1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/oom.h> 32 #include <linux/notifier.h> 33 #include <linux/topology.h> 34 #include <linux/sysctl.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/memory_hotplug.h> 38 #include <linux/nodemask.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mempolicy.h> 41 #include <linux/stop_machine.h> 42 #include <linux/sort.h> 43 #include <linux/pfn.h> 44 #include <linux/backing-dev.h> 45 #include <linux/fault-inject.h> 46 #include <linux/page-isolation.h> 47 #include <linux/memcontrol.h> 48 #include <linux/debugobjects.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 #include "internal.h" 53 54 /* 55 * Array of node states. 56 */ 57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 58 [N_POSSIBLE] = NODE_MASK_ALL, 59 [N_ONLINE] = { { [0] = 1UL } }, 60 #ifndef CONFIG_NUMA 61 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 62 #ifdef CONFIG_HIGHMEM 63 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 64 #endif 65 [N_CPU] = { { [0] = 1UL } }, 66 #endif /* NUMA */ 67 }; 68 EXPORT_SYMBOL(node_states); 69 70 unsigned long totalram_pages __read_mostly; 71 unsigned long totalreserve_pages __read_mostly; 72 long nr_swap_pages; 73 int percpu_pagelist_fraction; 74 75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 76 int pageblock_order __read_mostly; 77 #endif 78 79 static void __free_pages_ok(struct page *page, unsigned int order); 80 81 /* 82 * results with 256, 32 in the lowmem_reserve sysctl: 83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 84 * 1G machine -> (16M dma, 784M normal, 224M high) 85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 88 * 89 * TBD: should special case ZONE_DMA32 machines here - in those we normally 90 * don't need any ZONE_NORMAL reservation 91 */ 92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 93 #ifdef CONFIG_ZONE_DMA 94 256, 95 #endif 96 #ifdef CONFIG_ZONE_DMA32 97 256, 98 #endif 99 #ifdef CONFIG_HIGHMEM 100 32, 101 #endif 102 32, 103 }; 104 105 EXPORT_SYMBOL(totalram_pages); 106 107 static char * const zone_names[MAX_NR_ZONES] = { 108 #ifdef CONFIG_ZONE_DMA 109 "DMA", 110 #endif 111 #ifdef CONFIG_ZONE_DMA32 112 "DMA32", 113 #endif 114 "Normal", 115 #ifdef CONFIG_HIGHMEM 116 "HighMem", 117 #endif 118 "Movable", 119 }; 120 121 int min_free_kbytes = 1024; 122 123 unsigned long __meminitdata nr_kernel_pages; 124 unsigned long __meminitdata nr_all_pages; 125 static unsigned long __meminitdata dma_reserve; 126 127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 128 /* 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 130 * ranges of memory (RAM) that may be registered with add_active_range(). 131 * Ranges passed to add_active_range() will be merged if possible 132 * so the number of times add_active_range() can be called is 133 * related to the number of nodes and the number of holes 134 */ 135 #ifdef CONFIG_MAX_ACTIVE_REGIONS 136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 138 #else 139 #if MAX_NUMNODES >= 32 140 /* If there can be many nodes, allow up to 50 holes per node */ 141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 142 #else 143 /* By default, allow up to 256 distinct regions */ 144 #define MAX_ACTIVE_REGIONS 256 145 #endif 146 #endif 147 148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 149 static int __meminitdata nr_nodemap_entries; 150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 156 unsigned long __initdata required_kernelcore; 157 static unsigned long __initdata required_movablecore; 158 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 159 160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 161 int movable_zone; 162 EXPORT_SYMBOL(movable_zone); 163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 164 165 #if MAX_NUMNODES > 1 166 int nr_node_ids __read_mostly = MAX_NUMNODES; 167 EXPORT_SYMBOL(nr_node_ids); 168 #endif 169 170 int page_group_by_mobility_disabled __read_mostly; 171 172 static void set_pageblock_migratetype(struct page *page, int migratetype) 173 { 174 set_pageblock_flags_group(page, (unsigned long)migratetype, 175 PB_migrate, PB_migrate_end); 176 } 177 178 #ifdef CONFIG_DEBUG_VM 179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 180 { 181 int ret = 0; 182 unsigned seq; 183 unsigned long pfn = page_to_pfn(page); 184 185 do { 186 seq = zone_span_seqbegin(zone); 187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 188 ret = 1; 189 else if (pfn < zone->zone_start_pfn) 190 ret = 1; 191 } while (zone_span_seqretry(zone, seq)); 192 193 return ret; 194 } 195 196 static int page_is_consistent(struct zone *zone, struct page *page) 197 { 198 if (!pfn_valid_within(page_to_pfn(page))) 199 return 0; 200 if (zone != page_zone(page)) 201 return 0; 202 203 return 1; 204 } 205 /* 206 * Temporary debugging check for pages not lying within a given zone. 207 */ 208 static int bad_range(struct zone *zone, struct page *page) 209 { 210 if (page_outside_zone_boundaries(zone, page)) 211 return 1; 212 if (!page_is_consistent(zone, page)) 213 return 1; 214 215 return 0; 216 } 217 #else 218 static inline int bad_range(struct zone *zone, struct page *page) 219 { 220 return 0; 221 } 222 #endif 223 224 static void bad_page(struct page *page) 225 { 226 void *pc = page_get_page_cgroup(page); 227 228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG 229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 230 current->comm, page, (int)(2*sizeof(unsigned long)), 231 (unsigned long)page->flags, page->mapping, 232 page_mapcount(page), page_count(page)); 233 if (pc) { 234 printk(KERN_EMERG "cgroup:%p\n", pc); 235 page_reset_bad_cgroup(page); 236 } 237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 238 KERN_EMERG "Backtrace:\n"); 239 dump_stack(); 240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD; 241 set_page_count(page, 0); 242 reset_page_mapcount(page); 243 page->mapping = NULL; 244 add_taint(TAINT_BAD_PAGE); 245 } 246 247 /* 248 * Higher-order pages are called "compound pages". They are structured thusly: 249 * 250 * The first PAGE_SIZE page is called the "head page". 251 * 252 * The remaining PAGE_SIZE pages are called "tail pages". 253 * 254 * All pages have PG_compound set. All pages have their ->private pointing at 255 * the head page (even the head page has this). 256 * 257 * The first tail page's ->lru.next holds the address of the compound page's 258 * put_page() function. Its ->lru.prev holds the order of allocation. 259 * This usage means that zero-order pages may not be compound. 260 */ 261 262 static void free_compound_page(struct page *page) 263 { 264 __free_pages_ok(page, compound_order(page)); 265 } 266 267 static void prep_compound_page(struct page *page, unsigned long order) 268 { 269 int i; 270 int nr_pages = 1 << order; 271 272 set_compound_page_dtor(page, free_compound_page); 273 set_compound_order(page, order); 274 __SetPageHead(page); 275 for (i = 1; i < nr_pages; i++) { 276 struct page *p = page + i; 277 278 __SetPageTail(p); 279 p->first_page = page; 280 } 281 } 282 283 static void destroy_compound_page(struct page *page, unsigned long order) 284 { 285 int i; 286 int nr_pages = 1 << order; 287 288 if (unlikely(compound_order(page) != order)) 289 bad_page(page); 290 291 if (unlikely(!PageHead(page))) 292 bad_page(page); 293 __ClearPageHead(page); 294 for (i = 1; i < nr_pages; i++) { 295 struct page *p = page + i; 296 297 if (unlikely(!PageTail(p) | 298 (p->first_page != page))) 299 bad_page(page); 300 __ClearPageTail(p); 301 } 302 } 303 304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 305 { 306 int i; 307 308 /* 309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 310 * and __GFP_HIGHMEM from hard or soft interrupt context. 311 */ 312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 313 for (i = 0; i < (1 << order); i++) 314 clear_highpage(page + i); 315 } 316 317 static inline void set_page_order(struct page *page, int order) 318 { 319 set_page_private(page, order); 320 __SetPageBuddy(page); 321 } 322 323 static inline void rmv_page_order(struct page *page) 324 { 325 __ClearPageBuddy(page); 326 set_page_private(page, 0); 327 } 328 329 /* 330 * Locate the struct page for both the matching buddy in our 331 * pair (buddy1) and the combined O(n+1) page they form (page). 332 * 333 * 1) Any buddy B1 will have an order O twin B2 which satisfies 334 * the following equation: 335 * B2 = B1 ^ (1 << O) 336 * For example, if the starting buddy (buddy2) is #8 its order 337 * 1 buddy is #10: 338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 339 * 340 * 2) Any buddy B will have an order O+1 parent P which 341 * satisfies the following equation: 342 * P = B & ~(1 << O) 343 * 344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 345 */ 346 static inline struct page * 347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 348 { 349 unsigned long buddy_idx = page_idx ^ (1 << order); 350 351 return page + (buddy_idx - page_idx); 352 } 353 354 static inline unsigned long 355 __find_combined_index(unsigned long page_idx, unsigned int order) 356 { 357 return (page_idx & ~(1 << order)); 358 } 359 360 /* 361 * This function checks whether a page is free && is the buddy 362 * we can do coalesce a page and its buddy if 363 * (a) the buddy is not in a hole && 364 * (b) the buddy is in the buddy system && 365 * (c) a page and its buddy have the same order && 366 * (d) a page and its buddy are in the same zone. 367 * 368 * For recording whether a page is in the buddy system, we use PG_buddy. 369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 370 * 371 * For recording page's order, we use page_private(page). 372 */ 373 static inline int page_is_buddy(struct page *page, struct page *buddy, 374 int order) 375 { 376 if (!pfn_valid_within(page_to_pfn(buddy))) 377 return 0; 378 379 if (page_zone_id(page) != page_zone_id(buddy)) 380 return 0; 381 382 if (PageBuddy(buddy) && page_order(buddy) == order) { 383 BUG_ON(page_count(buddy) != 0); 384 return 1; 385 } 386 return 0; 387 } 388 389 /* 390 * Freeing function for a buddy system allocator. 391 * 392 * The concept of a buddy system is to maintain direct-mapped table 393 * (containing bit values) for memory blocks of various "orders". 394 * The bottom level table contains the map for the smallest allocatable 395 * units of memory (here, pages), and each level above it describes 396 * pairs of units from the levels below, hence, "buddies". 397 * At a high level, all that happens here is marking the table entry 398 * at the bottom level available, and propagating the changes upward 399 * as necessary, plus some accounting needed to play nicely with other 400 * parts of the VM system. 401 * At each level, we keep a list of pages, which are heads of continuous 402 * free pages of length of (1 << order) and marked with PG_buddy. Page's 403 * order is recorded in page_private(page) field. 404 * So when we are allocating or freeing one, we can derive the state of the 405 * other. That is, if we allocate a small block, and both were 406 * free, the remainder of the region must be split into blocks. 407 * If a block is freed, and its buddy is also free, then this 408 * triggers coalescing into a block of larger size. 409 * 410 * -- wli 411 */ 412 413 static inline void __free_one_page(struct page *page, 414 struct zone *zone, unsigned int order) 415 { 416 unsigned long page_idx; 417 int order_size = 1 << order; 418 int migratetype = get_pageblock_migratetype(page); 419 420 if (unlikely(PageCompound(page))) 421 destroy_compound_page(page, order); 422 423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 424 425 VM_BUG_ON(page_idx & (order_size - 1)); 426 VM_BUG_ON(bad_range(zone, page)); 427 428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 429 while (order < MAX_ORDER-1) { 430 unsigned long combined_idx; 431 struct page *buddy; 432 433 buddy = __page_find_buddy(page, page_idx, order); 434 if (!page_is_buddy(page, buddy, order)) 435 break; /* Move the buddy up one level. */ 436 437 list_del(&buddy->lru); 438 zone->free_area[order].nr_free--; 439 rmv_page_order(buddy); 440 combined_idx = __find_combined_index(page_idx, order); 441 page = page + (combined_idx - page_idx); 442 page_idx = combined_idx; 443 order++; 444 } 445 set_page_order(page, order); 446 list_add(&page->lru, 447 &zone->free_area[order].free_list[migratetype]); 448 zone->free_area[order].nr_free++; 449 } 450 451 static inline int free_pages_check(struct page *page) 452 { 453 if (unlikely(page_mapcount(page) | 454 (page->mapping != NULL) | 455 (page_get_page_cgroup(page) != NULL) | 456 (page_count(page) != 0) | 457 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) 458 bad_page(page); 459 if (PageDirty(page)) 460 __ClearPageDirty(page); 461 /* 462 * For now, we report if PG_reserved was found set, but do not 463 * clear it, and do not free the page. But we shall soon need 464 * to do more, for when the ZERO_PAGE count wraps negative. 465 */ 466 return PageReserved(page); 467 } 468 469 /* 470 * Frees a list of pages. 471 * Assumes all pages on list are in same zone, and of same order. 472 * count is the number of pages to free. 473 * 474 * If the zone was previously in an "all pages pinned" state then look to 475 * see if this freeing clears that state. 476 * 477 * And clear the zone's pages_scanned counter, to hold off the "all pages are 478 * pinned" detection logic. 479 */ 480 static void free_pages_bulk(struct zone *zone, int count, 481 struct list_head *list, int order) 482 { 483 spin_lock(&zone->lock); 484 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 485 zone->pages_scanned = 0; 486 while (count--) { 487 struct page *page; 488 489 VM_BUG_ON(list_empty(list)); 490 page = list_entry(list->prev, struct page, lru); 491 /* have to delete it as __free_one_page list manipulates */ 492 list_del(&page->lru); 493 __free_one_page(page, zone, order); 494 } 495 spin_unlock(&zone->lock); 496 } 497 498 static void free_one_page(struct zone *zone, struct page *page, int order) 499 { 500 spin_lock(&zone->lock); 501 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 502 zone->pages_scanned = 0; 503 __free_one_page(page, zone, order); 504 spin_unlock(&zone->lock); 505 } 506 507 static void __free_pages_ok(struct page *page, unsigned int order) 508 { 509 unsigned long flags; 510 int i; 511 int reserved = 0; 512 513 for (i = 0 ; i < (1 << order) ; ++i) 514 reserved += free_pages_check(page + i); 515 if (reserved) 516 return; 517 518 if (!PageHighMem(page)) { 519 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 520 debug_check_no_obj_freed(page_address(page), 521 PAGE_SIZE << order); 522 } 523 arch_free_page(page, order); 524 kernel_map_pages(page, 1 << order, 0); 525 526 local_irq_save(flags); 527 __count_vm_events(PGFREE, 1 << order); 528 free_one_page(page_zone(page), page, order); 529 local_irq_restore(flags); 530 } 531 532 /* 533 * permit the bootmem allocator to evade page validation on high-order frees 534 */ 535 void __free_pages_bootmem(struct page *page, unsigned int order) 536 { 537 if (order == 0) { 538 __ClearPageReserved(page); 539 set_page_count(page, 0); 540 set_page_refcounted(page); 541 __free_page(page); 542 } else { 543 int loop; 544 545 prefetchw(page); 546 for (loop = 0; loop < BITS_PER_LONG; loop++) { 547 struct page *p = &page[loop]; 548 549 if (loop + 1 < BITS_PER_LONG) 550 prefetchw(p + 1); 551 __ClearPageReserved(p); 552 set_page_count(p, 0); 553 } 554 555 set_page_refcounted(page); 556 __free_pages(page, order); 557 } 558 } 559 560 561 /* 562 * The order of subdivision here is critical for the IO subsystem. 563 * Please do not alter this order without good reasons and regression 564 * testing. Specifically, as large blocks of memory are subdivided, 565 * the order in which smaller blocks are delivered depends on the order 566 * they're subdivided in this function. This is the primary factor 567 * influencing the order in which pages are delivered to the IO 568 * subsystem according to empirical testing, and this is also justified 569 * by considering the behavior of a buddy system containing a single 570 * large block of memory acted on by a series of small allocations. 571 * This behavior is a critical factor in sglist merging's success. 572 * 573 * -- wli 574 */ 575 static inline void expand(struct zone *zone, struct page *page, 576 int low, int high, struct free_area *area, 577 int migratetype) 578 { 579 unsigned long size = 1 << high; 580 581 while (high > low) { 582 area--; 583 high--; 584 size >>= 1; 585 VM_BUG_ON(bad_range(zone, &page[size])); 586 list_add(&page[size].lru, &area->free_list[migratetype]); 587 area->nr_free++; 588 set_page_order(&page[size], high); 589 } 590 } 591 592 /* 593 * This page is about to be returned from the page allocator 594 */ 595 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 596 { 597 if (unlikely(page_mapcount(page) | 598 (page->mapping != NULL) | 599 (page_get_page_cgroup(page) != NULL) | 600 (page_count(page) != 0) | 601 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) 602 bad_page(page); 603 604 /* 605 * For now, we report if PG_reserved was found set, but do not 606 * clear it, and do not allocate the page: as a safety net. 607 */ 608 if (PageReserved(page)) 609 return 1; 610 611 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim | 612 1 << PG_referenced | 1 << PG_arch_1 | 613 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk); 614 set_page_private(page, 0); 615 set_page_refcounted(page); 616 617 arch_alloc_page(page, order); 618 kernel_map_pages(page, 1 << order, 1); 619 620 if (gfp_flags & __GFP_ZERO) 621 prep_zero_page(page, order, gfp_flags); 622 623 if (order && (gfp_flags & __GFP_COMP)) 624 prep_compound_page(page, order); 625 626 return 0; 627 } 628 629 /* 630 * Go through the free lists for the given migratetype and remove 631 * the smallest available page from the freelists 632 */ 633 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 634 int migratetype) 635 { 636 unsigned int current_order; 637 struct free_area * area; 638 struct page *page; 639 640 /* Find a page of the appropriate size in the preferred list */ 641 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 642 area = &(zone->free_area[current_order]); 643 if (list_empty(&area->free_list[migratetype])) 644 continue; 645 646 page = list_entry(area->free_list[migratetype].next, 647 struct page, lru); 648 list_del(&page->lru); 649 rmv_page_order(page); 650 area->nr_free--; 651 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 652 expand(zone, page, order, current_order, area, migratetype); 653 return page; 654 } 655 656 return NULL; 657 } 658 659 660 /* 661 * This array describes the order lists are fallen back to when 662 * the free lists for the desirable migrate type are depleted 663 */ 664 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 665 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 666 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 667 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 668 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 669 }; 670 671 /* 672 * Move the free pages in a range to the free lists of the requested type. 673 * Note that start_page and end_pages are not aligned on a pageblock 674 * boundary. If alignment is required, use move_freepages_block() 675 */ 676 int move_freepages(struct zone *zone, 677 struct page *start_page, struct page *end_page, 678 int migratetype) 679 { 680 struct page *page; 681 unsigned long order; 682 int pages_moved = 0; 683 684 #ifndef CONFIG_HOLES_IN_ZONE 685 /* 686 * page_zone is not safe to call in this context when 687 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 688 * anyway as we check zone boundaries in move_freepages_block(). 689 * Remove at a later date when no bug reports exist related to 690 * grouping pages by mobility 691 */ 692 BUG_ON(page_zone(start_page) != page_zone(end_page)); 693 #endif 694 695 for (page = start_page; page <= end_page;) { 696 if (!pfn_valid_within(page_to_pfn(page))) { 697 page++; 698 continue; 699 } 700 701 if (!PageBuddy(page)) { 702 page++; 703 continue; 704 } 705 706 order = page_order(page); 707 list_del(&page->lru); 708 list_add(&page->lru, 709 &zone->free_area[order].free_list[migratetype]); 710 page += 1 << order; 711 pages_moved += 1 << order; 712 } 713 714 return pages_moved; 715 } 716 717 int move_freepages_block(struct zone *zone, struct page *page, int migratetype) 718 { 719 unsigned long start_pfn, end_pfn; 720 struct page *start_page, *end_page; 721 722 start_pfn = page_to_pfn(page); 723 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 724 start_page = pfn_to_page(start_pfn); 725 end_page = start_page + pageblock_nr_pages - 1; 726 end_pfn = start_pfn + pageblock_nr_pages - 1; 727 728 /* Do not cross zone boundaries */ 729 if (start_pfn < zone->zone_start_pfn) 730 start_page = page; 731 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 732 return 0; 733 734 return move_freepages(zone, start_page, end_page, migratetype); 735 } 736 737 /* Remove an element from the buddy allocator from the fallback list */ 738 static struct page *__rmqueue_fallback(struct zone *zone, int order, 739 int start_migratetype) 740 { 741 struct free_area * area; 742 int current_order; 743 struct page *page; 744 int migratetype, i; 745 746 /* Find the largest possible block of pages in the other list */ 747 for (current_order = MAX_ORDER-1; current_order >= order; 748 --current_order) { 749 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 750 migratetype = fallbacks[start_migratetype][i]; 751 752 /* MIGRATE_RESERVE handled later if necessary */ 753 if (migratetype == MIGRATE_RESERVE) 754 continue; 755 756 area = &(zone->free_area[current_order]); 757 if (list_empty(&area->free_list[migratetype])) 758 continue; 759 760 page = list_entry(area->free_list[migratetype].next, 761 struct page, lru); 762 area->nr_free--; 763 764 /* 765 * If breaking a large block of pages, move all free 766 * pages to the preferred allocation list. If falling 767 * back for a reclaimable kernel allocation, be more 768 * agressive about taking ownership of free pages 769 */ 770 if (unlikely(current_order >= (pageblock_order >> 1)) || 771 start_migratetype == MIGRATE_RECLAIMABLE) { 772 unsigned long pages; 773 pages = move_freepages_block(zone, page, 774 start_migratetype); 775 776 /* Claim the whole block if over half of it is free */ 777 if (pages >= (1 << (pageblock_order-1))) 778 set_pageblock_migratetype(page, 779 start_migratetype); 780 781 migratetype = start_migratetype; 782 } 783 784 /* Remove the page from the freelists */ 785 list_del(&page->lru); 786 rmv_page_order(page); 787 __mod_zone_page_state(zone, NR_FREE_PAGES, 788 -(1UL << order)); 789 790 if (current_order == pageblock_order) 791 set_pageblock_migratetype(page, 792 start_migratetype); 793 794 expand(zone, page, order, current_order, area, migratetype); 795 return page; 796 } 797 } 798 799 /* Use MIGRATE_RESERVE rather than fail an allocation */ 800 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 801 } 802 803 /* 804 * Do the hard work of removing an element from the buddy allocator. 805 * Call me with the zone->lock already held. 806 */ 807 static struct page *__rmqueue(struct zone *zone, unsigned int order, 808 int migratetype) 809 { 810 struct page *page; 811 812 page = __rmqueue_smallest(zone, order, migratetype); 813 814 if (unlikely(!page)) 815 page = __rmqueue_fallback(zone, order, migratetype); 816 817 return page; 818 } 819 820 /* 821 * Obtain a specified number of elements from the buddy allocator, all under 822 * a single hold of the lock, for efficiency. Add them to the supplied list. 823 * Returns the number of new pages which were placed at *list. 824 */ 825 static int rmqueue_bulk(struct zone *zone, unsigned int order, 826 unsigned long count, struct list_head *list, 827 int migratetype) 828 { 829 int i; 830 831 spin_lock(&zone->lock); 832 for (i = 0; i < count; ++i) { 833 struct page *page = __rmqueue(zone, order, migratetype); 834 if (unlikely(page == NULL)) 835 break; 836 837 /* 838 * Split buddy pages returned by expand() are received here 839 * in physical page order. The page is added to the callers and 840 * list and the list head then moves forward. From the callers 841 * perspective, the linked list is ordered by page number in 842 * some conditions. This is useful for IO devices that can 843 * merge IO requests if the physical pages are ordered 844 * properly. 845 */ 846 list_add(&page->lru, list); 847 set_page_private(page, migratetype); 848 list = &page->lru; 849 } 850 spin_unlock(&zone->lock); 851 return i; 852 } 853 854 #ifdef CONFIG_NUMA 855 /* 856 * Called from the vmstat counter updater to drain pagesets of this 857 * currently executing processor on remote nodes after they have 858 * expired. 859 * 860 * Note that this function must be called with the thread pinned to 861 * a single processor. 862 */ 863 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 864 { 865 unsigned long flags; 866 int to_drain; 867 868 local_irq_save(flags); 869 if (pcp->count >= pcp->batch) 870 to_drain = pcp->batch; 871 else 872 to_drain = pcp->count; 873 free_pages_bulk(zone, to_drain, &pcp->list, 0); 874 pcp->count -= to_drain; 875 local_irq_restore(flags); 876 } 877 #endif 878 879 /* 880 * Drain pages of the indicated processor. 881 * 882 * The processor must either be the current processor and the 883 * thread pinned to the current processor or a processor that 884 * is not online. 885 */ 886 static void drain_pages(unsigned int cpu) 887 { 888 unsigned long flags; 889 struct zone *zone; 890 891 for_each_zone(zone) { 892 struct per_cpu_pageset *pset; 893 struct per_cpu_pages *pcp; 894 895 if (!populated_zone(zone)) 896 continue; 897 898 pset = zone_pcp(zone, cpu); 899 900 pcp = &pset->pcp; 901 local_irq_save(flags); 902 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 903 pcp->count = 0; 904 local_irq_restore(flags); 905 } 906 } 907 908 /* 909 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 910 */ 911 void drain_local_pages(void *arg) 912 { 913 drain_pages(smp_processor_id()); 914 } 915 916 /* 917 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 918 */ 919 void drain_all_pages(void) 920 { 921 on_each_cpu(drain_local_pages, NULL, 1); 922 } 923 924 #ifdef CONFIG_HIBERNATION 925 926 void mark_free_pages(struct zone *zone) 927 { 928 unsigned long pfn, max_zone_pfn; 929 unsigned long flags; 930 int order, t; 931 struct list_head *curr; 932 933 if (!zone->spanned_pages) 934 return; 935 936 spin_lock_irqsave(&zone->lock, flags); 937 938 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 939 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 940 if (pfn_valid(pfn)) { 941 struct page *page = pfn_to_page(pfn); 942 943 if (!swsusp_page_is_forbidden(page)) 944 swsusp_unset_page_free(page); 945 } 946 947 for_each_migratetype_order(order, t) { 948 list_for_each(curr, &zone->free_area[order].free_list[t]) { 949 unsigned long i; 950 951 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 952 for (i = 0; i < (1UL << order); i++) 953 swsusp_set_page_free(pfn_to_page(pfn + i)); 954 } 955 } 956 spin_unlock_irqrestore(&zone->lock, flags); 957 } 958 #endif /* CONFIG_PM */ 959 960 /* 961 * Free a 0-order page 962 */ 963 static void free_hot_cold_page(struct page *page, int cold) 964 { 965 struct zone *zone = page_zone(page); 966 struct per_cpu_pages *pcp; 967 unsigned long flags; 968 969 if (PageAnon(page)) 970 page->mapping = NULL; 971 if (free_pages_check(page)) 972 return; 973 974 if (!PageHighMem(page)) { 975 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 976 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 977 } 978 arch_free_page(page, 0); 979 kernel_map_pages(page, 1, 0); 980 981 pcp = &zone_pcp(zone, get_cpu())->pcp; 982 local_irq_save(flags); 983 __count_vm_event(PGFREE); 984 if (cold) 985 list_add_tail(&page->lru, &pcp->list); 986 else 987 list_add(&page->lru, &pcp->list); 988 set_page_private(page, get_pageblock_migratetype(page)); 989 pcp->count++; 990 if (pcp->count >= pcp->high) { 991 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 992 pcp->count -= pcp->batch; 993 } 994 local_irq_restore(flags); 995 put_cpu(); 996 } 997 998 void free_hot_page(struct page *page) 999 { 1000 free_hot_cold_page(page, 0); 1001 } 1002 1003 void free_cold_page(struct page *page) 1004 { 1005 free_hot_cold_page(page, 1); 1006 } 1007 1008 /* 1009 * split_page takes a non-compound higher-order page, and splits it into 1010 * n (1<<order) sub-pages: page[0..n] 1011 * Each sub-page must be freed individually. 1012 * 1013 * Note: this is probably too low level an operation for use in drivers. 1014 * Please consult with lkml before using this in your driver. 1015 */ 1016 void split_page(struct page *page, unsigned int order) 1017 { 1018 int i; 1019 1020 VM_BUG_ON(PageCompound(page)); 1021 VM_BUG_ON(!page_count(page)); 1022 for (i = 1; i < (1 << order); i++) 1023 set_page_refcounted(page + i); 1024 } 1025 1026 /* 1027 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1028 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1029 * or two. 1030 */ 1031 static struct page *buffered_rmqueue(struct zone *preferred_zone, 1032 struct zone *zone, int order, gfp_t gfp_flags) 1033 { 1034 unsigned long flags; 1035 struct page *page; 1036 int cold = !!(gfp_flags & __GFP_COLD); 1037 int cpu; 1038 int migratetype = allocflags_to_migratetype(gfp_flags); 1039 1040 again: 1041 cpu = get_cpu(); 1042 if (likely(order == 0)) { 1043 struct per_cpu_pages *pcp; 1044 1045 pcp = &zone_pcp(zone, cpu)->pcp; 1046 local_irq_save(flags); 1047 if (!pcp->count) { 1048 pcp->count = rmqueue_bulk(zone, 0, 1049 pcp->batch, &pcp->list, migratetype); 1050 if (unlikely(!pcp->count)) 1051 goto failed; 1052 } 1053 1054 /* Find a page of the appropriate migrate type */ 1055 if (cold) { 1056 list_for_each_entry_reverse(page, &pcp->list, lru) 1057 if (page_private(page) == migratetype) 1058 break; 1059 } else { 1060 list_for_each_entry(page, &pcp->list, lru) 1061 if (page_private(page) == migratetype) 1062 break; 1063 } 1064 1065 /* Allocate more to the pcp list if necessary */ 1066 if (unlikely(&page->lru == &pcp->list)) { 1067 pcp->count += rmqueue_bulk(zone, 0, 1068 pcp->batch, &pcp->list, migratetype); 1069 page = list_entry(pcp->list.next, struct page, lru); 1070 } 1071 1072 list_del(&page->lru); 1073 pcp->count--; 1074 } else { 1075 spin_lock_irqsave(&zone->lock, flags); 1076 page = __rmqueue(zone, order, migratetype); 1077 spin_unlock(&zone->lock); 1078 if (!page) 1079 goto failed; 1080 } 1081 1082 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1083 zone_statistics(preferred_zone, zone); 1084 local_irq_restore(flags); 1085 put_cpu(); 1086 1087 VM_BUG_ON(bad_range(zone, page)); 1088 if (prep_new_page(page, order, gfp_flags)) 1089 goto again; 1090 return page; 1091 1092 failed: 1093 local_irq_restore(flags); 1094 put_cpu(); 1095 return NULL; 1096 } 1097 1098 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1099 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1100 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1101 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1102 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1103 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1104 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1105 1106 #ifdef CONFIG_FAIL_PAGE_ALLOC 1107 1108 static struct fail_page_alloc_attr { 1109 struct fault_attr attr; 1110 1111 u32 ignore_gfp_highmem; 1112 u32 ignore_gfp_wait; 1113 u32 min_order; 1114 1115 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1116 1117 struct dentry *ignore_gfp_highmem_file; 1118 struct dentry *ignore_gfp_wait_file; 1119 struct dentry *min_order_file; 1120 1121 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1122 1123 } fail_page_alloc = { 1124 .attr = FAULT_ATTR_INITIALIZER, 1125 .ignore_gfp_wait = 1, 1126 .ignore_gfp_highmem = 1, 1127 .min_order = 1, 1128 }; 1129 1130 static int __init setup_fail_page_alloc(char *str) 1131 { 1132 return setup_fault_attr(&fail_page_alloc.attr, str); 1133 } 1134 __setup("fail_page_alloc=", setup_fail_page_alloc); 1135 1136 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1137 { 1138 if (order < fail_page_alloc.min_order) 1139 return 0; 1140 if (gfp_mask & __GFP_NOFAIL) 1141 return 0; 1142 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1143 return 0; 1144 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1145 return 0; 1146 1147 return should_fail(&fail_page_alloc.attr, 1 << order); 1148 } 1149 1150 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1151 1152 static int __init fail_page_alloc_debugfs(void) 1153 { 1154 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1155 struct dentry *dir; 1156 int err; 1157 1158 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1159 "fail_page_alloc"); 1160 if (err) 1161 return err; 1162 dir = fail_page_alloc.attr.dentries.dir; 1163 1164 fail_page_alloc.ignore_gfp_wait_file = 1165 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1166 &fail_page_alloc.ignore_gfp_wait); 1167 1168 fail_page_alloc.ignore_gfp_highmem_file = 1169 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1170 &fail_page_alloc.ignore_gfp_highmem); 1171 fail_page_alloc.min_order_file = 1172 debugfs_create_u32("min-order", mode, dir, 1173 &fail_page_alloc.min_order); 1174 1175 if (!fail_page_alloc.ignore_gfp_wait_file || 1176 !fail_page_alloc.ignore_gfp_highmem_file || 1177 !fail_page_alloc.min_order_file) { 1178 err = -ENOMEM; 1179 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1180 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1181 debugfs_remove(fail_page_alloc.min_order_file); 1182 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1183 } 1184 1185 return err; 1186 } 1187 1188 late_initcall(fail_page_alloc_debugfs); 1189 1190 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1191 1192 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1193 1194 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1195 { 1196 return 0; 1197 } 1198 1199 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1200 1201 /* 1202 * Return 1 if free pages are above 'mark'. This takes into account the order 1203 * of the allocation. 1204 */ 1205 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1206 int classzone_idx, int alloc_flags) 1207 { 1208 /* free_pages my go negative - that's OK */ 1209 long min = mark; 1210 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1211 int o; 1212 1213 if (alloc_flags & ALLOC_HIGH) 1214 min -= min / 2; 1215 if (alloc_flags & ALLOC_HARDER) 1216 min -= min / 4; 1217 1218 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1219 return 0; 1220 for (o = 0; o < order; o++) { 1221 /* At the next order, this order's pages become unavailable */ 1222 free_pages -= z->free_area[o].nr_free << o; 1223 1224 /* Require fewer higher order pages to be free */ 1225 min >>= 1; 1226 1227 if (free_pages <= min) 1228 return 0; 1229 } 1230 return 1; 1231 } 1232 1233 #ifdef CONFIG_NUMA 1234 /* 1235 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1236 * skip over zones that are not allowed by the cpuset, or that have 1237 * been recently (in last second) found to be nearly full. See further 1238 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1239 * that have to skip over a lot of full or unallowed zones. 1240 * 1241 * If the zonelist cache is present in the passed in zonelist, then 1242 * returns a pointer to the allowed node mask (either the current 1243 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1244 * 1245 * If the zonelist cache is not available for this zonelist, does 1246 * nothing and returns NULL. 1247 * 1248 * If the fullzones BITMAP in the zonelist cache is stale (more than 1249 * a second since last zap'd) then we zap it out (clear its bits.) 1250 * 1251 * We hold off even calling zlc_setup, until after we've checked the 1252 * first zone in the zonelist, on the theory that most allocations will 1253 * be satisfied from that first zone, so best to examine that zone as 1254 * quickly as we can. 1255 */ 1256 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1257 { 1258 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1259 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1260 1261 zlc = zonelist->zlcache_ptr; 1262 if (!zlc) 1263 return NULL; 1264 1265 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1266 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1267 zlc->last_full_zap = jiffies; 1268 } 1269 1270 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1271 &cpuset_current_mems_allowed : 1272 &node_states[N_HIGH_MEMORY]; 1273 return allowednodes; 1274 } 1275 1276 /* 1277 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1278 * if it is worth looking at further for free memory: 1279 * 1) Check that the zone isn't thought to be full (doesn't have its 1280 * bit set in the zonelist_cache fullzones BITMAP). 1281 * 2) Check that the zones node (obtained from the zonelist_cache 1282 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1283 * Return true (non-zero) if zone is worth looking at further, or 1284 * else return false (zero) if it is not. 1285 * 1286 * This check -ignores- the distinction between various watermarks, 1287 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1288 * found to be full for any variation of these watermarks, it will 1289 * be considered full for up to one second by all requests, unless 1290 * we are so low on memory on all allowed nodes that we are forced 1291 * into the second scan of the zonelist. 1292 * 1293 * In the second scan we ignore this zonelist cache and exactly 1294 * apply the watermarks to all zones, even it is slower to do so. 1295 * We are low on memory in the second scan, and should leave no stone 1296 * unturned looking for a free page. 1297 */ 1298 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1299 nodemask_t *allowednodes) 1300 { 1301 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1302 int i; /* index of *z in zonelist zones */ 1303 int n; /* node that zone *z is on */ 1304 1305 zlc = zonelist->zlcache_ptr; 1306 if (!zlc) 1307 return 1; 1308 1309 i = z - zonelist->_zonerefs; 1310 n = zlc->z_to_n[i]; 1311 1312 /* This zone is worth trying if it is allowed but not full */ 1313 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1314 } 1315 1316 /* 1317 * Given 'z' scanning a zonelist, set the corresponding bit in 1318 * zlc->fullzones, so that subsequent attempts to allocate a page 1319 * from that zone don't waste time re-examining it. 1320 */ 1321 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1322 { 1323 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1324 int i; /* index of *z in zonelist zones */ 1325 1326 zlc = zonelist->zlcache_ptr; 1327 if (!zlc) 1328 return; 1329 1330 i = z - zonelist->_zonerefs; 1331 1332 set_bit(i, zlc->fullzones); 1333 } 1334 1335 #else /* CONFIG_NUMA */ 1336 1337 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1338 { 1339 return NULL; 1340 } 1341 1342 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1343 nodemask_t *allowednodes) 1344 { 1345 return 1; 1346 } 1347 1348 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1349 { 1350 } 1351 #endif /* CONFIG_NUMA */ 1352 1353 /* 1354 * get_page_from_freelist goes through the zonelist trying to allocate 1355 * a page. 1356 */ 1357 static struct page * 1358 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1359 struct zonelist *zonelist, int high_zoneidx, int alloc_flags) 1360 { 1361 struct zoneref *z; 1362 struct page *page = NULL; 1363 int classzone_idx; 1364 struct zone *zone, *preferred_zone; 1365 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1366 int zlc_active = 0; /* set if using zonelist_cache */ 1367 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1368 1369 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask, 1370 &preferred_zone); 1371 if (!preferred_zone) 1372 return NULL; 1373 1374 classzone_idx = zone_idx(preferred_zone); 1375 1376 zonelist_scan: 1377 /* 1378 * Scan zonelist, looking for a zone with enough free. 1379 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1380 */ 1381 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1382 high_zoneidx, nodemask) { 1383 if (NUMA_BUILD && zlc_active && 1384 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1385 continue; 1386 if ((alloc_flags & ALLOC_CPUSET) && 1387 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1388 goto try_next_zone; 1389 1390 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1391 unsigned long mark; 1392 if (alloc_flags & ALLOC_WMARK_MIN) 1393 mark = zone->pages_min; 1394 else if (alloc_flags & ALLOC_WMARK_LOW) 1395 mark = zone->pages_low; 1396 else 1397 mark = zone->pages_high; 1398 if (!zone_watermark_ok(zone, order, mark, 1399 classzone_idx, alloc_flags)) { 1400 if (!zone_reclaim_mode || 1401 !zone_reclaim(zone, gfp_mask, order)) 1402 goto this_zone_full; 1403 } 1404 } 1405 1406 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask); 1407 if (page) 1408 break; 1409 this_zone_full: 1410 if (NUMA_BUILD) 1411 zlc_mark_zone_full(zonelist, z); 1412 try_next_zone: 1413 if (NUMA_BUILD && !did_zlc_setup) { 1414 /* we do zlc_setup after the first zone is tried */ 1415 allowednodes = zlc_setup(zonelist, alloc_flags); 1416 zlc_active = 1; 1417 did_zlc_setup = 1; 1418 } 1419 } 1420 1421 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1422 /* Disable zlc cache for second zonelist scan */ 1423 zlc_active = 0; 1424 goto zonelist_scan; 1425 } 1426 return page; 1427 } 1428 1429 /* 1430 * This is the 'heart' of the zoned buddy allocator. 1431 */ 1432 static struct page * 1433 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, 1434 struct zonelist *zonelist, nodemask_t *nodemask) 1435 { 1436 const gfp_t wait = gfp_mask & __GFP_WAIT; 1437 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1438 struct zoneref *z; 1439 struct zone *zone; 1440 struct page *page; 1441 struct reclaim_state reclaim_state; 1442 struct task_struct *p = current; 1443 int do_retry; 1444 int alloc_flags; 1445 unsigned long did_some_progress; 1446 unsigned long pages_reclaimed = 0; 1447 1448 might_sleep_if(wait); 1449 1450 if (should_fail_alloc_page(gfp_mask, order)) 1451 return NULL; 1452 1453 restart: 1454 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */ 1455 1456 if (unlikely(!z->zone)) { 1457 /* 1458 * Happens if we have an empty zonelist as a result of 1459 * GFP_THISNODE being used on a memoryless node 1460 */ 1461 return NULL; 1462 } 1463 1464 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1465 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1466 if (page) 1467 goto got_pg; 1468 1469 /* 1470 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1471 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1472 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1473 * using a larger set of nodes after it has established that the 1474 * allowed per node queues are empty and that nodes are 1475 * over allocated. 1476 */ 1477 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1478 goto nopage; 1479 1480 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1481 wakeup_kswapd(zone, order); 1482 1483 /* 1484 * OK, we're below the kswapd watermark and have kicked background 1485 * reclaim. Now things get more complex, so set up alloc_flags according 1486 * to how we want to proceed. 1487 * 1488 * The caller may dip into page reserves a bit more if the caller 1489 * cannot run direct reclaim, or if the caller has realtime scheduling 1490 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1491 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1492 */ 1493 alloc_flags = ALLOC_WMARK_MIN; 1494 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1495 alloc_flags |= ALLOC_HARDER; 1496 if (gfp_mask & __GFP_HIGH) 1497 alloc_flags |= ALLOC_HIGH; 1498 if (wait) 1499 alloc_flags |= ALLOC_CPUSET; 1500 1501 /* 1502 * Go through the zonelist again. Let __GFP_HIGH and allocations 1503 * coming from realtime tasks go deeper into reserves. 1504 * 1505 * This is the last chance, in general, before the goto nopage. 1506 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1507 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1508 */ 1509 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1510 high_zoneidx, alloc_flags); 1511 if (page) 1512 goto got_pg; 1513 1514 /* This allocation should allow future memory freeing. */ 1515 1516 rebalance: 1517 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1518 && !in_interrupt()) { 1519 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1520 nofail_alloc: 1521 /* go through the zonelist yet again, ignoring mins */ 1522 page = get_page_from_freelist(gfp_mask, nodemask, order, 1523 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS); 1524 if (page) 1525 goto got_pg; 1526 if (gfp_mask & __GFP_NOFAIL) { 1527 congestion_wait(WRITE, HZ/50); 1528 goto nofail_alloc; 1529 } 1530 } 1531 goto nopage; 1532 } 1533 1534 /* Atomic allocations - we can't balance anything */ 1535 if (!wait) 1536 goto nopage; 1537 1538 cond_resched(); 1539 1540 /* We now go into synchronous reclaim */ 1541 cpuset_memory_pressure_bump(); 1542 p->flags |= PF_MEMALLOC; 1543 reclaim_state.reclaimed_slab = 0; 1544 p->reclaim_state = &reclaim_state; 1545 1546 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask); 1547 1548 p->reclaim_state = NULL; 1549 p->flags &= ~PF_MEMALLOC; 1550 1551 cond_resched(); 1552 1553 if (order != 0) 1554 drain_all_pages(); 1555 1556 if (likely(did_some_progress)) { 1557 page = get_page_from_freelist(gfp_mask, nodemask, order, 1558 zonelist, high_zoneidx, alloc_flags); 1559 if (page) 1560 goto got_pg; 1561 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1562 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1563 schedule_timeout_uninterruptible(1); 1564 goto restart; 1565 } 1566 1567 /* 1568 * Go through the zonelist yet one more time, keep 1569 * very high watermark here, this is only to catch 1570 * a parallel oom killing, we must fail if we're still 1571 * under heavy pressure. 1572 */ 1573 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1574 order, zonelist, high_zoneidx, 1575 ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1576 if (page) { 1577 clear_zonelist_oom(zonelist, gfp_mask); 1578 goto got_pg; 1579 } 1580 1581 /* The OOM killer will not help higher order allocs so fail */ 1582 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1583 clear_zonelist_oom(zonelist, gfp_mask); 1584 goto nopage; 1585 } 1586 1587 out_of_memory(zonelist, gfp_mask, order); 1588 clear_zonelist_oom(zonelist, gfp_mask); 1589 goto restart; 1590 } 1591 1592 /* 1593 * Don't let big-order allocations loop unless the caller explicitly 1594 * requests that. Wait for some write requests to complete then retry. 1595 * 1596 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1597 * means __GFP_NOFAIL, but that may not be true in other 1598 * implementations. 1599 * 1600 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1601 * specified, then we retry until we no longer reclaim any pages 1602 * (above), or we've reclaimed an order of pages at least as 1603 * large as the allocation's order. In both cases, if the 1604 * allocation still fails, we stop retrying. 1605 */ 1606 pages_reclaimed += did_some_progress; 1607 do_retry = 0; 1608 if (!(gfp_mask & __GFP_NORETRY)) { 1609 if (order <= PAGE_ALLOC_COSTLY_ORDER) { 1610 do_retry = 1; 1611 } else { 1612 if (gfp_mask & __GFP_REPEAT && 1613 pages_reclaimed < (1 << order)) 1614 do_retry = 1; 1615 } 1616 if (gfp_mask & __GFP_NOFAIL) 1617 do_retry = 1; 1618 } 1619 if (do_retry) { 1620 congestion_wait(WRITE, HZ/50); 1621 goto rebalance; 1622 } 1623 1624 nopage: 1625 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1626 printk(KERN_WARNING "%s: page allocation failure." 1627 " order:%d, mode:0x%x\n", 1628 p->comm, order, gfp_mask); 1629 dump_stack(); 1630 show_mem(); 1631 } 1632 got_pg: 1633 return page; 1634 } 1635 1636 struct page * 1637 __alloc_pages(gfp_t gfp_mask, unsigned int order, 1638 struct zonelist *zonelist) 1639 { 1640 return __alloc_pages_internal(gfp_mask, order, zonelist, NULL); 1641 } 1642 1643 struct page * 1644 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 1645 struct zonelist *zonelist, nodemask_t *nodemask) 1646 { 1647 return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask); 1648 } 1649 1650 EXPORT_SYMBOL(__alloc_pages); 1651 1652 /* 1653 * Common helper functions. 1654 */ 1655 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1656 { 1657 struct page * page; 1658 page = alloc_pages(gfp_mask, order); 1659 if (!page) 1660 return 0; 1661 return (unsigned long) page_address(page); 1662 } 1663 1664 EXPORT_SYMBOL(__get_free_pages); 1665 1666 unsigned long get_zeroed_page(gfp_t gfp_mask) 1667 { 1668 struct page * page; 1669 1670 /* 1671 * get_zeroed_page() returns a 32-bit address, which cannot represent 1672 * a highmem page 1673 */ 1674 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1675 1676 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1677 if (page) 1678 return (unsigned long) page_address(page); 1679 return 0; 1680 } 1681 1682 EXPORT_SYMBOL(get_zeroed_page); 1683 1684 void __pagevec_free(struct pagevec *pvec) 1685 { 1686 int i = pagevec_count(pvec); 1687 1688 while (--i >= 0) 1689 free_hot_cold_page(pvec->pages[i], pvec->cold); 1690 } 1691 1692 void __free_pages(struct page *page, unsigned int order) 1693 { 1694 if (put_page_testzero(page)) { 1695 if (order == 0) 1696 free_hot_page(page); 1697 else 1698 __free_pages_ok(page, order); 1699 } 1700 } 1701 1702 EXPORT_SYMBOL(__free_pages); 1703 1704 void free_pages(unsigned long addr, unsigned int order) 1705 { 1706 if (addr != 0) { 1707 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1708 __free_pages(virt_to_page((void *)addr), order); 1709 } 1710 } 1711 1712 EXPORT_SYMBOL(free_pages); 1713 1714 static unsigned int nr_free_zone_pages(int offset) 1715 { 1716 struct zoneref *z; 1717 struct zone *zone; 1718 1719 /* Just pick one node, since fallback list is circular */ 1720 unsigned int sum = 0; 1721 1722 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 1723 1724 for_each_zone_zonelist(zone, z, zonelist, offset) { 1725 unsigned long size = zone->present_pages; 1726 unsigned long high = zone->pages_high; 1727 if (size > high) 1728 sum += size - high; 1729 } 1730 1731 return sum; 1732 } 1733 1734 /* 1735 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1736 */ 1737 unsigned int nr_free_buffer_pages(void) 1738 { 1739 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1740 } 1741 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1742 1743 /* 1744 * Amount of free RAM allocatable within all zones 1745 */ 1746 unsigned int nr_free_pagecache_pages(void) 1747 { 1748 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1749 } 1750 1751 static inline void show_node(struct zone *zone) 1752 { 1753 if (NUMA_BUILD) 1754 printk("Node %d ", zone_to_nid(zone)); 1755 } 1756 1757 void si_meminfo(struct sysinfo *val) 1758 { 1759 val->totalram = totalram_pages; 1760 val->sharedram = 0; 1761 val->freeram = global_page_state(NR_FREE_PAGES); 1762 val->bufferram = nr_blockdev_pages(); 1763 val->totalhigh = totalhigh_pages; 1764 val->freehigh = nr_free_highpages(); 1765 val->mem_unit = PAGE_SIZE; 1766 } 1767 1768 EXPORT_SYMBOL(si_meminfo); 1769 1770 #ifdef CONFIG_NUMA 1771 void si_meminfo_node(struct sysinfo *val, int nid) 1772 { 1773 pg_data_t *pgdat = NODE_DATA(nid); 1774 1775 val->totalram = pgdat->node_present_pages; 1776 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1777 #ifdef CONFIG_HIGHMEM 1778 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1779 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1780 NR_FREE_PAGES); 1781 #else 1782 val->totalhigh = 0; 1783 val->freehigh = 0; 1784 #endif 1785 val->mem_unit = PAGE_SIZE; 1786 } 1787 #endif 1788 1789 #define K(x) ((x) << (PAGE_SHIFT-10)) 1790 1791 /* 1792 * Show free area list (used inside shift_scroll-lock stuff) 1793 * We also calculate the percentage fragmentation. We do this by counting the 1794 * memory on each free list with the exception of the first item on the list. 1795 */ 1796 void show_free_areas(void) 1797 { 1798 int cpu; 1799 struct zone *zone; 1800 1801 for_each_zone(zone) { 1802 if (!populated_zone(zone)) 1803 continue; 1804 1805 show_node(zone); 1806 printk("%s per-cpu:\n", zone->name); 1807 1808 for_each_online_cpu(cpu) { 1809 struct per_cpu_pageset *pageset; 1810 1811 pageset = zone_pcp(zone, cpu); 1812 1813 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 1814 cpu, pageset->pcp.high, 1815 pageset->pcp.batch, pageset->pcp.count); 1816 } 1817 } 1818 1819 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n" 1820 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1821 global_page_state(NR_ACTIVE), 1822 global_page_state(NR_INACTIVE), 1823 global_page_state(NR_FILE_DIRTY), 1824 global_page_state(NR_WRITEBACK), 1825 global_page_state(NR_UNSTABLE_NFS), 1826 global_page_state(NR_FREE_PAGES), 1827 global_page_state(NR_SLAB_RECLAIMABLE) + 1828 global_page_state(NR_SLAB_UNRECLAIMABLE), 1829 global_page_state(NR_FILE_MAPPED), 1830 global_page_state(NR_PAGETABLE), 1831 global_page_state(NR_BOUNCE)); 1832 1833 for_each_zone(zone) { 1834 int i; 1835 1836 if (!populated_zone(zone)) 1837 continue; 1838 1839 show_node(zone); 1840 printk("%s" 1841 " free:%lukB" 1842 " min:%lukB" 1843 " low:%lukB" 1844 " high:%lukB" 1845 " active:%lukB" 1846 " inactive:%lukB" 1847 " present:%lukB" 1848 " pages_scanned:%lu" 1849 " all_unreclaimable? %s" 1850 "\n", 1851 zone->name, 1852 K(zone_page_state(zone, NR_FREE_PAGES)), 1853 K(zone->pages_min), 1854 K(zone->pages_low), 1855 K(zone->pages_high), 1856 K(zone_page_state(zone, NR_ACTIVE)), 1857 K(zone_page_state(zone, NR_INACTIVE)), 1858 K(zone->present_pages), 1859 zone->pages_scanned, 1860 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1861 ); 1862 printk("lowmem_reserve[]:"); 1863 for (i = 0; i < MAX_NR_ZONES; i++) 1864 printk(" %lu", zone->lowmem_reserve[i]); 1865 printk("\n"); 1866 } 1867 1868 for_each_zone(zone) { 1869 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1870 1871 if (!populated_zone(zone)) 1872 continue; 1873 1874 show_node(zone); 1875 printk("%s: ", zone->name); 1876 1877 spin_lock_irqsave(&zone->lock, flags); 1878 for (order = 0; order < MAX_ORDER; order++) { 1879 nr[order] = zone->free_area[order].nr_free; 1880 total += nr[order] << order; 1881 } 1882 spin_unlock_irqrestore(&zone->lock, flags); 1883 for (order = 0; order < MAX_ORDER; order++) 1884 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1885 printk("= %lukB\n", K(total)); 1886 } 1887 1888 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 1889 1890 show_swap_cache_info(); 1891 } 1892 1893 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 1894 { 1895 zoneref->zone = zone; 1896 zoneref->zone_idx = zone_idx(zone); 1897 } 1898 1899 /* 1900 * Builds allocation fallback zone lists. 1901 * 1902 * Add all populated zones of a node to the zonelist. 1903 */ 1904 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 1905 int nr_zones, enum zone_type zone_type) 1906 { 1907 struct zone *zone; 1908 1909 BUG_ON(zone_type >= MAX_NR_ZONES); 1910 zone_type++; 1911 1912 do { 1913 zone_type--; 1914 zone = pgdat->node_zones + zone_type; 1915 if (populated_zone(zone)) { 1916 zoneref_set_zone(zone, 1917 &zonelist->_zonerefs[nr_zones++]); 1918 check_highest_zone(zone_type); 1919 } 1920 1921 } while (zone_type); 1922 return nr_zones; 1923 } 1924 1925 1926 /* 1927 * zonelist_order: 1928 * 0 = automatic detection of better ordering. 1929 * 1 = order by ([node] distance, -zonetype) 1930 * 2 = order by (-zonetype, [node] distance) 1931 * 1932 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 1933 * the same zonelist. So only NUMA can configure this param. 1934 */ 1935 #define ZONELIST_ORDER_DEFAULT 0 1936 #define ZONELIST_ORDER_NODE 1 1937 #define ZONELIST_ORDER_ZONE 2 1938 1939 /* zonelist order in the kernel. 1940 * set_zonelist_order() will set this to NODE or ZONE. 1941 */ 1942 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 1943 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 1944 1945 1946 #ifdef CONFIG_NUMA 1947 /* The value user specified ....changed by config */ 1948 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1949 /* string for sysctl */ 1950 #define NUMA_ZONELIST_ORDER_LEN 16 1951 char numa_zonelist_order[16] = "default"; 1952 1953 /* 1954 * interface for configure zonelist ordering. 1955 * command line option "numa_zonelist_order" 1956 * = "[dD]efault - default, automatic configuration. 1957 * = "[nN]ode - order by node locality, then by zone within node 1958 * = "[zZ]one - order by zone, then by locality within zone 1959 */ 1960 1961 static int __parse_numa_zonelist_order(char *s) 1962 { 1963 if (*s == 'd' || *s == 'D') { 1964 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 1965 } else if (*s == 'n' || *s == 'N') { 1966 user_zonelist_order = ZONELIST_ORDER_NODE; 1967 } else if (*s == 'z' || *s == 'Z') { 1968 user_zonelist_order = ZONELIST_ORDER_ZONE; 1969 } else { 1970 printk(KERN_WARNING 1971 "Ignoring invalid numa_zonelist_order value: " 1972 "%s\n", s); 1973 return -EINVAL; 1974 } 1975 return 0; 1976 } 1977 1978 static __init int setup_numa_zonelist_order(char *s) 1979 { 1980 if (s) 1981 return __parse_numa_zonelist_order(s); 1982 return 0; 1983 } 1984 early_param("numa_zonelist_order", setup_numa_zonelist_order); 1985 1986 /* 1987 * sysctl handler for numa_zonelist_order 1988 */ 1989 int numa_zonelist_order_handler(ctl_table *table, int write, 1990 struct file *file, void __user *buffer, size_t *length, 1991 loff_t *ppos) 1992 { 1993 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 1994 int ret; 1995 1996 if (write) 1997 strncpy(saved_string, (char*)table->data, 1998 NUMA_ZONELIST_ORDER_LEN); 1999 ret = proc_dostring(table, write, file, buffer, length, ppos); 2000 if (ret) 2001 return ret; 2002 if (write) { 2003 int oldval = user_zonelist_order; 2004 if (__parse_numa_zonelist_order((char*)table->data)) { 2005 /* 2006 * bogus value. restore saved string 2007 */ 2008 strncpy((char*)table->data, saved_string, 2009 NUMA_ZONELIST_ORDER_LEN); 2010 user_zonelist_order = oldval; 2011 } else if (oldval != user_zonelist_order) 2012 build_all_zonelists(); 2013 } 2014 return 0; 2015 } 2016 2017 2018 #define MAX_NODE_LOAD (num_online_nodes()) 2019 static int node_load[MAX_NUMNODES]; 2020 2021 /** 2022 * find_next_best_node - find the next node that should appear in a given node's fallback list 2023 * @node: node whose fallback list we're appending 2024 * @used_node_mask: nodemask_t of already used nodes 2025 * 2026 * We use a number of factors to determine which is the next node that should 2027 * appear on a given node's fallback list. The node should not have appeared 2028 * already in @node's fallback list, and it should be the next closest node 2029 * according to the distance array (which contains arbitrary distance values 2030 * from each node to each node in the system), and should also prefer nodes 2031 * with no CPUs, since presumably they'll have very little allocation pressure 2032 * on them otherwise. 2033 * It returns -1 if no node is found. 2034 */ 2035 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2036 { 2037 int n, val; 2038 int min_val = INT_MAX; 2039 int best_node = -1; 2040 node_to_cpumask_ptr(tmp, 0); 2041 2042 /* Use the local node if we haven't already */ 2043 if (!node_isset(node, *used_node_mask)) { 2044 node_set(node, *used_node_mask); 2045 return node; 2046 } 2047 2048 for_each_node_state(n, N_HIGH_MEMORY) { 2049 2050 /* Don't want a node to appear more than once */ 2051 if (node_isset(n, *used_node_mask)) 2052 continue; 2053 2054 /* Use the distance array to find the distance */ 2055 val = node_distance(node, n); 2056 2057 /* Penalize nodes under us ("prefer the next node") */ 2058 val += (n < node); 2059 2060 /* Give preference to headless and unused nodes */ 2061 node_to_cpumask_ptr_next(tmp, n); 2062 if (!cpus_empty(*tmp)) 2063 val += PENALTY_FOR_NODE_WITH_CPUS; 2064 2065 /* Slight preference for less loaded node */ 2066 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2067 val += node_load[n]; 2068 2069 if (val < min_val) { 2070 min_val = val; 2071 best_node = n; 2072 } 2073 } 2074 2075 if (best_node >= 0) 2076 node_set(best_node, *used_node_mask); 2077 2078 return best_node; 2079 } 2080 2081 2082 /* 2083 * Build zonelists ordered by node and zones within node. 2084 * This results in maximum locality--normal zone overflows into local 2085 * DMA zone, if any--but risks exhausting DMA zone. 2086 */ 2087 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2088 { 2089 int j; 2090 struct zonelist *zonelist; 2091 2092 zonelist = &pgdat->node_zonelists[0]; 2093 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2094 ; 2095 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2096 MAX_NR_ZONES - 1); 2097 zonelist->_zonerefs[j].zone = NULL; 2098 zonelist->_zonerefs[j].zone_idx = 0; 2099 } 2100 2101 /* 2102 * Build gfp_thisnode zonelists 2103 */ 2104 static void build_thisnode_zonelists(pg_data_t *pgdat) 2105 { 2106 int j; 2107 struct zonelist *zonelist; 2108 2109 zonelist = &pgdat->node_zonelists[1]; 2110 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2111 zonelist->_zonerefs[j].zone = NULL; 2112 zonelist->_zonerefs[j].zone_idx = 0; 2113 } 2114 2115 /* 2116 * Build zonelists ordered by zone and nodes within zones. 2117 * This results in conserving DMA zone[s] until all Normal memory is 2118 * exhausted, but results in overflowing to remote node while memory 2119 * may still exist in local DMA zone. 2120 */ 2121 static int node_order[MAX_NUMNODES]; 2122 2123 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2124 { 2125 int pos, j, node; 2126 int zone_type; /* needs to be signed */ 2127 struct zone *z; 2128 struct zonelist *zonelist; 2129 2130 zonelist = &pgdat->node_zonelists[0]; 2131 pos = 0; 2132 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2133 for (j = 0; j < nr_nodes; j++) { 2134 node = node_order[j]; 2135 z = &NODE_DATA(node)->node_zones[zone_type]; 2136 if (populated_zone(z)) { 2137 zoneref_set_zone(z, 2138 &zonelist->_zonerefs[pos++]); 2139 check_highest_zone(zone_type); 2140 } 2141 } 2142 } 2143 zonelist->_zonerefs[pos].zone = NULL; 2144 zonelist->_zonerefs[pos].zone_idx = 0; 2145 } 2146 2147 static int default_zonelist_order(void) 2148 { 2149 int nid, zone_type; 2150 unsigned long low_kmem_size,total_size; 2151 struct zone *z; 2152 int average_size; 2153 /* 2154 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2155 * If they are really small and used heavily, the system can fall 2156 * into OOM very easily. 2157 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2158 */ 2159 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2160 low_kmem_size = 0; 2161 total_size = 0; 2162 for_each_online_node(nid) { 2163 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2164 z = &NODE_DATA(nid)->node_zones[zone_type]; 2165 if (populated_zone(z)) { 2166 if (zone_type < ZONE_NORMAL) 2167 low_kmem_size += z->present_pages; 2168 total_size += z->present_pages; 2169 } 2170 } 2171 } 2172 if (!low_kmem_size || /* there are no DMA area. */ 2173 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2174 return ZONELIST_ORDER_NODE; 2175 /* 2176 * look into each node's config. 2177 * If there is a node whose DMA/DMA32 memory is very big area on 2178 * local memory, NODE_ORDER may be suitable. 2179 */ 2180 average_size = total_size / 2181 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2182 for_each_online_node(nid) { 2183 low_kmem_size = 0; 2184 total_size = 0; 2185 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2186 z = &NODE_DATA(nid)->node_zones[zone_type]; 2187 if (populated_zone(z)) { 2188 if (zone_type < ZONE_NORMAL) 2189 low_kmem_size += z->present_pages; 2190 total_size += z->present_pages; 2191 } 2192 } 2193 if (low_kmem_size && 2194 total_size > average_size && /* ignore small node */ 2195 low_kmem_size > total_size * 70/100) 2196 return ZONELIST_ORDER_NODE; 2197 } 2198 return ZONELIST_ORDER_ZONE; 2199 } 2200 2201 static void set_zonelist_order(void) 2202 { 2203 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2204 current_zonelist_order = default_zonelist_order(); 2205 else 2206 current_zonelist_order = user_zonelist_order; 2207 } 2208 2209 static void build_zonelists(pg_data_t *pgdat) 2210 { 2211 int j, node, load; 2212 enum zone_type i; 2213 nodemask_t used_mask; 2214 int local_node, prev_node; 2215 struct zonelist *zonelist; 2216 int order = current_zonelist_order; 2217 2218 /* initialize zonelists */ 2219 for (i = 0; i < MAX_ZONELISTS; i++) { 2220 zonelist = pgdat->node_zonelists + i; 2221 zonelist->_zonerefs[0].zone = NULL; 2222 zonelist->_zonerefs[0].zone_idx = 0; 2223 } 2224 2225 /* NUMA-aware ordering of nodes */ 2226 local_node = pgdat->node_id; 2227 load = num_online_nodes(); 2228 prev_node = local_node; 2229 nodes_clear(used_mask); 2230 2231 memset(node_load, 0, sizeof(node_load)); 2232 memset(node_order, 0, sizeof(node_order)); 2233 j = 0; 2234 2235 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2236 int distance = node_distance(local_node, node); 2237 2238 /* 2239 * If another node is sufficiently far away then it is better 2240 * to reclaim pages in a zone before going off node. 2241 */ 2242 if (distance > RECLAIM_DISTANCE) 2243 zone_reclaim_mode = 1; 2244 2245 /* 2246 * We don't want to pressure a particular node. 2247 * So adding penalty to the first node in same 2248 * distance group to make it round-robin. 2249 */ 2250 if (distance != node_distance(local_node, prev_node)) 2251 node_load[node] = load; 2252 2253 prev_node = node; 2254 load--; 2255 if (order == ZONELIST_ORDER_NODE) 2256 build_zonelists_in_node_order(pgdat, node); 2257 else 2258 node_order[j++] = node; /* remember order */ 2259 } 2260 2261 if (order == ZONELIST_ORDER_ZONE) { 2262 /* calculate node order -- i.e., DMA last! */ 2263 build_zonelists_in_zone_order(pgdat, j); 2264 } 2265 2266 build_thisnode_zonelists(pgdat); 2267 } 2268 2269 /* Construct the zonelist performance cache - see further mmzone.h */ 2270 static void build_zonelist_cache(pg_data_t *pgdat) 2271 { 2272 struct zonelist *zonelist; 2273 struct zonelist_cache *zlc; 2274 struct zoneref *z; 2275 2276 zonelist = &pgdat->node_zonelists[0]; 2277 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2278 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2279 for (z = zonelist->_zonerefs; z->zone; z++) 2280 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2281 } 2282 2283 2284 #else /* CONFIG_NUMA */ 2285 2286 static void set_zonelist_order(void) 2287 { 2288 current_zonelist_order = ZONELIST_ORDER_ZONE; 2289 } 2290 2291 static void build_zonelists(pg_data_t *pgdat) 2292 { 2293 int node, local_node; 2294 enum zone_type j; 2295 struct zonelist *zonelist; 2296 2297 local_node = pgdat->node_id; 2298 2299 zonelist = &pgdat->node_zonelists[0]; 2300 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2301 2302 /* 2303 * Now we build the zonelist so that it contains the zones 2304 * of all the other nodes. 2305 * We don't want to pressure a particular node, so when 2306 * building the zones for node N, we make sure that the 2307 * zones coming right after the local ones are those from 2308 * node N+1 (modulo N) 2309 */ 2310 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2311 if (!node_online(node)) 2312 continue; 2313 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2314 MAX_NR_ZONES - 1); 2315 } 2316 for (node = 0; node < local_node; node++) { 2317 if (!node_online(node)) 2318 continue; 2319 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2320 MAX_NR_ZONES - 1); 2321 } 2322 2323 zonelist->_zonerefs[j].zone = NULL; 2324 zonelist->_zonerefs[j].zone_idx = 0; 2325 } 2326 2327 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2328 static void build_zonelist_cache(pg_data_t *pgdat) 2329 { 2330 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2331 } 2332 2333 #endif /* CONFIG_NUMA */ 2334 2335 /* return values int ....just for stop_machine_run() */ 2336 static int __build_all_zonelists(void *dummy) 2337 { 2338 int nid; 2339 2340 for_each_online_node(nid) { 2341 pg_data_t *pgdat = NODE_DATA(nid); 2342 2343 build_zonelists(pgdat); 2344 build_zonelist_cache(pgdat); 2345 } 2346 return 0; 2347 } 2348 2349 void build_all_zonelists(void) 2350 { 2351 set_zonelist_order(); 2352 2353 if (system_state == SYSTEM_BOOTING) { 2354 __build_all_zonelists(NULL); 2355 cpuset_init_current_mems_allowed(); 2356 } else { 2357 /* we have to stop all cpus to guarantee there is no user 2358 of zonelist */ 2359 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 2360 /* cpuset refresh routine should be here */ 2361 } 2362 vm_total_pages = nr_free_pagecache_pages(); 2363 /* 2364 * Disable grouping by mobility if the number of pages in the 2365 * system is too low to allow the mechanism to work. It would be 2366 * more accurate, but expensive to check per-zone. This check is 2367 * made on memory-hotadd so a system can start with mobility 2368 * disabled and enable it later 2369 */ 2370 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2371 page_group_by_mobility_disabled = 1; 2372 else 2373 page_group_by_mobility_disabled = 0; 2374 2375 printk("Built %i zonelists in %s order, mobility grouping %s. " 2376 "Total pages: %ld\n", 2377 num_online_nodes(), 2378 zonelist_order_name[current_zonelist_order], 2379 page_group_by_mobility_disabled ? "off" : "on", 2380 vm_total_pages); 2381 #ifdef CONFIG_NUMA 2382 printk("Policy zone: %s\n", zone_names[policy_zone]); 2383 #endif 2384 } 2385 2386 /* 2387 * Helper functions to size the waitqueue hash table. 2388 * Essentially these want to choose hash table sizes sufficiently 2389 * large so that collisions trying to wait on pages are rare. 2390 * But in fact, the number of active page waitqueues on typical 2391 * systems is ridiculously low, less than 200. So this is even 2392 * conservative, even though it seems large. 2393 * 2394 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2395 * waitqueues, i.e. the size of the waitq table given the number of pages. 2396 */ 2397 #define PAGES_PER_WAITQUEUE 256 2398 2399 #ifndef CONFIG_MEMORY_HOTPLUG 2400 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2401 { 2402 unsigned long size = 1; 2403 2404 pages /= PAGES_PER_WAITQUEUE; 2405 2406 while (size < pages) 2407 size <<= 1; 2408 2409 /* 2410 * Once we have dozens or even hundreds of threads sleeping 2411 * on IO we've got bigger problems than wait queue collision. 2412 * Limit the size of the wait table to a reasonable size. 2413 */ 2414 size = min(size, 4096UL); 2415 2416 return max(size, 4UL); 2417 } 2418 #else 2419 /* 2420 * A zone's size might be changed by hot-add, so it is not possible to determine 2421 * a suitable size for its wait_table. So we use the maximum size now. 2422 * 2423 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2424 * 2425 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2426 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2427 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2428 * 2429 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2430 * or more by the traditional way. (See above). It equals: 2431 * 2432 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2433 * ia64(16K page size) : = ( 8G + 4M)byte. 2434 * powerpc (64K page size) : = (32G +16M)byte. 2435 */ 2436 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2437 { 2438 return 4096UL; 2439 } 2440 #endif 2441 2442 /* 2443 * This is an integer logarithm so that shifts can be used later 2444 * to extract the more random high bits from the multiplicative 2445 * hash function before the remainder is taken. 2446 */ 2447 static inline unsigned long wait_table_bits(unsigned long size) 2448 { 2449 return ffz(~size); 2450 } 2451 2452 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2453 2454 /* 2455 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2456 * of blocks reserved is based on zone->pages_min. The memory within the 2457 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2458 * higher will lead to a bigger reserve which will get freed as contiguous 2459 * blocks as reclaim kicks in 2460 */ 2461 static void setup_zone_migrate_reserve(struct zone *zone) 2462 { 2463 unsigned long start_pfn, pfn, end_pfn; 2464 struct page *page; 2465 unsigned long reserve, block_migratetype; 2466 2467 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2468 start_pfn = zone->zone_start_pfn; 2469 end_pfn = start_pfn + zone->spanned_pages; 2470 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2471 pageblock_order; 2472 2473 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2474 if (!pfn_valid(pfn)) 2475 continue; 2476 page = pfn_to_page(pfn); 2477 2478 /* Blocks with reserved pages will never free, skip them. */ 2479 if (PageReserved(page)) 2480 continue; 2481 2482 block_migratetype = get_pageblock_migratetype(page); 2483 2484 /* If this block is reserved, account for it */ 2485 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2486 reserve--; 2487 continue; 2488 } 2489 2490 /* Suitable for reserving if this block is movable */ 2491 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2492 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2493 move_freepages_block(zone, page, MIGRATE_RESERVE); 2494 reserve--; 2495 continue; 2496 } 2497 2498 /* 2499 * If the reserve is met and this is a previous reserved block, 2500 * take it back 2501 */ 2502 if (block_migratetype == MIGRATE_RESERVE) { 2503 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2504 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2505 } 2506 } 2507 } 2508 2509 /* 2510 * Initially all pages are reserved - free ones are freed 2511 * up by free_all_bootmem() once the early boot process is 2512 * done. Non-atomic initialization, single-pass. 2513 */ 2514 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2515 unsigned long start_pfn, enum memmap_context context) 2516 { 2517 struct page *page; 2518 unsigned long end_pfn = start_pfn + size; 2519 unsigned long pfn; 2520 struct zone *z; 2521 2522 z = &NODE_DATA(nid)->node_zones[zone]; 2523 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2524 /* 2525 * There can be holes in boot-time mem_map[]s 2526 * handed to this function. They do not 2527 * exist on hotplugged memory. 2528 */ 2529 if (context == MEMMAP_EARLY) { 2530 if (!early_pfn_valid(pfn)) 2531 continue; 2532 if (!early_pfn_in_nid(pfn, nid)) 2533 continue; 2534 } 2535 page = pfn_to_page(pfn); 2536 set_page_links(page, zone, nid, pfn); 2537 init_page_count(page); 2538 reset_page_mapcount(page); 2539 SetPageReserved(page); 2540 /* 2541 * Mark the block movable so that blocks are reserved for 2542 * movable at startup. This will force kernel allocations 2543 * to reserve their blocks rather than leaking throughout 2544 * the address space during boot when many long-lived 2545 * kernel allocations are made. Later some blocks near 2546 * the start are marked MIGRATE_RESERVE by 2547 * setup_zone_migrate_reserve() 2548 * 2549 * bitmap is created for zone's valid pfn range. but memmap 2550 * can be created for invalid pages (for alignment) 2551 * check here not to call set_pageblock_migratetype() against 2552 * pfn out of zone. 2553 */ 2554 if ((z->zone_start_pfn <= pfn) 2555 && (pfn < z->zone_start_pfn + z->spanned_pages) 2556 && !(pfn & (pageblock_nr_pages - 1))) 2557 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2558 2559 INIT_LIST_HEAD(&page->lru); 2560 #ifdef WANT_PAGE_VIRTUAL 2561 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2562 if (!is_highmem_idx(zone)) 2563 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2564 #endif 2565 } 2566 } 2567 2568 static void __meminit zone_init_free_lists(struct zone *zone) 2569 { 2570 int order, t; 2571 for_each_migratetype_order(order, t) { 2572 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2573 zone->free_area[order].nr_free = 0; 2574 } 2575 } 2576 2577 #ifndef __HAVE_ARCH_MEMMAP_INIT 2578 #define memmap_init(size, nid, zone, start_pfn) \ 2579 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2580 #endif 2581 2582 static int zone_batchsize(struct zone *zone) 2583 { 2584 int batch; 2585 2586 /* 2587 * The per-cpu-pages pools are set to around 1000th of the 2588 * size of the zone. But no more than 1/2 of a meg. 2589 * 2590 * OK, so we don't know how big the cache is. So guess. 2591 */ 2592 batch = zone->present_pages / 1024; 2593 if (batch * PAGE_SIZE > 512 * 1024) 2594 batch = (512 * 1024) / PAGE_SIZE; 2595 batch /= 4; /* We effectively *= 4 below */ 2596 if (batch < 1) 2597 batch = 1; 2598 2599 /* 2600 * Clamp the batch to a 2^n - 1 value. Having a power 2601 * of 2 value was found to be more likely to have 2602 * suboptimal cache aliasing properties in some cases. 2603 * 2604 * For example if 2 tasks are alternately allocating 2605 * batches of pages, one task can end up with a lot 2606 * of pages of one half of the possible page colors 2607 * and the other with pages of the other colors. 2608 */ 2609 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2610 2611 return batch; 2612 } 2613 2614 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2615 { 2616 struct per_cpu_pages *pcp; 2617 2618 memset(p, 0, sizeof(*p)); 2619 2620 pcp = &p->pcp; 2621 pcp->count = 0; 2622 pcp->high = 6 * batch; 2623 pcp->batch = max(1UL, 1 * batch); 2624 INIT_LIST_HEAD(&pcp->list); 2625 } 2626 2627 /* 2628 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2629 * to the value high for the pageset p. 2630 */ 2631 2632 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2633 unsigned long high) 2634 { 2635 struct per_cpu_pages *pcp; 2636 2637 pcp = &p->pcp; 2638 pcp->high = high; 2639 pcp->batch = max(1UL, high/4); 2640 if ((high/4) > (PAGE_SHIFT * 8)) 2641 pcp->batch = PAGE_SHIFT * 8; 2642 } 2643 2644 2645 #ifdef CONFIG_NUMA 2646 /* 2647 * Boot pageset table. One per cpu which is going to be used for all 2648 * zones and all nodes. The parameters will be set in such a way 2649 * that an item put on a list will immediately be handed over to 2650 * the buddy list. This is safe since pageset manipulation is done 2651 * with interrupts disabled. 2652 * 2653 * Some NUMA counter updates may also be caught by the boot pagesets. 2654 * 2655 * The boot_pagesets must be kept even after bootup is complete for 2656 * unused processors and/or zones. They do play a role for bootstrapping 2657 * hotplugged processors. 2658 * 2659 * zoneinfo_show() and maybe other functions do 2660 * not check if the processor is online before following the pageset pointer. 2661 * Other parts of the kernel may not check if the zone is available. 2662 */ 2663 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2664 2665 /* 2666 * Dynamically allocate memory for the 2667 * per cpu pageset array in struct zone. 2668 */ 2669 static int __cpuinit process_zones(int cpu) 2670 { 2671 struct zone *zone, *dzone; 2672 int node = cpu_to_node(cpu); 2673 2674 node_set_state(node, N_CPU); /* this node has a cpu */ 2675 2676 for_each_zone(zone) { 2677 2678 if (!populated_zone(zone)) 2679 continue; 2680 2681 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2682 GFP_KERNEL, node); 2683 if (!zone_pcp(zone, cpu)) 2684 goto bad; 2685 2686 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2687 2688 if (percpu_pagelist_fraction) 2689 setup_pagelist_highmark(zone_pcp(zone, cpu), 2690 (zone->present_pages / percpu_pagelist_fraction)); 2691 } 2692 2693 return 0; 2694 bad: 2695 for_each_zone(dzone) { 2696 if (!populated_zone(dzone)) 2697 continue; 2698 if (dzone == zone) 2699 break; 2700 kfree(zone_pcp(dzone, cpu)); 2701 zone_pcp(dzone, cpu) = NULL; 2702 } 2703 return -ENOMEM; 2704 } 2705 2706 static inline void free_zone_pagesets(int cpu) 2707 { 2708 struct zone *zone; 2709 2710 for_each_zone(zone) { 2711 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2712 2713 /* Free per_cpu_pageset if it is slab allocated */ 2714 if (pset != &boot_pageset[cpu]) 2715 kfree(pset); 2716 zone_pcp(zone, cpu) = NULL; 2717 } 2718 } 2719 2720 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2721 unsigned long action, 2722 void *hcpu) 2723 { 2724 int cpu = (long)hcpu; 2725 int ret = NOTIFY_OK; 2726 2727 switch (action) { 2728 case CPU_UP_PREPARE: 2729 case CPU_UP_PREPARE_FROZEN: 2730 if (process_zones(cpu)) 2731 ret = NOTIFY_BAD; 2732 break; 2733 case CPU_UP_CANCELED: 2734 case CPU_UP_CANCELED_FROZEN: 2735 case CPU_DEAD: 2736 case CPU_DEAD_FROZEN: 2737 free_zone_pagesets(cpu); 2738 break; 2739 default: 2740 break; 2741 } 2742 return ret; 2743 } 2744 2745 static struct notifier_block __cpuinitdata pageset_notifier = 2746 { &pageset_cpuup_callback, NULL, 0 }; 2747 2748 void __init setup_per_cpu_pageset(void) 2749 { 2750 int err; 2751 2752 /* Initialize per_cpu_pageset for cpu 0. 2753 * A cpuup callback will do this for every cpu 2754 * as it comes online 2755 */ 2756 err = process_zones(smp_processor_id()); 2757 BUG_ON(err); 2758 register_cpu_notifier(&pageset_notifier); 2759 } 2760 2761 #endif 2762 2763 static noinline __init_refok 2764 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2765 { 2766 int i; 2767 struct pglist_data *pgdat = zone->zone_pgdat; 2768 size_t alloc_size; 2769 2770 /* 2771 * The per-page waitqueue mechanism uses hashed waitqueues 2772 * per zone. 2773 */ 2774 zone->wait_table_hash_nr_entries = 2775 wait_table_hash_nr_entries(zone_size_pages); 2776 zone->wait_table_bits = 2777 wait_table_bits(zone->wait_table_hash_nr_entries); 2778 alloc_size = zone->wait_table_hash_nr_entries 2779 * sizeof(wait_queue_head_t); 2780 2781 if (!slab_is_available()) { 2782 zone->wait_table = (wait_queue_head_t *) 2783 alloc_bootmem_node(pgdat, alloc_size); 2784 } else { 2785 /* 2786 * This case means that a zone whose size was 0 gets new memory 2787 * via memory hot-add. 2788 * But it may be the case that a new node was hot-added. In 2789 * this case vmalloc() will not be able to use this new node's 2790 * memory - this wait_table must be initialized to use this new 2791 * node itself as well. 2792 * To use this new node's memory, further consideration will be 2793 * necessary. 2794 */ 2795 zone->wait_table = vmalloc(alloc_size); 2796 } 2797 if (!zone->wait_table) 2798 return -ENOMEM; 2799 2800 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2801 init_waitqueue_head(zone->wait_table + i); 2802 2803 return 0; 2804 } 2805 2806 static __meminit void zone_pcp_init(struct zone *zone) 2807 { 2808 int cpu; 2809 unsigned long batch = zone_batchsize(zone); 2810 2811 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2812 #ifdef CONFIG_NUMA 2813 /* Early boot. Slab allocator not functional yet */ 2814 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2815 setup_pageset(&boot_pageset[cpu],0); 2816 #else 2817 setup_pageset(zone_pcp(zone,cpu), batch); 2818 #endif 2819 } 2820 if (zone->present_pages) 2821 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2822 zone->name, zone->present_pages, batch); 2823 } 2824 2825 __meminit int init_currently_empty_zone(struct zone *zone, 2826 unsigned long zone_start_pfn, 2827 unsigned long size, 2828 enum memmap_context context) 2829 { 2830 struct pglist_data *pgdat = zone->zone_pgdat; 2831 int ret; 2832 ret = zone_wait_table_init(zone, size); 2833 if (ret) 2834 return ret; 2835 pgdat->nr_zones = zone_idx(zone) + 1; 2836 2837 zone->zone_start_pfn = zone_start_pfn; 2838 2839 zone_init_free_lists(zone); 2840 2841 return 0; 2842 } 2843 2844 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2845 /* 2846 * Basic iterator support. Return the first range of PFNs for a node 2847 * Note: nid == MAX_NUMNODES returns first region regardless of node 2848 */ 2849 static int __meminit first_active_region_index_in_nid(int nid) 2850 { 2851 int i; 2852 2853 for (i = 0; i < nr_nodemap_entries; i++) 2854 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2855 return i; 2856 2857 return -1; 2858 } 2859 2860 /* 2861 * Basic iterator support. Return the next active range of PFNs for a node 2862 * Note: nid == MAX_NUMNODES returns next region regardless of node 2863 */ 2864 static int __meminit next_active_region_index_in_nid(int index, int nid) 2865 { 2866 for (index = index + 1; index < nr_nodemap_entries; index++) 2867 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2868 return index; 2869 2870 return -1; 2871 } 2872 2873 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2874 /* 2875 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2876 * Architectures may implement their own version but if add_active_range() 2877 * was used and there are no special requirements, this is a convenient 2878 * alternative 2879 */ 2880 int __meminit early_pfn_to_nid(unsigned long pfn) 2881 { 2882 int i; 2883 2884 for (i = 0; i < nr_nodemap_entries; i++) { 2885 unsigned long start_pfn = early_node_map[i].start_pfn; 2886 unsigned long end_pfn = early_node_map[i].end_pfn; 2887 2888 if (start_pfn <= pfn && pfn < end_pfn) 2889 return early_node_map[i].nid; 2890 } 2891 2892 return 0; 2893 } 2894 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 2895 2896 /* Basic iterator support to walk early_node_map[] */ 2897 #define for_each_active_range_index_in_nid(i, nid) \ 2898 for (i = first_active_region_index_in_nid(nid); i != -1; \ 2899 i = next_active_region_index_in_nid(i, nid)) 2900 2901 /** 2902 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 2903 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 2904 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 2905 * 2906 * If an architecture guarantees that all ranges registered with 2907 * add_active_ranges() contain no holes and may be freed, this 2908 * this function may be used instead of calling free_bootmem() manually. 2909 */ 2910 void __init free_bootmem_with_active_regions(int nid, 2911 unsigned long max_low_pfn) 2912 { 2913 int i; 2914 2915 for_each_active_range_index_in_nid(i, nid) { 2916 unsigned long size_pages = 0; 2917 unsigned long end_pfn = early_node_map[i].end_pfn; 2918 2919 if (early_node_map[i].start_pfn >= max_low_pfn) 2920 continue; 2921 2922 if (end_pfn > max_low_pfn) 2923 end_pfn = max_low_pfn; 2924 2925 size_pages = end_pfn - early_node_map[i].start_pfn; 2926 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 2927 PFN_PHYS(early_node_map[i].start_pfn), 2928 size_pages << PAGE_SHIFT); 2929 } 2930 } 2931 2932 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 2933 { 2934 int i; 2935 int ret; 2936 2937 for_each_active_range_index_in_nid(i, nid) { 2938 ret = work_fn(early_node_map[i].start_pfn, 2939 early_node_map[i].end_pfn, data); 2940 if (ret) 2941 break; 2942 } 2943 } 2944 /** 2945 * sparse_memory_present_with_active_regions - Call memory_present for each active range 2946 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 2947 * 2948 * If an architecture guarantees that all ranges registered with 2949 * add_active_ranges() contain no holes and may be freed, this 2950 * function may be used instead of calling memory_present() manually. 2951 */ 2952 void __init sparse_memory_present_with_active_regions(int nid) 2953 { 2954 int i; 2955 2956 for_each_active_range_index_in_nid(i, nid) 2957 memory_present(early_node_map[i].nid, 2958 early_node_map[i].start_pfn, 2959 early_node_map[i].end_pfn); 2960 } 2961 2962 /** 2963 * push_node_boundaries - Push node boundaries to at least the requested boundary 2964 * @nid: The nid of the node to push the boundary for 2965 * @start_pfn: The start pfn of the node 2966 * @end_pfn: The end pfn of the node 2967 * 2968 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 2969 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 2970 * be hotplugged even though no physical memory exists. This function allows 2971 * an arch to push out the node boundaries so mem_map is allocated that can 2972 * be used later. 2973 */ 2974 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 2975 void __init push_node_boundaries(unsigned int nid, 2976 unsigned long start_pfn, unsigned long end_pfn) 2977 { 2978 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n", 2979 nid, start_pfn, end_pfn); 2980 2981 /* Initialise the boundary for this node if necessary */ 2982 if (node_boundary_end_pfn[nid] == 0) 2983 node_boundary_start_pfn[nid] = -1UL; 2984 2985 /* Update the boundaries */ 2986 if (node_boundary_start_pfn[nid] > start_pfn) 2987 node_boundary_start_pfn[nid] = start_pfn; 2988 if (node_boundary_end_pfn[nid] < end_pfn) 2989 node_boundary_end_pfn[nid] = end_pfn; 2990 } 2991 2992 /* If necessary, push the node boundary out for reserve hotadd */ 2993 static void __meminit account_node_boundary(unsigned int nid, 2994 unsigned long *start_pfn, unsigned long *end_pfn) 2995 { 2996 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n", 2997 nid, *start_pfn, *end_pfn); 2998 2999 /* Return if boundary information has not been provided */ 3000 if (node_boundary_end_pfn[nid] == 0) 3001 return; 3002 3003 /* Check the boundaries and update if necessary */ 3004 if (node_boundary_start_pfn[nid] < *start_pfn) 3005 *start_pfn = node_boundary_start_pfn[nid]; 3006 if (node_boundary_end_pfn[nid] > *end_pfn) 3007 *end_pfn = node_boundary_end_pfn[nid]; 3008 } 3009 #else 3010 void __init push_node_boundaries(unsigned int nid, 3011 unsigned long start_pfn, unsigned long end_pfn) {} 3012 3013 static void __meminit account_node_boundary(unsigned int nid, 3014 unsigned long *start_pfn, unsigned long *end_pfn) {} 3015 #endif 3016 3017 3018 /** 3019 * get_pfn_range_for_nid - Return the start and end page frames for a node 3020 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3021 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3022 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3023 * 3024 * It returns the start and end page frame of a node based on information 3025 * provided by an arch calling add_active_range(). If called for a node 3026 * with no available memory, a warning is printed and the start and end 3027 * PFNs will be 0. 3028 */ 3029 void __meminit get_pfn_range_for_nid(unsigned int nid, 3030 unsigned long *start_pfn, unsigned long *end_pfn) 3031 { 3032 int i; 3033 *start_pfn = -1UL; 3034 *end_pfn = 0; 3035 3036 for_each_active_range_index_in_nid(i, nid) { 3037 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3038 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3039 } 3040 3041 if (*start_pfn == -1UL) 3042 *start_pfn = 0; 3043 3044 /* Push the node boundaries out if requested */ 3045 account_node_boundary(nid, start_pfn, end_pfn); 3046 } 3047 3048 /* 3049 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3050 * assumption is made that zones within a node are ordered in monotonic 3051 * increasing memory addresses so that the "highest" populated zone is used 3052 */ 3053 void __init find_usable_zone_for_movable(void) 3054 { 3055 int zone_index; 3056 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3057 if (zone_index == ZONE_MOVABLE) 3058 continue; 3059 3060 if (arch_zone_highest_possible_pfn[zone_index] > 3061 arch_zone_lowest_possible_pfn[zone_index]) 3062 break; 3063 } 3064 3065 VM_BUG_ON(zone_index == -1); 3066 movable_zone = zone_index; 3067 } 3068 3069 /* 3070 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3071 * because it is sized independant of architecture. Unlike the other zones, 3072 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3073 * in each node depending on the size of each node and how evenly kernelcore 3074 * is distributed. This helper function adjusts the zone ranges 3075 * provided by the architecture for a given node by using the end of the 3076 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3077 * zones within a node are in order of monotonic increases memory addresses 3078 */ 3079 void __meminit adjust_zone_range_for_zone_movable(int nid, 3080 unsigned long zone_type, 3081 unsigned long node_start_pfn, 3082 unsigned long node_end_pfn, 3083 unsigned long *zone_start_pfn, 3084 unsigned long *zone_end_pfn) 3085 { 3086 /* Only adjust if ZONE_MOVABLE is on this node */ 3087 if (zone_movable_pfn[nid]) { 3088 /* Size ZONE_MOVABLE */ 3089 if (zone_type == ZONE_MOVABLE) { 3090 *zone_start_pfn = zone_movable_pfn[nid]; 3091 *zone_end_pfn = min(node_end_pfn, 3092 arch_zone_highest_possible_pfn[movable_zone]); 3093 3094 /* Adjust for ZONE_MOVABLE starting within this range */ 3095 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3096 *zone_end_pfn > zone_movable_pfn[nid]) { 3097 *zone_end_pfn = zone_movable_pfn[nid]; 3098 3099 /* Check if this whole range is within ZONE_MOVABLE */ 3100 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3101 *zone_start_pfn = *zone_end_pfn; 3102 } 3103 } 3104 3105 /* 3106 * Return the number of pages a zone spans in a node, including holes 3107 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3108 */ 3109 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3110 unsigned long zone_type, 3111 unsigned long *ignored) 3112 { 3113 unsigned long node_start_pfn, node_end_pfn; 3114 unsigned long zone_start_pfn, zone_end_pfn; 3115 3116 /* Get the start and end of the node and zone */ 3117 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3118 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3119 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3120 adjust_zone_range_for_zone_movable(nid, zone_type, 3121 node_start_pfn, node_end_pfn, 3122 &zone_start_pfn, &zone_end_pfn); 3123 3124 /* Check that this node has pages within the zone's required range */ 3125 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3126 return 0; 3127 3128 /* Move the zone boundaries inside the node if necessary */ 3129 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3130 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3131 3132 /* Return the spanned pages */ 3133 return zone_end_pfn - zone_start_pfn; 3134 } 3135 3136 /* 3137 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3138 * then all holes in the requested range will be accounted for. 3139 */ 3140 unsigned long __meminit __absent_pages_in_range(int nid, 3141 unsigned long range_start_pfn, 3142 unsigned long range_end_pfn) 3143 { 3144 int i = 0; 3145 unsigned long prev_end_pfn = 0, hole_pages = 0; 3146 unsigned long start_pfn; 3147 3148 /* Find the end_pfn of the first active range of pfns in the node */ 3149 i = first_active_region_index_in_nid(nid); 3150 if (i == -1) 3151 return 0; 3152 3153 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3154 3155 /* Account for ranges before physical memory on this node */ 3156 if (early_node_map[i].start_pfn > range_start_pfn) 3157 hole_pages = prev_end_pfn - range_start_pfn; 3158 3159 /* Find all holes for the zone within the node */ 3160 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3161 3162 /* No need to continue if prev_end_pfn is outside the zone */ 3163 if (prev_end_pfn >= range_end_pfn) 3164 break; 3165 3166 /* Make sure the end of the zone is not within the hole */ 3167 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3168 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3169 3170 /* Update the hole size cound and move on */ 3171 if (start_pfn > range_start_pfn) { 3172 BUG_ON(prev_end_pfn > start_pfn); 3173 hole_pages += start_pfn - prev_end_pfn; 3174 } 3175 prev_end_pfn = early_node_map[i].end_pfn; 3176 } 3177 3178 /* Account for ranges past physical memory on this node */ 3179 if (range_end_pfn > prev_end_pfn) 3180 hole_pages += range_end_pfn - 3181 max(range_start_pfn, prev_end_pfn); 3182 3183 return hole_pages; 3184 } 3185 3186 /** 3187 * absent_pages_in_range - Return number of page frames in holes within a range 3188 * @start_pfn: The start PFN to start searching for holes 3189 * @end_pfn: The end PFN to stop searching for holes 3190 * 3191 * It returns the number of pages frames in memory holes within a range. 3192 */ 3193 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3194 unsigned long end_pfn) 3195 { 3196 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3197 } 3198 3199 /* Return the number of page frames in holes in a zone on a node */ 3200 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3201 unsigned long zone_type, 3202 unsigned long *ignored) 3203 { 3204 unsigned long node_start_pfn, node_end_pfn; 3205 unsigned long zone_start_pfn, zone_end_pfn; 3206 3207 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3208 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3209 node_start_pfn); 3210 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3211 node_end_pfn); 3212 3213 adjust_zone_range_for_zone_movable(nid, zone_type, 3214 node_start_pfn, node_end_pfn, 3215 &zone_start_pfn, &zone_end_pfn); 3216 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3217 } 3218 3219 #else 3220 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3221 unsigned long zone_type, 3222 unsigned long *zones_size) 3223 { 3224 return zones_size[zone_type]; 3225 } 3226 3227 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3228 unsigned long zone_type, 3229 unsigned long *zholes_size) 3230 { 3231 if (!zholes_size) 3232 return 0; 3233 3234 return zholes_size[zone_type]; 3235 } 3236 3237 #endif 3238 3239 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3240 unsigned long *zones_size, unsigned long *zholes_size) 3241 { 3242 unsigned long realtotalpages, totalpages = 0; 3243 enum zone_type i; 3244 3245 for (i = 0; i < MAX_NR_ZONES; i++) 3246 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3247 zones_size); 3248 pgdat->node_spanned_pages = totalpages; 3249 3250 realtotalpages = totalpages; 3251 for (i = 0; i < MAX_NR_ZONES; i++) 3252 realtotalpages -= 3253 zone_absent_pages_in_node(pgdat->node_id, i, 3254 zholes_size); 3255 pgdat->node_present_pages = realtotalpages; 3256 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3257 realtotalpages); 3258 } 3259 3260 #ifndef CONFIG_SPARSEMEM 3261 /* 3262 * Calculate the size of the zone->blockflags rounded to an unsigned long 3263 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3264 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3265 * round what is now in bits to nearest long in bits, then return it in 3266 * bytes. 3267 */ 3268 static unsigned long __init usemap_size(unsigned long zonesize) 3269 { 3270 unsigned long usemapsize; 3271 3272 usemapsize = roundup(zonesize, pageblock_nr_pages); 3273 usemapsize = usemapsize >> pageblock_order; 3274 usemapsize *= NR_PAGEBLOCK_BITS; 3275 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3276 3277 return usemapsize / 8; 3278 } 3279 3280 static void __init setup_usemap(struct pglist_data *pgdat, 3281 struct zone *zone, unsigned long zonesize) 3282 { 3283 unsigned long usemapsize = usemap_size(zonesize); 3284 zone->pageblock_flags = NULL; 3285 if (usemapsize) { 3286 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3287 memset(zone->pageblock_flags, 0, usemapsize); 3288 } 3289 } 3290 #else 3291 static void inline setup_usemap(struct pglist_data *pgdat, 3292 struct zone *zone, unsigned long zonesize) {} 3293 #endif /* CONFIG_SPARSEMEM */ 3294 3295 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3296 3297 /* Return a sensible default order for the pageblock size. */ 3298 static inline int pageblock_default_order(void) 3299 { 3300 if (HPAGE_SHIFT > PAGE_SHIFT) 3301 return HUGETLB_PAGE_ORDER; 3302 3303 return MAX_ORDER-1; 3304 } 3305 3306 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3307 static inline void __init set_pageblock_order(unsigned int order) 3308 { 3309 /* Check that pageblock_nr_pages has not already been setup */ 3310 if (pageblock_order) 3311 return; 3312 3313 /* 3314 * Assume the largest contiguous order of interest is a huge page. 3315 * This value may be variable depending on boot parameters on IA64 3316 */ 3317 pageblock_order = order; 3318 } 3319 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3320 3321 /* 3322 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3323 * and pageblock_default_order() are unused as pageblock_order is set 3324 * at compile-time. See include/linux/pageblock-flags.h for the values of 3325 * pageblock_order based on the kernel config 3326 */ 3327 static inline int pageblock_default_order(unsigned int order) 3328 { 3329 return MAX_ORDER-1; 3330 } 3331 #define set_pageblock_order(x) do {} while (0) 3332 3333 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3334 3335 /* 3336 * Set up the zone data structures: 3337 * - mark all pages reserved 3338 * - mark all memory queues empty 3339 * - clear the memory bitmaps 3340 */ 3341 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3342 unsigned long *zones_size, unsigned long *zholes_size) 3343 { 3344 enum zone_type j; 3345 int nid = pgdat->node_id; 3346 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3347 int ret; 3348 3349 pgdat_resize_init(pgdat); 3350 pgdat->nr_zones = 0; 3351 init_waitqueue_head(&pgdat->kswapd_wait); 3352 pgdat->kswapd_max_order = 0; 3353 3354 for (j = 0; j < MAX_NR_ZONES; j++) { 3355 struct zone *zone = pgdat->node_zones + j; 3356 unsigned long size, realsize, memmap_pages; 3357 3358 size = zone_spanned_pages_in_node(nid, j, zones_size); 3359 realsize = size - zone_absent_pages_in_node(nid, j, 3360 zholes_size); 3361 3362 /* 3363 * Adjust realsize so that it accounts for how much memory 3364 * is used by this zone for memmap. This affects the watermark 3365 * and per-cpu initialisations 3366 */ 3367 memmap_pages = 3368 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3369 if (realsize >= memmap_pages) { 3370 realsize -= memmap_pages; 3371 printk(KERN_DEBUG 3372 " %s zone: %lu pages used for memmap\n", 3373 zone_names[j], memmap_pages); 3374 } else 3375 printk(KERN_WARNING 3376 " %s zone: %lu pages exceeds realsize %lu\n", 3377 zone_names[j], memmap_pages, realsize); 3378 3379 /* Account for reserved pages */ 3380 if (j == 0 && realsize > dma_reserve) { 3381 realsize -= dma_reserve; 3382 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3383 zone_names[0], dma_reserve); 3384 } 3385 3386 if (!is_highmem_idx(j)) 3387 nr_kernel_pages += realsize; 3388 nr_all_pages += realsize; 3389 3390 zone->spanned_pages = size; 3391 zone->present_pages = realsize; 3392 #ifdef CONFIG_NUMA 3393 zone->node = nid; 3394 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3395 / 100; 3396 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3397 #endif 3398 zone->name = zone_names[j]; 3399 spin_lock_init(&zone->lock); 3400 spin_lock_init(&zone->lru_lock); 3401 zone_seqlock_init(zone); 3402 zone->zone_pgdat = pgdat; 3403 3404 zone->prev_priority = DEF_PRIORITY; 3405 3406 zone_pcp_init(zone); 3407 INIT_LIST_HEAD(&zone->active_list); 3408 INIT_LIST_HEAD(&zone->inactive_list); 3409 zone->nr_scan_active = 0; 3410 zone->nr_scan_inactive = 0; 3411 zap_zone_vm_stats(zone); 3412 zone->flags = 0; 3413 if (!size) 3414 continue; 3415 3416 set_pageblock_order(pageblock_default_order()); 3417 setup_usemap(pgdat, zone, size); 3418 ret = init_currently_empty_zone(zone, zone_start_pfn, 3419 size, MEMMAP_EARLY); 3420 BUG_ON(ret); 3421 memmap_init(size, nid, j, zone_start_pfn); 3422 zone_start_pfn += size; 3423 } 3424 } 3425 3426 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3427 { 3428 /* Skip empty nodes */ 3429 if (!pgdat->node_spanned_pages) 3430 return; 3431 3432 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3433 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3434 if (!pgdat->node_mem_map) { 3435 unsigned long size, start, end; 3436 struct page *map; 3437 3438 /* 3439 * The zone's endpoints aren't required to be MAX_ORDER 3440 * aligned but the node_mem_map endpoints must be in order 3441 * for the buddy allocator to function correctly. 3442 */ 3443 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3444 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3445 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3446 size = (end - start) * sizeof(struct page); 3447 map = alloc_remap(pgdat->node_id, size); 3448 if (!map) 3449 map = alloc_bootmem_node(pgdat, size); 3450 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3451 } 3452 #ifndef CONFIG_NEED_MULTIPLE_NODES 3453 /* 3454 * With no DISCONTIG, the global mem_map is just set as node 0's 3455 */ 3456 if (pgdat == NODE_DATA(0)) { 3457 mem_map = NODE_DATA(0)->node_mem_map; 3458 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3459 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3460 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3461 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3462 } 3463 #endif 3464 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3465 } 3466 3467 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat, 3468 unsigned long *zones_size, unsigned long node_start_pfn, 3469 unsigned long *zholes_size) 3470 { 3471 pgdat->node_id = nid; 3472 pgdat->node_start_pfn = node_start_pfn; 3473 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3474 3475 alloc_node_mem_map(pgdat); 3476 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3477 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3478 nid, (unsigned long)pgdat, 3479 (unsigned long)pgdat->node_mem_map); 3480 #endif 3481 3482 free_area_init_core(pgdat, zones_size, zholes_size); 3483 } 3484 3485 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3486 3487 #if MAX_NUMNODES > 1 3488 /* 3489 * Figure out the number of possible node ids. 3490 */ 3491 static void __init setup_nr_node_ids(void) 3492 { 3493 unsigned int node; 3494 unsigned int highest = 0; 3495 3496 for_each_node_mask(node, node_possible_map) 3497 highest = node; 3498 nr_node_ids = highest + 1; 3499 } 3500 #else 3501 static inline void setup_nr_node_ids(void) 3502 { 3503 } 3504 #endif 3505 3506 /** 3507 * add_active_range - Register a range of PFNs backed by physical memory 3508 * @nid: The node ID the range resides on 3509 * @start_pfn: The start PFN of the available physical memory 3510 * @end_pfn: The end PFN of the available physical memory 3511 * 3512 * These ranges are stored in an early_node_map[] and later used by 3513 * free_area_init_nodes() to calculate zone sizes and holes. If the 3514 * range spans a memory hole, it is up to the architecture to ensure 3515 * the memory is not freed by the bootmem allocator. If possible 3516 * the range being registered will be merged with existing ranges. 3517 */ 3518 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3519 unsigned long end_pfn) 3520 { 3521 int i; 3522 3523 printk(KERN_DEBUG "Entering add_active_range(%d, %#lx, %#lx) " 3524 "%d entries of %d used\n", 3525 nid, start_pfn, end_pfn, 3526 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3527 3528 /* Merge with existing active regions if possible */ 3529 for (i = 0; i < nr_nodemap_entries; i++) { 3530 if (early_node_map[i].nid != nid) 3531 continue; 3532 3533 /* Skip if an existing region covers this new one */ 3534 if (start_pfn >= early_node_map[i].start_pfn && 3535 end_pfn <= early_node_map[i].end_pfn) 3536 return; 3537 3538 /* Merge forward if suitable */ 3539 if (start_pfn <= early_node_map[i].end_pfn && 3540 end_pfn > early_node_map[i].end_pfn) { 3541 early_node_map[i].end_pfn = end_pfn; 3542 return; 3543 } 3544 3545 /* Merge backward if suitable */ 3546 if (start_pfn < early_node_map[i].end_pfn && 3547 end_pfn >= early_node_map[i].start_pfn) { 3548 early_node_map[i].start_pfn = start_pfn; 3549 return; 3550 } 3551 } 3552 3553 /* Check that early_node_map is large enough */ 3554 if (i >= MAX_ACTIVE_REGIONS) { 3555 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3556 MAX_ACTIVE_REGIONS); 3557 return; 3558 } 3559 3560 early_node_map[i].nid = nid; 3561 early_node_map[i].start_pfn = start_pfn; 3562 early_node_map[i].end_pfn = end_pfn; 3563 nr_nodemap_entries = i + 1; 3564 } 3565 3566 /** 3567 * remove_active_range - Shrink an existing registered range of PFNs 3568 * @nid: The node id the range is on that should be shrunk 3569 * @start_pfn: The new PFN of the range 3570 * @end_pfn: The new PFN of the range 3571 * 3572 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3573 * The map is kept near the end physical page range that has already been 3574 * registered. This function allows an arch to shrink an existing registered 3575 * range. 3576 */ 3577 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3578 unsigned long end_pfn) 3579 { 3580 int i, j; 3581 int removed = 0; 3582 3583 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3584 nid, start_pfn, end_pfn); 3585 3586 /* Find the old active region end and shrink */ 3587 for_each_active_range_index_in_nid(i, nid) { 3588 if (early_node_map[i].start_pfn >= start_pfn && 3589 early_node_map[i].end_pfn <= end_pfn) { 3590 /* clear it */ 3591 early_node_map[i].start_pfn = 0; 3592 early_node_map[i].end_pfn = 0; 3593 removed = 1; 3594 continue; 3595 } 3596 if (early_node_map[i].start_pfn < start_pfn && 3597 early_node_map[i].end_pfn > start_pfn) { 3598 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3599 early_node_map[i].end_pfn = start_pfn; 3600 if (temp_end_pfn > end_pfn) 3601 add_active_range(nid, end_pfn, temp_end_pfn); 3602 continue; 3603 } 3604 if (early_node_map[i].start_pfn >= start_pfn && 3605 early_node_map[i].end_pfn > end_pfn && 3606 early_node_map[i].start_pfn < end_pfn) { 3607 early_node_map[i].start_pfn = end_pfn; 3608 continue; 3609 } 3610 } 3611 3612 if (!removed) 3613 return; 3614 3615 /* remove the blank ones */ 3616 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3617 if (early_node_map[i].nid != nid) 3618 continue; 3619 if (early_node_map[i].end_pfn) 3620 continue; 3621 /* we found it, get rid of it */ 3622 for (j = i; j < nr_nodemap_entries - 1; j++) 3623 memcpy(&early_node_map[j], &early_node_map[j+1], 3624 sizeof(early_node_map[j])); 3625 j = nr_nodemap_entries - 1; 3626 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3627 nr_nodemap_entries--; 3628 } 3629 } 3630 3631 /** 3632 * remove_all_active_ranges - Remove all currently registered regions 3633 * 3634 * During discovery, it may be found that a table like SRAT is invalid 3635 * and an alternative discovery method must be used. This function removes 3636 * all currently registered regions. 3637 */ 3638 void __init remove_all_active_ranges(void) 3639 { 3640 memset(early_node_map, 0, sizeof(early_node_map)); 3641 nr_nodemap_entries = 0; 3642 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3643 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3644 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3645 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3646 } 3647 3648 /* Compare two active node_active_regions */ 3649 static int __init cmp_node_active_region(const void *a, const void *b) 3650 { 3651 struct node_active_region *arange = (struct node_active_region *)a; 3652 struct node_active_region *brange = (struct node_active_region *)b; 3653 3654 /* Done this way to avoid overflows */ 3655 if (arange->start_pfn > brange->start_pfn) 3656 return 1; 3657 if (arange->start_pfn < brange->start_pfn) 3658 return -1; 3659 3660 return 0; 3661 } 3662 3663 /* sort the node_map by start_pfn */ 3664 static void __init sort_node_map(void) 3665 { 3666 sort(early_node_map, (size_t)nr_nodemap_entries, 3667 sizeof(struct node_active_region), 3668 cmp_node_active_region, NULL); 3669 } 3670 3671 /* Find the lowest pfn for a node */ 3672 unsigned long __init find_min_pfn_for_node(int nid) 3673 { 3674 int i; 3675 unsigned long min_pfn = ULONG_MAX; 3676 3677 /* Assuming a sorted map, the first range found has the starting pfn */ 3678 for_each_active_range_index_in_nid(i, nid) 3679 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3680 3681 if (min_pfn == ULONG_MAX) { 3682 printk(KERN_WARNING 3683 "Could not find start_pfn for node %d\n", nid); 3684 return 0; 3685 } 3686 3687 return min_pfn; 3688 } 3689 3690 /** 3691 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3692 * 3693 * It returns the minimum PFN based on information provided via 3694 * add_active_range(). 3695 */ 3696 unsigned long __init find_min_pfn_with_active_regions(void) 3697 { 3698 return find_min_pfn_for_node(MAX_NUMNODES); 3699 } 3700 3701 /** 3702 * find_max_pfn_with_active_regions - Find the maximum PFN registered 3703 * 3704 * It returns the maximum PFN based on information provided via 3705 * add_active_range(). 3706 */ 3707 unsigned long __init find_max_pfn_with_active_regions(void) 3708 { 3709 int i; 3710 unsigned long max_pfn = 0; 3711 3712 for (i = 0; i < nr_nodemap_entries; i++) 3713 max_pfn = max(max_pfn, early_node_map[i].end_pfn); 3714 3715 return max_pfn; 3716 } 3717 3718 /* 3719 * early_calculate_totalpages() 3720 * Sum pages in active regions for movable zone. 3721 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3722 */ 3723 static unsigned long __init early_calculate_totalpages(void) 3724 { 3725 int i; 3726 unsigned long totalpages = 0; 3727 3728 for (i = 0; i < nr_nodemap_entries; i++) { 3729 unsigned long pages = early_node_map[i].end_pfn - 3730 early_node_map[i].start_pfn; 3731 totalpages += pages; 3732 if (pages) 3733 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3734 } 3735 return totalpages; 3736 } 3737 3738 /* 3739 * Find the PFN the Movable zone begins in each node. Kernel memory 3740 * is spread evenly between nodes as long as the nodes have enough 3741 * memory. When they don't, some nodes will have more kernelcore than 3742 * others 3743 */ 3744 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3745 { 3746 int i, nid; 3747 unsigned long usable_startpfn; 3748 unsigned long kernelcore_node, kernelcore_remaining; 3749 unsigned long totalpages = early_calculate_totalpages(); 3750 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3751 3752 /* 3753 * If movablecore was specified, calculate what size of 3754 * kernelcore that corresponds so that memory usable for 3755 * any allocation type is evenly spread. If both kernelcore 3756 * and movablecore are specified, then the value of kernelcore 3757 * will be used for required_kernelcore if it's greater than 3758 * what movablecore would have allowed. 3759 */ 3760 if (required_movablecore) { 3761 unsigned long corepages; 3762 3763 /* 3764 * Round-up so that ZONE_MOVABLE is at least as large as what 3765 * was requested by the user 3766 */ 3767 required_movablecore = 3768 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3769 corepages = totalpages - required_movablecore; 3770 3771 required_kernelcore = max(required_kernelcore, corepages); 3772 } 3773 3774 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3775 if (!required_kernelcore) 3776 return; 3777 3778 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3779 find_usable_zone_for_movable(); 3780 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3781 3782 restart: 3783 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3784 kernelcore_node = required_kernelcore / usable_nodes; 3785 for_each_node_state(nid, N_HIGH_MEMORY) { 3786 /* 3787 * Recalculate kernelcore_node if the division per node 3788 * now exceeds what is necessary to satisfy the requested 3789 * amount of memory for the kernel 3790 */ 3791 if (required_kernelcore < kernelcore_node) 3792 kernelcore_node = required_kernelcore / usable_nodes; 3793 3794 /* 3795 * As the map is walked, we track how much memory is usable 3796 * by the kernel using kernelcore_remaining. When it is 3797 * 0, the rest of the node is usable by ZONE_MOVABLE 3798 */ 3799 kernelcore_remaining = kernelcore_node; 3800 3801 /* Go through each range of PFNs within this node */ 3802 for_each_active_range_index_in_nid(i, nid) { 3803 unsigned long start_pfn, end_pfn; 3804 unsigned long size_pages; 3805 3806 start_pfn = max(early_node_map[i].start_pfn, 3807 zone_movable_pfn[nid]); 3808 end_pfn = early_node_map[i].end_pfn; 3809 if (start_pfn >= end_pfn) 3810 continue; 3811 3812 /* Account for what is only usable for kernelcore */ 3813 if (start_pfn < usable_startpfn) { 3814 unsigned long kernel_pages; 3815 kernel_pages = min(end_pfn, usable_startpfn) 3816 - start_pfn; 3817 3818 kernelcore_remaining -= min(kernel_pages, 3819 kernelcore_remaining); 3820 required_kernelcore -= min(kernel_pages, 3821 required_kernelcore); 3822 3823 /* Continue if range is now fully accounted */ 3824 if (end_pfn <= usable_startpfn) { 3825 3826 /* 3827 * Push zone_movable_pfn to the end so 3828 * that if we have to rebalance 3829 * kernelcore across nodes, we will 3830 * not double account here 3831 */ 3832 zone_movable_pfn[nid] = end_pfn; 3833 continue; 3834 } 3835 start_pfn = usable_startpfn; 3836 } 3837 3838 /* 3839 * The usable PFN range for ZONE_MOVABLE is from 3840 * start_pfn->end_pfn. Calculate size_pages as the 3841 * number of pages used as kernelcore 3842 */ 3843 size_pages = end_pfn - start_pfn; 3844 if (size_pages > kernelcore_remaining) 3845 size_pages = kernelcore_remaining; 3846 zone_movable_pfn[nid] = start_pfn + size_pages; 3847 3848 /* 3849 * Some kernelcore has been met, update counts and 3850 * break if the kernelcore for this node has been 3851 * satisified 3852 */ 3853 required_kernelcore -= min(required_kernelcore, 3854 size_pages); 3855 kernelcore_remaining -= size_pages; 3856 if (!kernelcore_remaining) 3857 break; 3858 } 3859 } 3860 3861 /* 3862 * If there is still required_kernelcore, we do another pass with one 3863 * less node in the count. This will push zone_movable_pfn[nid] further 3864 * along on the nodes that still have memory until kernelcore is 3865 * satisified 3866 */ 3867 usable_nodes--; 3868 if (usable_nodes && required_kernelcore > usable_nodes) 3869 goto restart; 3870 3871 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 3872 for (nid = 0; nid < MAX_NUMNODES; nid++) 3873 zone_movable_pfn[nid] = 3874 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 3875 } 3876 3877 /* Any regular memory on that node ? */ 3878 static void check_for_regular_memory(pg_data_t *pgdat) 3879 { 3880 #ifdef CONFIG_HIGHMEM 3881 enum zone_type zone_type; 3882 3883 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 3884 struct zone *zone = &pgdat->node_zones[zone_type]; 3885 if (zone->present_pages) 3886 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 3887 } 3888 #endif 3889 } 3890 3891 /** 3892 * free_area_init_nodes - Initialise all pg_data_t and zone data 3893 * @max_zone_pfn: an array of max PFNs for each zone 3894 * 3895 * This will call free_area_init_node() for each active node in the system. 3896 * Using the page ranges provided by add_active_range(), the size of each 3897 * zone in each node and their holes is calculated. If the maximum PFN 3898 * between two adjacent zones match, it is assumed that the zone is empty. 3899 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 3900 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 3901 * starts where the previous one ended. For example, ZONE_DMA32 starts 3902 * at arch_max_dma_pfn. 3903 */ 3904 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 3905 { 3906 unsigned long nid; 3907 enum zone_type i; 3908 3909 /* Sort early_node_map as initialisation assumes it is sorted */ 3910 sort_node_map(); 3911 3912 /* Record where the zone boundaries are */ 3913 memset(arch_zone_lowest_possible_pfn, 0, 3914 sizeof(arch_zone_lowest_possible_pfn)); 3915 memset(arch_zone_highest_possible_pfn, 0, 3916 sizeof(arch_zone_highest_possible_pfn)); 3917 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 3918 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 3919 for (i = 1; i < MAX_NR_ZONES; i++) { 3920 if (i == ZONE_MOVABLE) 3921 continue; 3922 arch_zone_lowest_possible_pfn[i] = 3923 arch_zone_highest_possible_pfn[i-1]; 3924 arch_zone_highest_possible_pfn[i] = 3925 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 3926 } 3927 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 3928 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 3929 3930 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 3931 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 3932 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 3933 3934 /* Print out the zone ranges */ 3935 printk("Zone PFN ranges:\n"); 3936 for (i = 0; i < MAX_NR_ZONES; i++) { 3937 if (i == ZONE_MOVABLE) 3938 continue; 3939 printk(" %-8s %0#10lx -> %0#10lx\n", 3940 zone_names[i], 3941 arch_zone_lowest_possible_pfn[i], 3942 arch_zone_highest_possible_pfn[i]); 3943 } 3944 3945 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 3946 printk("Movable zone start PFN for each node\n"); 3947 for (i = 0; i < MAX_NUMNODES; i++) { 3948 if (zone_movable_pfn[i]) 3949 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 3950 } 3951 3952 /* Print out the early_node_map[] */ 3953 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 3954 for (i = 0; i < nr_nodemap_entries; i++) 3955 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 3956 early_node_map[i].start_pfn, 3957 early_node_map[i].end_pfn); 3958 3959 /* Initialise every node */ 3960 setup_nr_node_ids(); 3961 for_each_online_node(nid) { 3962 pg_data_t *pgdat = NODE_DATA(nid); 3963 free_area_init_node(nid, pgdat, NULL, 3964 find_min_pfn_for_node(nid), NULL); 3965 3966 /* Any memory on that node */ 3967 if (pgdat->node_present_pages) 3968 node_set_state(nid, N_HIGH_MEMORY); 3969 check_for_regular_memory(pgdat); 3970 } 3971 } 3972 3973 static int __init cmdline_parse_core(char *p, unsigned long *core) 3974 { 3975 unsigned long long coremem; 3976 if (!p) 3977 return -EINVAL; 3978 3979 coremem = memparse(p, &p); 3980 *core = coremem >> PAGE_SHIFT; 3981 3982 /* Paranoid check that UL is enough for the coremem value */ 3983 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 3984 3985 return 0; 3986 } 3987 3988 /* 3989 * kernelcore=size sets the amount of memory for use for allocations that 3990 * cannot be reclaimed or migrated. 3991 */ 3992 static int __init cmdline_parse_kernelcore(char *p) 3993 { 3994 return cmdline_parse_core(p, &required_kernelcore); 3995 } 3996 3997 /* 3998 * movablecore=size sets the amount of memory for use for allocations that 3999 * can be reclaimed or migrated. 4000 */ 4001 static int __init cmdline_parse_movablecore(char *p) 4002 { 4003 return cmdline_parse_core(p, &required_movablecore); 4004 } 4005 4006 early_param("kernelcore", cmdline_parse_kernelcore); 4007 early_param("movablecore", cmdline_parse_movablecore); 4008 4009 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4010 4011 /** 4012 * set_dma_reserve - set the specified number of pages reserved in the first zone 4013 * @new_dma_reserve: The number of pages to mark reserved 4014 * 4015 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4016 * In the DMA zone, a significant percentage may be consumed by kernel image 4017 * and other unfreeable allocations which can skew the watermarks badly. This 4018 * function may optionally be used to account for unfreeable pages in the 4019 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4020 * smaller per-cpu batchsize. 4021 */ 4022 void __init set_dma_reserve(unsigned long new_dma_reserve) 4023 { 4024 dma_reserve = new_dma_reserve; 4025 } 4026 4027 #ifndef CONFIG_NEED_MULTIPLE_NODES 4028 static bootmem_data_t contig_bootmem_data; 4029 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 4030 4031 EXPORT_SYMBOL(contig_page_data); 4032 #endif 4033 4034 void __init free_area_init(unsigned long *zones_size) 4035 { 4036 free_area_init_node(0, NODE_DATA(0), zones_size, 4037 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4038 } 4039 4040 static int page_alloc_cpu_notify(struct notifier_block *self, 4041 unsigned long action, void *hcpu) 4042 { 4043 int cpu = (unsigned long)hcpu; 4044 4045 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4046 drain_pages(cpu); 4047 4048 /* 4049 * Spill the event counters of the dead processor 4050 * into the current processors event counters. 4051 * This artificially elevates the count of the current 4052 * processor. 4053 */ 4054 vm_events_fold_cpu(cpu); 4055 4056 /* 4057 * Zero the differential counters of the dead processor 4058 * so that the vm statistics are consistent. 4059 * 4060 * This is only okay since the processor is dead and cannot 4061 * race with what we are doing. 4062 */ 4063 refresh_cpu_vm_stats(cpu); 4064 } 4065 return NOTIFY_OK; 4066 } 4067 4068 void __init page_alloc_init(void) 4069 { 4070 hotcpu_notifier(page_alloc_cpu_notify, 0); 4071 } 4072 4073 /* 4074 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4075 * or min_free_kbytes changes. 4076 */ 4077 static void calculate_totalreserve_pages(void) 4078 { 4079 struct pglist_data *pgdat; 4080 unsigned long reserve_pages = 0; 4081 enum zone_type i, j; 4082 4083 for_each_online_pgdat(pgdat) { 4084 for (i = 0; i < MAX_NR_ZONES; i++) { 4085 struct zone *zone = pgdat->node_zones + i; 4086 unsigned long max = 0; 4087 4088 /* Find valid and maximum lowmem_reserve in the zone */ 4089 for (j = i; j < MAX_NR_ZONES; j++) { 4090 if (zone->lowmem_reserve[j] > max) 4091 max = zone->lowmem_reserve[j]; 4092 } 4093 4094 /* we treat pages_high as reserved pages. */ 4095 max += zone->pages_high; 4096 4097 if (max > zone->present_pages) 4098 max = zone->present_pages; 4099 reserve_pages += max; 4100 } 4101 } 4102 totalreserve_pages = reserve_pages; 4103 } 4104 4105 /* 4106 * setup_per_zone_lowmem_reserve - called whenever 4107 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4108 * has a correct pages reserved value, so an adequate number of 4109 * pages are left in the zone after a successful __alloc_pages(). 4110 */ 4111 static void setup_per_zone_lowmem_reserve(void) 4112 { 4113 struct pglist_data *pgdat; 4114 enum zone_type j, idx; 4115 4116 for_each_online_pgdat(pgdat) { 4117 for (j = 0; j < MAX_NR_ZONES; j++) { 4118 struct zone *zone = pgdat->node_zones + j; 4119 unsigned long present_pages = zone->present_pages; 4120 4121 zone->lowmem_reserve[j] = 0; 4122 4123 idx = j; 4124 while (idx) { 4125 struct zone *lower_zone; 4126 4127 idx--; 4128 4129 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4130 sysctl_lowmem_reserve_ratio[idx] = 1; 4131 4132 lower_zone = pgdat->node_zones + idx; 4133 lower_zone->lowmem_reserve[j] = present_pages / 4134 sysctl_lowmem_reserve_ratio[idx]; 4135 present_pages += lower_zone->present_pages; 4136 } 4137 } 4138 } 4139 4140 /* update totalreserve_pages */ 4141 calculate_totalreserve_pages(); 4142 } 4143 4144 /** 4145 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4146 * 4147 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4148 * with respect to min_free_kbytes. 4149 */ 4150 void setup_per_zone_pages_min(void) 4151 { 4152 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4153 unsigned long lowmem_pages = 0; 4154 struct zone *zone; 4155 unsigned long flags; 4156 4157 /* Calculate total number of !ZONE_HIGHMEM pages */ 4158 for_each_zone(zone) { 4159 if (!is_highmem(zone)) 4160 lowmem_pages += zone->present_pages; 4161 } 4162 4163 for_each_zone(zone) { 4164 u64 tmp; 4165 4166 spin_lock_irqsave(&zone->lru_lock, flags); 4167 tmp = (u64)pages_min * zone->present_pages; 4168 do_div(tmp, lowmem_pages); 4169 if (is_highmem(zone)) { 4170 /* 4171 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4172 * need highmem pages, so cap pages_min to a small 4173 * value here. 4174 * 4175 * The (pages_high-pages_low) and (pages_low-pages_min) 4176 * deltas controls asynch page reclaim, and so should 4177 * not be capped for highmem. 4178 */ 4179 int min_pages; 4180 4181 min_pages = zone->present_pages / 1024; 4182 if (min_pages < SWAP_CLUSTER_MAX) 4183 min_pages = SWAP_CLUSTER_MAX; 4184 if (min_pages > 128) 4185 min_pages = 128; 4186 zone->pages_min = min_pages; 4187 } else { 4188 /* 4189 * If it's a lowmem zone, reserve a number of pages 4190 * proportionate to the zone's size. 4191 */ 4192 zone->pages_min = tmp; 4193 } 4194 4195 zone->pages_low = zone->pages_min + (tmp >> 2); 4196 zone->pages_high = zone->pages_min + (tmp >> 1); 4197 setup_zone_migrate_reserve(zone); 4198 spin_unlock_irqrestore(&zone->lru_lock, flags); 4199 } 4200 4201 /* update totalreserve_pages */ 4202 calculate_totalreserve_pages(); 4203 } 4204 4205 /* 4206 * Initialise min_free_kbytes. 4207 * 4208 * For small machines we want it small (128k min). For large machines 4209 * we want it large (64MB max). But it is not linear, because network 4210 * bandwidth does not increase linearly with machine size. We use 4211 * 4212 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4213 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4214 * 4215 * which yields 4216 * 4217 * 16MB: 512k 4218 * 32MB: 724k 4219 * 64MB: 1024k 4220 * 128MB: 1448k 4221 * 256MB: 2048k 4222 * 512MB: 2896k 4223 * 1024MB: 4096k 4224 * 2048MB: 5792k 4225 * 4096MB: 8192k 4226 * 8192MB: 11584k 4227 * 16384MB: 16384k 4228 */ 4229 static int __init init_per_zone_pages_min(void) 4230 { 4231 unsigned long lowmem_kbytes; 4232 4233 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4234 4235 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4236 if (min_free_kbytes < 128) 4237 min_free_kbytes = 128; 4238 if (min_free_kbytes > 65536) 4239 min_free_kbytes = 65536; 4240 setup_per_zone_pages_min(); 4241 setup_per_zone_lowmem_reserve(); 4242 return 0; 4243 } 4244 module_init(init_per_zone_pages_min) 4245 4246 /* 4247 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4248 * that we can call two helper functions whenever min_free_kbytes 4249 * changes. 4250 */ 4251 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4252 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4253 { 4254 proc_dointvec(table, write, file, buffer, length, ppos); 4255 if (write) 4256 setup_per_zone_pages_min(); 4257 return 0; 4258 } 4259 4260 #ifdef CONFIG_NUMA 4261 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4262 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4263 { 4264 struct zone *zone; 4265 int rc; 4266 4267 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4268 if (rc) 4269 return rc; 4270 4271 for_each_zone(zone) 4272 zone->min_unmapped_pages = (zone->present_pages * 4273 sysctl_min_unmapped_ratio) / 100; 4274 return 0; 4275 } 4276 4277 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4278 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4279 { 4280 struct zone *zone; 4281 int rc; 4282 4283 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4284 if (rc) 4285 return rc; 4286 4287 for_each_zone(zone) 4288 zone->min_slab_pages = (zone->present_pages * 4289 sysctl_min_slab_ratio) / 100; 4290 return 0; 4291 } 4292 #endif 4293 4294 /* 4295 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4296 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4297 * whenever sysctl_lowmem_reserve_ratio changes. 4298 * 4299 * The reserve ratio obviously has absolutely no relation with the 4300 * pages_min watermarks. The lowmem reserve ratio can only make sense 4301 * if in function of the boot time zone sizes. 4302 */ 4303 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4304 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4305 { 4306 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4307 setup_per_zone_lowmem_reserve(); 4308 return 0; 4309 } 4310 4311 /* 4312 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4313 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4314 * can have before it gets flushed back to buddy allocator. 4315 */ 4316 4317 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4318 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4319 { 4320 struct zone *zone; 4321 unsigned int cpu; 4322 int ret; 4323 4324 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4325 if (!write || (ret == -EINVAL)) 4326 return ret; 4327 for_each_zone(zone) { 4328 for_each_online_cpu(cpu) { 4329 unsigned long high; 4330 high = zone->present_pages / percpu_pagelist_fraction; 4331 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4332 } 4333 } 4334 return 0; 4335 } 4336 4337 int hashdist = HASHDIST_DEFAULT; 4338 4339 #ifdef CONFIG_NUMA 4340 static int __init set_hashdist(char *str) 4341 { 4342 if (!str) 4343 return 0; 4344 hashdist = simple_strtoul(str, &str, 0); 4345 return 1; 4346 } 4347 __setup("hashdist=", set_hashdist); 4348 #endif 4349 4350 /* 4351 * allocate a large system hash table from bootmem 4352 * - it is assumed that the hash table must contain an exact power-of-2 4353 * quantity of entries 4354 * - limit is the number of hash buckets, not the total allocation size 4355 */ 4356 void *__init alloc_large_system_hash(const char *tablename, 4357 unsigned long bucketsize, 4358 unsigned long numentries, 4359 int scale, 4360 int flags, 4361 unsigned int *_hash_shift, 4362 unsigned int *_hash_mask, 4363 unsigned long limit) 4364 { 4365 unsigned long long max = limit; 4366 unsigned long log2qty, size; 4367 void *table = NULL; 4368 4369 /* allow the kernel cmdline to have a say */ 4370 if (!numentries) { 4371 /* round applicable memory size up to nearest megabyte */ 4372 numentries = nr_kernel_pages; 4373 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4374 numentries >>= 20 - PAGE_SHIFT; 4375 numentries <<= 20 - PAGE_SHIFT; 4376 4377 /* limit to 1 bucket per 2^scale bytes of low memory */ 4378 if (scale > PAGE_SHIFT) 4379 numentries >>= (scale - PAGE_SHIFT); 4380 else 4381 numentries <<= (PAGE_SHIFT - scale); 4382 4383 /* Make sure we've got at least a 0-order allocation.. */ 4384 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4385 numentries = PAGE_SIZE / bucketsize; 4386 } 4387 numentries = roundup_pow_of_two(numentries); 4388 4389 /* limit allocation size to 1/16 total memory by default */ 4390 if (max == 0) { 4391 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4392 do_div(max, bucketsize); 4393 } 4394 4395 if (numentries > max) 4396 numentries = max; 4397 4398 log2qty = ilog2(numentries); 4399 4400 do { 4401 size = bucketsize << log2qty; 4402 if (flags & HASH_EARLY) 4403 table = alloc_bootmem(size); 4404 else if (hashdist) 4405 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4406 else { 4407 unsigned long order = get_order(size); 4408 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4409 /* 4410 * If bucketsize is not a power-of-two, we may free 4411 * some pages at the end of hash table. 4412 */ 4413 if (table) { 4414 unsigned long alloc_end = (unsigned long)table + 4415 (PAGE_SIZE << order); 4416 unsigned long used = (unsigned long)table + 4417 PAGE_ALIGN(size); 4418 split_page(virt_to_page(table), order); 4419 while (used < alloc_end) { 4420 free_page(used); 4421 used += PAGE_SIZE; 4422 } 4423 } 4424 } 4425 } while (!table && size > PAGE_SIZE && --log2qty); 4426 4427 if (!table) 4428 panic("Failed to allocate %s hash table\n", tablename); 4429 4430 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4431 tablename, 4432 (1U << log2qty), 4433 ilog2(size) - PAGE_SHIFT, 4434 size); 4435 4436 if (_hash_shift) 4437 *_hash_shift = log2qty; 4438 if (_hash_mask) 4439 *_hash_mask = (1 << log2qty) - 1; 4440 4441 return table; 4442 } 4443 4444 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 4445 struct page *pfn_to_page(unsigned long pfn) 4446 { 4447 return __pfn_to_page(pfn); 4448 } 4449 unsigned long page_to_pfn(struct page *page) 4450 { 4451 return __page_to_pfn(page); 4452 } 4453 EXPORT_SYMBOL(pfn_to_page); 4454 EXPORT_SYMBOL(page_to_pfn); 4455 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 4456 4457 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4458 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4459 unsigned long pfn) 4460 { 4461 #ifdef CONFIG_SPARSEMEM 4462 return __pfn_to_section(pfn)->pageblock_flags; 4463 #else 4464 return zone->pageblock_flags; 4465 #endif /* CONFIG_SPARSEMEM */ 4466 } 4467 4468 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4469 { 4470 #ifdef CONFIG_SPARSEMEM 4471 pfn &= (PAGES_PER_SECTION-1); 4472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4473 #else 4474 pfn = pfn - zone->zone_start_pfn; 4475 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4476 #endif /* CONFIG_SPARSEMEM */ 4477 } 4478 4479 /** 4480 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4481 * @page: The page within the block of interest 4482 * @start_bitidx: The first bit of interest to retrieve 4483 * @end_bitidx: The last bit of interest 4484 * returns pageblock_bits flags 4485 */ 4486 unsigned long get_pageblock_flags_group(struct page *page, 4487 int start_bitidx, int end_bitidx) 4488 { 4489 struct zone *zone; 4490 unsigned long *bitmap; 4491 unsigned long pfn, bitidx; 4492 unsigned long flags = 0; 4493 unsigned long value = 1; 4494 4495 zone = page_zone(page); 4496 pfn = page_to_pfn(page); 4497 bitmap = get_pageblock_bitmap(zone, pfn); 4498 bitidx = pfn_to_bitidx(zone, pfn); 4499 4500 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4501 if (test_bit(bitidx + start_bitidx, bitmap)) 4502 flags |= value; 4503 4504 return flags; 4505 } 4506 4507 /** 4508 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4509 * @page: The page within the block of interest 4510 * @start_bitidx: The first bit of interest 4511 * @end_bitidx: The last bit of interest 4512 * @flags: The flags to set 4513 */ 4514 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4515 int start_bitidx, int end_bitidx) 4516 { 4517 struct zone *zone; 4518 unsigned long *bitmap; 4519 unsigned long pfn, bitidx; 4520 unsigned long value = 1; 4521 4522 zone = page_zone(page); 4523 pfn = page_to_pfn(page); 4524 bitmap = get_pageblock_bitmap(zone, pfn); 4525 bitidx = pfn_to_bitidx(zone, pfn); 4526 VM_BUG_ON(pfn < zone->zone_start_pfn); 4527 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4528 4529 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4530 if (flags & value) 4531 __set_bit(bitidx + start_bitidx, bitmap); 4532 else 4533 __clear_bit(bitidx + start_bitidx, bitmap); 4534 } 4535 4536 /* 4537 * This is designed as sub function...plz see page_isolation.c also. 4538 * set/clear page block's type to be ISOLATE. 4539 * page allocater never alloc memory from ISOLATE block. 4540 */ 4541 4542 int set_migratetype_isolate(struct page *page) 4543 { 4544 struct zone *zone; 4545 unsigned long flags; 4546 int ret = -EBUSY; 4547 4548 zone = page_zone(page); 4549 spin_lock_irqsave(&zone->lock, flags); 4550 /* 4551 * In future, more migrate types will be able to be isolation target. 4552 */ 4553 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4554 goto out; 4555 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4556 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4557 ret = 0; 4558 out: 4559 spin_unlock_irqrestore(&zone->lock, flags); 4560 if (!ret) 4561 drain_all_pages(); 4562 return ret; 4563 } 4564 4565 void unset_migratetype_isolate(struct page *page) 4566 { 4567 struct zone *zone; 4568 unsigned long flags; 4569 zone = page_zone(page); 4570 spin_lock_irqsave(&zone->lock, flags); 4571 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4572 goto out; 4573 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4574 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4575 out: 4576 spin_unlock_irqrestore(&zone->lock, flags); 4577 } 4578 4579 #ifdef CONFIG_MEMORY_HOTREMOVE 4580 /* 4581 * All pages in the range must be isolated before calling this. 4582 */ 4583 void 4584 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4585 { 4586 struct page *page; 4587 struct zone *zone; 4588 int order, i; 4589 unsigned long pfn; 4590 unsigned long flags; 4591 /* find the first valid pfn */ 4592 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4593 if (pfn_valid(pfn)) 4594 break; 4595 if (pfn == end_pfn) 4596 return; 4597 zone = page_zone(pfn_to_page(pfn)); 4598 spin_lock_irqsave(&zone->lock, flags); 4599 pfn = start_pfn; 4600 while (pfn < end_pfn) { 4601 if (!pfn_valid(pfn)) { 4602 pfn++; 4603 continue; 4604 } 4605 page = pfn_to_page(pfn); 4606 BUG_ON(page_count(page)); 4607 BUG_ON(!PageBuddy(page)); 4608 order = page_order(page); 4609 #ifdef CONFIG_DEBUG_VM 4610 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4611 pfn, 1 << order, end_pfn); 4612 #endif 4613 list_del(&page->lru); 4614 rmv_page_order(page); 4615 zone->free_area[order].nr_free--; 4616 __mod_zone_page_state(zone, NR_FREE_PAGES, 4617 - (1UL << order)); 4618 for (i = 0; i < (1 << order); i++) 4619 SetPageReserved((page+i)); 4620 pfn += (1 << order); 4621 } 4622 spin_unlock_irqrestore(&zone->lock, flags); 4623 } 4624 #endif 4625