1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order, 294 int alloc_flags); 295 static bool __free_unaccepted(struct page *page); 296 297 int page_group_by_mobility_disabled __read_mostly; 298 299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 300 /* 301 * During boot we initialize deferred pages on-demand, as needed, but once 302 * page_alloc_init_late() has finished, the deferred pages are all initialized, 303 * and we can permanently disable that path. 304 */ 305 DEFINE_STATIC_KEY_TRUE(deferred_pages); 306 307 static inline bool deferred_pages_enabled(void) 308 { 309 return static_branch_unlikely(&deferred_pages); 310 } 311 312 /* 313 * deferred_grow_zone() is __init, but it is called from 314 * get_page_from_freelist() during early boot until deferred_pages permanently 315 * disables this call. This is why we have refdata wrapper to avoid warning, 316 * and to ensure that the function body gets unloaded. 317 */ 318 static bool __ref 319 _deferred_grow_zone(struct zone *zone, unsigned int order) 320 { 321 return deferred_grow_zone(zone, order); 322 } 323 #else 324 static inline bool deferred_pages_enabled(void) 325 { 326 return false; 327 } 328 329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 330 { 331 return false; 332 } 333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 334 335 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 336 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 337 unsigned long pfn) 338 { 339 #ifdef CONFIG_SPARSEMEM 340 return section_to_usemap(__pfn_to_section(pfn)); 341 #else 342 return page_zone(page)->pageblock_flags; 343 #endif /* CONFIG_SPARSEMEM */ 344 } 345 346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 347 { 348 #ifdef CONFIG_SPARSEMEM 349 pfn &= (PAGES_PER_SECTION-1); 350 #else 351 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 352 #endif /* CONFIG_SPARSEMEM */ 353 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 354 } 355 356 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit) 357 { 358 return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS; 359 } 360 361 static __always_inline void 362 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn, 363 unsigned long **bitmap_word, unsigned long *bitidx) 364 { 365 unsigned long *bitmap; 366 unsigned long word_bitidx; 367 368 #ifdef CONFIG_MEMORY_ISOLATION 369 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8); 370 #else 371 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 372 #endif 373 BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK); 374 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 375 376 bitmap = get_pageblock_bitmap(page, pfn); 377 *bitidx = pfn_to_bitidx(page, pfn); 378 word_bitidx = *bitidx / BITS_PER_LONG; 379 *bitidx &= (BITS_PER_LONG - 1); 380 *bitmap_word = &bitmap[word_bitidx]; 381 } 382 383 384 /** 385 * __get_pfnblock_flags_mask - Return the requested group of flags for 386 * a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @pfn: The target page frame number 389 * @mask: mask of bits that the caller is interested in 390 * 391 * Return: pageblock_bits flags 392 */ 393 static unsigned long __get_pfnblock_flags_mask(const struct page *page, 394 unsigned long pfn, 395 unsigned long mask) 396 { 397 unsigned long *bitmap_word; 398 unsigned long bitidx; 399 unsigned long word; 400 401 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 402 /* 403 * This races, without locks, with set_pfnblock_migratetype(). Ensure 404 * a consistent read of the memory array, so that results, even though 405 * racy, are not corrupted. 406 */ 407 word = READ_ONCE(*bitmap_word); 408 return (word >> bitidx) & mask; 409 } 410 411 /** 412 * get_pfnblock_bit - Check if a standalone bit of a pageblock is set 413 * @page: The page within the block of interest 414 * @pfn: The target page frame number 415 * @pb_bit: pageblock bit to check 416 * 417 * Return: true if the bit is set, otherwise false 418 */ 419 bool get_pfnblock_bit(const struct page *page, unsigned long pfn, 420 enum pageblock_bits pb_bit) 421 { 422 unsigned long *bitmap_word; 423 unsigned long bitidx; 424 425 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 426 return false; 427 428 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 429 430 return test_bit(bitidx + pb_bit, bitmap_word); 431 } 432 433 /** 434 * get_pfnblock_migratetype - Return the migratetype of a pageblock 435 * @page: The page within the block of interest 436 * @pfn: The target page frame number 437 * 438 * Return: The migratetype of the pageblock 439 * 440 * Use get_pfnblock_migratetype() if caller already has both @page and @pfn 441 * to save a call to page_to_pfn(). 442 */ 443 __always_inline enum migratetype 444 get_pfnblock_migratetype(const struct page *page, unsigned long pfn) 445 { 446 unsigned long mask = MIGRATETYPE_AND_ISO_MASK; 447 unsigned long flags; 448 449 flags = __get_pfnblock_flags_mask(page, pfn, mask); 450 451 #ifdef CONFIG_MEMORY_ISOLATION 452 if (flags & BIT(PB_migrate_isolate)) 453 return MIGRATE_ISOLATE; 454 #endif 455 return flags & MIGRATETYPE_MASK; 456 } 457 458 /** 459 * __set_pfnblock_flags_mask - Set the requested group of flags for 460 * a pageblock_nr_pages block of pages 461 * @page: The page within the block of interest 462 * @pfn: The target page frame number 463 * @flags: The flags to set 464 * @mask: mask of bits that the caller is interested in 465 */ 466 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn, 467 unsigned long flags, unsigned long mask) 468 { 469 unsigned long *bitmap_word; 470 unsigned long bitidx; 471 unsigned long word; 472 473 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 474 475 mask <<= bitidx; 476 flags <<= bitidx; 477 478 word = READ_ONCE(*bitmap_word); 479 do { 480 } while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags)); 481 } 482 483 /** 484 * set_pfnblock_bit - Set a standalone bit of a pageblock 485 * @page: The page within the block of interest 486 * @pfn: The target page frame number 487 * @pb_bit: pageblock bit to set 488 */ 489 void set_pfnblock_bit(const struct page *page, unsigned long pfn, 490 enum pageblock_bits pb_bit) 491 { 492 unsigned long *bitmap_word; 493 unsigned long bitidx; 494 495 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 496 return; 497 498 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 499 500 set_bit(bitidx + pb_bit, bitmap_word); 501 } 502 503 /** 504 * clear_pfnblock_bit - Clear a standalone bit of a pageblock 505 * @page: The page within the block of interest 506 * @pfn: The target page frame number 507 * @pb_bit: pageblock bit to clear 508 */ 509 void clear_pfnblock_bit(const struct page *page, unsigned long pfn, 510 enum pageblock_bits pb_bit) 511 { 512 unsigned long *bitmap_word; 513 unsigned long bitidx; 514 515 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 516 return; 517 518 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 519 520 clear_bit(bitidx + pb_bit, bitmap_word); 521 } 522 523 /** 524 * set_pageblock_migratetype - Set the migratetype of a pageblock 525 * @page: The page within the block of interest 526 * @migratetype: migratetype to set 527 */ 528 static void set_pageblock_migratetype(struct page *page, 529 enum migratetype migratetype) 530 { 531 if (unlikely(page_group_by_mobility_disabled && 532 migratetype < MIGRATE_PCPTYPES)) 533 migratetype = MIGRATE_UNMOVABLE; 534 535 #ifdef CONFIG_MEMORY_ISOLATION 536 if (migratetype == MIGRATE_ISOLATE) { 537 VM_WARN_ONCE(1, 538 "Use set_pageblock_isolate() for pageblock isolation"); 539 return; 540 } 541 VM_WARN_ONCE(get_pageblock_isolate(page), 542 "Use clear_pageblock_isolate() to unisolate pageblock"); 543 /* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */ 544 #endif 545 __set_pfnblock_flags_mask(page, page_to_pfn(page), 546 (unsigned long)migratetype, 547 MIGRATETYPE_AND_ISO_MASK); 548 } 549 550 void __meminit init_pageblock_migratetype(struct page *page, 551 enum migratetype migratetype, 552 bool isolate) 553 { 554 unsigned long flags; 555 556 if (unlikely(page_group_by_mobility_disabled && 557 migratetype < MIGRATE_PCPTYPES)) 558 migratetype = MIGRATE_UNMOVABLE; 559 560 flags = migratetype; 561 562 #ifdef CONFIG_MEMORY_ISOLATION 563 if (migratetype == MIGRATE_ISOLATE) { 564 VM_WARN_ONCE( 565 1, 566 "Set isolate=true to isolate pageblock with a migratetype"); 567 return; 568 } 569 if (isolate) 570 flags |= BIT(PB_migrate_isolate); 571 #endif 572 __set_pfnblock_flags_mask(page, page_to_pfn(page), flags, 573 MIGRATETYPE_AND_ISO_MASK); 574 } 575 576 #ifdef CONFIG_DEBUG_VM 577 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 578 { 579 int ret; 580 unsigned seq; 581 unsigned long pfn = page_to_pfn(page); 582 unsigned long sp, start_pfn; 583 584 do { 585 seq = zone_span_seqbegin(zone); 586 start_pfn = zone->zone_start_pfn; 587 sp = zone->spanned_pages; 588 ret = !zone_spans_pfn(zone, pfn); 589 } while (zone_span_seqretry(zone, seq)); 590 591 if (ret) 592 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 593 pfn, zone_to_nid(zone), zone->name, 594 start_pfn, start_pfn + sp); 595 596 return ret; 597 } 598 599 /* 600 * Temporary debugging check for pages not lying within a given zone. 601 */ 602 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 603 { 604 if (page_outside_zone_boundaries(zone, page)) 605 return true; 606 if (zone != page_zone(page)) 607 return true; 608 609 return false; 610 } 611 #else 612 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 613 { 614 return false; 615 } 616 #endif 617 618 static void bad_page(struct page *page, const char *reason) 619 { 620 static unsigned long resume; 621 static unsigned long nr_shown; 622 static unsigned long nr_unshown; 623 624 /* 625 * Allow a burst of 60 reports, then keep quiet for that minute; 626 * or allow a steady drip of one report per second. 627 */ 628 if (nr_shown == 60) { 629 if (time_before(jiffies, resume)) { 630 nr_unshown++; 631 goto out; 632 } 633 if (nr_unshown) { 634 pr_alert( 635 "BUG: Bad page state: %lu messages suppressed\n", 636 nr_unshown); 637 nr_unshown = 0; 638 } 639 nr_shown = 0; 640 } 641 if (nr_shown++ == 0) 642 resume = jiffies + 60 * HZ; 643 644 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 645 current->comm, page_to_pfn(page)); 646 dump_page(page, reason); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 if (PageBuddy(page)) 653 __ClearPageBuddy(page); 654 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 655 } 656 657 static inline unsigned int order_to_pindex(int migratetype, int order) 658 { 659 660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 661 bool movable; 662 if (order > PAGE_ALLOC_COSTLY_ORDER) { 663 VM_BUG_ON(order != HPAGE_PMD_ORDER); 664 665 movable = migratetype == MIGRATE_MOVABLE; 666 667 return NR_LOWORDER_PCP_LISTS + movable; 668 } 669 #else 670 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 671 #endif 672 673 return (MIGRATE_PCPTYPES * order) + migratetype; 674 } 675 676 static inline int pindex_to_order(unsigned int pindex) 677 { 678 int order = pindex / MIGRATE_PCPTYPES; 679 680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 681 if (pindex >= NR_LOWORDER_PCP_LISTS) 682 order = HPAGE_PMD_ORDER; 683 #else 684 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 685 #endif 686 687 return order; 688 } 689 690 static inline bool pcp_allowed_order(unsigned int order) 691 { 692 if (order <= PAGE_ALLOC_COSTLY_ORDER) 693 return true; 694 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 695 if (order == HPAGE_PMD_ORDER) 696 return true; 697 #endif 698 return false; 699 } 700 701 /* 702 * Higher-order pages are called "compound pages". They are structured thusly: 703 * 704 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 705 * 706 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 707 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 708 * 709 * The first tail page's ->compound_order holds the order of allocation. 710 * This usage means that zero-order pages may not be compound. 711 */ 712 713 void prep_compound_page(struct page *page, unsigned int order) 714 { 715 int i; 716 int nr_pages = 1 << order; 717 718 __SetPageHead(page); 719 for (i = 1; i < nr_pages; i++) 720 prep_compound_tail(page, i); 721 722 prep_compound_head(page, order); 723 } 724 725 static inline void set_buddy_order(struct page *page, unsigned int order) 726 { 727 set_page_private(page, order); 728 __SetPageBuddy(page); 729 } 730 731 #ifdef CONFIG_COMPACTION 732 static inline struct capture_control *task_capc(struct zone *zone) 733 { 734 struct capture_control *capc = current->capture_control; 735 736 return unlikely(capc) && 737 !(current->flags & PF_KTHREAD) && 738 !capc->page && 739 capc->cc->zone == zone ? capc : NULL; 740 } 741 742 static inline bool 743 compaction_capture(struct capture_control *capc, struct page *page, 744 int order, int migratetype) 745 { 746 if (!capc || order != capc->cc->order) 747 return false; 748 749 /* Do not accidentally pollute CMA or isolated regions*/ 750 if (is_migrate_cma(migratetype) || 751 is_migrate_isolate(migratetype)) 752 return false; 753 754 /* 755 * Do not let lower order allocations pollute a movable pageblock 756 * unless compaction is also requesting movable pages. 757 * This might let an unmovable request use a reclaimable pageblock 758 * and vice-versa but no more than normal fallback logic which can 759 * have trouble finding a high-order free page. 760 */ 761 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 762 capc->cc->migratetype != MIGRATE_MOVABLE) 763 return false; 764 765 if (migratetype != capc->cc->migratetype) 766 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 767 capc->cc->migratetype, migratetype); 768 769 capc->page = page; 770 return true; 771 } 772 773 #else 774 static inline struct capture_control *task_capc(struct zone *zone) 775 { 776 return NULL; 777 } 778 779 static inline bool 780 compaction_capture(struct capture_control *capc, struct page *page, 781 int order, int migratetype) 782 { 783 return false; 784 } 785 #endif /* CONFIG_COMPACTION */ 786 787 static inline void account_freepages(struct zone *zone, int nr_pages, 788 int migratetype) 789 { 790 lockdep_assert_held(&zone->lock); 791 792 if (is_migrate_isolate(migratetype)) 793 return; 794 795 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 796 797 if (is_migrate_cma(migratetype)) 798 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 799 else if (migratetype == MIGRATE_HIGHATOMIC) 800 WRITE_ONCE(zone->nr_free_highatomic, 801 zone->nr_free_highatomic + nr_pages); 802 } 803 804 /* Used for pages not on another list */ 805 static inline void __add_to_free_list(struct page *page, struct zone *zone, 806 unsigned int order, int migratetype, 807 bool tail) 808 { 809 struct free_area *area = &zone->free_area[order]; 810 int nr_pages = 1 << order; 811 812 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 813 "page type is %d, passed migratetype is %d (nr=%d)\n", 814 get_pageblock_migratetype(page), migratetype, nr_pages); 815 816 if (tail) 817 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 818 else 819 list_add(&page->buddy_list, &area->free_list[migratetype]); 820 area->nr_free++; 821 822 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 823 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 824 } 825 826 /* 827 * Used for pages which are on another list. Move the pages to the tail 828 * of the list - so the moved pages won't immediately be considered for 829 * allocation again (e.g., optimization for memory onlining). 830 */ 831 static inline void move_to_free_list(struct page *page, struct zone *zone, 832 unsigned int order, int old_mt, int new_mt) 833 { 834 struct free_area *area = &zone->free_area[order]; 835 int nr_pages = 1 << order; 836 837 /* Free page moving can fail, so it happens before the type update */ 838 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 839 "page type is %d, passed migratetype is %d (nr=%d)\n", 840 get_pageblock_migratetype(page), old_mt, nr_pages); 841 842 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 843 844 account_freepages(zone, -nr_pages, old_mt); 845 account_freepages(zone, nr_pages, new_mt); 846 847 if (order >= pageblock_order && 848 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 849 if (!is_migrate_isolate(old_mt)) 850 nr_pages = -nr_pages; 851 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 852 } 853 } 854 855 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 856 unsigned int order, int migratetype) 857 { 858 int nr_pages = 1 << order; 859 860 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 861 "page type is %d, passed migratetype is %d (nr=%d)\n", 862 get_pageblock_migratetype(page), migratetype, nr_pages); 863 864 /* clear reported state and update reported page count */ 865 if (page_reported(page)) 866 __ClearPageReported(page); 867 868 list_del(&page->buddy_list); 869 __ClearPageBuddy(page); 870 set_page_private(page, 0); 871 zone->free_area[order].nr_free--; 872 873 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 874 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 875 } 876 877 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 878 unsigned int order, int migratetype) 879 { 880 __del_page_from_free_list(page, zone, order, migratetype); 881 account_freepages(zone, -(1 << order), migratetype); 882 } 883 884 static inline struct page *get_page_from_free_area(struct free_area *area, 885 int migratetype) 886 { 887 return list_first_entry_or_null(&area->free_list[migratetype], 888 struct page, buddy_list); 889 } 890 891 /* 892 * If this is less than the 2nd largest possible page, check if the buddy 893 * of the next-higher order is free. If it is, it's possible 894 * that pages are being freed that will coalesce soon. In case, 895 * that is happening, add the free page to the tail of the list 896 * so it's less likely to be used soon and more likely to be merged 897 * as a 2-level higher order page 898 */ 899 static inline bool 900 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 901 struct page *page, unsigned int order) 902 { 903 unsigned long higher_page_pfn; 904 struct page *higher_page; 905 906 if (order >= MAX_PAGE_ORDER - 1) 907 return false; 908 909 higher_page_pfn = buddy_pfn & pfn; 910 higher_page = page + (higher_page_pfn - pfn); 911 912 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 913 NULL) != NULL; 914 } 915 916 /* 917 * Freeing function for a buddy system allocator. 918 * 919 * The concept of a buddy system is to maintain direct-mapped table 920 * (containing bit values) for memory blocks of various "orders". 921 * The bottom level table contains the map for the smallest allocatable 922 * units of memory (here, pages), and each level above it describes 923 * pairs of units from the levels below, hence, "buddies". 924 * At a high level, all that happens here is marking the table entry 925 * at the bottom level available, and propagating the changes upward 926 * as necessary, plus some accounting needed to play nicely with other 927 * parts of the VM system. 928 * At each level, we keep a list of pages, which are heads of continuous 929 * free pages of length of (1 << order) and marked with PageBuddy. 930 * Page's order is recorded in page_private(page) field. 931 * So when we are allocating or freeing one, we can derive the state of the 932 * other. That is, if we allocate a small block, and both were 933 * free, the remainder of the region must be split into blocks. 934 * If a block is freed, and its buddy is also free, then this 935 * triggers coalescing into a block of larger size. 936 * 937 * -- nyc 938 */ 939 940 static inline void __free_one_page(struct page *page, 941 unsigned long pfn, 942 struct zone *zone, unsigned int order, 943 int migratetype, fpi_t fpi_flags) 944 { 945 struct capture_control *capc = task_capc(zone); 946 unsigned long buddy_pfn = 0; 947 unsigned long combined_pfn; 948 struct page *buddy; 949 bool to_tail; 950 951 VM_BUG_ON(!zone_is_initialized(zone)); 952 VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page); 953 954 VM_BUG_ON(migratetype == -1); 955 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 956 VM_BUG_ON_PAGE(bad_range(zone, page), page); 957 958 account_freepages(zone, 1 << order, migratetype); 959 960 while (order < MAX_PAGE_ORDER) { 961 int buddy_mt = migratetype; 962 963 if (compaction_capture(capc, page, order, migratetype)) { 964 account_freepages(zone, -(1 << order), migratetype); 965 return; 966 } 967 968 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 969 if (!buddy) 970 goto done_merging; 971 972 if (unlikely(order >= pageblock_order)) { 973 /* 974 * We want to prevent merge between freepages on pageblock 975 * without fallbacks and normal pageblock. Without this, 976 * pageblock isolation could cause incorrect freepage or CMA 977 * accounting or HIGHATOMIC accounting. 978 */ 979 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 980 981 if (migratetype != buddy_mt && 982 (!migratetype_is_mergeable(migratetype) || 983 !migratetype_is_mergeable(buddy_mt))) 984 goto done_merging; 985 } 986 987 /* 988 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 989 * merge with it and move up one order. 990 */ 991 if (page_is_guard(buddy)) 992 clear_page_guard(zone, buddy, order); 993 else 994 __del_page_from_free_list(buddy, zone, order, buddy_mt); 995 996 if (unlikely(buddy_mt != migratetype)) { 997 /* 998 * Match buddy type. This ensures that an 999 * expand() down the line puts the sub-blocks 1000 * on the right freelists. 1001 */ 1002 set_pageblock_migratetype(buddy, migratetype); 1003 } 1004 1005 combined_pfn = buddy_pfn & pfn; 1006 page = page + (combined_pfn - pfn); 1007 pfn = combined_pfn; 1008 order++; 1009 } 1010 1011 done_merging: 1012 set_buddy_order(page, order); 1013 1014 if (fpi_flags & FPI_TO_TAIL) 1015 to_tail = true; 1016 else if (is_shuffle_order(order)) 1017 to_tail = shuffle_pick_tail(); 1018 else 1019 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1020 1021 __add_to_free_list(page, zone, order, migratetype, to_tail); 1022 1023 /* Notify page reporting subsystem of freed page */ 1024 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1025 page_reporting_notify_free(order); 1026 } 1027 1028 /* 1029 * A bad page could be due to a number of fields. Instead of multiple branches, 1030 * try and check multiple fields with one check. The caller must do a detailed 1031 * check if necessary. 1032 */ 1033 static inline bool page_expected_state(struct page *page, 1034 unsigned long check_flags) 1035 { 1036 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1037 return false; 1038 1039 if (unlikely((unsigned long)page->mapping | 1040 page_ref_count(page) | 1041 #ifdef CONFIG_MEMCG 1042 page->memcg_data | 1043 #endif 1044 page_pool_page_is_pp(page) | 1045 (page->flags.f & check_flags))) 1046 return false; 1047 1048 return true; 1049 } 1050 1051 static const char *page_bad_reason(struct page *page, unsigned long flags) 1052 { 1053 const char *bad_reason = NULL; 1054 1055 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1056 bad_reason = "nonzero mapcount"; 1057 if (unlikely(page->mapping != NULL)) 1058 bad_reason = "non-NULL mapping"; 1059 if (unlikely(page_ref_count(page) != 0)) 1060 bad_reason = "nonzero _refcount"; 1061 if (unlikely(page->flags.f & flags)) { 1062 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1063 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1064 else 1065 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1066 } 1067 #ifdef CONFIG_MEMCG 1068 if (unlikely(page->memcg_data)) 1069 bad_reason = "page still charged to cgroup"; 1070 #endif 1071 if (unlikely(page_pool_page_is_pp(page))) 1072 bad_reason = "page_pool leak"; 1073 return bad_reason; 1074 } 1075 1076 static inline bool free_page_is_bad(struct page *page) 1077 { 1078 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1079 return false; 1080 1081 /* Something has gone sideways, find it */ 1082 bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1083 return true; 1084 } 1085 1086 static inline bool is_check_pages_enabled(void) 1087 { 1088 return static_branch_unlikely(&check_pages_enabled); 1089 } 1090 1091 static int free_tail_page_prepare(struct page *head_page, struct page *page) 1092 { 1093 struct folio *folio = (struct folio *)head_page; 1094 int ret = 1; 1095 1096 /* 1097 * We rely page->lru.next never has bit 0 set, unless the page 1098 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1099 */ 1100 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1101 1102 if (!is_check_pages_enabled()) { 1103 ret = 0; 1104 goto out; 1105 } 1106 switch (page - head_page) { 1107 case 1: 1108 /* the first tail page: these may be in place of ->mapping */ 1109 if (unlikely(folio_large_mapcount(folio))) { 1110 bad_page(page, "nonzero large_mapcount"); 1111 goto out; 1112 } 1113 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 1114 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1115 bad_page(page, "nonzero nr_pages_mapped"); 1116 goto out; 1117 } 1118 if (IS_ENABLED(CONFIG_MM_ID)) { 1119 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 1120 bad_page(page, "nonzero mm mapcount 0"); 1121 goto out; 1122 } 1123 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 1124 bad_page(page, "nonzero mm mapcount 1"); 1125 goto out; 1126 } 1127 } 1128 if (IS_ENABLED(CONFIG_64BIT)) { 1129 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1130 bad_page(page, "nonzero entire_mapcount"); 1131 goto out; 1132 } 1133 if (unlikely(atomic_read(&folio->_pincount))) { 1134 bad_page(page, "nonzero pincount"); 1135 goto out; 1136 } 1137 } 1138 break; 1139 case 2: 1140 /* the second tail page: deferred_list overlaps ->mapping */ 1141 if (unlikely(!list_empty(&folio->_deferred_list))) { 1142 bad_page(page, "on deferred list"); 1143 goto out; 1144 } 1145 if (!IS_ENABLED(CONFIG_64BIT)) { 1146 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1147 bad_page(page, "nonzero entire_mapcount"); 1148 goto out; 1149 } 1150 if (unlikely(atomic_read(&folio->_pincount))) { 1151 bad_page(page, "nonzero pincount"); 1152 goto out; 1153 } 1154 } 1155 break; 1156 case 3: 1157 /* the third tail page: hugetlb specifics overlap ->mappings */ 1158 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1159 break; 1160 fallthrough; 1161 default: 1162 if (page->mapping != TAIL_MAPPING) { 1163 bad_page(page, "corrupted mapping in tail page"); 1164 goto out; 1165 } 1166 break; 1167 } 1168 if (unlikely(!PageTail(page))) { 1169 bad_page(page, "PageTail not set"); 1170 goto out; 1171 } 1172 if (unlikely(compound_head(page) != head_page)) { 1173 bad_page(page, "compound_head not consistent"); 1174 goto out; 1175 } 1176 ret = 0; 1177 out: 1178 page->mapping = NULL; 1179 clear_compound_head(page); 1180 return ret; 1181 } 1182 1183 /* 1184 * Skip KASAN memory poisoning when either: 1185 * 1186 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1187 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1188 * using page tags instead (see below). 1189 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1190 * that error detection is disabled for accesses via the page address. 1191 * 1192 * Pages will have match-all tags in the following circumstances: 1193 * 1194 * 1. Pages are being initialized for the first time, including during deferred 1195 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1196 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1197 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1198 * 3. The allocation was excluded from being checked due to sampling, 1199 * see the call to kasan_unpoison_pages. 1200 * 1201 * Poisoning pages during deferred memory init will greatly lengthen the 1202 * process and cause problem in large memory systems as the deferred pages 1203 * initialization is done with interrupt disabled. 1204 * 1205 * Assuming that there will be no reference to those newly initialized 1206 * pages before they are ever allocated, this should have no effect on 1207 * KASAN memory tracking as the poison will be properly inserted at page 1208 * allocation time. The only corner case is when pages are allocated by 1209 * on-demand allocation and then freed again before the deferred pages 1210 * initialization is done, but this is not likely to happen. 1211 */ 1212 static inline bool should_skip_kasan_poison(struct page *page) 1213 { 1214 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1215 return deferred_pages_enabled(); 1216 1217 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1218 } 1219 1220 static void kernel_init_pages(struct page *page, int numpages) 1221 { 1222 int i; 1223 1224 /* s390's use of memset() could override KASAN redzones. */ 1225 kasan_disable_current(); 1226 for (i = 0; i < numpages; i++) 1227 clear_highpage_kasan_tagged(page + i); 1228 kasan_enable_current(); 1229 } 1230 1231 #ifdef CONFIG_MEM_ALLOC_PROFILING 1232 1233 /* Should be called only if mem_alloc_profiling_enabled() */ 1234 void __clear_page_tag_ref(struct page *page) 1235 { 1236 union pgtag_ref_handle handle; 1237 union codetag_ref ref; 1238 1239 if (get_page_tag_ref(page, &ref, &handle)) { 1240 set_codetag_empty(&ref); 1241 update_page_tag_ref(handle, &ref); 1242 put_page_tag_ref(handle); 1243 } 1244 } 1245 1246 /* Should be called only if mem_alloc_profiling_enabled() */ 1247 static noinline 1248 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1249 unsigned int nr) 1250 { 1251 union pgtag_ref_handle handle; 1252 union codetag_ref ref; 1253 1254 if (get_page_tag_ref(page, &ref, &handle)) { 1255 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1256 update_page_tag_ref(handle, &ref); 1257 put_page_tag_ref(handle); 1258 } 1259 } 1260 1261 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1262 unsigned int nr) 1263 { 1264 if (mem_alloc_profiling_enabled()) 1265 __pgalloc_tag_add(page, task, nr); 1266 } 1267 1268 /* Should be called only if mem_alloc_profiling_enabled() */ 1269 static noinline 1270 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1271 { 1272 union pgtag_ref_handle handle; 1273 union codetag_ref ref; 1274 1275 if (get_page_tag_ref(page, &ref, &handle)) { 1276 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1277 update_page_tag_ref(handle, &ref); 1278 put_page_tag_ref(handle); 1279 } 1280 } 1281 1282 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1283 { 1284 if (mem_alloc_profiling_enabled()) 1285 __pgalloc_tag_sub(page, nr); 1286 } 1287 1288 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */ 1289 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) 1290 { 1291 if (tag) 1292 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1293 } 1294 1295 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1296 1297 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1298 unsigned int nr) {} 1299 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1300 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} 1301 1302 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1303 1304 __always_inline bool free_pages_prepare(struct page *page, 1305 unsigned int order) 1306 { 1307 int bad = 0; 1308 bool skip_kasan_poison = should_skip_kasan_poison(page); 1309 bool init = want_init_on_free(); 1310 bool compound = PageCompound(page); 1311 struct folio *folio = page_folio(page); 1312 1313 VM_BUG_ON_PAGE(PageTail(page), page); 1314 1315 trace_mm_page_free(page, order); 1316 kmsan_free_page(page, order); 1317 1318 if (memcg_kmem_online() && PageMemcgKmem(page)) 1319 __memcg_kmem_uncharge_page(page, order); 1320 1321 /* 1322 * In rare cases, when truncation or holepunching raced with 1323 * munlock after VM_LOCKED was cleared, Mlocked may still be 1324 * found set here. This does not indicate a problem, unless 1325 * "unevictable_pgs_cleared" appears worryingly large. 1326 */ 1327 if (unlikely(folio_test_mlocked(folio))) { 1328 long nr_pages = folio_nr_pages(folio); 1329 1330 __folio_clear_mlocked(folio); 1331 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1332 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1333 } 1334 1335 if (unlikely(PageHWPoison(page)) && !order) { 1336 /* Do not let hwpoison pages hit pcplists/buddy */ 1337 reset_page_owner(page, order); 1338 page_table_check_free(page, order); 1339 pgalloc_tag_sub(page, 1 << order); 1340 1341 /* 1342 * The page is isolated and accounted for. 1343 * Mark the codetag as empty to avoid accounting error 1344 * when the page is freed by unpoison_memory(). 1345 */ 1346 clear_page_tag_ref(page); 1347 return false; 1348 } 1349 1350 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1351 1352 /* 1353 * Check tail pages before head page information is cleared to 1354 * avoid checking PageCompound for order-0 pages. 1355 */ 1356 if (unlikely(order)) { 1357 int i; 1358 1359 if (compound) { 1360 page[1].flags.f &= ~PAGE_FLAGS_SECOND; 1361 #ifdef NR_PAGES_IN_LARGE_FOLIO 1362 folio->_nr_pages = 0; 1363 #endif 1364 } 1365 for (i = 1; i < (1 << order); i++) { 1366 if (compound) 1367 bad += free_tail_page_prepare(page, page + i); 1368 if (is_check_pages_enabled()) { 1369 if (free_page_is_bad(page + i)) { 1370 bad++; 1371 continue; 1372 } 1373 } 1374 (page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1375 } 1376 } 1377 if (folio_test_anon(folio)) { 1378 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1379 folio->mapping = NULL; 1380 } 1381 if (unlikely(page_has_type(page))) 1382 /* Reset the page_type (which overlays _mapcount) */ 1383 page->page_type = UINT_MAX; 1384 1385 if (is_check_pages_enabled()) { 1386 if (free_page_is_bad(page)) 1387 bad++; 1388 if (bad) 1389 return false; 1390 } 1391 1392 page_cpupid_reset_last(page); 1393 page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1394 reset_page_owner(page, order); 1395 page_table_check_free(page, order); 1396 pgalloc_tag_sub(page, 1 << order); 1397 1398 if (!PageHighMem(page)) { 1399 debug_check_no_locks_freed(page_address(page), 1400 PAGE_SIZE << order); 1401 debug_check_no_obj_freed(page_address(page), 1402 PAGE_SIZE << order); 1403 } 1404 1405 kernel_poison_pages(page, 1 << order); 1406 1407 /* 1408 * As memory initialization might be integrated into KASAN, 1409 * KASAN poisoning and memory initialization code must be 1410 * kept together to avoid discrepancies in behavior. 1411 * 1412 * With hardware tag-based KASAN, memory tags must be set before the 1413 * page becomes unavailable via debug_pagealloc or arch_free_page. 1414 */ 1415 if (!skip_kasan_poison) { 1416 kasan_poison_pages(page, order, init); 1417 1418 /* Memory is already initialized if KASAN did it internally. */ 1419 if (kasan_has_integrated_init()) 1420 init = false; 1421 } 1422 if (init) 1423 kernel_init_pages(page, 1 << order); 1424 1425 /* 1426 * arch_free_page() can make the page's contents inaccessible. s390 1427 * does this. So nothing which can access the page's contents should 1428 * happen after this. 1429 */ 1430 arch_free_page(page, order); 1431 1432 debug_pagealloc_unmap_pages(page, 1 << order); 1433 1434 return true; 1435 } 1436 1437 /* 1438 * Frees a number of pages from the PCP lists 1439 * Assumes all pages on list are in same zone. 1440 * count is the number of pages to free. 1441 */ 1442 static void free_pcppages_bulk(struct zone *zone, int count, 1443 struct per_cpu_pages *pcp, 1444 int pindex) 1445 { 1446 unsigned long flags; 1447 unsigned int order; 1448 struct page *page; 1449 1450 /* 1451 * Ensure proper count is passed which otherwise would stuck in the 1452 * below while (list_empty(list)) loop. 1453 */ 1454 count = min(pcp->count, count); 1455 1456 /* Ensure requested pindex is drained first. */ 1457 pindex = pindex - 1; 1458 1459 spin_lock_irqsave(&zone->lock, flags); 1460 1461 while (count > 0) { 1462 struct list_head *list; 1463 int nr_pages; 1464 1465 /* Remove pages from lists in a round-robin fashion. */ 1466 do { 1467 if (++pindex > NR_PCP_LISTS - 1) 1468 pindex = 0; 1469 list = &pcp->lists[pindex]; 1470 } while (list_empty(list)); 1471 1472 order = pindex_to_order(pindex); 1473 nr_pages = 1 << order; 1474 do { 1475 unsigned long pfn; 1476 int mt; 1477 1478 page = list_last_entry(list, struct page, pcp_list); 1479 pfn = page_to_pfn(page); 1480 mt = get_pfnblock_migratetype(page, pfn); 1481 1482 /* must delete to avoid corrupting pcp list */ 1483 list_del(&page->pcp_list); 1484 count -= nr_pages; 1485 pcp->count -= nr_pages; 1486 1487 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1488 trace_mm_page_pcpu_drain(page, order, mt); 1489 } while (count > 0 && !list_empty(list)); 1490 } 1491 1492 spin_unlock_irqrestore(&zone->lock, flags); 1493 } 1494 1495 /* Split a multi-block free page into its individual pageblocks. */ 1496 static void split_large_buddy(struct zone *zone, struct page *page, 1497 unsigned long pfn, int order, fpi_t fpi) 1498 { 1499 unsigned long end = pfn + (1 << order); 1500 1501 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1502 /* Caller removed page from freelist, buddy info cleared! */ 1503 VM_WARN_ON_ONCE(PageBuddy(page)); 1504 1505 if (order > pageblock_order) 1506 order = pageblock_order; 1507 1508 do { 1509 int mt = get_pfnblock_migratetype(page, pfn); 1510 1511 __free_one_page(page, pfn, zone, order, mt, fpi); 1512 pfn += 1 << order; 1513 if (pfn == end) 1514 break; 1515 page = pfn_to_page(pfn); 1516 } while (1); 1517 } 1518 1519 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1520 unsigned int order) 1521 { 1522 /* Remember the order */ 1523 page->private = order; 1524 /* Add the page to the free list */ 1525 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1526 } 1527 1528 static void free_one_page(struct zone *zone, struct page *page, 1529 unsigned long pfn, unsigned int order, 1530 fpi_t fpi_flags) 1531 { 1532 struct llist_head *llhead; 1533 unsigned long flags; 1534 1535 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1536 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1537 add_page_to_zone_llist(zone, page, order); 1538 return; 1539 } 1540 } else { 1541 spin_lock_irqsave(&zone->lock, flags); 1542 } 1543 1544 /* The lock succeeded. Process deferred pages. */ 1545 llhead = &zone->trylock_free_pages; 1546 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1547 struct llist_node *llnode; 1548 struct page *p, *tmp; 1549 1550 llnode = llist_del_all(llhead); 1551 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1552 unsigned int p_order = p->private; 1553 1554 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1555 __count_vm_events(PGFREE, 1 << p_order); 1556 } 1557 } 1558 split_large_buddy(zone, page, pfn, order, fpi_flags); 1559 spin_unlock_irqrestore(&zone->lock, flags); 1560 1561 __count_vm_events(PGFREE, 1 << order); 1562 } 1563 1564 static void __free_pages_ok(struct page *page, unsigned int order, 1565 fpi_t fpi_flags) 1566 { 1567 unsigned long pfn = page_to_pfn(page); 1568 struct zone *zone = page_zone(page); 1569 1570 if (free_pages_prepare(page, order)) 1571 free_one_page(zone, page, pfn, order, fpi_flags); 1572 } 1573 1574 void __meminit __free_pages_core(struct page *page, unsigned int order, 1575 enum meminit_context context) 1576 { 1577 unsigned int nr_pages = 1 << order; 1578 struct page *p = page; 1579 unsigned int loop; 1580 1581 /* 1582 * When initializing the memmap, __init_single_page() sets the refcount 1583 * of all pages to 1 ("allocated"/"not free"). We have to set the 1584 * refcount of all involved pages to 0. 1585 * 1586 * Note that hotplugged memory pages are initialized to PageOffline(). 1587 * Pages freed from memblock might be marked as reserved. 1588 */ 1589 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1590 unlikely(context == MEMINIT_HOTPLUG)) { 1591 for (loop = 0; loop < nr_pages; loop++, p++) { 1592 VM_WARN_ON_ONCE(PageReserved(p)); 1593 __ClearPageOffline(p); 1594 set_page_count(p, 0); 1595 } 1596 1597 adjust_managed_page_count(page, nr_pages); 1598 } else { 1599 for (loop = 0; loop < nr_pages; loop++, p++) { 1600 __ClearPageReserved(p); 1601 set_page_count(p, 0); 1602 } 1603 1604 /* memblock adjusts totalram_pages() manually. */ 1605 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1606 } 1607 1608 if (page_contains_unaccepted(page, order)) { 1609 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1610 return; 1611 1612 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1613 } 1614 1615 /* 1616 * Bypass PCP and place fresh pages right to the tail, primarily 1617 * relevant for memory onlining. 1618 */ 1619 __free_pages_ok(page, order, FPI_TO_TAIL); 1620 } 1621 1622 /* 1623 * Check that the whole (or subset of) a pageblock given by the interval of 1624 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1625 * with the migration of free compaction scanner. 1626 * 1627 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1628 * 1629 * It's possible on some configurations to have a setup like node0 node1 node0 1630 * i.e. it's possible that all pages within a zones range of pages do not 1631 * belong to a single zone. We assume that a border between node0 and node1 1632 * can occur within a single pageblock, but not a node0 node1 node0 1633 * interleaving within a single pageblock. It is therefore sufficient to check 1634 * the first and last page of a pageblock and avoid checking each individual 1635 * page in a pageblock. 1636 * 1637 * Note: the function may return non-NULL struct page even for a page block 1638 * which contains a memory hole (i.e. there is no physical memory for a subset 1639 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1640 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1641 * even though the start pfn is online and valid. This should be safe most of 1642 * the time because struct pages are still initialized via init_unavailable_range() 1643 * and pfn walkers shouldn't touch any physical memory range for which they do 1644 * not recognize any specific metadata in struct pages. 1645 */ 1646 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1647 unsigned long end_pfn, struct zone *zone) 1648 { 1649 struct page *start_page; 1650 struct page *end_page; 1651 1652 /* end_pfn is one past the range we are checking */ 1653 end_pfn--; 1654 1655 if (!pfn_valid(end_pfn)) 1656 return NULL; 1657 1658 start_page = pfn_to_online_page(start_pfn); 1659 if (!start_page) 1660 return NULL; 1661 1662 if (page_zone(start_page) != zone) 1663 return NULL; 1664 1665 end_page = pfn_to_page(end_pfn); 1666 1667 /* This gives a shorter code than deriving page_zone(end_page) */ 1668 if (page_zone_id(start_page) != page_zone_id(end_page)) 1669 return NULL; 1670 1671 return start_page; 1672 } 1673 1674 /* 1675 * The order of subdivision here is critical for the IO subsystem. 1676 * Please do not alter this order without good reasons and regression 1677 * testing. Specifically, as large blocks of memory are subdivided, 1678 * the order in which smaller blocks are delivered depends on the order 1679 * they're subdivided in this function. This is the primary factor 1680 * influencing the order in which pages are delivered to the IO 1681 * subsystem according to empirical testing, and this is also justified 1682 * by considering the behavior of a buddy system containing a single 1683 * large block of memory acted on by a series of small allocations. 1684 * This behavior is a critical factor in sglist merging's success. 1685 * 1686 * -- nyc 1687 */ 1688 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1689 int high, int migratetype) 1690 { 1691 unsigned int size = 1 << high; 1692 unsigned int nr_added = 0; 1693 1694 while (high > low) { 1695 high--; 1696 size >>= 1; 1697 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1698 1699 /* 1700 * Mark as guard pages (or page), that will allow to 1701 * merge back to allocator when buddy will be freed. 1702 * Corresponding page table entries will not be touched, 1703 * pages will stay not present in virtual address space 1704 */ 1705 if (set_page_guard(zone, &page[size], high)) 1706 continue; 1707 1708 __add_to_free_list(&page[size], zone, high, migratetype, false); 1709 set_buddy_order(&page[size], high); 1710 nr_added += size; 1711 } 1712 1713 return nr_added; 1714 } 1715 1716 static __always_inline void page_del_and_expand(struct zone *zone, 1717 struct page *page, int low, 1718 int high, int migratetype) 1719 { 1720 int nr_pages = 1 << high; 1721 1722 __del_page_from_free_list(page, zone, high, migratetype); 1723 nr_pages -= expand(zone, page, low, high, migratetype); 1724 account_freepages(zone, -nr_pages, migratetype); 1725 } 1726 1727 static void check_new_page_bad(struct page *page) 1728 { 1729 if (unlikely(PageHWPoison(page))) { 1730 /* Don't complain about hwpoisoned pages */ 1731 if (PageBuddy(page)) 1732 __ClearPageBuddy(page); 1733 return; 1734 } 1735 1736 bad_page(page, 1737 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1738 } 1739 1740 /* 1741 * This page is about to be returned from the page allocator 1742 */ 1743 static bool check_new_page(struct page *page) 1744 { 1745 if (likely(page_expected_state(page, 1746 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1747 return false; 1748 1749 check_new_page_bad(page); 1750 return true; 1751 } 1752 1753 static inline bool check_new_pages(struct page *page, unsigned int order) 1754 { 1755 if (is_check_pages_enabled()) { 1756 for (int i = 0; i < (1 << order); i++) { 1757 struct page *p = page + i; 1758 1759 if (check_new_page(p)) 1760 return true; 1761 } 1762 } 1763 1764 return false; 1765 } 1766 1767 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1768 { 1769 /* Don't skip if a software KASAN mode is enabled. */ 1770 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1771 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1772 return false; 1773 1774 /* Skip, if hardware tag-based KASAN is not enabled. */ 1775 if (!kasan_hw_tags_enabled()) 1776 return true; 1777 1778 /* 1779 * With hardware tag-based KASAN enabled, skip if this has been 1780 * requested via __GFP_SKIP_KASAN. 1781 */ 1782 return flags & __GFP_SKIP_KASAN; 1783 } 1784 1785 static inline bool should_skip_init(gfp_t flags) 1786 { 1787 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1788 if (!kasan_hw_tags_enabled()) 1789 return false; 1790 1791 /* For hardware tag-based KASAN, skip if requested. */ 1792 return (flags & __GFP_SKIP_ZERO); 1793 } 1794 1795 inline void post_alloc_hook(struct page *page, unsigned int order, 1796 gfp_t gfp_flags) 1797 { 1798 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1799 !should_skip_init(gfp_flags); 1800 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1801 int i; 1802 1803 set_page_private(page, 0); 1804 1805 arch_alloc_page(page, order); 1806 debug_pagealloc_map_pages(page, 1 << order); 1807 1808 /* 1809 * Page unpoisoning must happen before memory initialization. 1810 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1811 * allocations and the page unpoisoning code will complain. 1812 */ 1813 kernel_unpoison_pages(page, 1 << order); 1814 1815 /* 1816 * As memory initialization might be integrated into KASAN, 1817 * KASAN unpoisoning and memory initializion code must be 1818 * kept together to avoid discrepancies in behavior. 1819 */ 1820 1821 /* 1822 * If memory tags should be zeroed 1823 * (which happens only when memory should be initialized as well). 1824 */ 1825 if (zero_tags) { 1826 /* Initialize both memory and memory tags. */ 1827 for (i = 0; i != 1 << order; ++i) 1828 tag_clear_highpage(page + i); 1829 1830 /* Take note that memory was initialized by the loop above. */ 1831 init = false; 1832 } 1833 if (!should_skip_kasan_unpoison(gfp_flags) && 1834 kasan_unpoison_pages(page, order, init)) { 1835 /* Take note that memory was initialized by KASAN. */ 1836 if (kasan_has_integrated_init()) 1837 init = false; 1838 } else { 1839 /* 1840 * If memory tags have not been set by KASAN, reset the page 1841 * tags to ensure page_address() dereferencing does not fault. 1842 */ 1843 for (i = 0; i != 1 << order; ++i) 1844 page_kasan_tag_reset(page + i); 1845 } 1846 /* If memory is still not initialized, initialize it now. */ 1847 if (init) 1848 kernel_init_pages(page, 1 << order); 1849 1850 set_page_owner(page, order, gfp_flags); 1851 page_table_check_alloc(page, order); 1852 pgalloc_tag_add(page, current, 1 << order); 1853 } 1854 1855 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1856 unsigned int alloc_flags) 1857 { 1858 post_alloc_hook(page, order, gfp_flags); 1859 1860 if (order && (gfp_flags & __GFP_COMP)) 1861 prep_compound_page(page, order); 1862 1863 /* 1864 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1865 * allocate the page. The expectation is that the caller is taking 1866 * steps that will free more memory. The caller should avoid the page 1867 * being used for !PFMEMALLOC purposes. 1868 */ 1869 if (alloc_flags & ALLOC_NO_WATERMARKS) 1870 set_page_pfmemalloc(page); 1871 else 1872 clear_page_pfmemalloc(page); 1873 } 1874 1875 /* 1876 * Go through the free lists for the given migratetype and remove 1877 * the smallest available page from the freelists 1878 */ 1879 static __always_inline 1880 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1881 int migratetype) 1882 { 1883 unsigned int current_order; 1884 struct free_area *area; 1885 struct page *page; 1886 1887 /* Find a page of the appropriate size in the preferred list */ 1888 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1889 area = &(zone->free_area[current_order]); 1890 page = get_page_from_free_area(area, migratetype); 1891 if (!page) 1892 continue; 1893 1894 page_del_and_expand(zone, page, order, current_order, 1895 migratetype); 1896 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1897 pcp_allowed_order(order) && 1898 migratetype < MIGRATE_PCPTYPES); 1899 return page; 1900 } 1901 1902 return NULL; 1903 } 1904 1905 1906 /* 1907 * This array describes the order lists are fallen back to when 1908 * the free lists for the desirable migrate type are depleted 1909 * 1910 * The other migratetypes do not have fallbacks. 1911 */ 1912 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1913 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1914 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1915 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1916 }; 1917 1918 #ifdef CONFIG_CMA 1919 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1920 unsigned int order) 1921 { 1922 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1923 } 1924 #else 1925 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1926 unsigned int order) { return NULL; } 1927 #endif 1928 1929 /* 1930 * Move all free pages of a block to new type's freelist. Caller needs to 1931 * change the block type. 1932 */ 1933 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1934 int old_mt, int new_mt) 1935 { 1936 struct page *page; 1937 unsigned long pfn, end_pfn; 1938 unsigned int order; 1939 int pages_moved = 0; 1940 1941 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1942 end_pfn = pageblock_end_pfn(start_pfn); 1943 1944 for (pfn = start_pfn; pfn < end_pfn;) { 1945 page = pfn_to_page(pfn); 1946 if (!PageBuddy(page)) { 1947 pfn++; 1948 continue; 1949 } 1950 1951 /* Make sure we are not inadvertently changing nodes */ 1952 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1953 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1954 1955 order = buddy_order(page); 1956 1957 move_to_free_list(page, zone, order, old_mt, new_mt); 1958 1959 pfn += 1 << order; 1960 pages_moved += 1 << order; 1961 } 1962 1963 return pages_moved; 1964 } 1965 1966 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1967 unsigned long *start_pfn, 1968 int *num_free, int *num_movable) 1969 { 1970 unsigned long pfn, start, end; 1971 1972 pfn = page_to_pfn(page); 1973 start = pageblock_start_pfn(pfn); 1974 end = pageblock_end_pfn(pfn); 1975 1976 /* 1977 * The caller only has the lock for @zone, don't touch ranges 1978 * that straddle into other zones. While we could move part of 1979 * the range that's inside the zone, this call is usually 1980 * accompanied by other operations such as migratetype updates 1981 * which also should be locked. 1982 */ 1983 if (!zone_spans_pfn(zone, start)) 1984 return false; 1985 if (!zone_spans_pfn(zone, end - 1)) 1986 return false; 1987 1988 *start_pfn = start; 1989 1990 if (num_free) { 1991 *num_free = 0; 1992 *num_movable = 0; 1993 for (pfn = start; pfn < end;) { 1994 page = pfn_to_page(pfn); 1995 if (PageBuddy(page)) { 1996 int nr = 1 << buddy_order(page); 1997 1998 *num_free += nr; 1999 pfn += nr; 2000 continue; 2001 } 2002 /* 2003 * We assume that pages that could be isolated for 2004 * migration are movable. But we don't actually try 2005 * isolating, as that would be expensive. 2006 */ 2007 if (PageLRU(page) || page_has_movable_ops(page)) 2008 (*num_movable)++; 2009 pfn++; 2010 } 2011 } 2012 2013 return true; 2014 } 2015 2016 static int move_freepages_block(struct zone *zone, struct page *page, 2017 int old_mt, int new_mt) 2018 { 2019 unsigned long start_pfn; 2020 int res; 2021 2022 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2023 return -1; 2024 2025 res = __move_freepages_block(zone, start_pfn, old_mt, new_mt); 2026 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 2027 2028 return res; 2029 2030 } 2031 2032 #ifdef CONFIG_MEMORY_ISOLATION 2033 /* Look for a buddy that straddles start_pfn */ 2034 static unsigned long find_large_buddy(unsigned long start_pfn) 2035 { 2036 /* 2037 * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing 2038 * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking 2039 * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy, 2040 * the starting order does not matter. 2041 */ 2042 int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER; 2043 struct page *page; 2044 unsigned long pfn = start_pfn; 2045 2046 while (!PageBuddy(page = pfn_to_page(pfn))) { 2047 /* Nothing found */ 2048 if (++order > MAX_PAGE_ORDER) 2049 return start_pfn; 2050 pfn &= ~0UL << order; 2051 } 2052 2053 /* 2054 * Found a preceding buddy, but does it straddle? 2055 */ 2056 if (pfn + (1 << buddy_order(page)) > start_pfn) 2057 return pfn; 2058 2059 /* Nothing found */ 2060 return start_pfn; 2061 } 2062 2063 static inline void toggle_pageblock_isolate(struct page *page, bool isolate) 2064 { 2065 if (isolate) 2066 set_pageblock_isolate(page); 2067 else 2068 clear_pageblock_isolate(page); 2069 } 2070 2071 /** 2072 * __move_freepages_block_isolate - move free pages in block for page isolation 2073 * @zone: the zone 2074 * @page: the pageblock page 2075 * @isolate: to isolate the given pageblock or unisolate it 2076 * 2077 * This is similar to move_freepages_block(), but handles the special 2078 * case encountered in page isolation, where the block of interest 2079 * might be part of a larger buddy spanning multiple pageblocks. 2080 * 2081 * Unlike the regular page allocator path, which moves pages while 2082 * stealing buddies off the freelist, page isolation is interested in 2083 * arbitrary pfn ranges that may have overlapping buddies on both ends. 2084 * 2085 * This function handles that. Straddling buddies are split into 2086 * individual pageblocks. Only the block of interest is moved. 2087 * 2088 * Returns %true if pages could be moved, %false otherwise. 2089 */ 2090 static bool __move_freepages_block_isolate(struct zone *zone, 2091 struct page *page, bool isolate) 2092 { 2093 unsigned long start_pfn, buddy_pfn; 2094 int from_mt; 2095 int to_mt; 2096 struct page *buddy; 2097 2098 if (isolate == get_pageblock_isolate(page)) { 2099 VM_WARN_ONCE(1, "%s a pageblock that is already in that state", 2100 isolate ? "Isolate" : "Unisolate"); 2101 return false; 2102 } 2103 2104 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2105 return false; 2106 2107 /* No splits needed if buddies can't span multiple blocks */ 2108 if (pageblock_order == MAX_PAGE_ORDER) 2109 goto move; 2110 2111 buddy_pfn = find_large_buddy(start_pfn); 2112 buddy = pfn_to_page(buddy_pfn); 2113 /* We're a part of a larger buddy */ 2114 if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) { 2115 int order = buddy_order(buddy); 2116 2117 del_page_from_free_list(buddy, zone, order, 2118 get_pfnblock_migratetype(buddy, buddy_pfn)); 2119 toggle_pageblock_isolate(page, isolate); 2120 split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE); 2121 return true; 2122 } 2123 2124 move: 2125 /* Use MIGRATETYPE_MASK to get non-isolate migratetype */ 2126 if (isolate) { 2127 from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2128 MIGRATETYPE_MASK); 2129 to_mt = MIGRATE_ISOLATE; 2130 } else { 2131 from_mt = MIGRATE_ISOLATE; 2132 to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2133 MIGRATETYPE_MASK); 2134 } 2135 2136 __move_freepages_block(zone, start_pfn, from_mt, to_mt); 2137 toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate); 2138 2139 return true; 2140 } 2141 2142 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page) 2143 { 2144 return __move_freepages_block_isolate(zone, page, true); 2145 } 2146 2147 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page) 2148 { 2149 return __move_freepages_block_isolate(zone, page, false); 2150 } 2151 2152 #endif /* CONFIG_MEMORY_ISOLATION */ 2153 2154 static void change_pageblock_range(struct page *pageblock_page, 2155 int start_order, int migratetype) 2156 { 2157 int nr_pageblocks = 1 << (start_order - pageblock_order); 2158 2159 while (nr_pageblocks--) { 2160 set_pageblock_migratetype(pageblock_page, migratetype); 2161 pageblock_page += pageblock_nr_pages; 2162 } 2163 } 2164 2165 static inline bool boost_watermark(struct zone *zone) 2166 { 2167 unsigned long max_boost; 2168 2169 if (!watermark_boost_factor) 2170 return false; 2171 /* 2172 * Don't bother in zones that are unlikely to produce results. 2173 * On small machines, including kdump capture kernels running 2174 * in a small area, boosting the watermark can cause an out of 2175 * memory situation immediately. 2176 */ 2177 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2178 return false; 2179 2180 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2181 watermark_boost_factor, 10000); 2182 2183 /* 2184 * high watermark may be uninitialised if fragmentation occurs 2185 * very early in boot so do not boost. We do not fall 2186 * through and boost by pageblock_nr_pages as failing 2187 * allocations that early means that reclaim is not going 2188 * to help and it may even be impossible to reclaim the 2189 * boosted watermark resulting in a hang. 2190 */ 2191 if (!max_boost) 2192 return false; 2193 2194 max_boost = max(pageblock_nr_pages, max_boost); 2195 2196 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2197 max_boost); 2198 2199 return true; 2200 } 2201 2202 /* 2203 * When we are falling back to another migratetype during allocation, should we 2204 * try to claim an entire block to satisfy further allocations, instead of 2205 * polluting multiple pageblocks? 2206 */ 2207 static bool should_try_claim_block(unsigned int order, int start_mt) 2208 { 2209 /* 2210 * Leaving this order check is intended, although there is 2211 * relaxed order check in next check. The reason is that 2212 * we can actually claim the whole pageblock if this condition met, 2213 * but, below check doesn't guarantee it and that is just heuristic 2214 * so could be changed anytime. 2215 */ 2216 if (order >= pageblock_order) 2217 return true; 2218 2219 /* 2220 * Above a certain threshold, always try to claim, as it's likely there 2221 * will be more free pages in the pageblock. 2222 */ 2223 if (order >= pageblock_order / 2) 2224 return true; 2225 2226 /* 2227 * Unmovable/reclaimable allocations would cause permanent 2228 * fragmentations if they fell back to allocating from a movable block 2229 * (polluting it), so we try to claim the whole block regardless of the 2230 * allocation size. Later movable allocations can always steal from this 2231 * block, which is less problematic. 2232 */ 2233 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2234 return true; 2235 2236 if (page_group_by_mobility_disabled) 2237 return true; 2238 2239 /* 2240 * Movable pages won't cause permanent fragmentation, so when you alloc 2241 * small pages, we just need to temporarily steal unmovable or 2242 * reclaimable pages that are closest to the request size. After a 2243 * while, memory compaction may occur to form large contiguous pages, 2244 * and the next movable allocation may not need to steal. 2245 */ 2246 return false; 2247 } 2248 2249 /* 2250 * Check whether there is a suitable fallback freepage with requested order. 2251 * If claimable is true, this function returns fallback_mt only if 2252 * we would do this whole-block claiming. This would help to reduce 2253 * fragmentation due to mixed migratetype pages in one pageblock. 2254 */ 2255 int find_suitable_fallback(struct free_area *area, unsigned int order, 2256 int migratetype, bool claimable) 2257 { 2258 int i; 2259 2260 if (claimable && !should_try_claim_block(order, migratetype)) 2261 return -2; 2262 2263 if (area->nr_free == 0) 2264 return -1; 2265 2266 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2267 int fallback_mt = fallbacks[migratetype][i]; 2268 2269 if (!free_area_empty(area, fallback_mt)) 2270 return fallback_mt; 2271 } 2272 2273 return -1; 2274 } 2275 2276 /* 2277 * This function implements actual block claiming behaviour. If order is large 2278 * enough, we can claim the whole pageblock for the requested migratetype. If 2279 * not, we check the pageblock for constituent pages; if at least half of the 2280 * pages are free or compatible, we can still claim the whole block, so pages 2281 * freed in the future will be put on the correct free list. 2282 */ 2283 static struct page * 2284 try_to_claim_block(struct zone *zone, struct page *page, 2285 int current_order, int order, int start_type, 2286 int block_type, unsigned int alloc_flags) 2287 { 2288 int free_pages, movable_pages, alike_pages; 2289 unsigned long start_pfn; 2290 2291 /* Take ownership for orders >= pageblock_order */ 2292 if (current_order >= pageblock_order) { 2293 unsigned int nr_added; 2294 2295 del_page_from_free_list(page, zone, current_order, block_type); 2296 change_pageblock_range(page, current_order, start_type); 2297 nr_added = expand(zone, page, order, current_order, start_type); 2298 account_freepages(zone, nr_added, start_type); 2299 return page; 2300 } 2301 2302 /* 2303 * Boost watermarks to increase reclaim pressure to reduce the 2304 * likelihood of future fallbacks. Wake kswapd now as the node 2305 * may be balanced overall and kswapd will not wake naturally. 2306 */ 2307 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2308 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2309 2310 /* moving whole block can fail due to zone boundary conditions */ 2311 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2312 &movable_pages)) 2313 return NULL; 2314 2315 /* 2316 * Determine how many pages are compatible with our allocation. 2317 * For movable allocation, it's the number of movable pages which 2318 * we just obtained. For other types it's a bit more tricky. 2319 */ 2320 if (start_type == MIGRATE_MOVABLE) { 2321 alike_pages = movable_pages; 2322 } else { 2323 /* 2324 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2325 * to MOVABLE pageblock, consider all non-movable pages as 2326 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2327 * vice versa, be conservative since we can't distinguish the 2328 * exact migratetype of non-movable pages. 2329 */ 2330 if (block_type == MIGRATE_MOVABLE) 2331 alike_pages = pageblock_nr_pages 2332 - (free_pages + movable_pages); 2333 else 2334 alike_pages = 0; 2335 } 2336 /* 2337 * If a sufficient number of pages in the block are either free or of 2338 * compatible migratability as our allocation, claim the whole block. 2339 */ 2340 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2341 page_group_by_mobility_disabled) { 2342 __move_freepages_block(zone, start_pfn, block_type, start_type); 2343 set_pageblock_migratetype(pfn_to_page(start_pfn), start_type); 2344 return __rmqueue_smallest(zone, order, start_type); 2345 } 2346 2347 return NULL; 2348 } 2349 2350 /* 2351 * Try to allocate from some fallback migratetype by claiming the entire block, 2352 * i.e. converting it to the allocation's start migratetype. 2353 * 2354 * The use of signed ints for order and current_order is a deliberate 2355 * deviation from the rest of this file, to make the for loop 2356 * condition simpler. 2357 */ 2358 static __always_inline struct page * 2359 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2360 unsigned int alloc_flags) 2361 { 2362 struct free_area *area; 2363 int current_order; 2364 int min_order = order; 2365 struct page *page; 2366 int fallback_mt; 2367 2368 /* 2369 * Do not steal pages from freelists belonging to other pageblocks 2370 * i.e. orders < pageblock_order. If there are no local zones free, 2371 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2372 */ 2373 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2374 min_order = pageblock_order; 2375 2376 /* 2377 * Find the largest available free page in the other list. This roughly 2378 * approximates finding the pageblock with the most free pages, which 2379 * would be too costly to do exactly. 2380 */ 2381 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2382 --current_order) { 2383 area = &(zone->free_area[current_order]); 2384 fallback_mt = find_suitable_fallback(area, current_order, 2385 start_migratetype, true); 2386 2387 /* No block in that order */ 2388 if (fallback_mt == -1) 2389 continue; 2390 2391 /* Advanced into orders too low to claim, abort */ 2392 if (fallback_mt == -2) 2393 break; 2394 2395 page = get_page_from_free_area(area, fallback_mt); 2396 page = try_to_claim_block(zone, page, current_order, order, 2397 start_migratetype, fallback_mt, 2398 alloc_flags); 2399 if (page) { 2400 trace_mm_page_alloc_extfrag(page, order, current_order, 2401 start_migratetype, fallback_mt); 2402 return page; 2403 } 2404 } 2405 2406 return NULL; 2407 } 2408 2409 /* 2410 * Try to steal a single page from some fallback migratetype. Leave the rest of 2411 * the block as its current migratetype, potentially causing fragmentation. 2412 */ 2413 static __always_inline struct page * 2414 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2415 { 2416 struct free_area *area; 2417 int current_order; 2418 struct page *page; 2419 int fallback_mt; 2420 2421 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2422 area = &(zone->free_area[current_order]); 2423 fallback_mt = find_suitable_fallback(area, current_order, 2424 start_migratetype, false); 2425 if (fallback_mt == -1) 2426 continue; 2427 2428 page = get_page_from_free_area(area, fallback_mt); 2429 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2430 trace_mm_page_alloc_extfrag(page, order, current_order, 2431 start_migratetype, fallback_mt); 2432 return page; 2433 } 2434 2435 return NULL; 2436 } 2437 2438 enum rmqueue_mode { 2439 RMQUEUE_NORMAL, 2440 RMQUEUE_CMA, 2441 RMQUEUE_CLAIM, 2442 RMQUEUE_STEAL, 2443 }; 2444 2445 /* 2446 * Do the hard work of removing an element from the buddy allocator. 2447 * Call me with the zone->lock already held. 2448 */ 2449 static __always_inline struct page * 2450 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2451 unsigned int alloc_flags, enum rmqueue_mode *mode) 2452 { 2453 struct page *page; 2454 2455 if (IS_ENABLED(CONFIG_CMA)) { 2456 /* 2457 * Balance movable allocations between regular and CMA areas by 2458 * allocating from CMA when over half of the zone's free memory 2459 * is in the CMA area. 2460 */ 2461 if (alloc_flags & ALLOC_CMA && 2462 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2463 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2464 page = __rmqueue_cma_fallback(zone, order); 2465 if (page) 2466 return page; 2467 } 2468 } 2469 2470 /* 2471 * First try the freelists of the requested migratetype, then try 2472 * fallbacks modes with increasing levels of fragmentation risk. 2473 * 2474 * The fallback logic is expensive and rmqueue_bulk() calls in 2475 * a loop with the zone->lock held, meaning the freelists are 2476 * not subject to any outside changes. Remember in *mode where 2477 * we found pay dirt, to save us the search on the next call. 2478 */ 2479 switch (*mode) { 2480 case RMQUEUE_NORMAL: 2481 page = __rmqueue_smallest(zone, order, migratetype); 2482 if (page) 2483 return page; 2484 fallthrough; 2485 case RMQUEUE_CMA: 2486 if (alloc_flags & ALLOC_CMA) { 2487 page = __rmqueue_cma_fallback(zone, order); 2488 if (page) { 2489 *mode = RMQUEUE_CMA; 2490 return page; 2491 } 2492 } 2493 fallthrough; 2494 case RMQUEUE_CLAIM: 2495 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2496 if (page) { 2497 /* Replenished preferred freelist, back to normal mode. */ 2498 *mode = RMQUEUE_NORMAL; 2499 return page; 2500 } 2501 fallthrough; 2502 case RMQUEUE_STEAL: 2503 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2504 page = __rmqueue_steal(zone, order, migratetype); 2505 if (page) { 2506 *mode = RMQUEUE_STEAL; 2507 return page; 2508 } 2509 } 2510 } 2511 return NULL; 2512 } 2513 2514 /* 2515 * Obtain a specified number of elements from the buddy allocator, all under 2516 * a single hold of the lock, for efficiency. Add them to the supplied list. 2517 * Returns the number of new pages which were placed at *list. 2518 */ 2519 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2520 unsigned long count, struct list_head *list, 2521 int migratetype, unsigned int alloc_flags) 2522 { 2523 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2524 unsigned long flags; 2525 int i; 2526 2527 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2528 if (!spin_trylock_irqsave(&zone->lock, flags)) 2529 return 0; 2530 } else { 2531 spin_lock_irqsave(&zone->lock, flags); 2532 } 2533 for (i = 0; i < count; ++i) { 2534 struct page *page = __rmqueue(zone, order, migratetype, 2535 alloc_flags, &rmqm); 2536 if (unlikely(page == NULL)) 2537 break; 2538 2539 /* 2540 * Split buddy pages returned by expand() are received here in 2541 * physical page order. The page is added to the tail of 2542 * caller's list. From the callers perspective, the linked list 2543 * is ordered by page number under some conditions. This is 2544 * useful for IO devices that can forward direction from the 2545 * head, thus also in the physical page order. This is useful 2546 * for IO devices that can merge IO requests if the physical 2547 * pages are ordered properly. 2548 */ 2549 list_add_tail(&page->pcp_list, list); 2550 } 2551 spin_unlock_irqrestore(&zone->lock, flags); 2552 2553 return i; 2554 } 2555 2556 /* 2557 * Called from the vmstat counter updater to decay the PCP high. 2558 * Return whether there are addition works to do. 2559 */ 2560 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2561 { 2562 int high_min, to_drain, batch; 2563 int todo = 0; 2564 2565 high_min = READ_ONCE(pcp->high_min); 2566 batch = READ_ONCE(pcp->batch); 2567 /* 2568 * Decrease pcp->high periodically to try to free possible 2569 * idle PCP pages. And, avoid to free too many pages to 2570 * control latency. This caps pcp->high decrement too. 2571 */ 2572 if (pcp->high > high_min) { 2573 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2574 pcp->high - (pcp->high >> 3), high_min); 2575 if (pcp->high > high_min) 2576 todo++; 2577 } 2578 2579 to_drain = pcp->count - pcp->high; 2580 if (to_drain > 0) { 2581 spin_lock(&pcp->lock); 2582 free_pcppages_bulk(zone, to_drain, pcp, 0); 2583 spin_unlock(&pcp->lock); 2584 todo++; 2585 } 2586 2587 return todo; 2588 } 2589 2590 #ifdef CONFIG_NUMA 2591 /* 2592 * Called from the vmstat counter updater to drain pagesets of this 2593 * currently executing processor on remote nodes after they have 2594 * expired. 2595 */ 2596 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2597 { 2598 int to_drain, batch; 2599 2600 batch = READ_ONCE(pcp->batch); 2601 to_drain = min(pcp->count, batch); 2602 if (to_drain > 0) { 2603 spin_lock(&pcp->lock); 2604 free_pcppages_bulk(zone, to_drain, pcp, 0); 2605 spin_unlock(&pcp->lock); 2606 } 2607 } 2608 #endif 2609 2610 /* 2611 * Drain pcplists of the indicated processor and zone. 2612 */ 2613 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2614 { 2615 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2616 int count; 2617 2618 do { 2619 spin_lock(&pcp->lock); 2620 count = pcp->count; 2621 if (count) { 2622 int to_drain = min(count, 2623 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2624 2625 free_pcppages_bulk(zone, to_drain, pcp, 0); 2626 count -= to_drain; 2627 } 2628 spin_unlock(&pcp->lock); 2629 } while (count); 2630 } 2631 2632 /* 2633 * Drain pcplists of all zones on the indicated processor. 2634 */ 2635 static void drain_pages(unsigned int cpu) 2636 { 2637 struct zone *zone; 2638 2639 for_each_populated_zone(zone) { 2640 drain_pages_zone(cpu, zone); 2641 } 2642 } 2643 2644 /* 2645 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2646 */ 2647 void drain_local_pages(struct zone *zone) 2648 { 2649 int cpu = smp_processor_id(); 2650 2651 if (zone) 2652 drain_pages_zone(cpu, zone); 2653 else 2654 drain_pages(cpu); 2655 } 2656 2657 /* 2658 * The implementation of drain_all_pages(), exposing an extra parameter to 2659 * drain on all cpus. 2660 * 2661 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2662 * not empty. The check for non-emptiness can however race with a free to 2663 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2664 * that need the guarantee that every CPU has drained can disable the 2665 * optimizing racy check. 2666 */ 2667 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2668 { 2669 int cpu; 2670 2671 /* 2672 * Allocate in the BSS so we won't require allocation in 2673 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2674 */ 2675 static cpumask_t cpus_with_pcps; 2676 2677 /* 2678 * Do not drain if one is already in progress unless it's specific to 2679 * a zone. Such callers are primarily CMA and memory hotplug and need 2680 * the drain to be complete when the call returns. 2681 */ 2682 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2683 if (!zone) 2684 return; 2685 mutex_lock(&pcpu_drain_mutex); 2686 } 2687 2688 /* 2689 * We don't care about racing with CPU hotplug event 2690 * as offline notification will cause the notified 2691 * cpu to drain that CPU pcps and on_each_cpu_mask 2692 * disables preemption as part of its processing 2693 */ 2694 for_each_online_cpu(cpu) { 2695 struct per_cpu_pages *pcp; 2696 struct zone *z; 2697 bool has_pcps = false; 2698 2699 if (force_all_cpus) { 2700 /* 2701 * The pcp.count check is racy, some callers need a 2702 * guarantee that no cpu is missed. 2703 */ 2704 has_pcps = true; 2705 } else if (zone) { 2706 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2707 if (pcp->count) 2708 has_pcps = true; 2709 } else { 2710 for_each_populated_zone(z) { 2711 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2712 if (pcp->count) { 2713 has_pcps = true; 2714 break; 2715 } 2716 } 2717 } 2718 2719 if (has_pcps) 2720 cpumask_set_cpu(cpu, &cpus_with_pcps); 2721 else 2722 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2723 } 2724 2725 for_each_cpu(cpu, &cpus_with_pcps) { 2726 if (zone) 2727 drain_pages_zone(cpu, zone); 2728 else 2729 drain_pages(cpu); 2730 } 2731 2732 mutex_unlock(&pcpu_drain_mutex); 2733 } 2734 2735 /* 2736 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2737 * 2738 * When zone parameter is non-NULL, spill just the single zone's pages. 2739 */ 2740 void drain_all_pages(struct zone *zone) 2741 { 2742 __drain_all_pages(zone, false); 2743 } 2744 2745 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2746 { 2747 int min_nr_free, max_nr_free; 2748 2749 /* Free as much as possible if batch freeing high-order pages. */ 2750 if (unlikely(free_high)) 2751 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2752 2753 /* Check for PCP disabled or boot pageset */ 2754 if (unlikely(high < batch)) 2755 return 1; 2756 2757 /* Leave at least pcp->batch pages on the list */ 2758 min_nr_free = batch; 2759 max_nr_free = high - batch; 2760 2761 /* 2762 * Increase the batch number to the number of the consecutive 2763 * freed pages to reduce zone lock contention. 2764 */ 2765 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2766 2767 return batch; 2768 } 2769 2770 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2771 int batch, bool free_high) 2772 { 2773 int high, high_min, high_max; 2774 2775 high_min = READ_ONCE(pcp->high_min); 2776 high_max = READ_ONCE(pcp->high_max); 2777 high = pcp->high = clamp(pcp->high, high_min, high_max); 2778 2779 if (unlikely(!high)) 2780 return 0; 2781 2782 if (unlikely(free_high)) { 2783 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2784 high_min); 2785 return 0; 2786 } 2787 2788 /* 2789 * If reclaim is active, limit the number of pages that can be 2790 * stored on pcp lists 2791 */ 2792 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2793 int free_count = max_t(int, pcp->free_count, batch); 2794 2795 pcp->high = max(high - free_count, high_min); 2796 return min(batch << 2, pcp->high); 2797 } 2798 2799 if (high_min == high_max) 2800 return high; 2801 2802 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2803 int free_count = max_t(int, pcp->free_count, batch); 2804 2805 pcp->high = max(high - free_count, high_min); 2806 high = max(pcp->count, high_min); 2807 } else if (pcp->count >= high) { 2808 int need_high = pcp->free_count + batch; 2809 2810 /* pcp->high should be large enough to hold batch freed pages */ 2811 if (pcp->high < need_high) 2812 pcp->high = clamp(need_high, high_min, high_max); 2813 } 2814 2815 return high; 2816 } 2817 2818 static void free_frozen_page_commit(struct zone *zone, 2819 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2820 unsigned int order, fpi_t fpi_flags) 2821 { 2822 int high, batch; 2823 int pindex; 2824 bool free_high = false; 2825 2826 /* 2827 * On freeing, reduce the number of pages that are batch allocated. 2828 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2829 * allocations. 2830 */ 2831 pcp->alloc_factor >>= 1; 2832 __count_vm_events(PGFREE, 1 << order); 2833 pindex = order_to_pindex(migratetype, order); 2834 list_add(&page->pcp_list, &pcp->lists[pindex]); 2835 pcp->count += 1 << order; 2836 2837 batch = READ_ONCE(pcp->batch); 2838 /* 2839 * As high-order pages other than THP's stored on PCP can contribute 2840 * to fragmentation, limit the number stored when PCP is heavily 2841 * freeing without allocation. The remainder after bulk freeing 2842 * stops will be drained from vmstat refresh context. 2843 */ 2844 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2845 free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && 2846 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2847 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2848 pcp->count >= batch)); 2849 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2850 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2851 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2852 } 2853 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2854 pcp->free_count += (1 << order); 2855 2856 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2857 /* 2858 * Do not attempt to take a zone lock. Let pcp->count get 2859 * over high mark temporarily. 2860 */ 2861 return; 2862 } 2863 2864 high = nr_pcp_high(pcp, zone, batch, free_high); 2865 if (pcp->count < high) 2866 return; 2867 2868 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2869 pcp, pindex); 2870 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2871 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2872 ZONE_MOVABLE, 0)) { 2873 struct pglist_data *pgdat = zone->zone_pgdat; 2874 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2875 2876 /* 2877 * Assume that memory pressure on this node is gone and may be 2878 * in a reclaimable state. If a memory fallback node exists, 2879 * direct reclaim may not have been triggered, causing a 2880 * 'hopeless node' to stay in that state for a while. Let 2881 * kswapd work again by resetting kswapd_failures. 2882 */ 2883 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES && 2884 next_memory_node(pgdat->node_id) < MAX_NUMNODES) 2885 atomic_set(&pgdat->kswapd_failures, 0); 2886 } 2887 } 2888 2889 /* 2890 * Free a pcp page 2891 */ 2892 static void __free_frozen_pages(struct page *page, unsigned int order, 2893 fpi_t fpi_flags) 2894 { 2895 unsigned long __maybe_unused UP_flags; 2896 struct per_cpu_pages *pcp; 2897 struct zone *zone; 2898 unsigned long pfn = page_to_pfn(page); 2899 int migratetype; 2900 2901 if (!pcp_allowed_order(order)) { 2902 __free_pages_ok(page, order, fpi_flags); 2903 return; 2904 } 2905 2906 if (!free_pages_prepare(page, order)) 2907 return; 2908 2909 /* 2910 * We only track unmovable, reclaimable and movable on pcp lists. 2911 * Place ISOLATE pages on the isolated list because they are being 2912 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2913 * get those areas back if necessary. Otherwise, we may have to free 2914 * excessively into the page allocator 2915 */ 2916 zone = page_zone(page); 2917 migratetype = get_pfnblock_migratetype(page, pfn); 2918 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2919 if (unlikely(is_migrate_isolate(migratetype))) { 2920 free_one_page(zone, page, pfn, order, fpi_flags); 2921 return; 2922 } 2923 migratetype = MIGRATE_MOVABLE; 2924 } 2925 2926 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2927 && (in_nmi() || in_hardirq()))) { 2928 add_page_to_zone_llist(zone, page, order); 2929 return; 2930 } 2931 pcp_trylock_prepare(UP_flags); 2932 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2933 if (pcp) { 2934 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2935 pcp_spin_unlock(pcp); 2936 } else { 2937 free_one_page(zone, page, pfn, order, fpi_flags); 2938 } 2939 pcp_trylock_finish(UP_flags); 2940 } 2941 2942 void free_frozen_pages(struct page *page, unsigned int order) 2943 { 2944 __free_frozen_pages(page, order, FPI_NONE); 2945 } 2946 2947 /* 2948 * Free a batch of folios 2949 */ 2950 void free_unref_folios(struct folio_batch *folios) 2951 { 2952 unsigned long __maybe_unused UP_flags; 2953 struct per_cpu_pages *pcp = NULL; 2954 struct zone *locked_zone = NULL; 2955 int i, j; 2956 2957 /* Prepare folios for freeing */ 2958 for (i = 0, j = 0; i < folios->nr; i++) { 2959 struct folio *folio = folios->folios[i]; 2960 unsigned long pfn = folio_pfn(folio); 2961 unsigned int order = folio_order(folio); 2962 2963 if (!free_pages_prepare(&folio->page, order)) 2964 continue; 2965 /* 2966 * Free orders not handled on the PCP directly to the 2967 * allocator. 2968 */ 2969 if (!pcp_allowed_order(order)) { 2970 free_one_page(folio_zone(folio), &folio->page, 2971 pfn, order, FPI_NONE); 2972 continue; 2973 } 2974 folio->private = (void *)(unsigned long)order; 2975 if (j != i) 2976 folios->folios[j] = folio; 2977 j++; 2978 } 2979 folios->nr = j; 2980 2981 for (i = 0; i < folios->nr; i++) { 2982 struct folio *folio = folios->folios[i]; 2983 struct zone *zone = folio_zone(folio); 2984 unsigned long pfn = folio_pfn(folio); 2985 unsigned int order = (unsigned long)folio->private; 2986 int migratetype; 2987 2988 folio->private = NULL; 2989 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2990 2991 /* Different zone requires a different pcp lock */ 2992 if (zone != locked_zone || 2993 is_migrate_isolate(migratetype)) { 2994 if (pcp) { 2995 pcp_spin_unlock(pcp); 2996 pcp_trylock_finish(UP_flags); 2997 locked_zone = NULL; 2998 pcp = NULL; 2999 } 3000 3001 /* 3002 * Free isolated pages directly to the 3003 * allocator, see comment in free_frozen_pages. 3004 */ 3005 if (is_migrate_isolate(migratetype)) { 3006 free_one_page(zone, &folio->page, pfn, 3007 order, FPI_NONE); 3008 continue; 3009 } 3010 3011 /* 3012 * trylock is necessary as folios may be getting freed 3013 * from IRQ or SoftIRQ context after an IO completion. 3014 */ 3015 pcp_trylock_prepare(UP_flags); 3016 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3017 if (unlikely(!pcp)) { 3018 pcp_trylock_finish(UP_flags); 3019 free_one_page(zone, &folio->page, pfn, 3020 order, FPI_NONE); 3021 continue; 3022 } 3023 locked_zone = zone; 3024 } 3025 3026 /* 3027 * Non-isolated types over MIGRATE_PCPTYPES get added 3028 * to the MIGRATE_MOVABLE pcp list. 3029 */ 3030 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3031 migratetype = MIGRATE_MOVABLE; 3032 3033 trace_mm_page_free_batched(&folio->page); 3034 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 3035 order, FPI_NONE); 3036 } 3037 3038 if (pcp) { 3039 pcp_spin_unlock(pcp); 3040 pcp_trylock_finish(UP_flags); 3041 } 3042 folio_batch_reinit(folios); 3043 } 3044 3045 /* 3046 * split_page takes a non-compound higher-order page, and splits it into 3047 * n (1<<order) sub-pages: page[0..n] 3048 * Each sub-page must be freed individually. 3049 * 3050 * Note: this is probably too low level an operation for use in drivers. 3051 * Please consult with lkml before using this in your driver. 3052 */ 3053 void split_page(struct page *page, unsigned int order) 3054 { 3055 int i; 3056 3057 VM_BUG_ON_PAGE(PageCompound(page), page); 3058 VM_BUG_ON_PAGE(!page_count(page), page); 3059 3060 for (i = 1; i < (1 << order); i++) 3061 set_page_refcounted(page + i); 3062 split_page_owner(page, order, 0); 3063 pgalloc_tag_split(page_folio(page), order, 0); 3064 split_page_memcg(page, order); 3065 } 3066 EXPORT_SYMBOL_GPL(split_page); 3067 3068 int __isolate_free_page(struct page *page, unsigned int order) 3069 { 3070 struct zone *zone = page_zone(page); 3071 int mt = get_pageblock_migratetype(page); 3072 3073 if (!is_migrate_isolate(mt)) { 3074 unsigned long watermark; 3075 /* 3076 * Obey watermarks as if the page was being allocated. We can 3077 * emulate a high-order watermark check with a raised order-0 3078 * watermark, because we already know our high-order page 3079 * exists. 3080 */ 3081 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3082 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3083 return 0; 3084 } 3085 3086 del_page_from_free_list(page, zone, order, mt); 3087 3088 /* 3089 * Set the pageblock if the isolated page is at least half of a 3090 * pageblock 3091 */ 3092 if (order >= pageblock_order - 1) { 3093 struct page *endpage = page + (1 << order) - 1; 3094 for (; page < endpage; page += pageblock_nr_pages) { 3095 int mt = get_pageblock_migratetype(page); 3096 /* 3097 * Only change normal pageblocks (i.e., they can merge 3098 * with others) 3099 */ 3100 if (migratetype_is_mergeable(mt)) 3101 move_freepages_block(zone, page, mt, 3102 MIGRATE_MOVABLE); 3103 } 3104 } 3105 3106 return 1UL << order; 3107 } 3108 3109 /** 3110 * __putback_isolated_page - Return a now-isolated page back where we got it 3111 * @page: Page that was isolated 3112 * @order: Order of the isolated page 3113 * @mt: The page's pageblock's migratetype 3114 * 3115 * This function is meant to return a page pulled from the free lists via 3116 * __isolate_free_page back to the free lists they were pulled from. 3117 */ 3118 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3119 { 3120 struct zone *zone = page_zone(page); 3121 3122 /* zone lock should be held when this function is called */ 3123 lockdep_assert_held(&zone->lock); 3124 3125 /* Return isolated page to tail of freelist. */ 3126 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3127 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3128 } 3129 3130 /* 3131 * Update NUMA hit/miss statistics 3132 */ 3133 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3134 long nr_account) 3135 { 3136 #ifdef CONFIG_NUMA 3137 enum numa_stat_item local_stat = NUMA_LOCAL; 3138 3139 /* skip numa counters update if numa stats is disabled */ 3140 if (!static_branch_likely(&vm_numa_stat_key)) 3141 return; 3142 3143 if (zone_to_nid(z) != numa_node_id()) 3144 local_stat = NUMA_OTHER; 3145 3146 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3147 __count_numa_events(z, NUMA_HIT, nr_account); 3148 else { 3149 __count_numa_events(z, NUMA_MISS, nr_account); 3150 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3151 } 3152 __count_numa_events(z, local_stat, nr_account); 3153 #endif 3154 } 3155 3156 static __always_inline 3157 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3158 unsigned int order, unsigned int alloc_flags, 3159 int migratetype) 3160 { 3161 struct page *page; 3162 unsigned long flags; 3163 3164 do { 3165 page = NULL; 3166 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 3167 if (!spin_trylock_irqsave(&zone->lock, flags)) 3168 return NULL; 3169 } else { 3170 spin_lock_irqsave(&zone->lock, flags); 3171 } 3172 if (alloc_flags & ALLOC_HIGHATOMIC) 3173 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3174 if (!page) { 3175 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 3176 3177 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 3178 3179 /* 3180 * If the allocation fails, allow OOM handling and 3181 * order-0 (atomic) allocs access to HIGHATOMIC 3182 * reserves as failing now is worse than failing a 3183 * high-order atomic allocation in the future. 3184 */ 3185 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3186 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3187 3188 if (!page) { 3189 spin_unlock_irqrestore(&zone->lock, flags); 3190 return NULL; 3191 } 3192 } 3193 spin_unlock_irqrestore(&zone->lock, flags); 3194 } while (check_new_pages(page, order)); 3195 3196 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3197 zone_statistics(preferred_zone, zone, 1); 3198 3199 return page; 3200 } 3201 3202 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3203 { 3204 int high, base_batch, batch, max_nr_alloc; 3205 int high_max, high_min; 3206 3207 base_batch = READ_ONCE(pcp->batch); 3208 high_min = READ_ONCE(pcp->high_min); 3209 high_max = READ_ONCE(pcp->high_max); 3210 high = pcp->high = clamp(pcp->high, high_min, high_max); 3211 3212 /* Check for PCP disabled or boot pageset */ 3213 if (unlikely(high < base_batch)) 3214 return 1; 3215 3216 if (order) 3217 batch = base_batch; 3218 else 3219 batch = (base_batch << pcp->alloc_factor); 3220 3221 /* 3222 * If we had larger pcp->high, we could avoid to allocate from 3223 * zone. 3224 */ 3225 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3226 high = pcp->high = min(high + batch, high_max); 3227 3228 if (!order) { 3229 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3230 /* 3231 * Double the number of pages allocated each time there is 3232 * subsequent allocation of order-0 pages without any freeing. 3233 */ 3234 if (batch <= max_nr_alloc && 3235 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3236 pcp->alloc_factor++; 3237 batch = min(batch, max_nr_alloc); 3238 } 3239 3240 /* 3241 * Scale batch relative to order if batch implies free pages 3242 * can be stored on the PCP. Batch can be 1 for small zones or 3243 * for boot pagesets which should never store free pages as 3244 * the pages may belong to arbitrary zones. 3245 */ 3246 if (batch > 1) 3247 batch = max(batch >> order, 2); 3248 3249 return batch; 3250 } 3251 3252 /* Remove page from the per-cpu list, caller must protect the list */ 3253 static inline 3254 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3255 int migratetype, 3256 unsigned int alloc_flags, 3257 struct per_cpu_pages *pcp, 3258 struct list_head *list) 3259 { 3260 struct page *page; 3261 3262 do { 3263 if (list_empty(list)) { 3264 int batch = nr_pcp_alloc(pcp, zone, order); 3265 int alloced; 3266 3267 alloced = rmqueue_bulk(zone, order, 3268 batch, list, 3269 migratetype, alloc_flags); 3270 3271 pcp->count += alloced << order; 3272 if (unlikely(list_empty(list))) 3273 return NULL; 3274 } 3275 3276 page = list_first_entry(list, struct page, pcp_list); 3277 list_del(&page->pcp_list); 3278 pcp->count -= 1 << order; 3279 } while (check_new_pages(page, order)); 3280 3281 return page; 3282 } 3283 3284 /* Lock and remove page from the per-cpu list */ 3285 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3286 struct zone *zone, unsigned int order, 3287 int migratetype, unsigned int alloc_flags) 3288 { 3289 struct per_cpu_pages *pcp; 3290 struct list_head *list; 3291 struct page *page; 3292 unsigned long __maybe_unused UP_flags; 3293 3294 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3295 pcp_trylock_prepare(UP_flags); 3296 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3297 if (!pcp) { 3298 pcp_trylock_finish(UP_flags); 3299 return NULL; 3300 } 3301 3302 /* 3303 * On allocation, reduce the number of pages that are batch freed. 3304 * See nr_pcp_free() where free_factor is increased for subsequent 3305 * frees. 3306 */ 3307 pcp->free_count >>= 1; 3308 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3309 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3310 pcp_spin_unlock(pcp); 3311 pcp_trylock_finish(UP_flags); 3312 if (page) { 3313 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3314 zone_statistics(preferred_zone, zone, 1); 3315 } 3316 return page; 3317 } 3318 3319 /* 3320 * Allocate a page from the given zone. 3321 * Use pcplists for THP or "cheap" high-order allocations. 3322 */ 3323 3324 /* 3325 * Do not instrument rmqueue() with KMSAN. This function may call 3326 * __msan_poison_alloca() through a call to set_pfnblock_migratetype(). 3327 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3328 * may call rmqueue() again, which will result in a deadlock. 3329 */ 3330 __no_sanitize_memory 3331 static inline 3332 struct page *rmqueue(struct zone *preferred_zone, 3333 struct zone *zone, unsigned int order, 3334 gfp_t gfp_flags, unsigned int alloc_flags, 3335 int migratetype) 3336 { 3337 struct page *page; 3338 3339 if (likely(pcp_allowed_order(order))) { 3340 page = rmqueue_pcplist(preferred_zone, zone, order, 3341 migratetype, alloc_flags); 3342 if (likely(page)) 3343 goto out; 3344 } 3345 3346 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3347 migratetype); 3348 3349 out: 3350 /* Separate test+clear to avoid unnecessary atomics */ 3351 if ((alloc_flags & ALLOC_KSWAPD) && 3352 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3353 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3354 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3355 } 3356 3357 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3358 return page; 3359 } 3360 3361 /* 3362 * Reserve the pageblock(s) surrounding an allocation request for 3363 * exclusive use of high-order atomic allocations if there are no 3364 * empty page blocks that contain a page with a suitable order 3365 */ 3366 static void reserve_highatomic_pageblock(struct page *page, int order, 3367 struct zone *zone) 3368 { 3369 int mt; 3370 unsigned long max_managed, flags; 3371 3372 /* 3373 * The number reserved as: minimum is 1 pageblock, maximum is 3374 * roughly 1% of a zone. But if 1% of a zone falls below a 3375 * pageblock size, then don't reserve any pageblocks. 3376 * Check is race-prone but harmless. 3377 */ 3378 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3379 return; 3380 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3381 if (zone->nr_reserved_highatomic >= max_managed) 3382 return; 3383 3384 spin_lock_irqsave(&zone->lock, flags); 3385 3386 /* Recheck the nr_reserved_highatomic limit under the lock */ 3387 if (zone->nr_reserved_highatomic >= max_managed) 3388 goto out_unlock; 3389 3390 /* Yoink! */ 3391 mt = get_pageblock_migratetype(page); 3392 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3393 if (!migratetype_is_mergeable(mt)) 3394 goto out_unlock; 3395 3396 if (order < pageblock_order) { 3397 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3398 goto out_unlock; 3399 zone->nr_reserved_highatomic += pageblock_nr_pages; 3400 } else { 3401 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3402 zone->nr_reserved_highatomic += 1 << order; 3403 } 3404 3405 out_unlock: 3406 spin_unlock_irqrestore(&zone->lock, flags); 3407 } 3408 3409 /* 3410 * Used when an allocation is about to fail under memory pressure. This 3411 * potentially hurts the reliability of high-order allocations when under 3412 * intense memory pressure but failed atomic allocations should be easier 3413 * to recover from than an OOM. 3414 * 3415 * If @force is true, try to unreserve pageblocks even though highatomic 3416 * pageblock is exhausted. 3417 */ 3418 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3419 bool force) 3420 { 3421 struct zonelist *zonelist = ac->zonelist; 3422 unsigned long flags; 3423 struct zoneref *z; 3424 struct zone *zone; 3425 struct page *page; 3426 int order; 3427 int ret; 3428 3429 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3430 ac->nodemask) { 3431 /* 3432 * Preserve at least one pageblock unless memory pressure 3433 * is really high. 3434 */ 3435 if (!force && zone->nr_reserved_highatomic <= 3436 pageblock_nr_pages) 3437 continue; 3438 3439 spin_lock_irqsave(&zone->lock, flags); 3440 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3441 struct free_area *area = &(zone->free_area[order]); 3442 unsigned long size; 3443 3444 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3445 if (!page) 3446 continue; 3447 3448 size = max(pageblock_nr_pages, 1UL << order); 3449 /* 3450 * It should never happen but changes to 3451 * locking could inadvertently allow a per-cpu 3452 * drain to add pages to MIGRATE_HIGHATOMIC 3453 * while unreserving so be safe and watch for 3454 * underflows. 3455 */ 3456 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3457 size = zone->nr_reserved_highatomic; 3458 zone->nr_reserved_highatomic -= size; 3459 3460 /* 3461 * Convert to ac->migratetype and avoid the normal 3462 * pageblock stealing heuristics. Minimally, the caller 3463 * is doing the work and needs the pages. More 3464 * importantly, if the block was always converted to 3465 * MIGRATE_UNMOVABLE or another type then the number 3466 * of pageblocks that cannot be completely freed 3467 * may increase. 3468 */ 3469 if (order < pageblock_order) 3470 ret = move_freepages_block(zone, page, 3471 MIGRATE_HIGHATOMIC, 3472 ac->migratetype); 3473 else { 3474 move_to_free_list(page, zone, order, 3475 MIGRATE_HIGHATOMIC, 3476 ac->migratetype); 3477 change_pageblock_range(page, order, 3478 ac->migratetype); 3479 ret = 1; 3480 } 3481 /* 3482 * Reserving the block(s) already succeeded, 3483 * so this should not fail on zone boundaries. 3484 */ 3485 WARN_ON_ONCE(ret == -1); 3486 if (ret > 0) { 3487 spin_unlock_irqrestore(&zone->lock, flags); 3488 return ret; 3489 } 3490 } 3491 spin_unlock_irqrestore(&zone->lock, flags); 3492 } 3493 3494 return false; 3495 } 3496 3497 static inline long __zone_watermark_unusable_free(struct zone *z, 3498 unsigned int order, unsigned int alloc_flags) 3499 { 3500 long unusable_free = (1 << order) - 1; 3501 3502 /* 3503 * If the caller does not have rights to reserves below the min 3504 * watermark then subtract the free pages reserved for highatomic. 3505 */ 3506 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3507 unusable_free += READ_ONCE(z->nr_free_highatomic); 3508 3509 #ifdef CONFIG_CMA 3510 /* If allocation can't use CMA areas don't use free CMA pages */ 3511 if (!(alloc_flags & ALLOC_CMA)) 3512 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3513 #endif 3514 3515 return unusable_free; 3516 } 3517 3518 /* 3519 * Return true if free base pages are above 'mark'. For high-order checks it 3520 * will return true of the order-0 watermark is reached and there is at least 3521 * one free page of a suitable size. Checking now avoids taking the zone lock 3522 * to check in the allocation paths if no pages are free. 3523 */ 3524 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3525 int highest_zoneidx, unsigned int alloc_flags, 3526 long free_pages) 3527 { 3528 long min = mark; 3529 int o; 3530 3531 /* free_pages may go negative - that's OK */ 3532 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3533 3534 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3535 /* 3536 * __GFP_HIGH allows access to 50% of the min reserve as well 3537 * as OOM. 3538 */ 3539 if (alloc_flags & ALLOC_MIN_RESERVE) { 3540 min -= min / 2; 3541 3542 /* 3543 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3544 * access more reserves than just __GFP_HIGH. Other 3545 * non-blocking allocations requests such as GFP_NOWAIT 3546 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3547 * access to the min reserve. 3548 */ 3549 if (alloc_flags & ALLOC_NON_BLOCK) 3550 min -= min / 4; 3551 } 3552 3553 /* 3554 * OOM victims can try even harder than the normal reserve 3555 * users on the grounds that it's definitely going to be in 3556 * the exit path shortly and free memory. Any allocation it 3557 * makes during the free path will be small and short-lived. 3558 */ 3559 if (alloc_flags & ALLOC_OOM) 3560 min -= min / 2; 3561 } 3562 3563 /* 3564 * Check watermarks for an order-0 allocation request. If these 3565 * are not met, then a high-order request also cannot go ahead 3566 * even if a suitable page happened to be free. 3567 */ 3568 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3569 return false; 3570 3571 /* If this is an order-0 request then the watermark is fine */ 3572 if (!order) 3573 return true; 3574 3575 /* For a high-order request, check at least one suitable page is free */ 3576 for (o = order; o < NR_PAGE_ORDERS; o++) { 3577 struct free_area *area = &z->free_area[o]; 3578 int mt; 3579 3580 if (!area->nr_free) 3581 continue; 3582 3583 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3584 if (!free_area_empty(area, mt)) 3585 return true; 3586 } 3587 3588 #ifdef CONFIG_CMA 3589 if ((alloc_flags & ALLOC_CMA) && 3590 !free_area_empty(area, MIGRATE_CMA)) { 3591 return true; 3592 } 3593 #endif 3594 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3595 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3596 return true; 3597 } 3598 } 3599 return false; 3600 } 3601 3602 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3603 int highest_zoneidx, unsigned int alloc_flags) 3604 { 3605 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3606 zone_page_state(z, NR_FREE_PAGES)); 3607 } 3608 3609 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3610 unsigned long mark, int highest_zoneidx, 3611 unsigned int alloc_flags, gfp_t gfp_mask) 3612 { 3613 long free_pages; 3614 3615 free_pages = zone_page_state(z, NR_FREE_PAGES); 3616 3617 /* 3618 * Fast check for order-0 only. If this fails then the reserves 3619 * need to be calculated. 3620 */ 3621 if (!order) { 3622 long usable_free; 3623 long reserved; 3624 3625 usable_free = free_pages; 3626 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3627 3628 /* reserved may over estimate high-atomic reserves. */ 3629 usable_free -= min(usable_free, reserved); 3630 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3631 return true; 3632 } 3633 3634 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3635 free_pages)) 3636 return true; 3637 3638 /* 3639 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3640 * when checking the min watermark. The min watermark is the 3641 * point where boosting is ignored so that kswapd is woken up 3642 * when below the low watermark. 3643 */ 3644 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3645 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3646 mark = z->_watermark[WMARK_MIN]; 3647 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3648 alloc_flags, free_pages); 3649 } 3650 3651 return false; 3652 } 3653 3654 #ifdef CONFIG_NUMA 3655 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3656 3657 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3658 { 3659 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3660 node_reclaim_distance; 3661 } 3662 #else /* CONFIG_NUMA */ 3663 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3664 { 3665 return true; 3666 } 3667 #endif /* CONFIG_NUMA */ 3668 3669 /* 3670 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3671 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3672 * premature use of a lower zone may cause lowmem pressure problems that 3673 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3674 * probably too small. It only makes sense to spread allocations to avoid 3675 * fragmentation between the Normal and DMA32 zones. 3676 */ 3677 static inline unsigned int 3678 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3679 { 3680 unsigned int alloc_flags; 3681 3682 /* 3683 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3684 * to save a branch. 3685 */ 3686 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3687 3688 if (defrag_mode) { 3689 alloc_flags |= ALLOC_NOFRAGMENT; 3690 return alloc_flags; 3691 } 3692 3693 #ifdef CONFIG_ZONE_DMA32 3694 if (!zone) 3695 return alloc_flags; 3696 3697 if (zone_idx(zone) != ZONE_NORMAL) 3698 return alloc_flags; 3699 3700 /* 3701 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3702 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3703 * on UMA that if Normal is populated then so is DMA32. 3704 */ 3705 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3706 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3707 return alloc_flags; 3708 3709 alloc_flags |= ALLOC_NOFRAGMENT; 3710 #endif /* CONFIG_ZONE_DMA32 */ 3711 return alloc_flags; 3712 } 3713 3714 /* Must be called after current_gfp_context() which can change gfp_mask */ 3715 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3716 unsigned int alloc_flags) 3717 { 3718 #ifdef CONFIG_CMA 3719 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3720 alloc_flags |= ALLOC_CMA; 3721 #endif 3722 return alloc_flags; 3723 } 3724 3725 /* 3726 * get_page_from_freelist goes through the zonelist trying to allocate 3727 * a page. 3728 */ 3729 static struct page * 3730 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3731 const struct alloc_context *ac) 3732 { 3733 struct zoneref *z; 3734 struct zone *zone; 3735 struct pglist_data *last_pgdat = NULL; 3736 bool last_pgdat_dirty_ok = false; 3737 bool no_fallback; 3738 3739 retry: 3740 /* 3741 * Scan zonelist, looking for a zone with enough free. 3742 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. 3743 */ 3744 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3745 z = ac->preferred_zoneref; 3746 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3747 ac->nodemask) { 3748 struct page *page; 3749 unsigned long mark; 3750 3751 if (cpusets_enabled() && 3752 (alloc_flags & ALLOC_CPUSET) && 3753 !__cpuset_zone_allowed(zone, gfp_mask)) 3754 continue; 3755 /* 3756 * When allocating a page cache page for writing, we 3757 * want to get it from a node that is within its dirty 3758 * limit, such that no single node holds more than its 3759 * proportional share of globally allowed dirty pages. 3760 * The dirty limits take into account the node's 3761 * lowmem reserves and high watermark so that kswapd 3762 * should be able to balance it without having to 3763 * write pages from its LRU list. 3764 * 3765 * XXX: For now, allow allocations to potentially 3766 * exceed the per-node dirty limit in the slowpath 3767 * (spread_dirty_pages unset) before going into reclaim, 3768 * which is important when on a NUMA setup the allowed 3769 * nodes are together not big enough to reach the 3770 * global limit. The proper fix for these situations 3771 * will require awareness of nodes in the 3772 * dirty-throttling and the flusher threads. 3773 */ 3774 if (ac->spread_dirty_pages) { 3775 if (last_pgdat != zone->zone_pgdat) { 3776 last_pgdat = zone->zone_pgdat; 3777 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3778 } 3779 3780 if (!last_pgdat_dirty_ok) 3781 continue; 3782 } 3783 3784 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3785 zone != zonelist_zone(ac->preferred_zoneref)) { 3786 int local_nid; 3787 3788 /* 3789 * If moving to a remote node, retry but allow 3790 * fragmenting fallbacks. Locality is more important 3791 * than fragmentation avoidance. 3792 */ 3793 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3794 if (zone_to_nid(zone) != local_nid) { 3795 alloc_flags &= ~ALLOC_NOFRAGMENT; 3796 goto retry; 3797 } 3798 } 3799 3800 cond_accept_memory(zone, order, alloc_flags); 3801 3802 /* 3803 * Detect whether the number of free pages is below high 3804 * watermark. If so, we will decrease pcp->high and free 3805 * PCP pages in free path to reduce the possibility of 3806 * premature page reclaiming. Detection is done here to 3807 * avoid to do that in hotter free path. 3808 */ 3809 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3810 goto check_alloc_wmark; 3811 3812 mark = high_wmark_pages(zone); 3813 if (zone_watermark_fast(zone, order, mark, 3814 ac->highest_zoneidx, alloc_flags, 3815 gfp_mask)) 3816 goto try_this_zone; 3817 else 3818 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3819 3820 check_alloc_wmark: 3821 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3822 if (!zone_watermark_fast(zone, order, mark, 3823 ac->highest_zoneidx, alloc_flags, 3824 gfp_mask)) { 3825 int ret; 3826 3827 if (cond_accept_memory(zone, order, alloc_flags)) 3828 goto try_this_zone; 3829 3830 /* 3831 * Watermark failed for this zone, but see if we can 3832 * grow this zone if it contains deferred pages. 3833 */ 3834 if (deferred_pages_enabled()) { 3835 if (_deferred_grow_zone(zone, order)) 3836 goto try_this_zone; 3837 } 3838 /* Checked here to keep the fast path fast */ 3839 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3840 if (alloc_flags & ALLOC_NO_WATERMARKS) 3841 goto try_this_zone; 3842 3843 if (!node_reclaim_enabled() || 3844 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3845 continue; 3846 3847 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3848 switch (ret) { 3849 case NODE_RECLAIM_NOSCAN: 3850 /* did not scan */ 3851 continue; 3852 case NODE_RECLAIM_FULL: 3853 /* scanned but unreclaimable */ 3854 continue; 3855 default: 3856 /* did we reclaim enough */ 3857 if (zone_watermark_ok(zone, order, mark, 3858 ac->highest_zoneidx, alloc_flags)) 3859 goto try_this_zone; 3860 3861 continue; 3862 } 3863 } 3864 3865 try_this_zone: 3866 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3867 gfp_mask, alloc_flags, ac->migratetype); 3868 if (page) { 3869 prep_new_page(page, order, gfp_mask, alloc_flags); 3870 3871 /* 3872 * If this is a high-order atomic allocation then check 3873 * if the pageblock should be reserved for the future 3874 */ 3875 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3876 reserve_highatomic_pageblock(page, order, zone); 3877 3878 return page; 3879 } else { 3880 if (cond_accept_memory(zone, order, alloc_flags)) 3881 goto try_this_zone; 3882 3883 /* Try again if zone has deferred pages */ 3884 if (deferred_pages_enabled()) { 3885 if (_deferred_grow_zone(zone, order)) 3886 goto try_this_zone; 3887 } 3888 } 3889 } 3890 3891 /* 3892 * It's possible on a UMA machine to get through all zones that are 3893 * fragmented. If avoiding fragmentation, reset and try again. 3894 */ 3895 if (no_fallback && !defrag_mode) { 3896 alloc_flags &= ~ALLOC_NOFRAGMENT; 3897 goto retry; 3898 } 3899 3900 return NULL; 3901 } 3902 3903 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3904 { 3905 unsigned int filter = SHOW_MEM_FILTER_NODES; 3906 3907 /* 3908 * This documents exceptions given to allocations in certain 3909 * contexts that are allowed to allocate outside current's set 3910 * of allowed nodes. 3911 */ 3912 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3913 if (tsk_is_oom_victim(current) || 3914 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3915 filter &= ~SHOW_MEM_FILTER_NODES; 3916 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3917 filter &= ~SHOW_MEM_FILTER_NODES; 3918 3919 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3920 } 3921 3922 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3923 { 3924 struct va_format vaf; 3925 va_list args; 3926 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3927 3928 if ((gfp_mask & __GFP_NOWARN) || 3929 !__ratelimit(&nopage_rs) || 3930 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3931 return; 3932 3933 va_start(args, fmt); 3934 vaf.fmt = fmt; 3935 vaf.va = &args; 3936 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3937 current->comm, &vaf, gfp_mask, &gfp_mask, 3938 nodemask_pr_args(nodemask)); 3939 va_end(args); 3940 3941 cpuset_print_current_mems_allowed(); 3942 pr_cont("\n"); 3943 dump_stack(); 3944 warn_alloc_show_mem(gfp_mask, nodemask); 3945 } 3946 3947 static inline struct page * 3948 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3949 unsigned int alloc_flags, 3950 const struct alloc_context *ac) 3951 { 3952 struct page *page; 3953 3954 page = get_page_from_freelist(gfp_mask, order, 3955 alloc_flags|ALLOC_CPUSET, ac); 3956 /* 3957 * fallback to ignore cpuset restriction if our nodes 3958 * are depleted 3959 */ 3960 if (!page) 3961 page = get_page_from_freelist(gfp_mask, order, 3962 alloc_flags, ac); 3963 return page; 3964 } 3965 3966 static inline struct page * 3967 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3968 const struct alloc_context *ac, unsigned long *did_some_progress) 3969 { 3970 struct oom_control oc = { 3971 .zonelist = ac->zonelist, 3972 .nodemask = ac->nodemask, 3973 .memcg = NULL, 3974 .gfp_mask = gfp_mask, 3975 .order = order, 3976 }; 3977 struct page *page; 3978 3979 *did_some_progress = 0; 3980 3981 /* 3982 * Acquire the oom lock. If that fails, somebody else is 3983 * making progress for us. 3984 */ 3985 if (!mutex_trylock(&oom_lock)) { 3986 *did_some_progress = 1; 3987 schedule_timeout_uninterruptible(1); 3988 return NULL; 3989 } 3990 3991 /* 3992 * Go through the zonelist yet one more time, keep very high watermark 3993 * here, this is only to catch a parallel oom killing, we must fail if 3994 * we're still under heavy pressure. But make sure that this reclaim 3995 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3996 * allocation which will never fail due to oom_lock already held. 3997 */ 3998 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3999 ~__GFP_DIRECT_RECLAIM, order, 4000 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4001 if (page) 4002 goto out; 4003 4004 /* Coredumps can quickly deplete all memory reserves */ 4005 if (current->flags & PF_DUMPCORE) 4006 goto out; 4007 /* The OOM killer will not help higher order allocs */ 4008 if (order > PAGE_ALLOC_COSTLY_ORDER) 4009 goto out; 4010 /* 4011 * We have already exhausted all our reclaim opportunities without any 4012 * success so it is time to admit defeat. We will skip the OOM killer 4013 * because it is very likely that the caller has a more reasonable 4014 * fallback than shooting a random task. 4015 * 4016 * The OOM killer may not free memory on a specific node. 4017 */ 4018 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4019 goto out; 4020 /* The OOM killer does not needlessly kill tasks for lowmem */ 4021 if (ac->highest_zoneidx < ZONE_NORMAL) 4022 goto out; 4023 if (pm_suspended_storage()) 4024 goto out; 4025 /* 4026 * XXX: GFP_NOFS allocations should rather fail than rely on 4027 * other request to make a forward progress. 4028 * We are in an unfortunate situation where out_of_memory cannot 4029 * do much for this context but let's try it to at least get 4030 * access to memory reserved if the current task is killed (see 4031 * out_of_memory). Once filesystems are ready to handle allocation 4032 * failures more gracefully we should just bail out here. 4033 */ 4034 4035 /* Exhausted what can be done so it's blame time */ 4036 if (out_of_memory(&oc) || 4037 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4038 *did_some_progress = 1; 4039 4040 /* 4041 * Help non-failing allocations by giving them access to memory 4042 * reserves 4043 */ 4044 if (gfp_mask & __GFP_NOFAIL) 4045 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4046 ALLOC_NO_WATERMARKS, ac); 4047 } 4048 out: 4049 mutex_unlock(&oom_lock); 4050 return page; 4051 } 4052 4053 /* 4054 * Maximum number of compaction retries with a progress before OOM 4055 * killer is consider as the only way to move forward. 4056 */ 4057 #define MAX_COMPACT_RETRIES 16 4058 4059 #ifdef CONFIG_COMPACTION 4060 /* Try memory compaction for high-order allocations before reclaim */ 4061 static struct page * 4062 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4063 unsigned int alloc_flags, const struct alloc_context *ac, 4064 enum compact_priority prio, enum compact_result *compact_result) 4065 { 4066 struct page *page = NULL; 4067 unsigned long pflags; 4068 unsigned int noreclaim_flag; 4069 4070 if (!order) 4071 return NULL; 4072 4073 psi_memstall_enter(&pflags); 4074 delayacct_compact_start(); 4075 noreclaim_flag = memalloc_noreclaim_save(); 4076 4077 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4078 prio, &page); 4079 4080 memalloc_noreclaim_restore(noreclaim_flag); 4081 psi_memstall_leave(&pflags); 4082 delayacct_compact_end(); 4083 4084 if (*compact_result == COMPACT_SKIPPED) 4085 return NULL; 4086 /* 4087 * At least in one zone compaction wasn't deferred or skipped, so let's 4088 * count a compaction stall 4089 */ 4090 count_vm_event(COMPACTSTALL); 4091 4092 /* Prep a captured page if available */ 4093 if (page) 4094 prep_new_page(page, order, gfp_mask, alloc_flags); 4095 4096 /* Try get a page from the freelist if available */ 4097 if (!page) 4098 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4099 4100 if (page) { 4101 struct zone *zone = page_zone(page); 4102 4103 zone->compact_blockskip_flush = false; 4104 compaction_defer_reset(zone, order, true); 4105 count_vm_event(COMPACTSUCCESS); 4106 return page; 4107 } 4108 4109 /* 4110 * It's bad if compaction run occurs and fails. The most likely reason 4111 * is that pages exist, but not enough to satisfy watermarks. 4112 */ 4113 count_vm_event(COMPACTFAIL); 4114 4115 cond_resched(); 4116 4117 return NULL; 4118 } 4119 4120 static inline bool 4121 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4122 enum compact_result compact_result, 4123 enum compact_priority *compact_priority, 4124 int *compaction_retries) 4125 { 4126 int max_retries = MAX_COMPACT_RETRIES; 4127 int min_priority; 4128 bool ret = false; 4129 int retries = *compaction_retries; 4130 enum compact_priority priority = *compact_priority; 4131 4132 if (!order) 4133 return false; 4134 4135 if (fatal_signal_pending(current)) 4136 return false; 4137 4138 /* 4139 * Compaction was skipped due to a lack of free order-0 4140 * migration targets. Continue if reclaim can help. 4141 */ 4142 if (compact_result == COMPACT_SKIPPED) { 4143 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4144 goto out; 4145 } 4146 4147 /* 4148 * Compaction managed to coalesce some page blocks, but the 4149 * allocation failed presumably due to a race. Retry some. 4150 */ 4151 if (compact_result == COMPACT_SUCCESS) { 4152 /* 4153 * !costly requests are much more important than 4154 * __GFP_RETRY_MAYFAIL costly ones because they are de 4155 * facto nofail and invoke OOM killer to move on while 4156 * costly can fail and users are ready to cope with 4157 * that. 1/4 retries is rather arbitrary but we would 4158 * need much more detailed feedback from compaction to 4159 * make a better decision. 4160 */ 4161 if (order > PAGE_ALLOC_COSTLY_ORDER) 4162 max_retries /= 4; 4163 4164 if (++(*compaction_retries) <= max_retries) { 4165 ret = true; 4166 goto out; 4167 } 4168 } 4169 4170 /* 4171 * Compaction failed. Retry with increasing priority. 4172 */ 4173 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4174 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4175 4176 if (*compact_priority > min_priority) { 4177 (*compact_priority)--; 4178 *compaction_retries = 0; 4179 ret = true; 4180 } 4181 out: 4182 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4183 return ret; 4184 } 4185 #else 4186 static inline struct page * 4187 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4188 unsigned int alloc_flags, const struct alloc_context *ac, 4189 enum compact_priority prio, enum compact_result *compact_result) 4190 { 4191 *compact_result = COMPACT_SKIPPED; 4192 return NULL; 4193 } 4194 4195 static inline bool 4196 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4197 enum compact_result compact_result, 4198 enum compact_priority *compact_priority, 4199 int *compaction_retries) 4200 { 4201 struct zone *zone; 4202 struct zoneref *z; 4203 4204 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4205 return false; 4206 4207 /* 4208 * There are setups with compaction disabled which would prefer to loop 4209 * inside the allocator rather than hit the oom killer prematurely. 4210 * Let's give them a good hope and keep retrying while the order-0 4211 * watermarks are OK. 4212 */ 4213 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4214 ac->highest_zoneidx, ac->nodemask) { 4215 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4216 ac->highest_zoneidx, alloc_flags)) 4217 return true; 4218 } 4219 return false; 4220 } 4221 #endif /* CONFIG_COMPACTION */ 4222 4223 #ifdef CONFIG_LOCKDEP 4224 static struct lockdep_map __fs_reclaim_map = 4225 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4226 4227 static bool __need_reclaim(gfp_t gfp_mask) 4228 { 4229 /* no reclaim without waiting on it */ 4230 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4231 return false; 4232 4233 /* this guy won't enter reclaim */ 4234 if (current->flags & PF_MEMALLOC) 4235 return false; 4236 4237 if (gfp_mask & __GFP_NOLOCKDEP) 4238 return false; 4239 4240 return true; 4241 } 4242 4243 void __fs_reclaim_acquire(unsigned long ip) 4244 { 4245 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4246 } 4247 4248 void __fs_reclaim_release(unsigned long ip) 4249 { 4250 lock_release(&__fs_reclaim_map, ip); 4251 } 4252 4253 void fs_reclaim_acquire(gfp_t gfp_mask) 4254 { 4255 gfp_mask = current_gfp_context(gfp_mask); 4256 4257 if (__need_reclaim(gfp_mask)) { 4258 if (gfp_mask & __GFP_FS) 4259 __fs_reclaim_acquire(_RET_IP_); 4260 4261 #ifdef CONFIG_MMU_NOTIFIER 4262 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4263 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4264 #endif 4265 4266 } 4267 } 4268 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4269 4270 void fs_reclaim_release(gfp_t gfp_mask) 4271 { 4272 gfp_mask = current_gfp_context(gfp_mask); 4273 4274 if (__need_reclaim(gfp_mask)) { 4275 if (gfp_mask & __GFP_FS) 4276 __fs_reclaim_release(_RET_IP_); 4277 } 4278 } 4279 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4280 #endif 4281 4282 /* 4283 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4284 * have been rebuilt so allocation retries. Reader side does not lock and 4285 * retries the allocation if zonelist changes. Writer side is protected by the 4286 * embedded spin_lock. 4287 */ 4288 static DEFINE_SEQLOCK(zonelist_update_seq); 4289 4290 static unsigned int zonelist_iter_begin(void) 4291 { 4292 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4293 return read_seqbegin(&zonelist_update_seq); 4294 4295 return 0; 4296 } 4297 4298 static unsigned int check_retry_zonelist(unsigned int seq) 4299 { 4300 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4301 return read_seqretry(&zonelist_update_seq, seq); 4302 4303 return seq; 4304 } 4305 4306 /* Perform direct synchronous page reclaim */ 4307 static unsigned long 4308 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4309 const struct alloc_context *ac) 4310 { 4311 unsigned int noreclaim_flag; 4312 unsigned long progress; 4313 4314 cond_resched(); 4315 4316 /* We now go into synchronous reclaim */ 4317 cpuset_memory_pressure_bump(); 4318 fs_reclaim_acquire(gfp_mask); 4319 noreclaim_flag = memalloc_noreclaim_save(); 4320 4321 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4322 ac->nodemask); 4323 4324 memalloc_noreclaim_restore(noreclaim_flag); 4325 fs_reclaim_release(gfp_mask); 4326 4327 cond_resched(); 4328 4329 return progress; 4330 } 4331 4332 /* The really slow allocator path where we enter direct reclaim */ 4333 static inline struct page * 4334 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4335 unsigned int alloc_flags, const struct alloc_context *ac, 4336 unsigned long *did_some_progress) 4337 { 4338 struct page *page = NULL; 4339 unsigned long pflags; 4340 bool drained = false; 4341 4342 psi_memstall_enter(&pflags); 4343 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4344 if (unlikely(!(*did_some_progress))) 4345 goto out; 4346 4347 retry: 4348 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4349 4350 /* 4351 * If an allocation failed after direct reclaim, it could be because 4352 * pages are pinned on the per-cpu lists or in high alloc reserves. 4353 * Shrink them and try again 4354 */ 4355 if (!page && !drained) { 4356 unreserve_highatomic_pageblock(ac, false); 4357 drain_all_pages(NULL); 4358 drained = true; 4359 goto retry; 4360 } 4361 out: 4362 psi_memstall_leave(&pflags); 4363 4364 return page; 4365 } 4366 4367 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4368 const struct alloc_context *ac) 4369 { 4370 struct zoneref *z; 4371 struct zone *zone; 4372 pg_data_t *last_pgdat = NULL; 4373 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4374 unsigned int reclaim_order; 4375 4376 if (defrag_mode) 4377 reclaim_order = max(order, pageblock_order); 4378 else 4379 reclaim_order = order; 4380 4381 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4382 ac->nodemask) { 4383 if (!managed_zone(zone)) 4384 continue; 4385 if (last_pgdat == zone->zone_pgdat) 4386 continue; 4387 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4388 last_pgdat = zone->zone_pgdat; 4389 } 4390 } 4391 4392 static inline unsigned int 4393 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4394 { 4395 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4396 4397 /* 4398 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4399 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4400 * to save two branches. 4401 */ 4402 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4403 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4404 4405 /* 4406 * The caller may dip into page reserves a bit more if the caller 4407 * cannot run direct reclaim, or if the caller has realtime scheduling 4408 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4409 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4410 */ 4411 alloc_flags |= (__force int) 4412 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4413 4414 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4415 /* 4416 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4417 * if it can't schedule. 4418 */ 4419 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4420 alloc_flags |= ALLOC_NON_BLOCK; 4421 4422 if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE)) 4423 alloc_flags |= ALLOC_HIGHATOMIC; 4424 } 4425 4426 /* 4427 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4428 * GFP_ATOMIC) rather than fail, see the comment for 4429 * cpuset_current_node_allowed(). 4430 */ 4431 if (alloc_flags & ALLOC_MIN_RESERVE) 4432 alloc_flags &= ~ALLOC_CPUSET; 4433 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4434 alloc_flags |= ALLOC_MIN_RESERVE; 4435 4436 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4437 4438 if (defrag_mode) 4439 alloc_flags |= ALLOC_NOFRAGMENT; 4440 4441 return alloc_flags; 4442 } 4443 4444 static bool oom_reserves_allowed(struct task_struct *tsk) 4445 { 4446 if (!tsk_is_oom_victim(tsk)) 4447 return false; 4448 4449 /* 4450 * !MMU doesn't have oom reaper so give access to memory reserves 4451 * only to the thread with TIF_MEMDIE set 4452 */ 4453 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4454 return false; 4455 4456 return true; 4457 } 4458 4459 /* 4460 * Distinguish requests which really need access to full memory 4461 * reserves from oom victims which can live with a portion of it 4462 */ 4463 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4464 { 4465 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4466 return 0; 4467 if (gfp_mask & __GFP_MEMALLOC) 4468 return ALLOC_NO_WATERMARKS; 4469 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4470 return ALLOC_NO_WATERMARKS; 4471 if (!in_interrupt()) { 4472 if (current->flags & PF_MEMALLOC) 4473 return ALLOC_NO_WATERMARKS; 4474 else if (oom_reserves_allowed(current)) 4475 return ALLOC_OOM; 4476 } 4477 4478 return 0; 4479 } 4480 4481 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4482 { 4483 return !!__gfp_pfmemalloc_flags(gfp_mask); 4484 } 4485 4486 /* 4487 * Checks whether it makes sense to retry the reclaim to make a forward progress 4488 * for the given allocation request. 4489 * 4490 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4491 * without success, or when we couldn't even meet the watermark if we 4492 * reclaimed all remaining pages on the LRU lists. 4493 * 4494 * Returns true if a retry is viable or false to enter the oom path. 4495 */ 4496 static inline bool 4497 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4498 struct alloc_context *ac, int alloc_flags, 4499 bool did_some_progress, int *no_progress_loops) 4500 { 4501 struct zone *zone; 4502 struct zoneref *z; 4503 bool ret = false; 4504 4505 /* 4506 * Costly allocations might have made a progress but this doesn't mean 4507 * their order will become available due to high fragmentation so 4508 * always increment the no progress counter for them 4509 */ 4510 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4511 *no_progress_loops = 0; 4512 else 4513 (*no_progress_loops)++; 4514 4515 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4516 goto out; 4517 4518 4519 /* 4520 * Keep reclaiming pages while there is a chance this will lead 4521 * somewhere. If none of the target zones can satisfy our allocation 4522 * request even if all reclaimable pages are considered then we are 4523 * screwed and have to go OOM. 4524 */ 4525 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4526 ac->highest_zoneidx, ac->nodemask) { 4527 unsigned long available; 4528 unsigned long reclaimable; 4529 unsigned long min_wmark = min_wmark_pages(zone); 4530 bool wmark; 4531 4532 if (cpusets_enabled() && 4533 (alloc_flags & ALLOC_CPUSET) && 4534 !__cpuset_zone_allowed(zone, gfp_mask)) 4535 continue; 4536 4537 available = reclaimable = zone_reclaimable_pages(zone); 4538 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4539 4540 /* 4541 * Would the allocation succeed if we reclaimed all 4542 * reclaimable pages? 4543 */ 4544 wmark = __zone_watermark_ok(zone, order, min_wmark, 4545 ac->highest_zoneidx, alloc_flags, available); 4546 trace_reclaim_retry_zone(z, order, reclaimable, 4547 available, min_wmark, *no_progress_loops, wmark); 4548 if (wmark) { 4549 ret = true; 4550 break; 4551 } 4552 } 4553 4554 /* 4555 * Memory allocation/reclaim might be called from a WQ context and the 4556 * current implementation of the WQ concurrency control doesn't 4557 * recognize that a particular WQ is congested if the worker thread is 4558 * looping without ever sleeping. Therefore we have to do a short sleep 4559 * here rather than calling cond_resched(). 4560 */ 4561 if (current->flags & PF_WQ_WORKER) 4562 schedule_timeout_uninterruptible(1); 4563 else 4564 cond_resched(); 4565 out: 4566 /* Before OOM, exhaust highatomic_reserve */ 4567 if (!ret) 4568 return unreserve_highatomic_pageblock(ac, true); 4569 4570 return ret; 4571 } 4572 4573 static inline bool 4574 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4575 { 4576 /* 4577 * It's possible that cpuset's mems_allowed and the nodemask from 4578 * mempolicy don't intersect. This should be normally dealt with by 4579 * policy_nodemask(), but it's possible to race with cpuset update in 4580 * such a way the check therein was true, and then it became false 4581 * before we got our cpuset_mems_cookie here. 4582 * This assumes that for all allocations, ac->nodemask can come only 4583 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4584 * when it does not intersect with the cpuset restrictions) or the 4585 * caller can deal with a violated nodemask. 4586 */ 4587 if (cpusets_enabled() && ac->nodemask && 4588 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4589 ac->nodemask = NULL; 4590 return true; 4591 } 4592 4593 /* 4594 * When updating a task's mems_allowed or mempolicy nodemask, it is 4595 * possible to race with parallel threads in such a way that our 4596 * allocation can fail while the mask is being updated. If we are about 4597 * to fail, check if the cpuset changed during allocation and if so, 4598 * retry. 4599 */ 4600 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4601 return true; 4602 4603 return false; 4604 } 4605 4606 static inline struct page * 4607 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4608 struct alloc_context *ac) 4609 { 4610 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4611 bool can_compact = gfp_compaction_allowed(gfp_mask); 4612 bool nofail = gfp_mask & __GFP_NOFAIL; 4613 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4614 struct page *page = NULL; 4615 unsigned int alloc_flags; 4616 unsigned long did_some_progress; 4617 enum compact_priority compact_priority; 4618 enum compact_result compact_result; 4619 int compaction_retries; 4620 int no_progress_loops; 4621 unsigned int cpuset_mems_cookie; 4622 unsigned int zonelist_iter_cookie; 4623 int reserve_flags; 4624 4625 if (unlikely(nofail)) { 4626 /* 4627 * We most definitely don't want callers attempting to 4628 * allocate greater than order-1 page units with __GFP_NOFAIL. 4629 */ 4630 WARN_ON_ONCE(order > 1); 4631 /* 4632 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4633 * otherwise, we may result in lockup. 4634 */ 4635 WARN_ON_ONCE(!can_direct_reclaim); 4636 /* 4637 * PF_MEMALLOC request from this context is rather bizarre 4638 * because we cannot reclaim anything and only can loop waiting 4639 * for somebody to do a work for us. 4640 */ 4641 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4642 } 4643 4644 restart: 4645 compaction_retries = 0; 4646 no_progress_loops = 0; 4647 compact_result = COMPACT_SKIPPED; 4648 compact_priority = DEF_COMPACT_PRIORITY; 4649 cpuset_mems_cookie = read_mems_allowed_begin(); 4650 zonelist_iter_cookie = zonelist_iter_begin(); 4651 4652 /* 4653 * The fast path uses conservative alloc_flags to succeed only until 4654 * kswapd needs to be woken up, and to avoid the cost of setting up 4655 * alloc_flags precisely. So we do that now. 4656 */ 4657 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4658 4659 /* 4660 * We need to recalculate the starting point for the zonelist iterator 4661 * because we might have used different nodemask in the fast path, or 4662 * there was a cpuset modification and we are retrying - otherwise we 4663 * could end up iterating over non-eligible zones endlessly. 4664 */ 4665 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4666 ac->highest_zoneidx, ac->nodemask); 4667 if (!zonelist_zone(ac->preferred_zoneref)) 4668 goto nopage; 4669 4670 /* 4671 * Check for insane configurations where the cpuset doesn't contain 4672 * any suitable zone to satisfy the request - e.g. non-movable 4673 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4674 */ 4675 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4676 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4677 ac->highest_zoneidx, 4678 &cpuset_current_mems_allowed); 4679 if (!zonelist_zone(z)) 4680 goto nopage; 4681 } 4682 4683 if (alloc_flags & ALLOC_KSWAPD) 4684 wake_all_kswapds(order, gfp_mask, ac); 4685 4686 /* 4687 * The adjusted alloc_flags might result in immediate success, so try 4688 * that first 4689 */ 4690 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4691 if (page) 4692 goto got_pg; 4693 4694 /* 4695 * For costly allocations, try direct compaction first, as it's likely 4696 * that we have enough base pages and don't need to reclaim. For non- 4697 * movable high-order allocations, do that as well, as compaction will 4698 * try prevent permanent fragmentation by migrating from blocks of the 4699 * same migratetype. 4700 * Don't try this for allocations that are allowed to ignore 4701 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4702 */ 4703 if (can_direct_reclaim && can_compact && 4704 (costly_order || 4705 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4706 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4707 page = __alloc_pages_direct_compact(gfp_mask, order, 4708 alloc_flags, ac, 4709 INIT_COMPACT_PRIORITY, 4710 &compact_result); 4711 if (page) 4712 goto got_pg; 4713 4714 /* 4715 * Checks for costly allocations with __GFP_NORETRY, which 4716 * includes some THP page fault allocations 4717 */ 4718 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4719 /* 4720 * If allocating entire pageblock(s) and compaction 4721 * failed because all zones are below low watermarks 4722 * or is prohibited because it recently failed at this 4723 * order, fail immediately unless the allocator has 4724 * requested compaction and reclaim retry. 4725 * 4726 * Reclaim is 4727 * - potentially very expensive because zones are far 4728 * below their low watermarks or this is part of very 4729 * bursty high order allocations, 4730 * - not guaranteed to help because isolate_freepages() 4731 * may not iterate over freed pages as part of its 4732 * linear scan, and 4733 * - unlikely to make entire pageblocks free on its 4734 * own. 4735 */ 4736 if (compact_result == COMPACT_SKIPPED || 4737 compact_result == COMPACT_DEFERRED) 4738 goto nopage; 4739 4740 /* 4741 * Looks like reclaim/compaction is worth trying, but 4742 * sync compaction could be very expensive, so keep 4743 * using async compaction. 4744 */ 4745 compact_priority = INIT_COMPACT_PRIORITY; 4746 } 4747 } 4748 4749 retry: 4750 /* 4751 * Deal with possible cpuset update races or zonelist updates to avoid 4752 * infinite retries. 4753 */ 4754 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4755 check_retry_zonelist(zonelist_iter_cookie)) 4756 goto restart; 4757 4758 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4759 if (alloc_flags & ALLOC_KSWAPD) 4760 wake_all_kswapds(order, gfp_mask, ac); 4761 4762 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4763 if (reserve_flags) 4764 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4765 (alloc_flags & ALLOC_KSWAPD); 4766 4767 /* 4768 * Reset the nodemask and zonelist iterators if memory policies can be 4769 * ignored. These allocations are high priority and system rather than 4770 * user oriented. 4771 */ 4772 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4773 ac->nodemask = NULL; 4774 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4775 ac->highest_zoneidx, ac->nodemask); 4776 } 4777 4778 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4779 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4780 if (page) 4781 goto got_pg; 4782 4783 /* Caller is not willing to reclaim, we can't balance anything */ 4784 if (!can_direct_reclaim) 4785 goto nopage; 4786 4787 /* Avoid recursion of direct reclaim */ 4788 if (current->flags & PF_MEMALLOC) 4789 goto nopage; 4790 4791 /* Try direct reclaim and then allocating */ 4792 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4793 &did_some_progress); 4794 if (page) 4795 goto got_pg; 4796 4797 /* Try direct compaction and then allocating */ 4798 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4799 compact_priority, &compact_result); 4800 if (page) 4801 goto got_pg; 4802 4803 /* Do not loop if specifically requested */ 4804 if (gfp_mask & __GFP_NORETRY) 4805 goto nopage; 4806 4807 /* 4808 * Do not retry costly high order allocations unless they are 4809 * __GFP_RETRY_MAYFAIL and we can compact 4810 */ 4811 if (costly_order && (!can_compact || 4812 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4813 goto nopage; 4814 4815 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4816 did_some_progress > 0, &no_progress_loops)) 4817 goto retry; 4818 4819 /* 4820 * It doesn't make any sense to retry for the compaction if the order-0 4821 * reclaim is not able to make any progress because the current 4822 * implementation of the compaction depends on the sufficient amount 4823 * of free memory (see __compaction_suitable) 4824 */ 4825 if (did_some_progress > 0 && can_compact && 4826 should_compact_retry(ac, order, alloc_flags, 4827 compact_result, &compact_priority, 4828 &compaction_retries)) 4829 goto retry; 4830 4831 /* Reclaim/compaction failed to prevent the fallback */ 4832 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4833 alloc_flags &= ~ALLOC_NOFRAGMENT; 4834 goto retry; 4835 } 4836 4837 /* 4838 * Deal with possible cpuset update races or zonelist updates to avoid 4839 * a unnecessary OOM kill. 4840 */ 4841 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4842 check_retry_zonelist(zonelist_iter_cookie)) 4843 goto restart; 4844 4845 /* Reclaim has failed us, start killing things */ 4846 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4847 if (page) 4848 goto got_pg; 4849 4850 /* Avoid allocations with no watermarks from looping endlessly */ 4851 if (tsk_is_oom_victim(current) && 4852 (alloc_flags & ALLOC_OOM || 4853 (gfp_mask & __GFP_NOMEMALLOC))) 4854 goto nopage; 4855 4856 /* Retry as long as the OOM killer is making progress */ 4857 if (did_some_progress) { 4858 no_progress_loops = 0; 4859 goto retry; 4860 } 4861 4862 nopage: 4863 /* 4864 * Deal with possible cpuset update races or zonelist updates to avoid 4865 * a unnecessary OOM kill. 4866 */ 4867 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4868 check_retry_zonelist(zonelist_iter_cookie)) 4869 goto restart; 4870 4871 /* 4872 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4873 * we always retry 4874 */ 4875 if (unlikely(nofail)) { 4876 /* 4877 * Lacking direct_reclaim we can't do anything to reclaim memory, 4878 * we disregard these unreasonable nofail requests and still 4879 * return NULL 4880 */ 4881 if (!can_direct_reclaim) 4882 goto fail; 4883 4884 /* 4885 * Help non-failing allocations by giving some access to memory 4886 * reserves normally used for high priority non-blocking 4887 * allocations but do not use ALLOC_NO_WATERMARKS because this 4888 * could deplete whole memory reserves which would just make 4889 * the situation worse. 4890 */ 4891 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4892 if (page) 4893 goto got_pg; 4894 4895 cond_resched(); 4896 goto retry; 4897 } 4898 fail: 4899 warn_alloc(gfp_mask, ac->nodemask, 4900 "page allocation failure: order:%u", order); 4901 got_pg: 4902 return page; 4903 } 4904 4905 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4906 int preferred_nid, nodemask_t *nodemask, 4907 struct alloc_context *ac, gfp_t *alloc_gfp, 4908 unsigned int *alloc_flags) 4909 { 4910 ac->highest_zoneidx = gfp_zone(gfp_mask); 4911 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4912 ac->nodemask = nodemask; 4913 ac->migratetype = gfp_migratetype(gfp_mask); 4914 4915 if (cpusets_enabled()) { 4916 *alloc_gfp |= __GFP_HARDWALL; 4917 /* 4918 * When we are in the interrupt context, it is irrelevant 4919 * to the current task context. It means that any node ok. 4920 */ 4921 if (in_task() && !ac->nodemask) 4922 ac->nodemask = &cpuset_current_mems_allowed; 4923 else 4924 *alloc_flags |= ALLOC_CPUSET; 4925 } 4926 4927 might_alloc(gfp_mask); 4928 4929 /* 4930 * Don't invoke should_fail logic, since it may call 4931 * get_random_u32() and printk() which need to spin_lock. 4932 */ 4933 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4934 should_fail_alloc_page(gfp_mask, order)) 4935 return false; 4936 4937 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4938 4939 /* Dirty zone balancing only done in the fast path */ 4940 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4941 4942 /* 4943 * The preferred zone is used for statistics but crucially it is 4944 * also used as the starting point for the zonelist iterator. It 4945 * may get reset for allocations that ignore memory policies. 4946 */ 4947 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4948 ac->highest_zoneidx, ac->nodemask); 4949 4950 return true; 4951 } 4952 4953 /* 4954 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4955 * @gfp: GFP flags for the allocation 4956 * @preferred_nid: The preferred NUMA node ID to allocate from 4957 * @nodemask: Set of nodes to allocate from, may be NULL 4958 * @nr_pages: The number of pages desired in the array 4959 * @page_array: Array to store the pages 4960 * 4961 * This is a batched version of the page allocator that attempts to 4962 * allocate nr_pages quickly. Pages are added to the page_array. 4963 * 4964 * Note that only NULL elements are populated with pages and nr_pages 4965 * is the maximum number of pages that will be stored in the array. 4966 * 4967 * Returns the number of pages in the array. 4968 */ 4969 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4970 nodemask_t *nodemask, int nr_pages, 4971 struct page **page_array) 4972 { 4973 struct page *page; 4974 unsigned long __maybe_unused UP_flags; 4975 struct zone *zone; 4976 struct zoneref *z; 4977 struct per_cpu_pages *pcp; 4978 struct list_head *pcp_list; 4979 struct alloc_context ac; 4980 gfp_t alloc_gfp; 4981 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4982 int nr_populated = 0, nr_account = 0; 4983 4984 /* 4985 * Skip populated array elements to determine if any pages need 4986 * to be allocated before disabling IRQs. 4987 */ 4988 while (nr_populated < nr_pages && page_array[nr_populated]) 4989 nr_populated++; 4990 4991 /* No pages requested? */ 4992 if (unlikely(nr_pages <= 0)) 4993 goto out; 4994 4995 /* Already populated array? */ 4996 if (unlikely(nr_pages - nr_populated == 0)) 4997 goto out; 4998 4999 /* Bulk allocator does not support memcg accounting. */ 5000 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 5001 goto failed; 5002 5003 /* Use the single page allocator for one page. */ 5004 if (nr_pages - nr_populated == 1) 5005 goto failed; 5006 5007 #ifdef CONFIG_PAGE_OWNER 5008 /* 5009 * PAGE_OWNER may recurse into the allocator to allocate space to 5010 * save the stack with pagesets.lock held. Releasing/reacquiring 5011 * removes much of the performance benefit of bulk allocation so 5012 * force the caller to allocate one page at a time as it'll have 5013 * similar performance to added complexity to the bulk allocator. 5014 */ 5015 if (static_branch_unlikely(&page_owner_inited)) 5016 goto failed; 5017 #endif 5018 5019 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5020 gfp &= gfp_allowed_mask; 5021 alloc_gfp = gfp; 5022 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5023 goto out; 5024 gfp = alloc_gfp; 5025 5026 /* Find an allowed local zone that meets the low watermark. */ 5027 z = ac.preferred_zoneref; 5028 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 5029 unsigned long mark; 5030 5031 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5032 !__cpuset_zone_allowed(zone, gfp)) { 5033 continue; 5034 } 5035 5036 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 5037 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 5038 goto failed; 5039 } 5040 5041 cond_accept_memory(zone, 0, alloc_flags); 5042 retry_this_zone: 5043 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5044 if (zone_watermark_fast(zone, 0, mark, 5045 zonelist_zone_idx(ac.preferred_zoneref), 5046 alloc_flags, gfp)) { 5047 break; 5048 } 5049 5050 if (cond_accept_memory(zone, 0, alloc_flags)) 5051 goto retry_this_zone; 5052 5053 /* Try again if zone has deferred pages */ 5054 if (deferred_pages_enabled()) { 5055 if (_deferred_grow_zone(zone, 0)) 5056 goto retry_this_zone; 5057 } 5058 } 5059 5060 /* 5061 * If there are no allowed local zones that meets the watermarks then 5062 * try to allocate a single page and reclaim if necessary. 5063 */ 5064 if (unlikely(!zone)) 5065 goto failed; 5066 5067 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5068 pcp_trylock_prepare(UP_flags); 5069 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 5070 if (!pcp) 5071 goto failed_irq; 5072 5073 /* Attempt the batch allocation */ 5074 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5075 while (nr_populated < nr_pages) { 5076 5077 /* Skip existing pages */ 5078 if (page_array[nr_populated]) { 5079 nr_populated++; 5080 continue; 5081 } 5082 5083 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5084 pcp, pcp_list); 5085 if (unlikely(!page)) { 5086 /* Try and allocate at least one page */ 5087 if (!nr_account) { 5088 pcp_spin_unlock(pcp); 5089 goto failed_irq; 5090 } 5091 break; 5092 } 5093 nr_account++; 5094 5095 prep_new_page(page, 0, gfp, 0); 5096 set_page_refcounted(page); 5097 page_array[nr_populated++] = page; 5098 } 5099 5100 pcp_spin_unlock(pcp); 5101 pcp_trylock_finish(UP_flags); 5102 5103 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5104 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 5105 5106 out: 5107 return nr_populated; 5108 5109 failed_irq: 5110 pcp_trylock_finish(UP_flags); 5111 5112 failed: 5113 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 5114 if (page) 5115 page_array[nr_populated++] = page; 5116 goto out; 5117 } 5118 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 5119 5120 /* 5121 * This is the 'heart' of the zoned buddy allocator. 5122 */ 5123 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 5124 int preferred_nid, nodemask_t *nodemask) 5125 { 5126 struct page *page; 5127 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5128 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5129 struct alloc_context ac = { }; 5130 5131 /* 5132 * There are several places where we assume that the order value is sane 5133 * so bail out early if the request is out of bound. 5134 */ 5135 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 5136 return NULL; 5137 5138 gfp &= gfp_allowed_mask; 5139 /* 5140 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5141 * resp. GFP_NOIO which has to be inherited for all allocation requests 5142 * from a particular context which has been marked by 5143 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5144 * movable zones are not used during allocation. 5145 */ 5146 gfp = current_gfp_context(gfp); 5147 alloc_gfp = gfp; 5148 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5149 &alloc_gfp, &alloc_flags)) 5150 return NULL; 5151 5152 /* 5153 * Forbid the first pass from falling back to types that fragment 5154 * memory until all local zones are considered. 5155 */ 5156 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 5157 5158 /* First allocation attempt */ 5159 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5160 if (likely(page)) 5161 goto out; 5162 5163 alloc_gfp = gfp; 5164 ac.spread_dirty_pages = false; 5165 5166 /* 5167 * Restore the original nodemask if it was potentially replaced with 5168 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5169 */ 5170 ac.nodemask = nodemask; 5171 5172 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5173 5174 out: 5175 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 5176 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5177 free_frozen_pages(page, order); 5178 page = NULL; 5179 } 5180 5181 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5182 kmsan_alloc_page(page, order, alloc_gfp); 5183 5184 return page; 5185 } 5186 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 5187 5188 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5189 int preferred_nid, nodemask_t *nodemask) 5190 { 5191 struct page *page; 5192 5193 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5194 if (page) 5195 set_page_refcounted(page); 5196 return page; 5197 } 5198 EXPORT_SYMBOL(__alloc_pages_noprof); 5199 5200 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5201 nodemask_t *nodemask) 5202 { 5203 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5204 preferred_nid, nodemask); 5205 return page_rmappable_folio(page); 5206 } 5207 EXPORT_SYMBOL(__folio_alloc_noprof); 5208 5209 /* 5210 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5211 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5212 * you need to access high mem. 5213 */ 5214 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5215 { 5216 struct page *page; 5217 5218 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5219 if (!page) 5220 return 0; 5221 return (unsigned long) page_address(page); 5222 } 5223 EXPORT_SYMBOL(get_free_pages_noprof); 5224 5225 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5226 { 5227 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5228 } 5229 EXPORT_SYMBOL(get_zeroed_page_noprof); 5230 5231 static void ___free_pages(struct page *page, unsigned int order, 5232 fpi_t fpi_flags) 5233 { 5234 /* get PageHead before we drop reference */ 5235 int head = PageHead(page); 5236 /* get alloc tag in case the page is released by others */ 5237 struct alloc_tag *tag = pgalloc_tag_get(page); 5238 5239 if (put_page_testzero(page)) 5240 __free_frozen_pages(page, order, fpi_flags); 5241 else if (!head) { 5242 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 5243 while (order-- > 0) { 5244 /* 5245 * The "tail" pages of this non-compound high-order 5246 * page will have no code tags, so to avoid warnings 5247 * mark them as empty. 5248 */ 5249 clear_page_tag_ref(page + (1 << order)); 5250 __free_frozen_pages(page + (1 << order), order, 5251 fpi_flags); 5252 } 5253 } 5254 } 5255 5256 /** 5257 * __free_pages - Free pages allocated with alloc_pages(). 5258 * @page: The page pointer returned from alloc_pages(). 5259 * @order: The order of the allocation. 5260 * 5261 * This function can free multi-page allocations that are not compound 5262 * pages. It does not check that the @order passed in matches that of 5263 * the allocation, so it is easy to leak memory. Freeing more memory 5264 * than was allocated will probably emit a warning. 5265 * 5266 * If the last reference to this page is speculative, it will be released 5267 * by put_page() which only frees the first page of a non-compound 5268 * allocation. To prevent the remaining pages from being leaked, we free 5269 * the subsequent pages here. If you want to use the page's reference 5270 * count to decide when to free the allocation, you should allocate a 5271 * compound page, and use put_page() instead of __free_pages(). 5272 * 5273 * Context: May be called in interrupt context or while holding a normal 5274 * spinlock, but not in NMI context or while holding a raw spinlock. 5275 */ 5276 void __free_pages(struct page *page, unsigned int order) 5277 { 5278 ___free_pages(page, order, FPI_NONE); 5279 } 5280 EXPORT_SYMBOL(__free_pages); 5281 5282 /* 5283 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5284 * page type (not only those that came from alloc_pages_nolock) 5285 */ 5286 void free_pages_nolock(struct page *page, unsigned int order) 5287 { 5288 ___free_pages(page, order, FPI_TRYLOCK); 5289 } 5290 5291 /** 5292 * free_pages - Free pages allocated with __get_free_pages(). 5293 * @addr: The virtual address tied to a page returned from __get_free_pages(). 5294 * @order: The order of the allocation. 5295 * 5296 * This function behaves the same as __free_pages(). Use this function 5297 * to free pages when you only have a valid virtual address. If you have 5298 * the page, call __free_pages() instead. 5299 */ 5300 void free_pages(unsigned long addr, unsigned int order) 5301 { 5302 if (addr != 0) { 5303 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5304 __free_pages(virt_to_page((void *)addr), order); 5305 } 5306 } 5307 5308 EXPORT_SYMBOL(free_pages); 5309 5310 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5311 size_t size) 5312 { 5313 if (addr) { 5314 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5315 struct page *page = virt_to_page((void *)addr); 5316 struct page *last = page + nr; 5317 5318 split_page_owner(page, order, 0); 5319 pgalloc_tag_split(page_folio(page), order, 0); 5320 split_page_memcg(page, order); 5321 while (page < --last) 5322 set_page_refcounted(last); 5323 5324 last = page + (1UL << order); 5325 for (page += nr; page < last; page++) 5326 __free_pages_ok(page, 0, FPI_TO_TAIL); 5327 } 5328 return (void *)addr; 5329 } 5330 5331 /** 5332 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5333 * @size: the number of bytes to allocate 5334 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5335 * 5336 * This function is similar to alloc_pages(), except that it allocates the 5337 * minimum number of pages to satisfy the request. alloc_pages() can only 5338 * allocate memory in power-of-two pages. 5339 * 5340 * This function is also limited by MAX_PAGE_ORDER. 5341 * 5342 * Memory allocated by this function must be released by free_pages_exact(). 5343 * 5344 * Return: pointer to the allocated area or %NULL in case of error. 5345 */ 5346 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5347 { 5348 unsigned int order = get_order(size); 5349 unsigned long addr; 5350 5351 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5352 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5353 5354 addr = get_free_pages_noprof(gfp_mask, order); 5355 return make_alloc_exact(addr, order, size); 5356 } 5357 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5358 5359 /** 5360 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5361 * pages on a node. 5362 * @nid: the preferred node ID where memory should be allocated 5363 * @size: the number of bytes to allocate 5364 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5365 * 5366 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5367 * back. 5368 * 5369 * Return: pointer to the allocated area or %NULL in case of error. 5370 */ 5371 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5372 { 5373 unsigned int order = get_order(size); 5374 struct page *p; 5375 5376 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5377 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5378 5379 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5380 if (!p) 5381 return NULL; 5382 return make_alloc_exact((unsigned long)page_address(p), order, size); 5383 } 5384 5385 /** 5386 * free_pages_exact - release memory allocated via alloc_pages_exact() 5387 * @virt: the value returned by alloc_pages_exact. 5388 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5389 * 5390 * Release the memory allocated by a previous call to alloc_pages_exact. 5391 */ 5392 void free_pages_exact(void *virt, size_t size) 5393 { 5394 unsigned long addr = (unsigned long)virt; 5395 unsigned long end = addr + PAGE_ALIGN(size); 5396 5397 while (addr < end) { 5398 free_page(addr); 5399 addr += PAGE_SIZE; 5400 } 5401 } 5402 EXPORT_SYMBOL(free_pages_exact); 5403 5404 /** 5405 * nr_free_zone_pages - count number of pages beyond high watermark 5406 * @offset: The zone index of the highest zone 5407 * 5408 * nr_free_zone_pages() counts the number of pages which are beyond the 5409 * high watermark within all zones at or below a given zone index. For each 5410 * zone, the number of pages is calculated as: 5411 * 5412 * nr_free_zone_pages = managed_pages - high_pages 5413 * 5414 * Return: number of pages beyond high watermark. 5415 */ 5416 static unsigned long nr_free_zone_pages(int offset) 5417 { 5418 struct zoneref *z; 5419 struct zone *zone; 5420 5421 /* Just pick one node, since fallback list is circular */ 5422 unsigned long sum = 0; 5423 5424 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5425 5426 for_each_zone_zonelist(zone, z, zonelist, offset) { 5427 unsigned long size = zone_managed_pages(zone); 5428 unsigned long high = high_wmark_pages(zone); 5429 if (size > high) 5430 sum += size - high; 5431 } 5432 5433 return sum; 5434 } 5435 5436 /** 5437 * nr_free_buffer_pages - count number of pages beyond high watermark 5438 * 5439 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5440 * watermark within ZONE_DMA and ZONE_NORMAL. 5441 * 5442 * Return: number of pages beyond high watermark within ZONE_DMA and 5443 * ZONE_NORMAL. 5444 */ 5445 unsigned long nr_free_buffer_pages(void) 5446 { 5447 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5448 } 5449 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5450 5451 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5452 { 5453 zoneref->zone = zone; 5454 zoneref->zone_idx = zone_idx(zone); 5455 } 5456 5457 /* 5458 * Builds allocation fallback zone lists. 5459 * 5460 * Add all populated zones of a node to the zonelist. 5461 */ 5462 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5463 { 5464 struct zone *zone; 5465 enum zone_type zone_type = MAX_NR_ZONES; 5466 int nr_zones = 0; 5467 5468 do { 5469 zone_type--; 5470 zone = pgdat->node_zones + zone_type; 5471 if (populated_zone(zone)) { 5472 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5473 check_highest_zone(zone_type); 5474 } 5475 } while (zone_type); 5476 5477 return nr_zones; 5478 } 5479 5480 #ifdef CONFIG_NUMA 5481 5482 static int __parse_numa_zonelist_order(char *s) 5483 { 5484 /* 5485 * We used to support different zonelists modes but they turned 5486 * out to be just not useful. Let's keep the warning in place 5487 * if somebody still use the cmd line parameter so that we do 5488 * not fail it silently 5489 */ 5490 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5491 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5492 return -EINVAL; 5493 } 5494 return 0; 5495 } 5496 5497 static char numa_zonelist_order[] = "Node"; 5498 #define NUMA_ZONELIST_ORDER_LEN 16 5499 /* 5500 * sysctl handler for numa_zonelist_order 5501 */ 5502 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5503 void *buffer, size_t *length, loff_t *ppos) 5504 { 5505 if (write) 5506 return __parse_numa_zonelist_order(buffer); 5507 return proc_dostring(table, write, buffer, length, ppos); 5508 } 5509 5510 static int node_load[MAX_NUMNODES]; 5511 5512 /** 5513 * find_next_best_node - find the next node that should appear in a given node's fallback list 5514 * @node: node whose fallback list we're appending 5515 * @used_node_mask: nodemask_t of already used nodes 5516 * 5517 * We use a number of factors to determine which is the next node that should 5518 * appear on a given node's fallback list. The node should not have appeared 5519 * already in @node's fallback list, and it should be the next closest node 5520 * according to the distance array (which contains arbitrary distance values 5521 * from each node to each node in the system), and should also prefer nodes 5522 * with no CPUs, since presumably they'll have very little allocation pressure 5523 * on them otherwise. 5524 * 5525 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5526 */ 5527 int find_next_best_node(int node, nodemask_t *used_node_mask) 5528 { 5529 int n, val; 5530 int min_val = INT_MAX; 5531 int best_node = NUMA_NO_NODE; 5532 5533 /* 5534 * Use the local node if we haven't already, but for memoryless local 5535 * node, we should skip it and fall back to other nodes. 5536 */ 5537 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5538 node_set(node, *used_node_mask); 5539 return node; 5540 } 5541 5542 for_each_node_state(n, N_MEMORY) { 5543 5544 /* Don't want a node to appear more than once */ 5545 if (node_isset(n, *used_node_mask)) 5546 continue; 5547 5548 /* Use the distance array to find the distance */ 5549 val = node_distance(node, n); 5550 5551 /* Penalize nodes under us ("prefer the next node") */ 5552 val += (n < node); 5553 5554 /* Give preference to headless and unused nodes */ 5555 if (!cpumask_empty(cpumask_of_node(n))) 5556 val += PENALTY_FOR_NODE_WITH_CPUS; 5557 5558 /* Slight preference for less loaded node */ 5559 val *= MAX_NUMNODES; 5560 val += node_load[n]; 5561 5562 if (val < min_val) { 5563 min_val = val; 5564 best_node = n; 5565 } 5566 } 5567 5568 if (best_node >= 0) 5569 node_set(best_node, *used_node_mask); 5570 5571 return best_node; 5572 } 5573 5574 5575 /* 5576 * Build zonelists ordered by node and zones within node. 5577 * This results in maximum locality--normal zone overflows into local 5578 * DMA zone, if any--but risks exhausting DMA zone. 5579 */ 5580 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5581 unsigned nr_nodes) 5582 { 5583 struct zoneref *zonerefs; 5584 int i; 5585 5586 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5587 5588 for (i = 0; i < nr_nodes; i++) { 5589 int nr_zones; 5590 5591 pg_data_t *node = NODE_DATA(node_order[i]); 5592 5593 nr_zones = build_zonerefs_node(node, zonerefs); 5594 zonerefs += nr_zones; 5595 } 5596 zonerefs->zone = NULL; 5597 zonerefs->zone_idx = 0; 5598 } 5599 5600 /* 5601 * Build __GFP_THISNODE zonelists 5602 */ 5603 static void build_thisnode_zonelists(pg_data_t *pgdat) 5604 { 5605 struct zoneref *zonerefs; 5606 int nr_zones; 5607 5608 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5609 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5610 zonerefs += nr_zones; 5611 zonerefs->zone = NULL; 5612 zonerefs->zone_idx = 0; 5613 } 5614 5615 static void build_zonelists(pg_data_t *pgdat) 5616 { 5617 static int node_order[MAX_NUMNODES]; 5618 int node, nr_nodes = 0; 5619 nodemask_t used_mask = NODE_MASK_NONE; 5620 int local_node, prev_node; 5621 5622 /* NUMA-aware ordering of nodes */ 5623 local_node = pgdat->node_id; 5624 prev_node = local_node; 5625 5626 memset(node_order, 0, sizeof(node_order)); 5627 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5628 /* 5629 * We don't want to pressure a particular node. 5630 * So adding penalty to the first node in same 5631 * distance group to make it round-robin. 5632 */ 5633 if (node_distance(local_node, node) != 5634 node_distance(local_node, prev_node)) 5635 node_load[node] += 1; 5636 5637 node_order[nr_nodes++] = node; 5638 prev_node = node; 5639 } 5640 5641 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5642 build_thisnode_zonelists(pgdat); 5643 pr_info("Fallback order for Node %d: ", local_node); 5644 for (node = 0; node < nr_nodes; node++) 5645 pr_cont("%d ", node_order[node]); 5646 pr_cont("\n"); 5647 } 5648 5649 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5650 /* 5651 * Return node id of node used for "local" allocations. 5652 * I.e., first node id of first zone in arg node's generic zonelist. 5653 * Used for initializing percpu 'numa_mem', which is used primarily 5654 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5655 */ 5656 int local_memory_node(int node) 5657 { 5658 struct zoneref *z; 5659 5660 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5661 gfp_zone(GFP_KERNEL), 5662 NULL); 5663 return zonelist_node_idx(z); 5664 } 5665 #endif 5666 5667 static void setup_min_unmapped_ratio(void); 5668 static void setup_min_slab_ratio(void); 5669 #else /* CONFIG_NUMA */ 5670 5671 static void build_zonelists(pg_data_t *pgdat) 5672 { 5673 struct zoneref *zonerefs; 5674 int nr_zones; 5675 5676 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5677 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5678 zonerefs += nr_zones; 5679 5680 zonerefs->zone = NULL; 5681 zonerefs->zone_idx = 0; 5682 } 5683 5684 #endif /* CONFIG_NUMA */ 5685 5686 /* 5687 * Boot pageset table. One per cpu which is going to be used for all 5688 * zones and all nodes. The parameters will be set in such a way 5689 * that an item put on a list will immediately be handed over to 5690 * the buddy list. This is safe since pageset manipulation is done 5691 * with interrupts disabled. 5692 * 5693 * The boot_pagesets must be kept even after bootup is complete for 5694 * unused processors and/or zones. They do play a role for bootstrapping 5695 * hotplugged processors. 5696 * 5697 * zoneinfo_show() and maybe other functions do 5698 * not check if the processor is online before following the pageset pointer. 5699 * Other parts of the kernel may not check if the zone is available. 5700 */ 5701 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5702 /* These effectively disable the pcplists in the boot pageset completely */ 5703 #define BOOT_PAGESET_HIGH 0 5704 #define BOOT_PAGESET_BATCH 1 5705 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5706 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5707 5708 static void __build_all_zonelists(void *data) 5709 { 5710 int nid; 5711 int __maybe_unused cpu; 5712 pg_data_t *self = data; 5713 unsigned long flags; 5714 5715 /* 5716 * The zonelist_update_seq must be acquired with irqsave because the 5717 * reader can be invoked from IRQ with GFP_ATOMIC. 5718 */ 5719 write_seqlock_irqsave(&zonelist_update_seq, flags); 5720 /* 5721 * Also disable synchronous printk() to prevent any printk() from 5722 * trying to hold port->lock, for 5723 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5724 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5725 */ 5726 printk_deferred_enter(); 5727 5728 #ifdef CONFIG_NUMA 5729 memset(node_load, 0, sizeof(node_load)); 5730 #endif 5731 5732 /* 5733 * This node is hotadded and no memory is yet present. So just 5734 * building zonelists is fine - no need to touch other nodes. 5735 */ 5736 if (self && !node_online(self->node_id)) { 5737 build_zonelists(self); 5738 } else { 5739 /* 5740 * All possible nodes have pgdat preallocated 5741 * in free_area_init 5742 */ 5743 for_each_node(nid) { 5744 pg_data_t *pgdat = NODE_DATA(nid); 5745 5746 build_zonelists(pgdat); 5747 } 5748 5749 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5750 /* 5751 * We now know the "local memory node" for each node-- 5752 * i.e., the node of the first zone in the generic zonelist. 5753 * Set up numa_mem percpu variable for on-line cpus. During 5754 * boot, only the boot cpu should be on-line; we'll init the 5755 * secondary cpus' numa_mem as they come on-line. During 5756 * node/memory hotplug, we'll fixup all on-line cpus. 5757 */ 5758 for_each_online_cpu(cpu) 5759 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5760 #endif 5761 } 5762 5763 printk_deferred_exit(); 5764 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5765 } 5766 5767 static noinline void __init 5768 build_all_zonelists_init(void) 5769 { 5770 int cpu; 5771 5772 __build_all_zonelists(NULL); 5773 5774 /* 5775 * Initialize the boot_pagesets that are going to be used 5776 * for bootstrapping processors. The real pagesets for 5777 * each zone will be allocated later when the per cpu 5778 * allocator is available. 5779 * 5780 * boot_pagesets are used also for bootstrapping offline 5781 * cpus if the system is already booted because the pagesets 5782 * are needed to initialize allocators on a specific cpu too. 5783 * F.e. the percpu allocator needs the page allocator which 5784 * needs the percpu allocator in order to allocate its pagesets 5785 * (a chicken-egg dilemma). 5786 */ 5787 for_each_possible_cpu(cpu) 5788 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5789 5790 mminit_verify_zonelist(); 5791 cpuset_init_current_mems_allowed(); 5792 } 5793 5794 /* 5795 * unless system_state == SYSTEM_BOOTING. 5796 * 5797 * __ref due to call of __init annotated helper build_all_zonelists_init 5798 * [protected by SYSTEM_BOOTING]. 5799 */ 5800 void __ref build_all_zonelists(pg_data_t *pgdat) 5801 { 5802 unsigned long vm_total_pages; 5803 5804 if (system_state == SYSTEM_BOOTING) { 5805 build_all_zonelists_init(); 5806 } else { 5807 __build_all_zonelists(pgdat); 5808 /* cpuset refresh routine should be here */ 5809 } 5810 /* Get the number of free pages beyond high watermark in all zones. */ 5811 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5812 /* 5813 * Disable grouping by mobility if the number of pages in the 5814 * system is too low to allow the mechanism to work. It would be 5815 * more accurate, but expensive to check per-zone. This check is 5816 * made on memory-hotadd so a system can start with mobility 5817 * disabled and enable it later 5818 */ 5819 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5820 page_group_by_mobility_disabled = 1; 5821 else 5822 page_group_by_mobility_disabled = 0; 5823 5824 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5825 nr_online_nodes, 5826 str_off_on(page_group_by_mobility_disabled), 5827 vm_total_pages); 5828 #ifdef CONFIG_NUMA 5829 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5830 #endif 5831 } 5832 5833 static int zone_batchsize(struct zone *zone) 5834 { 5835 #ifdef CONFIG_MMU 5836 int batch; 5837 5838 /* 5839 * The number of pages to batch allocate is either ~0.1% 5840 * of the zone or 1MB, whichever is smaller. The batch 5841 * size is striking a balance between allocation latency 5842 * and zone lock contention. 5843 */ 5844 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5845 batch /= 4; /* We effectively *= 4 below */ 5846 if (batch < 1) 5847 batch = 1; 5848 5849 /* 5850 * Clamp the batch to a 2^n - 1 value. Having a power 5851 * of 2 value was found to be more likely to have 5852 * suboptimal cache aliasing properties in some cases. 5853 * 5854 * For example if 2 tasks are alternately allocating 5855 * batches of pages, one task can end up with a lot 5856 * of pages of one half of the possible page colors 5857 * and the other with pages of the other colors. 5858 */ 5859 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5860 5861 return batch; 5862 5863 #else 5864 /* The deferral and batching of frees should be suppressed under NOMMU 5865 * conditions. 5866 * 5867 * The problem is that NOMMU needs to be able to allocate large chunks 5868 * of contiguous memory as there's no hardware page translation to 5869 * assemble apparent contiguous memory from discontiguous pages. 5870 * 5871 * Queueing large contiguous runs of pages for batching, however, 5872 * causes the pages to actually be freed in smaller chunks. As there 5873 * can be a significant delay between the individual batches being 5874 * recycled, this leads to the once large chunks of space being 5875 * fragmented and becoming unavailable for high-order allocations. 5876 */ 5877 return 0; 5878 #endif 5879 } 5880 5881 static int percpu_pagelist_high_fraction; 5882 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5883 int high_fraction) 5884 { 5885 #ifdef CONFIG_MMU 5886 int high; 5887 int nr_split_cpus; 5888 unsigned long total_pages; 5889 5890 if (!high_fraction) { 5891 /* 5892 * By default, the high value of the pcp is based on the zone 5893 * low watermark so that if they are full then background 5894 * reclaim will not be started prematurely. 5895 */ 5896 total_pages = low_wmark_pages(zone); 5897 } else { 5898 /* 5899 * If percpu_pagelist_high_fraction is configured, the high 5900 * value is based on a fraction of the managed pages in the 5901 * zone. 5902 */ 5903 total_pages = zone_managed_pages(zone) / high_fraction; 5904 } 5905 5906 /* 5907 * Split the high value across all online CPUs local to the zone. Note 5908 * that early in boot that CPUs may not be online yet and that during 5909 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5910 * onlined. For memory nodes that have no CPUs, split the high value 5911 * across all online CPUs to mitigate the risk that reclaim is triggered 5912 * prematurely due to pages stored on pcp lists. 5913 */ 5914 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5915 if (!nr_split_cpus) 5916 nr_split_cpus = num_online_cpus(); 5917 high = total_pages / nr_split_cpus; 5918 5919 /* 5920 * Ensure high is at least batch*4. The multiple is based on the 5921 * historical relationship between high and batch. 5922 */ 5923 high = max(high, batch << 2); 5924 5925 return high; 5926 #else 5927 return 0; 5928 #endif 5929 } 5930 5931 /* 5932 * pcp->high and pcp->batch values are related and generally batch is lower 5933 * than high. They are also related to pcp->count such that count is lower 5934 * than high, and as soon as it reaches high, the pcplist is flushed. 5935 * 5936 * However, guaranteeing these relations at all times would require e.g. write 5937 * barriers here but also careful usage of read barriers at the read side, and 5938 * thus be prone to error and bad for performance. Thus the update only prevents 5939 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5940 * should ensure they can cope with those fields changing asynchronously, and 5941 * fully trust only the pcp->count field on the local CPU with interrupts 5942 * disabled. 5943 * 5944 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5945 * outside of boot time (or some other assurance that no concurrent updaters 5946 * exist). 5947 */ 5948 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5949 unsigned long high_max, unsigned long batch) 5950 { 5951 WRITE_ONCE(pcp->batch, batch); 5952 WRITE_ONCE(pcp->high_min, high_min); 5953 WRITE_ONCE(pcp->high_max, high_max); 5954 } 5955 5956 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5957 { 5958 int pindex; 5959 5960 memset(pcp, 0, sizeof(*pcp)); 5961 memset(pzstats, 0, sizeof(*pzstats)); 5962 5963 spin_lock_init(&pcp->lock); 5964 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5965 INIT_LIST_HEAD(&pcp->lists[pindex]); 5966 5967 /* 5968 * Set batch and high values safe for a boot pageset. A true percpu 5969 * pageset's initialization will update them subsequently. Here we don't 5970 * need to be as careful as pageset_update() as nobody can access the 5971 * pageset yet. 5972 */ 5973 pcp->high_min = BOOT_PAGESET_HIGH; 5974 pcp->high_max = BOOT_PAGESET_HIGH; 5975 pcp->batch = BOOT_PAGESET_BATCH; 5976 } 5977 5978 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5979 unsigned long high_max, unsigned long batch) 5980 { 5981 struct per_cpu_pages *pcp; 5982 int cpu; 5983 5984 for_each_possible_cpu(cpu) { 5985 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5986 pageset_update(pcp, high_min, high_max, batch); 5987 } 5988 } 5989 5990 /* 5991 * Calculate and set new high and batch values for all per-cpu pagesets of a 5992 * zone based on the zone's size. 5993 */ 5994 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5995 { 5996 int new_high_min, new_high_max, new_batch; 5997 5998 new_batch = max(1, zone_batchsize(zone)); 5999 if (percpu_pagelist_high_fraction) { 6000 new_high_min = zone_highsize(zone, new_batch, cpu_online, 6001 percpu_pagelist_high_fraction); 6002 /* 6003 * PCP high is tuned manually, disable auto-tuning via 6004 * setting high_min and high_max to the manual value. 6005 */ 6006 new_high_max = new_high_min; 6007 } else { 6008 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 6009 new_high_max = zone_highsize(zone, new_batch, cpu_online, 6010 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 6011 } 6012 6013 if (zone->pageset_high_min == new_high_min && 6014 zone->pageset_high_max == new_high_max && 6015 zone->pageset_batch == new_batch) 6016 return; 6017 6018 zone->pageset_high_min = new_high_min; 6019 zone->pageset_high_max = new_high_max; 6020 zone->pageset_batch = new_batch; 6021 6022 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 6023 new_batch); 6024 } 6025 6026 void __meminit setup_zone_pageset(struct zone *zone) 6027 { 6028 int cpu; 6029 6030 /* Size may be 0 on !SMP && !NUMA */ 6031 if (sizeof(struct per_cpu_zonestat) > 0) 6032 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6033 6034 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6035 for_each_possible_cpu(cpu) { 6036 struct per_cpu_pages *pcp; 6037 struct per_cpu_zonestat *pzstats; 6038 6039 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6040 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6041 per_cpu_pages_init(pcp, pzstats); 6042 } 6043 6044 zone_set_pageset_high_and_batch(zone, 0); 6045 } 6046 6047 /* 6048 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6049 * page high values need to be recalculated. 6050 */ 6051 static void zone_pcp_update(struct zone *zone, int cpu_online) 6052 { 6053 mutex_lock(&pcp_batch_high_lock); 6054 zone_set_pageset_high_and_batch(zone, cpu_online); 6055 mutex_unlock(&pcp_batch_high_lock); 6056 } 6057 6058 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 6059 { 6060 struct per_cpu_pages *pcp; 6061 struct cpu_cacheinfo *cci; 6062 6063 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6064 cci = get_cpu_cacheinfo(cpu); 6065 /* 6066 * If data cache slice of CPU is large enough, "pcp->batch" 6067 * pages can be preserved in PCP before draining PCP for 6068 * consecutive high-order pages freeing without allocation. 6069 * This can reduce zone lock contention without hurting 6070 * cache-hot pages sharing. 6071 */ 6072 spin_lock(&pcp->lock); 6073 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 6074 pcp->flags |= PCPF_FREE_HIGH_BATCH; 6075 else 6076 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 6077 spin_unlock(&pcp->lock); 6078 } 6079 6080 void setup_pcp_cacheinfo(unsigned int cpu) 6081 { 6082 struct zone *zone; 6083 6084 for_each_populated_zone(zone) 6085 zone_pcp_update_cacheinfo(zone, cpu); 6086 } 6087 6088 /* 6089 * Allocate per cpu pagesets and initialize them. 6090 * Before this call only boot pagesets were available. 6091 */ 6092 void __init setup_per_cpu_pageset(void) 6093 { 6094 struct pglist_data *pgdat; 6095 struct zone *zone; 6096 int __maybe_unused cpu; 6097 6098 for_each_populated_zone(zone) 6099 setup_zone_pageset(zone); 6100 6101 #ifdef CONFIG_NUMA 6102 /* 6103 * Unpopulated zones continue using the boot pagesets. 6104 * The numa stats for these pagesets need to be reset. 6105 * Otherwise, they will end up skewing the stats of 6106 * the nodes these zones are associated with. 6107 */ 6108 for_each_possible_cpu(cpu) { 6109 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6110 memset(pzstats->vm_numa_event, 0, 6111 sizeof(pzstats->vm_numa_event)); 6112 } 6113 #endif 6114 6115 for_each_online_pgdat(pgdat) 6116 pgdat->per_cpu_nodestats = 6117 alloc_percpu(struct per_cpu_nodestat); 6118 } 6119 6120 __meminit void zone_pcp_init(struct zone *zone) 6121 { 6122 /* 6123 * per cpu subsystem is not up at this point. The following code 6124 * relies on the ability of the linker to provide the 6125 * offset of a (static) per cpu variable into the per cpu area. 6126 */ 6127 zone->per_cpu_pageset = &boot_pageset; 6128 zone->per_cpu_zonestats = &boot_zonestats; 6129 zone->pageset_high_min = BOOT_PAGESET_HIGH; 6130 zone->pageset_high_max = BOOT_PAGESET_HIGH; 6131 zone->pageset_batch = BOOT_PAGESET_BATCH; 6132 6133 if (populated_zone(zone)) 6134 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6135 zone->present_pages, zone_batchsize(zone)); 6136 } 6137 6138 static void setup_per_zone_lowmem_reserve(void); 6139 6140 void adjust_managed_page_count(struct page *page, long count) 6141 { 6142 atomic_long_add(count, &page_zone(page)->managed_pages); 6143 totalram_pages_add(count); 6144 setup_per_zone_lowmem_reserve(); 6145 } 6146 EXPORT_SYMBOL(adjust_managed_page_count); 6147 6148 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 6149 { 6150 void *pos; 6151 unsigned long pages = 0; 6152 6153 start = (void *)PAGE_ALIGN((unsigned long)start); 6154 end = (void *)((unsigned long)end & PAGE_MASK); 6155 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6156 struct page *page = virt_to_page(pos); 6157 void *direct_map_addr; 6158 6159 /* 6160 * 'direct_map_addr' might be different from 'pos' 6161 * because some architectures' virt_to_page() 6162 * work with aliases. Getting the direct map 6163 * address ensures that we get a _writeable_ 6164 * alias for the memset(). 6165 */ 6166 direct_map_addr = page_address(page); 6167 /* 6168 * Perform a kasan-unchecked memset() since this memory 6169 * has not been initialized. 6170 */ 6171 direct_map_addr = kasan_reset_tag(direct_map_addr); 6172 if ((unsigned int)poison <= 0xFF) 6173 memset(direct_map_addr, poison, PAGE_SIZE); 6174 6175 free_reserved_page(page); 6176 } 6177 6178 if (pages && s) 6179 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 6180 6181 return pages; 6182 } 6183 6184 void free_reserved_page(struct page *page) 6185 { 6186 clear_page_tag_ref(page); 6187 ClearPageReserved(page); 6188 init_page_count(page); 6189 __free_page(page); 6190 adjust_managed_page_count(page, 1); 6191 } 6192 EXPORT_SYMBOL(free_reserved_page); 6193 6194 static int page_alloc_cpu_dead(unsigned int cpu) 6195 { 6196 struct zone *zone; 6197 6198 lru_add_drain_cpu(cpu); 6199 mlock_drain_remote(cpu); 6200 drain_pages(cpu); 6201 6202 /* 6203 * Spill the event counters of the dead processor 6204 * into the current processors event counters. 6205 * This artificially elevates the count of the current 6206 * processor. 6207 */ 6208 vm_events_fold_cpu(cpu); 6209 6210 /* 6211 * Zero the differential counters of the dead processor 6212 * so that the vm statistics are consistent. 6213 * 6214 * This is only okay since the processor is dead and cannot 6215 * race with what we are doing. 6216 */ 6217 cpu_vm_stats_fold(cpu); 6218 6219 for_each_populated_zone(zone) 6220 zone_pcp_update(zone, 0); 6221 6222 return 0; 6223 } 6224 6225 static int page_alloc_cpu_online(unsigned int cpu) 6226 { 6227 struct zone *zone; 6228 6229 for_each_populated_zone(zone) 6230 zone_pcp_update(zone, 1); 6231 return 0; 6232 } 6233 6234 void __init page_alloc_init_cpuhp(void) 6235 { 6236 int ret; 6237 6238 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6239 "mm/page_alloc:pcp", 6240 page_alloc_cpu_online, 6241 page_alloc_cpu_dead); 6242 WARN_ON(ret < 0); 6243 } 6244 6245 /* 6246 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6247 * or min_free_kbytes changes. 6248 */ 6249 static void calculate_totalreserve_pages(void) 6250 { 6251 struct pglist_data *pgdat; 6252 unsigned long reserve_pages = 0; 6253 enum zone_type i, j; 6254 6255 for_each_online_pgdat(pgdat) { 6256 6257 pgdat->totalreserve_pages = 0; 6258 6259 for (i = 0; i < MAX_NR_ZONES; i++) { 6260 struct zone *zone = pgdat->node_zones + i; 6261 long max = 0; 6262 unsigned long managed_pages = zone_managed_pages(zone); 6263 6264 /* Find valid and maximum lowmem_reserve in the zone */ 6265 for (j = i; j < MAX_NR_ZONES; j++) 6266 max = max(max, zone->lowmem_reserve[j]); 6267 6268 /* we treat the high watermark as reserved pages. */ 6269 max += high_wmark_pages(zone); 6270 6271 max = min_t(unsigned long, max, managed_pages); 6272 6273 pgdat->totalreserve_pages += max; 6274 6275 reserve_pages += max; 6276 } 6277 } 6278 totalreserve_pages = reserve_pages; 6279 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6280 } 6281 6282 /* 6283 * setup_per_zone_lowmem_reserve - called whenever 6284 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6285 * has a correct pages reserved value, so an adequate number of 6286 * pages are left in the zone after a successful __alloc_pages(). 6287 */ 6288 static void setup_per_zone_lowmem_reserve(void) 6289 { 6290 struct pglist_data *pgdat; 6291 enum zone_type i, j; 6292 6293 for_each_online_pgdat(pgdat) { 6294 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6295 struct zone *zone = &pgdat->node_zones[i]; 6296 int ratio = sysctl_lowmem_reserve_ratio[i]; 6297 bool clear = !ratio || !zone_managed_pages(zone); 6298 unsigned long managed_pages = 0; 6299 6300 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6301 struct zone *upper_zone = &pgdat->node_zones[j]; 6302 6303 managed_pages += zone_managed_pages(upper_zone); 6304 6305 if (clear) 6306 zone->lowmem_reserve[j] = 0; 6307 else 6308 zone->lowmem_reserve[j] = managed_pages / ratio; 6309 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6310 zone->lowmem_reserve[j]); 6311 } 6312 } 6313 } 6314 6315 /* update totalreserve_pages */ 6316 calculate_totalreserve_pages(); 6317 } 6318 6319 static void __setup_per_zone_wmarks(void) 6320 { 6321 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6322 unsigned long lowmem_pages = 0; 6323 struct zone *zone; 6324 unsigned long flags; 6325 6326 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6327 for_each_zone(zone) { 6328 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6329 lowmem_pages += zone_managed_pages(zone); 6330 } 6331 6332 for_each_zone(zone) { 6333 u64 tmp; 6334 6335 spin_lock_irqsave(&zone->lock, flags); 6336 tmp = (u64)pages_min * zone_managed_pages(zone); 6337 tmp = div64_ul(tmp, lowmem_pages); 6338 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6339 /* 6340 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6341 * need highmem and movable zones pages, so cap pages_min 6342 * to a small value here. 6343 * 6344 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6345 * deltas control async page reclaim, and so should 6346 * not be capped for highmem and movable zones. 6347 */ 6348 unsigned long min_pages; 6349 6350 min_pages = zone_managed_pages(zone) / 1024; 6351 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6352 zone->_watermark[WMARK_MIN] = min_pages; 6353 } else { 6354 /* 6355 * If it's a lowmem zone, reserve a number of pages 6356 * proportionate to the zone's size. 6357 */ 6358 zone->_watermark[WMARK_MIN] = tmp; 6359 } 6360 6361 /* 6362 * Set the kswapd watermarks distance according to the 6363 * scale factor in proportion to available memory, but 6364 * ensure a minimum size on small systems. 6365 */ 6366 tmp = max_t(u64, tmp >> 2, 6367 mult_frac(zone_managed_pages(zone), 6368 watermark_scale_factor, 10000)); 6369 6370 zone->watermark_boost = 0; 6371 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6372 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6373 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6374 trace_mm_setup_per_zone_wmarks(zone); 6375 6376 spin_unlock_irqrestore(&zone->lock, flags); 6377 } 6378 6379 /* update totalreserve_pages */ 6380 calculate_totalreserve_pages(); 6381 } 6382 6383 /** 6384 * setup_per_zone_wmarks - called when min_free_kbytes changes 6385 * or when memory is hot-{added|removed} 6386 * 6387 * Ensures that the watermark[min,low,high] values for each zone are set 6388 * correctly with respect to min_free_kbytes. 6389 */ 6390 void setup_per_zone_wmarks(void) 6391 { 6392 struct zone *zone; 6393 static DEFINE_SPINLOCK(lock); 6394 6395 spin_lock(&lock); 6396 __setup_per_zone_wmarks(); 6397 spin_unlock(&lock); 6398 6399 /* 6400 * The watermark size have changed so update the pcpu batch 6401 * and high limits or the limits may be inappropriate. 6402 */ 6403 for_each_zone(zone) 6404 zone_pcp_update(zone, 0); 6405 } 6406 6407 /* 6408 * Initialise min_free_kbytes. 6409 * 6410 * For small machines we want it small (128k min). For large machines 6411 * we want it large (256MB max). But it is not linear, because network 6412 * bandwidth does not increase linearly with machine size. We use 6413 * 6414 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6415 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6416 * 6417 * which yields 6418 * 6419 * 16MB: 512k 6420 * 32MB: 724k 6421 * 64MB: 1024k 6422 * 128MB: 1448k 6423 * 256MB: 2048k 6424 * 512MB: 2896k 6425 * 1024MB: 4096k 6426 * 2048MB: 5792k 6427 * 4096MB: 8192k 6428 * 8192MB: 11584k 6429 * 16384MB: 16384k 6430 */ 6431 void calculate_min_free_kbytes(void) 6432 { 6433 unsigned long lowmem_kbytes; 6434 int new_min_free_kbytes; 6435 6436 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6437 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6438 6439 if (new_min_free_kbytes > user_min_free_kbytes) 6440 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6441 else 6442 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6443 new_min_free_kbytes, user_min_free_kbytes); 6444 6445 } 6446 6447 int __meminit init_per_zone_wmark_min(void) 6448 { 6449 calculate_min_free_kbytes(); 6450 setup_per_zone_wmarks(); 6451 refresh_zone_stat_thresholds(); 6452 setup_per_zone_lowmem_reserve(); 6453 6454 #ifdef CONFIG_NUMA 6455 setup_min_unmapped_ratio(); 6456 setup_min_slab_ratio(); 6457 #endif 6458 6459 khugepaged_min_free_kbytes_update(); 6460 6461 return 0; 6462 } 6463 postcore_initcall(init_per_zone_wmark_min) 6464 6465 /* 6466 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6467 * that we can call two helper functions whenever min_free_kbytes 6468 * changes. 6469 */ 6470 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6471 void *buffer, size_t *length, loff_t *ppos) 6472 { 6473 int rc; 6474 6475 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6476 if (rc) 6477 return rc; 6478 6479 if (write) { 6480 user_min_free_kbytes = min_free_kbytes; 6481 setup_per_zone_wmarks(); 6482 } 6483 return 0; 6484 } 6485 6486 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6487 void *buffer, size_t *length, loff_t *ppos) 6488 { 6489 int rc; 6490 6491 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6492 if (rc) 6493 return rc; 6494 6495 if (write) 6496 setup_per_zone_wmarks(); 6497 6498 return 0; 6499 } 6500 6501 #ifdef CONFIG_NUMA 6502 static void setup_min_unmapped_ratio(void) 6503 { 6504 pg_data_t *pgdat; 6505 struct zone *zone; 6506 6507 for_each_online_pgdat(pgdat) 6508 pgdat->min_unmapped_pages = 0; 6509 6510 for_each_zone(zone) 6511 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6512 sysctl_min_unmapped_ratio) / 100; 6513 } 6514 6515 6516 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6517 void *buffer, size_t *length, loff_t *ppos) 6518 { 6519 int rc; 6520 6521 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6522 if (rc) 6523 return rc; 6524 6525 setup_min_unmapped_ratio(); 6526 6527 return 0; 6528 } 6529 6530 static void setup_min_slab_ratio(void) 6531 { 6532 pg_data_t *pgdat; 6533 struct zone *zone; 6534 6535 for_each_online_pgdat(pgdat) 6536 pgdat->min_slab_pages = 0; 6537 6538 for_each_zone(zone) 6539 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6540 sysctl_min_slab_ratio) / 100; 6541 } 6542 6543 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6544 void *buffer, size_t *length, loff_t *ppos) 6545 { 6546 int rc; 6547 6548 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6549 if (rc) 6550 return rc; 6551 6552 setup_min_slab_ratio(); 6553 6554 return 0; 6555 } 6556 #endif 6557 6558 /* 6559 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6560 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6561 * whenever sysctl_lowmem_reserve_ratio changes. 6562 * 6563 * The reserve ratio obviously has absolutely no relation with the 6564 * minimum watermarks. The lowmem reserve ratio can only make sense 6565 * if in function of the boot time zone sizes. 6566 */ 6567 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6568 int write, void *buffer, size_t *length, loff_t *ppos) 6569 { 6570 int i; 6571 6572 proc_dointvec_minmax(table, write, buffer, length, ppos); 6573 6574 for (i = 0; i < MAX_NR_ZONES; i++) { 6575 if (sysctl_lowmem_reserve_ratio[i] < 1) 6576 sysctl_lowmem_reserve_ratio[i] = 0; 6577 } 6578 6579 setup_per_zone_lowmem_reserve(); 6580 return 0; 6581 } 6582 6583 /* 6584 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6585 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6586 * pagelist can have before it gets flushed back to buddy allocator. 6587 */ 6588 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6589 int write, void *buffer, size_t *length, loff_t *ppos) 6590 { 6591 struct zone *zone; 6592 int old_percpu_pagelist_high_fraction; 6593 int ret; 6594 6595 mutex_lock(&pcp_batch_high_lock); 6596 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6597 6598 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6599 if (!write || ret < 0) 6600 goto out; 6601 6602 /* Sanity checking to avoid pcp imbalance */ 6603 if (percpu_pagelist_high_fraction && 6604 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6605 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6606 ret = -EINVAL; 6607 goto out; 6608 } 6609 6610 /* No change? */ 6611 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6612 goto out; 6613 6614 for_each_populated_zone(zone) 6615 zone_set_pageset_high_and_batch(zone, 0); 6616 out: 6617 mutex_unlock(&pcp_batch_high_lock); 6618 return ret; 6619 } 6620 6621 static const struct ctl_table page_alloc_sysctl_table[] = { 6622 { 6623 .procname = "min_free_kbytes", 6624 .data = &min_free_kbytes, 6625 .maxlen = sizeof(min_free_kbytes), 6626 .mode = 0644, 6627 .proc_handler = min_free_kbytes_sysctl_handler, 6628 .extra1 = SYSCTL_ZERO, 6629 }, 6630 { 6631 .procname = "watermark_boost_factor", 6632 .data = &watermark_boost_factor, 6633 .maxlen = sizeof(watermark_boost_factor), 6634 .mode = 0644, 6635 .proc_handler = proc_dointvec_minmax, 6636 .extra1 = SYSCTL_ZERO, 6637 }, 6638 { 6639 .procname = "watermark_scale_factor", 6640 .data = &watermark_scale_factor, 6641 .maxlen = sizeof(watermark_scale_factor), 6642 .mode = 0644, 6643 .proc_handler = watermark_scale_factor_sysctl_handler, 6644 .extra1 = SYSCTL_ONE, 6645 .extra2 = SYSCTL_THREE_THOUSAND, 6646 }, 6647 { 6648 .procname = "defrag_mode", 6649 .data = &defrag_mode, 6650 .maxlen = sizeof(defrag_mode), 6651 .mode = 0644, 6652 .proc_handler = proc_dointvec_minmax, 6653 .extra1 = SYSCTL_ZERO, 6654 .extra2 = SYSCTL_ONE, 6655 }, 6656 { 6657 .procname = "percpu_pagelist_high_fraction", 6658 .data = &percpu_pagelist_high_fraction, 6659 .maxlen = sizeof(percpu_pagelist_high_fraction), 6660 .mode = 0644, 6661 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6662 .extra1 = SYSCTL_ZERO, 6663 }, 6664 { 6665 .procname = "lowmem_reserve_ratio", 6666 .data = &sysctl_lowmem_reserve_ratio, 6667 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6668 .mode = 0644, 6669 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6670 }, 6671 #ifdef CONFIG_NUMA 6672 { 6673 .procname = "numa_zonelist_order", 6674 .data = &numa_zonelist_order, 6675 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6676 .mode = 0644, 6677 .proc_handler = numa_zonelist_order_handler, 6678 }, 6679 { 6680 .procname = "min_unmapped_ratio", 6681 .data = &sysctl_min_unmapped_ratio, 6682 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6683 .mode = 0644, 6684 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6685 .extra1 = SYSCTL_ZERO, 6686 .extra2 = SYSCTL_ONE_HUNDRED, 6687 }, 6688 { 6689 .procname = "min_slab_ratio", 6690 .data = &sysctl_min_slab_ratio, 6691 .maxlen = sizeof(sysctl_min_slab_ratio), 6692 .mode = 0644, 6693 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6694 .extra1 = SYSCTL_ZERO, 6695 .extra2 = SYSCTL_ONE_HUNDRED, 6696 }, 6697 #endif 6698 }; 6699 6700 void __init page_alloc_sysctl_init(void) 6701 { 6702 register_sysctl_init("vm", page_alloc_sysctl_table); 6703 } 6704 6705 #ifdef CONFIG_CONTIG_ALLOC 6706 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6707 static void alloc_contig_dump_pages(struct list_head *page_list) 6708 { 6709 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6710 6711 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6712 struct page *page; 6713 6714 dump_stack(); 6715 list_for_each_entry(page, page_list, lru) 6716 dump_page(page, "migration failure"); 6717 } 6718 } 6719 6720 /* [start, end) must belong to a single zone. */ 6721 static int __alloc_contig_migrate_range(struct compact_control *cc, 6722 unsigned long start, unsigned long end) 6723 { 6724 /* This function is based on compact_zone() from compaction.c. */ 6725 unsigned int nr_reclaimed; 6726 unsigned long pfn = start; 6727 unsigned int tries = 0; 6728 int ret = 0; 6729 struct migration_target_control mtc = { 6730 .nid = zone_to_nid(cc->zone), 6731 .gfp_mask = cc->gfp_mask, 6732 .reason = MR_CONTIG_RANGE, 6733 }; 6734 6735 lru_cache_disable(); 6736 6737 while (pfn < end || !list_empty(&cc->migratepages)) { 6738 if (fatal_signal_pending(current)) { 6739 ret = -EINTR; 6740 break; 6741 } 6742 6743 if (list_empty(&cc->migratepages)) { 6744 cc->nr_migratepages = 0; 6745 ret = isolate_migratepages_range(cc, pfn, end); 6746 if (ret && ret != -EAGAIN) 6747 break; 6748 pfn = cc->migrate_pfn; 6749 tries = 0; 6750 } else if (++tries == 5) { 6751 ret = -EBUSY; 6752 break; 6753 } 6754 6755 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6756 &cc->migratepages); 6757 cc->nr_migratepages -= nr_reclaimed; 6758 6759 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6760 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6761 6762 /* 6763 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6764 * to retry again over this error, so do the same here. 6765 */ 6766 if (ret == -ENOMEM) 6767 break; 6768 } 6769 6770 lru_cache_enable(); 6771 if (ret < 0) { 6772 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6773 alloc_contig_dump_pages(&cc->migratepages); 6774 putback_movable_pages(&cc->migratepages); 6775 } 6776 6777 return (ret < 0) ? ret : 0; 6778 } 6779 6780 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6781 { 6782 int order; 6783 6784 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6785 struct page *page, *next; 6786 int nr_pages = 1 << order; 6787 6788 list_for_each_entry_safe(page, next, &list[order], lru) { 6789 int i; 6790 6791 post_alloc_hook(page, order, gfp_mask); 6792 set_page_refcounted(page); 6793 if (!order) 6794 continue; 6795 6796 split_page(page, order); 6797 6798 /* Add all subpages to the order-0 head, in sequence. */ 6799 list_del(&page->lru); 6800 for (i = 0; i < nr_pages; i++) 6801 list_add_tail(&page[i].lru, &list[0]); 6802 } 6803 } 6804 } 6805 6806 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6807 { 6808 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6809 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6810 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6811 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6812 6813 /* 6814 * We are given the range to allocate; node, mobility and placement 6815 * hints are irrelevant at this point. We'll simply ignore them. 6816 */ 6817 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6818 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6819 6820 /* 6821 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6822 * selected action flags. 6823 */ 6824 if (gfp_mask & ~(reclaim_mask | action_mask)) 6825 return -EINVAL; 6826 6827 /* 6828 * Flags to control page compaction/migration/reclaim, to free up our 6829 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6830 * for them. 6831 * 6832 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6833 * to not degrade callers. 6834 */ 6835 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6836 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6837 return 0; 6838 } 6839 6840 /** 6841 * alloc_contig_range() -- tries to allocate given range of pages 6842 * @start: start PFN to allocate 6843 * @end: one-past-the-last PFN to allocate 6844 * @alloc_flags: allocation information 6845 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6846 * action and reclaim modifiers are supported. Reclaim modifiers 6847 * control allocation behavior during compaction/migration/reclaim. 6848 * 6849 * The PFN range does not have to be pageblock aligned. The PFN range must 6850 * belong to a single zone. 6851 * 6852 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6853 * pageblocks in the range. Once isolated, the pageblocks should not 6854 * be modified by others. 6855 * 6856 * Return: zero on success or negative error code. On success all 6857 * pages which PFN is in [start, end) are allocated for the caller and 6858 * need to be freed with free_contig_range(). 6859 */ 6860 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6861 acr_flags_t alloc_flags, gfp_t gfp_mask) 6862 { 6863 const unsigned int order = ilog2(end - start); 6864 unsigned long outer_start, outer_end; 6865 int ret = 0; 6866 6867 struct compact_control cc = { 6868 .nr_migratepages = 0, 6869 .order = -1, 6870 .zone = page_zone(pfn_to_page(start)), 6871 .mode = MIGRATE_SYNC, 6872 .ignore_skip_hint = true, 6873 .no_set_skip_hint = true, 6874 .alloc_contig = true, 6875 }; 6876 INIT_LIST_HEAD(&cc.migratepages); 6877 enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ? 6878 PB_ISOLATE_MODE_CMA_ALLOC : 6879 PB_ISOLATE_MODE_OTHER; 6880 6881 /* 6882 * In contrast to the buddy, we allow for orders here that exceed 6883 * MAX_PAGE_ORDER, so we must manually make sure that we are not 6884 * exceeding the maximum folio order. 6885 */ 6886 if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER)) 6887 return -EINVAL; 6888 6889 gfp_mask = current_gfp_context(gfp_mask); 6890 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6891 return -EINVAL; 6892 6893 /* 6894 * What we do here is we mark all pageblocks in range as 6895 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6896 * have different sizes, and due to the way page allocator 6897 * work, start_isolate_page_range() has special handlings for this. 6898 * 6899 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6900 * migrate the pages from an unaligned range (ie. pages that 6901 * we are interested in). This will put all the pages in 6902 * range back to page allocator as MIGRATE_ISOLATE. 6903 * 6904 * When this is done, we take the pages in range from page 6905 * allocator removing them from the buddy system. This way 6906 * page allocator will never consider using them. 6907 * 6908 * This lets us mark the pageblocks back as 6909 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6910 * aligned range but not in the unaligned, original range are 6911 * put back to page allocator so that buddy can use them. 6912 */ 6913 6914 ret = start_isolate_page_range(start, end, mode); 6915 if (ret) 6916 goto done; 6917 6918 drain_all_pages(cc.zone); 6919 6920 /* 6921 * In case of -EBUSY, we'd like to know which page causes problem. 6922 * So, just fall through. test_pages_isolated() has a tracepoint 6923 * which will report the busy page. 6924 * 6925 * It is possible that busy pages could become available before 6926 * the call to test_pages_isolated, and the range will actually be 6927 * allocated. So, if we fall through be sure to clear ret so that 6928 * -EBUSY is not accidentally used or returned to caller. 6929 */ 6930 ret = __alloc_contig_migrate_range(&cc, start, end); 6931 if (ret && ret != -EBUSY) 6932 goto done; 6933 6934 /* 6935 * When in-use hugetlb pages are migrated, they may simply be released 6936 * back into the free hugepage pool instead of being returned to the 6937 * buddy system. After the migration of in-use huge pages is completed, 6938 * we will invoke replace_free_hugepage_folios() to ensure that these 6939 * hugepages are properly released to the buddy system. 6940 */ 6941 ret = replace_free_hugepage_folios(start, end); 6942 if (ret) 6943 goto done; 6944 6945 /* 6946 * Pages from [start, end) are within a pageblock_nr_pages 6947 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6948 * more, all pages in [start, end) are free in page allocator. 6949 * What we are going to do is to allocate all pages from 6950 * [start, end) (that is remove them from page allocator). 6951 * 6952 * The only problem is that pages at the beginning and at the 6953 * end of interesting range may be not aligned with pages that 6954 * page allocator holds, ie. they can be part of higher order 6955 * pages. Because of this, we reserve the bigger range and 6956 * once this is done free the pages we are not interested in. 6957 * 6958 * We don't have to hold zone->lock here because the pages are 6959 * isolated thus they won't get removed from buddy. 6960 */ 6961 outer_start = find_large_buddy(start); 6962 6963 /* Make sure the range is really isolated. */ 6964 if (test_pages_isolated(outer_start, end, mode)) { 6965 ret = -EBUSY; 6966 goto done; 6967 } 6968 6969 /* Grab isolated pages from freelists. */ 6970 outer_end = isolate_freepages_range(&cc, outer_start, end); 6971 if (!outer_end) { 6972 ret = -EBUSY; 6973 goto done; 6974 } 6975 6976 if (!(gfp_mask & __GFP_COMP)) { 6977 split_free_pages(cc.freepages, gfp_mask); 6978 6979 /* Free head and tail (if any) */ 6980 if (start != outer_start) 6981 free_contig_range(outer_start, start - outer_start); 6982 if (end != outer_end) 6983 free_contig_range(end, outer_end - end); 6984 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6985 struct page *head = pfn_to_page(start); 6986 6987 check_new_pages(head, order); 6988 prep_new_page(head, order, gfp_mask, 0); 6989 set_page_refcounted(head); 6990 } else { 6991 ret = -EINVAL; 6992 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6993 start, end, outer_start, outer_end); 6994 } 6995 done: 6996 undo_isolate_page_range(start, end); 6997 return ret; 6998 } 6999 EXPORT_SYMBOL(alloc_contig_range_noprof); 7000 7001 static int __alloc_contig_pages(unsigned long start_pfn, 7002 unsigned long nr_pages, gfp_t gfp_mask) 7003 { 7004 unsigned long end_pfn = start_pfn + nr_pages; 7005 7006 return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE, 7007 gfp_mask); 7008 } 7009 7010 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 7011 unsigned long nr_pages) 7012 { 7013 unsigned long i, end_pfn = start_pfn + nr_pages; 7014 struct page *page; 7015 7016 for (i = start_pfn; i < end_pfn; i++) { 7017 page = pfn_to_online_page(i); 7018 if (!page) 7019 return false; 7020 7021 if (page_zone(page) != z) 7022 return false; 7023 7024 if (PageReserved(page)) 7025 return false; 7026 7027 if (PageHuge(page)) 7028 return false; 7029 } 7030 return true; 7031 } 7032 7033 static bool zone_spans_last_pfn(const struct zone *zone, 7034 unsigned long start_pfn, unsigned long nr_pages) 7035 { 7036 unsigned long last_pfn = start_pfn + nr_pages - 1; 7037 7038 return zone_spans_pfn(zone, last_pfn); 7039 } 7040 7041 /** 7042 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 7043 * @nr_pages: Number of contiguous pages to allocate 7044 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 7045 * action and reclaim modifiers are supported. Reclaim modifiers 7046 * control allocation behavior during compaction/migration/reclaim. 7047 * @nid: Target node 7048 * @nodemask: Mask for other possible nodes 7049 * 7050 * This routine is a wrapper around alloc_contig_range(). It scans over zones 7051 * on an applicable zonelist to find a contiguous pfn range which can then be 7052 * tried for allocation with alloc_contig_range(). This routine is intended 7053 * for allocation requests which can not be fulfilled with the buddy allocator. 7054 * 7055 * The allocated memory is always aligned to a page boundary. If nr_pages is a 7056 * power of two, then allocated range is also guaranteed to be aligned to same 7057 * nr_pages (e.g. 1GB request would be aligned to 1GB). 7058 * 7059 * Allocated pages can be freed with free_contig_range() or by manually calling 7060 * __free_page() on each allocated page. 7061 * 7062 * Return: pointer to contiguous pages on success, or NULL if not successful. 7063 */ 7064 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 7065 int nid, nodemask_t *nodemask) 7066 { 7067 unsigned long ret, pfn, flags; 7068 struct zonelist *zonelist; 7069 struct zone *zone; 7070 struct zoneref *z; 7071 7072 zonelist = node_zonelist(nid, gfp_mask); 7073 for_each_zone_zonelist_nodemask(zone, z, zonelist, 7074 gfp_zone(gfp_mask), nodemask) { 7075 spin_lock_irqsave(&zone->lock, flags); 7076 7077 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 7078 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 7079 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 7080 /* 7081 * We release the zone lock here because 7082 * alloc_contig_range() will also lock the zone 7083 * at some point. If there's an allocation 7084 * spinning on this lock, it may win the race 7085 * and cause alloc_contig_range() to fail... 7086 */ 7087 spin_unlock_irqrestore(&zone->lock, flags); 7088 ret = __alloc_contig_pages(pfn, nr_pages, 7089 gfp_mask); 7090 if (!ret) 7091 return pfn_to_page(pfn); 7092 spin_lock_irqsave(&zone->lock, flags); 7093 } 7094 pfn += nr_pages; 7095 } 7096 spin_unlock_irqrestore(&zone->lock, flags); 7097 } 7098 return NULL; 7099 } 7100 #endif /* CONFIG_CONTIG_ALLOC */ 7101 7102 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 7103 { 7104 unsigned long count = 0; 7105 struct folio *folio = pfn_folio(pfn); 7106 7107 if (folio_test_large(folio)) { 7108 int expected = folio_nr_pages(folio); 7109 7110 if (nr_pages == expected) 7111 folio_put(folio); 7112 else 7113 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 7114 pfn, nr_pages, expected); 7115 return; 7116 } 7117 7118 for (; nr_pages--; pfn++) { 7119 struct page *page = pfn_to_page(pfn); 7120 7121 count += page_count(page) != 1; 7122 __free_page(page); 7123 } 7124 WARN(count != 0, "%lu pages are still in use!\n", count); 7125 } 7126 EXPORT_SYMBOL(free_contig_range); 7127 7128 /* 7129 * Effectively disable pcplists for the zone by setting the high limit to 0 7130 * and draining all cpus. A concurrent page freeing on another CPU that's about 7131 * to put the page on pcplist will either finish before the drain and the page 7132 * will be drained, or observe the new high limit and skip the pcplist. 7133 * 7134 * Must be paired with a call to zone_pcp_enable(). 7135 */ 7136 void zone_pcp_disable(struct zone *zone) 7137 { 7138 mutex_lock(&pcp_batch_high_lock); 7139 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 7140 __drain_all_pages(zone, true); 7141 } 7142 7143 void zone_pcp_enable(struct zone *zone) 7144 { 7145 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 7146 zone->pageset_high_max, zone->pageset_batch); 7147 mutex_unlock(&pcp_batch_high_lock); 7148 } 7149 7150 void zone_pcp_reset(struct zone *zone) 7151 { 7152 int cpu; 7153 struct per_cpu_zonestat *pzstats; 7154 7155 if (zone->per_cpu_pageset != &boot_pageset) { 7156 for_each_online_cpu(cpu) { 7157 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7158 drain_zonestat(zone, pzstats); 7159 } 7160 free_percpu(zone->per_cpu_pageset); 7161 zone->per_cpu_pageset = &boot_pageset; 7162 if (zone->per_cpu_zonestats != &boot_zonestats) { 7163 free_percpu(zone->per_cpu_zonestats); 7164 zone->per_cpu_zonestats = &boot_zonestats; 7165 } 7166 } 7167 } 7168 7169 #ifdef CONFIG_MEMORY_HOTREMOVE 7170 /* 7171 * All pages in the range must be in a single zone, must not contain holes, 7172 * must span full sections, and must be isolated before calling this function. 7173 * 7174 * Returns the number of managed (non-PageOffline()) pages in the range: the 7175 * number of pages for which memory offlining code must adjust managed page 7176 * counters using adjust_managed_page_count(). 7177 */ 7178 unsigned long __offline_isolated_pages(unsigned long start_pfn, 7179 unsigned long end_pfn) 7180 { 7181 unsigned long already_offline = 0, flags; 7182 unsigned long pfn = start_pfn; 7183 struct page *page; 7184 struct zone *zone; 7185 unsigned int order; 7186 7187 offline_mem_sections(pfn, end_pfn); 7188 zone = page_zone(pfn_to_page(pfn)); 7189 spin_lock_irqsave(&zone->lock, flags); 7190 while (pfn < end_pfn) { 7191 page = pfn_to_page(pfn); 7192 /* 7193 * The HWPoisoned page may be not in buddy system, and 7194 * page_count() is not 0. 7195 */ 7196 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7197 pfn++; 7198 continue; 7199 } 7200 /* 7201 * At this point all remaining PageOffline() pages have a 7202 * reference count of 0 and can simply be skipped. 7203 */ 7204 if (PageOffline(page)) { 7205 BUG_ON(page_count(page)); 7206 BUG_ON(PageBuddy(page)); 7207 already_offline++; 7208 pfn++; 7209 continue; 7210 } 7211 7212 BUG_ON(page_count(page)); 7213 BUG_ON(!PageBuddy(page)); 7214 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7215 order = buddy_order(page); 7216 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7217 pfn += (1 << order); 7218 } 7219 spin_unlock_irqrestore(&zone->lock, flags); 7220 7221 return end_pfn - start_pfn - already_offline; 7222 } 7223 #endif 7224 7225 /* 7226 * This function returns a stable result only if called under zone lock. 7227 */ 7228 bool is_free_buddy_page(const struct page *page) 7229 { 7230 unsigned long pfn = page_to_pfn(page); 7231 unsigned int order; 7232 7233 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7234 const struct page *head = page - (pfn & ((1 << order) - 1)); 7235 7236 if (PageBuddy(head) && 7237 buddy_order_unsafe(head) >= order) 7238 break; 7239 } 7240 7241 return order <= MAX_PAGE_ORDER; 7242 } 7243 EXPORT_SYMBOL(is_free_buddy_page); 7244 7245 #ifdef CONFIG_MEMORY_FAILURE 7246 static inline void add_to_free_list(struct page *page, struct zone *zone, 7247 unsigned int order, int migratetype, 7248 bool tail) 7249 { 7250 __add_to_free_list(page, zone, order, migratetype, tail); 7251 account_freepages(zone, 1 << order, migratetype); 7252 } 7253 7254 /* 7255 * Break down a higher-order page in sub-pages, and keep our target out of 7256 * buddy allocator. 7257 */ 7258 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7259 struct page *target, int low, int high, 7260 int migratetype) 7261 { 7262 unsigned long size = 1 << high; 7263 struct page *current_buddy; 7264 7265 while (high > low) { 7266 high--; 7267 size >>= 1; 7268 7269 if (target >= &page[size]) { 7270 current_buddy = page; 7271 page = page + size; 7272 } else { 7273 current_buddy = page + size; 7274 } 7275 7276 if (set_page_guard(zone, current_buddy, high)) 7277 continue; 7278 7279 add_to_free_list(current_buddy, zone, high, migratetype, false); 7280 set_buddy_order(current_buddy, high); 7281 } 7282 } 7283 7284 /* 7285 * Take a page that will be marked as poisoned off the buddy allocator. 7286 */ 7287 bool take_page_off_buddy(struct page *page) 7288 { 7289 struct zone *zone = page_zone(page); 7290 unsigned long pfn = page_to_pfn(page); 7291 unsigned long flags; 7292 unsigned int order; 7293 bool ret = false; 7294 7295 spin_lock_irqsave(&zone->lock, flags); 7296 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7297 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7298 int page_order = buddy_order(page_head); 7299 7300 if (PageBuddy(page_head) && page_order >= order) { 7301 unsigned long pfn_head = page_to_pfn(page_head); 7302 int migratetype = get_pfnblock_migratetype(page_head, 7303 pfn_head); 7304 7305 del_page_from_free_list(page_head, zone, page_order, 7306 migratetype); 7307 break_down_buddy_pages(zone, page_head, page, 0, 7308 page_order, migratetype); 7309 SetPageHWPoisonTakenOff(page); 7310 ret = true; 7311 break; 7312 } 7313 if (page_count(page_head) > 0) 7314 break; 7315 } 7316 spin_unlock_irqrestore(&zone->lock, flags); 7317 return ret; 7318 } 7319 7320 /* 7321 * Cancel takeoff done by take_page_off_buddy(). 7322 */ 7323 bool put_page_back_buddy(struct page *page) 7324 { 7325 struct zone *zone = page_zone(page); 7326 unsigned long flags; 7327 bool ret = false; 7328 7329 spin_lock_irqsave(&zone->lock, flags); 7330 if (put_page_testzero(page)) { 7331 unsigned long pfn = page_to_pfn(page); 7332 int migratetype = get_pfnblock_migratetype(page, pfn); 7333 7334 ClearPageHWPoisonTakenOff(page); 7335 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7336 if (TestClearPageHWPoison(page)) { 7337 ret = true; 7338 } 7339 } 7340 spin_unlock_irqrestore(&zone->lock, flags); 7341 7342 return ret; 7343 } 7344 #endif 7345 7346 #ifdef CONFIG_ZONE_DMA 7347 bool has_managed_dma(void) 7348 { 7349 struct pglist_data *pgdat; 7350 7351 for_each_online_pgdat(pgdat) { 7352 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7353 7354 if (managed_zone(zone)) 7355 return true; 7356 } 7357 return false; 7358 } 7359 #endif /* CONFIG_ZONE_DMA */ 7360 7361 #ifdef CONFIG_UNACCEPTED_MEMORY 7362 7363 static bool lazy_accept = true; 7364 7365 static int __init accept_memory_parse(char *p) 7366 { 7367 if (!strcmp(p, "lazy")) { 7368 lazy_accept = true; 7369 return 0; 7370 } else if (!strcmp(p, "eager")) { 7371 lazy_accept = false; 7372 return 0; 7373 } else { 7374 return -EINVAL; 7375 } 7376 } 7377 early_param("accept_memory", accept_memory_parse); 7378 7379 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7380 { 7381 phys_addr_t start = page_to_phys(page); 7382 7383 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7384 } 7385 7386 static void __accept_page(struct zone *zone, unsigned long *flags, 7387 struct page *page) 7388 { 7389 list_del(&page->lru); 7390 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7391 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7392 __ClearPageUnaccepted(page); 7393 spin_unlock_irqrestore(&zone->lock, *flags); 7394 7395 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7396 7397 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7398 } 7399 7400 void accept_page(struct page *page) 7401 { 7402 struct zone *zone = page_zone(page); 7403 unsigned long flags; 7404 7405 spin_lock_irqsave(&zone->lock, flags); 7406 if (!PageUnaccepted(page)) { 7407 spin_unlock_irqrestore(&zone->lock, flags); 7408 return; 7409 } 7410 7411 /* Unlocks zone->lock */ 7412 __accept_page(zone, &flags, page); 7413 } 7414 7415 static bool try_to_accept_memory_one(struct zone *zone) 7416 { 7417 unsigned long flags; 7418 struct page *page; 7419 7420 spin_lock_irqsave(&zone->lock, flags); 7421 page = list_first_entry_or_null(&zone->unaccepted_pages, 7422 struct page, lru); 7423 if (!page) { 7424 spin_unlock_irqrestore(&zone->lock, flags); 7425 return false; 7426 } 7427 7428 /* Unlocks zone->lock */ 7429 __accept_page(zone, &flags, page); 7430 7431 return true; 7432 } 7433 7434 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7435 int alloc_flags) 7436 { 7437 long to_accept, wmark; 7438 bool ret = false; 7439 7440 if (list_empty(&zone->unaccepted_pages)) 7441 return false; 7442 7443 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7444 if (alloc_flags & ALLOC_TRYLOCK) 7445 return false; 7446 7447 wmark = promo_wmark_pages(zone); 7448 7449 /* 7450 * Watermarks have not been initialized yet. 7451 * 7452 * Accepting one MAX_ORDER page to ensure progress. 7453 */ 7454 if (!wmark) 7455 return try_to_accept_memory_one(zone); 7456 7457 /* How much to accept to get to promo watermark? */ 7458 to_accept = wmark - 7459 (zone_page_state(zone, NR_FREE_PAGES) - 7460 __zone_watermark_unusable_free(zone, order, 0) - 7461 zone_page_state(zone, NR_UNACCEPTED)); 7462 7463 while (to_accept > 0) { 7464 if (!try_to_accept_memory_one(zone)) 7465 break; 7466 ret = true; 7467 to_accept -= MAX_ORDER_NR_PAGES; 7468 } 7469 7470 return ret; 7471 } 7472 7473 static bool __free_unaccepted(struct page *page) 7474 { 7475 struct zone *zone = page_zone(page); 7476 unsigned long flags; 7477 7478 if (!lazy_accept) 7479 return false; 7480 7481 spin_lock_irqsave(&zone->lock, flags); 7482 list_add_tail(&page->lru, &zone->unaccepted_pages); 7483 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7484 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7485 __SetPageUnaccepted(page); 7486 spin_unlock_irqrestore(&zone->lock, flags); 7487 7488 return true; 7489 } 7490 7491 #else 7492 7493 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7494 { 7495 return false; 7496 } 7497 7498 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7499 int alloc_flags) 7500 { 7501 return false; 7502 } 7503 7504 static bool __free_unaccepted(struct page *page) 7505 { 7506 BUILD_BUG(); 7507 return false; 7508 } 7509 7510 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7511 7512 /** 7513 * alloc_pages_nolock - opportunistic reentrant allocation from any context 7514 * @nid: node to allocate from 7515 * @order: allocation order size 7516 * 7517 * Allocates pages of a given order from the given node. This is safe to 7518 * call from any context (from atomic, NMI, and also reentrant 7519 * allocator -> tracepoint -> alloc_pages_nolock_noprof). 7520 * Allocation is best effort and to be expected to fail easily so nobody should 7521 * rely on the success. Failures are not reported via warn_alloc(). 7522 * See always fail conditions below. 7523 * 7524 * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. 7525 * It means ENOMEM. There is no reason to call it again and expect !NULL. 7526 */ 7527 struct page *alloc_pages_nolock_noprof(int nid, unsigned int order) 7528 { 7529 /* 7530 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7531 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7532 * is not safe in arbitrary context. 7533 * 7534 * These two are the conditions for gfpflags_allow_spinning() being true. 7535 * 7536 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason 7537 * to warn. Also warn would trigger printk() which is unsafe from 7538 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7539 * since the running context is unknown. 7540 * 7541 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7542 * is safe in any context. Also zeroing the page is mandatory for 7543 * BPF use cases. 7544 * 7545 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7546 * specify it here to highlight that alloc_pages_nolock() 7547 * doesn't want to deplete reserves. 7548 */ 7549 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC 7550 | __GFP_ACCOUNT; 7551 unsigned int alloc_flags = ALLOC_TRYLOCK; 7552 struct alloc_context ac = { }; 7553 struct page *page; 7554 7555 /* 7556 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7557 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7558 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7559 * mark the task as the owner of another rt_spin_lock which will 7560 * confuse PI logic, so return immediately if called form hard IRQ or 7561 * NMI. 7562 * 7563 * Note, irqs_disabled() case is ok. This function can be called 7564 * from raw_spin_lock_irqsave region. 7565 */ 7566 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7567 return NULL; 7568 if (!pcp_allowed_order(order)) 7569 return NULL; 7570 7571 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7572 if (deferred_pages_enabled()) 7573 return NULL; 7574 7575 if (nid == NUMA_NO_NODE) 7576 nid = numa_node_id(); 7577 7578 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7579 &alloc_gfp, &alloc_flags); 7580 7581 /* 7582 * Best effort allocation from percpu free list. 7583 * If it's empty attempt to spin_trylock zone->lock. 7584 */ 7585 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7586 7587 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7588 7589 if (page) 7590 set_page_refcounted(page); 7591 7592 if (memcg_kmem_online() && page && 7593 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7594 free_pages_nolock(page, order); 7595 page = NULL; 7596 } 7597 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7598 kmsan_alloc_page(page, order, alloc_gfp); 7599 return page; 7600 } 7601