xref: /linux/mm/page_alloc.c (revision 1f70367f7b6720ca0d3280b202317aa9d0167066)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
93 
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97 
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100  * On SMP, spin_trylock is sufficient protection.
101  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102  */
103 #define pcp_trylock_prepare(flags)	do { } while (0)
104 #define pcp_trylock_finish(flag)	do { } while (0)
105 #else
106 
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
109 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
110 #endif
111 
112 /*
113  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114  * a migration causing the wrong PCP to be locked and remote memory being
115  * potentially allocated, pin the task to the CPU for the lookup+lock.
116  * preempt_disable is used on !RT because it is faster than migrate_disable.
117  * migrate_disable is used on RT because otherwise RT spinlock usage is
118  * interfered with and a high priority task cannot preempt the allocator.
119  */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin()		preempt_disable()
122 #define pcpu_task_unpin()	preempt_enable()
123 #else
124 #define pcpu_task_pin()		migrate_disable()
125 #define pcpu_task_unpin()	migrate_enable()
126 #endif
127 
128 /*
129  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130  * Return value should be used with equivalent unlock helper.
131  */
132 #define pcpu_spin_lock(type, member, ptr)				\
133 ({									\
134 	type *_ret;							\
135 	pcpu_task_pin();						\
136 	_ret = this_cpu_ptr(ptr);					\
137 	spin_lock(&_ret->member);					\
138 	_ret;								\
139 })
140 
141 #define pcpu_spin_trylock(type, member, ptr)				\
142 ({									\
143 	type *_ret;							\
144 	pcpu_task_pin();						\
145 	_ret = this_cpu_ptr(ptr);					\
146 	if (!spin_trylock(&_ret->member)) {				\
147 		pcpu_task_unpin();					\
148 		_ret = NULL;						\
149 	}								\
150 	_ret;								\
151 })
152 
153 #define pcpu_spin_unlock(member, ptr)					\
154 ({									\
155 	spin_unlock(&ptr->member);					\
156 	pcpu_task_unpin();						\
157 })
158 
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr)						\
161 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_trylock(ptr)						\
164 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165 
166 #define pcp_spin_unlock(ptr)						\
167 	pcpu_spin_unlock(lock, ptr)
168 
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173 
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175 
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181  * defined in <linux/topology.h>.
182  */
183 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186 
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188 
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193 
194 /*
195  * Array of node states.
196  */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 	[N_POSSIBLE] = NODE_MASK_ALL,
199 	[N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 	[N_MEMORY] = { { [0] = 1UL } },
206 	[N_CPU] = { { [0] = 1UL } },
207 #endif	/* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210 
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212 
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216 
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 			    fpi_t fpi_flags);
219 
220 /*
221  * results with 256, 32 in the lowmem_reserve sysctl:
222  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223  *	1G machine -> (16M dma, 784M normal, 224M high)
224  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227  *
228  * TBD: should special case ZONE_DMA32 machines here - in those we normally
229  * don't need any ZONE_NORMAL reservation
230  */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 	[ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	[ZONE_DMA32] = 256,
237 #endif
238 	[ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 	[ZONE_HIGHMEM] = 0,
241 #endif
242 	[ZONE_MOVABLE] = 0,
243 };
244 
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 	 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 	 "DMA32",
251 #endif
252 	 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 	 "HighMem",
255 #endif
256 	 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 	 "Device",
259 #endif
260 };
261 
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 	"Unmovable",
264 	"Movable",
265 	"Reclaimable",
266 	"HighAtomic",
267 #ifdef CONFIG_CMA
268 	"CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 	"Isolate",
272 #endif
273 };
274 
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280 
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284 
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291 
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order,
294 			       int alloc_flags);
295 static bool __free_unaccepted(struct page *page);
296 
297 int page_group_by_mobility_disabled __read_mostly;
298 
299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
300 /*
301  * During boot we initialize deferred pages on-demand, as needed, but once
302  * page_alloc_init_late() has finished, the deferred pages are all initialized,
303  * and we can permanently disable that path.
304  */
305 DEFINE_STATIC_KEY_TRUE(deferred_pages);
306 
307 static inline bool deferred_pages_enabled(void)
308 {
309 	return static_branch_unlikely(&deferred_pages);
310 }
311 
312 /*
313  * deferred_grow_zone() is __init, but it is called from
314  * get_page_from_freelist() during early boot until deferred_pages permanently
315  * disables this call. This is why we have refdata wrapper to avoid warning,
316  * and to ensure that the function body gets unloaded.
317  */
318 static bool __ref
319 _deferred_grow_zone(struct zone *zone, unsigned int order)
320 {
321 	return deferred_grow_zone(zone, order);
322 }
323 #else
324 static inline bool deferred_pages_enabled(void)
325 {
326 	return false;
327 }
328 
329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
330 {
331 	return false;
332 }
333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
334 
335 /* Return a pointer to the bitmap storing bits affecting a block of pages */
336 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
337 							unsigned long pfn)
338 {
339 #ifdef CONFIG_SPARSEMEM
340 	return section_to_usemap(__pfn_to_section(pfn));
341 #else
342 	return page_zone(page)->pageblock_flags;
343 #endif /* CONFIG_SPARSEMEM */
344 }
345 
346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
347 {
348 #ifdef CONFIG_SPARSEMEM
349 	pfn &= (PAGES_PER_SECTION-1);
350 #else
351 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
352 #endif /* CONFIG_SPARSEMEM */
353 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
354 }
355 
356 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit)
357 {
358 	return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS;
359 }
360 
361 static __always_inline void
362 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn,
363 			   unsigned long **bitmap_word, unsigned long *bitidx)
364 {
365 	unsigned long *bitmap;
366 	unsigned long word_bitidx;
367 
368 #ifdef CONFIG_MEMORY_ISOLATION
369 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8);
370 #else
371 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
372 #endif
373 	BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK);
374 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
375 
376 	bitmap = get_pageblock_bitmap(page, pfn);
377 	*bitidx = pfn_to_bitidx(page, pfn);
378 	word_bitidx = *bitidx / BITS_PER_LONG;
379 	*bitidx &= (BITS_PER_LONG - 1);
380 	*bitmap_word = &bitmap[word_bitidx];
381 }
382 
383 
384 /**
385  * __get_pfnblock_flags_mask - Return the requested group of flags for
386  * a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @pfn: The target page frame number
389  * @mask: mask of bits that the caller is interested in
390  *
391  * Return: pageblock_bits flags
392  */
393 static unsigned long __get_pfnblock_flags_mask(const struct page *page,
394 					       unsigned long pfn,
395 					       unsigned long mask)
396 {
397 	unsigned long *bitmap_word;
398 	unsigned long bitidx;
399 	unsigned long word;
400 
401 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
402 	/*
403 	 * This races, without locks, with set_pfnblock_migratetype(). Ensure
404 	 * a consistent read of the memory array, so that results, even though
405 	 * racy, are not corrupted.
406 	 */
407 	word = READ_ONCE(*bitmap_word);
408 	return (word >> bitidx) & mask;
409 }
410 
411 /**
412  * get_pfnblock_bit - Check if a standalone bit of a pageblock is set
413  * @page: The page within the block of interest
414  * @pfn: The target page frame number
415  * @pb_bit: pageblock bit to check
416  *
417  * Return: true if the bit is set, otherwise false
418  */
419 bool get_pfnblock_bit(const struct page *page, unsigned long pfn,
420 		      enum pageblock_bits pb_bit)
421 {
422 	unsigned long *bitmap_word;
423 	unsigned long bitidx;
424 
425 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
426 		return false;
427 
428 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
429 
430 	return test_bit(bitidx + pb_bit, bitmap_word);
431 }
432 
433 /**
434  * get_pfnblock_migratetype - Return the migratetype of a pageblock
435  * @page: The page within the block of interest
436  * @pfn: The target page frame number
437  *
438  * Return: The migratetype of the pageblock
439  *
440  * Use get_pfnblock_migratetype() if caller already has both @page and @pfn
441  * to save a call to page_to_pfn().
442  */
443 __always_inline enum migratetype
444 get_pfnblock_migratetype(const struct page *page, unsigned long pfn)
445 {
446 	unsigned long mask = MIGRATETYPE_AND_ISO_MASK;
447 	unsigned long flags;
448 
449 	flags = __get_pfnblock_flags_mask(page, pfn, mask);
450 
451 #ifdef CONFIG_MEMORY_ISOLATION
452 	if (flags & BIT(PB_migrate_isolate))
453 		return MIGRATE_ISOLATE;
454 #endif
455 	return flags & MIGRATETYPE_MASK;
456 }
457 
458 /**
459  * __set_pfnblock_flags_mask - Set the requested group of flags for
460  * a pageblock_nr_pages block of pages
461  * @page: The page within the block of interest
462  * @pfn: The target page frame number
463  * @flags: The flags to set
464  * @mask: mask of bits that the caller is interested in
465  */
466 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn,
467 				      unsigned long flags, unsigned long mask)
468 {
469 	unsigned long *bitmap_word;
470 	unsigned long bitidx;
471 	unsigned long word;
472 
473 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
474 
475 	mask <<= bitidx;
476 	flags <<= bitidx;
477 
478 	word = READ_ONCE(*bitmap_word);
479 	do {
480 	} while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags));
481 }
482 
483 /**
484  * set_pfnblock_bit - Set a standalone bit of a pageblock
485  * @page: The page within the block of interest
486  * @pfn: The target page frame number
487  * @pb_bit: pageblock bit to set
488  */
489 void set_pfnblock_bit(const struct page *page, unsigned long pfn,
490 		      enum pageblock_bits pb_bit)
491 {
492 	unsigned long *bitmap_word;
493 	unsigned long bitidx;
494 
495 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
496 		return;
497 
498 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
499 
500 	set_bit(bitidx + pb_bit, bitmap_word);
501 }
502 
503 /**
504  * clear_pfnblock_bit - Clear a standalone bit of a pageblock
505  * @page: The page within the block of interest
506  * @pfn: The target page frame number
507  * @pb_bit: pageblock bit to clear
508  */
509 void clear_pfnblock_bit(const struct page *page, unsigned long pfn,
510 			enum pageblock_bits pb_bit)
511 {
512 	unsigned long *bitmap_word;
513 	unsigned long bitidx;
514 
515 	if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit)))
516 		return;
517 
518 	get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx);
519 
520 	clear_bit(bitidx + pb_bit, bitmap_word);
521 }
522 
523 /**
524  * set_pageblock_migratetype - Set the migratetype of a pageblock
525  * @page: The page within the block of interest
526  * @migratetype: migratetype to set
527  */
528 static void set_pageblock_migratetype(struct page *page,
529 				      enum migratetype migratetype)
530 {
531 	if (unlikely(page_group_by_mobility_disabled &&
532 		     migratetype < MIGRATE_PCPTYPES))
533 		migratetype = MIGRATE_UNMOVABLE;
534 
535 #ifdef CONFIG_MEMORY_ISOLATION
536 	if (migratetype == MIGRATE_ISOLATE) {
537 		VM_WARN_ONCE(1,
538 			"Use set_pageblock_isolate() for pageblock isolation");
539 		return;
540 	}
541 	VM_WARN_ONCE(get_pageblock_isolate(page),
542 		     "Use clear_pageblock_isolate() to unisolate pageblock");
543 	/* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */
544 #endif
545 	__set_pfnblock_flags_mask(page, page_to_pfn(page),
546 				  (unsigned long)migratetype,
547 				  MIGRATETYPE_AND_ISO_MASK);
548 }
549 
550 void __meminit init_pageblock_migratetype(struct page *page,
551 					  enum migratetype migratetype,
552 					  bool isolate)
553 {
554 	unsigned long flags;
555 
556 	if (unlikely(page_group_by_mobility_disabled &&
557 		     migratetype < MIGRATE_PCPTYPES))
558 		migratetype = MIGRATE_UNMOVABLE;
559 
560 	flags = migratetype;
561 
562 #ifdef CONFIG_MEMORY_ISOLATION
563 	if (migratetype == MIGRATE_ISOLATE) {
564 		VM_WARN_ONCE(
565 			1,
566 			"Set isolate=true to isolate pageblock with a migratetype");
567 		return;
568 	}
569 	if (isolate)
570 		flags |= BIT(PB_migrate_isolate);
571 #endif
572 	__set_pfnblock_flags_mask(page, page_to_pfn(page), flags,
573 				  MIGRATETYPE_AND_ISO_MASK);
574 }
575 
576 #ifdef CONFIG_DEBUG_VM
577 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
578 {
579 	int ret;
580 	unsigned seq;
581 	unsigned long pfn = page_to_pfn(page);
582 	unsigned long sp, start_pfn;
583 
584 	do {
585 		seq = zone_span_seqbegin(zone);
586 		start_pfn = zone->zone_start_pfn;
587 		sp = zone->spanned_pages;
588 		ret = !zone_spans_pfn(zone, pfn);
589 	} while (zone_span_seqretry(zone, seq));
590 
591 	if (ret)
592 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
593 			pfn, zone_to_nid(zone), zone->name,
594 			start_pfn, start_pfn + sp);
595 
596 	return ret;
597 }
598 
599 /*
600  * Temporary debugging check for pages not lying within a given zone.
601  */
602 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
603 {
604 	if (page_outside_zone_boundaries(zone, page))
605 		return true;
606 	if (zone != page_zone(page))
607 		return true;
608 
609 	return false;
610 }
611 #else
612 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
613 {
614 	return false;
615 }
616 #endif
617 
618 static void bad_page(struct page *page, const char *reason)
619 {
620 	static unsigned long resume;
621 	static unsigned long nr_shown;
622 	static unsigned long nr_unshown;
623 
624 	/*
625 	 * Allow a burst of 60 reports, then keep quiet for that minute;
626 	 * or allow a steady drip of one report per second.
627 	 */
628 	if (nr_shown == 60) {
629 		if (time_before(jiffies, resume)) {
630 			nr_unshown++;
631 			goto out;
632 		}
633 		if (nr_unshown) {
634 			pr_alert(
635 			      "BUG: Bad page state: %lu messages suppressed\n",
636 				nr_unshown);
637 			nr_unshown = 0;
638 		}
639 		nr_shown = 0;
640 	}
641 	if (nr_shown++ == 0)
642 		resume = jiffies + 60 * HZ;
643 
644 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
645 		current->comm, page_to_pfn(page));
646 	dump_page(page, reason);
647 
648 	print_modules();
649 	dump_stack();
650 out:
651 	/* Leave bad fields for debug, except PageBuddy could make trouble */
652 	if (PageBuddy(page))
653 		__ClearPageBuddy(page);
654 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
655 }
656 
657 static inline unsigned int order_to_pindex(int migratetype, int order)
658 {
659 
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 	bool movable;
662 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
663 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
664 
665 		movable = migratetype == MIGRATE_MOVABLE;
666 
667 		return NR_LOWORDER_PCP_LISTS + movable;
668 	}
669 #else
670 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
671 #endif
672 
673 	return (MIGRATE_PCPTYPES * order) + migratetype;
674 }
675 
676 static inline int pindex_to_order(unsigned int pindex)
677 {
678 	int order = pindex / MIGRATE_PCPTYPES;
679 
680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
681 	if (pindex >= NR_LOWORDER_PCP_LISTS)
682 		order = HPAGE_PMD_ORDER;
683 #else
684 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
685 #endif
686 
687 	return order;
688 }
689 
690 static inline bool pcp_allowed_order(unsigned int order)
691 {
692 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
693 		return true;
694 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
695 	if (order == HPAGE_PMD_ORDER)
696 		return true;
697 #endif
698 	return false;
699 }
700 
701 /*
702  * Higher-order pages are called "compound pages".  They are structured thusly:
703  *
704  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
705  *
706  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
707  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
708  *
709  * The first tail page's ->compound_order holds the order of allocation.
710  * This usage means that zero-order pages may not be compound.
711  */
712 
713 void prep_compound_page(struct page *page, unsigned int order)
714 {
715 	int i;
716 	int nr_pages = 1 << order;
717 
718 	__SetPageHead(page);
719 	for (i = 1; i < nr_pages; i++)
720 		prep_compound_tail(page, i);
721 
722 	prep_compound_head(page, order);
723 }
724 
725 static inline void set_buddy_order(struct page *page, unsigned int order)
726 {
727 	set_page_private(page, order);
728 	__SetPageBuddy(page);
729 }
730 
731 #ifdef CONFIG_COMPACTION
732 static inline struct capture_control *task_capc(struct zone *zone)
733 {
734 	struct capture_control *capc = current->capture_control;
735 
736 	return unlikely(capc) &&
737 		!(current->flags & PF_KTHREAD) &&
738 		!capc->page &&
739 		capc->cc->zone == zone ? capc : NULL;
740 }
741 
742 static inline bool
743 compaction_capture(struct capture_control *capc, struct page *page,
744 		   int order, int migratetype)
745 {
746 	if (!capc || order != capc->cc->order)
747 		return false;
748 
749 	/* Do not accidentally pollute CMA or isolated regions*/
750 	if (is_migrate_cma(migratetype) ||
751 	    is_migrate_isolate(migratetype))
752 		return false;
753 
754 	/*
755 	 * Do not let lower order allocations pollute a movable pageblock
756 	 * unless compaction is also requesting movable pages.
757 	 * This might let an unmovable request use a reclaimable pageblock
758 	 * and vice-versa but no more than normal fallback logic which can
759 	 * have trouble finding a high-order free page.
760 	 */
761 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
762 	    capc->cc->migratetype != MIGRATE_MOVABLE)
763 		return false;
764 
765 	if (migratetype != capc->cc->migratetype)
766 		trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
767 					    capc->cc->migratetype, migratetype);
768 
769 	capc->page = page;
770 	return true;
771 }
772 
773 #else
774 static inline struct capture_control *task_capc(struct zone *zone)
775 {
776 	return NULL;
777 }
778 
779 static inline bool
780 compaction_capture(struct capture_control *capc, struct page *page,
781 		   int order, int migratetype)
782 {
783 	return false;
784 }
785 #endif /* CONFIG_COMPACTION */
786 
787 static inline void account_freepages(struct zone *zone, int nr_pages,
788 				     int migratetype)
789 {
790 	lockdep_assert_held(&zone->lock);
791 
792 	if (is_migrate_isolate(migratetype))
793 		return;
794 
795 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
796 
797 	if (is_migrate_cma(migratetype))
798 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
799 	else if (migratetype == MIGRATE_HIGHATOMIC)
800 		WRITE_ONCE(zone->nr_free_highatomic,
801 			   zone->nr_free_highatomic + nr_pages);
802 }
803 
804 /* Used for pages not on another list */
805 static inline void __add_to_free_list(struct page *page, struct zone *zone,
806 				      unsigned int order, int migratetype,
807 				      bool tail)
808 {
809 	struct free_area *area = &zone->free_area[order];
810 	int nr_pages = 1 << order;
811 
812 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
813 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
814 		     get_pageblock_migratetype(page), migratetype, nr_pages);
815 
816 	if (tail)
817 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
818 	else
819 		list_add(&page->buddy_list, &area->free_list[migratetype]);
820 	area->nr_free++;
821 
822 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
823 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
824 }
825 
826 /*
827  * Used for pages which are on another list. Move the pages to the tail
828  * of the list - so the moved pages won't immediately be considered for
829  * allocation again (e.g., optimization for memory onlining).
830  */
831 static inline void move_to_free_list(struct page *page, struct zone *zone,
832 				     unsigned int order, int old_mt, int new_mt)
833 {
834 	struct free_area *area = &zone->free_area[order];
835 	int nr_pages = 1 << order;
836 
837 	/* Free page moving can fail, so it happens before the type update */
838 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
839 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
840 		     get_pageblock_migratetype(page), old_mt, nr_pages);
841 
842 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
843 
844 	account_freepages(zone, -nr_pages, old_mt);
845 	account_freepages(zone, nr_pages, new_mt);
846 
847 	if (order >= pageblock_order &&
848 	    is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
849 		if (!is_migrate_isolate(old_mt))
850 			nr_pages = -nr_pages;
851 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
852 	}
853 }
854 
855 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
856 					     unsigned int order, int migratetype)
857 {
858 	int nr_pages = 1 << order;
859 
860         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
861 		     "page type is %d, passed migratetype is %d (nr=%d)\n",
862 		     get_pageblock_migratetype(page), migratetype, nr_pages);
863 
864 	/* clear reported state and update reported page count */
865 	if (page_reported(page))
866 		__ClearPageReported(page);
867 
868 	list_del(&page->buddy_list);
869 	__ClearPageBuddy(page);
870 	set_page_private(page, 0);
871 	zone->free_area[order].nr_free--;
872 
873 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
874 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
875 }
876 
877 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
878 					   unsigned int order, int migratetype)
879 {
880 	__del_page_from_free_list(page, zone, order, migratetype);
881 	account_freepages(zone, -(1 << order), migratetype);
882 }
883 
884 static inline struct page *get_page_from_free_area(struct free_area *area,
885 					    int migratetype)
886 {
887 	return list_first_entry_or_null(&area->free_list[migratetype],
888 					struct page, buddy_list);
889 }
890 
891 /*
892  * If this is less than the 2nd largest possible page, check if the buddy
893  * of the next-higher order is free. If it is, it's possible
894  * that pages are being freed that will coalesce soon. In case,
895  * that is happening, add the free page to the tail of the list
896  * so it's less likely to be used soon and more likely to be merged
897  * as a 2-level higher order page
898  */
899 static inline bool
900 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
901 		   struct page *page, unsigned int order)
902 {
903 	unsigned long higher_page_pfn;
904 	struct page *higher_page;
905 
906 	if (order >= MAX_PAGE_ORDER - 1)
907 		return false;
908 
909 	higher_page_pfn = buddy_pfn & pfn;
910 	higher_page = page + (higher_page_pfn - pfn);
911 
912 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
913 			NULL) != NULL;
914 }
915 
916 /*
917  * Freeing function for a buddy system allocator.
918  *
919  * The concept of a buddy system is to maintain direct-mapped table
920  * (containing bit values) for memory blocks of various "orders".
921  * The bottom level table contains the map for the smallest allocatable
922  * units of memory (here, pages), and each level above it describes
923  * pairs of units from the levels below, hence, "buddies".
924  * At a high level, all that happens here is marking the table entry
925  * at the bottom level available, and propagating the changes upward
926  * as necessary, plus some accounting needed to play nicely with other
927  * parts of the VM system.
928  * At each level, we keep a list of pages, which are heads of continuous
929  * free pages of length of (1 << order) and marked with PageBuddy.
930  * Page's order is recorded in page_private(page) field.
931  * So when we are allocating or freeing one, we can derive the state of the
932  * other.  That is, if we allocate a small block, and both were
933  * free, the remainder of the region must be split into blocks.
934  * If a block is freed, and its buddy is also free, then this
935  * triggers coalescing into a block of larger size.
936  *
937  * -- nyc
938  */
939 
940 static inline void __free_one_page(struct page *page,
941 		unsigned long pfn,
942 		struct zone *zone, unsigned int order,
943 		int migratetype, fpi_t fpi_flags)
944 {
945 	struct capture_control *capc = task_capc(zone);
946 	unsigned long buddy_pfn = 0;
947 	unsigned long combined_pfn;
948 	struct page *buddy;
949 	bool to_tail;
950 
951 	VM_BUG_ON(!zone_is_initialized(zone));
952 	VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page);
953 
954 	VM_BUG_ON(migratetype == -1);
955 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
956 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
957 
958 	account_freepages(zone, 1 << order, migratetype);
959 
960 	while (order < MAX_PAGE_ORDER) {
961 		int buddy_mt = migratetype;
962 
963 		if (compaction_capture(capc, page, order, migratetype)) {
964 			account_freepages(zone, -(1 << order), migratetype);
965 			return;
966 		}
967 
968 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
969 		if (!buddy)
970 			goto done_merging;
971 
972 		if (unlikely(order >= pageblock_order)) {
973 			/*
974 			 * We want to prevent merge between freepages on pageblock
975 			 * without fallbacks and normal pageblock. Without this,
976 			 * pageblock isolation could cause incorrect freepage or CMA
977 			 * accounting or HIGHATOMIC accounting.
978 			 */
979 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
980 
981 			if (migratetype != buddy_mt &&
982 			    (!migratetype_is_mergeable(migratetype) ||
983 			     !migratetype_is_mergeable(buddy_mt)))
984 				goto done_merging;
985 		}
986 
987 		/*
988 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
989 		 * merge with it and move up one order.
990 		 */
991 		if (page_is_guard(buddy))
992 			clear_page_guard(zone, buddy, order);
993 		else
994 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
995 
996 		if (unlikely(buddy_mt != migratetype)) {
997 			/*
998 			 * Match buddy type. This ensures that an
999 			 * expand() down the line puts the sub-blocks
1000 			 * on the right freelists.
1001 			 */
1002 			set_pageblock_migratetype(buddy, migratetype);
1003 		}
1004 
1005 		combined_pfn = buddy_pfn & pfn;
1006 		page = page + (combined_pfn - pfn);
1007 		pfn = combined_pfn;
1008 		order++;
1009 	}
1010 
1011 done_merging:
1012 	set_buddy_order(page, order);
1013 
1014 	if (fpi_flags & FPI_TO_TAIL)
1015 		to_tail = true;
1016 	else if (is_shuffle_order(order))
1017 		to_tail = shuffle_pick_tail();
1018 	else
1019 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1020 
1021 	__add_to_free_list(page, zone, order, migratetype, to_tail);
1022 
1023 	/* Notify page reporting subsystem of freed page */
1024 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1025 		page_reporting_notify_free(order);
1026 }
1027 
1028 /*
1029  * A bad page could be due to a number of fields. Instead of multiple branches,
1030  * try and check multiple fields with one check. The caller must do a detailed
1031  * check if necessary.
1032  */
1033 static inline bool page_expected_state(struct page *page,
1034 					unsigned long check_flags)
1035 {
1036 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1037 		return false;
1038 
1039 	if (unlikely((unsigned long)page->mapping |
1040 			page_ref_count(page) |
1041 #ifdef CONFIG_MEMCG
1042 			page->memcg_data |
1043 #endif
1044 			page_pool_page_is_pp(page) |
1045 			(page->flags.f & check_flags)))
1046 		return false;
1047 
1048 	return true;
1049 }
1050 
1051 static const char *page_bad_reason(struct page *page, unsigned long flags)
1052 {
1053 	const char *bad_reason = NULL;
1054 
1055 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1056 		bad_reason = "nonzero mapcount";
1057 	if (unlikely(page->mapping != NULL))
1058 		bad_reason = "non-NULL mapping";
1059 	if (unlikely(page_ref_count(page) != 0))
1060 		bad_reason = "nonzero _refcount";
1061 	if (unlikely(page->flags.f & flags)) {
1062 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1063 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1064 		else
1065 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1066 	}
1067 #ifdef CONFIG_MEMCG
1068 	if (unlikely(page->memcg_data))
1069 		bad_reason = "page still charged to cgroup";
1070 #endif
1071 	if (unlikely(page_pool_page_is_pp(page)))
1072 		bad_reason = "page_pool leak";
1073 	return bad_reason;
1074 }
1075 
1076 static inline bool free_page_is_bad(struct page *page)
1077 {
1078 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1079 		return false;
1080 
1081 	/* Something has gone sideways, find it */
1082 	bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1083 	return true;
1084 }
1085 
1086 static inline bool is_check_pages_enabled(void)
1087 {
1088 	return static_branch_unlikely(&check_pages_enabled);
1089 }
1090 
1091 static int free_tail_page_prepare(struct page *head_page, struct page *page)
1092 {
1093 	struct folio *folio = (struct folio *)head_page;
1094 	int ret = 1;
1095 
1096 	/*
1097 	 * We rely page->lru.next never has bit 0 set, unless the page
1098 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1099 	 */
1100 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1101 
1102 	if (!is_check_pages_enabled()) {
1103 		ret = 0;
1104 		goto out;
1105 	}
1106 	switch (page - head_page) {
1107 	case 1:
1108 		/* the first tail page: these may be in place of ->mapping */
1109 		if (unlikely(folio_large_mapcount(folio))) {
1110 			bad_page(page, "nonzero large_mapcount");
1111 			goto out;
1112 		}
1113 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
1114 		    unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1115 			bad_page(page, "nonzero nr_pages_mapped");
1116 			goto out;
1117 		}
1118 		if (IS_ENABLED(CONFIG_MM_ID)) {
1119 			if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
1120 				bad_page(page, "nonzero mm mapcount 0");
1121 				goto out;
1122 			}
1123 			if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
1124 				bad_page(page, "nonzero mm mapcount 1");
1125 				goto out;
1126 			}
1127 		}
1128 		if (IS_ENABLED(CONFIG_64BIT)) {
1129 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1130 				bad_page(page, "nonzero entire_mapcount");
1131 				goto out;
1132 			}
1133 			if (unlikely(atomic_read(&folio->_pincount))) {
1134 				bad_page(page, "nonzero pincount");
1135 				goto out;
1136 			}
1137 		}
1138 		break;
1139 	case 2:
1140 		/* the second tail page: deferred_list overlaps ->mapping */
1141 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1142 			bad_page(page, "on deferred list");
1143 			goto out;
1144 		}
1145 		if (!IS_ENABLED(CONFIG_64BIT)) {
1146 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1147 				bad_page(page, "nonzero entire_mapcount");
1148 				goto out;
1149 			}
1150 			if (unlikely(atomic_read(&folio->_pincount))) {
1151 				bad_page(page, "nonzero pincount");
1152 				goto out;
1153 			}
1154 		}
1155 		break;
1156 	case 3:
1157 		/* the third tail page: hugetlb specifics overlap ->mappings */
1158 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1159 			break;
1160 		fallthrough;
1161 	default:
1162 		if (page->mapping != TAIL_MAPPING) {
1163 			bad_page(page, "corrupted mapping in tail page");
1164 			goto out;
1165 		}
1166 		break;
1167 	}
1168 	if (unlikely(!PageTail(page))) {
1169 		bad_page(page, "PageTail not set");
1170 		goto out;
1171 	}
1172 	if (unlikely(compound_head(page) != head_page)) {
1173 		bad_page(page, "compound_head not consistent");
1174 		goto out;
1175 	}
1176 	ret = 0;
1177 out:
1178 	page->mapping = NULL;
1179 	clear_compound_head(page);
1180 	return ret;
1181 }
1182 
1183 /*
1184  * Skip KASAN memory poisoning when either:
1185  *
1186  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1187  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1188  *    using page tags instead (see below).
1189  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1190  *    that error detection is disabled for accesses via the page address.
1191  *
1192  * Pages will have match-all tags in the following circumstances:
1193  *
1194  * 1. Pages are being initialized for the first time, including during deferred
1195  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1196  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1197  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1198  * 3. The allocation was excluded from being checked due to sampling,
1199  *    see the call to kasan_unpoison_pages.
1200  *
1201  * Poisoning pages during deferred memory init will greatly lengthen the
1202  * process and cause problem in large memory systems as the deferred pages
1203  * initialization is done with interrupt disabled.
1204  *
1205  * Assuming that there will be no reference to those newly initialized
1206  * pages before they are ever allocated, this should have no effect on
1207  * KASAN memory tracking as the poison will be properly inserted at page
1208  * allocation time. The only corner case is when pages are allocated by
1209  * on-demand allocation and then freed again before the deferred pages
1210  * initialization is done, but this is not likely to happen.
1211  */
1212 static inline bool should_skip_kasan_poison(struct page *page)
1213 {
1214 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1215 		return deferred_pages_enabled();
1216 
1217 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1218 }
1219 
1220 static void kernel_init_pages(struct page *page, int numpages)
1221 {
1222 	int i;
1223 
1224 	/* s390's use of memset() could override KASAN redzones. */
1225 	kasan_disable_current();
1226 	for (i = 0; i < numpages; i++)
1227 		clear_highpage_kasan_tagged(page + i);
1228 	kasan_enable_current();
1229 }
1230 
1231 #ifdef CONFIG_MEM_ALLOC_PROFILING
1232 
1233 /* Should be called only if mem_alloc_profiling_enabled() */
1234 void __clear_page_tag_ref(struct page *page)
1235 {
1236 	union pgtag_ref_handle handle;
1237 	union codetag_ref ref;
1238 
1239 	if (get_page_tag_ref(page, &ref, &handle)) {
1240 		set_codetag_empty(&ref);
1241 		update_page_tag_ref(handle, &ref);
1242 		put_page_tag_ref(handle);
1243 	}
1244 }
1245 
1246 /* Should be called only if mem_alloc_profiling_enabled() */
1247 static noinline
1248 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1249 		       unsigned int nr)
1250 {
1251 	union pgtag_ref_handle handle;
1252 	union codetag_ref ref;
1253 
1254 	if (get_page_tag_ref(page, &ref, &handle)) {
1255 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1256 		update_page_tag_ref(handle, &ref);
1257 		put_page_tag_ref(handle);
1258 	}
1259 }
1260 
1261 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1262 				   unsigned int nr)
1263 {
1264 	if (mem_alloc_profiling_enabled())
1265 		__pgalloc_tag_add(page, task, nr);
1266 }
1267 
1268 /* Should be called only if mem_alloc_profiling_enabled() */
1269 static noinline
1270 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1271 {
1272 	union pgtag_ref_handle handle;
1273 	union codetag_ref ref;
1274 
1275 	if (get_page_tag_ref(page, &ref, &handle)) {
1276 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1277 		update_page_tag_ref(handle, &ref);
1278 		put_page_tag_ref(handle);
1279 	}
1280 }
1281 
1282 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1283 {
1284 	if (mem_alloc_profiling_enabled())
1285 		__pgalloc_tag_sub(page, nr);
1286 }
1287 
1288 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */
1289 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
1290 {
1291 	if (tag)
1292 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1293 }
1294 
1295 #else /* CONFIG_MEM_ALLOC_PROFILING */
1296 
1297 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1298 				   unsigned int nr) {}
1299 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
1300 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
1301 
1302 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1303 
1304 __always_inline bool free_pages_prepare(struct page *page,
1305 			unsigned int order)
1306 {
1307 	int bad = 0;
1308 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1309 	bool init = want_init_on_free();
1310 	bool compound = PageCompound(page);
1311 	struct folio *folio = page_folio(page);
1312 
1313 	VM_BUG_ON_PAGE(PageTail(page), page);
1314 
1315 	trace_mm_page_free(page, order);
1316 	kmsan_free_page(page, order);
1317 
1318 	if (memcg_kmem_online() && PageMemcgKmem(page))
1319 		__memcg_kmem_uncharge_page(page, order);
1320 
1321 	/*
1322 	 * In rare cases, when truncation or holepunching raced with
1323 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1324 	 * found set here.  This does not indicate a problem, unless
1325 	 * "unevictable_pgs_cleared" appears worryingly large.
1326 	 */
1327 	if (unlikely(folio_test_mlocked(folio))) {
1328 		long nr_pages = folio_nr_pages(folio);
1329 
1330 		__folio_clear_mlocked(folio);
1331 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1332 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1333 	}
1334 
1335 	if (unlikely(PageHWPoison(page)) && !order) {
1336 		/* Do not let hwpoison pages hit pcplists/buddy */
1337 		reset_page_owner(page, order);
1338 		page_table_check_free(page, order);
1339 		pgalloc_tag_sub(page, 1 << order);
1340 
1341 		/*
1342 		 * The page is isolated and accounted for.
1343 		 * Mark the codetag as empty to avoid accounting error
1344 		 * when the page is freed by unpoison_memory().
1345 		 */
1346 		clear_page_tag_ref(page);
1347 		return false;
1348 	}
1349 
1350 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1351 
1352 	/*
1353 	 * Check tail pages before head page information is cleared to
1354 	 * avoid checking PageCompound for order-0 pages.
1355 	 */
1356 	if (unlikely(order)) {
1357 		int i;
1358 
1359 		if (compound) {
1360 			page[1].flags.f &= ~PAGE_FLAGS_SECOND;
1361 #ifdef NR_PAGES_IN_LARGE_FOLIO
1362 			folio->_nr_pages = 0;
1363 #endif
1364 		}
1365 		for (i = 1; i < (1 << order); i++) {
1366 			if (compound)
1367 				bad += free_tail_page_prepare(page, page + i);
1368 			if (is_check_pages_enabled()) {
1369 				if (free_page_is_bad(page + i)) {
1370 					bad++;
1371 					continue;
1372 				}
1373 			}
1374 			(page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
1375 		}
1376 	}
1377 	if (folio_test_anon(folio)) {
1378 		mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1379 		folio->mapping = NULL;
1380 	}
1381 	if (unlikely(page_has_type(page)))
1382 		/* Reset the page_type (which overlays _mapcount) */
1383 		page->page_type = UINT_MAX;
1384 
1385 	if (is_check_pages_enabled()) {
1386 		if (free_page_is_bad(page))
1387 			bad++;
1388 		if (bad)
1389 			return false;
1390 	}
1391 
1392 	page_cpupid_reset_last(page);
1393 	page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP;
1394 	reset_page_owner(page, order);
1395 	page_table_check_free(page, order);
1396 	pgalloc_tag_sub(page, 1 << order);
1397 
1398 	if (!PageHighMem(page)) {
1399 		debug_check_no_locks_freed(page_address(page),
1400 					   PAGE_SIZE << order);
1401 		debug_check_no_obj_freed(page_address(page),
1402 					   PAGE_SIZE << order);
1403 	}
1404 
1405 	kernel_poison_pages(page, 1 << order);
1406 
1407 	/*
1408 	 * As memory initialization might be integrated into KASAN,
1409 	 * KASAN poisoning and memory initialization code must be
1410 	 * kept together to avoid discrepancies in behavior.
1411 	 *
1412 	 * With hardware tag-based KASAN, memory tags must be set before the
1413 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1414 	 */
1415 	if (!skip_kasan_poison) {
1416 		kasan_poison_pages(page, order, init);
1417 
1418 		/* Memory is already initialized if KASAN did it internally. */
1419 		if (kasan_has_integrated_init())
1420 			init = false;
1421 	}
1422 	if (init)
1423 		kernel_init_pages(page, 1 << order);
1424 
1425 	/*
1426 	 * arch_free_page() can make the page's contents inaccessible.  s390
1427 	 * does this.  So nothing which can access the page's contents should
1428 	 * happen after this.
1429 	 */
1430 	arch_free_page(page, order);
1431 
1432 	debug_pagealloc_unmap_pages(page, 1 << order);
1433 
1434 	return true;
1435 }
1436 
1437 /*
1438  * Frees a number of pages from the PCP lists
1439  * Assumes all pages on list are in same zone.
1440  * count is the number of pages to free.
1441  */
1442 static void free_pcppages_bulk(struct zone *zone, int count,
1443 					struct per_cpu_pages *pcp,
1444 					int pindex)
1445 {
1446 	unsigned long flags;
1447 	unsigned int order;
1448 	struct page *page;
1449 
1450 	/*
1451 	 * Ensure proper count is passed which otherwise would stuck in the
1452 	 * below while (list_empty(list)) loop.
1453 	 */
1454 	count = min(pcp->count, count);
1455 
1456 	/* Ensure requested pindex is drained first. */
1457 	pindex = pindex - 1;
1458 
1459 	spin_lock_irqsave(&zone->lock, flags);
1460 
1461 	while (count > 0) {
1462 		struct list_head *list;
1463 		int nr_pages;
1464 
1465 		/* Remove pages from lists in a round-robin fashion. */
1466 		do {
1467 			if (++pindex > NR_PCP_LISTS - 1)
1468 				pindex = 0;
1469 			list = &pcp->lists[pindex];
1470 		} while (list_empty(list));
1471 
1472 		order = pindex_to_order(pindex);
1473 		nr_pages = 1 << order;
1474 		do {
1475 			unsigned long pfn;
1476 			int mt;
1477 
1478 			page = list_last_entry(list, struct page, pcp_list);
1479 			pfn = page_to_pfn(page);
1480 			mt = get_pfnblock_migratetype(page, pfn);
1481 
1482 			/* must delete to avoid corrupting pcp list */
1483 			list_del(&page->pcp_list);
1484 			count -= nr_pages;
1485 			pcp->count -= nr_pages;
1486 
1487 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1488 			trace_mm_page_pcpu_drain(page, order, mt);
1489 		} while (count > 0 && !list_empty(list));
1490 	}
1491 
1492 	spin_unlock_irqrestore(&zone->lock, flags);
1493 }
1494 
1495 /* Split a multi-block free page into its individual pageblocks. */
1496 static void split_large_buddy(struct zone *zone, struct page *page,
1497 			      unsigned long pfn, int order, fpi_t fpi)
1498 {
1499 	unsigned long end = pfn + (1 << order);
1500 
1501 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1502 	/* Caller removed page from freelist, buddy info cleared! */
1503 	VM_WARN_ON_ONCE(PageBuddy(page));
1504 
1505 	if (order > pageblock_order)
1506 		order = pageblock_order;
1507 
1508 	do {
1509 		int mt = get_pfnblock_migratetype(page, pfn);
1510 
1511 		__free_one_page(page, pfn, zone, order, mt, fpi);
1512 		pfn += 1 << order;
1513 		if (pfn == end)
1514 			break;
1515 		page = pfn_to_page(pfn);
1516 	} while (1);
1517 }
1518 
1519 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1520 				   unsigned int order)
1521 {
1522 	/* Remember the order */
1523 	page->private = order;
1524 	/* Add the page to the free list */
1525 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1526 }
1527 
1528 static void free_one_page(struct zone *zone, struct page *page,
1529 			  unsigned long pfn, unsigned int order,
1530 			  fpi_t fpi_flags)
1531 {
1532 	struct llist_head *llhead;
1533 	unsigned long flags;
1534 
1535 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1536 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
1537 			add_page_to_zone_llist(zone, page, order);
1538 			return;
1539 		}
1540 	} else {
1541 		spin_lock_irqsave(&zone->lock, flags);
1542 	}
1543 
1544 	/* The lock succeeded. Process deferred pages. */
1545 	llhead = &zone->trylock_free_pages;
1546 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1547 		struct llist_node *llnode;
1548 		struct page *p, *tmp;
1549 
1550 		llnode = llist_del_all(llhead);
1551 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1552 			unsigned int p_order = p->private;
1553 
1554 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1555 			__count_vm_events(PGFREE, 1 << p_order);
1556 		}
1557 	}
1558 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1559 	spin_unlock_irqrestore(&zone->lock, flags);
1560 
1561 	__count_vm_events(PGFREE, 1 << order);
1562 }
1563 
1564 static void __free_pages_ok(struct page *page, unsigned int order,
1565 			    fpi_t fpi_flags)
1566 {
1567 	unsigned long pfn = page_to_pfn(page);
1568 	struct zone *zone = page_zone(page);
1569 
1570 	if (free_pages_prepare(page, order))
1571 		free_one_page(zone, page, pfn, order, fpi_flags);
1572 }
1573 
1574 void __meminit __free_pages_core(struct page *page, unsigned int order,
1575 		enum meminit_context context)
1576 {
1577 	unsigned int nr_pages = 1 << order;
1578 	struct page *p = page;
1579 	unsigned int loop;
1580 
1581 	/*
1582 	 * When initializing the memmap, __init_single_page() sets the refcount
1583 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1584 	 * refcount of all involved pages to 0.
1585 	 *
1586 	 * Note that hotplugged memory pages are initialized to PageOffline().
1587 	 * Pages freed from memblock might be marked as reserved.
1588 	 */
1589 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1590 	    unlikely(context == MEMINIT_HOTPLUG)) {
1591 		for (loop = 0; loop < nr_pages; loop++, p++) {
1592 			VM_WARN_ON_ONCE(PageReserved(p));
1593 			__ClearPageOffline(p);
1594 			set_page_count(p, 0);
1595 		}
1596 
1597 		adjust_managed_page_count(page, nr_pages);
1598 	} else {
1599 		for (loop = 0; loop < nr_pages; loop++, p++) {
1600 			__ClearPageReserved(p);
1601 			set_page_count(p, 0);
1602 		}
1603 
1604 		/* memblock adjusts totalram_pages() manually. */
1605 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1606 	}
1607 
1608 	if (page_contains_unaccepted(page, order)) {
1609 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1610 			return;
1611 
1612 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1613 	}
1614 
1615 	/*
1616 	 * Bypass PCP and place fresh pages right to the tail, primarily
1617 	 * relevant for memory onlining.
1618 	 */
1619 	__free_pages_ok(page, order, FPI_TO_TAIL);
1620 }
1621 
1622 /*
1623  * Check that the whole (or subset of) a pageblock given by the interval of
1624  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1625  * with the migration of free compaction scanner.
1626  *
1627  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1628  *
1629  * It's possible on some configurations to have a setup like node0 node1 node0
1630  * i.e. it's possible that all pages within a zones range of pages do not
1631  * belong to a single zone. We assume that a border between node0 and node1
1632  * can occur within a single pageblock, but not a node0 node1 node0
1633  * interleaving within a single pageblock. It is therefore sufficient to check
1634  * the first and last page of a pageblock and avoid checking each individual
1635  * page in a pageblock.
1636  *
1637  * Note: the function may return non-NULL struct page even for a page block
1638  * which contains a memory hole (i.e. there is no physical memory for a subset
1639  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1640  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1641  * even though the start pfn is online and valid. This should be safe most of
1642  * the time because struct pages are still initialized via init_unavailable_range()
1643  * and pfn walkers shouldn't touch any physical memory range for which they do
1644  * not recognize any specific metadata in struct pages.
1645  */
1646 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1647 				     unsigned long end_pfn, struct zone *zone)
1648 {
1649 	struct page *start_page;
1650 	struct page *end_page;
1651 
1652 	/* end_pfn is one past the range we are checking */
1653 	end_pfn--;
1654 
1655 	if (!pfn_valid(end_pfn))
1656 		return NULL;
1657 
1658 	start_page = pfn_to_online_page(start_pfn);
1659 	if (!start_page)
1660 		return NULL;
1661 
1662 	if (page_zone(start_page) != zone)
1663 		return NULL;
1664 
1665 	end_page = pfn_to_page(end_pfn);
1666 
1667 	/* This gives a shorter code than deriving page_zone(end_page) */
1668 	if (page_zone_id(start_page) != page_zone_id(end_page))
1669 		return NULL;
1670 
1671 	return start_page;
1672 }
1673 
1674 /*
1675  * The order of subdivision here is critical for the IO subsystem.
1676  * Please do not alter this order without good reasons and regression
1677  * testing. Specifically, as large blocks of memory are subdivided,
1678  * the order in which smaller blocks are delivered depends on the order
1679  * they're subdivided in this function. This is the primary factor
1680  * influencing the order in which pages are delivered to the IO
1681  * subsystem according to empirical testing, and this is also justified
1682  * by considering the behavior of a buddy system containing a single
1683  * large block of memory acted on by a series of small allocations.
1684  * This behavior is a critical factor in sglist merging's success.
1685  *
1686  * -- nyc
1687  */
1688 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1689 				  int high, int migratetype)
1690 {
1691 	unsigned int size = 1 << high;
1692 	unsigned int nr_added = 0;
1693 
1694 	while (high > low) {
1695 		high--;
1696 		size >>= 1;
1697 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1698 
1699 		/*
1700 		 * Mark as guard pages (or page), that will allow to
1701 		 * merge back to allocator when buddy will be freed.
1702 		 * Corresponding page table entries will not be touched,
1703 		 * pages will stay not present in virtual address space
1704 		 */
1705 		if (set_page_guard(zone, &page[size], high))
1706 			continue;
1707 
1708 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1709 		set_buddy_order(&page[size], high);
1710 		nr_added += size;
1711 	}
1712 
1713 	return nr_added;
1714 }
1715 
1716 static __always_inline void page_del_and_expand(struct zone *zone,
1717 						struct page *page, int low,
1718 						int high, int migratetype)
1719 {
1720 	int nr_pages = 1 << high;
1721 
1722 	__del_page_from_free_list(page, zone, high, migratetype);
1723 	nr_pages -= expand(zone, page, low, high, migratetype);
1724 	account_freepages(zone, -nr_pages, migratetype);
1725 }
1726 
1727 static void check_new_page_bad(struct page *page)
1728 {
1729 	if (unlikely(PageHWPoison(page))) {
1730 		/* Don't complain about hwpoisoned pages */
1731 		if (PageBuddy(page))
1732 			__ClearPageBuddy(page);
1733 		return;
1734 	}
1735 
1736 	bad_page(page,
1737 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1738 }
1739 
1740 /*
1741  * This page is about to be returned from the page allocator
1742  */
1743 static bool check_new_page(struct page *page)
1744 {
1745 	if (likely(page_expected_state(page,
1746 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1747 		return false;
1748 
1749 	check_new_page_bad(page);
1750 	return true;
1751 }
1752 
1753 static inline bool check_new_pages(struct page *page, unsigned int order)
1754 {
1755 	if (is_check_pages_enabled()) {
1756 		for (int i = 0; i < (1 << order); i++) {
1757 			struct page *p = page + i;
1758 
1759 			if (check_new_page(p))
1760 				return true;
1761 		}
1762 	}
1763 
1764 	return false;
1765 }
1766 
1767 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1768 {
1769 	/* Don't skip if a software KASAN mode is enabled. */
1770 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1771 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1772 		return false;
1773 
1774 	/* Skip, if hardware tag-based KASAN is not enabled. */
1775 	if (!kasan_hw_tags_enabled())
1776 		return true;
1777 
1778 	/*
1779 	 * With hardware tag-based KASAN enabled, skip if this has been
1780 	 * requested via __GFP_SKIP_KASAN.
1781 	 */
1782 	return flags & __GFP_SKIP_KASAN;
1783 }
1784 
1785 static inline bool should_skip_init(gfp_t flags)
1786 {
1787 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1788 	if (!kasan_hw_tags_enabled())
1789 		return false;
1790 
1791 	/* For hardware tag-based KASAN, skip if requested. */
1792 	return (flags & __GFP_SKIP_ZERO);
1793 }
1794 
1795 inline void post_alloc_hook(struct page *page, unsigned int order,
1796 				gfp_t gfp_flags)
1797 {
1798 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1799 			!should_skip_init(gfp_flags);
1800 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1801 	int i;
1802 
1803 	set_page_private(page, 0);
1804 
1805 	arch_alloc_page(page, order);
1806 	debug_pagealloc_map_pages(page, 1 << order);
1807 
1808 	/*
1809 	 * Page unpoisoning must happen before memory initialization.
1810 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1811 	 * allocations and the page unpoisoning code will complain.
1812 	 */
1813 	kernel_unpoison_pages(page, 1 << order);
1814 
1815 	/*
1816 	 * As memory initialization might be integrated into KASAN,
1817 	 * KASAN unpoisoning and memory initializion code must be
1818 	 * kept together to avoid discrepancies in behavior.
1819 	 */
1820 
1821 	/*
1822 	 * If memory tags should be zeroed
1823 	 * (which happens only when memory should be initialized as well).
1824 	 */
1825 	if (zero_tags) {
1826 		/* Initialize both memory and memory tags. */
1827 		for (i = 0; i != 1 << order; ++i)
1828 			tag_clear_highpage(page + i);
1829 
1830 		/* Take note that memory was initialized by the loop above. */
1831 		init = false;
1832 	}
1833 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1834 	    kasan_unpoison_pages(page, order, init)) {
1835 		/* Take note that memory was initialized by KASAN. */
1836 		if (kasan_has_integrated_init())
1837 			init = false;
1838 	} else {
1839 		/*
1840 		 * If memory tags have not been set by KASAN, reset the page
1841 		 * tags to ensure page_address() dereferencing does not fault.
1842 		 */
1843 		for (i = 0; i != 1 << order; ++i)
1844 			page_kasan_tag_reset(page + i);
1845 	}
1846 	/* If memory is still not initialized, initialize it now. */
1847 	if (init)
1848 		kernel_init_pages(page, 1 << order);
1849 
1850 	set_page_owner(page, order, gfp_flags);
1851 	page_table_check_alloc(page, order);
1852 	pgalloc_tag_add(page, current, 1 << order);
1853 }
1854 
1855 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1856 							unsigned int alloc_flags)
1857 {
1858 	post_alloc_hook(page, order, gfp_flags);
1859 
1860 	if (order && (gfp_flags & __GFP_COMP))
1861 		prep_compound_page(page, order);
1862 
1863 	/*
1864 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1865 	 * allocate the page. The expectation is that the caller is taking
1866 	 * steps that will free more memory. The caller should avoid the page
1867 	 * being used for !PFMEMALLOC purposes.
1868 	 */
1869 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1870 		set_page_pfmemalloc(page);
1871 	else
1872 		clear_page_pfmemalloc(page);
1873 }
1874 
1875 /*
1876  * Go through the free lists for the given migratetype and remove
1877  * the smallest available page from the freelists
1878  */
1879 static __always_inline
1880 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1881 						int migratetype)
1882 {
1883 	unsigned int current_order;
1884 	struct free_area *area;
1885 	struct page *page;
1886 
1887 	/* Find a page of the appropriate size in the preferred list */
1888 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1889 		area = &(zone->free_area[current_order]);
1890 		page = get_page_from_free_area(area, migratetype);
1891 		if (!page)
1892 			continue;
1893 
1894 		page_del_and_expand(zone, page, order, current_order,
1895 				    migratetype);
1896 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1897 				pcp_allowed_order(order) &&
1898 				migratetype < MIGRATE_PCPTYPES);
1899 		return page;
1900 	}
1901 
1902 	return NULL;
1903 }
1904 
1905 
1906 /*
1907  * This array describes the order lists are fallen back to when
1908  * the free lists for the desirable migrate type are depleted
1909  *
1910  * The other migratetypes do not have fallbacks.
1911  */
1912 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1913 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1914 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1915 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1916 };
1917 
1918 #ifdef CONFIG_CMA
1919 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1920 					unsigned int order)
1921 {
1922 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1923 }
1924 #else
1925 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1926 					unsigned int order) { return NULL; }
1927 #endif
1928 
1929 /*
1930  * Move all free pages of a block to new type's freelist. Caller needs to
1931  * change the block type.
1932  */
1933 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1934 				  int old_mt, int new_mt)
1935 {
1936 	struct page *page;
1937 	unsigned long pfn, end_pfn;
1938 	unsigned int order;
1939 	int pages_moved = 0;
1940 
1941 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1942 	end_pfn = pageblock_end_pfn(start_pfn);
1943 
1944 	for (pfn = start_pfn; pfn < end_pfn;) {
1945 		page = pfn_to_page(pfn);
1946 		if (!PageBuddy(page)) {
1947 			pfn++;
1948 			continue;
1949 		}
1950 
1951 		/* Make sure we are not inadvertently changing nodes */
1952 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1953 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1954 
1955 		order = buddy_order(page);
1956 
1957 		move_to_free_list(page, zone, order, old_mt, new_mt);
1958 
1959 		pfn += 1 << order;
1960 		pages_moved += 1 << order;
1961 	}
1962 
1963 	return pages_moved;
1964 }
1965 
1966 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1967 				      unsigned long *start_pfn,
1968 				      int *num_free, int *num_movable)
1969 {
1970 	unsigned long pfn, start, end;
1971 
1972 	pfn = page_to_pfn(page);
1973 	start = pageblock_start_pfn(pfn);
1974 	end = pageblock_end_pfn(pfn);
1975 
1976 	/*
1977 	 * The caller only has the lock for @zone, don't touch ranges
1978 	 * that straddle into other zones. While we could move part of
1979 	 * the range that's inside the zone, this call is usually
1980 	 * accompanied by other operations such as migratetype updates
1981 	 * which also should be locked.
1982 	 */
1983 	if (!zone_spans_pfn(zone, start))
1984 		return false;
1985 	if (!zone_spans_pfn(zone, end - 1))
1986 		return false;
1987 
1988 	*start_pfn = start;
1989 
1990 	if (num_free) {
1991 		*num_free = 0;
1992 		*num_movable = 0;
1993 		for (pfn = start; pfn < end;) {
1994 			page = pfn_to_page(pfn);
1995 			if (PageBuddy(page)) {
1996 				int nr = 1 << buddy_order(page);
1997 
1998 				*num_free += nr;
1999 				pfn += nr;
2000 				continue;
2001 			}
2002 			/*
2003 			 * We assume that pages that could be isolated for
2004 			 * migration are movable. But we don't actually try
2005 			 * isolating, as that would be expensive.
2006 			 */
2007 			if (PageLRU(page) || page_has_movable_ops(page))
2008 				(*num_movable)++;
2009 			pfn++;
2010 		}
2011 	}
2012 
2013 	return true;
2014 }
2015 
2016 static int move_freepages_block(struct zone *zone, struct page *page,
2017 				int old_mt, int new_mt)
2018 {
2019 	unsigned long start_pfn;
2020 	int res;
2021 
2022 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2023 		return -1;
2024 
2025 	res = __move_freepages_block(zone, start_pfn, old_mt, new_mt);
2026 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
2027 
2028 	return res;
2029 
2030 }
2031 
2032 #ifdef CONFIG_MEMORY_ISOLATION
2033 /* Look for a buddy that straddles start_pfn */
2034 static unsigned long find_large_buddy(unsigned long start_pfn)
2035 {
2036 	/*
2037 	 * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing
2038 	 * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking
2039 	 * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy,
2040 	 * the starting order does not matter.
2041 	 */
2042 	int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER;
2043 	struct page *page;
2044 	unsigned long pfn = start_pfn;
2045 
2046 	while (!PageBuddy(page = pfn_to_page(pfn))) {
2047 		/* Nothing found */
2048 		if (++order > MAX_PAGE_ORDER)
2049 			return start_pfn;
2050 		pfn &= ~0UL << order;
2051 	}
2052 
2053 	/*
2054 	 * Found a preceding buddy, but does it straddle?
2055 	 */
2056 	if (pfn + (1 << buddy_order(page)) > start_pfn)
2057 		return pfn;
2058 
2059 	/* Nothing found */
2060 	return start_pfn;
2061 }
2062 
2063 static inline void toggle_pageblock_isolate(struct page *page, bool isolate)
2064 {
2065 	if (isolate)
2066 		set_pageblock_isolate(page);
2067 	else
2068 		clear_pageblock_isolate(page);
2069 }
2070 
2071 /**
2072  * __move_freepages_block_isolate - move free pages in block for page isolation
2073  * @zone: the zone
2074  * @page: the pageblock page
2075  * @isolate: to isolate the given pageblock or unisolate it
2076  *
2077  * This is similar to move_freepages_block(), but handles the special
2078  * case encountered in page isolation, where the block of interest
2079  * might be part of a larger buddy spanning multiple pageblocks.
2080  *
2081  * Unlike the regular page allocator path, which moves pages while
2082  * stealing buddies off the freelist, page isolation is interested in
2083  * arbitrary pfn ranges that may have overlapping buddies on both ends.
2084  *
2085  * This function handles that. Straddling buddies are split into
2086  * individual pageblocks. Only the block of interest is moved.
2087  *
2088  * Returns %true if pages could be moved, %false otherwise.
2089  */
2090 static bool __move_freepages_block_isolate(struct zone *zone,
2091 		struct page *page, bool isolate)
2092 {
2093 	unsigned long start_pfn, buddy_pfn;
2094 	int from_mt;
2095 	int to_mt;
2096 	struct page *buddy;
2097 
2098 	if (isolate == get_pageblock_isolate(page)) {
2099 		VM_WARN_ONCE(1, "%s a pageblock that is already in that state",
2100 			     isolate ? "Isolate" : "Unisolate");
2101 		return false;
2102 	}
2103 
2104 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
2105 		return false;
2106 
2107 	/* No splits needed if buddies can't span multiple blocks */
2108 	if (pageblock_order == MAX_PAGE_ORDER)
2109 		goto move;
2110 
2111 	buddy_pfn = find_large_buddy(start_pfn);
2112 	buddy = pfn_to_page(buddy_pfn);
2113 	/* We're a part of a larger buddy */
2114 	if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) {
2115 		int order = buddy_order(buddy);
2116 
2117 		del_page_from_free_list(buddy, zone, order,
2118 					get_pfnblock_migratetype(buddy, buddy_pfn));
2119 		toggle_pageblock_isolate(page, isolate);
2120 		split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE);
2121 		return true;
2122 	}
2123 
2124 move:
2125 	/* Use MIGRATETYPE_MASK to get non-isolate migratetype */
2126 	if (isolate) {
2127 		from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2128 						    MIGRATETYPE_MASK);
2129 		to_mt = MIGRATE_ISOLATE;
2130 	} else {
2131 		from_mt = MIGRATE_ISOLATE;
2132 		to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page),
2133 						  MIGRATETYPE_MASK);
2134 	}
2135 
2136 	__move_freepages_block(zone, start_pfn, from_mt, to_mt);
2137 	toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate);
2138 
2139 	return true;
2140 }
2141 
2142 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page)
2143 {
2144 	return __move_freepages_block_isolate(zone, page, true);
2145 }
2146 
2147 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page)
2148 {
2149 	return __move_freepages_block_isolate(zone, page, false);
2150 }
2151 
2152 #endif /* CONFIG_MEMORY_ISOLATION */
2153 
2154 static void change_pageblock_range(struct page *pageblock_page,
2155 					int start_order, int migratetype)
2156 {
2157 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2158 
2159 	while (nr_pageblocks--) {
2160 		set_pageblock_migratetype(pageblock_page, migratetype);
2161 		pageblock_page += pageblock_nr_pages;
2162 	}
2163 }
2164 
2165 static inline bool boost_watermark(struct zone *zone)
2166 {
2167 	unsigned long max_boost;
2168 
2169 	if (!watermark_boost_factor)
2170 		return false;
2171 	/*
2172 	 * Don't bother in zones that are unlikely to produce results.
2173 	 * On small machines, including kdump capture kernels running
2174 	 * in a small area, boosting the watermark can cause an out of
2175 	 * memory situation immediately.
2176 	 */
2177 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2178 		return false;
2179 
2180 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2181 			watermark_boost_factor, 10000);
2182 
2183 	/*
2184 	 * high watermark may be uninitialised if fragmentation occurs
2185 	 * very early in boot so do not boost. We do not fall
2186 	 * through and boost by pageblock_nr_pages as failing
2187 	 * allocations that early means that reclaim is not going
2188 	 * to help and it may even be impossible to reclaim the
2189 	 * boosted watermark resulting in a hang.
2190 	 */
2191 	if (!max_boost)
2192 		return false;
2193 
2194 	max_boost = max(pageblock_nr_pages, max_boost);
2195 
2196 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2197 		max_boost);
2198 
2199 	return true;
2200 }
2201 
2202 /*
2203  * When we are falling back to another migratetype during allocation, should we
2204  * try to claim an entire block to satisfy further allocations, instead of
2205  * polluting multiple pageblocks?
2206  */
2207 static bool should_try_claim_block(unsigned int order, int start_mt)
2208 {
2209 	/*
2210 	 * Leaving this order check is intended, although there is
2211 	 * relaxed order check in next check. The reason is that
2212 	 * we can actually claim the whole pageblock if this condition met,
2213 	 * but, below check doesn't guarantee it and that is just heuristic
2214 	 * so could be changed anytime.
2215 	 */
2216 	if (order >= pageblock_order)
2217 		return true;
2218 
2219 	/*
2220 	 * Above a certain threshold, always try to claim, as it's likely there
2221 	 * will be more free pages in the pageblock.
2222 	 */
2223 	if (order >= pageblock_order / 2)
2224 		return true;
2225 
2226 	/*
2227 	 * Unmovable/reclaimable allocations would cause permanent
2228 	 * fragmentations if they fell back to allocating from a movable block
2229 	 * (polluting it), so we try to claim the whole block regardless of the
2230 	 * allocation size. Later movable allocations can always steal from this
2231 	 * block, which is less problematic.
2232 	 */
2233 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2234 		return true;
2235 
2236 	if (page_group_by_mobility_disabled)
2237 		return true;
2238 
2239 	/*
2240 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2241 	 * small pages, we just need to temporarily steal unmovable or
2242 	 * reclaimable pages that are closest to the request size. After a
2243 	 * while, memory compaction may occur to form large contiguous pages,
2244 	 * and the next movable allocation may not need to steal.
2245 	 */
2246 	return false;
2247 }
2248 
2249 /*
2250  * Check whether there is a suitable fallback freepage with requested order.
2251  * If claimable is true, this function returns fallback_mt only if
2252  * we would do this whole-block claiming. This would help to reduce
2253  * fragmentation due to mixed migratetype pages in one pageblock.
2254  */
2255 int find_suitable_fallback(struct free_area *area, unsigned int order,
2256 			   int migratetype, bool claimable)
2257 {
2258 	int i;
2259 
2260 	if (claimable && !should_try_claim_block(order, migratetype))
2261 		return -2;
2262 
2263 	if (area->nr_free == 0)
2264 		return -1;
2265 
2266 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2267 		int fallback_mt = fallbacks[migratetype][i];
2268 
2269 		if (!free_area_empty(area, fallback_mt))
2270 			return fallback_mt;
2271 	}
2272 
2273 	return -1;
2274 }
2275 
2276 /*
2277  * This function implements actual block claiming behaviour. If order is large
2278  * enough, we can claim the whole pageblock for the requested migratetype. If
2279  * not, we check the pageblock for constituent pages; if at least half of the
2280  * pages are free or compatible, we can still claim the whole block, so pages
2281  * freed in the future will be put on the correct free list.
2282  */
2283 static struct page *
2284 try_to_claim_block(struct zone *zone, struct page *page,
2285 		   int current_order, int order, int start_type,
2286 		   int block_type, unsigned int alloc_flags)
2287 {
2288 	int free_pages, movable_pages, alike_pages;
2289 	unsigned long start_pfn;
2290 
2291 	/* Take ownership for orders >= pageblock_order */
2292 	if (current_order >= pageblock_order) {
2293 		unsigned int nr_added;
2294 
2295 		del_page_from_free_list(page, zone, current_order, block_type);
2296 		change_pageblock_range(page, current_order, start_type);
2297 		nr_added = expand(zone, page, order, current_order, start_type);
2298 		account_freepages(zone, nr_added, start_type);
2299 		return page;
2300 	}
2301 
2302 	/*
2303 	 * Boost watermarks to increase reclaim pressure to reduce the
2304 	 * likelihood of future fallbacks. Wake kswapd now as the node
2305 	 * may be balanced overall and kswapd will not wake naturally.
2306 	 */
2307 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2308 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2309 
2310 	/* moving whole block can fail due to zone boundary conditions */
2311 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2312 				       &movable_pages))
2313 		return NULL;
2314 
2315 	/*
2316 	 * Determine how many pages are compatible with our allocation.
2317 	 * For movable allocation, it's the number of movable pages which
2318 	 * we just obtained. For other types it's a bit more tricky.
2319 	 */
2320 	if (start_type == MIGRATE_MOVABLE) {
2321 		alike_pages = movable_pages;
2322 	} else {
2323 		/*
2324 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2325 		 * to MOVABLE pageblock, consider all non-movable pages as
2326 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2327 		 * vice versa, be conservative since we can't distinguish the
2328 		 * exact migratetype of non-movable pages.
2329 		 */
2330 		if (block_type == MIGRATE_MOVABLE)
2331 			alike_pages = pageblock_nr_pages
2332 						- (free_pages + movable_pages);
2333 		else
2334 			alike_pages = 0;
2335 	}
2336 	/*
2337 	 * If a sufficient number of pages in the block are either free or of
2338 	 * compatible migratability as our allocation, claim the whole block.
2339 	 */
2340 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2341 			page_group_by_mobility_disabled) {
2342 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2343 		set_pageblock_migratetype(pfn_to_page(start_pfn), start_type);
2344 		return __rmqueue_smallest(zone, order, start_type);
2345 	}
2346 
2347 	return NULL;
2348 }
2349 
2350 /*
2351  * Try to allocate from some fallback migratetype by claiming the entire block,
2352  * i.e. converting it to the allocation's start migratetype.
2353  *
2354  * The use of signed ints for order and current_order is a deliberate
2355  * deviation from the rest of this file, to make the for loop
2356  * condition simpler.
2357  */
2358 static __always_inline struct page *
2359 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2360 						unsigned int alloc_flags)
2361 {
2362 	struct free_area *area;
2363 	int current_order;
2364 	int min_order = order;
2365 	struct page *page;
2366 	int fallback_mt;
2367 
2368 	/*
2369 	 * Do not steal pages from freelists belonging to other pageblocks
2370 	 * i.e. orders < pageblock_order. If there are no local zones free,
2371 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2372 	 */
2373 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2374 		min_order = pageblock_order;
2375 
2376 	/*
2377 	 * Find the largest available free page in the other list. This roughly
2378 	 * approximates finding the pageblock with the most free pages, which
2379 	 * would be too costly to do exactly.
2380 	 */
2381 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2382 				--current_order) {
2383 		area = &(zone->free_area[current_order]);
2384 		fallback_mt = find_suitable_fallback(area, current_order,
2385 						     start_migratetype, true);
2386 
2387 		/* No block in that order */
2388 		if (fallback_mt == -1)
2389 			continue;
2390 
2391 		/* Advanced into orders too low to claim, abort */
2392 		if (fallback_mt == -2)
2393 			break;
2394 
2395 		page = get_page_from_free_area(area, fallback_mt);
2396 		page = try_to_claim_block(zone, page, current_order, order,
2397 					  start_migratetype, fallback_mt,
2398 					  alloc_flags);
2399 		if (page) {
2400 			trace_mm_page_alloc_extfrag(page, order, current_order,
2401 						    start_migratetype, fallback_mt);
2402 			return page;
2403 		}
2404 	}
2405 
2406 	return NULL;
2407 }
2408 
2409 /*
2410  * Try to steal a single page from some fallback migratetype. Leave the rest of
2411  * the block as its current migratetype, potentially causing fragmentation.
2412  */
2413 static __always_inline struct page *
2414 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2415 {
2416 	struct free_area *area;
2417 	int current_order;
2418 	struct page *page;
2419 	int fallback_mt;
2420 
2421 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2422 		area = &(zone->free_area[current_order]);
2423 		fallback_mt = find_suitable_fallback(area, current_order,
2424 						     start_migratetype, false);
2425 		if (fallback_mt == -1)
2426 			continue;
2427 
2428 		page = get_page_from_free_area(area, fallback_mt);
2429 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2430 		trace_mm_page_alloc_extfrag(page, order, current_order,
2431 					    start_migratetype, fallback_mt);
2432 		return page;
2433 	}
2434 
2435 	return NULL;
2436 }
2437 
2438 enum rmqueue_mode {
2439 	RMQUEUE_NORMAL,
2440 	RMQUEUE_CMA,
2441 	RMQUEUE_CLAIM,
2442 	RMQUEUE_STEAL,
2443 };
2444 
2445 /*
2446  * Do the hard work of removing an element from the buddy allocator.
2447  * Call me with the zone->lock already held.
2448  */
2449 static __always_inline struct page *
2450 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2451 	  unsigned int alloc_flags, enum rmqueue_mode *mode)
2452 {
2453 	struct page *page;
2454 
2455 	if (IS_ENABLED(CONFIG_CMA)) {
2456 		/*
2457 		 * Balance movable allocations between regular and CMA areas by
2458 		 * allocating from CMA when over half of the zone's free memory
2459 		 * is in the CMA area.
2460 		 */
2461 		if (alloc_flags & ALLOC_CMA &&
2462 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2463 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2464 			page = __rmqueue_cma_fallback(zone, order);
2465 			if (page)
2466 				return page;
2467 		}
2468 	}
2469 
2470 	/*
2471 	 * First try the freelists of the requested migratetype, then try
2472 	 * fallbacks modes with increasing levels of fragmentation risk.
2473 	 *
2474 	 * The fallback logic is expensive and rmqueue_bulk() calls in
2475 	 * a loop with the zone->lock held, meaning the freelists are
2476 	 * not subject to any outside changes. Remember in *mode where
2477 	 * we found pay dirt, to save us the search on the next call.
2478 	 */
2479 	switch (*mode) {
2480 	case RMQUEUE_NORMAL:
2481 		page = __rmqueue_smallest(zone, order, migratetype);
2482 		if (page)
2483 			return page;
2484 		fallthrough;
2485 	case RMQUEUE_CMA:
2486 		if (alloc_flags & ALLOC_CMA) {
2487 			page = __rmqueue_cma_fallback(zone, order);
2488 			if (page) {
2489 				*mode = RMQUEUE_CMA;
2490 				return page;
2491 			}
2492 		}
2493 		fallthrough;
2494 	case RMQUEUE_CLAIM:
2495 		page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2496 		if (page) {
2497 			/* Replenished preferred freelist, back to normal mode. */
2498 			*mode = RMQUEUE_NORMAL;
2499 			return page;
2500 		}
2501 		fallthrough;
2502 	case RMQUEUE_STEAL:
2503 		if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2504 			page = __rmqueue_steal(zone, order, migratetype);
2505 			if (page) {
2506 				*mode = RMQUEUE_STEAL;
2507 				return page;
2508 			}
2509 		}
2510 	}
2511 	return NULL;
2512 }
2513 
2514 /*
2515  * Obtain a specified number of elements from the buddy allocator, all under
2516  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2517  * Returns the number of new pages which were placed at *list.
2518  */
2519 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2520 			unsigned long count, struct list_head *list,
2521 			int migratetype, unsigned int alloc_flags)
2522 {
2523 	enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2524 	unsigned long flags;
2525 	int i;
2526 
2527 	if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2528 		if (!spin_trylock_irqsave(&zone->lock, flags))
2529 			return 0;
2530 	} else {
2531 		spin_lock_irqsave(&zone->lock, flags);
2532 	}
2533 	for (i = 0; i < count; ++i) {
2534 		struct page *page = __rmqueue(zone, order, migratetype,
2535 					      alloc_flags, &rmqm);
2536 		if (unlikely(page == NULL))
2537 			break;
2538 
2539 		/*
2540 		 * Split buddy pages returned by expand() are received here in
2541 		 * physical page order. The page is added to the tail of
2542 		 * caller's list. From the callers perspective, the linked list
2543 		 * is ordered by page number under some conditions. This is
2544 		 * useful for IO devices that can forward direction from the
2545 		 * head, thus also in the physical page order. This is useful
2546 		 * for IO devices that can merge IO requests if the physical
2547 		 * pages are ordered properly.
2548 		 */
2549 		list_add_tail(&page->pcp_list, list);
2550 	}
2551 	spin_unlock_irqrestore(&zone->lock, flags);
2552 
2553 	return i;
2554 }
2555 
2556 /*
2557  * Called from the vmstat counter updater to decay the PCP high.
2558  * Return whether there are addition works to do.
2559  */
2560 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2561 {
2562 	int high_min, to_drain, batch;
2563 	int todo = 0;
2564 
2565 	high_min = READ_ONCE(pcp->high_min);
2566 	batch = READ_ONCE(pcp->batch);
2567 	/*
2568 	 * Decrease pcp->high periodically to try to free possible
2569 	 * idle PCP pages.  And, avoid to free too many pages to
2570 	 * control latency.  This caps pcp->high decrement too.
2571 	 */
2572 	if (pcp->high > high_min) {
2573 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2574 				 pcp->high - (pcp->high >> 3), high_min);
2575 		if (pcp->high > high_min)
2576 			todo++;
2577 	}
2578 
2579 	to_drain = pcp->count - pcp->high;
2580 	if (to_drain > 0) {
2581 		spin_lock(&pcp->lock);
2582 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2583 		spin_unlock(&pcp->lock);
2584 		todo++;
2585 	}
2586 
2587 	return todo;
2588 }
2589 
2590 #ifdef CONFIG_NUMA
2591 /*
2592  * Called from the vmstat counter updater to drain pagesets of this
2593  * currently executing processor on remote nodes after they have
2594  * expired.
2595  */
2596 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2597 {
2598 	int to_drain, batch;
2599 
2600 	batch = READ_ONCE(pcp->batch);
2601 	to_drain = min(pcp->count, batch);
2602 	if (to_drain > 0) {
2603 		spin_lock(&pcp->lock);
2604 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2605 		spin_unlock(&pcp->lock);
2606 	}
2607 }
2608 #endif
2609 
2610 /*
2611  * Drain pcplists of the indicated processor and zone.
2612  */
2613 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2614 {
2615 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2616 	int count;
2617 
2618 	do {
2619 		spin_lock(&pcp->lock);
2620 		count = pcp->count;
2621 		if (count) {
2622 			int to_drain = min(count,
2623 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2624 
2625 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2626 			count -= to_drain;
2627 		}
2628 		spin_unlock(&pcp->lock);
2629 	} while (count);
2630 }
2631 
2632 /*
2633  * Drain pcplists of all zones on the indicated processor.
2634  */
2635 static void drain_pages(unsigned int cpu)
2636 {
2637 	struct zone *zone;
2638 
2639 	for_each_populated_zone(zone) {
2640 		drain_pages_zone(cpu, zone);
2641 	}
2642 }
2643 
2644 /*
2645  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2646  */
2647 void drain_local_pages(struct zone *zone)
2648 {
2649 	int cpu = smp_processor_id();
2650 
2651 	if (zone)
2652 		drain_pages_zone(cpu, zone);
2653 	else
2654 		drain_pages(cpu);
2655 }
2656 
2657 /*
2658  * The implementation of drain_all_pages(), exposing an extra parameter to
2659  * drain on all cpus.
2660  *
2661  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2662  * not empty. The check for non-emptiness can however race with a free to
2663  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2664  * that need the guarantee that every CPU has drained can disable the
2665  * optimizing racy check.
2666  */
2667 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2668 {
2669 	int cpu;
2670 
2671 	/*
2672 	 * Allocate in the BSS so we won't require allocation in
2673 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2674 	 */
2675 	static cpumask_t cpus_with_pcps;
2676 
2677 	/*
2678 	 * Do not drain if one is already in progress unless it's specific to
2679 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2680 	 * the drain to be complete when the call returns.
2681 	 */
2682 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2683 		if (!zone)
2684 			return;
2685 		mutex_lock(&pcpu_drain_mutex);
2686 	}
2687 
2688 	/*
2689 	 * We don't care about racing with CPU hotplug event
2690 	 * as offline notification will cause the notified
2691 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2692 	 * disables preemption as part of its processing
2693 	 */
2694 	for_each_online_cpu(cpu) {
2695 		struct per_cpu_pages *pcp;
2696 		struct zone *z;
2697 		bool has_pcps = false;
2698 
2699 		if (force_all_cpus) {
2700 			/*
2701 			 * The pcp.count check is racy, some callers need a
2702 			 * guarantee that no cpu is missed.
2703 			 */
2704 			has_pcps = true;
2705 		} else if (zone) {
2706 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2707 			if (pcp->count)
2708 				has_pcps = true;
2709 		} else {
2710 			for_each_populated_zone(z) {
2711 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2712 				if (pcp->count) {
2713 					has_pcps = true;
2714 					break;
2715 				}
2716 			}
2717 		}
2718 
2719 		if (has_pcps)
2720 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2721 		else
2722 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2723 	}
2724 
2725 	for_each_cpu(cpu, &cpus_with_pcps) {
2726 		if (zone)
2727 			drain_pages_zone(cpu, zone);
2728 		else
2729 			drain_pages(cpu);
2730 	}
2731 
2732 	mutex_unlock(&pcpu_drain_mutex);
2733 }
2734 
2735 /*
2736  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2737  *
2738  * When zone parameter is non-NULL, spill just the single zone's pages.
2739  */
2740 void drain_all_pages(struct zone *zone)
2741 {
2742 	__drain_all_pages(zone, false);
2743 }
2744 
2745 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2746 {
2747 	int min_nr_free, max_nr_free;
2748 
2749 	/* Free as much as possible if batch freeing high-order pages. */
2750 	if (unlikely(free_high))
2751 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2752 
2753 	/* Check for PCP disabled or boot pageset */
2754 	if (unlikely(high < batch))
2755 		return 1;
2756 
2757 	/* Leave at least pcp->batch pages on the list */
2758 	min_nr_free = batch;
2759 	max_nr_free = high - batch;
2760 
2761 	/*
2762 	 * Increase the batch number to the number of the consecutive
2763 	 * freed pages to reduce zone lock contention.
2764 	 */
2765 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2766 
2767 	return batch;
2768 }
2769 
2770 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2771 		       int batch, bool free_high)
2772 {
2773 	int high, high_min, high_max;
2774 
2775 	high_min = READ_ONCE(pcp->high_min);
2776 	high_max = READ_ONCE(pcp->high_max);
2777 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2778 
2779 	if (unlikely(!high))
2780 		return 0;
2781 
2782 	if (unlikely(free_high)) {
2783 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2784 				high_min);
2785 		return 0;
2786 	}
2787 
2788 	/*
2789 	 * If reclaim is active, limit the number of pages that can be
2790 	 * stored on pcp lists
2791 	 */
2792 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2793 		int free_count = max_t(int, pcp->free_count, batch);
2794 
2795 		pcp->high = max(high - free_count, high_min);
2796 		return min(batch << 2, pcp->high);
2797 	}
2798 
2799 	if (high_min == high_max)
2800 		return high;
2801 
2802 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2803 		int free_count = max_t(int, pcp->free_count, batch);
2804 
2805 		pcp->high = max(high - free_count, high_min);
2806 		high = max(pcp->count, high_min);
2807 	} else if (pcp->count >= high) {
2808 		int need_high = pcp->free_count + batch;
2809 
2810 		/* pcp->high should be large enough to hold batch freed pages */
2811 		if (pcp->high < need_high)
2812 			pcp->high = clamp(need_high, high_min, high_max);
2813 	}
2814 
2815 	return high;
2816 }
2817 
2818 static void free_frozen_page_commit(struct zone *zone,
2819 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2820 		unsigned int order, fpi_t fpi_flags)
2821 {
2822 	int high, batch;
2823 	int pindex;
2824 	bool free_high = false;
2825 
2826 	/*
2827 	 * On freeing, reduce the number of pages that are batch allocated.
2828 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2829 	 * allocations.
2830 	 */
2831 	pcp->alloc_factor >>= 1;
2832 	__count_vm_events(PGFREE, 1 << order);
2833 	pindex = order_to_pindex(migratetype, order);
2834 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2835 	pcp->count += 1 << order;
2836 
2837 	batch = READ_ONCE(pcp->batch);
2838 	/*
2839 	 * As high-order pages other than THP's stored on PCP can contribute
2840 	 * to fragmentation, limit the number stored when PCP is heavily
2841 	 * freeing without allocation. The remainder after bulk freeing
2842 	 * stops will be drained from vmstat refresh context.
2843 	 */
2844 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2845 		free_high = (pcp->free_count >= (batch + pcp->high_min / 2) &&
2846 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2847 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2848 			      pcp->count >= batch));
2849 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2850 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2851 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2852 	}
2853 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2854 		pcp->free_count += (1 << order);
2855 
2856 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2857 		/*
2858 		 * Do not attempt to take a zone lock. Let pcp->count get
2859 		 * over high mark temporarily.
2860 		 */
2861 		return;
2862 	}
2863 
2864 	high = nr_pcp_high(pcp, zone, batch, free_high);
2865 	if (pcp->count < high)
2866 		return;
2867 
2868 	free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2869 			   pcp, pindex);
2870 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2871 	    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2872 			      ZONE_MOVABLE, 0)) {
2873 		struct pglist_data *pgdat = zone->zone_pgdat;
2874 		clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2875 
2876 		/*
2877 		 * Assume that memory pressure on this node is gone and may be
2878 		 * in a reclaimable state. If a memory fallback node exists,
2879 		 * direct reclaim may not have been triggered, causing a
2880 		 * 'hopeless node' to stay in that state for a while.  Let
2881 		 * kswapd work again by resetting kswapd_failures.
2882 		 */
2883 		if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES &&
2884 		    next_memory_node(pgdat->node_id) < MAX_NUMNODES)
2885 			atomic_set(&pgdat->kswapd_failures, 0);
2886 	}
2887 }
2888 
2889 /*
2890  * Free a pcp page
2891  */
2892 static void __free_frozen_pages(struct page *page, unsigned int order,
2893 				fpi_t fpi_flags)
2894 {
2895 	unsigned long __maybe_unused UP_flags;
2896 	struct per_cpu_pages *pcp;
2897 	struct zone *zone;
2898 	unsigned long pfn = page_to_pfn(page);
2899 	int migratetype;
2900 
2901 	if (!pcp_allowed_order(order)) {
2902 		__free_pages_ok(page, order, fpi_flags);
2903 		return;
2904 	}
2905 
2906 	if (!free_pages_prepare(page, order))
2907 		return;
2908 
2909 	/*
2910 	 * We only track unmovable, reclaimable and movable on pcp lists.
2911 	 * Place ISOLATE pages on the isolated list because they are being
2912 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2913 	 * get those areas back if necessary. Otherwise, we may have to free
2914 	 * excessively into the page allocator
2915 	 */
2916 	zone = page_zone(page);
2917 	migratetype = get_pfnblock_migratetype(page, pfn);
2918 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2919 		if (unlikely(is_migrate_isolate(migratetype))) {
2920 			free_one_page(zone, page, pfn, order, fpi_flags);
2921 			return;
2922 		}
2923 		migratetype = MIGRATE_MOVABLE;
2924 	}
2925 
2926 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2927 		     && (in_nmi() || in_hardirq()))) {
2928 		add_page_to_zone_llist(zone, page, order);
2929 		return;
2930 	}
2931 	pcp_trylock_prepare(UP_flags);
2932 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2933 	if (pcp) {
2934 		free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2935 		pcp_spin_unlock(pcp);
2936 	} else {
2937 		free_one_page(zone, page, pfn, order, fpi_flags);
2938 	}
2939 	pcp_trylock_finish(UP_flags);
2940 }
2941 
2942 void free_frozen_pages(struct page *page, unsigned int order)
2943 {
2944 	__free_frozen_pages(page, order, FPI_NONE);
2945 }
2946 
2947 /*
2948  * Free a batch of folios
2949  */
2950 void free_unref_folios(struct folio_batch *folios)
2951 {
2952 	unsigned long __maybe_unused UP_flags;
2953 	struct per_cpu_pages *pcp = NULL;
2954 	struct zone *locked_zone = NULL;
2955 	int i, j;
2956 
2957 	/* Prepare folios for freeing */
2958 	for (i = 0, j = 0; i < folios->nr; i++) {
2959 		struct folio *folio = folios->folios[i];
2960 		unsigned long pfn = folio_pfn(folio);
2961 		unsigned int order = folio_order(folio);
2962 
2963 		if (!free_pages_prepare(&folio->page, order))
2964 			continue;
2965 		/*
2966 		 * Free orders not handled on the PCP directly to the
2967 		 * allocator.
2968 		 */
2969 		if (!pcp_allowed_order(order)) {
2970 			free_one_page(folio_zone(folio), &folio->page,
2971 				      pfn, order, FPI_NONE);
2972 			continue;
2973 		}
2974 		folio->private = (void *)(unsigned long)order;
2975 		if (j != i)
2976 			folios->folios[j] = folio;
2977 		j++;
2978 	}
2979 	folios->nr = j;
2980 
2981 	for (i = 0; i < folios->nr; i++) {
2982 		struct folio *folio = folios->folios[i];
2983 		struct zone *zone = folio_zone(folio);
2984 		unsigned long pfn = folio_pfn(folio);
2985 		unsigned int order = (unsigned long)folio->private;
2986 		int migratetype;
2987 
2988 		folio->private = NULL;
2989 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2990 
2991 		/* Different zone requires a different pcp lock */
2992 		if (zone != locked_zone ||
2993 		    is_migrate_isolate(migratetype)) {
2994 			if (pcp) {
2995 				pcp_spin_unlock(pcp);
2996 				pcp_trylock_finish(UP_flags);
2997 				locked_zone = NULL;
2998 				pcp = NULL;
2999 			}
3000 
3001 			/*
3002 			 * Free isolated pages directly to the
3003 			 * allocator, see comment in free_frozen_pages.
3004 			 */
3005 			if (is_migrate_isolate(migratetype)) {
3006 				free_one_page(zone, &folio->page, pfn,
3007 					      order, FPI_NONE);
3008 				continue;
3009 			}
3010 
3011 			/*
3012 			 * trylock is necessary as folios may be getting freed
3013 			 * from IRQ or SoftIRQ context after an IO completion.
3014 			 */
3015 			pcp_trylock_prepare(UP_flags);
3016 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3017 			if (unlikely(!pcp)) {
3018 				pcp_trylock_finish(UP_flags);
3019 				free_one_page(zone, &folio->page, pfn,
3020 					      order, FPI_NONE);
3021 				continue;
3022 			}
3023 			locked_zone = zone;
3024 		}
3025 
3026 		/*
3027 		 * Non-isolated types over MIGRATE_PCPTYPES get added
3028 		 * to the MIGRATE_MOVABLE pcp list.
3029 		 */
3030 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3031 			migratetype = MIGRATE_MOVABLE;
3032 
3033 		trace_mm_page_free_batched(&folio->page);
3034 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
3035 					order, FPI_NONE);
3036 	}
3037 
3038 	if (pcp) {
3039 		pcp_spin_unlock(pcp);
3040 		pcp_trylock_finish(UP_flags);
3041 	}
3042 	folio_batch_reinit(folios);
3043 }
3044 
3045 /*
3046  * split_page takes a non-compound higher-order page, and splits it into
3047  * n (1<<order) sub-pages: page[0..n]
3048  * Each sub-page must be freed individually.
3049  *
3050  * Note: this is probably too low level an operation for use in drivers.
3051  * Please consult with lkml before using this in your driver.
3052  */
3053 void split_page(struct page *page, unsigned int order)
3054 {
3055 	int i;
3056 
3057 	VM_BUG_ON_PAGE(PageCompound(page), page);
3058 	VM_BUG_ON_PAGE(!page_count(page), page);
3059 
3060 	for (i = 1; i < (1 << order); i++)
3061 		set_page_refcounted(page + i);
3062 	split_page_owner(page, order, 0);
3063 	pgalloc_tag_split(page_folio(page), order, 0);
3064 	split_page_memcg(page, order);
3065 }
3066 EXPORT_SYMBOL_GPL(split_page);
3067 
3068 int __isolate_free_page(struct page *page, unsigned int order)
3069 {
3070 	struct zone *zone = page_zone(page);
3071 	int mt = get_pageblock_migratetype(page);
3072 
3073 	if (!is_migrate_isolate(mt)) {
3074 		unsigned long watermark;
3075 		/*
3076 		 * Obey watermarks as if the page was being allocated. We can
3077 		 * emulate a high-order watermark check with a raised order-0
3078 		 * watermark, because we already know our high-order page
3079 		 * exists.
3080 		 */
3081 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3082 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3083 			return 0;
3084 	}
3085 
3086 	del_page_from_free_list(page, zone, order, mt);
3087 
3088 	/*
3089 	 * Set the pageblock if the isolated page is at least half of a
3090 	 * pageblock
3091 	 */
3092 	if (order >= pageblock_order - 1) {
3093 		struct page *endpage = page + (1 << order) - 1;
3094 		for (; page < endpage; page += pageblock_nr_pages) {
3095 			int mt = get_pageblock_migratetype(page);
3096 			/*
3097 			 * Only change normal pageblocks (i.e., they can merge
3098 			 * with others)
3099 			 */
3100 			if (migratetype_is_mergeable(mt))
3101 				move_freepages_block(zone, page, mt,
3102 						     MIGRATE_MOVABLE);
3103 		}
3104 	}
3105 
3106 	return 1UL << order;
3107 }
3108 
3109 /**
3110  * __putback_isolated_page - Return a now-isolated page back where we got it
3111  * @page: Page that was isolated
3112  * @order: Order of the isolated page
3113  * @mt: The page's pageblock's migratetype
3114  *
3115  * This function is meant to return a page pulled from the free lists via
3116  * __isolate_free_page back to the free lists they were pulled from.
3117  */
3118 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3119 {
3120 	struct zone *zone = page_zone(page);
3121 
3122 	/* zone lock should be held when this function is called */
3123 	lockdep_assert_held(&zone->lock);
3124 
3125 	/* Return isolated page to tail of freelist. */
3126 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3127 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3128 }
3129 
3130 /*
3131  * Update NUMA hit/miss statistics
3132  */
3133 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3134 				   long nr_account)
3135 {
3136 #ifdef CONFIG_NUMA
3137 	enum numa_stat_item local_stat = NUMA_LOCAL;
3138 
3139 	/* skip numa counters update if numa stats is disabled */
3140 	if (!static_branch_likely(&vm_numa_stat_key))
3141 		return;
3142 
3143 	if (zone_to_nid(z) != numa_node_id())
3144 		local_stat = NUMA_OTHER;
3145 
3146 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3147 		__count_numa_events(z, NUMA_HIT, nr_account);
3148 	else {
3149 		__count_numa_events(z, NUMA_MISS, nr_account);
3150 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3151 	}
3152 	__count_numa_events(z, local_stat, nr_account);
3153 #endif
3154 }
3155 
3156 static __always_inline
3157 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3158 			   unsigned int order, unsigned int alloc_flags,
3159 			   int migratetype)
3160 {
3161 	struct page *page;
3162 	unsigned long flags;
3163 
3164 	do {
3165 		page = NULL;
3166 		if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
3167 			if (!spin_trylock_irqsave(&zone->lock, flags))
3168 				return NULL;
3169 		} else {
3170 			spin_lock_irqsave(&zone->lock, flags);
3171 		}
3172 		if (alloc_flags & ALLOC_HIGHATOMIC)
3173 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3174 		if (!page) {
3175 			enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
3176 
3177 			page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
3178 
3179 			/*
3180 			 * If the allocation fails, allow OOM handling and
3181 			 * order-0 (atomic) allocs access to HIGHATOMIC
3182 			 * reserves as failing now is worse than failing a
3183 			 * high-order atomic allocation in the future.
3184 			 */
3185 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
3186 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3187 
3188 			if (!page) {
3189 				spin_unlock_irqrestore(&zone->lock, flags);
3190 				return NULL;
3191 			}
3192 		}
3193 		spin_unlock_irqrestore(&zone->lock, flags);
3194 	} while (check_new_pages(page, order));
3195 
3196 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3197 	zone_statistics(preferred_zone, zone, 1);
3198 
3199 	return page;
3200 }
3201 
3202 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3203 {
3204 	int high, base_batch, batch, max_nr_alloc;
3205 	int high_max, high_min;
3206 
3207 	base_batch = READ_ONCE(pcp->batch);
3208 	high_min = READ_ONCE(pcp->high_min);
3209 	high_max = READ_ONCE(pcp->high_max);
3210 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3211 
3212 	/* Check for PCP disabled or boot pageset */
3213 	if (unlikely(high < base_batch))
3214 		return 1;
3215 
3216 	if (order)
3217 		batch = base_batch;
3218 	else
3219 		batch = (base_batch << pcp->alloc_factor);
3220 
3221 	/*
3222 	 * If we had larger pcp->high, we could avoid to allocate from
3223 	 * zone.
3224 	 */
3225 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3226 		high = pcp->high = min(high + batch, high_max);
3227 
3228 	if (!order) {
3229 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3230 		/*
3231 		 * Double the number of pages allocated each time there is
3232 		 * subsequent allocation of order-0 pages without any freeing.
3233 		 */
3234 		if (batch <= max_nr_alloc &&
3235 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3236 			pcp->alloc_factor++;
3237 		batch = min(batch, max_nr_alloc);
3238 	}
3239 
3240 	/*
3241 	 * Scale batch relative to order if batch implies free pages
3242 	 * can be stored on the PCP. Batch can be 1 for small zones or
3243 	 * for boot pagesets which should never store free pages as
3244 	 * the pages may belong to arbitrary zones.
3245 	 */
3246 	if (batch > 1)
3247 		batch = max(batch >> order, 2);
3248 
3249 	return batch;
3250 }
3251 
3252 /* Remove page from the per-cpu list, caller must protect the list */
3253 static inline
3254 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3255 			int migratetype,
3256 			unsigned int alloc_flags,
3257 			struct per_cpu_pages *pcp,
3258 			struct list_head *list)
3259 {
3260 	struct page *page;
3261 
3262 	do {
3263 		if (list_empty(list)) {
3264 			int batch = nr_pcp_alloc(pcp, zone, order);
3265 			int alloced;
3266 
3267 			alloced = rmqueue_bulk(zone, order,
3268 					batch, list,
3269 					migratetype, alloc_flags);
3270 
3271 			pcp->count += alloced << order;
3272 			if (unlikely(list_empty(list)))
3273 				return NULL;
3274 		}
3275 
3276 		page = list_first_entry(list, struct page, pcp_list);
3277 		list_del(&page->pcp_list);
3278 		pcp->count -= 1 << order;
3279 	} while (check_new_pages(page, order));
3280 
3281 	return page;
3282 }
3283 
3284 /* Lock and remove page from the per-cpu list */
3285 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3286 			struct zone *zone, unsigned int order,
3287 			int migratetype, unsigned int alloc_flags)
3288 {
3289 	struct per_cpu_pages *pcp;
3290 	struct list_head *list;
3291 	struct page *page;
3292 	unsigned long __maybe_unused UP_flags;
3293 
3294 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3295 	pcp_trylock_prepare(UP_flags);
3296 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3297 	if (!pcp) {
3298 		pcp_trylock_finish(UP_flags);
3299 		return NULL;
3300 	}
3301 
3302 	/*
3303 	 * On allocation, reduce the number of pages that are batch freed.
3304 	 * See nr_pcp_free() where free_factor is increased for subsequent
3305 	 * frees.
3306 	 */
3307 	pcp->free_count >>= 1;
3308 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3309 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3310 	pcp_spin_unlock(pcp);
3311 	pcp_trylock_finish(UP_flags);
3312 	if (page) {
3313 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3314 		zone_statistics(preferred_zone, zone, 1);
3315 	}
3316 	return page;
3317 }
3318 
3319 /*
3320  * Allocate a page from the given zone.
3321  * Use pcplists for THP or "cheap" high-order allocations.
3322  */
3323 
3324 /*
3325  * Do not instrument rmqueue() with KMSAN. This function may call
3326  * __msan_poison_alloca() through a call to set_pfnblock_migratetype().
3327  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3328  * may call rmqueue() again, which will result in a deadlock.
3329  */
3330 __no_sanitize_memory
3331 static inline
3332 struct page *rmqueue(struct zone *preferred_zone,
3333 			struct zone *zone, unsigned int order,
3334 			gfp_t gfp_flags, unsigned int alloc_flags,
3335 			int migratetype)
3336 {
3337 	struct page *page;
3338 
3339 	if (likely(pcp_allowed_order(order))) {
3340 		page = rmqueue_pcplist(preferred_zone, zone, order,
3341 				       migratetype, alloc_flags);
3342 		if (likely(page))
3343 			goto out;
3344 	}
3345 
3346 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3347 							migratetype);
3348 
3349 out:
3350 	/* Separate test+clear to avoid unnecessary atomics */
3351 	if ((alloc_flags & ALLOC_KSWAPD) &&
3352 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3353 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3354 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3355 	}
3356 
3357 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3358 	return page;
3359 }
3360 
3361 /*
3362  * Reserve the pageblock(s) surrounding an allocation request for
3363  * exclusive use of high-order atomic allocations if there are no
3364  * empty page blocks that contain a page with a suitable order
3365  */
3366 static void reserve_highatomic_pageblock(struct page *page, int order,
3367 					 struct zone *zone)
3368 {
3369 	int mt;
3370 	unsigned long max_managed, flags;
3371 
3372 	/*
3373 	 * The number reserved as: minimum is 1 pageblock, maximum is
3374 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3375 	 * pageblock size, then don't reserve any pageblocks.
3376 	 * Check is race-prone but harmless.
3377 	 */
3378 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3379 		return;
3380 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3381 	if (zone->nr_reserved_highatomic >= max_managed)
3382 		return;
3383 
3384 	spin_lock_irqsave(&zone->lock, flags);
3385 
3386 	/* Recheck the nr_reserved_highatomic limit under the lock */
3387 	if (zone->nr_reserved_highatomic >= max_managed)
3388 		goto out_unlock;
3389 
3390 	/* Yoink! */
3391 	mt = get_pageblock_migratetype(page);
3392 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3393 	if (!migratetype_is_mergeable(mt))
3394 		goto out_unlock;
3395 
3396 	if (order < pageblock_order) {
3397 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3398 			goto out_unlock;
3399 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3400 	} else {
3401 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3402 		zone->nr_reserved_highatomic += 1 << order;
3403 	}
3404 
3405 out_unlock:
3406 	spin_unlock_irqrestore(&zone->lock, flags);
3407 }
3408 
3409 /*
3410  * Used when an allocation is about to fail under memory pressure. This
3411  * potentially hurts the reliability of high-order allocations when under
3412  * intense memory pressure but failed atomic allocations should be easier
3413  * to recover from than an OOM.
3414  *
3415  * If @force is true, try to unreserve pageblocks even though highatomic
3416  * pageblock is exhausted.
3417  */
3418 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3419 						bool force)
3420 {
3421 	struct zonelist *zonelist = ac->zonelist;
3422 	unsigned long flags;
3423 	struct zoneref *z;
3424 	struct zone *zone;
3425 	struct page *page;
3426 	int order;
3427 	int ret;
3428 
3429 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3430 								ac->nodemask) {
3431 		/*
3432 		 * Preserve at least one pageblock unless memory pressure
3433 		 * is really high.
3434 		 */
3435 		if (!force && zone->nr_reserved_highatomic <=
3436 					pageblock_nr_pages)
3437 			continue;
3438 
3439 		spin_lock_irqsave(&zone->lock, flags);
3440 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3441 			struct free_area *area = &(zone->free_area[order]);
3442 			unsigned long size;
3443 
3444 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3445 			if (!page)
3446 				continue;
3447 
3448 			size = max(pageblock_nr_pages, 1UL << order);
3449 			/*
3450 			 * It should never happen but changes to
3451 			 * locking could inadvertently allow a per-cpu
3452 			 * drain to add pages to MIGRATE_HIGHATOMIC
3453 			 * while unreserving so be safe and watch for
3454 			 * underflows.
3455 			 */
3456 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3457 				size = zone->nr_reserved_highatomic;
3458 			zone->nr_reserved_highatomic -= size;
3459 
3460 			/*
3461 			 * Convert to ac->migratetype and avoid the normal
3462 			 * pageblock stealing heuristics. Minimally, the caller
3463 			 * is doing the work and needs the pages. More
3464 			 * importantly, if the block was always converted to
3465 			 * MIGRATE_UNMOVABLE or another type then the number
3466 			 * of pageblocks that cannot be completely freed
3467 			 * may increase.
3468 			 */
3469 			if (order < pageblock_order)
3470 				ret = move_freepages_block(zone, page,
3471 							   MIGRATE_HIGHATOMIC,
3472 							   ac->migratetype);
3473 			else {
3474 				move_to_free_list(page, zone, order,
3475 						  MIGRATE_HIGHATOMIC,
3476 						  ac->migratetype);
3477 				change_pageblock_range(page, order,
3478 						       ac->migratetype);
3479 				ret = 1;
3480 			}
3481 			/*
3482 			 * Reserving the block(s) already succeeded,
3483 			 * so this should not fail on zone boundaries.
3484 			 */
3485 			WARN_ON_ONCE(ret == -1);
3486 			if (ret > 0) {
3487 				spin_unlock_irqrestore(&zone->lock, flags);
3488 				return ret;
3489 			}
3490 		}
3491 		spin_unlock_irqrestore(&zone->lock, flags);
3492 	}
3493 
3494 	return false;
3495 }
3496 
3497 static inline long __zone_watermark_unusable_free(struct zone *z,
3498 				unsigned int order, unsigned int alloc_flags)
3499 {
3500 	long unusable_free = (1 << order) - 1;
3501 
3502 	/*
3503 	 * If the caller does not have rights to reserves below the min
3504 	 * watermark then subtract the free pages reserved for highatomic.
3505 	 */
3506 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3507 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3508 
3509 #ifdef CONFIG_CMA
3510 	/* If allocation can't use CMA areas don't use free CMA pages */
3511 	if (!(alloc_flags & ALLOC_CMA))
3512 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3513 #endif
3514 
3515 	return unusable_free;
3516 }
3517 
3518 /*
3519  * Return true if free base pages are above 'mark'. For high-order checks it
3520  * will return true of the order-0 watermark is reached and there is at least
3521  * one free page of a suitable size. Checking now avoids taking the zone lock
3522  * to check in the allocation paths if no pages are free.
3523  */
3524 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3525 			 int highest_zoneidx, unsigned int alloc_flags,
3526 			 long free_pages)
3527 {
3528 	long min = mark;
3529 	int o;
3530 
3531 	/* free_pages may go negative - that's OK */
3532 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3533 
3534 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3535 		/*
3536 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3537 		 * as OOM.
3538 		 */
3539 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3540 			min -= min / 2;
3541 
3542 			/*
3543 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3544 			 * access more reserves than just __GFP_HIGH. Other
3545 			 * non-blocking allocations requests such as GFP_NOWAIT
3546 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3547 			 * access to the min reserve.
3548 			 */
3549 			if (alloc_flags & ALLOC_NON_BLOCK)
3550 				min -= min / 4;
3551 		}
3552 
3553 		/*
3554 		 * OOM victims can try even harder than the normal reserve
3555 		 * users on the grounds that it's definitely going to be in
3556 		 * the exit path shortly and free memory. Any allocation it
3557 		 * makes during the free path will be small and short-lived.
3558 		 */
3559 		if (alloc_flags & ALLOC_OOM)
3560 			min -= min / 2;
3561 	}
3562 
3563 	/*
3564 	 * Check watermarks for an order-0 allocation request. If these
3565 	 * are not met, then a high-order request also cannot go ahead
3566 	 * even if a suitable page happened to be free.
3567 	 */
3568 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3569 		return false;
3570 
3571 	/* If this is an order-0 request then the watermark is fine */
3572 	if (!order)
3573 		return true;
3574 
3575 	/* For a high-order request, check at least one suitable page is free */
3576 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3577 		struct free_area *area = &z->free_area[o];
3578 		int mt;
3579 
3580 		if (!area->nr_free)
3581 			continue;
3582 
3583 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3584 			if (!free_area_empty(area, mt))
3585 				return true;
3586 		}
3587 
3588 #ifdef CONFIG_CMA
3589 		if ((alloc_flags & ALLOC_CMA) &&
3590 		    !free_area_empty(area, MIGRATE_CMA)) {
3591 			return true;
3592 		}
3593 #endif
3594 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3595 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3596 			return true;
3597 		}
3598 	}
3599 	return false;
3600 }
3601 
3602 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3603 		      int highest_zoneidx, unsigned int alloc_flags)
3604 {
3605 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3606 					zone_page_state(z, NR_FREE_PAGES));
3607 }
3608 
3609 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3610 				unsigned long mark, int highest_zoneidx,
3611 				unsigned int alloc_flags, gfp_t gfp_mask)
3612 {
3613 	long free_pages;
3614 
3615 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3616 
3617 	/*
3618 	 * Fast check for order-0 only. If this fails then the reserves
3619 	 * need to be calculated.
3620 	 */
3621 	if (!order) {
3622 		long usable_free;
3623 		long reserved;
3624 
3625 		usable_free = free_pages;
3626 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3627 
3628 		/* reserved may over estimate high-atomic reserves. */
3629 		usable_free -= min(usable_free, reserved);
3630 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3631 			return true;
3632 	}
3633 
3634 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3635 					free_pages))
3636 		return true;
3637 
3638 	/*
3639 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3640 	 * when checking the min watermark. The min watermark is the
3641 	 * point where boosting is ignored so that kswapd is woken up
3642 	 * when below the low watermark.
3643 	 */
3644 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3645 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3646 		mark = z->_watermark[WMARK_MIN];
3647 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3648 					alloc_flags, free_pages);
3649 	}
3650 
3651 	return false;
3652 }
3653 
3654 #ifdef CONFIG_NUMA
3655 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3656 
3657 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3658 {
3659 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3660 				node_reclaim_distance;
3661 }
3662 #else	/* CONFIG_NUMA */
3663 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3664 {
3665 	return true;
3666 }
3667 #endif	/* CONFIG_NUMA */
3668 
3669 /*
3670  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3671  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3672  * premature use of a lower zone may cause lowmem pressure problems that
3673  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3674  * probably too small. It only makes sense to spread allocations to avoid
3675  * fragmentation between the Normal and DMA32 zones.
3676  */
3677 static inline unsigned int
3678 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3679 {
3680 	unsigned int alloc_flags;
3681 
3682 	/*
3683 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3684 	 * to save a branch.
3685 	 */
3686 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3687 
3688 	if (defrag_mode) {
3689 		alloc_flags |= ALLOC_NOFRAGMENT;
3690 		return alloc_flags;
3691 	}
3692 
3693 #ifdef CONFIG_ZONE_DMA32
3694 	if (!zone)
3695 		return alloc_flags;
3696 
3697 	if (zone_idx(zone) != ZONE_NORMAL)
3698 		return alloc_flags;
3699 
3700 	/*
3701 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3702 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3703 	 * on UMA that if Normal is populated then so is DMA32.
3704 	 */
3705 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3706 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3707 		return alloc_flags;
3708 
3709 	alloc_flags |= ALLOC_NOFRAGMENT;
3710 #endif /* CONFIG_ZONE_DMA32 */
3711 	return alloc_flags;
3712 }
3713 
3714 /* Must be called after current_gfp_context() which can change gfp_mask */
3715 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3716 						  unsigned int alloc_flags)
3717 {
3718 #ifdef CONFIG_CMA
3719 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3720 		alloc_flags |= ALLOC_CMA;
3721 #endif
3722 	return alloc_flags;
3723 }
3724 
3725 /*
3726  * get_page_from_freelist goes through the zonelist trying to allocate
3727  * a page.
3728  */
3729 static struct page *
3730 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3731 						const struct alloc_context *ac)
3732 {
3733 	struct zoneref *z;
3734 	struct zone *zone;
3735 	struct pglist_data *last_pgdat = NULL;
3736 	bool last_pgdat_dirty_ok = false;
3737 	bool no_fallback;
3738 
3739 retry:
3740 	/*
3741 	 * Scan zonelist, looking for a zone with enough free.
3742 	 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c.
3743 	 */
3744 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3745 	z = ac->preferred_zoneref;
3746 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3747 					ac->nodemask) {
3748 		struct page *page;
3749 		unsigned long mark;
3750 
3751 		if (cpusets_enabled() &&
3752 			(alloc_flags & ALLOC_CPUSET) &&
3753 			!__cpuset_zone_allowed(zone, gfp_mask))
3754 				continue;
3755 		/*
3756 		 * When allocating a page cache page for writing, we
3757 		 * want to get it from a node that is within its dirty
3758 		 * limit, such that no single node holds more than its
3759 		 * proportional share of globally allowed dirty pages.
3760 		 * The dirty limits take into account the node's
3761 		 * lowmem reserves and high watermark so that kswapd
3762 		 * should be able to balance it without having to
3763 		 * write pages from its LRU list.
3764 		 *
3765 		 * XXX: For now, allow allocations to potentially
3766 		 * exceed the per-node dirty limit in the slowpath
3767 		 * (spread_dirty_pages unset) before going into reclaim,
3768 		 * which is important when on a NUMA setup the allowed
3769 		 * nodes are together not big enough to reach the
3770 		 * global limit.  The proper fix for these situations
3771 		 * will require awareness of nodes in the
3772 		 * dirty-throttling and the flusher threads.
3773 		 */
3774 		if (ac->spread_dirty_pages) {
3775 			if (last_pgdat != zone->zone_pgdat) {
3776 				last_pgdat = zone->zone_pgdat;
3777 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3778 			}
3779 
3780 			if (!last_pgdat_dirty_ok)
3781 				continue;
3782 		}
3783 
3784 		if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3785 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3786 			int local_nid;
3787 
3788 			/*
3789 			 * If moving to a remote node, retry but allow
3790 			 * fragmenting fallbacks. Locality is more important
3791 			 * than fragmentation avoidance.
3792 			 */
3793 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3794 			if (zone_to_nid(zone) != local_nid) {
3795 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3796 				goto retry;
3797 			}
3798 		}
3799 
3800 		cond_accept_memory(zone, order, alloc_flags);
3801 
3802 		/*
3803 		 * Detect whether the number of free pages is below high
3804 		 * watermark.  If so, we will decrease pcp->high and free
3805 		 * PCP pages in free path to reduce the possibility of
3806 		 * premature page reclaiming.  Detection is done here to
3807 		 * avoid to do that in hotter free path.
3808 		 */
3809 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3810 			goto check_alloc_wmark;
3811 
3812 		mark = high_wmark_pages(zone);
3813 		if (zone_watermark_fast(zone, order, mark,
3814 					ac->highest_zoneidx, alloc_flags,
3815 					gfp_mask))
3816 			goto try_this_zone;
3817 		else
3818 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3819 
3820 check_alloc_wmark:
3821 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3822 		if (!zone_watermark_fast(zone, order, mark,
3823 				       ac->highest_zoneidx, alloc_flags,
3824 				       gfp_mask)) {
3825 			int ret;
3826 
3827 			if (cond_accept_memory(zone, order, alloc_flags))
3828 				goto try_this_zone;
3829 
3830 			/*
3831 			 * Watermark failed for this zone, but see if we can
3832 			 * grow this zone if it contains deferred pages.
3833 			 */
3834 			if (deferred_pages_enabled()) {
3835 				if (_deferred_grow_zone(zone, order))
3836 					goto try_this_zone;
3837 			}
3838 			/* Checked here to keep the fast path fast */
3839 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3840 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3841 				goto try_this_zone;
3842 
3843 			if (!node_reclaim_enabled() ||
3844 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3845 				continue;
3846 
3847 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3848 			switch (ret) {
3849 			case NODE_RECLAIM_NOSCAN:
3850 				/* did not scan */
3851 				continue;
3852 			case NODE_RECLAIM_FULL:
3853 				/* scanned but unreclaimable */
3854 				continue;
3855 			default:
3856 				/* did we reclaim enough */
3857 				if (zone_watermark_ok(zone, order, mark,
3858 					ac->highest_zoneidx, alloc_flags))
3859 					goto try_this_zone;
3860 
3861 				continue;
3862 			}
3863 		}
3864 
3865 try_this_zone:
3866 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3867 				gfp_mask, alloc_flags, ac->migratetype);
3868 		if (page) {
3869 			prep_new_page(page, order, gfp_mask, alloc_flags);
3870 
3871 			/*
3872 			 * If this is a high-order atomic allocation then check
3873 			 * if the pageblock should be reserved for the future
3874 			 */
3875 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3876 				reserve_highatomic_pageblock(page, order, zone);
3877 
3878 			return page;
3879 		} else {
3880 			if (cond_accept_memory(zone, order, alloc_flags))
3881 				goto try_this_zone;
3882 
3883 			/* Try again if zone has deferred pages */
3884 			if (deferred_pages_enabled()) {
3885 				if (_deferred_grow_zone(zone, order))
3886 					goto try_this_zone;
3887 			}
3888 		}
3889 	}
3890 
3891 	/*
3892 	 * It's possible on a UMA machine to get through all zones that are
3893 	 * fragmented. If avoiding fragmentation, reset and try again.
3894 	 */
3895 	if (no_fallback && !defrag_mode) {
3896 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3897 		goto retry;
3898 	}
3899 
3900 	return NULL;
3901 }
3902 
3903 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3904 {
3905 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3906 
3907 	/*
3908 	 * This documents exceptions given to allocations in certain
3909 	 * contexts that are allowed to allocate outside current's set
3910 	 * of allowed nodes.
3911 	 */
3912 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3913 		if (tsk_is_oom_victim(current) ||
3914 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3915 			filter &= ~SHOW_MEM_FILTER_NODES;
3916 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3917 		filter &= ~SHOW_MEM_FILTER_NODES;
3918 
3919 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3920 }
3921 
3922 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3923 {
3924 	struct va_format vaf;
3925 	va_list args;
3926 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3927 
3928 	if ((gfp_mask & __GFP_NOWARN) ||
3929 	     !__ratelimit(&nopage_rs) ||
3930 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3931 		return;
3932 
3933 	va_start(args, fmt);
3934 	vaf.fmt = fmt;
3935 	vaf.va = &args;
3936 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3937 			current->comm, &vaf, gfp_mask, &gfp_mask,
3938 			nodemask_pr_args(nodemask));
3939 	va_end(args);
3940 
3941 	cpuset_print_current_mems_allowed();
3942 	pr_cont("\n");
3943 	dump_stack();
3944 	warn_alloc_show_mem(gfp_mask, nodemask);
3945 }
3946 
3947 static inline struct page *
3948 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3949 			      unsigned int alloc_flags,
3950 			      const struct alloc_context *ac)
3951 {
3952 	struct page *page;
3953 
3954 	page = get_page_from_freelist(gfp_mask, order,
3955 			alloc_flags|ALLOC_CPUSET, ac);
3956 	/*
3957 	 * fallback to ignore cpuset restriction if our nodes
3958 	 * are depleted
3959 	 */
3960 	if (!page)
3961 		page = get_page_from_freelist(gfp_mask, order,
3962 				alloc_flags, ac);
3963 	return page;
3964 }
3965 
3966 static inline struct page *
3967 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3968 	const struct alloc_context *ac, unsigned long *did_some_progress)
3969 {
3970 	struct oom_control oc = {
3971 		.zonelist = ac->zonelist,
3972 		.nodemask = ac->nodemask,
3973 		.memcg = NULL,
3974 		.gfp_mask = gfp_mask,
3975 		.order = order,
3976 	};
3977 	struct page *page;
3978 
3979 	*did_some_progress = 0;
3980 
3981 	/*
3982 	 * Acquire the oom lock.  If that fails, somebody else is
3983 	 * making progress for us.
3984 	 */
3985 	if (!mutex_trylock(&oom_lock)) {
3986 		*did_some_progress = 1;
3987 		schedule_timeout_uninterruptible(1);
3988 		return NULL;
3989 	}
3990 
3991 	/*
3992 	 * Go through the zonelist yet one more time, keep very high watermark
3993 	 * here, this is only to catch a parallel oom killing, we must fail if
3994 	 * we're still under heavy pressure. But make sure that this reclaim
3995 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3996 	 * allocation which will never fail due to oom_lock already held.
3997 	 */
3998 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3999 				      ~__GFP_DIRECT_RECLAIM, order,
4000 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4001 	if (page)
4002 		goto out;
4003 
4004 	/* Coredumps can quickly deplete all memory reserves */
4005 	if (current->flags & PF_DUMPCORE)
4006 		goto out;
4007 	/* The OOM killer will not help higher order allocs */
4008 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4009 		goto out;
4010 	/*
4011 	 * We have already exhausted all our reclaim opportunities without any
4012 	 * success so it is time to admit defeat. We will skip the OOM killer
4013 	 * because it is very likely that the caller has a more reasonable
4014 	 * fallback than shooting a random task.
4015 	 *
4016 	 * The OOM killer may not free memory on a specific node.
4017 	 */
4018 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4019 		goto out;
4020 	/* The OOM killer does not needlessly kill tasks for lowmem */
4021 	if (ac->highest_zoneidx < ZONE_NORMAL)
4022 		goto out;
4023 	if (pm_suspended_storage())
4024 		goto out;
4025 	/*
4026 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4027 	 * other request to make a forward progress.
4028 	 * We are in an unfortunate situation where out_of_memory cannot
4029 	 * do much for this context but let's try it to at least get
4030 	 * access to memory reserved if the current task is killed (see
4031 	 * out_of_memory). Once filesystems are ready to handle allocation
4032 	 * failures more gracefully we should just bail out here.
4033 	 */
4034 
4035 	/* Exhausted what can be done so it's blame time */
4036 	if (out_of_memory(&oc) ||
4037 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4038 		*did_some_progress = 1;
4039 
4040 		/*
4041 		 * Help non-failing allocations by giving them access to memory
4042 		 * reserves
4043 		 */
4044 		if (gfp_mask & __GFP_NOFAIL)
4045 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4046 					ALLOC_NO_WATERMARKS, ac);
4047 	}
4048 out:
4049 	mutex_unlock(&oom_lock);
4050 	return page;
4051 }
4052 
4053 /*
4054  * Maximum number of compaction retries with a progress before OOM
4055  * killer is consider as the only way to move forward.
4056  */
4057 #define MAX_COMPACT_RETRIES 16
4058 
4059 #ifdef CONFIG_COMPACTION
4060 /* Try memory compaction for high-order allocations before reclaim */
4061 static struct page *
4062 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4063 		unsigned int alloc_flags, const struct alloc_context *ac,
4064 		enum compact_priority prio, enum compact_result *compact_result)
4065 {
4066 	struct page *page = NULL;
4067 	unsigned long pflags;
4068 	unsigned int noreclaim_flag;
4069 
4070 	if (!order)
4071 		return NULL;
4072 
4073 	psi_memstall_enter(&pflags);
4074 	delayacct_compact_start();
4075 	noreclaim_flag = memalloc_noreclaim_save();
4076 
4077 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4078 								prio, &page);
4079 
4080 	memalloc_noreclaim_restore(noreclaim_flag);
4081 	psi_memstall_leave(&pflags);
4082 	delayacct_compact_end();
4083 
4084 	if (*compact_result == COMPACT_SKIPPED)
4085 		return NULL;
4086 	/*
4087 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4088 	 * count a compaction stall
4089 	 */
4090 	count_vm_event(COMPACTSTALL);
4091 
4092 	/* Prep a captured page if available */
4093 	if (page)
4094 		prep_new_page(page, order, gfp_mask, alloc_flags);
4095 
4096 	/* Try get a page from the freelist if available */
4097 	if (!page)
4098 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4099 
4100 	if (page) {
4101 		struct zone *zone = page_zone(page);
4102 
4103 		zone->compact_blockskip_flush = false;
4104 		compaction_defer_reset(zone, order, true);
4105 		count_vm_event(COMPACTSUCCESS);
4106 		return page;
4107 	}
4108 
4109 	/*
4110 	 * It's bad if compaction run occurs and fails. The most likely reason
4111 	 * is that pages exist, but not enough to satisfy watermarks.
4112 	 */
4113 	count_vm_event(COMPACTFAIL);
4114 
4115 	cond_resched();
4116 
4117 	return NULL;
4118 }
4119 
4120 static inline bool
4121 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4122 		     enum compact_result compact_result,
4123 		     enum compact_priority *compact_priority,
4124 		     int *compaction_retries)
4125 {
4126 	int max_retries = MAX_COMPACT_RETRIES;
4127 	int min_priority;
4128 	bool ret = false;
4129 	int retries = *compaction_retries;
4130 	enum compact_priority priority = *compact_priority;
4131 
4132 	if (!order)
4133 		return false;
4134 
4135 	if (fatal_signal_pending(current))
4136 		return false;
4137 
4138 	/*
4139 	 * Compaction was skipped due to a lack of free order-0
4140 	 * migration targets. Continue if reclaim can help.
4141 	 */
4142 	if (compact_result == COMPACT_SKIPPED) {
4143 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4144 		goto out;
4145 	}
4146 
4147 	/*
4148 	 * Compaction managed to coalesce some page blocks, but the
4149 	 * allocation failed presumably due to a race. Retry some.
4150 	 */
4151 	if (compact_result == COMPACT_SUCCESS) {
4152 		/*
4153 		 * !costly requests are much more important than
4154 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
4155 		 * facto nofail and invoke OOM killer to move on while
4156 		 * costly can fail and users are ready to cope with
4157 		 * that. 1/4 retries is rather arbitrary but we would
4158 		 * need much more detailed feedback from compaction to
4159 		 * make a better decision.
4160 		 */
4161 		if (order > PAGE_ALLOC_COSTLY_ORDER)
4162 			max_retries /= 4;
4163 
4164 		if (++(*compaction_retries) <= max_retries) {
4165 			ret = true;
4166 			goto out;
4167 		}
4168 	}
4169 
4170 	/*
4171 	 * Compaction failed. Retry with increasing priority.
4172 	 */
4173 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4174 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4175 
4176 	if (*compact_priority > min_priority) {
4177 		(*compact_priority)--;
4178 		*compaction_retries = 0;
4179 		ret = true;
4180 	}
4181 out:
4182 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4183 	return ret;
4184 }
4185 #else
4186 static inline struct page *
4187 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4188 		unsigned int alloc_flags, const struct alloc_context *ac,
4189 		enum compact_priority prio, enum compact_result *compact_result)
4190 {
4191 	*compact_result = COMPACT_SKIPPED;
4192 	return NULL;
4193 }
4194 
4195 static inline bool
4196 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4197 		     enum compact_result compact_result,
4198 		     enum compact_priority *compact_priority,
4199 		     int *compaction_retries)
4200 {
4201 	struct zone *zone;
4202 	struct zoneref *z;
4203 
4204 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4205 		return false;
4206 
4207 	/*
4208 	 * There are setups with compaction disabled which would prefer to loop
4209 	 * inside the allocator rather than hit the oom killer prematurely.
4210 	 * Let's give them a good hope and keep retrying while the order-0
4211 	 * watermarks are OK.
4212 	 */
4213 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4214 				ac->highest_zoneidx, ac->nodemask) {
4215 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4216 					ac->highest_zoneidx, alloc_flags))
4217 			return true;
4218 	}
4219 	return false;
4220 }
4221 #endif /* CONFIG_COMPACTION */
4222 
4223 #ifdef CONFIG_LOCKDEP
4224 static struct lockdep_map __fs_reclaim_map =
4225 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4226 
4227 static bool __need_reclaim(gfp_t gfp_mask)
4228 {
4229 	/* no reclaim without waiting on it */
4230 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4231 		return false;
4232 
4233 	/* this guy won't enter reclaim */
4234 	if (current->flags & PF_MEMALLOC)
4235 		return false;
4236 
4237 	if (gfp_mask & __GFP_NOLOCKDEP)
4238 		return false;
4239 
4240 	return true;
4241 }
4242 
4243 void __fs_reclaim_acquire(unsigned long ip)
4244 {
4245 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4246 }
4247 
4248 void __fs_reclaim_release(unsigned long ip)
4249 {
4250 	lock_release(&__fs_reclaim_map, ip);
4251 }
4252 
4253 void fs_reclaim_acquire(gfp_t gfp_mask)
4254 {
4255 	gfp_mask = current_gfp_context(gfp_mask);
4256 
4257 	if (__need_reclaim(gfp_mask)) {
4258 		if (gfp_mask & __GFP_FS)
4259 			__fs_reclaim_acquire(_RET_IP_);
4260 
4261 #ifdef CONFIG_MMU_NOTIFIER
4262 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4263 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4264 #endif
4265 
4266 	}
4267 }
4268 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4269 
4270 void fs_reclaim_release(gfp_t gfp_mask)
4271 {
4272 	gfp_mask = current_gfp_context(gfp_mask);
4273 
4274 	if (__need_reclaim(gfp_mask)) {
4275 		if (gfp_mask & __GFP_FS)
4276 			__fs_reclaim_release(_RET_IP_);
4277 	}
4278 }
4279 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4280 #endif
4281 
4282 /*
4283  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4284  * have been rebuilt so allocation retries. Reader side does not lock and
4285  * retries the allocation if zonelist changes. Writer side is protected by the
4286  * embedded spin_lock.
4287  */
4288 static DEFINE_SEQLOCK(zonelist_update_seq);
4289 
4290 static unsigned int zonelist_iter_begin(void)
4291 {
4292 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4293 		return read_seqbegin(&zonelist_update_seq);
4294 
4295 	return 0;
4296 }
4297 
4298 static unsigned int check_retry_zonelist(unsigned int seq)
4299 {
4300 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4301 		return read_seqretry(&zonelist_update_seq, seq);
4302 
4303 	return seq;
4304 }
4305 
4306 /* Perform direct synchronous page reclaim */
4307 static unsigned long
4308 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4309 					const struct alloc_context *ac)
4310 {
4311 	unsigned int noreclaim_flag;
4312 	unsigned long progress;
4313 
4314 	cond_resched();
4315 
4316 	/* We now go into synchronous reclaim */
4317 	cpuset_memory_pressure_bump();
4318 	fs_reclaim_acquire(gfp_mask);
4319 	noreclaim_flag = memalloc_noreclaim_save();
4320 
4321 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4322 								ac->nodemask);
4323 
4324 	memalloc_noreclaim_restore(noreclaim_flag);
4325 	fs_reclaim_release(gfp_mask);
4326 
4327 	cond_resched();
4328 
4329 	return progress;
4330 }
4331 
4332 /* The really slow allocator path where we enter direct reclaim */
4333 static inline struct page *
4334 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4335 		unsigned int alloc_flags, const struct alloc_context *ac,
4336 		unsigned long *did_some_progress)
4337 {
4338 	struct page *page = NULL;
4339 	unsigned long pflags;
4340 	bool drained = false;
4341 
4342 	psi_memstall_enter(&pflags);
4343 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4344 	if (unlikely(!(*did_some_progress)))
4345 		goto out;
4346 
4347 retry:
4348 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4349 
4350 	/*
4351 	 * If an allocation failed after direct reclaim, it could be because
4352 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4353 	 * Shrink them and try again
4354 	 */
4355 	if (!page && !drained) {
4356 		unreserve_highatomic_pageblock(ac, false);
4357 		drain_all_pages(NULL);
4358 		drained = true;
4359 		goto retry;
4360 	}
4361 out:
4362 	psi_memstall_leave(&pflags);
4363 
4364 	return page;
4365 }
4366 
4367 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4368 			     const struct alloc_context *ac)
4369 {
4370 	struct zoneref *z;
4371 	struct zone *zone;
4372 	pg_data_t *last_pgdat = NULL;
4373 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4374 	unsigned int reclaim_order;
4375 
4376 	if (defrag_mode)
4377 		reclaim_order = max(order, pageblock_order);
4378 	else
4379 		reclaim_order = order;
4380 
4381 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4382 					ac->nodemask) {
4383 		if (!managed_zone(zone))
4384 			continue;
4385 		if (last_pgdat == zone->zone_pgdat)
4386 			continue;
4387 		wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4388 		last_pgdat = zone->zone_pgdat;
4389 	}
4390 }
4391 
4392 static inline unsigned int
4393 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4394 {
4395 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4396 
4397 	/*
4398 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4399 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4400 	 * to save two branches.
4401 	 */
4402 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4403 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4404 
4405 	/*
4406 	 * The caller may dip into page reserves a bit more if the caller
4407 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4408 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4409 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4410 	 */
4411 	alloc_flags |= (__force int)
4412 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4413 
4414 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4415 		/*
4416 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4417 		 * if it can't schedule.
4418 		 */
4419 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4420 			alloc_flags |= ALLOC_NON_BLOCK;
4421 
4422 			if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE))
4423 				alloc_flags |= ALLOC_HIGHATOMIC;
4424 		}
4425 
4426 		/*
4427 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4428 		 * GFP_ATOMIC) rather than fail, see the comment for
4429 		 * cpuset_current_node_allowed().
4430 		 */
4431 		if (alloc_flags & ALLOC_MIN_RESERVE)
4432 			alloc_flags &= ~ALLOC_CPUSET;
4433 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4434 		alloc_flags |= ALLOC_MIN_RESERVE;
4435 
4436 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4437 
4438 	if (defrag_mode)
4439 		alloc_flags |= ALLOC_NOFRAGMENT;
4440 
4441 	return alloc_flags;
4442 }
4443 
4444 static bool oom_reserves_allowed(struct task_struct *tsk)
4445 {
4446 	if (!tsk_is_oom_victim(tsk))
4447 		return false;
4448 
4449 	/*
4450 	 * !MMU doesn't have oom reaper so give access to memory reserves
4451 	 * only to the thread with TIF_MEMDIE set
4452 	 */
4453 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4454 		return false;
4455 
4456 	return true;
4457 }
4458 
4459 /*
4460  * Distinguish requests which really need access to full memory
4461  * reserves from oom victims which can live with a portion of it
4462  */
4463 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4464 {
4465 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4466 		return 0;
4467 	if (gfp_mask & __GFP_MEMALLOC)
4468 		return ALLOC_NO_WATERMARKS;
4469 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4470 		return ALLOC_NO_WATERMARKS;
4471 	if (!in_interrupt()) {
4472 		if (current->flags & PF_MEMALLOC)
4473 			return ALLOC_NO_WATERMARKS;
4474 		else if (oom_reserves_allowed(current))
4475 			return ALLOC_OOM;
4476 	}
4477 
4478 	return 0;
4479 }
4480 
4481 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4482 {
4483 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4484 }
4485 
4486 /*
4487  * Checks whether it makes sense to retry the reclaim to make a forward progress
4488  * for the given allocation request.
4489  *
4490  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4491  * without success, or when we couldn't even meet the watermark if we
4492  * reclaimed all remaining pages on the LRU lists.
4493  *
4494  * Returns true if a retry is viable or false to enter the oom path.
4495  */
4496 static inline bool
4497 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4498 		     struct alloc_context *ac, int alloc_flags,
4499 		     bool did_some_progress, int *no_progress_loops)
4500 {
4501 	struct zone *zone;
4502 	struct zoneref *z;
4503 	bool ret = false;
4504 
4505 	/*
4506 	 * Costly allocations might have made a progress but this doesn't mean
4507 	 * their order will become available due to high fragmentation so
4508 	 * always increment the no progress counter for them
4509 	 */
4510 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4511 		*no_progress_loops = 0;
4512 	else
4513 		(*no_progress_loops)++;
4514 
4515 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4516 		goto out;
4517 
4518 
4519 	/*
4520 	 * Keep reclaiming pages while there is a chance this will lead
4521 	 * somewhere.  If none of the target zones can satisfy our allocation
4522 	 * request even if all reclaimable pages are considered then we are
4523 	 * screwed and have to go OOM.
4524 	 */
4525 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4526 				ac->highest_zoneidx, ac->nodemask) {
4527 		unsigned long available;
4528 		unsigned long reclaimable;
4529 		unsigned long min_wmark = min_wmark_pages(zone);
4530 		bool wmark;
4531 
4532 		if (cpusets_enabled() &&
4533 			(alloc_flags & ALLOC_CPUSET) &&
4534 			!__cpuset_zone_allowed(zone, gfp_mask))
4535 				continue;
4536 
4537 		available = reclaimable = zone_reclaimable_pages(zone);
4538 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4539 
4540 		/*
4541 		 * Would the allocation succeed if we reclaimed all
4542 		 * reclaimable pages?
4543 		 */
4544 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4545 				ac->highest_zoneidx, alloc_flags, available);
4546 		trace_reclaim_retry_zone(z, order, reclaimable,
4547 				available, min_wmark, *no_progress_loops, wmark);
4548 		if (wmark) {
4549 			ret = true;
4550 			break;
4551 		}
4552 	}
4553 
4554 	/*
4555 	 * Memory allocation/reclaim might be called from a WQ context and the
4556 	 * current implementation of the WQ concurrency control doesn't
4557 	 * recognize that a particular WQ is congested if the worker thread is
4558 	 * looping without ever sleeping. Therefore we have to do a short sleep
4559 	 * here rather than calling cond_resched().
4560 	 */
4561 	if (current->flags & PF_WQ_WORKER)
4562 		schedule_timeout_uninterruptible(1);
4563 	else
4564 		cond_resched();
4565 out:
4566 	/* Before OOM, exhaust highatomic_reserve */
4567 	if (!ret)
4568 		return unreserve_highatomic_pageblock(ac, true);
4569 
4570 	return ret;
4571 }
4572 
4573 static inline bool
4574 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4575 {
4576 	/*
4577 	 * It's possible that cpuset's mems_allowed and the nodemask from
4578 	 * mempolicy don't intersect. This should be normally dealt with by
4579 	 * policy_nodemask(), but it's possible to race with cpuset update in
4580 	 * such a way the check therein was true, and then it became false
4581 	 * before we got our cpuset_mems_cookie here.
4582 	 * This assumes that for all allocations, ac->nodemask can come only
4583 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4584 	 * when it does not intersect with the cpuset restrictions) or the
4585 	 * caller can deal with a violated nodemask.
4586 	 */
4587 	if (cpusets_enabled() && ac->nodemask &&
4588 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4589 		ac->nodemask = NULL;
4590 		return true;
4591 	}
4592 
4593 	/*
4594 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4595 	 * possible to race with parallel threads in such a way that our
4596 	 * allocation can fail while the mask is being updated. If we are about
4597 	 * to fail, check if the cpuset changed during allocation and if so,
4598 	 * retry.
4599 	 */
4600 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4601 		return true;
4602 
4603 	return false;
4604 }
4605 
4606 static inline struct page *
4607 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4608 						struct alloc_context *ac)
4609 {
4610 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4611 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4612 	bool nofail = gfp_mask & __GFP_NOFAIL;
4613 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4614 	struct page *page = NULL;
4615 	unsigned int alloc_flags;
4616 	unsigned long did_some_progress;
4617 	enum compact_priority compact_priority;
4618 	enum compact_result compact_result;
4619 	int compaction_retries;
4620 	int no_progress_loops;
4621 	unsigned int cpuset_mems_cookie;
4622 	unsigned int zonelist_iter_cookie;
4623 	int reserve_flags;
4624 
4625 	if (unlikely(nofail)) {
4626 		/*
4627 		 * We most definitely don't want callers attempting to
4628 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4629 		 */
4630 		WARN_ON_ONCE(order > 1);
4631 		/*
4632 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4633 		 * otherwise, we may result in lockup.
4634 		 */
4635 		WARN_ON_ONCE(!can_direct_reclaim);
4636 		/*
4637 		 * PF_MEMALLOC request from this context is rather bizarre
4638 		 * because we cannot reclaim anything and only can loop waiting
4639 		 * for somebody to do a work for us.
4640 		 */
4641 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4642 	}
4643 
4644 restart:
4645 	compaction_retries = 0;
4646 	no_progress_loops = 0;
4647 	compact_result = COMPACT_SKIPPED;
4648 	compact_priority = DEF_COMPACT_PRIORITY;
4649 	cpuset_mems_cookie = read_mems_allowed_begin();
4650 	zonelist_iter_cookie = zonelist_iter_begin();
4651 
4652 	/*
4653 	 * The fast path uses conservative alloc_flags to succeed only until
4654 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4655 	 * alloc_flags precisely. So we do that now.
4656 	 */
4657 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4658 
4659 	/*
4660 	 * We need to recalculate the starting point for the zonelist iterator
4661 	 * because we might have used different nodemask in the fast path, or
4662 	 * there was a cpuset modification and we are retrying - otherwise we
4663 	 * could end up iterating over non-eligible zones endlessly.
4664 	 */
4665 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4666 					ac->highest_zoneidx, ac->nodemask);
4667 	if (!zonelist_zone(ac->preferred_zoneref))
4668 		goto nopage;
4669 
4670 	/*
4671 	 * Check for insane configurations where the cpuset doesn't contain
4672 	 * any suitable zone to satisfy the request - e.g. non-movable
4673 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4674 	 */
4675 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4676 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4677 					ac->highest_zoneidx,
4678 					&cpuset_current_mems_allowed);
4679 		if (!zonelist_zone(z))
4680 			goto nopage;
4681 	}
4682 
4683 	if (alloc_flags & ALLOC_KSWAPD)
4684 		wake_all_kswapds(order, gfp_mask, ac);
4685 
4686 	/*
4687 	 * The adjusted alloc_flags might result in immediate success, so try
4688 	 * that first
4689 	 */
4690 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4691 	if (page)
4692 		goto got_pg;
4693 
4694 	/*
4695 	 * For costly allocations, try direct compaction first, as it's likely
4696 	 * that we have enough base pages and don't need to reclaim. For non-
4697 	 * movable high-order allocations, do that as well, as compaction will
4698 	 * try prevent permanent fragmentation by migrating from blocks of the
4699 	 * same migratetype.
4700 	 * Don't try this for allocations that are allowed to ignore
4701 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4702 	 */
4703 	if (can_direct_reclaim && can_compact &&
4704 			(costly_order ||
4705 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4706 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4707 		page = __alloc_pages_direct_compact(gfp_mask, order,
4708 						alloc_flags, ac,
4709 						INIT_COMPACT_PRIORITY,
4710 						&compact_result);
4711 		if (page)
4712 			goto got_pg;
4713 
4714 		/*
4715 		 * Checks for costly allocations with __GFP_NORETRY, which
4716 		 * includes some THP page fault allocations
4717 		 */
4718 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4719 			/*
4720 			 * If allocating entire pageblock(s) and compaction
4721 			 * failed because all zones are below low watermarks
4722 			 * or is prohibited because it recently failed at this
4723 			 * order, fail immediately unless the allocator has
4724 			 * requested compaction and reclaim retry.
4725 			 *
4726 			 * Reclaim is
4727 			 *  - potentially very expensive because zones are far
4728 			 *    below their low watermarks or this is part of very
4729 			 *    bursty high order allocations,
4730 			 *  - not guaranteed to help because isolate_freepages()
4731 			 *    may not iterate over freed pages as part of its
4732 			 *    linear scan, and
4733 			 *  - unlikely to make entire pageblocks free on its
4734 			 *    own.
4735 			 */
4736 			if (compact_result == COMPACT_SKIPPED ||
4737 			    compact_result == COMPACT_DEFERRED)
4738 				goto nopage;
4739 
4740 			/*
4741 			 * Looks like reclaim/compaction is worth trying, but
4742 			 * sync compaction could be very expensive, so keep
4743 			 * using async compaction.
4744 			 */
4745 			compact_priority = INIT_COMPACT_PRIORITY;
4746 		}
4747 	}
4748 
4749 retry:
4750 	/*
4751 	 * Deal with possible cpuset update races or zonelist updates to avoid
4752 	 * infinite retries.
4753 	 */
4754 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4755 	    check_retry_zonelist(zonelist_iter_cookie))
4756 		goto restart;
4757 
4758 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4759 	if (alloc_flags & ALLOC_KSWAPD)
4760 		wake_all_kswapds(order, gfp_mask, ac);
4761 
4762 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4763 	if (reserve_flags)
4764 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4765 					  (alloc_flags & ALLOC_KSWAPD);
4766 
4767 	/*
4768 	 * Reset the nodemask and zonelist iterators if memory policies can be
4769 	 * ignored. These allocations are high priority and system rather than
4770 	 * user oriented.
4771 	 */
4772 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4773 		ac->nodemask = NULL;
4774 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4775 					ac->highest_zoneidx, ac->nodemask);
4776 	}
4777 
4778 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4779 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4780 	if (page)
4781 		goto got_pg;
4782 
4783 	/* Caller is not willing to reclaim, we can't balance anything */
4784 	if (!can_direct_reclaim)
4785 		goto nopage;
4786 
4787 	/* Avoid recursion of direct reclaim */
4788 	if (current->flags & PF_MEMALLOC)
4789 		goto nopage;
4790 
4791 	/* Try direct reclaim and then allocating */
4792 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4793 							&did_some_progress);
4794 	if (page)
4795 		goto got_pg;
4796 
4797 	/* Try direct compaction and then allocating */
4798 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4799 					compact_priority, &compact_result);
4800 	if (page)
4801 		goto got_pg;
4802 
4803 	/* Do not loop if specifically requested */
4804 	if (gfp_mask & __GFP_NORETRY)
4805 		goto nopage;
4806 
4807 	/*
4808 	 * Do not retry costly high order allocations unless they are
4809 	 * __GFP_RETRY_MAYFAIL and we can compact
4810 	 */
4811 	if (costly_order && (!can_compact ||
4812 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4813 		goto nopage;
4814 
4815 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4816 				 did_some_progress > 0, &no_progress_loops))
4817 		goto retry;
4818 
4819 	/*
4820 	 * It doesn't make any sense to retry for the compaction if the order-0
4821 	 * reclaim is not able to make any progress because the current
4822 	 * implementation of the compaction depends on the sufficient amount
4823 	 * of free memory (see __compaction_suitable)
4824 	 */
4825 	if (did_some_progress > 0 && can_compact &&
4826 			should_compact_retry(ac, order, alloc_flags,
4827 				compact_result, &compact_priority,
4828 				&compaction_retries))
4829 		goto retry;
4830 
4831 	/* Reclaim/compaction failed to prevent the fallback */
4832 	if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4833 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4834 		goto retry;
4835 	}
4836 
4837 	/*
4838 	 * Deal with possible cpuset update races or zonelist updates to avoid
4839 	 * a unnecessary OOM kill.
4840 	 */
4841 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4842 	    check_retry_zonelist(zonelist_iter_cookie))
4843 		goto restart;
4844 
4845 	/* Reclaim has failed us, start killing things */
4846 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4847 	if (page)
4848 		goto got_pg;
4849 
4850 	/* Avoid allocations with no watermarks from looping endlessly */
4851 	if (tsk_is_oom_victim(current) &&
4852 	    (alloc_flags & ALLOC_OOM ||
4853 	     (gfp_mask & __GFP_NOMEMALLOC)))
4854 		goto nopage;
4855 
4856 	/* Retry as long as the OOM killer is making progress */
4857 	if (did_some_progress) {
4858 		no_progress_loops = 0;
4859 		goto retry;
4860 	}
4861 
4862 nopage:
4863 	/*
4864 	 * Deal with possible cpuset update races or zonelist updates to avoid
4865 	 * a unnecessary OOM kill.
4866 	 */
4867 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4868 	    check_retry_zonelist(zonelist_iter_cookie))
4869 		goto restart;
4870 
4871 	/*
4872 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4873 	 * we always retry
4874 	 */
4875 	if (unlikely(nofail)) {
4876 		/*
4877 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4878 		 * we disregard these unreasonable nofail requests and still
4879 		 * return NULL
4880 		 */
4881 		if (!can_direct_reclaim)
4882 			goto fail;
4883 
4884 		/*
4885 		 * Help non-failing allocations by giving some access to memory
4886 		 * reserves normally used for high priority non-blocking
4887 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4888 		 * could deplete whole memory reserves which would just make
4889 		 * the situation worse.
4890 		 */
4891 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4892 		if (page)
4893 			goto got_pg;
4894 
4895 		cond_resched();
4896 		goto retry;
4897 	}
4898 fail:
4899 	warn_alloc(gfp_mask, ac->nodemask,
4900 			"page allocation failure: order:%u", order);
4901 got_pg:
4902 	return page;
4903 }
4904 
4905 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4906 		int preferred_nid, nodemask_t *nodemask,
4907 		struct alloc_context *ac, gfp_t *alloc_gfp,
4908 		unsigned int *alloc_flags)
4909 {
4910 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4911 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4912 	ac->nodemask = nodemask;
4913 	ac->migratetype = gfp_migratetype(gfp_mask);
4914 
4915 	if (cpusets_enabled()) {
4916 		*alloc_gfp |= __GFP_HARDWALL;
4917 		/*
4918 		 * When we are in the interrupt context, it is irrelevant
4919 		 * to the current task context. It means that any node ok.
4920 		 */
4921 		if (in_task() && !ac->nodemask)
4922 			ac->nodemask = &cpuset_current_mems_allowed;
4923 		else
4924 			*alloc_flags |= ALLOC_CPUSET;
4925 	}
4926 
4927 	might_alloc(gfp_mask);
4928 
4929 	/*
4930 	 * Don't invoke should_fail logic, since it may call
4931 	 * get_random_u32() and printk() which need to spin_lock.
4932 	 */
4933 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4934 	    should_fail_alloc_page(gfp_mask, order))
4935 		return false;
4936 
4937 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4938 
4939 	/* Dirty zone balancing only done in the fast path */
4940 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4941 
4942 	/*
4943 	 * The preferred zone is used for statistics but crucially it is
4944 	 * also used as the starting point for the zonelist iterator. It
4945 	 * may get reset for allocations that ignore memory policies.
4946 	 */
4947 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4948 					ac->highest_zoneidx, ac->nodemask);
4949 
4950 	return true;
4951 }
4952 
4953 /*
4954  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4955  * @gfp: GFP flags for the allocation
4956  * @preferred_nid: The preferred NUMA node ID to allocate from
4957  * @nodemask: Set of nodes to allocate from, may be NULL
4958  * @nr_pages: The number of pages desired in the array
4959  * @page_array: Array to store the pages
4960  *
4961  * This is a batched version of the page allocator that attempts to
4962  * allocate nr_pages quickly. Pages are added to the page_array.
4963  *
4964  * Note that only NULL elements are populated with pages and nr_pages
4965  * is the maximum number of pages that will be stored in the array.
4966  *
4967  * Returns the number of pages in the array.
4968  */
4969 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4970 			nodemask_t *nodemask, int nr_pages,
4971 			struct page **page_array)
4972 {
4973 	struct page *page;
4974 	unsigned long __maybe_unused UP_flags;
4975 	struct zone *zone;
4976 	struct zoneref *z;
4977 	struct per_cpu_pages *pcp;
4978 	struct list_head *pcp_list;
4979 	struct alloc_context ac;
4980 	gfp_t alloc_gfp;
4981 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4982 	int nr_populated = 0, nr_account = 0;
4983 
4984 	/*
4985 	 * Skip populated array elements to determine if any pages need
4986 	 * to be allocated before disabling IRQs.
4987 	 */
4988 	while (nr_populated < nr_pages && page_array[nr_populated])
4989 		nr_populated++;
4990 
4991 	/* No pages requested? */
4992 	if (unlikely(nr_pages <= 0))
4993 		goto out;
4994 
4995 	/* Already populated array? */
4996 	if (unlikely(nr_pages - nr_populated == 0))
4997 		goto out;
4998 
4999 	/* Bulk allocator does not support memcg accounting. */
5000 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5001 		goto failed;
5002 
5003 	/* Use the single page allocator for one page. */
5004 	if (nr_pages - nr_populated == 1)
5005 		goto failed;
5006 
5007 #ifdef CONFIG_PAGE_OWNER
5008 	/*
5009 	 * PAGE_OWNER may recurse into the allocator to allocate space to
5010 	 * save the stack with pagesets.lock held. Releasing/reacquiring
5011 	 * removes much of the performance benefit of bulk allocation so
5012 	 * force the caller to allocate one page at a time as it'll have
5013 	 * similar performance to added complexity to the bulk allocator.
5014 	 */
5015 	if (static_branch_unlikely(&page_owner_inited))
5016 		goto failed;
5017 #endif
5018 
5019 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5020 	gfp &= gfp_allowed_mask;
5021 	alloc_gfp = gfp;
5022 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5023 		goto out;
5024 	gfp = alloc_gfp;
5025 
5026 	/* Find an allowed local zone that meets the low watermark. */
5027 	z = ac.preferred_zoneref;
5028 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
5029 		unsigned long mark;
5030 
5031 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5032 		    !__cpuset_zone_allowed(zone, gfp)) {
5033 			continue;
5034 		}
5035 
5036 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
5037 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
5038 			goto failed;
5039 		}
5040 
5041 		cond_accept_memory(zone, 0, alloc_flags);
5042 retry_this_zone:
5043 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5044 		if (zone_watermark_fast(zone, 0,  mark,
5045 				zonelist_zone_idx(ac.preferred_zoneref),
5046 				alloc_flags, gfp)) {
5047 			break;
5048 		}
5049 
5050 		if (cond_accept_memory(zone, 0, alloc_flags))
5051 			goto retry_this_zone;
5052 
5053 		/* Try again if zone has deferred pages */
5054 		if (deferred_pages_enabled()) {
5055 			if (_deferred_grow_zone(zone, 0))
5056 				goto retry_this_zone;
5057 		}
5058 	}
5059 
5060 	/*
5061 	 * If there are no allowed local zones that meets the watermarks then
5062 	 * try to allocate a single page and reclaim if necessary.
5063 	 */
5064 	if (unlikely(!zone))
5065 		goto failed;
5066 
5067 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5068 	pcp_trylock_prepare(UP_flags);
5069 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5070 	if (!pcp)
5071 		goto failed_irq;
5072 
5073 	/* Attempt the batch allocation */
5074 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5075 	while (nr_populated < nr_pages) {
5076 
5077 		/* Skip existing pages */
5078 		if (page_array[nr_populated]) {
5079 			nr_populated++;
5080 			continue;
5081 		}
5082 
5083 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5084 								pcp, pcp_list);
5085 		if (unlikely(!page)) {
5086 			/* Try and allocate at least one page */
5087 			if (!nr_account) {
5088 				pcp_spin_unlock(pcp);
5089 				goto failed_irq;
5090 			}
5091 			break;
5092 		}
5093 		nr_account++;
5094 
5095 		prep_new_page(page, 0, gfp, 0);
5096 		set_page_refcounted(page);
5097 		page_array[nr_populated++] = page;
5098 	}
5099 
5100 	pcp_spin_unlock(pcp);
5101 	pcp_trylock_finish(UP_flags);
5102 
5103 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5104 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
5105 
5106 out:
5107 	return nr_populated;
5108 
5109 failed_irq:
5110 	pcp_trylock_finish(UP_flags);
5111 
5112 failed:
5113 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
5114 	if (page)
5115 		page_array[nr_populated++] = page;
5116 	goto out;
5117 }
5118 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
5119 
5120 /*
5121  * This is the 'heart' of the zoned buddy allocator.
5122  */
5123 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
5124 		int preferred_nid, nodemask_t *nodemask)
5125 {
5126 	struct page *page;
5127 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5128 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5129 	struct alloc_context ac = { };
5130 
5131 	/*
5132 	 * There are several places where we assume that the order value is sane
5133 	 * so bail out early if the request is out of bound.
5134 	 */
5135 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
5136 		return NULL;
5137 
5138 	gfp &= gfp_allowed_mask;
5139 	/*
5140 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5141 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5142 	 * from a particular context which has been marked by
5143 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5144 	 * movable zones are not used during allocation.
5145 	 */
5146 	gfp = current_gfp_context(gfp);
5147 	alloc_gfp = gfp;
5148 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5149 			&alloc_gfp, &alloc_flags))
5150 		return NULL;
5151 
5152 	/*
5153 	 * Forbid the first pass from falling back to types that fragment
5154 	 * memory until all local zones are considered.
5155 	 */
5156 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
5157 
5158 	/* First allocation attempt */
5159 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5160 	if (likely(page))
5161 		goto out;
5162 
5163 	alloc_gfp = gfp;
5164 	ac.spread_dirty_pages = false;
5165 
5166 	/*
5167 	 * Restore the original nodemask if it was potentially replaced with
5168 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5169 	 */
5170 	ac.nodemask = nodemask;
5171 
5172 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5173 
5174 out:
5175 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5176 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5177 		free_frozen_pages(page, order);
5178 		page = NULL;
5179 	}
5180 
5181 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5182 	kmsan_alloc_page(page, order, alloc_gfp);
5183 
5184 	return page;
5185 }
5186 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
5187 
5188 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
5189 		int preferred_nid, nodemask_t *nodemask)
5190 {
5191 	struct page *page;
5192 
5193 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
5194 	if (page)
5195 		set_page_refcounted(page);
5196 	return page;
5197 }
5198 EXPORT_SYMBOL(__alloc_pages_noprof);
5199 
5200 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
5201 		nodemask_t *nodemask)
5202 {
5203 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5204 					preferred_nid, nodemask);
5205 	return page_rmappable_folio(page);
5206 }
5207 EXPORT_SYMBOL(__folio_alloc_noprof);
5208 
5209 /*
5210  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5211  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5212  * you need to access high mem.
5213  */
5214 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5215 {
5216 	struct page *page;
5217 
5218 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5219 	if (!page)
5220 		return 0;
5221 	return (unsigned long) page_address(page);
5222 }
5223 EXPORT_SYMBOL(get_free_pages_noprof);
5224 
5225 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5226 {
5227 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5228 }
5229 EXPORT_SYMBOL(get_zeroed_page_noprof);
5230 
5231 static void ___free_pages(struct page *page, unsigned int order,
5232 			  fpi_t fpi_flags)
5233 {
5234 	/* get PageHead before we drop reference */
5235 	int head = PageHead(page);
5236 	/* get alloc tag in case the page is released by others */
5237 	struct alloc_tag *tag = pgalloc_tag_get(page);
5238 
5239 	if (put_page_testzero(page))
5240 		__free_frozen_pages(page, order, fpi_flags);
5241 	else if (!head) {
5242 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
5243 		while (order-- > 0) {
5244 			/*
5245 			 * The "tail" pages of this non-compound high-order
5246 			 * page will have no code tags, so to avoid warnings
5247 			 * mark them as empty.
5248 			 */
5249 			clear_page_tag_ref(page + (1 << order));
5250 			__free_frozen_pages(page + (1 << order), order,
5251 					    fpi_flags);
5252 		}
5253 	}
5254 }
5255 
5256 /**
5257  * __free_pages - Free pages allocated with alloc_pages().
5258  * @page: The page pointer returned from alloc_pages().
5259  * @order: The order of the allocation.
5260  *
5261  * This function can free multi-page allocations that are not compound
5262  * pages.  It does not check that the @order passed in matches that of
5263  * the allocation, so it is easy to leak memory.  Freeing more memory
5264  * than was allocated will probably emit a warning.
5265  *
5266  * If the last reference to this page is speculative, it will be released
5267  * by put_page() which only frees the first page of a non-compound
5268  * allocation.  To prevent the remaining pages from being leaked, we free
5269  * the subsequent pages here.  If you want to use the page's reference
5270  * count to decide when to free the allocation, you should allocate a
5271  * compound page, and use put_page() instead of __free_pages().
5272  *
5273  * Context: May be called in interrupt context or while holding a normal
5274  * spinlock, but not in NMI context or while holding a raw spinlock.
5275  */
5276 void __free_pages(struct page *page, unsigned int order)
5277 {
5278 	___free_pages(page, order, FPI_NONE);
5279 }
5280 EXPORT_SYMBOL(__free_pages);
5281 
5282 /*
5283  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5284  * page type (not only those that came from alloc_pages_nolock)
5285  */
5286 void free_pages_nolock(struct page *page, unsigned int order)
5287 {
5288 	___free_pages(page, order, FPI_TRYLOCK);
5289 }
5290 
5291 /**
5292  * free_pages - Free pages allocated with __get_free_pages().
5293  * @addr: The virtual address tied to a page returned from __get_free_pages().
5294  * @order: The order of the allocation.
5295  *
5296  * This function behaves the same as __free_pages(). Use this function
5297  * to free pages when you only have a valid virtual address. If you have
5298  * the page, call __free_pages() instead.
5299  */
5300 void free_pages(unsigned long addr, unsigned int order)
5301 {
5302 	if (addr != 0) {
5303 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5304 		__free_pages(virt_to_page((void *)addr), order);
5305 	}
5306 }
5307 
5308 EXPORT_SYMBOL(free_pages);
5309 
5310 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5311 		size_t size)
5312 {
5313 	if (addr) {
5314 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5315 		struct page *page = virt_to_page((void *)addr);
5316 		struct page *last = page + nr;
5317 
5318 		split_page_owner(page, order, 0);
5319 		pgalloc_tag_split(page_folio(page), order, 0);
5320 		split_page_memcg(page, order);
5321 		while (page < --last)
5322 			set_page_refcounted(last);
5323 
5324 		last = page + (1UL << order);
5325 		for (page += nr; page < last; page++)
5326 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5327 	}
5328 	return (void *)addr;
5329 }
5330 
5331 /**
5332  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5333  * @size: the number of bytes to allocate
5334  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5335  *
5336  * This function is similar to alloc_pages(), except that it allocates the
5337  * minimum number of pages to satisfy the request.  alloc_pages() can only
5338  * allocate memory in power-of-two pages.
5339  *
5340  * This function is also limited by MAX_PAGE_ORDER.
5341  *
5342  * Memory allocated by this function must be released by free_pages_exact().
5343  *
5344  * Return: pointer to the allocated area or %NULL in case of error.
5345  */
5346 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5347 {
5348 	unsigned int order = get_order(size);
5349 	unsigned long addr;
5350 
5351 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5352 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5353 
5354 	addr = get_free_pages_noprof(gfp_mask, order);
5355 	return make_alloc_exact(addr, order, size);
5356 }
5357 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5358 
5359 /**
5360  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5361  *			   pages on a node.
5362  * @nid: the preferred node ID where memory should be allocated
5363  * @size: the number of bytes to allocate
5364  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5365  *
5366  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5367  * back.
5368  *
5369  * Return: pointer to the allocated area or %NULL in case of error.
5370  */
5371 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5372 {
5373 	unsigned int order = get_order(size);
5374 	struct page *p;
5375 
5376 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5377 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5378 
5379 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5380 	if (!p)
5381 		return NULL;
5382 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5383 }
5384 
5385 /**
5386  * free_pages_exact - release memory allocated via alloc_pages_exact()
5387  * @virt: the value returned by alloc_pages_exact.
5388  * @size: size of allocation, same value as passed to alloc_pages_exact().
5389  *
5390  * Release the memory allocated by a previous call to alloc_pages_exact.
5391  */
5392 void free_pages_exact(void *virt, size_t size)
5393 {
5394 	unsigned long addr = (unsigned long)virt;
5395 	unsigned long end = addr + PAGE_ALIGN(size);
5396 
5397 	while (addr < end) {
5398 		free_page(addr);
5399 		addr += PAGE_SIZE;
5400 	}
5401 }
5402 EXPORT_SYMBOL(free_pages_exact);
5403 
5404 /**
5405  * nr_free_zone_pages - count number of pages beyond high watermark
5406  * @offset: The zone index of the highest zone
5407  *
5408  * nr_free_zone_pages() counts the number of pages which are beyond the
5409  * high watermark within all zones at or below a given zone index.  For each
5410  * zone, the number of pages is calculated as:
5411  *
5412  *     nr_free_zone_pages = managed_pages - high_pages
5413  *
5414  * Return: number of pages beyond high watermark.
5415  */
5416 static unsigned long nr_free_zone_pages(int offset)
5417 {
5418 	struct zoneref *z;
5419 	struct zone *zone;
5420 
5421 	/* Just pick one node, since fallback list is circular */
5422 	unsigned long sum = 0;
5423 
5424 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5425 
5426 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5427 		unsigned long size = zone_managed_pages(zone);
5428 		unsigned long high = high_wmark_pages(zone);
5429 		if (size > high)
5430 			sum += size - high;
5431 	}
5432 
5433 	return sum;
5434 }
5435 
5436 /**
5437  * nr_free_buffer_pages - count number of pages beyond high watermark
5438  *
5439  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5440  * watermark within ZONE_DMA and ZONE_NORMAL.
5441  *
5442  * Return: number of pages beyond high watermark within ZONE_DMA and
5443  * ZONE_NORMAL.
5444  */
5445 unsigned long nr_free_buffer_pages(void)
5446 {
5447 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5448 }
5449 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5450 
5451 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5452 {
5453 	zoneref->zone = zone;
5454 	zoneref->zone_idx = zone_idx(zone);
5455 }
5456 
5457 /*
5458  * Builds allocation fallback zone lists.
5459  *
5460  * Add all populated zones of a node to the zonelist.
5461  */
5462 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5463 {
5464 	struct zone *zone;
5465 	enum zone_type zone_type = MAX_NR_ZONES;
5466 	int nr_zones = 0;
5467 
5468 	do {
5469 		zone_type--;
5470 		zone = pgdat->node_zones + zone_type;
5471 		if (populated_zone(zone)) {
5472 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5473 			check_highest_zone(zone_type);
5474 		}
5475 	} while (zone_type);
5476 
5477 	return nr_zones;
5478 }
5479 
5480 #ifdef CONFIG_NUMA
5481 
5482 static int __parse_numa_zonelist_order(char *s)
5483 {
5484 	/*
5485 	 * We used to support different zonelists modes but they turned
5486 	 * out to be just not useful. Let's keep the warning in place
5487 	 * if somebody still use the cmd line parameter so that we do
5488 	 * not fail it silently
5489 	 */
5490 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5491 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5492 		return -EINVAL;
5493 	}
5494 	return 0;
5495 }
5496 
5497 static char numa_zonelist_order[] = "Node";
5498 #define NUMA_ZONELIST_ORDER_LEN	16
5499 /*
5500  * sysctl handler for numa_zonelist_order
5501  */
5502 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5503 		void *buffer, size_t *length, loff_t *ppos)
5504 {
5505 	if (write)
5506 		return __parse_numa_zonelist_order(buffer);
5507 	return proc_dostring(table, write, buffer, length, ppos);
5508 }
5509 
5510 static int node_load[MAX_NUMNODES];
5511 
5512 /**
5513  * find_next_best_node - find the next node that should appear in a given node's fallback list
5514  * @node: node whose fallback list we're appending
5515  * @used_node_mask: nodemask_t of already used nodes
5516  *
5517  * We use a number of factors to determine which is the next node that should
5518  * appear on a given node's fallback list.  The node should not have appeared
5519  * already in @node's fallback list, and it should be the next closest node
5520  * according to the distance array (which contains arbitrary distance values
5521  * from each node to each node in the system), and should also prefer nodes
5522  * with no CPUs, since presumably they'll have very little allocation pressure
5523  * on them otherwise.
5524  *
5525  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5526  */
5527 int find_next_best_node(int node, nodemask_t *used_node_mask)
5528 {
5529 	int n, val;
5530 	int min_val = INT_MAX;
5531 	int best_node = NUMA_NO_NODE;
5532 
5533 	/*
5534 	 * Use the local node if we haven't already, but for memoryless local
5535 	 * node, we should skip it and fall back to other nodes.
5536 	 */
5537 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5538 		node_set(node, *used_node_mask);
5539 		return node;
5540 	}
5541 
5542 	for_each_node_state(n, N_MEMORY) {
5543 
5544 		/* Don't want a node to appear more than once */
5545 		if (node_isset(n, *used_node_mask))
5546 			continue;
5547 
5548 		/* Use the distance array to find the distance */
5549 		val = node_distance(node, n);
5550 
5551 		/* Penalize nodes under us ("prefer the next node") */
5552 		val += (n < node);
5553 
5554 		/* Give preference to headless and unused nodes */
5555 		if (!cpumask_empty(cpumask_of_node(n)))
5556 			val += PENALTY_FOR_NODE_WITH_CPUS;
5557 
5558 		/* Slight preference for less loaded node */
5559 		val *= MAX_NUMNODES;
5560 		val += node_load[n];
5561 
5562 		if (val < min_val) {
5563 			min_val = val;
5564 			best_node = n;
5565 		}
5566 	}
5567 
5568 	if (best_node >= 0)
5569 		node_set(best_node, *used_node_mask);
5570 
5571 	return best_node;
5572 }
5573 
5574 
5575 /*
5576  * Build zonelists ordered by node and zones within node.
5577  * This results in maximum locality--normal zone overflows into local
5578  * DMA zone, if any--but risks exhausting DMA zone.
5579  */
5580 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5581 		unsigned nr_nodes)
5582 {
5583 	struct zoneref *zonerefs;
5584 	int i;
5585 
5586 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5587 
5588 	for (i = 0; i < nr_nodes; i++) {
5589 		int nr_zones;
5590 
5591 		pg_data_t *node = NODE_DATA(node_order[i]);
5592 
5593 		nr_zones = build_zonerefs_node(node, zonerefs);
5594 		zonerefs += nr_zones;
5595 	}
5596 	zonerefs->zone = NULL;
5597 	zonerefs->zone_idx = 0;
5598 }
5599 
5600 /*
5601  * Build __GFP_THISNODE zonelists
5602  */
5603 static void build_thisnode_zonelists(pg_data_t *pgdat)
5604 {
5605 	struct zoneref *zonerefs;
5606 	int nr_zones;
5607 
5608 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5609 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5610 	zonerefs += nr_zones;
5611 	zonerefs->zone = NULL;
5612 	zonerefs->zone_idx = 0;
5613 }
5614 
5615 static void build_zonelists(pg_data_t *pgdat)
5616 {
5617 	static int node_order[MAX_NUMNODES];
5618 	int node, nr_nodes = 0;
5619 	nodemask_t used_mask = NODE_MASK_NONE;
5620 	int local_node, prev_node;
5621 
5622 	/* NUMA-aware ordering of nodes */
5623 	local_node = pgdat->node_id;
5624 	prev_node = local_node;
5625 
5626 	memset(node_order, 0, sizeof(node_order));
5627 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5628 		/*
5629 		 * We don't want to pressure a particular node.
5630 		 * So adding penalty to the first node in same
5631 		 * distance group to make it round-robin.
5632 		 */
5633 		if (node_distance(local_node, node) !=
5634 		    node_distance(local_node, prev_node))
5635 			node_load[node] += 1;
5636 
5637 		node_order[nr_nodes++] = node;
5638 		prev_node = node;
5639 	}
5640 
5641 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5642 	build_thisnode_zonelists(pgdat);
5643 	pr_info("Fallback order for Node %d: ", local_node);
5644 	for (node = 0; node < nr_nodes; node++)
5645 		pr_cont("%d ", node_order[node]);
5646 	pr_cont("\n");
5647 }
5648 
5649 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5650 /*
5651  * Return node id of node used for "local" allocations.
5652  * I.e., first node id of first zone in arg node's generic zonelist.
5653  * Used for initializing percpu 'numa_mem', which is used primarily
5654  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5655  */
5656 int local_memory_node(int node)
5657 {
5658 	struct zoneref *z;
5659 
5660 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5661 				   gfp_zone(GFP_KERNEL),
5662 				   NULL);
5663 	return zonelist_node_idx(z);
5664 }
5665 #endif
5666 
5667 static void setup_min_unmapped_ratio(void);
5668 static void setup_min_slab_ratio(void);
5669 #else	/* CONFIG_NUMA */
5670 
5671 static void build_zonelists(pg_data_t *pgdat)
5672 {
5673 	struct zoneref *zonerefs;
5674 	int nr_zones;
5675 
5676 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5677 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5678 	zonerefs += nr_zones;
5679 
5680 	zonerefs->zone = NULL;
5681 	zonerefs->zone_idx = 0;
5682 }
5683 
5684 #endif	/* CONFIG_NUMA */
5685 
5686 /*
5687  * Boot pageset table. One per cpu which is going to be used for all
5688  * zones and all nodes. The parameters will be set in such a way
5689  * that an item put on a list will immediately be handed over to
5690  * the buddy list. This is safe since pageset manipulation is done
5691  * with interrupts disabled.
5692  *
5693  * The boot_pagesets must be kept even after bootup is complete for
5694  * unused processors and/or zones. They do play a role for bootstrapping
5695  * hotplugged processors.
5696  *
5697  * zoneinfo_show() and maybe other functions do
5698  * not check if the processor is online before following the pageset pointer.
5699  * Other parts of the kernel may not check if the zone is available.
5700  */
5701 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5702 /* These effectively disable the pcplists in the boot pageset completely */
5703 #define BOOT_PAGESET_HIGH	0
5704 #define BOOT_PAGESET_BATCH	1
5705 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5706 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5707 
5708 static void __build_all_zonelists(void *data)
5709 {
5710 	int nid;
5711 	int __maybe_unused cpu;
5712 	pg_data_t *self = data;
5713 	unsigned long flags;
5714 
5715 	/*
5716 	 * The zonelist_update_seq must be acquired with irqsave because the
5717 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5718 	 */
5719 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5720 	/*
5721 	 * Also disable synchronous printk() to prevent any printk() from
5722 	 * trying to hold port->lock, for
5723 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5724 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5725 	 */
5726 	printk_deferred_enter();
5727 
5728 #ifdef CONFIG_NUMA
5729 	memset(node_load, 0, sizeof(node_load));
5730 #endif
5731 
5732 	/*
5733 	 * This node is hotadded and no memory is yet present.   So just
5734 	 * building zonelists is fine - no need to touch other nodes.
5735 	 */
5736 	if (self && !node_online(self->node_id)) {
5737 		build_zonelists(self);
5738 	} else {
5739 		/*
5740 		 * All possible nodes have pgdat preallocated
5741 		 * in free_area_init
5742 		 */
5743 		for_each_node(nid) {
5744 			pg_data_t *pgdat = NODE_DATA(nid);
5745 
5746 			build_zonelists(pgdat);
5747 		}
5748 
5749 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5750 		/*
5751 		 * We now know the "local memory node" for each node--
5752 		 * i.e., the node of the first zone in the generic zonelist.
5753 		 * Set up numa_mem percpu variable for on-line cpus.  During
5754 		 * boot, only the boot cpu should be on-line;  we'll init the
5755 		 * secondary cpus' numa_mem as they come on-line.  During
5756 		 * node/memory hotplug, we'll fixup all on-line cpus.
5757 		 */
5758 		for_each_online_cpu(cpu)
5759 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5760 #endif
5761 	}
5762 
5763 	printk_deferred_exit();
5764 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5765 }
5766 
5767 static noinline void __init
5768 build_all_zonelists_init(void)
5769 {
5770 	int cpu;
5771 
5772 	__build_all_zonelists(NULL);
5773 
5774 	/*
5775 	 * Initialize the boot_pagesets that are going to be used
5776 	 * for bootstrapping processors. The real pagesets for
5777 	 * each zone will be allocated later when the per cpu
5778 	 * allocator is available.
5779 	 *
5780 	 * boot_pagesets are used also for bootstrapping offline
5781 	 * cpus if the system is already booted because the pagesets
5782 	 * are needed to initialize allocators on a specific cpu too.
5783 	 * F.e. the percpu allocator needs the page allocator which
5784 	 * needs the percpu allocator in order to allocate its pagesets
5785 	 * (a chicken-egg dilemma).
5786 	 */
5787 	for_each_possible_cpu(cpu)
5788 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5789 
5790 	mminit_verify_zonelist();
5791 	cpuset_init_current_mems_allowed();
5792 }
5793 
5794 /*
5795  * unless system_state == SYSTEM_BOOTING.
5796  *
5797  * __ref due to call of __init annotated helper build_all_zonelists_init
5798  * [protected by SYSTEM_BOOTING].
5799  */
5800 void __ref build_all_zonelists(pg_data_t *pgdat)
5801 {
5802 	unsigned long vm_total_pages;
5803 
5804 	if (system_state == SYSTEM_BOOTING) {
5805 		build_all_zonelists_init();
5806 	} else {
5807 		__build_all_zonelists(pgdat);
5808 		/* cpuset refresh routine should be here */
5809 	}
5810 	/* Get the number of free pages beyond high watermark in all zones. */
5811 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5812 	/*
5813 	 * Disable grouping by mobility if the number of pages in the
5814 	 * system is too low to allow the mechanism to work. It would be
5815 	 * more accurate, but expensive to check per-zone. This check is
5816 	 * made on memory-hotadd so a system can start with mobility
5817 	 * disabled and enable it later
5818 	 */
5819 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5820 		page_group_by_mobility_disabled = 1;
5821 	else
5822 		page_group_by_mobility_disabled = 0;
5823 
5824 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5825 		nr_online_nodes,
5826 		str_off_on(page_group_by_mobility_disabled),
5827 		vm_total_pages);
5828 #ifdef CONFIG_NUMA
5829 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5830 #endif
5831 }
5832 
5833 static int zone_batchsize(struct zone *zone)
5834 {
5835 #ifdef CONFIG_MMU
5836 	int batch;
5837 
5838 	/*
5839 	 * The number of pages to batch allocate is either ~0.1%
5840 	 * of the zone or 1MB, whichever is smaller. The batch
5841 	 * size is striking a balance between allocation latency
5842 	 * and zone lock contention.
5843 	 */
5844 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5845 	batch /= 4;		/* We effectively *= 4 below */
5846 	if (batch < 1)
5847 		batch = 1;
5848 
5849 	/*
5850 	 * Clamp the batch to a 2^n - 1 value. Having a power
5851 	 * of 2 value was found to be more likely to have
5852 	 * suboptimal cache aliasing properties in some cases.
5853 	 *
5854 	 * For example if 2 tasks are alternately allocating
5855 	 * batches of pages, one task can end up with a lot
5856 	 * of pages of one half of the possible page colors
5857 	 * and the other with pages of the other colors.
5858 	 */
5859 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5860 
5861 	return batch;
5862 
5863 #else
5864 	/* The deferral and batching of frees should be suppressed under NOMMU
5865 	 * conditions.
5866 	 *
5867 	 * The problem is that NOMMU needs to be able to allocate large chunks
5868 	 * of contiguous memory as there's no hardware page translation to
5869 	 * assemble apparent contiguous memory from discontiguous pages.
5870 	 *
5871 	 * Queueing large contiguous runs of pages for batching, however,
5872 	 * causes the pages to actually be freed in smaller chunks.  As there
5873 	 * can be a significant delay between the individual batches being
5874 	 * recycled, this leads to the once large chunks of space being
5875 	 * fragmented and becoming unavailable for high-order allocations.
5876 	 */
5877 	return 0;
5878 #endif
5879 }
5880 
5881 static int percpu_pagelist_high_fraction;
5882 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5883 			 int high_fraction)
5884 {
5885 #ifdef CONFIG_MMU
5886 	int high;
5887 	int nr_split_cpus;
5888 	unsigned long total_pages;
5889 
5890 	if (!high_fraction) {
5891 		/*
5892 		 * By default, the high value of the pcp is based on the zone
5893 		 * low watermark so that if they are full then background
5894 		 * reclaim will not be started prematurely.
5895 		 */
5896 		total_pages = low_wmark_pages(zone);
5897 	} else {
5898 		/*
5899 		 * If percpu_pagelist_high_fraction is configured, the high
5900 		 * value is based on a fraction of the managed pages in the
5901 		 * zone.
5902 		 */
5903 		total_pages = zone_managed_pages(zone) / high_fraction;
5904 	}
5905 
5906 	/*
5907 	 * Split the high value across all online CPUs local to the zone. Note
5908 	 * that early in boot that CPUs may not be online yet and that during
5909 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5910 	 * onlined. For memory nodes that have no CPUs, split the high value
5911 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5912 	 * prematurely due to pages stored on pcp lists.
5913 	 */
5914 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5915 	if (!nr_split_cpus)
5916 		nr_split_cpus = num_online_cpus();
5917 	high = total_pages / nr_split_cpus;
5918 
5919 	/*
5920 	 * Ensure high is at least batch*4. The multiple is based on the
5921 	 * historical relationship between high and batch.
5922 	 */
5923 	high = max(high, batch << 2);
5924 
5925 	return high;
5926 #else
5927 	return 0;
5928 #endif
5929 }
5930 
5931 /*
5932  * pcp->high and pcp->batch values are related and generally batch is lower
5933  * than high. They are also related to pcp->count such that count is lower
5934  * than high, and as soon as it reaches high, the pcplist is flushed.
5935  *
5936  * However, guaranteeing these relations at all times would require e.g. write
5937  * barriers here but also careful usage of read barriers at the read side, and
5938  * thus be prone to error and bad for performance. Thus the update only prevents
5939  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5940  * should ensure they can cope with those fields changing asynchronously, and
5941  * fully trust only the pcp->count field on the local CPU with interrupts
5942  * disabled.
5943  *
5944  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5945  * outside of boot time (or some other assurance that no concurrent updaters
5946  * exist).
5947  */
5948 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5949 			   unsigned long high_max, unsigned long batch)
5950 {
5951 	WRITE_ONCE(pcp->batch, batch);
5952 	WRITE_ONCE(pcp->high_min, high_min);
5953 	WRITE_ONCE(pcp->high_max, high_max);
5954 }
5955 
5956 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5957 {
5958 	int pindex;
5959 
5960 	memset(pcp, 0, sizeof(*pcp));
5961 	memset(pzstats, 0, sizeof(*pzstats));
5962 
5963 	spin_lock_init(&pcp->lock);
5964 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5965 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5966 
5967 	/*
5968 	 * Set batch and high values safe for a boot pageset. A true percpu
5969 	 * pageset's initialization will update them subsequently. Here we don't
5970 	 * need to be as careful as pageset_update() as nobody can access the
5971 	 * pageset yet.
5972 	 */
5973 	pcp->high_min = BOOT_PAGESET_HIGH;
5974 	pcp->high_max = BOOT_PAGESET_HIGH;
5975 	pcp->batch = BOOT_PAGESET_BATCH;
5976 }
5977 
5978 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5979 					      unsigned long high_max, unsigned long batch)
5980 {
5981 	struct per_cpu_pages *pcp;
5982 	int cpu;
5983 
5984 	for_each_possible_cpu(cpu) {
5985 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5986 		pageset_update(pcp, high_min, high_max, batch);
5987 	}
5988 }
5989 
5990 /*
5991  * Calculate and set new high and batch values for all per-cpu pagesets of a
5992  * zone based on the zone's size.
5993  */
5994 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5995 {
5996 	int new_high_min, new_high_max, new_batch;
5997 
5998 	new_batch = max(1, zone_batchsize(zone));
5999 	if (percpu_pagelist_high_fraction) {
6000 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
6001 					     percpu_pagelist_high_fraction);
6002 		/*
6003 		 * PCP high is tuned manually, disable auto-tuning via
6004 		 * setting high_min and high_max to the manual value.
6005 		 */
6006 		new_high_max = new_high_min;
6007 	} else {
6008 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
6009 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
6010 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
6011 	}
6012 
6013 	if (zone->pageset_high_min == new_high_min &&
6014 	    zone->pageset_high_max == new_high_max &&
6015 	    zone->pageset_batch == new_batch)
6016 		return;
6017 
6018 	zone->pageset_high_min = new_high_min;
6019 	zone->pageset_high_max = new_high_max;
6020 	zone->pageset_batch = new_batch;
6021 
6022 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
6023 					  new_batch);
6024 }
6025 
6026 void __meminit setup_zone_pageset(struct zone *zone)
6027 {
6028 	int cpu;
6029 
6030 	/* Size may be 0 on !SMP && !NUMA */
6031 	if (sizeof(struct per_cpu_zonestat) > 0)
6032 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6033 
6034 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6035 	for_each_possible_cpu(cpu) {
6036 		struct per_cpu_pages *pcp;
6037 		struct per_cpu_zonestat *pzstats;
6038 
6039 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6040 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6041 		per_cpu_pages_init(pcp, pzstats);
6042 	}
6043 
6044 	zone_set_pageset_high_and_batch(zone, 0);
6045 }
6046 
6047 /*
6048  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6049  * page high values need to be recalculated.
6050  */
6051 static void zone_pcp_update(struct zone *zone, int cpu_online)
6052 {
6053 	mutex_lock(&pcp_batch_high_lock);
6054 	zone_set_pageset_high_and_batch(zone, cpu_online);
6055 	mutex_unlock(&pcp_batch_high_lock);
6056 }
6057 
6058 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
6059 {
6060 	struct per_cpu_pages *pcp;
6061 	struct cpu_cacheinfo *cci;
6062 
6063 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6064 	cci = get_cpu_cacheinfo(cpu);
6065 	/*
6066 	 * If data cache slice of CPU is large enough, "pcp->batch"
6067 	 * pages can be preserved in PCP before draining PCP for
6068 	 * consecutive high-order pages freeing without allocation.
6069 	 * This can reduce zone lock contention without hurting
6070 	 * cache-hot pages sharing.
6071 	 */
6072 	spin_lock(&pcp->lock);
6073 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
6074 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
6075 	else
6076 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
6077 	spin_unlock(&pcp->lock);
6078 }
6079 
6080 void setup_pcp_cacheinfo(unsigned int cpu)
6081 {
6082 	struct zone *zone;
6083 
6084 	for_each_populated_zone(zone)
6085 		zone_pcp_update_cacheinfo(zone, cpu);
6086 }
6087 
6088 /*
6089  * Allocate per cpu pagesets and initialize them.
6090  * Before this call only boot pagesets were available.
6091  */
6092 void __init setup_per_cpu_pageset(void)
6093 {
6094 	struct pglist_data *pgdat;
6095 	struct zone *zone;
6096 	int __maybe_unused cpu;
6097 
6098 	for_each_populated_zone(zone)
6099 		setup_zone_pageset(zone);
6100 
6101 #ifdef CONFIG_NUMA
6102 	/*
6103 	 * Unpopulated zones continue using the boot pagesets.
6104 	 * The numa stats for these pagesets need to be reset.
6105 	 * Otherwise, they will end up skewing the stats of
6106 	 * the nodes these zones are associated with.
6107 	 */
6108 	for_each_possible_cpu(cpu) {
6109 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6110 		memset(pzstats->vm_numa_event, 0,
6111 		       sizeof(pzstats->vm_numa_event));
6112 	}
6113 #endif
6114 
6115 	for_each_online_pgdat(pgdat)
6116 		pgdat->per_cpu_nodestats =
6117 			alloc_percpu(struct per_cpu_nodestat);
6118 }
6119 
6120 __meminit void zone_pcp_init(struct zone *zone)
6121 {
6122 	/*
6123 	 * per cpu subsystem is not up at this point. The following code
6124 	 * relies on the ability of the linker to provide the
6125 	 * offset of a (static) per cpu variable into the per cpu area.
6126 	 */
6127 	zone->per_cpu_pageset = &boot_pageset;
6128 	zone->per_cpu_zonestats = &boot_zonestats;
6129 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
6130 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
6131 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6132 
6133 	if (populated_zone(zone))
6134 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6135 			 zone->present_pages, zone_batchsize(zone));
6136 }
6137 
6138 static void setup_per_zone_lowmem_reserve(void);
6139 
6140 void adjust_managed_page_count(struct page *page, long count)
6141 {
6142 	atomic_long_add(count, &page_zone(page)->managed_pages);
6143 	totalram_pages_add(count);
6144 	setup_per_zone_lowmem_reserve();
6145 }
6146 EXPORT_SYMBOL(adjust_managed_page_count);
6147 
6148 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
6149 {
6150 	void *pos;
6151 	unsigned long pages = 0;
6152 
6153 	start = (void *)PAGE_ALIGN((unsigned long)start);
6154 	end = (void *)((unsigned long)end & PAGE_MASK);
6155 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6156 		struct page *page = virt_to_page(pos);
6157 		void *direct_map_addr;
6158 
6159 		/*
6160 		 * 'direct_map_addr' might be different from 'pos'
6161 		 * because some architectures' virt_to_page()
6162 		 * work with aliases.  Getting the direct map
6163 		 * address ensures that we get a _writeable_
6164 		 * alias for the memset().
6165 		 */
6166 		direct_map_addr = page_address(page);
6167 		/*
6168 		 * Perform a kasan-unchecked memset() since this memory
6169 		 * has not been initialized.
6170 		 */
6171 		direct_map_addr = kasan_reset_tag(direct_map_addr);
6172 		if ((unsigned int)poison <= 0xFF)
6173 			memset(direct_map_addr, poison, PAGE_SIZE);
6174 
6175 		free_reserved_page(page);
6176 	}
6177 
6178 	if (pages && s)
6179 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
6180 
6181 	return pages;
6182 }
6183 
6184 void free_reserved_page(struct page *page)
6185 {
6186 	clear_page_tag_ref(page);
6187 	ClearPageReserved(page);
6188 	init_page_count(page);
6189 	__free_page(page);
6190 	adjust_managed_page_count(page, 1);
6191 }
6192 EXPORT_SYMBOL(free_reserved_page);
6193 
6194 static int page_alloc_cpu_dead(unsigned int cpu)
6195 {
6196 	struct zone *zone;
6197 
6198 	lru_add_drain_cpu(cpu);
6199 	mlock_drain_remote(cpu);
6200 	drain_pages(cpu);
6201 
6202 	/*
6203 	 * Spill the event counters of the dead processor
6204 	 * into the current processors event counters.
6205 	 * This artificially elevates the count of the current
6206 	 * processor.
6207 	 */
6208 	vm_events_fold_cpu(cpu);
6209 
6210 	/*
6211 	 * Zero the differential counters of the dead processor
6212 	 * so that the vm statistics are consistent.
6213 	 *
6214 	 * This is only okay since the processor is dead and cannot
6215 	 * race with what we are doing.
6216 	 */
6217 	cpu_vm_stats_fold(cpu);
6218 
6219 	for_each_populated_zone(zone)
6220 		zone_pcp_update(zone, 0);
6221 
6222 	return 0;
6223 }
6224 
6225 static int page_alloc_cpu_online(unsigned int cpu)
6226 {
6227 	struct zone *zone;
6228 
6229 	for_each_populated_zone(zone)
6230 		zone_pcp_update(zone, 1);
6231 	return 0;
6232 }
6233 
6234 void __init page_alloc_init_cpuhp(void)
6235 {
6236 	int ret;
6237 
6238 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6239 					"mm/page_alloc:pcp",
6240 					page_alloc_cpu_online,
6241 					page_alloc_cpu_dead);
6242 	WARN_ON(ret < 0);
6243 }
6244 
6245 /*
6246  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6247  *	or min_free_kbytes changes.
6248  */
6249 static void calculate_totalreserve_pages(void)
6250 {
6251 	struct pglist_data *pgdat;
6252 	unsigned long reserve_pages = 0;
6253 	enum zone_type i, j;
6254 
6255 	for_each_online_pgdat(pgdat) {
6256 
6257 		pgdat->totalreserve_pages = 0;
6258 
6259 		for (i = 0; i < MAX_NR_ZONES; i++) {
6260 			struct zone *zone = pgdat->node_zones + i;
6261 			long max = 0;
6262 			unsigned long managed_pages = zone_managed_pages(zone);
6263 
6264 			/* Find valid and maximum lowmem_reserve in the zone */
6265 			for (j = i; j < MAX_NR_ZONES; j++)
6266 				max = max(max, zone->lowmem_reserve[j]);
6267 
6268 			/* we treat the high watermark as reserved pages. */
6269 			max += high_wmark_pages(zone);
6270 
6271 			max = min_t(unsigned long, max, managed_pages);
6272 
6273 			pgdat->totalreserve_pages += max;
6274 
6275 			reserve_pages += max;
6276 		}
6277 	}
6278 	totalreserve_pages = reserve_pages;
6279 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6280 }
6281 
6282 /*
6283  * setup_per_zone_lowmem_reserve - called whenever
6284  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6285  *	has a correct pages reserved value, so an adequate number of
6286  *	pages are left in the zone after a successful __alloc_pages().
6287  */
6288 static void setup_per_zone_lowmem_reserve(void)
6289 {
6290 	struct pglist_data *pgdat;
6291 	enum zone_type i, j;
6292 
6293 	for_each_online_pgdat(pgdat) {
6294 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6295 			struct zone *zone = &pgdat->node_zones[i];
6296 			int ratio = sysctl_lowmem_reserve_ratio[i];
6297 			bool clear = !ratio || !zone_managed_pages(zone);
6298 			unsigned long managed_pages = 0;
6299 
6300 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6301 				struct zone *upper_zone = &pgdat->node_zones[j];
6302 
6303 				managed_pages += zone_managed_pages(upper_zone);
6304 
6305 				if (clear)
6306 					zone->lowmem_reserve[j] = 0;
6307 				else
6308 					zone->lowmem_reserve[j] = managed_pages / ratio;
6309 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6310 								       zone->lowmem_reserve[j]);
6311 			}
6312 		}
6313 	}
6314 
6315 	/* update totalreserve_pages */
6316 	calculate_totalreserve_pages();
6317 }
6318 
6319 static void __setup_per_zone_wmarks(void)
6320 {
6321 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6322 	unsigned long lowmem_pages = 0;
6323 	struct zone *zone;
6324 	unsigned long flags;
6325 
6326 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6327 	for_each_zone(zone) {
6328 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6329 			lowmem_pages += zone_managed_pages(zone);
6330 	}
6331 
6332 	for_each_zone(zone) {
6333 		u64 tmp;
6334 
6335 		spin_lock_irqsave(&zone->lock, flags);
6336 		tmp = (u64)pages_min * zone_managed_pages(zone);
6337 		tmp = div64_ul(tmp, lowmem_pages);
6338 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6339 			/*
6340 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6341 			 * need highmem and movable zones pages, so cap pages_min
6342 			 * to a small  value here.
6343 			 *
6344 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6345 			 * deltas control async page reclaim, and so should
6346 			 * not be capped for highmem and movable zones.
6347 			 */
6348 			unsigned long min_pages;
6349 
6350 			min_pages = zone_managed_pages(zone) / 1024;
6351 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6352 			zone->_watermark[WMARK_MIN] = min_pages;
6353 		} else {
6354 			/*
6355 			 * If it's a lowmem zone, reserve a number of pages
6356 			 * proportionate to the zone's size.
6357 			 */
6358 			zone->_watermark[WMARK_MIN] = tmp;
6359 		}
6360 
6361 		/*
6362 		 * Set the kswapd watermarks distance according to the
6363 		 * scale factor in proportion to available memory, but
6364 		 * ensure a minimum size on small systems.
6365 		 */
6366 		tmp = max_t(u64, tmp >> 2,
6367 			    mult_frac(zone_managed_pages(zone),
6368 				      watermark_scale_factor, 10000));
6369 
6370 		zone->watermark_boost = 0;
6371 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6372 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6373 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6374 		trace_mm_setup_per_zone_wmarks(zone);
6375 
6376 		spin_unlock_irqrestore(&zone->lock, flags);
6377 	}
6378 
6379 	/* update totalreserve_pages */
6380 	calculate_totalreserve_pages();
6381 }
6382 
6383 /**
6384  * setup_per_zone_wmarks - called when min_free_kbytes changes
6385  * or when memory is hot-{added|removed}
6386  *
6387  * Ensures that the watermark[min,low,high] values for each zone are set
6388  * correctly with respect to min_free_kbytes.
6389  */
6390 void setup_per_zone_wmarks(void)
6391 {
6392 	struct zone *zone;
6393 	static DEFINE_SPINLOCK(lock);
6394 
6395 	spin_lock(&lock);
6396 	__setup_per_zone_wmarks();
6397 	spin_unlock(&lock);
6398 
6399 	/*
6400 	 * The watermark size have changed so update the pcpu batch
6401 	 * and high limits or the limits may be inappropriate.
6402 	 */
6403 	for_each_zone(zone)
6404 		zone_pcp_update(zone, 0);
6405 }
6406 
6407 /*
6408  * Initialise min_free_kbytes.
6409  *
6410  * For small machines we want it small (128k min).  For large machines
6411  * we want it large (256MB max).  But it is not linear, because network
6412  * bandwidth does not increase linearly with machine size.  We use
6413  *
6414  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6415  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6416  *
6417  * which yields
6418  *
6419  * 16MB:	512k
6420  * 32MB:	724k
6421  * 64MB:	1024k
6422  * 128MB:	1448k
6423  * 256MB:	2048k
6424  * 512MB:	2896k
6425  * 1024MB:	4096k
6426  * 2048MB:	5792k
6427  * 4096MB:	8192k
6428  * 8192MB:	11584k
6429  * 16384MB:	16384k
6430  */
6431 void calculate_min_free_kbytes(void)
6432 {
6433 	unsigned long lowmem_kbytes;
6434 	int new_min_free_kbytes;
6435 
6436 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6437 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6438 
6439 	if (new_min_free_kbytes > user_min_free_kbytes)
6440 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6441 	else
6442 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6443 				new_min_free_kbytes, user_min_free_kbytes);
6444 
6445 }
6446 
6447 int __meminit init_per_zone_wmark_min(void)
6448 {
6449 	calculate_min_free_kbytes();
6450 	setup_per_zone_wmarks();
6451 	refresh_zone_stat_thresholds();
6452 	setup_per_zone_lowmem_reserve();
6453 
6454 #ifdef CONFIG_NUMA
6455 	setup_min_unmapped_ratio();
6456 	setup_min_slab_ratio();
6457 #endif
6458 
6459 	khugepaged_min_free_kbytes_update();
6460 
6461 	return 0;
6462 }
6463 postcore_initcall(init_per_zone_wmark_min)
6464 
6465 /*
6466  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6467  *	that we can call two helper functions whenever min_free_kbytes
6468  *	changes.
6469  */
6470 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6471 		void *buffer, size_t *length, loff_t *ppos)
6472 {
6473 	int rc;
6474 
6475 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6476 	if (rc)
6477 		return rc;
6478 
6479 	if (write) {
6480 		user_min_free_kbytes = min_free_kbytes;
6481 		setup_per_zone_wmarks();
6482 	}
6483 	return 0;
6484 }
6485 
6486 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6487 		void *buffer, size_t *length, loff_t *ppos)
6488 {
6489 	int rc;
6490 
6491 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6492 	if (rc)
6493 		return rc;
6494 
6495 	if (write)
6496 		setup_per_zone_wmarks();
6497 
6498 	return 0;
6499 }
6500 
6501 #ifdef CONFIG_NUMA
6502 static void setup_min_unmapped_ratio(void)
6503 {
6504 	pg_data_t *pgdat;
6505 	struct zone *zone;
6506 
6507 	for_each_online_pgdat(pgdat)
6508 		pgdat->min_unmapped_pages = 0;
6509 
6510 	for_each_zone(zone)
6511 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6512 						         sysctl_min_unmapped_ratio) / 100;
6513 }
6514 
6515 
6516 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6517 		void *buffer, size_t *length, loff_t *ppos)
6518 {
6519 	int rc;
6520 
6521 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6522 	if (rc)
6523 		return rc;
6524 
6525 	setup_min_unmapped_ratio();
6526 
6527 	return 0;
6528 }
6529 
6530 static void setup_min_slab_ratio(void)
6531 {
6532 	pg_data_t *pgdat;
6533 	struct zone *zone;
6534 
6535 	for_each_online_pgdat(pgdat)
6536 		pgdat->min_slab_pages = 0;
6537 
6538 	for_each_zone(zone)
6539 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6540 						     sysctl_min_slab_ratio) / 100;
6541 }
6542 
6543 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6544 		void *buffer, size_t *length, loff_t *ppos)
6545 {
6546 	int rc;
6547 
6548 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6549 	if (rc)
6550 		return rc;
6551 
6552 	setup_min_slab_ratio();
6553 
6554 	return 0;
6555 }
6556 #endif
6557 
6558 /*
6559  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6560  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6561  *	whenever sysctl_lowmem_reserve_ratio changes.
6562  *
6563  * The reserve ratio obviously has absolutely no relation with the
6564  * minimum watermarks. The lowmem reserve ratio can only make sense
6565  * if in function of the boot time zone sizes.
6566  */
6567 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6568 		int write, void *buffer, size_t *length, loff_t *ppos)
6569 {
6570 	int i;
6571 
6572 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6573 
6574 	for (i = 0; i < MAX_NR_ZONES; i++) {
6575 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6576 			sysctl_lowmem_reserve_ratio[i] = 0;
6577 	}
6578 
6579 	setup_per_zone_lowmem_reserve();
6580 	return 0;
6581 }
6582 
6583 /*
6584  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6585  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6586  * pagelist can have before it gets flushed back to buddy allocator.
6587  */
6588 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6589 		int write, void *buffer, size_t *length, loff_t *ppos)
6590 {
6591 	struct zone *zone;
6592 	int old_percpu_pagelist_high_fraction;
6593 	int ret;
6594 
6595 	mutex_lock(&pcp_batch_high_lock);
6596 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6597 
6598 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6599 	if (!write || ret < 0)
6600 		goto out;
6601 
6602 	/* Sanity checking to avoid pcp imbalance */
6603 	if (percpu_pagelist_high_fraction &&
6604 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6605 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6606 		ret = -EINVAL;
6607 		goto out;
6608 	}
6609 
6610 	/* No change? */
6611 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6612 		goto out;
6613 
6614 	for_each_populated_zone(zone)
6615 		zone_set_pageset_high_and_batch(zone, 0);
6616 out:
6617 	mutex_unlock(&pcp_batch_high_lock);
6618 	return ret;
6619 }
6620 
6621 static const struct ctl_table page_alloc_sysctl_table[] = {
6622 	{
6623 		.procname	= "min_free_kbytes",
6624 		.data		= &min_free_kbytes,
6625 		.maxlen		= sizeof(min_free_kbytes),
6626 		.mode		= 0644,
6627 		.proc_handler	= min_free_kbytes_sysctl_handler,
6628 		.extra1		= SYSCTL_ZERO,
6629 	},
6630 	{
6631 		.procname	= "watermark_boost_factor",
6632 		.data		= &watermark_boost_factor,
6633 		.maxlen		= sizeof(watermark_boost_factor),
6634 		.mode		= 0644,
6635 		.proc_handler	= proc_dointvec_minmax,
6636 		.extra1		= SYSCTL_ZERO,
6637 	},
6638 	{
6639 		.procname	= "watermark_scale_factor",
6640 		.data		= &watermark_scale_factor,
6641 		.maxlen		= sizeof(watermark_scale_factor),
6642 		.mode		= 0644,
6643 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6644 		.extra1		= SYSCTL_ONE,
6645 		.extra2		= SYSCTL_THREE_THOUSAND,
6646 	},
6647 	{
6648 		.procname	= "defrag_mode",
6649 		.data		= &defrag_mode,
6650 		.maxlen		= sizeof(defrag_mode),
6651 		.mode		= 0644,
6652 		.proc_handler	= proc_dointvec_minmax,
6653 		.extra1		= SYSCTL_ZERO,
6654 		.extra2		= SYSCTL_ONE,
6655 	},
6656 	{
6657 		.procname	= "percpu_pagelist_high_fraction",
6658 		.data		= &percpu_pagelist_high_fraction,
6659 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6660 		.mode		= 0644,
6661 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6662 		.extra1		= SYSCTL_ZERO,
6663 	},
6664 	{
6665 		.procname	= "lowmem_reserve_ratio",
6666 		.data		= &sysctl_lowmem_reserve_ratio,
6667 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6668 		.mode		= 0644,
6669 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6670 	},
6671 #ifdef CONFIG_NUMA
6672 	{
6673 		.procname	= "numa_zonelist_order",
6674 		.data		= &numa_zonelist_order,
6675 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6676 		.mode		= 0644,
6677 		.proc_handler	= numa_zonelist_order_handler,
6678 	},
6679 	{
6680 		.procname	= "min_unmapped_ratio",
6681 		.data		= &sysctl_min_unmapped_ratio,
6682 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6683 		.mode		= 0644,
6684 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6685 		.extra1		= SYSCTL_ZERO,
6686 		.extra2		= SYSCTL_ONE_HUNDRED,
6687 	},
6688 	{
6689 		.procname	= "min_slab_ratio",
6690 		.data		= &sysctl_min_slab_ratio,
6691 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6692 		.mode		= 0644,
6693 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6694 		.extra1		= SYSCTL_ZERO,
6695 		.extra2		= SYSCTL_ONE_HUNDRED,
6696 	},
6697 #endif
6698 };
6699 
6700 void __init page_alloc_sysctl_init(void)
6701 {
6702 	register_sysctl_init("vm", page_alloc_sysctl_table);
6703 }
6704 
6705 #ifdef CONFIG_CONTIG_ALLOC
6706 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6707 static void alloc_contig_dump_pages(struct list_head *page_list)
6708 {
6709 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6710 
6711 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6712 		struct page *page;
6713 
6714 		dump_stack();
6715 		list_for_each_entry(page, page_list, lru)
6716 			dump_page(page, "migration failure");
6717 	}
6718 }
6719 
6720 /* [start, end) must belong to a single zone. */
6721 static int __alloc_contig_migrate_range(struct compact_control *cc,
6722 					unsigned long start, unsigned long end)
6723 {
6724 	/* This function is based on compact_zone() from compaction.c. */
6725 	unsigned int nr_reclaimed;
6726 	unsigned long pfn = start;
6727 	unsigned int tries = 0;
6728 	int ret = 0;
6729 	struct migration_target_control mtc = {
6730 		.nid = zone_to_nid(cc->zone),
6731 		.gfp_mask = cc->gfp_mask,
6732 		.reason = MR_CONTIG_RANGE,
6733 	};
6734 
6735 	lru_cache_disable();
6736 
6737 	while (pfn < end || !list_empty(&cc->migratepages)) {
6738 		if (fatal_signal_pending(current)) {
6739 			ret = -EINTR;
6740 			break;
6741 		}
6742 
6743 		if (list_empty(&cc->migratepages)) {
6744 			cc->nr_migratepages = 0;
6745 			ret = isolate_migratepages_range(cc, pfn, end);
6746 			if (ret && ret != -EAGAIN)
6747 				break;
6748 			pfn = cc->migrate_pfn;
6749 			tries = 0;
6750 		} else if (++tries == 5) {
6751 			ret = -EBUSY;
6752 			break;
6753 		}
6754 
6755 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6756 							&cc->migratepages);
6757 		cc->nr_migratepages -= nr_reclaimed;
6758 
6759 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6760 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6761 
6762 		/*
6763 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6764 		 * to retry again over this error, so do the same here.
6765 		 */
6766 		if (ret == -ENOMEM)
6767 			break;
6768 	}
6769 
6770 	lru_cache_enable();
6771 	if (ret < 0) {
6772 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6773 			alloc_contig_dump_pages(&cc->migratepages);
6774 		putback_movable_pages(&cc->migratepages);
6775 	}
6776 
6777 	return (ret < 0) ? ret : 0;
6778 }
6779 
6780 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6781 {
6782 	int order;
6783 
6784 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6785 		struct page *page, *next;
6786 		int nr_pages = 1 << order;
6787 
6788 		list_for_each_entry_safe(page, next, &list[order], lru) {
6789 			int i;
6790 
6791 			post_alloc_hook(page, order, gfp_mask);
6792 			set_page_refcounted(page);
6793 			if (!order)
6794 				continue;
6795 
6796 			split_page(page, order);
6797 
6798 			/* Add all subpages to the order-0 head, in sequence. */
6799 			list_del(&page->lru);
6800 			for (i = 0; i < nr_pages; i++)
6801 				list_add_tail(&page[i].lru, &list[0]);
6802 		}
6803 	}
6804 }
6805 
6806 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6807 {
6808 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6809 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6810 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6811 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6812 
6813 	/*
6814 	 * We are given the range to allocate; node, mobility and placement
6815 	 * hints are irrelevant at this point. We'll simply ignore them.
6816 	 */
6817 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6818 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6819 
6820 	/*
6821 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6822 	 * selected action flags.
6823 	 */
6824 	if (gfp_mask & ~(reclaim_mask | action_mask))
6825 		return -EINVAL;
6826 
6827 	/*
6828 	 * Flags to control page compaction/migration/reclaim, to free up our
6829 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6830 	 * for them.
6831 	 *
6832 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6833 	 * to not degrade callers.
6834 	 */
6835 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6836 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6837 	return 0;
6838 }
6839 
6840 /**
6841  * alloc_contig_range() -- tries to allocate given range of pages
6842  * @start:	start PFN to allocate
6843  * @end:	one-past-the-last PFN to allocate
6844  * @alloc_flags:	allocation information
6845  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6846  *		action and reclaim modifiers are supported. Reclaim modifiers
6847  *		control allocation behavior during compaction/migration/reclaim.
6848  *
6849  * The PFN range does not have to be pageblock aligned. The PFN range must
6850  * belong to a single zone.
6851  *
6852  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6853  * pageblocks in the range.  Once isolated, the pageblocks should not
6854  * be modified by others.
6855  *
6856  * Return: zero on success or negative error code.  On success all
6857  * pages which PFN is in [start, end) are allocated for the caller and
6858  * need to be freed with free_contig_range().
6859  */
6860 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6861 			      acr_flags_t alloc_flags, gfp_t gfp_mask)
6862 {
6863 	const unsigned int order = ilog2(end - start);
6864 	unsigned long outer_start, outer_end;
6865 	int ret = 0;
6866 
6867 	struct compact_control cc = {
6868 		.nr_migratepages = 0,
6869 		.order = -1,
6870 		.zone = page_zone(pfn_to_page(start)),
6871 		.mode = MIGRATE_SYNC,
6872 		.ignore_skip_hint = true,
6873 		.no_set_skip_hint = true,
6874 		.alloc_contig = true,
6875 	};
6876 	INIT_LIST_HEAD(&cc.migratepages);
6877 	enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ?
6878 					    PB_ISOLATE_MODE_CMA_ALLOC :
6879 					    PB_ISOLATE_MODE_OTHER;
6880 
6881 	/*
6882 	 * In contrast to the buddy, we allow for orders here that exceed
6883 	 * MAX_PAGE_ORDER, so we must manually make sure that we are not
6884 	 * exceeding the maximum folio order.
6885 	 */
6886 	if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER))
6887 		return -EINVAL;
6888 
6889 	gfp_mask = current_gfp_context(gfp_mask);
6890 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6891 		return -EINVAL;
6892 
6893 	/*
6894 	 * What we do here is we mark all pageblocks in range as
6895 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6896 	 * have different sizes, and due to the way page allocator
6897 	 * work, start_isolate_page_range() has special handlings for this.
6898 	 *
6899 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6900 	 * migrate the pages from an unaligned range (ie. pages that
6901 	 * we are interested in). This will put all the pages in
6902 	 * range back to page allocator as MIGRATE_ISOLATE.
6903 	 *
6904 	 * When this is done, we take the pages in range from page
6905 	 * allocator removing them from the buddy system.  This way
6906 	 * page allocator will never consider using them.
6907 	 *
6908 	 * This lets us mark the pageblocks back as
6909 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6910 	 * aligned range but not in the unaligned, original range are
6911 	 * put back to page allocator so that buddy can use them.
6912 	 */
6913 
6914 	ret = start_isolate_page_range(start, end, mode);
6915 	if (ret)
6916 		goto done;
6917 
6918 	drain_all_pages(cc.zone);
6919 
6920 	/*
6921 	 * In case of -EBUSY, we'd like to know which page causes problem.
6922 	 * So, just fall through. test_pages_isolated() has a tracepoint
6923 	 * which will report the busy page.
6924 	 *
6925 	 * It is possible that busy pages could become available before
6926 	 * the call to test_pages_isolated, and the range will actually be
6927 	 * allocated.  So, if we fall through be sure to clear ret so that
6928 	 * -EBUSY is not accidentally used or returned to caller.
6929 	 */
6930 	ret = __alloc_contig_migrate_range(&cc, start, end);
6931 	if (ret && ret != -EBUSY)
6932 		goto done;
6933 
6934 	/*
6935 	 * When in-use hugetlb pages are migrated, they may simply be released
6936 	 * back into the free hugepage pool instead of being returned to the
6937 	 * buddy system.  After the migration of in-use huge pages is completed,
6938 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6939 	 * hugepages are properly released to the buddy system.
6940 	 */
6941 	ret = replace_free_hugepage_folios(start, end);
6942 	if (ret)
6943 		goto done;
6944 
6945 	/*
6946 	 * Pages from [start, end) are within a pageblock_nr_pages
6947 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6948 	 * more, all pages in [start, end) are free in page allocator.
6949 	 * What we are going to do is to allocate all pages from
6950 	 * [start, end) (that is remove them from page allocator).
6951 	 *
6952 	 * The only problem is that pages at the beginning and at the
6953 	 * end of interesting range may be not aligned with pages that
6954 	 * page allocator holds, ie. they can be part of higher order
6955 	 * pages.  Because of this, we reserve the bigger range and
6956 	 * once this is done free the pages we are not interested in.
6957 	 *
6958 	 * We don't have to hold zone->lock here because the pages are
6959 	 * isolated thus they won't get removed from buddy.
6960 	 */
6961 	outer_start = find_large_buddy(start);
6962 
6963 	/* Make sure the range is really isolated. */
6964 	if (test_pages_isolated(outer_start, end, mode)) {
6965 		ret = -EBUSY;
6966 		goto done;
6967 	}
6968 
6969 	/* Grab isolated pages from freelists. */
6970 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6971 	if (!outer_end) {
6972 		ret = -EBUSY;
6973 		goto done;
6974 	}
6975 
6976 	if (!(gfp_mask & __GFP_COMP)) {
6977 		split_free_pages(cc.freepages, gfp_mask);
6978 
6979 		/* Free head and tail (if any) */
6980 		if (start != outer_start)
6981 			free_contig_range(outer_start, start - outer_start);
6982 		if (end != outer_end)
6983 			free_contig_range(end, outer_end - end);
6984 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6985 		struct page *head = pfn_to_page(start);
6986 
6987 		check_new_pages(head, order);
6988 		prep_new_page(head, order, gfp_mask, 0);
6989 		set_page_refcounted(head);
6990 	} else {
6991 		ret = -EINVAL;
6992 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6993 		     start, end, outer_start, outer_end);
6994 	}
6995 done:
6996 	undo_isolate_page_range(start, end);
6997 	return ret;
6998 }
6999 EXPORT_SYMBOL(alloc_contig_range_noprof);
7000 
7001 static int __alloc_contig_pages(unsigned long start_pfn,
7002 				unsigned long nr_pages, gfp_t gfp_mask)
7003 {
7004 	unsigned long end_pfn = start_pfn + nr_pages;
7005 
7006 	return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE,
7007 					 gfp_mask);
7008 }
7009 
7010 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
7011 				   unsigned long nr_pages)
7012 {
7013 	unsigned long i, end_pfn = start_pfn + nr_pages;
7014 	struct page *page;
7015 
7016 	for (i = start_pfn; i < end_pfn; i++) {
7017 		page = pfn_to_online_page(i);
7018 		if (!page)
7019 			return false;
7020 
7021 		if (page_zone(page) != z)
7022 			return false;
7023 
7024 		if (PageReserved(page))
7025 			return false;
7026 
7027 		if (PageHuge(page))
7028 			return false;
7029 	}
7030 	return true;
7031 }
7032 
7033 static bool zone_spans_last_pfn(const struct zone *zone,
7034 				unsigned long start_pfn, unsigned long nr_pages)
7035 {
7036 	unsigned long last_pfn = start_pfn + nr_pages - 1;
7037 
7038 	return zone_spans_pfn(zone, last_pfn);
7039 }
7040 
7041 /**
7042  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
7043  * @nr_pages:	Number of contiguous pages to allocate
7044  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
7045  *		action and reclaim modifiers are supported. Reclaim modifiers
7046  *		control allocation behavior during compaction/migration/reclaim.
7047  * @nid:	Target node
7048  * @nodemask:	Mask for other possible nodes
7049  *
7050  * This routine is a wrapper around alloc_contig_range(). It scans over zones
7051  * on an applicable zonelist to find a contiguous pfn range which can then be
7052  * tried for allocation with alloc_contig_range(). This routine is intended
7053  * for allocation requests which can not be fulfilled with the buddy allocator.
7054  *
7055  * The allocated memory is always aligned to a page boundary. If nr_pages is a
7056  * power of two, then allocated range is also guaranteed to be aligned to same
7057  * nr_pages (e.g. 1GB request would be aligned to 1GB).
7058  *
7059  * Allocated pages can be freed with free_contig_range() or by manually calling
7060  * __free_page() on each allocated page.
7061  *
7062  * Return: pointer to contiguous pages on success, or NULL if not successful.
7063  */
7064 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
7065 				 int nid, nodemask_t *nodemask)
7066 {
7067 	unsigned long ret, pfn, flags;
7068 	struct zonelist *zonelist;
7069 	struct zone *zone;
7070 	struct zoneref *z;
7071 
7072 	zonelist = node_zonelist(nid, gfp_mask);
7073 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
7074 					gfp_zone(gfp_mask), nodemask) {
7075 		spin_lock_irqsave(&zone->lock, flags);
7076 
7077 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
7078 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
7079 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
7080 				/*
7081 				 * We release the zone lock here because
7082 				 * alloc_contig_range() will also lock the zone
7083 				 * at some point. If there's an allocation
7084 				 * spinning on this lock, it may win the race
7085 				 * and cause alloc_contig_range() to fail...
7086 				 */
7087 				spin_unlock_irqrestore(&zone->lock, flags);
7088 				ret = __alloc_contig_pages(pfn, nr_pages,
7089 							gfp_mask);
7090 				if (!ret)
7091 					return pfn_to_page(pfn);
7092 				spin_lock_irqsave(&zone->lock, flags);
7093 			}
7094 			pfn += nr_pages;
7095 		}
7096 		spin_unlock_irqrestore(&zone->lock, flags);
7097 	}
7098 	return NULL;
7099 }
7100 #endif /* CONFIG_CONTIG_ALLOC */
7101 
7102 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
7103 {
7104 	unsigned long count = 0;
7105 	struct folio *folio = pfn_folio(pfn);
7106 
7107 	if (folio_test_large(folio)) {
7108 		int expected = folio_nr_pages(folio);
7109 
7110 		if (nr_pages == expected)
7111 			folio_put(folio);
7112 		else
7113 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
7114 			     pfn, nr_pages, expected);
7115 		return;
7116 	}
7117 
7118 	for (; nr_pages--; pfn++) {
7119 		struct page *page = pfn_to_page(pfn);
7120 
7121 		count += page_count(page) != 1;
7122 		__free_page(page);
7123 	}
7124 	WARN(count != 0, "%lu pages are still in use!\n", count);
7125 }
7126 EXPORT_SYMBOL(free_contig_range);
7127 
7128 /*
7129  * Effectively disable pcplists for the zone by setting the high limit to 0
7130  * and draining all cpus. A concurrent page freeing on another CPU that's about
7131  * to put the page on pcplist will either finish before the drain and the page
7132  * will be drained, or observe the new high limit and skip the pcplist.
7133  *
7134  * Must be paired with a call to zone_pcp_enable().
7135  */
7136 void zone_pcp_disable(struct zone *zone)
7137 {
7138 	mutex_lock(&pcp_batch_high_lock);
7139 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
7140 	__drain_all_pages(zone, true);
7141 }
7142 
7143 void zone_pcp_enable(struct zone *zone)
7144 {
7145 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
7146 		zone->pageset_high_max, zone->pageset_batch);
7147 	mutex_unlock(&pcp_batch_high_lock);
7148 }
7149 
7150 void zone_pcp_reset(struct zone *zone)
7151 {
7152 	int cpu;
7153 	struct per_cpu_zonestat *pzstats;
7154 
7155 	if (zone->per_cpu_pageset != &boot_pageset) {
7156 		for_each_online_cpu(cpu) {
7157 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7158 			drain_zonestat(zone, pzstats);
7159 		}
7160 		free_percpu(zone->per_cpu_pageset);
7161 		zone->per_cpu_pageset = &boot_pageset;
7162 		if (zone->per_cpu_zonestats != &boot_zonestats) {
7163 			free_percpu(zone->per_cpu_zonestats);
7164 			zone->per_cpu_zonestats = &boot_zonestats;
7165 		}
7166 	}
7167 }
7168 
7169 #ifdef CONFIG_MEMORY_HOTREMOVE
7170 /*
7171  * All pages in the range must be in a single zone, must not contain holes,
7172  * must span full sections, and must be isolated before calling this function.
7173  *
7174  * Returns the number of managed (non-PageOffline()) pages in the range: the
7175  * number of pages for which memory offlining code must adjust managed page
7176  * counters using adjust_managed_page_count().
7177  */
7178 unsigned long __offline_isolated_pages(unsigned long start_pfn,
7179 		unsigned long end_pfn)
7180 {
7181 	unsigned long already_offline = 0, flags;
7182 	unsigned long pfn = start_pfn;
7183 	struct page *page;
7184 	struct zone *zone;
7185 	unsigned int order;
7186 
7187 	offline_mem_sections(pfn, end_pfn);
7188 	zone = page_zone(pfn_to_page(pfn));
7189 	spin_lock_irqsave(&zone->lock, flags);
7190 	while (pfn < end_pfn) {
7191 		page = pfn_to_page(pfn);
7192 		/*
7193 		 * The HWPoisoned page may be not in buddy system, and
7194 		 * page_count() is not 0.
7195 		 */
7196 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7197 			pfn++;
7198 			continue;
7199 		}
7200 		/*
7201 		 * At this point all remaining PageOffline() pages have a
7202 		 * reference count of 0 and can simply be skipped.
7203 		 */
7204 		if (PageOffline(page)) {
7205 			BUG_ON(page_count(page));
7206 			BUG_ON(PageBuddy(page));
7207 			already_offline++;
7208 			pfn++;
7209 			continue;
7210 		}
7211 
7212 		BUG_ON(page_count(page));
7213 		BUG_ON(!PageBuddy(page));
7214 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7215 		order = buddy_order(page);
7216 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7217 		pfn += (1 << order);
7218 	}
7219 	spin_unlock_irqrestore(&zone->lock, flags);
7220 
7221 	return end_pfn - start_pfn - already_offline;
7222 }
7223 #endif
7224 
7225 /*
7226  * This function returns a stable result only if called under zone lock.
7227  */
7228 bool is_free_buddy_page(const struct page *page)
7229 {
7230 	unsigned long pfn = page_to_pfn(page);
7231 	unsigned int order;
7232 
7233 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7234 		const struct page *head = page - (pfn & ((1 << order) - 1));
7235 
7236 		if (PageBuddy(head) &&
7237 		    buddy_order_unsafe(head) >= order)
7238 			break;
7239 	}
7240 
7241 	return order <= MAX_PAGE_ORDER;
7242 }
7243 EXPORT_SYMBOL(is_free_buddy_page);
7244 
7245 #ifdef CONFIG_MEMORY_FAILURE
7246 static inline void add_to_free_list(struct page *page, struct zone *zone,
7247 				    unsigned int order, int migratetype,
7248 				    bool tail)
7249 {
7250 	__add_to_free_list(page, zone, order, migratetype, tail);
7251 	account_freepages(zone, 1 << order, migratetype);
7252 }
7253 
7254 /*
7255  * Break down a higher-order page in sub-pages, and keep our target out of
7256  * buddy allocator.
7257  */
7258 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7259 				   struct page *target, int low, int high,
7260 				   int migratetype)
7261 {
7262 	unsigned long size = 1 << high;
7263 	struct page *current_buddy;
7264 
7265 	while (high > low) {
7266 		high--;
7267 		size >>= 1;
7268 
7269 		if (target >= &page[size]) {
7270 			current_buddy = page;
7271 			page = page + size;
7272 		} else {
7273 			current_buddy = page + size;
7274 		}
7275 
7276 		if (set_page_guard(zone, current_buddy, high))
7277 			continue;
7278 
7279 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7280 		set_buddy_order(current_buddy, high);
7281 	}
7282 }
7283 
7284 /*
7285  * Take a page that will be marked as poisoned off the buddy allocator.
7286  */
7287 bool take_page_off_buddy(struct page *page)
7288 {
7289 	struct zone *zone = page_zone(page);
7290 	unsigned long pfn = page_to_pfn(page);
7291 	unsigned long flags;
7292 	unsigned int order;
7293 	bool ret = false;
7294 
7295 	spin_lock_irqsave(&zone->lock, flags);
7296 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7297 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7298 		int page_order = buddy_order(page_head);
7299 
7300 		if (PageBuddy(page_head) && page_order >= order) {
7301 			unsigned long pfn_head = page_to_pfn(page_head);
7302 			int migratetype = get_pfnblock_migratetype(page_head,
7303 								   pfn_head);
7304 
7305 			del_page_from_free_list(page_head, zone, page_order,
7306 						migratetype);
7307 			break_down_buddy_pages(zone, page_head, page, 0,
7308 						page_order, migratetype);
7309 			SetPageHWPoisonTakenOff(page);
7310 			ret = true;
7311 			break;
7312 		}
7313 		if (page_count(page_head) > 0)
7314 			break;
7315 	}
7316 	spin_unlock_irqrestore(&zone->lock, flags);
7317 	return ret;
7318 }
7319 
7320 /*
7321  * Cancel takeoff done by take_page_off_buddy().
7322  */
7323 bool put_page_back_buddy(struct page *page)
7324 {
7325 	struct zone *zone = page_zone(page);
7326 	unsigned long flags;
7327 	bool ret = false;
7328 
7329 	spin_lock_irqsave(&zone->lock, flags);
7330 	if (put_page_testzero(page)) {
7331 		unsigned long pfn = page_to_pfn(page);
7332 		int migratetype = get_pfnblock_migratetype(page, pfn);
7333 
7334 		ClearPageHWPoisonTakenOff(page);
7335 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7336 		if (TestClearPageHWPoison(page)) {
7337 			ret = true;
7338 		}
7339 	}
7340 	spin_unlock_irqrestore(&zone->lock, flags);
7341 
7342 	return ret;
7343 }
7344 #endif
7345 
7346 #ifdef CONFIG_ZONE_DMA
7347 bool has_managed_dma(void)
7348 {
7349 	struct pglist_data *pgdat;
7350 
7351 	for_each_online_pgdat(pgdat) {
7352 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7353 
7354 		if (managed_zone(zone))
7355 			return true;
7356 	}
7357 	return false;
7358 }
7359 #endif /* CONFIG_ZONE_DMA */
7360 
7361 #ifdef CONFIG_UNACCEPTED_MEMORY
7362 
7363 static bool lazy_accept = true;
7364 
7365 static int __init accept_memory_parse(char *p)
7366 {
7367 	if (!strcmp(p, "lazy")) {
7368 		lazy_accept = true;
7369 		return 0;
7370 	} else if (!strcmp(p, "eager")) {
7371 		lazy_accept = false;
7372 		return 0;
7373 	} else {
7374 		return -EINVAL;
7375 	}
7376 }
7377 early_param("accept_memory", accept_memory_parse);
7378 
7379 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7380 {
7381 	phys_addr_t start = page_to_phys(page);
7382 
7383 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7384 }
7385 
7386 static void __accept_page(struct zone *zone, unsigned long *flags,
7387 			  struct page *page)
7388 {
7389 	list_del(&page->lru);
7390 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7391 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7392 	__ClearPageUnaccepted(page);
7393 	spin_unlock_irqrestore(&zone->lock, *flags);
7394 
7395 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7396 
7397 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7398 }
7399 
7400 void accept_page(struct page *page)
7401 {
7402 	struct zone *zone = page_zone(page);
7403 	unsigned long flags;
7404 
7405 	spin_lock_irqsave(&zone->lock, flags);
7406 	if (!PageUnaccepted(page)) {
7407 		spin_unlock_irqrestore(&zone->lock, flags);
7408 		return;
7409 	}
7410 
7411 	/* Unlocks zone->lock */
7412 	__accept_page(zone, &flags, page);
7413 }
7414 
7415 static bool try_to_accept_memory_one(struct zone *zone)
7416 {
7417 	unsigned long flags;
7418 	struct page *page;
7419 
7420 	spin_lock_irqsave(&zone->lock, flags);
7421 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7422 					struct page, lru);
7423 	if (!page) {
7424 		spin_unlock_irqrestore(&zone->lock, flags);
7425 		return false;
7426 	}
7427 
7428 	/* Unlocks zone->lock */
7429 	__accept_page(zone, &flags, page);
7430 
7431 	return true;
7432 }
7433 
7434 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7435 			       int alloc_flags)
7436 {
7437 	long to_accept, wmark;
7438 	bool ret = false;
7439 
7440 	if (list_empty(&zone->unaccepted_pages))
7441 		return false;
7442 
7443 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7444 	if (alloc_flags & ALLOC_TRYLOCK)
7445 		return false;
7446 
7447 	wmark = promo_wmark_pages(zone);
7448 
7449 	/*
7450 	 * Watermarks have not been initialized yet.
7451 	 *
7452 	 * Accepting one MAX_ORDER page to ensure progress.
7453 	 */
7454 	if (!wmark)
7455 		return try_to_accept_memory_one(zone);
7456 
7457 	/* How much to accept to get to promo watermark? */
7458 	to_accept = wmark -
7459 		    (zone_page_state(zone, NR_FREE_PAGES) -
7460 		    __zone_watermark_unusable_free(zone, order, 0) -
7461 		    zone_page_state(zone, NR_UNACCEPTED));
7462 
7463 	while (to_accept > 0) {
7464 		if (!try_to_accept_memory_one(zone))
7465 			break;
7466 		ret = true;
7467 		to_accept -= MAX_ORDER_NR_PAGES;
7468 	}
7469 
7470 	return ret;
7471 }
7472 
7473 static bool __free_unaccepted(struct page *page)
7474 {
7475 	struct zone *zone = page_zone(page);
7476 	unsigned long flags;
7477 
7478 	if (!lazy_accept)
7479 		return false;
7480 
7481 	spin_lock_irqsave(&zone->lock, flags);
7482 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7483 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7484 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7485 	__SetPageUnaccepted(page);
7486 	spin_unlock_irqrestore(&zone->lock, flags);
7487 
7488 	return true;
7489 }
7490 
7491 #else
7492 
7493 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7494 {
7495 	return false;
7496 }
7497 
7498 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7499 			       int alloc_flags)
7500 {
7501 	return false;
7502 }
7503 
7504 static bool __free_unaccepted(struct page *page)
7505 {
7506 	BUILD_BUG();
7507 	return false;
7508 }
7509 
7510 #endif /* CONFIG_UNACCEPTED_MEMORY */
7511 
7512 /**
7513  * alloc_pages_nolock - opportunistic reentrant allocation from any context
7514  * @nid: node to allocate from
7515  * @order: allocation order size
7516  *
7517  * Allocates pages of a given order from the given node. This is safe to
7518  * call from any context (from atomic, NMI, and also reentrant
7519  * allocator -> tracepoint -> alloc_pages_nolock_noprof).
7520  * Allocation is best effort and to be expected to fail easily so nobody should
7521  * rely on the success. Failures are not reported via warn_alloc().
7522  * See always fail conditions below.
7523  *
7524  * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN.
7525  * It means ENOMEM. There is no reason to call it again and expect !NULL.
7526  */
7527 struct page *alloc_pages_nolock_noprof(int nid, unsigned int order)
7528 {
7529 	/*
7530 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7531 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7532 	 * is not safe in arbitrary context.
7533 	 *
7534 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7535 	 *
7536 	 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason
7537 	 * to warn. Also warn would trigger printk() which is unsafe from
7538 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7539 	 * since the running context is unknown.
7540 	 *
7541 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7542 	 * is safe in any context. Also zeroing the page is mandatory for
7543 	 * BPF use cases.
7544 	 *
7545 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7546 	 * specify it here to highlight that alloc_pages_nolock()
7547 	 * doesn't want to deplete reserves.
7548 	 */
7549 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7550 			| __GFP_ACCOUNT;
7551 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7552 	struct alloc_context ac = { };
7553 	struct page *page;
7554 
7555 	/*
7556 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7557 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7558 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7559 	 * mark the task as the owner of another rt_spin_lock which will
7560 	 * confuse PI logic, so return immediately if called form hard IRQ or
7561 	 * NMI.
7562 	 *
7563 	 * Note, irqs_disabled() case is ok. This function can be called
7564 	 * from raw_spin_lock_irqsave region.
7565 	 */
7566 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7567 		return NULL;
7568 	if (!pcp_allowed_order(order))
7569 		return NULL;
7570 
7571 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7572 	if (deferred_pages_enabled())
7573 		return NULL;
7574 
7575 	if (nid == NUMA_NO_NODE)
7576 		nid = numa_node_id();
7577 
7578 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7579 			    &alloc_gfp, &alloc_flags);
7580 
7581 	/*
7582 	 * Best effort allocation from percpu free list.
7583 	 * If it's empty attempt to spin_trylock zone->lock.
7584 	 */
7585 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7586 
7587 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7588 
7589 	if (page)
7590 		set_page_refcounted(page);
7591 
7592 	if (memcg_kmem_online() && page &&
7593 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7594 		free_pages_nolock(page, order);
7595 		page = NULL;
7596 	}
7597 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7598 	kmsan_alloc_page(page, order, alloc_gfp);
7599 	return page;
7600 }
7601