = &p->pcp; 3870 pcp->count = 0; 3871 pcp->high = 6 * batch; 3872 pcp->batch = max(1UL, 1 * batch); 3873 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3874 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3875 } 3876 3877 /* 3878 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3879 * to the value high for the pageset p. 3880 */ 3881 3882 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3883 unsigned long high) 3884 { 3885 struct per_cpu_pages *pcp; 3886 3887 pcp = &p->pcp; 3888 pcp->high = high; 3889 pcp->batch = max(1UL, high/4); 3890 if ((high/4) > (PAGE_SHIFT * 8)) 3891 pcp->batch = PAGE_SHIFT * 8; 3892 } 3893 3894 static void __meminit setup_zone_pageset(struct zone *zone) 3895 { 3896 int cpu; 3897 3898 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3899 3900 for_each_possible_cpu(cpu) { 3901 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3902 3903 setup_pageset(pcp, zone_batchsize(zone)); 3904 3905 if (percpu_pagelist_fraction) 3906 setup_pagelist_highmark(pcp, 3907 (zone->present_pages / 3908 percpu_pagelist_fraction)); 3909 } 3910 } 3911 3912 /* 3913 * Allocate per cpu pagesets and initialize them. 3914 * Before this call only boot pagesets were available. 3915 */ 3916 void __init setup_per_cpu_pageset(void) 3917 { 3918 struct zone *zone; 3919 3920 for_each_populated_zone(zone) 3921 setup_zone_pageset(zone); 3922 } 3923 3924 static noinline __init_refok 3925 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3926 { 3927 int i; 3928 struct pglist_data *pgdat = zone->zone_pgdat; 3929 size_t alloc_size; 3930 3931 /* 3932 * The per-page waitqueue mechanism uses hashed waitqueues 3933 * per zone. 3934 */ 3935 zone->wait_table_hash_nr_entries = 3936 wait_table_hash_nr_entries(zone_size_pages); 3937 zone->wait_table_bits = 3938 wait_table_bits(zone->wait_table_hash_nr_entries); 3939 alloc_size = zone->wait_table_hash_nr_entries 3940 * sizeof(wait_queue_head_t); 3941 3942 if (!slab_is_available()) { 3943 zone->wait_table = (wait_queue_head_t *) 3944 alloc_bootmem_node_nopanic(pgdat, alloc_size); 3945 } else { 3946 /* 3947 * This case means that a zone whose size was 0 gets new memory 3948 * via memory hot-add. 3949 * But it may be the case that a new node was hot-added. In 3950 * this case vmalloc() will not be able to use this new node's 3951 * memory - this wait_table must be initialized to use this new 3952 * node itself as well. 3953 * To use this new node's memory, further consideration will be 3954 * necessary. 3955 */ 3956 zone->wait_table = vmalloc(alloc_size); 3957 } 3958 if (!zone->wait_table) 3959 return -ENOMEM; 3960 3961 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3962 init_waitqueue_head(zone->wait_table + i); 3963 3964 return 0; 3965 } 3966 3967 static __meminit void zone_pcp_init(struct zone *zone) 3968 { 3969 /* 3970 * per cpu subsystem is not up at this point. The following code 3971 * relies on the ability of the linker to provide the 3972 * offset of a (static) per cpu variable into the per cpu area. 3973 */ 3974 zone->pageset = &boot_pageset; 3975 3976 if (zone->present_pages) 3977 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3978 zone->name, zone->present_pages, 3979 zone_batchsize(zone)); 3980 } 3981 3982 int __meminit init_currently_empty_zone(struct zone *zone, 3983 unsigned long zone_start_pfn, 3984 unsigned long size, 3985 enum memmap_context context) 3986 { 3987 struct pglist_data *pgdat = zone->zone_pgdat; 3988 int ret; 3989 ret = zone_wait_table_init(zone, size); 3990 if (ret) 3991 return ret; 3992 pgdat->nr_zones = zone_idx(zone) + 1; 3993 3994 zone->zone_start_pfn = zone_start_pfn; 3995 3996 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3997 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3998 pgdat->node_id, 3999 (unsigned long)zone_idx(zone), 4000 zone_start_pfn, (zone_start_pfn + size)); 4001 4002 zone_init_free_lists(zone); 4003 4004 return 0; 4005 } 4006 4007 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4008 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4009 /* 4010 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4011 * Architectures may implement their own version but if add_active_range() 4012 * was used and there are no special requirements, this is a convenient 4013 * alternative 4014 */ 4015 int __meminit __early_pfn_to_nid(unsigned long pfn) 4016 { 4017 unsigned long start_pfn, end_pfn; 4018 int i, nid; 4019 4020 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4021 if (start_pfn <= pfn && pfn < end_pfn) 4022 return nid; 4023 /* This is a memory hole */ 4024 return -1; 4025 } 4026 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4027 4028 int __meminit early_pfn_to_nid(unsigned long pfn) 4029 { 4030 int nid; 4031 4032 nid = __early_pfn_to_nid(pfn); 4033 if (nid >= 0) 4034 return nid; 4035 /* just returns 0 */ 4036 return 0; 4037 } 4038 4039 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4040 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4041 { 4042 int nid; 4043 4044 nid = __early_pfn_to_nid(pfn); 4045 if (nid >= 0 && nid != node) 4046 return false; 4047 return true; 4048 } 4049 #endif 4050 4051 /** 4052 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4053 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4054 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4055 * 4056 * If an architecture guarantees that all ranges registered with 4057 * add_active_ranges() contain no holes and may be freed, this 4058 * this function may be used instead of calling free_bootmem() manually. 4059 */ 4060 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4061 { 4062 unsigned long start_pfn, end_pfn; 4063 int i, this_nid; 4064 4065 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4066 start_pfn = min(start_pfn, max_low_pfn); 4067 end_pfn = min(end_pfn, max_low_pfn); 4068 4069 if (start_pfn < end_pfn) 4070 free_bootmem_node(NODE_DATA(this_nid), 4071 PFN_PHYS(start_pfn), 4072 (end_pfn - start_pfn) << PAGE_SHIFT); 4073 } 4074 } 4075 4076 /** 4077 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4078 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4079 * 4080 * If an architecture guarantees that all ranges registered with 4081 * add_active_ranges() contain no holes and may be freed, this 4082 * function may be used instead of calling memory_present() manually. 4083 */ 4084 void __init sparse_memory_present_with_active_regions(int nid) 4085 { 4086 unsigned long start_pfn, end_pfn; 4087 int i, this_nid; 4088 4089 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4090 memory_present(this_nid, start_pfn, end_pfn); 4091 } 4092 4093 /** 4094 * get_pfn_range_for_nid - Return the start and end page frames for a node 4095 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4096 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4097 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4098 * 4099 * It returns the start and end page frame of a node based on information 4100 * provided by an arch calling add_active_range(). If called for a node 4101 * with no available memory, a warning is printed and the start and end 4102 * PFNs will be 0. 4103 */ 4104 void __meminit get_pfn_range_for_nid(unsigned int nid, 4105 unsigned long *start_pfn, unsigned long *end_pfn) 4106 { 4107 unsigned long this_start_pfn, this_end_pfn; 4108 int i; 4109 4110 *start_pfn = -1UL; 4111 *end_pfn = 0; 4112 4113 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4114 *start_pfn = min(*start_pfn, this_start_pfn); 4115 *end_pfn = max(*end_pfn, this_end_pfn); 4116 } 4117 4118 if (*start_pfn == -1UL) 4119 *start_pfn = 0; 4120 } 4121 4122 /* 4123 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4124 * assumption is made that zones within a node are ordered in monotonic 4125 * increasing memory addresses so that the "highest" populated zone is used 4126 */ 4127 static void __init find_usable_zone_for_movable(void) 4128 { 4129 int zone_index; 4130 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4131 if (zone_index == ZONE_MOVABLE) 4132 continue; 4133 4134 if (arch_zone_highest_possible_pfn[zone_index] > 4135 arch_zone_lowest_possible_pfn[zone_index]) 4136 break; 4137 } 4138 4139 VM_BUG_ON(zone_index == -1); 4140 movable_zone = zone_index; 4141 } 4142 4143 /* 4144 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4145 * because it is sized independent of architecture. Unlike the other zones, 4146 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4147 * in each node depending on the size of each node and how evenly kernelcore 4148 * is distributed. This helper function adjusts the zone ranges 4149 * provided by the architecture for a given node by using the end of the 4150 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4151 * zones within a node are in order of monotonic increases memory addresses 4152 */ 4153 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4154 unsigned long zone_type, 4155 unsigned long node_start_pfn, 4156 unsigned long node_end_pfn, 4157 unsigned long *zone_start_pfn, 4158 unsigned long *zone_end_pfn) 4159 { 4160 /* Only adjust if ZONE_MOVABLE is on this node */ 4161 if (zone_movable_pfn[nid]) { 4162 /* Size ZONE_MOVABLE */ 4163 if (zone_type == ZONE_MOVABLE) { 4164 *zone_start_pfn = zone_movable_pfn[nid]; 4165 *zone_end_pfn = min(node_end_pfn, 4166 arch_zone_highest_possible_pfn[movable_zone]); 4167 4168 /* Adjust for ZONE_MOVABLE starting within this range */ 4169 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4170 *zone_end_pfn > zone_movable_pfn[nid]) { 4171 *zone_end_pfn = zone_movable_pfn[nid]; 4172 4173 /* Check if this whole range is within ZONE_MOVABLE */ 4174 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4175 *zone_start_pfn = *zone_end_pfn; 4176 } 4177 } 4178 4179 /* 4180 * Return the number of pages a zone spans in a node, including holes 4181 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4182 */ 4183 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4184 unsigned long zone_type, 4185 unsigned long *ignored) 4186 { 4187 unsigned long node_start_pfn, node_end_pfn; 4188 unsigned long zone_start_pfn, zone_end_pfn; 4189 4190 /* Get the start and end of the node and zone */ 4191 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4192 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4193 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4194 adjust_zone_range_for_zone_movable(nid, zone_type, 4195 node_start_pfn, node_end_pfn, 4196 &zone_start_pfn, &zone_end_pfn); 4197 4198 /* Check that this node has pages within the zone's required range */ 4199 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4200 return 0; 4201 4202 /* Move the zone boundaries inside the node if necessary */ 4203 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4204 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4205 4206 /* Return the spanned pages */ 4207 return zone_end_pfn - zone_start_pfn; 4208 } 4209 4210 /* 4211 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4212 * then all holes in the requested range will be accounted for. 4213 */ 4214 unsigned long __meminit __absent_pages_in_range(int nid, 4215 unsigned long range_start_pfn, 4216 unsigned long range_end_pfn) 4217 { 4218 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4219 unsigned long start_pfn, end_pfn; 4220 int i; 4221 4222 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4223 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4224 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4225 nr_absent -= end_pfn - start_pfn; 4226 } 4227 return nr_absent; 4228 } 4229 4230 /** 4231 * absent_pages_in_range - Return number of page frames in holes within a range 4232 * @start_pfn: The start PFN to start searching for holes 4233 * @end_pfn: The end PFN to stop searching for holes 4234 * 4235 * It returns the number of pages frames in memory holes within a range. 4236 */ 4237 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4238 unsigned long end_pfn) 4239 { 4240 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4241 } 4242 4243 /* Return the number of page frames in holes in a zone on a node */ 4244 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4245 unsigned long zone_type, 4246 unsigned long *ignored) 4247 { 4248 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4249 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4250 unsigned long node_start_pfn, node_end_pfn; 4251 unsigned long zone_start_pfn, zone_end_pfn; 4252 4253 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4254 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4255 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4256 4257 adjust_zone_range_for_zone_movable(nid, zone_type, 4258 node_start_pfn, node_end_pfn, 4259 &zone_start_pfn, &zone_end_pfn); 4260 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4261 } 4262 4263 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4264 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4265 unsigned long zone_type, 4266 unsigned long *zones_size) 4267 { 4268 return zones_size[zone_type]; 4269 } 4270 4271 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4272 unsigned long zone_type, 4273 unsigned long *zholes_size) 4274 { 4275 if (!zholes_size) 4276 return 0; 4277 4278 return zholes_size[zone_type]; 4279 } 4280 4281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4282 4283 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4284 unsigned long *zones_size, unsigned long *zholes_size) 4285 { 4286 unsigned long realtotalpages, totalpages = 0; 4287 enum zone_type i; 4288 4289 for (i = 0; i < MAX_NR_ZONES; i++) 4290 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4291 zones_size); 4292 pgdat->node_spanned_pages = totalpages; 4293 4294 realtotalpages = totalpages; 4295 for (i = 0; i < MAX_NR_ZONES; i++) 4296 realtotalpages -= 4297 zone_absent_pages_in_node(pgdat->node_id, i, 4298 zholes_size); 4299 pgdat->node_present_pages = realtotalpages; 4300 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4301 realtotalpages); 4302 } 4303 4304 #ifndef CONFIG_SPARSEMEM 4305 /* 4306 * Calculate the size of the zone->blockflags rounded to an unsigned long 4307 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4308 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4309 * round what is now in bits to nearest long in bits, then return it in 4310 * bytes. 4311 */ 4312 static unsigned long __init usemap_size(unsigned long zonesize) 4313 { 4314 unsigned long usemapsize; 4315 4316 usemapsize = roundup(zonesize, pageblock_nr_pages); 4317 usemapsize = usemapsize >> pageblock_order; 4318 usemapsize *= NR_PAGEBLOCK_BITS; 4319 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4320 4321 return usemapsize / 8; 4322 } 4323 4324 static void __init setup_usemap(struct pglist_data *pgdat, 4325 struct zone *zone, unsigned long zonesize) 4326 { 4327 unsigned long usemapsize = usemap_size(zonesize); 4328 zone->pageblock_flags = NULL; 4329 if (usemapsize) 4330 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4331 usemapsize); 4332 } 4333 #else 4334 static inline void setup_usemap(struct pglist_data *pgdat, 4335 struct zone *zone, unsigned long zonesize) {} 4336 #endif /* CONFIG_SPARSEMEM */ 4337 4338 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4339 4340 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4341 void __init set_pageblock_order(void) 4342 { 4343 unsigned int order; 4344 4345 /* Check that pageblock_nr_pages has not already been setup */ 4346 if (pageblock_order) 4347 return; 4348 4349 if (HPAGE_SHIFT > PAGE_SHIFT) 4350 order = HUGETLB_PAGE_ORDER; 4351 else 4352 order = MAX_ORDER - 1; 4353 4354 /* 4355 * Assume the largest contiguous order of interest is a huge page. 4356 * This value may be variable depending on boot parameters on IA64 and 4357 * powerpc. 4358 */ 4359 pageblock_order = order; 4360 } 4361 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4362 4363 /* 4364 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4365 * is unused as pageblock_order is set at compile-time. See 4366 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4367 * the kernel config 4368 */ 4369 void __init set_pageblock_order(void) 4370 { 4371 } 4372 4373 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4374 4375 /* 4376 * Set up the zone data structures: 4377 * - mark all pages reserved 4378 * - mark all memory queues empty 4379 * - clear the memory bitmaps 4380 * 4381 * NOTE: pgdat should get zeroed by caller. 4382 */ 4383 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4384 unsigned long *zones_size, unsigned long *zholes_size) 4385 { 4386 enum zone_type j; 4387 int nid = pgdat->node_id; 4388 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4389 int ret; 4390 4391 pgdat_resize_init(pgdat); 4392 init_waitqueue_head(&pgdat->kswapd_wait); 4393 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4394 pgdat_page_cgroup_init(pgdat); 4395 4396 for (j = 0; j < MAX_NR_ZONES; j++) { 4397 struct zone *zone = pgdat->node_zones + j; 4398 unsigned long size, realsize, memmap_pages; 4399 4400 size = zone_spanned_pages_in_node(nid, j, zones_size); 4401 realsize = size - zone_absent_pages_in_node(nid, j, 4402 zholes_size); 4403 4404 /* 4405 * Adjust realsize so that it accounts for how much memory 4406 * is used by this zone for memmap. This affects the watermark 4407 * and per-cpu initialisations 4408 */ 4409 memmap_pages = 4410 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4411 if (realsize >= memmap_pages) { 4412 realsize -= memmap_pages; 4413 if (memmap_pages) 4414 printk(KERN_DEBUG 4415 " %s zone: %lu pages used for memmap\n", 4416 zone_names[j], memmap_pages); 4417 } else 4418 printk(KERN_WARNING 4419 " %s zone: %lu pages exceeds realsize %lu\n", 4420 zone_names[j], memmap_pages, realsize); 4421 4422 /* Account for reserved pages */ 4423 if (j == 0 && realsize > dma_reserve) { 4424 realsize -= dma_reserve; 4425 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4426 zone_names[0], dma_reserve); 4427 } 4428 4429 if (!is_highmem_idx(j)) 4430 nr_kernel_pages += realsize; 4431 nr_all_pages += realsize; 4432 4433 zone->spanned_pages = size; 4434 zone->present_pages = realsize; 4435 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 4436 zone->compact_cached_free_pfn = zone->zone_start_pfn + 4437 zone->spanned_pages; 4438 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1); 4439 #endif 4440 #ifdef CONFIG_NUMA 4441 zone->node = nid; 4442 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4443 / 100; 4444 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4445 #endif 4446 zone->name = zone_names[j]; 4447 spin_lock_init(&zone->lock); 4448 spin_lock_init(&zone->lru_lock); 4449 zone_seqlock_init(zone); 4450 zone->zone_pgdat = pgdat; 4451 4452 zone_pcp_init(zone); 4453 lruvec_init(&zone->lruvec, zone); 4454 if (!size) 4455 continue; 4456 4457 set_pageblock_order(); 4458 setup_usemap(pgdat, zone, size); 4459 ret = init_currently_empty_zone(zone, zone_start_pfn, 4460 size, MEMMAP_EARLY); 4461 BUG_ON(ret); 4462 memmap_init(size, nid, j, zone_start_pfn); 4463 zone_start_pfn += size; 4464 } 4465 } 4466 4467 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4468 { 4469 /* Skip empty nodes */ 4470 if (!pgdat->node_spanned_pages) 4471 return; 4472 4473 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4474 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4475 if (!pgdat->node_mem_map) { 4476 unsigned long size, start, end; 4477 struct page *map; 4478 4479 /* 4480 * The zone's endpoints aren't required to be MAX_ORDER 4481 * aligned but the node_mem_map endpoints must be in order 4482 * for the buddy allocator to function correctly. 4483 */ 4484 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4485 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4486 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4487 size = (end - start) * sizeof(struct page); 4488 map = alloc_remap(pgdat->node_id, size); 4489 if (!map) 4490 map = alloc_bootmem_node_nopanic(pgdat, size); 4491 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4492 } 4493 #ifndef CONFIG_NEED_MULTIPLE_NODES 4494 /* 4495 * With no DISCONTIG, the global mem_map is just set as node 0's 4496 */ 4497 if (pgdat == NODE_DATA(0)) { 4498 mem_map = NODE_DATA(0)->node_mem_map; 4499 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4500 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4501 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4502 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4503 } 4504 #endif 4505 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4506 } 4507 4508 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4509 unsigned long node_start_pfn, unsigned long *zholes_size) 4510 { 4511 pg_data_t *pgdat = NODE_DATA(nid); 4512 4513 /* pg_data_t should be reset to zero when it's allocated */ 4514 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4515 4516 pgdat->node_id = nid; 4517 pgdat->node_start_pfn = node_start_pfn; 4518 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4519 4520 alloc_node_mem_map(pgdat); 4521 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4522 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4523 nid, (unsigned long)pgdat, 4524 (unsigned long)pgdat->node_mem_map); 4525 #endif 4526 4527 free_area_init_core(pgdat, zones_size, zholes_size); 4528 } 4529 4530 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4531 4532 #if MAX_NUMNODES > 1 4533 /* 4534 * Figure out the number of possible node ids. 4535 */ 4536 static void __init setup_nr_node_ids(void) 4537 { 4538 unsigned int node; 4539 unsigned int highest = 0; 4540 4541 for_each_node_mask(node, node_possible_map) 4542 highest = node; 4543 nr_node_ids = highest + 1; 4544 } 4545 #else 4546 static inline void setup_nr_node_ids(void) 4547 { 4548 } 4549 #endif 4550 4551 /** 4552 * node_map_pfn_alignment - determine the maximum internode alignment 4553 * 4554 * This function should be called after node map is populated and sorted. 4555 * It calculates the maximum power of two alignment which can distinguish 4556 * all the nodes. 4557 * 4558 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4559 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4560 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4561 * shifted, 1GiB is enough and this function will indicate so. 4562 * 4563 * This is used to test whether pfn -> nid mapping of the chosen memory 4564 * model has fine enough granularity to avoid incorrect mapping for the 4565 * populated node map. 4566 * 4567 * Returns the determined alignment in pfn's. 0 if there is no alignment 4568 * requirement (single node). 4569 */ 4570 unsigned long __init node_map_pfn_alignment(void) 4571 { 4572 unsigned long accl_mask = 0, last_end = 0; 4573 unsigned long start, end, mask; 4574 int last_nid = -1; 4575 int i, nid; 4576 4577 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4578 if (!start || last_nid < 0 || last_nid == nid) { 4579 last_nid = nid; 4580 last_end = end; 4581 continue; 4582 } 4583 4584 /* 4585 * Start with a mask granular enough to pin-point to the 4586 * start pfn and tick off bits one-by-one until it becomes 4587 * too coarse to separate the current node from the last. 4588 */ 4589 mask = ~((1 << __ffs(start)) - 1); 4590 while (mask && last_end <= (start & (mask << 1))) 4591 mask <<= 1; 4592 4593 /* accumulate all internode masks */ 4594 accl_mask |= mask; 4595 } 4596 4597 /* convert mask to number of pages */ 4598 return ~accl_mask + 1; 4599 } 4600 4601 /* Find the lowest pfn for a node */ 4602 static unsigned long __init find_min_pfn_for_node(int nid) 4603 { 4604 unsigned long min_pfn = ULONG_MAX; 4605 unsigned long start_pfn; 4606 int i; 4607 4608 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4609 min_pfn = min(min_pfn, start_pfn); 4610 4611 if (min_pfn == ULONG_MAX) { 4612 printk(KERN_WARNING 4613 "Could not find start_pfn for node %d\n", nid); 4614 return 0; 4615 } 4616 4617 return min_pfn; 4618 } 4619 4620 /** 4621 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4622 * 4623 * It returns the minimum PFN based on information provided via 4624 * add_active_range(). 4625 */ 4626 unsigned long __init find_min_pfn_with_active_regions(void) 4627 { 4628 return find_min_pfn_for_node(MAX_NUMNODES); 4629 } 4630 4631 /* 4632 * early_calculate_totalpages() 4633 * Sum pages in active regions for movable zone. 4634 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4635 */ 4636 static unsigned long __init early_calculate_totalpages(void) 4637 { 4638 unsigned long totalpages = 0; 4639 unsigned long start_pfn, end_pfn; 4640 int i, nid; 4641 4642 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4643 unsigned long pages = end_pfn - start_pfn; 4644 4645 totalpages += pages; 4646 if (pages) 4647 node_set_state(nid, N_HIGH_MEMORY); 4648 } 4649 return totalpages; 4650 } 4651 4652 /* 4653 * Find the PFN the Movable zone begins in each node. Kernel memory 4654 * is spread evenly between nodes as long as the nodes have enough 4655 * memory. When they don't, some nodes will have more kernelcore than 4656 * others 4657 */ 4658 static void __init find_zone_movable_pfns_for_nodes(void) 4659 { 4660 int i, nid; 4661 unsigned long usable_startpfn; 4662 unsigned long kernelcore_node, kernelcore_remaining; 4663 /* save the state before borrow the nodemask */ 4664 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4665 unsigned long totalpages = early_calculate_totalpages(); 4666 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4667 4668 /* 4669 * If movablecore was specified, calculate what size of 4670 * kernelcore that corresponds so that memory usable for 4671 * any allocation type is evenly spread. If both kernelcore 4672 * and movablecore are specified, then the value of kernelcore 4673 * will be used for required_kernelcore if it's greater than 4674 * what movablecore would have allowed. 4675 */ 4676 if (required_movablecore) { 4677 unsigned long corepages; 4678 4679 /* 4680 * Round-up so that ZONE_MOVABLE is at least as large as what 4681 * was requested by the user 4682 */ 4683 required_movablecore = 4684 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4685 corepages = totalpages - required_movablecore; 4686 4687 required_kernelcore = max(required_kernelcore, corepages); 4688 } 4689 4690 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4691 if (!required_kernelcore) 4692 goto out; 4693 4694 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4695 find_usable_zone_for_movable(); 4696 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4697 4698 restart: 4699 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4700 kernelcore_node = required_kernelcore / usable_nodes; 4701 for_each_node_state(nid, N_HIGH_MEMORY) { 4702 unsigned long start_pfn, end_pfn; 4703 4704 /* 4705 * Recalculate kernelcore_node if the division per node 4706 * now exceeds what is necessary to satisfy the requested 4707 * amount of memory for the kernel 4708 */ 4709 if (required_kernelcore < kernelcore_node) 4710 kernelcore_node = required_kernelcore / usable_nodes; 4711 4712 /* 4713 * As the map is walked, we track how much memory is usable 4714 * by the kernel using kernelcore_remaining. When it is 4715 * 0, the rest of the node is usable by ZONE_MOVABLE 4716 */ 4717 kernelcore_remaining = kernelcore_node; 4718 4719 /* Go through each range of PFNs within this node */ 4720 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4721 unsigned long size_pages; 4722 4723 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4724 if (start_pfn >= end_pfn) 4725 continue; 4726 4727 /* Account for what is only usable for kernelcore */ 4728 if (start_pfn < usable_startpfn) { 4729 unsigned long kernel_pages; 4730 kernel_pages = min(end_pfn, usable_startpfn) 4731 - start_pfn; 4732 4733 kernelcore_remaining -= min(kernel_pages, 4734 kernelcore_remaining); 4735 required_kernelcore -= min(kernel_pages, 4736 required_kernelcore); 4737 4738 /* Continue if range is now fully accounted */ 4739 if (end_pfn <= usable_startpfn) { 4740 4741 /* 4742 * Push zone_movable_pfn to the end so 4743 * that if we have to rebalance 4744 * kernelcore across nodes, we will 4745 * not double account here 4746 */ 4747 zone_movable_pfn[nid] = end_pfn; 4748 continue; 4749 } 4750 start_pfn = usable_startpfn; 4751 } 4752 4753 /* 4754 * The usable PFN range for ZONE_MOVABLE is from 4755 * start_pfn->end_pfn. Calculate size_pages as the 4756 * number of pages used as kernelcore 4757 */ 4758 size_pages = end_pfn - start_pfn; 4759 if (size_pages > kernelcore_remaining) 4760 size_pages = kernelcore_remaining; 4761 zone_movable_pfn[nid] = start_pfn + size_pages; 4762 4763 /* 4764 * Some kernelcore has been met, update counts and 4765 * break if the kernelcore for this node has been 4766 * satisified 4767 */ 4768 required_kernelcore -= min(required_kernelcore, 4769 size_pages); 4770 kernelcore_remaining -= size_pages; 4771 if (!kernelcore_remaining) 4772 break; 4773 } 4774 } 4775 4776 /* 4777 * If there is still required_kernelcore, we do another pass with one 4778 * less node in the count. This will push zone_movable_pfn[nid] further 4779 * along on the nodes that still have memory until kernelcore is 4780 * satisified 4781 */ 4782 usable_nodes--; 4783 if (usable_nodes && required_kernelcore > usable_nodes) 4784 goto restart; 4785 4786 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4787 for (nid = 0; nid < MAX_NUMNODES; nid++) 4788 zone_movable_pfn[nid] = 4789 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4790 4791 out: 4792 /* restore the node_state */ 4793 node_states[N_HIGH_MEMORY] = saved_node_state; 4794 } 4795 4796 /* Any regular memory on that node ? */ 4797 static void __init check_for_regular_memory(pg_data_t *pgdat) 4798 { 4799 #ifdef CONFIG_HIGHMEM 4800 enum zone_type zone_type; 4801 4802 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4803 struct zone *zone = &pgdat->node_zones[zone_type]; 4804 if (zone->present_pages) { 4805 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4806 break; 4807 } 4808 } 4809 #endif 4810 } 4811 4812 /** 4813 * free_area_init_nodes - Initialise all pg_data_t and zone data 4814 * @max_zone_pfn: an array of max PFNs for each zone 4815 * 4816 * This will call free_area_init_node() for each active node in the system. 4817 * Using the page ranges provided by add_active_range(), the size of each 4818 * zone in each node and their holes is calculated. If the maximum PFN 4819 * between two adjacent zones match, it is assumed that the zone is empty. 4820 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4821 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4822 * starts where the previous one ended. For example, ZONE_DMA32 starts 4823 * at arch_max_dma_pfn. 4824 */ 4825 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4826 { 4827 unsigned long start_pfn, end_pfn; 4828 int i, nid; 4829 4830 /* Record where the zone boundaries are */ 4831 memset(arch_zone_lowest_possible_pfn, 0, 4832 sizeof(arch_zone_lowest_possible_pfn)); 4833 memset(arch_zone_highest_possible_pfn, 0, 4834 sizeof(arch_zone_highest_possible_pfn)); 4835 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4836 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4837 for (i = 1; i < MAX_NR_ZONES; i++) { 4838 if (i == ZONE_MOVABLE) 4839 continue; 4840 arch_zone_lowest_possible_pfn[i] = 4841 arch_zone_highest_possible_pfn[i-1]; 4842 arch_zone_highest_possible_pfn[i] = 4843 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4844 } 4845 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4846 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4847 4848 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4849 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4850 find_zone_movable_pfns_for_nodes(); 4851 4852 /* Print out the zone ranges */ 4853 printk("Zone ranges:\n"); 4854 for (i = 0; i < MAX_NR_ZONES; i++) { 4855 if (i == ZONE_MOVABLE) 4856 continue; 4857 printk(KERN_CONT " %-8s ", zone_names[i]); 4858 if (arch_zone_lowest_possible_pfn[i] == 4859 arch_zone_highest_possible_pfn[i]) 4860 printk(KERN_CONT "empty\n"); 4861 else 4862 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 4863 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 4864 (arch_zone_highest_possible_pfn[i] 4865 << PAGE_SHIFT) - 1); 4866 } 4867 4868 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4869 printk("Movable zone start for each node\n"); 4870 for (i = 0; i < MAX_NUMNODES; i++) { 4871 if (zone_movable_pfn[i]) 4872 printk(" Node %d: %#010lx\n", i, 4873 zone_movable_pfn[i] << PAGE_SHIFT); 4874 } 4875 4876 /* Print out the early_node_map[] */ 4877 printk("Early memory node ranges\n"); 4878 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4879 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 4880 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 4881 4882 /* Initialise every node */ 4883 mminit_verify_pageflags_layout(); 4884 setup_nr_node_ids(); 4885 for_each_online_node(nid) { 4886 pg_data_t *pgdat = NODE_DATA(nid); 4887 free_area_init_node(nid, NULL, 4888 find_min_pfn_for_node(nid), NULL); 4889 4890 /* Any memory on that node */ 4891 if (pgdat->node_present_pages) 4892 node_set_state(nid, N_HIGH_MEMORY); 4893 check_for_regular_memory(pgdat); 4894 } 4895 } 4896 4897 static int __init cmdline_parse_core(char *p, unsigned long *core) 4898 { 4899 unsigned long long coremem; 4900 if (!p) 4901 return -EINVAL; 4902 4903 coremem = memparse(p, &p); 4904 *core = coremem >> PAGE_SHIFT; 4905 4906 /* Paranoid check that UL is enough for the coremem value */ 4907 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4908 4909 return 0; 4910 } 4911 4912 /* 4913 * kernelcore=size sets the amount of memory for use for allocations that 4914 * cannot be reclaimed or migrated. 4915 */ 4916 static int __init cmdline_parse_kernelcore(char *p) 4917 { 4918 return cmdline_parse_core(p, &required_kernelcore); 4919 } 4920 4921 /* 4922 * movablecore=size sets the amount of memory for use for allocations that 4923 * can be reclaimed or migrated. 4924 */ 4925 static int __init cmdline_parse_movablecore(char *p) 4926 { 4927 return cmdline_parse_core(p, &required_movablecore); 4928 } 4929 4930 early_param("kernelcore", cmdline_parse_kernelcore); 4931 early_param("movablecore", cmdline_parse_movablecore); 4932 4933 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4934 4935 /** 4936 * set_dma_reserve - set the specified number of pages reserved in the first zone 4937 * @new_dma_reserve: The number of pages to mark reserved 4938 * 4939 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4940 * In the DMA zone, a significant percentage may be consumed by kernel image 4941 * and other unfreeable allocations which can skew the watermarks badly. This 4942 * function may optionally be used to account for unfreeable pages in the 4943 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4944 * smaller per-cpu batchsize. 4945 */ 4946 void __init set_dma_reserve(unsigned long new_dma_reserve) 4947 { 4948 dma_reserve = new_dma_reserve; 4949 } 4950 4951 void __init free_area_init(unsigned long *zones_size) 4952 { 4953 free_area_init_node(0, zones_size, 4954 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4955 } 4956 4957 static int page_alloc_cpu_notify(struct notifier_block *self, 4958 unsigned long action, void *hcpu) 4959 { 4960 int cpu = (unsigned long)hcpu; 4961 4962 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4963 lru_add_drain_cpu(cpu); 4964 drain_pages(cpu); 4965 4966 /* 4967 * Spill the event counters of the dead processor 4968 * into the current processors event counters. 4969 * This artificially elevates the count of the current 4970 * processor. 4971 */ 4972 vm_events_fold_cpu(cpu); 4973 4974 /* 4975 * Zero the differential counters of the dead processor 4976 * so that the vm statistics are consistent. 4977 * 4978 * This is only okay since the processor is dead and cannot 4979 * race with what we are doing. 4980 */ 4981 refresh_cpu_vm_stats(cpu); 4982 } 4983 return NOTIFY_OK; 4984 } 4985 4986 void __init page_alloc_init(void) 4987 { 4988 hotcpu_notifier(page_alloc_cpu_notify, 0); 4989 } 4990 4991 /* 4992 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4993 * or min_free_kbytes changes. 4994 */ 4995 static void calculate_totalreserve_pages(void) 4996 { 4997 struct pglist_data *pgdat; 4998 unsigned long reserve_pages = 0; 4999 enum zone_type i, j; 5000 5001 for_each_online_pgdat(pgdat) { 5002 for (i = 0; i < MAX_NR_ZONES; i++) { 5003 struct zone *zone = pgdat->node_zones + i; 5004 unsigned long max = 0; 5005 5006 /* Find valid and maximum lowmem_reserve in the zone */ 5007 for (j = i; j < MAX_NR_ZONES; j++) { 5008 if (zone->lowmem_reserve[j] > max) 5009 max = zone->lowmem_reserve[j]; 5010 } 5011 5012 /* we treat the high watermark as reserved pages. */ 5013 max += high_wmark_pages(zone); 5014 5015 if (max > zone->present_pages) 5016 max = zone->present_pages; 5017 reserve_pages += max; 5018 /* 5019 * Lowmem reserves are not available to 5020 * GFP_HIGHUSER page cache allocations and 5021 * kswapd tries to balance zones to their high 5022 * watermark. As a result, neither should be 5023 * regarded as dirtyable memory, to prevent a 5024 * situation where reclaim has to clean pages 5025 * in order to balance the zones. 5026 */ 5027 zone->dirty_balance_reserve = max; 5028 } 5029 } 5030 dirty_balance_reserve = reserve_pages; 5031 totalreserve_pages = reserve_pages; 5032 } 5033 5034 /* 5035 * setup_per_zone_lowmem_reserve - called whenever 5036 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5037 * has a correct pages reserved value, so an adequate number of 5038 * pages are left in the zone after a successful __alloc_pages(). 5039 */ 5040 static void setup_per_zone_lowmem_reserve(void) 5041 { 5042 struct pglist_data *pgdat; 5043 enum zone_type j, idx; 5044 5045 for_each_online_pgdat(pgdat) { 5046 for (j = 0; j < MAX_NR_ZONES; j++) { 5047 struct zone *zone = pgdat->node_zones + j; 5048 unsigned long present_pages = zone->present_pages; 5049 5050 zone->lowmem_reserve[j] = 0; 5051 5052 idx = j; 5053 while (idx) { 5054 struct zone *lower_zone; 5055 5056 idx--; 5057 5058 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5059 sysctl_lowmem_reserve_ratio[idx] = 1; 5060 5061 lower_zone = pgdat->node_zones + idx; 5062 lower_zone->lowmem_reserve[j] = present_pages / 5063 sysctl_lowmem_reserve_ratio[idx]; 5064 present_pages += lower_zone->present_pages; 5065 } 5066 } 5067 } 5068 5069 /* update totalreserve_pages */ 5070 calculate_totalreserve_pages(); 5071 } 5072 5073 static void __setup_per_zone_wmarks(void) 5074 { 5075 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5076 unsigned long lowmem_pages = 0; 5077 struct zone *zone; 5078 unsigned long flags; 5079 5080 /* Calculate total number of !ZONE_HIGHMEM pages */ 5081 for_each_zone(zone) { 5082 if (!is_highmem(zone)) 5083 lowmem_pages += zone->present_pages; 5084 } 5085 5086 for_each_zone(zone) { 5087 u64 tmp; 5088 5089 spin_lock_irqsave(&zone->lock, flags); 5090 tmp = (u64)pages_min * zone->present_pages; 5091 do_div(tmp, lowmem_pages); 5092 if (is_highmem(zone)) { 5093 /* 5094 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5095 * need highmem pages, so cap pages_min to a small 5096 * value here. 5097 * 5098 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5099 * deltas controls asynch page reclaim, and so should 5100 * not be capped for highmem. 5101 */ 5102 int min_pages; 5103 5104 min_pages = zone->present_pages / 1024; 5105 if (min_pages < SWAP_CLUSTER_MAX) 5106 min_pages = SWAP_CLUSTER_MAX; 5107 if (min_pages > 128) 5108 min_pages = 128; 5109 zone->watermark[WMARK_MIN] = min_pages; 5110 } else { 5111 /* 5112 * If it's a lowmem zone, reserve a number of pages 5113 * proportionate to the zone's size. 5114 */ 5115 zone->watermark[WMARK_MIN] = tmp; 5116 } 5117 5118 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5119 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5120 5121 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone); 5122 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone); 5123 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone); 5124 5125 setup_zone_migrate_reserve(zone); 5126 spin_unlock_irqrestore(&zone->lock, flags); 5127 } 5128 5129 /* update totalreserve_pages */ 5130 calculate_totalreserve_pages(); 5131 } 5132 5133 /** 5134 * setup_per_zone_wmarks - called when min_free_kbytes changes 5135 * or when memory is hot-{added|removed} 5136 * 5137 * Ensures that the watermark[min,low,high] values for each zone are set 5138 * correctly with respect to min_free_kbytes. 5139 */ 5140 void setup_per_zone_wmarks(void) 5141 { 5142 mutex_lock(&zonelists_mutex); 5143 __setup_per_zone_wmarks(); 5144 mutex_unlock(&zonelists_mutex); 5145 } 5146 5147 /* 5148 * The inactive anon list should be small enough that the VM never has to 5149 * do too much work, but large enough that each inactive page has a chance 5150 * to be referenced again before it is swapped out. 5151 * 5152 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5153 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5154 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5155 * the anonymous pages are kept on the inactive list. 5156 * 5157 * total target max 5158 * memory ratio inactive anon 5159 * ------------------------------------- 5160 * 10MB 1 5MB 5161 * 100MB 1 50MB 5162 * 1GB 3 250MB 5163 * 10GB 10 0.9GB 5164 * 100GB 31 3GB 5165 * 1TB 101 10GB 5166 * 10TB 320 32GB 5167 */ 5168 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5169 { 5170 unsigned int gb, ratio; 5171 5172 /* Zone size in gigabytes */ 5173 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5174 if (gb) 5175 ratio = int_sqrt(10 * gb); 5176 else 5177 ratio = 1; 5178 5179 zone->inactive_ratio = ratio; 5180 } 5181 5182 static void __meminit setup_per_zone_inactive_ratio(void) 5183 { 5184 struct zone *zone; 5185 5186 for_each_zone(zone) 5187 calculate_zone_inactive_ratio(zone); 5188 } 5189 5190 /* 5191 * Initialise min_free_kbytes. 5192 * 5193 * For small machines we want it small (128k min). For large machines 5194 * we want it large (64MB max). But it is not linear, because network 5195 * bandwidth does not increase linearly with machine size. We use 5196 * 5197 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5198 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5199 * 5200 * which yields 5201 * 5202 * 16MB: 512k 5203 * 32MB: 724k 5204 * 64MB: 1024k 5205 * 128MB: 1448k 5206 * 256MB: 2048k 5207 * 512MB: 2896k 5208 * 1024MB: 4096k 5209 * 2048MB: 5792k 5210 * 4096MB: 8192k 5211 * 8192MB: 11584k 5212 * 16384MB: 16384k 5213 */ 5214 int __meminit init_per_zone_wmark_min(void) 5215 { 5216 unsigned long lowmem_kbytes; 5217 5218 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5219 5220 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5221 if (min_free_kbytes < 128) 5222 min_free_kbytes = 128; 5223 if (min_free_kbytes > 65536) 5224 min_free_kbytes = 65536; 5225 setup_per_zone_wmarks(); 5226 refresh_zone_stat_thresholds(); 5227 setup_per_zone_lowmem_reserve(); 5228 setup_per_zone_inactive_ratio(); 5229 return 0; 5230 } 5231 module_init(init_per_zone_wmark_min) 5232 5233 /* 5234 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5235 * that we can call two helper functions whenever min_free_kbytes 5236 * changes. 5237 */ 5238 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5239 void __user *buffer, size_t *length, loff_t *ppos) 5240 { 5241 proc_dointvec(table, write, buffer, length, ppos); 5242 if (write) 5243 setup_per_zone_wmarks(); 5244 return 0; 5245 } 5246 5247 #ifdef CONFIG_NUMA 5248 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5249 void __user *buffer, size_t *length, loff_t *ppos) 5250 { 5251 struct zone *zone; 5252 int rc; 5253 5254 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5255 if (rc) 5256 return rc; 5257 5258 for_each_zone(zone) 5259 zone->min_unmapped_pages = (zone->present_pages * 5260 sysctl_min_unmapped_ratio) / 100; 5261 return 0; 5262 } 5263 5264 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5265 void __user *buffer, size_t *length, loff_t *ppos) 5266 { 5267 struct zone *zone; 5268 int rc; 5269 5270 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5271 if (rc) 5272 return rc; 5273 5274 for_each_zone(zone) 5275 zone->min_slab_pages = (zone->present_pages * 5276 sysctl_min_slab_ratio) / 100; 5277 return 0; 5278 } 5279 #endif 5280 5281 /* 5282 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5283 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5284 * whenever sysctl_lowmem_reserve_ratio changes. 5285 * 5286 * The reserve ratio obviously has absolutely no relation with the 5287 * minimum watermarks. The lowmem reserve ratio can only make sense 5288 * if in function of the boot time zone sizes. 5289 */ 5290 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5291 void __user *buffer, size_t *length, loff_t *ppos) 5292 { 5293 proc_dointvec_minmax(table, write, buffer, length, ppos); 5294 setup_per_zone_lowmem_reserve(); 5295 return 0; 5296 } 5297 5298 /* 5299 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5300 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5301 * can have before it gets flushed back to buddy allocator. 5302 */ 5303 5304 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5305 void __user *buffer, size_t *length, loff_t *ppos) 5306 { 5307 struct zone *zone; 5308 unsigned int cpu; 5309 int ret; 5310 5311 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5312 if (!write || (ret < 0)) 5313 return ret; 5314 for_each_populated_zone(zone) { 5315 for_each_possible_cpu(cpu) { 5316 unsigned long high; 5317 high = zone->present_pages / percpu_pagelist_fraction; 5318 setup_pagelist_highmark( 5319 per_cpu_ptr(zone->pageset, cpu), high); 5320 } 5321 } 5322 return 0; 5323 } 5324 5325 int hashdist = HASHDIST_DEFAULT; 5326 5327 #ifdef CONFIG_NUMA 5328 static int __init set_hashdist(char *str) 5329 { 5330 if (!str) 5331 return 0; 5332 hashdist = simple_strtoul(str, &str, 0); 5333 return 1; 5334 } 5335 __setup("hashdist=", set_hashdist); 5336 #endif 5337 5338 /* 5339 * allocate a large system hash table from bootmem 5340 * - it is assumed that the hash table must contain an exact power-of-2 5341 * quantity of entries 5342 * - limit is the number of hash buckets, not the total allocation size 5343 */ 5344 void *__init alloc_large_system_hash(const char *tablename, 5345 unsigned long bucketsize, 5346 unsigned long numentries, 5347 int scale, 5348 int flags, 5349 unsigned int *_hash_shift, 5350 unsigned int *_hash_mask, 5351 unsigned long low_limit, 5352 unsigned long high_limit) 5353 { 5354 unsigned long long max = high_limit; 5355 unsigned long log2qty, size; 5356 void *table = NULL; 5357 5358 /* allow the kernel cmdline to have a say */ 5359 if (!numentries) { 5360 /* round applicable memory size up to nearest megabyte */ 5361 numentries = nr_kernel_pages; 5362 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5363 numentries >>= 20 - PAGE_SHIFT; 5364 numentries <<= 20 - PAGE_SHIFT; 5365 5366 /* limit to 1 bucket per 2^scale bytes of low memory */ 5367 if (scale > PAGE_SHIFT) 5368 numentries >>= (scale - PAGE_SHIFT); 5369 else 5370 numentries <<= (PAGE_SHIFT - scale); 5371 5372 /* Make sure we've got at least a 0-order allocation.. */ 5373 if (unlikely(flags & HASH_SMALL)) { 5374 /* Makes no sense without HASH_EARLY */ 5375 WARN_ON(!(flags & HASH_EARLY)); 5376 if (!(numentries >> *_hash_shift)) { 5377 numentries = 1UL << *_hash_shift; 5378 BUG_ON(!numentries); 5379 } 5380 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5381 numentries = PAGE_SIZE / bucketsize; 5382 } 5383 numentries = roundup_pow_of_two(numentries); 5384 5385 /* limit allocation size to 1/16 total memory by default */ 5386 if (max == 0) { 5387 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5388 do_div(max, bucketsize); 5389 } 5390 max = min(max, 0x80000000ULL); 5391 5392 if (numentries < low_limit) 5393 numentries = low_limit; 5394 if (numentries > max) 5395 numentries = max; 5396 5397 log2qty = ilog2(numentries); 5398 5399 do { 5400 size = bucketsize << log2qty; 5401 if (flags & HASH_EARLY) 5402 table = alloc_bootmem_nopanic(size); 5403 else if (hashdist) 5404 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5405 else { 5406 /* 5407 * If bucketsize is not a power-of-two, we may free 5408 * some pages at the end of hash table which 5409 * alloc_pages_exact() automatically does 5410 */ 5411 if (get_order(size) < MAX_ORDER) { 5412 table = alloc_pages_exact(size, GFP_ATOMIC); 5413 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5414 } 5415 } 5416 } while (!table && size > PAGE_SIZE && --log2qty); 5417 5418 if (!table) 5419 panic("Failed to allocate %s hash table\n", tablename); 5420 5421 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5422 tablename, 5423 (1UL << log2qty), 5424 ilog2(size) - PAGE_SHIFT, 5425 size); 5426 5427 if (_hash_shift) 5428 *_hash_shift = log2qty; 5429 if (_hash_mask) 5430 *_hash_mask = (1 << log2qty) - 1; 5431 5432 return table; 5433 } 5434 5435 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5436 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5437 unsigned long pfn) 5438 { 5439 #ifdef CONFIG_SPARSEMEM 5440 return __pfn_to_section(pfn)->pageblock_flags; 5441 #else 5442 return zone->pageblock_flags; 5443 #endif /* CONFIG_SPARSEMEM */ 5444 } 5445 5446 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5447 { 5448 #ifdef CONFIG_SPARSEMEM 5449 pfn &= (PAGES_PER_SECTION-1); 5450 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5451 #else 5452 pfn = pfn - zone->zone_start_pfn; 5453 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5454 #endif /* CONFIG_SPARSEMEM */ 5455 } 5456 5457 /** 5458 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5459 * @page: The page within the block of interest 5460 * @start_bitidx: The first bit of interest to retrieve 5461 * @end_bitidx: The last bit of interest 5462 * returns pageblock_bits flags 5463 */ 5464 unsigned long get_pageblock_flags_group(struct page *page, 5465 int start_bitidx, int end_bitidx) 5466 { 5467 struct zone *zone; 5468 unsigned long *bitmap; 5469 unsigned long pfn, bitidx; 5470 unsigned long flags = 0; 5471 unsigned long value = 1; 5472 5473 zone = page_zone(page); 5474 pfn = page_to_pfn(page); 5475 bitmap = get_pageblock_bitmap(zone, pfn); 5476 bitidx = pfn_to_bitidx(zone, pfn); 5477 5478 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5479 if (test_bit(bitidx + start_bitidx, bitmap)) 5480 flags |= value; 5481 5482 return flags; 5483 } 5484 5485 /** 5486 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5487 * @page: The page within the block of interest 5488 * @start_bitidx: The first bit of interest 5489 * @end_bitidx: The last bit of interest 5490 * @flags: The flags to set 5491 */ 5492 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5493 int start_bitidx, int end_bitidx) 5494 { 5495 struct zone *zone; 5496 unsigned long *bitmap; 5497 unsigned long pfn, bitidx; 5498 unsigned long value = 1; 5499 5500 zone = page_zone(page); 5501 pfn = page_to_pfn(page); 5502 bitmap = get_pageblock_bitmap(zone, pfn); 5503 bitidx = pfn_to_bitidx(zone, pfn); 5504 VM_BUG_ON(pfn < zone->zone_start_pfn); 5505 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5506 5507 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5508 if (flags & value) 5509 __set_bit(bitidx + start_bitidx, bitmap); 5510 else 5511 __clear_bit(bitidx + start_bitidx, bitmap); 5512 } 5513 5514 /* 5515 * This function checks whether pageblock includes unmovable pages or not. 5516 * If @count is not zero, it is okay to include less @count unmovable pages 5517 * 5518 * PageLRU check wihtout isolation or lru_lock could race so that 5519 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5520 * expect this function should be exact. 5521 */ 5522 bool has_unmovable_pages(struct zone *zone, struct page *page, int count) 5523 { 5524 unsigned long pfn, iter, found; 5525 int mt; 5526 5527 /* 5528 * For avoiding noise data, lru_add_drain_all() should be called 5529 * If ZONE_MOVABLE, the zone never contains unmovable pages 5530 */ 5531 if (zone_idx(zone) == ZONE_MOVABLE) 5532 return false; 5533 mt = get_pageblock_migratetype(page); 5534 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5535 return false; 5536 5537 pfn = page_to_pfn(page); 5538 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5539 unsigned long check = pfn + iter; 5540 5541 if (!pfn_valid_within(check)) 5542 continue; 5543 5544 page = pfn_to_page(check); 5545 /* 5546 * We can't use page_count without pin a page 5547 * because another CPU can free compound page. 5548 * This check already skips compound tails of THP 5549 * because their page->_count is zero at all time. 5550 */ 5551 if (!atomic_read(&page->_count)) { 5552 if (PageBuddy(page)) 5553 iter += (1 << page_order(page)) - 1; 5554 continue; 5555 } 5556 5557 if (!PageLRU(page)) 5558 found++; 5559 /* 5560 * If there are RECLAIMABLE pages, we need to check it. 5561 * But now, memory offline itself doesn't call shrink_slab() 5562 * and it still to be fixed. 5563 */ 5564 /* 5565 * If the page is not RAM, page_count()should be 0. 5566 * we don't need more check. This is an _used_ not-movable page. 5567 * 5568 * The problematic thing here is PG_reserved pages. PG_reserved 5569 * is set to both of a memory hole page and a _used_ kernel 5570 * page at boot. 5571 */ 5572 if (found > count) 5573 return true; 5574 } 5575 return false; 5576 } 5577 5578 bool is_pageblock_removable_nolock(struct page *page) 5579 { 5580 struct zone *zone; 5581 unsigned long pfn; 5582 5583 /* 5584 * We have to be careful here because we are iterating over memory 5585 * sections which are not zone aware so we might end up outside of 5586 * the zone but still within the section. 5587 * We have to take care about the node as well. If the node is offline 5588 * its NODE_DATA will be NULL - see page_zone. 5589 */ 5590 if (!node_online(page_to_nid(page))) 5591 return false; 5592 5593 zone = page_zone(page); 5594 pfn = page_to_pfn(page); 5595 if (zone->zone_start_pfn > pfn || 5596 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5597 return false; 5598 5599 return !has_unmovable_pages(zone, page, 0); 5600 } 5601 5602 #ifdef CONFIG_CMA 5603 5604 static unsigned long pfn_max_align_down(unsigned long pfn) 5605 { 5606 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5607 pageblock_nr_pages) - 1); 5608 } 5609 5610 static unsigned long pfn_max_align_up(unsigned long pfn) 5611 { 5612 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5613 pageblock_nr_pages)); 5614 } 5615 5616 static struct page * 5617 __alloc_contig_migrate_alloc(struct page *page, unsigned long private, 5618 int **resultp) 5619 { 5620 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; 5621 5622 if (PageHighMem(page)) 5623 gfp_mask |= __GFP_HIGHMEM; 5624 5625 return alloc_page(gfp_mask); 5626 } 5627 5628 /* [start, end) must belong to a single zone. */ 5629 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end) 5630 { 5631 /* This function is based on compact_zone() from compaction.c. */ 5632 5633 unsigned long pfn = start; 5634 unsigned int tries = 0; 5635 int ret = 0; 5636 5637 struct compact_control cc = { 5638 .nr_migratepages = 0, 5639 .order = -1, 5640 .zone = page_zone(pfn_to_page(start)), 5641 .sync = true, 5642 }; 5643 INIT_LIST_HEAD(&cc.migratepages); 5644 5645 migrate_prep_local(); 5646 5647 while (pfn < end || !list_empty(&cc.migratepages)) { 5648 if (fatal_signal_pending(current)) { 5649 ret = -EINTR; 5650 break; 5651 } 5652 5653 if (list_empty(&cc.migratepages)) { 5654 cc.nr_migratepages = 0; 5655 pfn = isolate_migratepages_range(cc.zone, &cc, 5656 pfn, end); 5657 if (!pfn) { 5658 ret = -EINTR; 5659 break; 5660 } 5661 tries = 0; 5662 } else if (++tries == 5) { 5663 ret = ret < 0 ? ret : -EBUSY; 5664 break; 5665 } 5666 5667 ret = migrate_pages(&cc.migratepages, 5668 __alloc_contig_migrate_alloc, 5669 0, false, MIGRATE_SYNC); 5670 } 5671 5672 putback_lru_pages(&cc.migratepages); 5673 return ret > 0 ? 0 : ret; 5674 } 5675 5676 /* 5677 * Update zone's cma pages counter used for watermark level calculation. 5678 */ 5679 static inline void __update_cma_watermarks(struct zone *zone, int count) 5680 { 5681 unsigned long flags; 5682 spin_lock_irqsave(&zone->lock, flags); 5683 zone->min_cma_pages += count; 5684 spin_unlock_irqrestore(&zone->lock, flags); 5685 setup_per_zone_wmarks(); 5686 } 5687 5688 /* 5689 * Trigger memory pressure bump to reclaim some pages in order to be able to 5690 * allocate 'count' pages in single page units. Does similar work as 5691 *__alloc_pages_slowpath() function. 5692 */ 5693 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count) 5694 { 5695 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 5696 struct zonelist *zonelist = node_zonelist(0, gfp_mask); 5697 int did_some_progress = 0; 5698 int order = 1; 5699 5700 /* 5701 * Increase level of watermarks to force kswapd do his job 5702 * to stabilise at new watermark level. 5703 */ 5704 __update_cma_watermarks(zone, count); 5705 5706 /* Obey watermarks as if the page was being allocated */ 5707 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) { 5708 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone)); 5709 5710 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 5711 NULL); 5712 if (!did_some_progress) { 5713 /* Exhausted what can be done so it's blamo time */ 5714 out_of_memory(zonelist, gfp_mask, order, NULL, false); 5715 } 5716 } 5717 5718 /* Restore original watermark levels. */ 5719 __update_cma_watermarks(zone, -count); 5720 5721 return count; 5722 } 5723 5724 /** 5725 * alloc_contig_range() -- tries to allocate given range of pages 5726 * @start: start PFN to allocate 5727 * @end: one-past-the-last PFN to allocate 5728 * @migratetype: migratetype of the underlaying pageblocks (either 5729 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5730 * in range must have the same migratetype and it must 5731 * be either of the two. 5732 * 5733 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5734 * aligned, however it's the caller's responsibility to guarantee that 5735 * we are the only thread that changes migrate type of pageblocks the 5736 * pages fall in. 5737 * 5738 * The PFN range must belong to a single zone. 5739 * 5740 * Returns zero on success or negative error code. On success all 5741 * pages which PFN is in [start, end) are allocated for the caller and 5742 * need to be freed with free_contig_range(). 5743 */ 5744 int alloc_contig_range(unsigned long start, unsigned long end, 5745 unsigned migratetype) 5746 { 5747 struct zone *zone = page_zone(pfn_to_page(start)); 5748 unsigned long outer_start, outer_end; 5749 int ret = 0, order; 5750 5751 /* 5752 * What we do here is we mark all pageblocks in range as 5753 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5754 * have different sizes, and due to the way page allocator 5755 * work, we align the range to biggest of the two pages so 5756 * that page allocator won't try to merge buddies from 5757 * different pageblocks and change MIGRATE_ISOLATE to some 5758 * other migration type. 5759 * 5760 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5761 * migrate the pages from an unaligned range (ie. pages that 5762 * we are interested in). This will put all the pages in 5763 * range back to page allocator as MIGRATE_ISOLATE. 5764 * 5765 * When this is done, we take the pages in range from page 5766 * allocator removing them from the buddy system. This way 5767 * page allocator will never consider using them. 5768 * 5769 * This lets us mark the pageblocks back as 5770 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5771 * aligned range but not in the unaligned, original range are 5772 * put back to page allocator so that buddy can use them. 5773 */ 5774 5775 ret = start_isolate_page_range(pfn_max_align_down(start), 5776 pfn_max_align_up(end), migratetype); 5777 if (ret) 5778 goto done; 5779 5780 ret = __alloc_contig_migrate_range(start, end); 5781 if (ret) 5782 goto done; 5783 5784 /* 5785 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5786 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5787 * more, all pages in [start, end) are free in page allocator. 5788 * What we are going to do is to allocate all pages from 5789 * [start, end) (that is remove them from page allocator). 5790 * 5791 * The only problem is that pages at the beginning and at the 5792 * end of interesting range may be not aligned with pages that 5793 * page allocator holds, ie. they can be part of higher order 5794 * pages. Because of this, we reserve the bigger range and 5795 * once this is done free the pages we are not interested in. 5796 * 5797 * We don't have to hold zone->lock here because the pages are 5798 * isolated thus they won't get removed from buddy. 5799 */ 5800 5801 lru_add_drain_all(); 5802 drain_all_pages(); 5803 5804 order = 0; 5805 outer_start = start; 5806 while (!PageBuddy(pfn_to_page(outer_start))) { 5807 if (++order >= MAX_ORDER) { 5808 ret = -EBUSY; 5809 goto done; 5810 } 5811 outer_start &= ~0UL << order; 5812 } 5813 5814 /* Make sure the range is really isolated. */ 5815 if (test_pages_isolated(outer_start, end)) { 5816 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5817 outer_start, end); 5818 ret = -EBUSY; 5819 goto done; 5820 } 5821 5822 /* 5823 * Reclaim enough pages to make sure that contiguous allocation 5824 * will not starve the system. 5825 */ 5826 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start); 5827 5828 /* Grab isolated pages from freelists. */ 5829 outer_end = isolate_freepages_range(outer_start, end); 5830 if (!outer_end) { 5831 ret = -EBUSY; 5832 goto done; 5833 } 5834 5835 /* Free head and tail (if any) */ 5836 if (start != outer_start) 5837 free_contig_range(outer_start, start - outer_start); 5838 if (end != outer_end) 5839 free_contig_range(end, outer_end - end); 5840 5841 done: 5842 undo_isolate_page_range(pfn_max_align_down(start), 5843 pfn_max_align_up(end), migratetype); 5844 return ret; 5845 } 5846 5847 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5848 { 5849 for (; nr_pages--; ++pfn) 5850 __free_page(pfn_to_page(pfn)); 5851 } 5852 #endif 5853 5854 #ifdef CONFIG_MEMORY_HOTPLUG 5855 static int __meminit __zone_pcp_update(void *data) 5856 { 5857 struct zone *zone = data; 5858 int cpu; 5859 unsigned long batch = zone_batchsize(zone), flags; 5860 5861 for_each_possible_cpu(cpu) { 5862 struct per_cpu_pageset *pset; 5863 struct per_cpu_pages *pcp; 5864 5865 pset = per_cpu_ptr(zone->pageset, cpu); 5866 pcp = &pset->pcp; 5867 5868 local_irq_save(flags); 5869 if (pcp->count > 0) 5870 free_pcppages_bulk(zone, pcp->count, pcp); 5871 setup_pageset(pset, batch); 5872 local_irq_restore(flags); 5873 } 5874 return 0; 5875 } 5876 5877 void __meminit zone_pcp_update(struct zone *zone) 5878 { 5879 stop_machine(__zone_pcp_update, zone, NULL); 5880 } 5881 #endif 5882 5883 #ifdef CONFIG_MEMORY_HOTREMOVE 5884 void zone_pcp_reset(struct zone *zone) 5885 { 5886 unsigned long flags; 5887 5888 /* avoid races with drain_pages() */ 5889 local_irq_save(flags); 5890 if (zone->pageset != &boot_pageset) { 5891 free_percpu(zone->pageset); 5892 zone->pageset = &boot_pageset; 5893 } 5894 local_irq_restore(flags); 5895 } 5896 5897 /* 5898 * All pages in the range must be isolated before calling this. 5899 */ 5900 void 5901 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5902 { 5903 struct page *page; 5904 struct zone *zone; 5905 int order, i; 5906 unsigned long pfn; 5907 unsigned long flags; 5908 /* find the first valid pfn */ 5909 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5910 if (pfn_valid(pfn)) 5911 break; 5912 if (pfn == end_pfn) 5913 return; 5914 zone = page_zone(pfn_to_page(pfn)); 5915 spin_lock_irqsave(&zone->lock, flags); 5916 pfn = start_pfn; 5917 while (pfn < end_pfn) { 5918 if (!pfn_valid(pfn)) { 5919 pfn++; 5920 continue; 5921 } 5922 page = pfn_to_page(pfn); 5923 BUG_ON(page_count(page)); 5924 BUG_ON(!PageBuddy(page)); 5925 order = page_order(page); 5926 #ifdef CONFIG_DEBUG_VM 5927 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5928 pfn, 1 << order, end_pfn); 5929 #endif 5930 list_del(&page->lru); 5931 rmv_page_order(page); 5932 zone->free_area[order].nr_free--; 5933 __mod_zone_page_state(zone, NR_FREE_PAGES, 5934 - (1UL << order)); 5935 for (i = 0; i < (1 << order); i++) 5936 SetPageReserved((page+i)); 5937 pfn += (1 << order); 5938 } 5939 spin_unlock_irqrestore(&zone->lock, flags); 5940 } 5941 #endif 5942 5943 #ifdef CONFIG_MEMORY_FAILURE 5944 bool is_free_buddy_page(struct page *page) 5945 { 5946 struct zone *zone = page_zone(page); 5947 unsigned long pfn = page_to_pfn(page); 5948 unsigned long flags; 5949 int order; 5950 5951 spin_lock_irqsave(&zone->lock, flags); 5952 for (order = 0; order < MAX_ORDER; order++) { 5953 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5954 5955 if (PageBuddy(page_head) && page_order(page_head) >= order) 5956 break; 5957 } 5958 spin_unlock_irqrestore(&zone->lock, flags); 5959 5960 return order < MAX_ORDER; 5961 } 5962 #endif 5963 5964 static const struct trace_print_flags pageflag_names[] = { 5965 {1UL << PG_locked, "locked" }, 5966 {1UL << PG_error, "error" }, 5967 {1UL << PG_referenced, "referenced" }, 5968 {1UL << PG_uptodate, "uptodate" }, 5969 {1UL << PG_dirty, "dirty" }, 5970 {1UL << PG_lru, "lru" }, 5971 {1UL << PG_active, "active" }, 5972 {1UL << PG_slab, "slab" }, 5973 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5974 {1UL << PG_arch_1, "arch_1" }, 5975 {1UL << PG_reserved, "reserved" }, 5976 {1UL << PG_private, "private" }, 5977 {1UL << PG_private_2, "private_2" }, 5978 {1UL << PG_writeback, "writeback" }, 5979 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5980 {1UL << PG_head, "head" }, 5981 {1UL << PG_tail, "tail" }, 5982 #else 5983 {1UL << PG_compound, "compound" }, 5984 #endif 5985 {1UL << PG_swapcache, "swapcache" }, 5986 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5987 {1UL << PG_reclaim, "reclaim" }, 5988 {1UL << PG_swapbacked, "swapbacked" }, 5989 {1UL << PG_unevictable, "unevictable" }, 5990 #ifdef CONFIG_MMU 5991 {1UL << PG_mlocked, "mlocked" }, 5992 #endif 5993 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5994 {1UL << PG_uncached, "uncached" }, 5995 #endif 5996 #ifdef CONFIG_MEMORY_FAILURE 5997 {1UL << PG_hwpoison, "hwpoison" }, 5998 #endif 5999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6000 {1UL << PG_compound_lock, "compound_lock" }, 6001 #endif 6002 }; 6003 6004 static void dump_page_flags(unsigned long flags) 6005 { 6006 const char *delim = ""; 6007 unsigned long mask; 6008 int i; 6009 6010 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6011 6012 printk(KERN_ALERT "page flags: %#lx(", flags); 6013 6014 /* remove zone id */ 6015 flags &= (1UL << NR_PAGEFLAGS) - 1; 6016 6017 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6018 6019 mask = pageflag_names[i].mask; 6020 if ((flags & mask) != mask) 6021 continue; 6022 6023 flags &= ~mask; 6024 printk("%s%s", delim, pageflag_names[i].name); 6025 delim = "|"; 6026 } 6027 6028 /* check for left over flags */ 6029 if (flags) 6030 printk("%s%#lx", delim, flags); 6031 6032 printk(")\n"); 6033 } 6034 6035 void dump_page(struct page *page) 6036 { 6037 printk(KERN_ALERT 6038 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6039 page, atomic_read(&page->_count), page_mapcount(page), 6040 page->mapping, page->index); 6041 dump_page_flags(page->flags); 6042 mem_cgroup_print_bad_page(page); 6043 } 6044