xref: /linux/mm/page_alloc.c (revision 185000fc556372b7fb7f26516c325f212030dbd3)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53 
54 /*
55  * Array of node states.
56  */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 	[N_POSSIBLE] = NODE_MASK_ALL,
59 	[N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 	[N_CPU] = { { [0] = 1UL } },
66 #endif	/* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69 
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74 
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78 
79 static void __free_pages_ok(struct page *page, unsigned int order);
80 
81 /*
82  * results with 256, 32 in the lowmem_reserve sysctl:
83  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84  *	1G machine -> (16M dma, 784M normal, 224M high)
85  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88  *
89  * TBD: should special case ZONE_DMA32 machines here - in those we normally
90  * don't need any ZONE_NORMAL reservation
91  */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 	 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 	 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 	 32,
101 #endif
102 	 32,
103 };
104 
105 EXPORT_SYMBOL(totalram_pages);
106 
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 	 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 	 "DMA32",
113 #endif
114 	 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 	 "HighMem",
117 #endif
118 	 "Movable",
119 };
120 
121 int min_free_kbytes = 1024;
122 
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126 
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128   /*
129    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130    * ranges of memory (RAM) that may be registered with add_active_range().
131    * Ranges passed to add_active_range() will be merged if possible
132    * so the number of times add_active_range() can be called is
133    * related to the number of nodes and the number of holes
134    */
135   #ifdef CONFIG_MAX_ACTIVE_REGIONS
136     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138   #else
139     #if MAX_NUMNODES >= 32
140       /* If there can be many nodes, allow up to 50 holes per node */
141       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142     #else
143       /* By default, allow up to 256 distinct regions */
144       #define MAX_ACTIVE_REGIONS 256
145     #endif
146   #endif
147 
148   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149   static int __meminitdata nr_nodemap_entries;
150   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156   unsigned long __initdata required_kernelcore;
157   static unsigned long __initdata required_movablecore;
158   unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 
160   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161   int movable_zone;
162   EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169 
170 int page_group_by_mobility_disabled __read_mostly;
171 
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 	set_pageblock_flags_group(page, (unsigned long)migratetype,
175 					PB_migrate, PB_migrate_end);
176 }
177 
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 	int ret = 0;
182 	unsigned seq;
183 	unsigned long pfn = page_to_pfn(page);
184 
185 	do {
186 		seq = zone_span_seqbegin(zone);
187 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 			ret = 1;
189 		else if (pfn < zone->zone_start_pfn)
190 			ret = 1;
191 	} while (zone_span_seqretry(zone, seq));
192 
193 	return ret;
194 }
195 
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 	if (!pfn_valid_within(page_to_pfn(page)))
199 		return 0;
200 	if (zone != page_zone(page))
201 		return 0;
202 
203 	return 1;
204 }
205 /*
206  * Temporary debugging check for pages not lying within a given zone.
207  */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 	if (page_outside_zone_boundaries(zone, page))
211 		return 1;
212 	if (!page_is_consistent(zone, page))
213 		return 1;
214 
215 	return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 	return 0;
221 }
222 #endif
223 
224 static void bad_page(struct page *page)
225 {
226 	void *pc = page_get_page_cgroup(page);
227 
228 	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 		current->comm, page, (int)(2*sizeof(unsigned long)),
231 		(unsigned long)page->flags, page->mapping,
232 		page_mapcount(page), page_count(page));
233 	if (pc) {
234 		printk(KERN_EMERG "cgroup:%p\n", pc);
235 		page_reset_bad_cgroup(page);
236 	}
237 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 		KERN_EMERG "Backtrace:\n");
239 	dump_stack();
240 	page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 	set_page_count(page, 0);
242 	reset_page_mapcount(page);
243 	page->mapping = NULL;
244 	add_taint(TAINT_BAD_PAGE);
245 }
246 
247 /*
248  * Higher-order pages are called "compound pages".  They are structured thusly:
249  *
250  * The first PAGE_SIZE page is called the "head page".
251  *
252  * The remaining PAGE_SIZE pages are called "tail pages".
253  *
254  * All pages have PG_compound set.  All pages have their ->private pointing at
255  * the head page (even the head page has this).
256  *
257  * The first tail page's ->lru.next holds the address of the compound page's
258  * put_page() function.  Its ->lru.prev holds the order of allocation.
259  * This usage means that zero-order pages may not be compound.
260  */
261 
262 static void free_compound_page(struct page *page)
263 {
264 	__free_pages_ok(page, compound_order(page));
265 }
266 
267 static void prep_compound_page(struct page *page, unsigned long order)
268 {
269 	int i;
270 	int nr_pages = 1 << order;
271 
272 	set_compound_page_dtor(page, free_compound_page);
273 	set_compound_order(page, order);
274 	__SetPageHead(page);
275 	for (i = 1; i < nr_pages; i++) {
276 		struct page *p = page + i;
277 
278 		__SetPageTail(p);
279 		p->first_page = page;
280 	}
281 }
282 
283 static void destroy_compound_page(struct page *page, unsigned long order)
284 {
285 	int i;
286 	int nr_pages = 1 << order;
287 
288 	if (unlikely(compound_order(page) != order))
289 		bad_page(page);
290 
291 	if (unlikely(!PageHead(page)))
292 			bad_page(page);
293 	__ClearPageHead(page);
294 	for (i = 1; i < nr_pages; i++) {
295 		struct page *p = page + i;
296 
297 		if (unlikely(!PageTail(p) |
298 				(p->first_page != page)))
299 			bad_page(page);
300 		__ClearPageTail(p);
301 	}
302 }
303 
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305 {
306 	int i;
307 
308 	/*
309 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
311 	 */
312 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 	for (i = 0; i < (1 << order); i++)
314 		clear_highpage(page + i);
315 }
316 
317 static inline void set_page_order(struct page *page, int order)
318 {
319 	set_page_private(page, order);
320 	__SetPageBuddy(page);
321 }
322 
323 static inline void rmv_page_order(struct page *page)
324 {
325 	__ClearPageBuddy(page);
326 	set_page_private(page, 0);
327 }
328 
329 /*
330  * Locate the struct page for both the matching buddy in our
331  * pair (buddy1) and the combined O(n+1) page they form (page).
332  *
333  * 1) Any buddy B1 will have an order O twin B2 which satisfies
334  * the following equation:
335  *     B2 = B1 ^ (1 << O)
336  * For example, if the starting buddy (buddy2) is #8 its order
337  * 1 buddy is #10:
338  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339  *
340  * 2) Any buddy B will have an order O+1 parent P which
341  * satisfies the following equation:
342  *     P = B & ~(1 << O)
343  *
344  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345  */
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348 {
349 	unsigned long buddy_idx = page_idx ^ (1 << order);
350 
351 	return page + (buddy_idx - page_idx);
352 }
353 
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
356 {
357 	return (page_idx & ~(1 << order));
358 }
359 
360 /*
361  * This function checks whether a page is free && is the buddy
362  * we can do coalesce a page and its buddy if
363  * (a) the buddy is not in a hole &&
364  * (b) the buddy is in the buddy system &&
365  * (c) a page and its buddy have the same order &&
366  * (d) a page and its buddy are in the same zone.
367  *
368  * For recording whether a page is in the buddy system, we use PG_buddy.
369  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370  *
371  * For recording page's order, we use page_private(page).
372  */
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 								int order)
375 {
376 	if (!pfn_valid_within(page_to_pfn(buddy)))
377 		return 0;
378 
379 	if (page_zone_id(page) != page_zone_id(buddy))
380 		return 0;
381 
382 	if (PageBuddy(buddy) && page_order(buddy) == order) {
383 		BUG_ON(page_count(buddy) != 0);
384 		return 1;
385 	}
386 	return 0;
387 }
388 
389 /*
390  * Freeing function for a buddy system allocator.
391  *
392  * The concept of a buddy system is to maintain direct-mapped table
393  * (containing bit values) for memory blocks of various "orders".
394  * The bottom level table contains the map for the smallest allocatable
395  * units of memory (here, pages), and each level above it describes
396  * pairs of units from the levels below, hence, "buddies".
397  * At a high level, all that happens here is marking the table entry
398  * at the bottom level available, and propagating the changes upward
399  * as necessary, plus some accounting needed to play nicely with other
400  * parts of the VM system.
401  * At each level, we keep a list of pages, which are heads of continuous
402  * free pages of length of (1 << order) and marked with PG_buddy. Page's
403  * order is recorded in page_private(page) field.
404  * So when we are allocating or freeing one, we can derive the state of the
405  * other.  That is, if we allocate a small block, and both were
406  * free, the remainder of the region must be split into blocks.
407  * If a block is freed, and its buddy is also free, then this
408  * triggers coalescing into a block of larger size.
409  *
410  * -- wli
411  */
412 
413 static inline void __free_one_page(struct page *page,
414 		struct zone *zone, unsigned int order)
415 {
416 	unsigned long page_idx;
417 	int order_size = 1 << order;
418 	int migratetype = get_pageblock_migratetype(page);
419 
420 	if (unlikely(PageCompound(page)))
421 		destroy_compound_page(page, order);
422 
423 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424 
425 	VM_BUG_ON(page_idx & (order_size - 1));
426 	VM_BUG_ON(bad_range(zone, page));
427 
428 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 	while (order < MAX_ORDER-1) {
430 		unsigned long combined_idx;
431 		struct page *buddy;
432 
433 		buddy = __page_find_buddy(page, page_idx, order);
434 		if (!page_is_buddy(page, buddy, order))
435 			break;		/* Move the buddy up one level. */
436 
437 		list_del(&buddy->lru);
438 		zone->free_area[order].nr_free--;
439 		rmv_page_order(buddy);
440 		combined_idx = __find_combined_index(page_idx, order);
441 		page = page + (combined_idx - page_idx);
442 		page_idx = combined_idx;
443 		order++;
444 	}
445 	set_page_order(page, order);
446 	list_add(&page->lru,
447 		&zone->free_area[order].free_list[migratetype]);
448 	zone->free_area[order].nr_free++;
449 }
450 
451 static inline int free_pages_check(struct page *page)
452 {
453 	if (unlikely(page_mapcount(page) |
454 		(page->mapping != NULL)  |
455 		(page_get_page_cgroup(page) != NULL) |
456 		(page_count(page) != 0)  |
457 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
458 		bad_page(page);
459 	if (PageDirty(page))
460 		__ClearPageDirty(page);
461 	/*
462 	 * For now, we report if PG_reserved was found set, but do not
463 	 * clear it, and do not free the page.  But we shall soon need
464 	 * to do more, for when the ZERO_PAGE count wraps negative.
465 	 */
466 	return PageReserved(page);
467 }
468 
469 /*
470  * Frees a list of pages.
471  * Assumes all pages on list are in same zone, and of same order.
472  * count is the number of pages to free.
473  *
474  * If the zone was previously in an "all pages pinned" state then look to
475  * see if this freeing clears that state.
476  *
477  * And clear the zone's pages_scanned counter, to hold off the "all pages are
478  * pinned" detection logic.
479  */
480 static void free_pages_bulk(struct zone *zone, int count,
481 					struct list_head *list, int order)
482 {
483 	spin_lock(&zone->lock);
484 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
485 	zone->pages_scanned = 0;
486 	while (count--) {
487 		struct page *page;
488 
489 		VM_BUG_ON(list_empty(list));
490 		page = list_entry(list->prev, struct page, lru);
491 		/* have to delete it as __free_one_page list manipulates */
492 		list_del(&page->lru);
493 		__free_one_page(page, zone, order);
494 	}
495 	spin_unlock(&zone->lock);
496 }
497 
498 static void free_one_page(struct zone *zone, struct page *page, int order)
499 {
500 	spin_lock(&zone->lock);
501 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
502 	zone->pages_scanned = 0;
503 	__free_one_page(page, zone, order);
504 	spin_unlock(&zone->lock);
505 }
506 
507 static void __free_pages_ok(struct page *page, unsigned int order)
508 {
509 	unsigned long flags;
510 	int i;
511 	int reserved = 0;
512 
513 	for (i = 0 ; i < (1 << order) ; ++i)
514 		reserved += free_pages_check(page + i);
515 	if (reserved)
516 		return;
517 
518 	if (!PageHighMem(page)) {
519 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
520 		debug_check_no_obj_freed(page_address(page),
521 					   PAGE_SIZE << order);
522 	}
523 	arch_free_page(page, order);
524 	kernel_map_pages(page, 1 << order, 0);
525 
526 	local_irq_save(flags);
527 	__count_vm_events(PGFREE, 1 << order);
528 	free_one_page(page_zone(page), page, order);
529 	local_irq_restore(flags);
530 }
531 
532 /*
533  * permit the bootmem allocator to evade page validation on high-order frees
534  */
535 void __free_pages_bootmem(struct page *page, unsigned int order)
536 {
537 	if (order == 0) {
538 		__ClearPageReserved(page);
539 		set_page_count(page, 0);
540 		set_page_refcounted(page);
541 		__free_page(page);
542 	} else {
543 		int loop;
544 
545 		prefetchw(page);
546 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
547 			struct page *p = &page[loop];
548 
549 			if (loop + 1 < BITS_PER_LONG)
550 				prefetchw(p + 1);
551 			__ClearPageReserved(p);
552 			set_page_count(p, 0);
553 		}
554 
555 		set_page_refcounted(page);
556 		__free_pages(page, order);
557 	}
558 }
559 
560 
561 /*
562  * The order of subdivision here is critical for the IO subsystem.
563  * Please do not alter this order without good reasons and regression
564  * testing. Specifically, as large blocks of memory are subdivided,
565  * the order in which smaller blocks are delivered depends on the order
566  * they're subdivided in this function. This is the primary factor
567  * influencing the order in which pages are delivered to the IO
568  * subsystem according to empirical testing, and this is also justified
569  * by considering the behavior of a buddy system containing a single
570  * large block of memory acted on by a series of small allocations.
571  * This behavior is a critical factor in sglist merging's success.
572  *
573  * -- wli
574  */
575 static inline void expand(struct zone *zone, struct page *page,
576 	int low, int high, struct free_area *area,
577 	int migratetype)
578 {
579 	unsigned long size = 1 << high;
580 
581 	while (high > low) {
582 		area--;
583 		high--;
584 		size >>= 1;
585 		VM_BUG_ON(bad_range(zone, &page[size]));
586 		list_add(&page[size].lru, &area->free_list[migratetype]);
587 		area->nr_free++;
588 		set_page_order(&page[size], high);
589 	}
590 }
591 
592 /*
593  * This page is about to be returned from the page allocator
594  */
595 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
596 {
597 	if (unlikely(page_mapcount(page) |
598 		(page->mapping != NULL)  |
599 		(page_get_page_cgroup(page) != NULL) |
600 		(page_count(page) != 0)  |
601 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
602 		bad_page(page);
603 
604 	/*
605 	 * For now, we report if PG_reserved was found set, but do not
606 	 * clear it, and do not allocate the page: as a safety net.
607 	 */
608 	if (PageReserved(page))
609 		return 1;
610 
611 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
612 			1 << PG_referenced | 1 << PG_arch_1 |
613 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
614 	set_page_private(page, 0);
615 	set_page_refcounted(page);
616 
617 	arch_alloc_page(page, order);
618 	kernel_map_pages(page, 1 << order, 1);
619 
620 	if (gfp_flags & __GFP_ZERO)
621 		prep_zero_page(page, order, gfp_flags);
622 
623 	if (order && (gfp_flags & __GFP_COMP))
624 		prep_compound_page(page, order);
625 
626 	return 0;
627 }
628 
629 /*
630  * Go through the free lists for the given migratetype and remove
631  * the smallest available page from the freelists
632  */
633 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
634 						int migratetype)
635 {
636 	unsigned int current_order;
637 	struct free_area * area;
638 	struct page *page;
639 
640 	/* Find a page of the appropriate size in the preferred list */
641 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
642 		area = &(zone->free_area[current_order]);
643 		if (list_empty(&area->free_list[migratetype]))
644 			continue;
645 
646 		page = list_entry(area->free_list[migratetype].next,
647 							struct page, lru);
648 		list_del(&page->lru);
649 		rmv_page_order(page);
650 		area->nr_free--;
651 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
652 		expand(zone, page, order, current_order, area, migratetype);
653 		return page;
654 	}
655 
656 	return NULL;
657 }
658 
659 
660 /*
661  * This array describes the order lists are fallen back to when
662  * the free lists for the desirable migrate type are depleted
663  */
664 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
665 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
666 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
667 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
668 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
669 };
670 
671 /*
672  * Move the free pages in a range to the free lists of the requested type.
673  * Note that start_page and end_pages are not aligned on a pageblock
674  * boundary. If alignment is required, use move_freepages_block()
675  */
676 int move_freepages(struct zone *zone,
677 			struct page *start_page, struct page *end_page,
678 			int migratetype)
679 {
680 	struct page *page;
681 	unsigned long order;
682 	int pages_moved = 0;
683 
684 #ifndef CONFIG_HOLES_IN_ZONE
685 	/*
686 	 * page_zone is not safe to call in this context when
687 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
688 	 * anyway as we check zone boundaries in move_freepages_block().
689 	 * Remove at a later date when no bug reports exist related to
690 	 * grouping pages by mobility
691 	 */
692 	BUG_ON(page_zone(start_page) != page_zone(end_page));
693 #endif
694 
695 	for (page = start_page; page <= end_page;) {
696 		if (!pfn_valid_within(page_to_pfn(page))) {
697 			page++;
698 			continue;
699 		}
700 
701 		if (!PageBuddy(page)) {
702 			page++;
703 			continue;
704 		}
705 
706 		order = page_order(page);
707 		list_del(&page->lru);
708 		list_add(&page->lru,
709 			&zone->free_area[order].free_list[migratetype]);
710 		page += 1 << order;
711 		pages_moved += 1 << order;
712 	}
713 
714 	return pages_moved;
715 }
716 
717 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
718 {
719 	unsigned long start_pfn, end_pfn;
720 	struct page *start_page, *end_page;
721 
722 	start_pfn = page_to_pfn(page);
723 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
724 	start_page = pfn_to_page(start_pfn);
725 	end_page = start_page + pageblock_nr_pages - 1;
726 	end_pfn = start_pfn + pageblock_nr_pages - 1;
727 
728 	/* Do not cross zone boundaries */
729 	if (start_pfn < zone->zone_start_pfn)
730 		start_page = page;
731 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
732 		return 0;
733 
734 	return move_freepages(zone, start_page, end_page, migratetype);
735 }
736 
737 /* Remove an element from the buddy allocator from the fallback list */
738 static struct page *__rmqueue_fallback(struct zone *zone, int order,
739 						int start_migratetype)
740 {
741 	struct free_area * area;
742 	int current_order;
743 	struct page *page;
744 	int migratetype, i;
745 
746 	/* Find the largest possible block of pages in the other list */
747 	for (current_order = MAX_ORDER-1; current_order >= order;
748 						--current_order) {
749 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
750 			migratetype = fallbacks[start_migratetype][i];
751 
752 			/* MIGRATE_RESERVE handled later if necessary */
753 			if (migratetype == MIGRATE_RESERVE)
754 				continue;
755 
756 			area = &(zone->free_area[current_order]);
757 			if (list_empty(&area->free_list[migratetype]))
758 				continue;
759 
760 			page = list_entry(area->free_list[migratetype].next,
761 					struct page, lru);
762 			area->nr_free--;
763 
764 			/*
765 			 * If breaking a large block of pages, move all free
766 			 * pages to the preferred allocation list. If falling
767 			 * back for a reclaimable kernel allocation, be more
768 			 * agressive about taking ownership of free pages
769 			 */
770 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
771 					start_migratetype == MIGRATE_RECLAIMABLE) {
772 				unsigned long pages;
773 				pages = move_freepages_block(zone, page,
774 								start_migratetype);
775 
776 				/* Claim the whole block if over half of it is free */
777 				if (pages >= (1 << (pageblock_order-1)))
778 					set_pageblock_migratetype(page,
779 								start_migratetype);
780 
781 				migratetype = start_migratetype;
782 			}
783 
784 			/* Remove the page from the freelists */
785 			list_del(&page->lru);
786 			rmv_page_order(page);
787 			__mod_zone_page_state(zone, NR_FREE_PAGES,
788 							-(1UL << order));
789 
790 			if (current_order == pageblock_order)
791 				set_pageblock_migratetype(page,
792 							start_migratetype);
793 
794 			expand(zone, page, order, current_order, area, migratetype);
795 			return page;
796 		}
797 	}
798 
799 	/* Use MIGRATE_RESERVE rather than fail an allocation */
800 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
801 }
802 
803 /*
804  * Do the hard work of removing an element from the buddy allocator.
805  * Call me with the zone->lock already held.
806  */
807 static struct page *__rmqueue(struct zone *zone, unsigned int order,
808 						int migratetype)
809 {
810 	struct page *page;
811 
812 	page = __rmqueue_smallest(zone, order, migratetype);
813 
814 	if (unlikely(!page))
815 		page = __rmqueue_fallback(zone, order, migratetype);
816 
817 	return page;
818 }
819 
820 /*
821  * Obtain a specified number of elements from the buddy allocator, all under
822  * a single hold of the lock, for efficiency.  Add them to the supplied list.
823  * Returns the number of new pages which were placed at *list.
824  */
825 static int rmqueue_bulk(struct zone *zone, unsigned int order,
826 			unsigned long count, struct list_head *list,
827 			int migratetype)
828 {
829 	int i;
830 
831 	spin_lock(&zone->lock);
832 	for (i = 0; i < count; ++i) {
833 		struct page *page = __rmqueue(zone, order, migratetype);
834 		if (unlikely(page == NULL))
835 			break;
836 
837 		/*
838 		 * Split buddy pages returned by expand() are received here
839 		 * in physical page order. The page is added to the callers and
840 		 * list and the list head then moves forward. From the callers
841 		 * perspective, the linked list is ordered by page number in
842 		 * some conditions. This is useful for IO devices that can
843 		 * merge IO requests if the physical pages are ordered
844 		 * properly.
845 		 */
846 		list_add(&page->lru, list);
847 		set_page_private(page, migratetype);
848 		list = &page->lru;
849 	}
850 	spin_unlock(&zone->lock);
851 	return i;
852 }
853 
854 #ifdef CONFIG_NUMA
855 /*
856  * Called from the vmstat counter updater to drain pagesets of this
857  * currently executing processor on remote nodes after they have
858  * expired.
859  *
860  * Note that this function must be called with the thread pinned to
861  * a single processor.
862  */
863 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
864 {
865 	unsigned long flags;
866 	int to_drain;
867 
868 	local_irq_save(flags);
869 	if (pcp->count >= pcp->batch)
870 		to_drain = pcp->batch;
871 	else
872 		to_drain = pcp->count;
873 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
874 	pcp->count -= to_drain;
875 	local_irq_restore(flags);
876 }
877 #endif
878 
879 /*
880  * Drain pages of the indicated processor.
881  *
882  * The processor must either be the current processor and the
883  * thread pinned to the current processor or a processor that
884  * is not online.
885  */
886 static void drain_pages(unsigned int cpu)
887 {
888 	unsigned long flags;
889 	struct zone *zone;
890 
891 	for_each_zone(zone) {
892 		struct per_cpu_pageset *pset;
893 		struct per_cpu_pages *pcp;
894 
895 		if (!populated_zone(zone))
896 			continue;
897 
898 		pset = zone_pcp(zone, cpu);
899 
900 		pcp = &pset->pcp;
901 		local_irq_save(flags);
902 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
903 		pcp->count = 0;
904 		local_irq_restore(flags);
905 	}
906 }
907 
908 /*
909  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
910  */
911 void drain_local_pages(void *arg)
912 {
913 	drain_pages(smp_processor_id());
914 }
915 
916 /*
917  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
918  */
919 void drain_all_pages(void)
920 {
921 	on_each_cpu(drain_local_pages, NULL, 1);
922 }
923 
924 #ifdef CONFIG_HIBERNATION
925 
926 void mark_free_pages(struct zone *zone)
927 {
928 	unsigned long pfn, max_zone_pfn;
929 	unsigned long flags;
930 	int order, t;
931 	struct list_head *curr;
932 
933 	if (!zone->spanned_pages)
934 		return;
935 
936 	spin_lock_irqsave(&zone->lock, flags);
937 
938 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
939 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
940 		if (pfn_valid(pfn)) {
941 			struct page *page = pfn_to_page(pfn);
942 
943 			if (!swsusp_page_is_forbidden(page))
944 				swsusp_unset_page_free(page);
945 		}
946 
947 	for_each_migratetype_order(order, t) {
948 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
949 			unsigned long i;
950 
951 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
952 			for (i = 0; i < (1UL << order); i++)
953 				swsusp_set_page_free(pfn_to_page(pfn + i));
954 		}
955 	}
956 	spin_unlock_irqrestore(&zone->lock, flags);
957 }
958 #endif /* CONFIG_PM */
959 
960 /*
961  * Free a 0-order page
962  */
963 static void free_hot_cold_page(struct page *page, int cold)
964 {
965 	struct zone *zone = page_zone(page);
966 	struct per_cpu_pages *pcp;
967 	unsigned long flags;
968 
969 	if (PageAnon(page))
970 		page->mapping = NULL;
971 	if (free_pages_check(page))
972 		return;
973 
974 	if (!PageHighMem(page)) {
975 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
976 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
977 	}
978 	arch_free_page(page, 0);
979 	kernel_map_pages(page, 1, 0);
980 
981 	pcp = &zone_pcp(zone, get_cpu())->pcp;
982 	local_irq_save(flags);
983 	__count_vm_event(PGFREE);
984 	if (cold)
985 		list_add_tail(&page->lru, &pcp->list);
986 	else
987 		list_add(&page->lru, &pcp->list);
988 	set_page_private(page, get_pageblock_migratetype(page));
989 	pcp->count++;
990 	if (pcp->count >= pcp->high) {
991 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
992 		pcp->count -= pcp->batch;
993 	}
994 	local_irq_restore(flags);
995 	put_cpu();
996 }
997 
998 void free_hot_page(struct page *page)
999 {
1000 	free_hot_cold_page(page, 0);
1001 }
1002 
1003 void free_cold_page(struct page *page)
1004 {
1005 	free_hot_cold_page(page, 1);
1006 }
1007 
1008 /*
1009  * split_page takes a non-compound higher-order page, and splits it into
1010  * n (1<<order) sub-pages: page[0..n]
1011  * Each sub-page must be freed individually.
1012  *
1013  * Note: this is probably too low level an operation for use in drivers.
1014  * Please consult with lkml before using this in your driver.
1015  */
1016 void split_page(struct page *page, unsigned int order)
1017 {
1018 	int i;
1019 
1020 	VM_BUG_ON(PageCompound(page));
1021 	VM_BUG_ON(!page_count(page));
1022 	for (i = 1; i < (1 << order); i++)
1023 		set_page_refcounted(page + i);
1024 }
1025 
1026 /*
1027  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1028  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1029  * or two.
1030  */
1031 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1032 			struct zone *zone, int order, gfp_t gfp_flags)
1033 {
1034 	unsigned long flags;
1035 	struct page *page;
1036 	int cold = !!(gfp_flags & __GFP_COLD);
1037 	int cpu;
1038 	int migratetype = allocflags_to_migratetype(gfp_flags);
1039 
1040 again:
1041 	cpu  = get_cpu();
1042 	if (likely(order == 0)) {
1043 		struct per_cpu_pages *pcp;
1044 
1045 		pcp = &zone_pcp(zone, cpu)->pcp;
1046 		local_irq_save(flags);
1047 		if (!pcp->count) {
1048 			pcp->count = rmqueue_bulk(zone, 0,
1049 					pcp->batch, &pcp->list, migratetype);
1050 			if (unlikely(!pcp->count))
1051 				goto failed;
1052 		}
1053 
1054 		/* Find a page of the appropriate migrate type */
1055 		if (cold) {
1056 			list_for_each_entry_reverse(page, &pcp->list, lru)
1057 				if (page_private(page) == migratetype)
1058 					break;
1059 		} else {
1060 			list_for_each_entry(page, &pcp->list, lru)
1061 				if (page_private(page) == migratetype)
1062 					break;
1063 		}
1064 
1065 		/* Allocate more to the pcp list if necessary */
1066 		if (unlikely(&page->lru == &pcp->list)) {
1067 			pcp->count += rmqueue_bulk(zone, 0,
1068 					pcp->batch, &pcp->list, migratetype);
1069 			page = list_entry(pcp->list.next, struct page, lru);
1070 		}
1071 
1072 		list_del(&page->lru);
1073 		pcp->count--;
1074 	} else {
1075 		spin_lock_irqsave(&zone->lock, flags);
1076 		page = __rmqueue(zone, order, migratetype);
1077 		spin_unlock(&zone->lock);
1078 		if (!page)
1079 			goto failed;
1080 	}
1081 
1082 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1083 	zone_statistics(preferred_zone, zone);
1084 	local_irq_restore(flags);
1085 	put_cpu();
1086 
1087 	VM_BUG_ON(bad_range(zone, page));
1088 	if (prep_new_page(page, order, gfp_flags))
1089 		goto again;
1090 	return page;
1091 
1092 failed:
1093 	local_irq_restore(flags);
1094 	put_cpu();
1095 	return NULL;
1096 }
1097 
1098 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1099 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1100 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1101 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1102 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1103 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1104 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1105 
1106 #ifdef CONFIG_FAIL_PAGE_ALLOC
1107 
1108 static struct fail_page_alloc_attr {
1109 	struct fault_attr attr;
1110 
1111 	u32 ignore_gfp_highmem;
1112 	u32 ignore_gfp_wait;
1113 	u32 min_order;
1114 
1115 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1116 
1117 	struct dentry *ignore_gfp_highmem_file;
1118 	struct dentry *ignore_gfp_wait_file;
1119 	struct dentry *min_order_file;
1120 
1121 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1122 
1123 } fail_page_alloc = {
1124 	.attr = FAULT_ATTR_INITIALIZER,
1125 	.ignore_gfp_wait = 1,
1126 	.ignore_gfp_highmem = 1,
1127 	.min_order = 1,
1128 };
1129 
1130 static int __init setup_fail_page_alloc(char *str)
1131 {
1132 	return setup_fault_attr(&fail_page_alloc.attr, str);
1133 }
1134 __setup("fail_page_alloc=", setup_fail_page_alloc);
1135 
1136 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1137 {
1138 	if (order < fail_page_alloc.min_order)
1139 		return 0;
1140 	if (gfp_mask & __GFP_NOFAIL)
1141 		return 0;
1142 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1143 		return 0;
1144 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1145 		return 0;
1146 
1147 	return should_fail(&fail_page_alloc.attr, 1 << order);
1148 }
1149 
1150 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1151 
1152 static int __init fail_page_alloc_debugfs(void)
1153 {
1154 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1155 	struct dentry *dir;
1156 	int err;
1157 
1158 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1159 				       "fail_page_alloc");
1160 	if (err)
1161 		return err;
1162 	dir = fail_page_alloc.attr.dentries.dir;
1163 
1164 	fail_page_alloc.ignore_gfp_wait_file =
1165 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1166 				      &fail_page_alloc.ignore_gfp_wait);
1167 
1168 	fail_page_alloc.ignore_gfp_highmem_file =
1169 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1170 				      &fail_page_alloc.ignore_gfp_highmem);
1171 	fail_page_alloc.min_order_file =
1172 		debugfs_create_u32("min-order", mode, dir,
1173 				   &fail_page_alloc.min_order);
1174 
1175 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1176             !fail_page_alloc.ignore_gfp_highmem_file ||
1177             !fail_page_alloc.min_order_file) {
1178 		err = -ENOMEM;
1179 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1180 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1181 		debugfs_remove(fail_page_alloc.min_order_file);
1182 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1183 	}
1184 
1185 	return err;
1186 }
1187 
1188 late_initcall(fail_page_alloc_debugfs);
1189 
1190 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1191 
1192 #else /* CONFIG_FAIL_PAGE_ALLOC */
1193 
1194 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1195 {
1196 	return 0;
1197 }
1198 
1199 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1200 
1201 /*
1202  * Return 1 if free pages are above 'mark'. This takes into account the order
1203  * of the allocation.
1204  */
1205 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1206 		      int classzone_idx, int alloc_flags)
1207 {
1208 	/* free_pages my go negative - that's OK */
1209 	long min = mark;
1210 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1211 	int o;
1212 
1213 	if (alloc_flags & ALLOC_HIGH)
1214 		min -= min / 2;
1215 	if (alloc_flags & ALLOC_HARDER)
1216 		min -= min / 4;
1217 
1218 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1219 		return 0;
1220 	for (o = 0; o < order; o++) {
1221 		/* At the next order, this order's pages become unavailable */
1222 		free_pages -= z->free_area[o].nr_free << o;
1223 
1224 		/* Require fewer higher order pages to be free */
1225 		min >>= 1;
1226 
1227 		if (free_pages <= min)
1228 			return 0;
1229 	}
1230 	return 1;
1231 }
1232 
1233 #ifdef CONFIG_NUMA
1234 /*
1235  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1236  * skip over zones that are not allowed by the cpuset, or that have
1237  * been recently (in last second) found to be nearly full.  See further
1238  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1239  * that have to skip over a lot of full or unallowed zones.
1240  *
1241  * If the zonelist cache is present in the passed in zonelist, then
1242  * returns a pointer to the allowed node mask (either the current
1243  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1244  *
1245  * If the zonelist cache is not available for this zonelist, does
1246  * nothing and returns NULL.
1247  *
1248  * If the fullzones BITMAP in the zonelist cache is stale (more than
1249  * a second since last zap'd) then we zap it out (clear its bits.)
1250  *
1251  * We hold off even calling zlc_setup, until after we've checked the
1252  * first zone in the zonelist, on the theory that most allocations will
1253  * be satisfied from that first zone, so best to examine that zone as
1254  * quickly as we can.
1255  */
1256 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1257 {
1258 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1259 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1260 
1261 	zlc = zonelist->zlcache_ptr;
1262 	if (!zlc)
1263 		return NULL;
1264 
1265 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1266 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1267 		zlc->last_full_zap = jiffies;
1268 	}
1269 
1270 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1271 					&cpuset_current_mems_allowed :
1272 					&node_states[N_HIGH_MEMORY];
1273 	return allowednodes;
1274 }
1275 
1276 /*
1277  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1278  * if it is worth looking at further for free memory:
1279  *  1) Check that the zone isn't thought to be full (doesn't have its
1280  *     bit set in the zonelist_cache fullzones BITMAP).
1281  *  2) Check that the zones node (obtained from the zonelist_cache
1282  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1283  * Return true (non-zero) if zone is worth looking at further, or
1284  * else return false (zero) if it is not.
1285  *
1286  * This check -ignores- the distinction between various watermarks,
1287  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1288  * found to be full for any variation of these watermarks, it will
1289  * be considered full for up to one second by all requests, unless
1290  * we are so low on memory on all allowed nodes that we are forced
1291  * into the second scan of the zonelist.
1292  *
1293  * In the second scan we ignore this zonelist cache and exactly
1294  * apply the watermarks to all zones, even it is slower to do so.
1295  * We are low on memory in the second scan, and should leave no stone
1296  * unturned looking for a free page.
1297  */
1298 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1299 						nodemask_t *allowednodes)
1300 {
1301 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1302 	int i;				/* index of *z in zonelist zones */
1303 	int n;				/* node that zone *z is on */
1304 
1305 	zlc = zonelist->zlcache_ptr;
1306 	if (!zlc)
1307 		return 1;
1308 
1309 	i = z - zonelist->_zonerefs;
1310 	n = zlc->z_to_n[i];
1311 
1312 	/* This zone is worth trying if it is allowed but not full */
1313 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1314 }
1315 
1316 /*
1317  * Given 'z' scanning a zonelist, set the corresponding bit in
1318  * zlc->fullzones, so that subsequent attempts to allocate a page
1319  * from that zone don't waste time re-examining it.
1320  */
1321 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1322 {
1323 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1324 	int i;				/* index of *z in zonelist zones */
1325 
1326 	zlc = zonelist->zlcache_ptr;
1327 	if (!zlc)
1328 		return;
1329 
1330 	i = z - zonelist->_zonerefs;
1331 
1332 	set_bit(i, zlc->fullzones);
1333 }
1334 
1335 #else	/* CONFIG_NUMA */
1336 
1337 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1338 {
1339 	return NULL;
1340 }
1341 
1342 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1343 				nodemask_t *allowednodes)
1344 {
1345 	return 1;
1346 }
1347 
1348 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1349 {
1350 }
1351 #endif	/* CONFIG_NUMA */
1352 
1353 /*
1354  * get_page_from_freelist goes through the zonelist trying to allocate
1355  * a page.
1356  */
1357 static struct page *
1358 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1359 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1360 {
1361 	struct zoneref *z;
1362 	struct page *page = NULL;
1363 	int classzone_idx;
1364 	struct zone *zone, *preferred_zone;
1365 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1366 	int zlc_active = 0;		/* set if using zonelist_cache */
1367 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1368 
1369 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1370 							&preferred_zone);
1371 	if (!preferred_zone)
1372 		return NULL;
1373 
1374 	classzone_idx = zone_idx(preferred_zone);
1375 
1376 zonelist_scan:
1377 	/*
1378 	 * Scan zonelist, looking for a zone with enough free.
1379 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1380 	 */
1381 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1382 						high_zoneidx, nodemask) {
1383 		if (NUMA_BUILD && zlc_active &&
1384 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1385 				continue;
1386 		if ((alloc_flags & ALLOC_CPUSET) &&
1387 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1388 				goto try_next_zone;
1389 
1390 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1391 			unsigned long mark;
1392 			if (alloc_flags & ALLOC_WMARK_MIN)
1393 				mark = zone->pages_min;
1394 			else if (alloc_flags & ALLOC_WMARK_LOW)
1395 				mark = zone->pages_low;
1396 			else
1397 				mark = zone->pages_high;
1398 			if (!zone_watermark_ok(zone, order, mark,
1399 				    classzone_idx, alloc_flags)) {
1400 				if (!zone_reclaim_mode ||
1401 				    !zone_reclaim(zone, gfp_mask, order))
1402 					goto this_zone_full;
1403 			}
1404 		}
1405 
1406 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1407 		if (page)
1408 			break;
1409 this_zone_full:
1410 		if (NUMA_BUILD)
1411 			zlc_mark_zone_full(zonelist, z);
1412 try_next_zone:
1413 		if (NUMA_BUILD && !did_zlc_setup) {
1414 			/* we do zlc_setup after the first zone is tried */
1415 			allowednodes = zlc_setup(zonelist, alloc_flags);
1416 			zlc_active = 1;
1417 			did_zlc_setup = 1;
1418 		}
1419 	}
1420 
1421 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1422 		/* Disable zlc cache for second zonelist scan */
1423 		zlc_active = 0;
1424 		goto zonelist_scan;
1425 	}
1426 	return page;
1427 }
1428 
1429 /*
1430  * This is the 'heart' of the zoned buddy allocator.
1431  */
1432 static struct page *
1433 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1434 			struct zonelist *zonelist, nodemask_t *nodemask)
1435 {
1436 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1437 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1438 	struct zoneref *z;
1439 	struct zone *zone;
1440 	struct page *page;
1441 	struct reclaim_state reclaim_state;
1442 	struct task_struct *p = current;
1443 	int do_retry;
1444 	int alloc_flags;
1445 	unsigned long did_some_progress;
1446 	unsigned long pages_reclaimed = 0;
1447 
1448 	might_sleep_if(wait);
1449 
1450 	if (should_fail_alloc_page(gfp_mask, order))
1451 		return NULL;
1452 
1453 restart:
1454 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1455 
1456 	if (unlikely(!z->zone)) {
1457 		/*
1458 		 * Happens if we have an empty zonelist as a result of
1459 		 * GFP_THISNODE being used on a memoryless node
1460 		 */
1461 		return NULL;
1462 	}
1463 
1464 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1465 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1466 	if (page)
1467 		goto got_pg;
1468 
1469 	/*
1470 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1471 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1472 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1473 	 * using a larger set of nodes after it has established that the
1474 	 * allowed per node queues are empty and that nodes are
1475 	 * over allocated.
1476 	 */
1477 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1478 		goto nopage;
1479 
1480 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1481 		wakeup_kswapd(zone, order);
1482 
1483 	/*
1484 	 * OK, we're below the kswapd watermark and have kicked background
1485 	 * reclaim. Now things get more complex, so set up alloc_flags according
1486 	 * to how we want to proceed.
1487 	 *
1488 	 * The caller may dip into page reserves a bit more if the caller
1489 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1490 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1491 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1492 	 */
1493 	alloc_flags = ALLOC_WMARK_MIN;
1494 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1495 		alloc_flags |= ALLOC_HARDER;
1496 	if (gfp_mask & __GFP_HIGH)
1497 		alloc_flags |= ALLOC_HIGH;
1498 	if (wait)
1499 		alloc_flags |= ALLOC_CPUSET;
1500 
1501 	/*
1502 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1503 	 * coming from realtime tasks go deeper into reserves.
1504 	 *
1505 	 * This is the last chance, in general, before the goto nopage.
1506 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1507 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1508 	 */
1509 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1510 						high_zoneidx, alloc_flags);
1511 	if (page)
1512 		goto got_pg;
1513 
1514 	/* This allocation should allow future memory freeing. */
1515 
1516 rebalance:
1517 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1518 			&& !in_interrupt()) {
1519 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1520 nofail_alloc:
1521 			/* go through the zonelist yet again, ignoring mins */
1522 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1523 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1524 			if (page)
1525 				goto got_pg;
1526 			if (gfp_mask & __GFP_NOFAIL) {
1527 				congestion_wait(WRITE, HZ/50);
1528 				goto nofail_alloc;
1529 			}
1530 		}
1531 		goto nopage;
1532 	}
1533 
1534 	/* Atomic allocations - we can't balance anything */
1535 	if (!wait)
1536 		goto nopage;
1537 
1538 	cond_resched();
1539 
1540 	/* We now go into synchronous reclaim */
1541 	cpuset_memory_pressure_bump();
1542 	p->flags |= PF_MEMALLOC;
1543 	reclaim_state.reclaimed_slab = 0;
1544 	p->reclaim_state = &reclaim_state;
1545 
1546 	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1547 
1548 	p->reclaim_state = NULL;
1549 	p->flags &= ~PF_MEMALLOC;
1550 
1551 	cond_resched();
1552 
1553 	if (order != 0)
1554 		drain_all_pages();
1555 
1556 	if (likely(did_some_progress)) {
1557 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1558 					zonelist, high_zoneidx, alloc_flags);
1559 		if (page)
1560 			goto got_pg;
1561 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1562 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1563 			schedule_timeout_uninterruptible(1);
1564 			goto restart;
1565 		}
1566 
1567 		/*
1568 		 * Go through the zonelist yet one more time, keep
1569 		 * very high watermark here, this is only to catch
1570 		 * a parallel oom killing, we must fail if we're still
1571 		 * under heavy pressure.
1572 		 */
1573 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1574 			order, zonelist, high_zoneidx,
1575 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1576 		if (page) {
1577 			clear_zonelist_oom(zonelist, gfp_mask);
1578 			goto got_pg;
1579 		}
1580 
1581 		/* The OOM killer will not help higher order allocs so fail */
1582 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1583 			clear_zonelist_oom(zonelist, gfp_mask);
1584 			goto nopage;
1585 		}
1586 
1587 		out_of_memory(zonelist, gfp_mask, order);
1588 		clear_zonelist_oom(zonelist, gfp_mask);
1589 		goto restart;
1590 	}
1591 
1592 	/*
1593 	 * Don't let big-order allocations loop unless the caller explicitly
1594 	 * requests that.  Wait for some write requests to complete then retry.
1595 	 *
1596 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1597 	 * means __GFP_NOFAIL, but that may not be true in other
1598 	 * implementations.
1599 	 *
1600 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1601 	 * specified, then we retry until we no longer reclaim any pages
1602 	 * (above), or we've reclaimed an order of pages at least as
1603 	 * large as the allocation's order. In both cases, if the
1604 	 * allocation still fails, we stop retrying.
1605 	 */
1606 	pages_reclaimed += did_some_progress;
1607 	do_retry = 0;
1608 	if (!(gfp_mask & __GFP_NORETRY)) {
1609 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1610 			do_retry = 1;
1611 		} else {
1612 			if (gfp_mask & __GFP_REPEAT &&
1613 				pages_reclaimed < (1 << order))
1614 					do_retry = 1;
1615 		}
1616 		if (gfp_mask & __GFP_NOFAIL)
1617 			do_retry = 1;
1618 	}
1619 	if (do_retry) {
1620 		congestion_wait(WRITE, HZ/50);
1621 		goto rebalance;
1622 	}
1623 
1624 nopage:
1625 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1626 		printk(KERN_WARNING "%s: page allocation failure."
1627 			" order:%d, mode:0x%x\n",
1628 			p->comm, order, gfp_mask);
1629 		dump_stack();
1630 		show_mem();
1631 	}
1632 got_pg:
1633 	return page;
1634 }
1635 
1636 struct page *
1637 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1638 		struct zonelist *zonelist)
1639 {
1640 	return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
1641 }
1642 
1643 struct page *
1644 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1645 		struct zonelist *zonelist, nodemask_t *nodemask)
1646 {
1647 	return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
1648 }
1649 
1650 EXPORT_SYMBOL(__alloc_pages);
1651 
1652 /*
1653  * Common helper functions.
1654  */
1655 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1656 {
1657 	struct page * page;
1658 	page = alloc_pages(gfp_mask, order);
1659 	if (!page)
1660 		return 0;
1661 	return (unsigned long) page_address(page);
1662 }
1663 
1664 EXPORT_SYMBOL(__get_free_pages);
1665 
1666 unsigned long get_zeroed_page(gfp_t gfp_mask)
1667 {
1668 	struct page * page;
1669 
1670 	/*
1671 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1672 	 * a highmem page
1673 	 */
1674 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1675 
1676 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1677 	if (page)
1678 		return (unsigned long) page_address(page);
1679 	return 0;
1680 }
1681 
1682 EXPORT_SYMBOL(get_zeroed_page);
1683 
1684 void __pagevec_free(struct pagevec *pvec)
1685 {
1686 	int i = pagevec_count(pvec);
1687 
1688 	while (--i >= 0)
1689 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1690 }
1691 
1692 void __free_pages(struct page *page, unsigned int order)
1693 {
1694 	if (put_page_testzero(page)) {
1695 		if (order == 0)
1696 			free_hot_page(page);
1697 		else
1698 			__free_pages_ok(page, order);
1699 	}
1700 }
1701 
1702 EXPORT_SYMBOL(__free_pages);
1703 
1704 void free_pages(unsigned long addr, unsigned int order)
1705 {
1706 	if (addr != 0) {
1707 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1708 		__free_pages(virt_to_page((void *)addr), order);
1709 	}
1710 }
1711 
1712 EXPORT_SYMBOL(free_pages);
1713 
1714 static unsigned int nr_free_zone_pages(int offset)
1715 {
1716 	struct zoneref *z;
1717 	struct zone *zone;
1718 
1719 	/* Just pick one node, since fallback list is circular */
1720 	unsigned int sum = 0;
1721 
1722 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1723 
1724 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1725 		unsigned long size = zone->present_pages;
1726 		unsigned long high = zone->pages_high;
1727 		if (size > high)
1728 			sum += size - high;
1729 	}
1730 
1731 	return sum;
1732 }
1733 
1734 /*
1735  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1736  */
1737 unsigned int nr_free_buffer_pages(void)
1738 {
1739 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1740 }
1741 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1742 
1743 /*
1744  * Amount of free RAM allocatable within all zones
1745  */
1746 unsigned int nr_free_pagecache_pages(void)
1747 {
1748 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1749 }
1750 
1751 static inline void show_node(struct zone *zone)
1752 {
1753 	if (NUMA_BUILD)
1754 		printk("Node %d ", zone_to_nid(zone));
1755 }
1756 
1757 void si_meminfo(struct sysinfo *val)
1758 {
1759 	val->totalram = totalram_pages;
1760 	val->sharedram = 0;
1761 	val->freeram = global_page_state(NR_FREE_PAGES);
1762 	val->bufferram = nr_blockdev_pages();
1763 	val->totalhigh = totalhigh_pages;
1764 	val->freehigh = nr_free_highpages();
1765 	val->mem_unit = PAGE_SIZE;
1766 }
1767 
1768 EXPORT_SYMBOL(si_meminfo);
1769 
1770 #ifdef CONFIG_NUMA
1771 void si_meminfo_node(struct sysinfo *val, int nid)
1772 {
1773 	pg_data_t *pgdat = NODE_DATA(nid);
1774 
1775 	val->totalram = pgdat->node_present_pages;
1776 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1777 #ifdef CONFIG_HIGHMEM
1778 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1779 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1780 			NR_FREE_PAGES);
1781 #else
1782 	val->totalhigh = 0;
1783 	val->freehigh = 0;
1784 #endif
1785 	val->mem_unit = PAGE_SIZE;
1786 }
1787 #endif
1788 
1789 #define K(x) ((x) << (PAGE_SHIFT-10))
1790 
1791 /*
1792  * Show free area list (used inside shift_scroll-lock stuff)
1793  * We also calculate the percentage fragmentation. We do this by counting the
1794  * memory on each free list with the exception of the first item on the list.
1795  */
1796 void show_free_areas(void)
1797 {
1798 	int cpu;
1799 	struct zone *zone;
1800 
1801 	for_each_zone(zone) {
1802 		if (!populated_zone(zone))
1803 			continue;
1804 
1805 		show_node(zone);
1806 		printk("%s per-cpu:\n", zone->name);
1807 
1808 		for_each_online_cpu(cpu) {
1809 			struct per_cpu_pageset *pageset;
1810 
1811 			pageset = zone_pcp(zone, cpu);
1812 
1813 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1814 			       cpu, pageset->pcp.high,
1815 			       pageset->pcp.batch, pageset->pcp.count);
1816 		}
1817 	}
1818 
1819 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1820 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1821 		global_page_state(NR_ACTIVE),
1822 		global_page_state(NR_INACTIVE),
1823 		global_page_state(NR_FILE_DIRTY),
1824 		global_page_state(NR_WRITEBACK),
1825 		global_page_state(NR_UNSTABLE_NFS),
1826 		global_page_state(NR_FREE_PAGES),
1827 		global_page_state(NR_SLAB_RECLAIMABLE) +
1828 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1829 		global_page_state(NR_FILE_MAPPED),
1830 		global_page_state(NR_PAGETABLE),
1831 		global_page_state(NR_BOUNCE));
1832 
1833 	for_each_zone(zone) {
1834 		int i;
1835 
1836 		if (!populated_zone(zone))
1837 			continue;
1838 
1839 		show_node(zone);
1840 		printk("%s"
1841 			" free:%lukB"
1842 			" min:%lukB"
1843 			" low:%lukB"
1844 			" high:%lukB"
1845 			" active:%lukB"
1846 			" inactive:%lukB"
1847 			" present:%lukB"
1848 			" pages_scanned:%lu"
1849 			" all_unreclaimable? %s"
1850 			"\n",
1851 			zone->name,
1852 			K(zone_page_state(zone, NR_FREE_PAGES)),
1853 			K(zone->pages_min),
1854 			K(zone->pages_low),
1855 			K(zone->pages_high),
1856 			K(zone_page_state(zone, NR_ACTIVE)),
1857 			K(zone_page_state(zone, NR_INACTIVE)),
1858 			K(zone->present_pages),
1859 			zone->pages_scanned,
1860 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1861 			);
1862 		printk("lowmem_reserve[]:");
1863 		for (i = 0; i < MAX_NR_ZONES; i++)
1864 			printk(" %lu", zone->lowmem_reserve[i]);
1865 		printk("\n");
1866 	}
1867 
1868 	for_each_zone(zone) {
1869  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1870 
1871 		if (!populated_zone(zone))
1872 			continue;
1873 
1874 		show_node(zone);
1875 		printk("%s: ", zone->name);
1876 
1877 		spin_lock_irqsave(&zone->lock, flags);
1878 		for (order = 0; order < MAX_ORDER; order++) {
1879 			nr[order] = zone->free_area[order].nr_free;
1880 			total += nr[order] << order;
1881 		}
1882 		spin_unlock_irqrestore(&zone->lock, flags);
1883 		for (order = 0; order < MAX_ORDER; order++)
1884 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1885 		printk("= %lukB\n", K(total));
1886 	}
1887 
1888 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1889 
1890 	show_swap_cache_info();
1891 }
1892 
1893 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1894 {
1895 	zoneref->zone = zone;
1896 	zoneref->zone_idx = zone_idx(zone);
1897 }
1898 
1899 /*
1900  * Builds allocation fallback zone lists.
1901  *
1902  * Add all populated zones of a node to the zonelist.
1903  */
1904 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1905 				int nr_zones, enum zone_type zone_type)
1906 {
1907 	struct zone *zone;
1908 
1909 	BUG_ON(zone_type >= MAX_NR_ZONES);
1910 	zone_type++;
1911 
1912 	do {
1913 		zone_type--;
1914 		zone = pgdat->node_zones + zone_type;
1915 		if (populated_zone(zone)) {
1916 			zoneref_set_zone(zone,
1917 				&zonelist->_zonerefs[nr_zones++]);
1918 			check_highest_zone(zone_type);
1919 		}
1920 
1921 	} while (zone_type);
1922 	return nr_zones;
1923 }
1924 
1925 
1926 /*
1927  *  zonelist_order:
1928  *  0 = automatic detection of better ordering.
1929  *  1 = order by ([node] distance, -zonetype)
1930  *  2 = order by (-zonetype, [node] distance)
1931  *
1932  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1933  *  the same zonelist. So only NUMA can configure this param.
1934  */
1935 #define ZONELIST_ORDER_DEFAULT  0
1936 #define ZONELIST_ORDER_NODE     1
1937 #define ZONELIST_ORDER_ZONE     2
1938 
1939 /* zonelist order in the kernel.
1940  * set_zonelist_order() will set this to NODE or ZONE.
1941  */
1942 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1943 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1944 
1945 
1946 #ifdef CONFIG_NUMA
1947 /* The value user specified ....changed by config */
1948 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1949 /* string for sysctl */
1950 #define NUMA_ZONELIST_ORDER_LEN	16
1951 char numa_zonelist_order[16] = "default";
1952 
1953 /*
1954  * interface for configure zonelist ordering.
1955  * command line option "numa_zonelist_order"
1956  *	= "[dD]efault	- default, automatic configuration.
1957  *	= "[nN]ode 	- order by node locality, then by zone within node
1958  *	= "[zZ]one      - order by zone, then by locality within zone
1959  */
1960 
1961 static int __parse_numa_zonelist_order(char *s)
1962 {
1963 	if (*s == 'd' || *s == 'D') {
1964 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1965 	} else if (*s == 'n' || *s == 'N') {
1966 		user_zonelist_order = ZONELIST_ORDER_NODE;
1967 	} else if (*s == 'z' || *s == 'Z') {
1968 		user_zonelist_order = ZONELIST_ORDER_ZONE;
1969 	} else {
1970 		printk(KERN_WARNING
1971 			"Ignoring invalid numa_zonelist_order value:  "
1972 			"%s\n", s);
1973 		return -EINVAL;
1974 	}
1975 	return 0;
1976 }
1977 
1978 static __init int setup_numa_zonelist_order(char *s)
1979 {
1980 	if (s)
1981 		return __parse_numa_zonelist_order(s);
1982 	return 0;
1983 }
1984 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1985 
1986 /*
1987  * sysctl handler for numa_zonelist_order
1988  */
1989 int numa_zonelist_order_handler(ctl_table *table, int write,
1990 		struct file *file, void __user *buffer, size_t *length,
1991 		loff_t *ppos)
1992 {
1993 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
1994 	int ret;
1995 
1996 	if (write)
1997 		strncpy(saved_string, (char*)table->data,
1998 			NUMA_ZONELIST_ORDER_LEN);
1999 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2000 	if (ret)
2001 		return ret;
2002 	if (write) {
2003 		int oldval = user_zonelist_order;
2004 		if (__parse_numa_zonelist_order((char*)table->data)) {
2005 			/*
2006 			 * bogus value.  restore saved string
2007 			 */
2008 			strncpy((char*)table->data, saved_string,
2009 				NUMA_ZONELIST_ORDER_LEN);
2010 			user_zonelist_order = oldval;
2011 		} else if (oldval != user_zonelist_order)
2012 			build_all_zonelists();
2013 	}
2014 	return 0;
2015 }
2016 
2017 
2018 #define MAX_NODE_LOAD (num_online_nodes())
2019 static int node_load[MAX_NUMNODES];
2020 
2021 /**
2022  * find_next_best_node - find the next node that should appear in a given node's fallback list
2023  * @node: node whose fallback list we're appending
2024  * @used_node_mask: nodemask_t of already used nodes
2025  *
2026  * We use a number of factors to determine which is the next node that should
2027  * appear on a given node's fallback list.  The node should not have appeared
2028  * already in @node's fallback list, and it should be the next closest node
2029  * according to the distance array (which contains arbitrary distance values
2030  * from each node to each node in the system), and should also prefer nodes
2031  * with no CPUs, since presumably they'll have very little allocation pressure
2032  * on them otherwise.
2033  * It returns -1 if no node is found.
2034  */
2035 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2036 {
2037 	int n, val;
2038 	int min_val = INT_MAX;
2039 	int best_node = -1;
2040 	node_to_cpumask_ptr(tmp, 0);
2041 
2042 	/* Use the local node if we haven't already */
2043 	if (!node_isset(node, *used_node_mask)) {
2044 		node_set(node, *used_node_mask);
2045 		return node;
2046 	}
2047 
2048 	for_each_node_state(n, N_HIGH_MEMORY) {
2049 
2050 		/* Don't want a node to appear more than once */
2051 		if (node_isset(n, *used_node_mask))
2052 			continue;
2053 
2054 		/* Use the distance array to find the distance */
2055 		val = node_distance(node, n);
2056 
2057 		/* Penalize nodes under us ("prefer the next node") */
2058 		val += (n < node);
2059 
2060 		/* Give preference to headless and unused nodes */
2061 		node_to_cpumask_ptr_next(tmp, n);
2062 		if (!cpus_empty(*tmp))
2063 			val += PENALTY_FOR_NODE_WITH_CPUS;
2064 
2065 		/* Slight preference for less loaded node */
2066 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2067 		val += node_load[n];
2068 
2069 		if (val < min_val) {
2070 			min_val = val;
2071 			best_node = n;
2072 		}
2073 	}
2074 
2075 	if (best_node >= 0)
2076 		node_set(best_node, *used_node_mask);
2077 
2078 	return best_node;
2079 }
2080 
2081 
2082 /*
2083  * Build zonelists ordered by node and zones within node.
2084  * This results in maximum locality--normal zone overflows into local
2085  * DMA zone, if any--but risks exhausting DMA zone.
2086  */
2087 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2088 {
2089 	int j;
2090 	struct zonelist *zonelist;
2091 
2092 	zonelist = &pgdat->node_zonelists[0];
2093 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2094 		;
2095 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2096 							MAX_NR_ZONES - 1);
2097 	zonelist->_zonerefs[j].zone = NULL;
2098 	zonelist->_zonerefs[j].zone_idx = 0;
2099 }
2100 
2101 /*
2102  * Build gfp_thisnode zonelists
2103  */
2104 static void build_thisnode_zonelists(pg_data_t *pgdat)
2105 {
2106 	int j;
2107 	struct zonelist *zonelist;
2108 
2109 	zonelist = &pgdat->node_zonelists[1];
2110 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2111 	zonelist->_zonerefs[j].zone = NULL;
2112 	zonelist->_zonerefs[j].zone_idx = 0;
2113 }
2114 
2115 /*
2116  * Build zonelists ordered by zone and nodes within zones.
2117  * This results in conserving DMA zone[s] until all Normal memory is
2118  * exhausted, but results in overflowing to remote node while memory
2119  * may still exist in local DMA zone.
2120  */
2121 static int node_order[MAX_NUMNODES];
2122 
2123 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2124 {
2125 	int pos, j, node;
2126 	int zone_type;		/* needs to be signed */
2127 	struct zone *z;
2128 	struct zonelist *zonelist;
2129 
2130 	zonelist = &pgdat->node_zonelists[0];
2131 	pos = 0;
2132 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2133 		for (j = 0; j < nr_nodes; j++) {
2134 			node = node_order[j];
2135 			z = &NODE_DATA(node)->node_zones[zone_type];
2136 			if (populated_zone(z)) {
2137 				zoneref_set_zone(z,
2138 					&zonelist->_zonerefs[pos++]);
2139 				check_highest_zone(zone_type);
2140 			}
2141 		}
2142 	}
2143 	zonelist->_zonerefs[pos].zone = NULL;
2144 	zonelist->_zonerefs[pos].zone_idx = 0;
2145 }
2146 
2147 static int default_zonelist_order(void)
2148 {
2149 	int nid, zone_type;
2150 	unsigned long low_kmem_size,total_size;
2151 	struct zone *z;
2152 	int average_size;
2153 	/*
2154          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2155 	 * If they are really small and used heavily, the system can fall
2156 	 * into OOM very easily.
2157 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2158 	 */
2159 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2160 	low_kmem_size = 0;
2161 	total_size = 0;
2162 	for_each_online_node(nid) {
2163 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2164 			z = &NODE_DATA(nid)->node_zones[zone_type];
2165 			if (populated_zone(z)) {
2166 				if (zone_type < ZONE_NORMAL)
2167 					low_kmem_size += z->present_pages;
2168 				total_size += z->present_pages;
2169 			}
2170 		}
2171 	}
2172 	if (!low_kmem_size ||  /* there are no DMA area. */
2173 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2174 		return ZONELIST_ORDER_NODE;
2175 	/*
2176 	 * look into each node's config.
2177   	 * If there is a node whose DMA/DMA32 memory is very big area on
2178  	 * local memory, NODE_ORDER may be suitable.
2179          */
2180 	average_size = total_size /
2181 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2182 	for_each_online_node(nid) {
2183 		low_kmem_size = 0;
2184 		total_size = 0;
2185 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2186 			z = &NODE_DATA(nid)->node_zones[zone_type];
2187 			if (populated_zone(z)) {
2188 				if (zone_type < ZONE_NORMAL)
2189 					low_kmem_size += z->present_pages;
2190 				total_size += z->present_pages;
2191 			}
2192 		}
2193 		if (low_kmem_size &&
2194 		    total_size > average_size && /* ignore small node */
2195 		    low_kmem_size > total_size * 70/100)
2196 			return ZONELIST_ORDER_NODE;
2197 	}
2198 	return ZONELIST_ORDER_ZONE;
2199 }
2200 
2201 static void set_zonelist_order(void)
2202 {
2203 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2204 		current_zonelist_order = default_zonelist_order();
2205 	else
2206 		current_zonelist_order = user_zonelist_order;
2207 }
2208 
2209 static void build_zonelists(pg_data_t *pgdat)
2210 {
2211 	int j, node, load;
2212 	enum zone_type i;
2213 	nodemask_t used_mask;
2214 	int local_node, prev_node;
2215 	struct zonelist *zonelist;
2216 	int order = current_zonelist_order;
2217 
2218 	/* initialize zonelists */
2219 	for (i = 0; i < MAX_ZONELISTS; i++) {
2220 		zonelist = pgdat->node_zonelists + i;
2221 		zonelist->_zonerefs[0].zone = NULL;
2222 		zonelist->_zonerefs[0].zone_idx = 0;
2223 	}
2224 
2225 	/* NUMA-aware ordering of nodes */
2226 	local_node = pgdat->node_id;
2227 	load = num_online_nodes();
2228 	prev_node = local_node;
2229 	nodes_clear(used_mask);
2230 
2231 	memset(node_load, 0, sizeof(node_load));
2232 	memset(node_order, 0, sizeof(node_order));
2233 	j = 0;
2234 
2235 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2236 		int distance = node_distance(local_node, node);
2237 
2238 		/*
2239 		 * If another node is sufficiently far away then it is better
2240 		 * to reclaim pages in a zone before going off node.
2241 		 */
2242 		if (distance > RECLAIM_DISTANCE)
2243 			zone_reclaim_mode = 1;
2244 
2245 		/*
2246 		 * We don't want to pressure a particular node.
2247 		 * So adding penalty to the first node in same
2248 		 * distance group to make it round-robin.
2249 		 */
2250 		if (distance != node_distance(local_node, prev_node))
2251 			node_load[node] = load;
2252 
2253 		prev_node = node;
2254 		load--;
2255 		if (order == ZONELIST_ORDER_NODE)
2256 			build_zonelists_in_node_order(pgdat, node);
2257 		else
2258 			node_order[j++] = node;	/* remember order */
2259 	}
2260 
2261 	if (order == ZONELIST_ORDER_ZONE) {
2262 		/* calculate node order -- i.e., DMA last! */
2263 		build_zonelists_in_zone_order(pgdat, j);
2264 	}
2265 
2266 	build_thisnode_zonelists(pgdat);
2267 }
2268 
2269 /* Construct the zonelist performance cache - see further mmzone.h */
2270 static void build_zonelist_cache(pg_data_t *pgdat)
2271 {
2272 	struct zonelist *zonelist;
2273 	struct zonelist_cache *zlc;
2274 	struct zoneref *z;
2275 
2276 	zonelist = &pgdat->node_zonelists[0];
2277 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2278 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2279 	for (z = zonelist->_zonerefs; z->zone; z++)
2280 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2281 }
2282 
2283 
2284 #else	/* CONFIG_NUMA */
2285 
2286 static void set_zonelist_order(void)
2287 {
2288 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2289 }
2290 
2291 static void build_zonelists(pg_data_t *pgdat)
2292 {
2293 	int node, local_node;
2294 	enum zone_type j;
2295 	struct zonelist *zonelist;
2296 
2297 	local_node = pgdat->node_id;
2298 
2299 	zonelist = &pgdat->node_zonelists[0];
2300 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2301 
2302 	/*
2303 	 * Now we build the zonelist so that it contains the zones
2304 	 * of all the other nodes.
2305 	 * We don't want to pressure a particular node, so when
2306 	 * building the zones for node N, we make sure that the
2307 	 * zones coming right after the local ones are those from
2308 	 * node N+1 (modulo N)
2309 	 */
2310 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2311 		if (!node_online(node))
2312 			continue;
2313 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2314 							MAX_NR_ZONES - 1);
2315 	}
2316 	for (node = 0; node < local_node; node++) {
2317 		if (!node_online(node))
2318 			continue;
2319 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2320 							MAX_NR_ZONES - 1);
2321 	}
2322 
2323 	zonelist->_zonerefs[j].zone = NULL;
2324 	zonelist->_zonerefs[j].zone_idx = 0;
2325 }
2326 
2327 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2328 static void build_zonelist_cache(pg_data_t *pgdat)
2329 {
2330 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2331 }
2332 
2333 #endif	/* CONFIG_NUMA */
2334 
2335 /* return values int ....just for stop_machine_run() */
2336 static int __build_all_zonelists(void *dummy)
2337 {
2338 	int nid;
2339 
2340 	for_each_online_node(nid) {
2341 		pg_data_t *pgdat = NODE_DATA(nid);
2342 
2343 		build_zonelists(pgdat);
2344 		build_zonelist_cache(pgdat);
2345 	}
2346 	return 0;
2347 }
2348 
2349 void build_all_zonelists(void)
2350 {
2351 	set_zonelist_order();
2352 
2353 	if (system_state == SYSTEM_BOOTING) {
2354 		__build_all_zonelists(NULL);
2355 		cpuset_init_current_mems_allowed();
2356 	} else {
2357 		/* we have to stop all cpus to guarantee there is no user
2358 		   of zonelist */
2359 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2360 		/* cpuset refresh routine should be here */
2361 	}
2362 	vm_total_pages = nr_free_pagecache_pages();
2363 	/*
2364 	 * Disable grouping by mobility if the number of pages in the
2365 	 * system is too low to allow the mechanism to work. It would be
2366 	 * more accurate, but expensive to check per-zone. This check is
2367 	 * made on memory-hotadd so a system can start with mobility
2368 	 * disabled and enable it later
2369 	 */
2370 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2371 		page_group_by_mobility_disabled = 1;
2372 	else
2373 		page_group_by_mobility_disabled = 0;
2374 
2375 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2376 		"Total pages: %ld\n",
2377 			num_online_nodes(),
2378 			zonelist_order_name[current_zonelist_order],
2379 			page_group_by_mobility_disabled ? "off" : "on",
2380 			vm_total_pages);
2381 #ifdef CONFIG_NUMA
2382 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2383 #endif
2384 }
2385 
2386 /*
2387  * Helper functions to size the waitqueue hash table.
2388  * Essentially these want to choose hash table sizes sufficiently
2389  * large so that collisions trying to wait on pages are rare.
2390  * But in fact, the number of active page waitqueues on typical
2391  * systems is ridiculously low, less than 200. So this is even
2392  * conservative, even though it seems large.
2393  *
2394  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2395  * waitqueues, i.e. the size of the waitq table given the number of pages.
2396  */
2397 #define PAGES_PER_WAITQUEUE	256
2398 
2399 #ifndef CONFIG_MEMORY_HOTPLUG
2400 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2401 {
2402 	unsigned long size = 1;
2403 
2404 	pages /= PAGES_PER_WAITQUEUE;
2405 
2406 	while (size < pages)
2407 		size <<= 1;
2408 
2409 	/*
2410 	 * Once we have dozens or even hundreds of threads sleeping
2411 	 * on IO we've got bigger problems than wait queue collision.
2412 	 * Limit the size of the wait table to a reasonable size.
2413 	 */
2414 	size = min(size, 4096UL);
2415 
2416 	return max(size, 4UL);
2417 }
2418 #else
2419 /*
2420  * A zone's size might be changed by hot-add, so it is not possible to determine
2421  * a suitable size for its wait_table.  So we use the maximum size now.
2422  *
2423  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2424  *
2425  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2426  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2427  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2428  *
2429  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2430  * or more by the traditional way. (See above).  It equals:
2431  *
2432  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2433  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2434  *    powerpc (64K page size)             : =  (32G +16M)byte.
2435  */
2436 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2437 {
2438 	return 4096UL;
2439 }
2440 #endif
2441 
2442 /*
2443  * This is an integer logarithm so that shifts can be used later
2444  * to extract the more random high bits from the multiplicative
2445  * hash function before the remainder is taken.
2446  */
2447 static inline unsigned long wait_table_bits(unsigned long size)
2448 {
2449 	return ffz(~size);
2450 }
2451 
2452 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2453 
2454 /*
2455  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2456  * of blocks reserved is based on zone->pages_min. The memory within the
2457  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2458  * higher will lead to a bigger reserve which will get freed as contiguous
2459  * blocks as reclaim kicks in
2460  */
2461 static void setup_zone_migrate_reserve(struct zone *zone)
2462 {
2463 	unsigned long start_pfn, pfn, end_pfn;
2464 	struct page *page;
2465 	unsigned long reserve, block_migratetype;
2466 
2467 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2468 	start_pfn = zone->zone_start_pfn;
2469 	end_pfn = start_pfn + zone->spanned_pages;
2470 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2471 							pageblock_order;
2472 
2473 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2474 		if (!pfn_valid(pfn))
2475 			continue;
2476 		page = pfn_to_page(pfn);
2477 
2478 		/* Blocks with reserved pages will never free, skip them. */
2479 		if (PageReserved(page))
2480 			continue;
2481 
2482 		block_migratetype = get_pageblock_migratetype(page);
2483 
2484 		/* If this block is reserved, account for it */
2485 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2486 			reserve--;
2487 			continue;
2488 		}
2489 
2490 		/* Suitable for reserving if this block is movable */
2491 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2492 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2493 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2494 			reserve--;
2495 			continue;
2496 		}
2497 
2498 		/*
2499 		 * If the reserve is met and this is a previous reserved block,
2500 		 * take it back
2501 		 */
2502 		if (block_migratetype == MIGRATE_RESERVE) {
2503 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2504 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2505 		}
2506 	}
2507 }
2508 
2509 /*
2510  * Initially all pages are reserved - free ones are freed
2511  * up by free_all_bootmem() once the early boot process is
2512  * done. Non-atomic initialization, single-pass.
2513  */
2514 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2515 		unsigned long start_pfn, enum memmap_context context)
2516 {
2517 	struct page *page;
2518 	unsigned long end_pfn = start_pfn + size;
2519 	unsigned long pfn;
2520 	struct zone *z;
2521 
2522 	z = &NODE_DATA(nid)->node_zones[zone];
2523 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2524 		/*
2525 		 * There can be holes in boot-time mem_map[]s
2526 		 * handed to this function.  They do not
2527 		 * exist on hotplugged memory.
2528 		 */
2529 		if (context == MEMMAP_EARLY) {
2530 			if (!early_pfn_valid(pfn))
2531 				continue;
2532 			if (!early_pfn_in_nid(pfn, nid))
2533 				continue;
2534 		}
2535 		page = pfn_to_page(pfn);
2536 		set_page_links(page, zone, nid, pfn);
2537 		init_page_count(page);
2538 		reset_page_mapcount(page);
2539 		SetPageReserved(page);
2540 		/*
2541 		 * Mark the block movable so that blocks are reserved for
2542 		 * movable at startup. This will force kernel allocations
2543 		 * to reserve their blocks rather than leaking throughout
2544 		 * the address space during boot when many long-lived
2545 		 * kernel allocations are made. Later some blocks near
2546 		 * the start are marked MIGRATE_RESERVE by
2547 		 * setup_zone_migrate_reserve()
2548 		 *
2549 		 * bitmap is created for zone's valid pfn range. but memmap
2550 		 * can be created for invalid pages (for alignment)
2551 		 * check here not to call set_pageblock_migratetype() against
2552 		 * pfn out of zone.
2553 		 */
2554 		if ((z->zone_start_pfn <= pfn)
2555 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2556 		    && !(pfn & (pageblock_nr_pages - 1)))
2557 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2558 
2559 		INIT_LIST_HEAD(&page->lru);
2560 #ifdef WANT_PAGE_VIRTUAL
2561 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2562 		if (!is_highmem_idx(zone))
2563 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2564 #endif
2565 	}
2566 }
2567 
2568 static void __meminit zone_init_free_lists(struct zone *zone)
2569 {
2570 	int order, t;
2571 	for_each_migratetype_order(order, t) {
2572 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2573 		zone->free_area[order].nr_free = 0;
2574 	}
2575 }
2576 
2577 #ifndef __HAVE_ARCH_MEMMAP_INIT
2578 #define memmap_init(size, nid, zone, start_pfn) \
2579 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2580 #endif
2581 
2582 static int zone_batchsize(struct zone *zone)
2583 {
2584 	int batch;
2585 
2586 	/*
2587 	 * The per-cpu-pages pools are set to around 1000th of the
2588 	 * size of the zone.  But no more than 1/2 of a meg.
2589 	 *
2590 	 * OK, so we don't know how big the cache is.  So guess.
2591 	 */
2592 	batch = zone->present_pages / 1024;
2593 	if (batch * PAGE_SIZE > 512 * 1024)
2594 		batch = (512 * 1024) / PAGE_SIZE;
2595 	batch /= 4;		/* We effectively *= 4 below */
2596 	if (batch < 1)
2597 		batch = 1;
2598 
2599 	/*
2600 	 * Clamp the batch to a 2^n - 1 value. Having a power
2601 	 * of 2 value was found to be more likely to have
2602 	 * suboptimal cache aliasing properties in some cases.
2603 	 *
2604 	 * For example if 2 tasks are alternately allocating
2605 	 * batches of pages, one task can end up with a lot
2606 	 * of pages of one half of the possible page colors
2607 	 * and the other with pages of the other colors.
2608 	 */
2609 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2610 
2611 	return batch;
2612 }
2613 
2614 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2615 {
2616 	struct per_cpu_pages *pcp;
2617 
2618 	memset(p, 0, sizeof(*p));
2619 
2620 	pcp = &p->pcp;
2621 	pcp->count = 0;
2622 	pcp->high = 6 * batch;
2623 	pcp->batch = max(1UL, 1 * batch);
2624 	INIT_LIST_HEAD(&pcp->list);
2625 }
2626 
2627 /*
2628  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2629  * to the value high for the pageset p.
2630  */
2631 
2632 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2633 				unsigned long high)
2634 {
2635 	struct per_cpu_pages *pcp;
2636 
2637 	pcp = &p->pcp;
2638 	pcp->high = high;
2639 	pcp->batch = max(1UL, high/4);
2640 	if ((high/4) > (PAGE_SHIFT * 8))
2641 		pcp->batch = PAGE_SHIFT * 8;
2642 }
2643 
2644 
2645 #ifdef CONFIG_NUMA
2646 /*
2647  * Boot pageset table. One per cpu which is going to be used for all
2648  * zones and all nodes. The parameters will be set in such a way
2649  * that an item put on a list will immediately be handed over to
2650  * the buddy list. This is safe since pageset manipulation is done
2651  * with interrupts disabled.
2652  *
2653  * Some NUMA counter updates may also be caught by the boot pagesets.
2654  *
2655  * The boot_pagesets must be kept even after bootup is complete for
2656  * unused processors and/or zones. They do play a role for bootstrapping
2657  * hotplugged processors.
2658  *
2659  * zoneinfo_show() and maybe other functions do
2660  * not check if the processor is online before following the pageset pointer.
2661  * Other parts of the kernel may not check if the zone is available.
2662  */
2663 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2664 
2665 /*
2666  * Dynamically allocate memory for the
2667  * per cpu pageset array in struct zone.
2668  */
2669 static int __cpuinit process_zones(int cpu)
2670 {
2671 	struct zone *zone, *dzone;
2672 	int node = cpu_to_node(cpu);
2673 
2674 	node_set_state(node, N_CPU);	/* this node has a cpu */
2675 
2676 	for_each_zone(zone) {
2677 
2678 		if (!populated_zone(zone))
2679 			continue;
2680 
2681 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2682 					 GFP_KERNEL, node);
2683 		if (!zone_pcp(zone, cpu))
2684 			goto bad;
2685 
2686 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2687 
2688 		if (percpu_pagelist_fraction)
2689 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2690 			 	(zone->present_pages / percpu_pagelist_fraction));
2691 	}
2692 
2693 	return 0;
2694 bad:
2695 	for_each_zone(dzone) {
2696 		if (!populated_zone(dzone))
2697 			continue;
2698 		if (dzone == zone)
2699 			break;
2700 		kfree(zone_pcp(dzone, cpu));
2701 		zone_pcp(dzone, cpu) = NULL;
2702 	}
2703 	return -ENOMEM;
2704 }
2705 
2706 static inline void free_zone_pagesets(int cpu)
2707 {
2708 	struct zone *zone;
2709 
2710 	for_each_zone(zone) {
2711 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2712 
2713 		/* Free per_cpu_pageset if it is slab allocated */
2714 		if (pset != &boot_pageset[cpu])
2715 			kfree(pset);
2716 		zone_pcp(zone, cpu) = NULL;
2717 	}
2718 }
2719 
2720 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2721 		unsigned long action,
2722 		void *hcpu)
2723 {
2724 	int cpu = (long)hcpu;
2725 	int ret = NOTIFY_OK;
2726 
2727 	switch (action) {
2728 	case CPU_UP_PREPARE:
2729 	case CPU_UP_PREPARE_FROZEN:
2730 		if (process_zones(cpu))
2731 			ret = NOTIFY_BAD;
2732 		break;
2733 	case CPU_UP_CANCELED:
2734 	case CPU_UP_CANCELED_FROZEN:
2735 	case CPU_DEAD:
2736 	case CPU_DEAD_FROZEN:
2737 		free_zone_pagesets(cpu);
2738 		break;
2739 	default:
2740 		break;
2741 	}
2742 	return ret;
2743 }
2744 
2745 static struct notifier_block __cpuinitdata pageset_notifier =
2746 	{ &pageset_cpuup_callback, NULL, 0 };
2747 
2748 void __init setup_per_cpu_pageset(void)
2749 {
2750 	int err;
2751 
2752 	/* Initialize per_cpu_pageset for cpu 0.
2753 	 * A cpuup callback will do this for every cpu
2754 	 * as it comes online
2755 	 */
2756 	err = process_zones(smp_processor_id());
2757 	BUG_ON(err);
2758 	register_cpu_notifier(&pageset_notifier);
2759 }
2760 
2761 #endif
2762 
2763 static noinline __init_refok
2764 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2765 {
2766 	int i;
2767 	struct pglist_data *pgdat = zone->zone_pgdat;
2768 	size_t alloc_size;
2769 
2770 	/*
2771 	 * The per-page waitqueue mechanism uses hashed waitqueues
2772 	 * per zone.
2773 	 */
2774 	zone->wait_table_hash_nr_entries =
2775 		 wait_table_hash_nr_entries(zone_size_pages);
2776 	zone->wait_table_bits =
2777 		wait_table_bits(zone->wait_table_hash_nr_entries);
2778 	alloc_size = zone->wait_table_hash_nr_entries
2779 					* sizeof(wait_queue_head_t);
2780 
2781 	if (!slab_is_available()) {
2782 		zone->wait_table = (wait_queue_head_t *)
2783 			alloc_bootmem_node(pgdat, alloc_size);
2784 	} else {
2785 		/*
2786 		 * This case means that a zone whose size was 0 gets new memory
2787 		 * via memory hot-add.
2788 		 * But it may be the case that a new node was hot-added.  In
2789 		 * this case vmalloc() will not be able to use this new node's
2790 		 * memory - this wait_table must be initialized to use this new
2791 		 * node itself as well.
2792 		 * To use this new node's memory, further consideration will be
2793 		 * necessary.
2794 		 */
2795 		zone->wait_table = vmalloc(alloc_size);
2796 	}
2797 	if (!zone->wait_table)
2798 		return -ENOMEM;
2799 
2800 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2801 		init_waitqueue_head(zone->wait_table + i);
2802 
2803 	return 0;
2804 }
2805 
2806 static __meminit void zone_pcp_init(struct zone *zone)
2807 {
2808 	int cpu;
2809 	unsigned long batch = zone_batchsize(zone);
2810 
2811 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2812 #ifdef CONFIG_NUMA
2813 		/* Early boot. Slab allocator not functional yet */
2814 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2815 		setup_pageset(&boot_pageset[cpu],0);
2816 #else
2817 		setup_pageset(zone_pcp(zone,cpu), batch);
2818 #endif
2819 	}
2820 	if (zone->present_pages)
2821 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2822 			zone->name, zone->present_pages, batch);
2823 }
2824 
2825 __meminit int init_currently_empty_zone(struct zone *zone,
2826 					unsigned long zone_start_pfn,
2827 					unsigned long size,
2828 					enum memmap_context context)
2829 {
2830 	struct pglist_data *pgdat = zone->zone_pgdat;
2831 	int ret;
2832 	ret = zone_wait_table_init(zone, size);
2833 	if (ret)
2834 		return ret;
2835 	pgdat->nr_zones = zone_idx(zone) + 1;
2836 
2837 	zone->zone_start_pfn = zone_start_pfn;
2838 
2839 	zone_init_free_lists(zone);
2840 
2841 	return 0;
2842 }
2843 
2844 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2845 /*
2846  * Basic iterator support. Return the first range of PFNs for a node
2847  * Note: nid == MAX_NUMNODES returns first region regardless of node
2848  */
2849 static int __meminit first_active_region_index_in_nid(int nid)
2850 {
2851 	int i;
2852 
2853 	for (i = 0; i < nr_nodemap_entries; i++)
2854 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2855 			return i;
2856 
2857 	return -1;
2858 }
2859 
2860 /*
2861  * Basic iterator support. Return the next active range of PFNs for a node
2862  * Note: nid == MAX_NUMNODES returns next region regardless of node
2863  */
2864 static int __meminit next_active_region_index_in_nid(int index, int nid)
2865 {
2866 	for (index = index + 1; index < nr_nodemap_entries; index++)
2867 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2868 			return index;
2869 
2870 	return -1;
2871 }
2872 
2873 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2874 /*
2875  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2876  * Architectures may implement their own version but if add_active_range()
2877  * was used and there are no special requirements, this is a convenient
2878  * alternative
2879  */
2880 int __meminit early_pfn_to_nid(unsigned long pfn)
2881 {
2882 	int i;
2883 
2884 	for (i = 0; i < nr_nodemap_entries; i++) {
2885 		unsigned long start_pfn = early_node_map[i].start_pfn;
2886 		unsigned long end_pfn = early_node_map[i].end_pfn;
2887 
2888 		if (start_pfn <= pfn && pfn < end_pfn)
2889 			return early_node_map[i].nid;
2890 	}
2891 
2892 	return 0;
2893 }
2894 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2895 
2896 /* Basic iterator support to walk early_node_map[] */
2897 #define for_each_active_range_index_in_nid(i, nid) \
2898 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2899 				i = next_active_region_index_in_nid(i, nid))
2900 
2901 /**
2902  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2903  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2904  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2905  *
2906  * If an architecture guarantees that all ranges registered with
2907  * add_active_ranges() contain no holes and may be freed, this
2908  * this function may be used instead of calling free_bootmem() manually.
2909  */
2910 void __init free_bootmem_with_active_regions(int nid,
2911 						unsigned long max_low_pfn)
2912 {
2913 	int i;
2914 
2915 	for_each_active_range_index_in_nid(i, nid) {
2916 		unsigned long size_pages = 0;
2917 		unsigned long end_pfn = early_node_map[i].end_pfn;
2918 
2919 		if (early_node_map[i].start_pfn >= max_low_pfn)
2920 			continue;
2921 
2922 		if (end_pfn > max_low_pfn)
2923 			end_pfn = max_low_pfn;
2924 
2925 		size_pages = end_pfn - early_node_map[i].start_pfn;
2926 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2927 				PFN_PHYS(early_node_map[i].start_pfn),
2928 				size_pages << PAGE_SHIFT);
2929 	}
2930 }
2931 
2932 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
2933 {
2934 	int i;
2935 	int ret;
2936 
2937 	for_each_active_range_index_in_nid(i, nid) {
2938 		ret = work_fn(early_node_map[i].start_pfn,
2939 			      early_node_map[i].end_pfn, data);
2940 		if (ret)
2941 			break;
2942 	}
2943 }
2944 /**
2945  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2946  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2947  *
2948  * If an architecture guarantees that all ranges registered with
2949  * add_active_ranges() contain no holes and may be freed, this
2950  * function may be used instead of calling memory_present() manually.
2951  */
2952 void __init sparse_memory_present_with_active_regions(int nid)
2953 {
2954 	int i;
2955 
2956 	for_each_active_range_index_in_nid(i, nid)
2957 		memory_present(early_node_map[i].nid,
2958 				early_node_map[i].start_pfn,
2959 				early_node_map[i].end_pfn);
2960 }
2961 
2962 /**
2963  * push_node_boundaries - Push node boundaries to at least the requested boundary
2964  * @nid: The nid of the node to push the boundary for
2965  * @start_pfn: The start pfn of the node
2966  * @end_pfn: The end pfn of the node
2967  *
2968  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2969  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2970  * be hotplugged even though no physical memory exists. This function allows
2971  * an arch to push out the node boundaries so mem_map is allocated that can
2972  * be used later.
2973  */
2974 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2975 void __init push_node_boundaries(unsigned int nid,
2976 		unsigned long start_pfn, unsigned long end_pfn)
2977 {
2978 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2979 			nid, start_pfn, end_pfn);
2980 
2981 	/* Initialise the boundary for this node if necessary */
2982 	if (node_boundary_end_pfn[nid] == 0)
2983 		node_boundary_start_pfn[nid] = -1UL;
2984 
2985 	/* Update the boundaries */
2986 	if (node_boundary_start_pfn[nid] > start_pfn)
2987 		node_boundary_start_pfn[nid] = start_pfn;
2988 	if (node_boundary_end_pfn[nid] < end_pfn)
2989 		node_boundary_end_pfn[nid] = end_pfn;
2990 }
2991 
2992 /* If necessary, push the node boundary out for reserve hotadd */
2993 static void __meminit account_node_boundary(unsigned int nid,
2994 		unsigned long *start_pfn, unsigned long *end_pfn)
2995 {
2996 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2997 			nid, *start_pfn, *end_pfn);
2998 
2999 	/* Return if boundary information has not been provided */
3000 	if (node_boundary_end_pfn[nid] == 0)
3001 		return;
3002 
3003 	/* Check the boundaries and update if necessary */
3004 	if (node_boundary_start_pfn[nid] < *start_pfn)
3005 		*start_pfn = node_boundary_start_pfn[nid];
3006 	if (node_boundary_end_pfn[nid] > *end_pfn)
3007 		*end_pfn = node_boundary_end_pfn[nid];
3008 }
3009 #else
3010 void __init push_node_boundaries(unsigned int nid,
3011 		unsigned long start_pfn, unsigned long end_pfn) {}
3012 
3013 static void __meminit account_node_boundary(unsigned int nid,
3014 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3015 #endif
3016 
3017 
3018 /**
3019  * get_pfn_range_for_nid - Return the start and end page frames for a node
3020  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3021  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3022  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3023  *
3024  * It returns the start and end page frame of a node based on information
3025  * provided by an arch calling add_active_range(). If called for a node
3026  * with no available memory, a warning is printed and the start and end
3027  * PFNs will be 0.
3028  */
3029 void __meminit get_pfn_range_for_nid(unsigned int nid,
3030 			unsigned long *start_pfn, unsigned long *end_pfn)
3031 {
3032 	int i;
3033 	*start_pfn = -1UL;
3034 	*end_pfn = 0;
3035 
3036 	for_each_active_range_index_in_nid(i, nid) {
3037 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3038 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3039 	}
3040 
3041 	if (*start_pfn == -1UL)
3042 		*start_pfn = 0;
3043 
3044 	/* Push the node boundaries out if requested */
3045 	account_node_boundary(nid, start_pfn, end_pfn);
3046 }
3047 
3048 /*
3049  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3050  * assumption is made that zones within a node are ordered in monotonic
3051  * increasing memory addresses so that the "highest" populated zone is used
3052  */
3053 void __init find_usable_zone_for_movable(void)
3054 {
3055 	int zone_index;
3056 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3057 		if (zone_index == ZONE_MOVABLE)
3058 			continue;
3059 
3060 		if (arch_zone_highest_possible_pfn[zone_index] >
3061 				arch_zone_lowest_possible_pfn[zone_index])
3062 			break;
3063 	}
3064 
3065 	VM_BUG_ON(zone_index == -1);
3066 	movable_zone = zone_index;
3067 }
3068 
3069 /*
3070  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3071  * because it is sized independant of architecture. Unlike the other zones,
3072  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3073  * in each node depending on the size of each node and how evenly kernelcore
3074  * is distributed. This helper function adjusts the zone ranges
3075  * provided by the architecture for a given node by using the end of the
3076  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3077  * zones within a node are in order of monotonic increases memory addresses
3078  */
3079 void __meminit adjust_zone_range_for_zone_movable(int nid,
3080 					unsigned long zone_type,
3081 					unsigned long node_start_pfn,
3082 					unsigned long node_end_pfn,
3083 					unsigned long *zone_start_pfn,
3084 					unsigned long *zone_end_pfn)
3085 {
3086 	/* Only adjust if ZONE_MOVABLE is on this node */
3087 	if (zone_movable_pfn[nid]) {
3088 		/* Size ZONE_MOVABLE */
3089 		if (zone_type == ZONE_MOVABLE) {
3090 			*zone_start_pfn = zone_movable_pfn[nid];
3091 			*zone_end_pfn = min(node_end_pfn,
3092 				arch_zone_highest_possible_pfn[movable_zone]);
3093 
3094 		/* Adjust for ZONE_MOVABLE starting within this range */
3095 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3096 				*zone_end_pfn > zone_movable_pfn[nid]) {
3097 			*zone_end_pfn = zone_movable_pfn[nid];
3098 
3099 		/* Check if this whole range is within ZONE_MOVABLE */
3100 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3101 			*zone_start_pfn = *zone_end_pfn;
3102 	}
3103 }
3104 
3105 /*
3106  * Return the number of pages a zone spans in a node, including holes
3107  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3108  */
3109 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3110 					unsigned long zone_type,
3111 					unsigned long *ignored)
3112 {
3113 	unsigned long node_start_pfn, node_end_pfn;
3114 	unsigned long zone_start_pfn, zone_end_pfn;
3115 
3116 	/* Get the start and end of the node and zone */
3117 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3118 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3119 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3120 	adjust_zone_range_for_zone_movable(nid, zone_type,
3121 				node_start_pfn, node_end_pfn,
3122 				&zone_start_pfn, &zone_end_pfn);
3123 
3124 	/* Check that this node has pages within the zone's required range */
3125 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3126 		return 0;
3127 
3128 	/* Move the zone boundaries inside the node if necessary */
3129 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3130 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3131 
3132 	/* Return the spanned pages */
3133 	return zone_end_pfn - zone_start_pfn;
3134 }
3135 
3136 /*
3137  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3138  * then all holes in the requested range will be accounted for.
3139  */
3140 unsigned long __meminit __absent_pages_in_range(int nid,
3141 				unsigned long range_start_pfn,
3142 				unsigned long range_end_pfn)
3143 {
3144 	int i = 0;
3145 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3146 	unsigned long start_pfn;
3147 
3148 	/* Find the end_pfn of the first active range of pfns in the node */
3149 	i = first_active_region_index_in_nid(nid);
3150 	if (i == -1)
3151 		return 0;
3152 
3153 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3154 
3155 	/* Account for ranges before physical memory on this node */
3156 	if (early_node_map[i].start_pfn > range_start_pfn)
3157 		hole_pages = prev_end_pfn - range_start_pfn;
3158 
3159 	/* Find all holes for the zone within the node */
3160 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3161 
3162 		/* No need to continue if prev_end_pfn is outside the zone */
3163 		if (prev_end_pfn >= range_end_pfn)
3164 			break;
3165 
3166 		/* Make sure the end of the zone is not within the hole */
3167 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3168 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3169 
3170 		/* Update the hole size cound and move on */
3171 		if (start_pfn > range_start_pfn) {
3172 			BUG_ON(prev_end_pfn > start_pfn);
3173 			hole_pages += start_pfn - prev_end_pfn;
3174 		}
3175 		prev_end_pfn = early_node_map[i].end_pfn;
3176 	}
3177 
3178 	/* Account for ranges past physical memory on this node */
3179 	if (range_end_pfn > prev_end_pfn)
3180 		hole_pages += range_end_pfn -
3181 				max(range_start_pfn, prev_end_pfn);
3182 
3183 	return hole_pages;
3184 }
3185 
3186 /**
3187  * absent_pages_in_range - Return number of page frames in holes within a range
3188  * @start_pfn: The start PFN to start searching for holes
3189  * @end_pfn: The end PFN to stop searching for holes
3190  *
3191  * It returns the number of pages frames in memory holes within a range.
3192  */
3193 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3194 							unsigned long end_pfn)
3195 {
3196 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3197 }
3198 
3199 /* Return the number of page frames in holes in a zone on a node */
3200 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3201 					unsigned long zone_type,
3202 					unsigned long *ignored)
3203 {
3204 	unsigned long node_start_pfn, node_end_pfn;
3205 	unsigned long zone_start_pfn, zone_end_pfn;
3206 
3207 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3208 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3209 							node_start_pfn);
3210 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3211 							node_end_pfn);
3212 
3213 	adjust_zone_range_for_zone_movable(nid, zone_type,
3214 			node_start_pfn, node_end_pfn,
3215 			&zone_start_pfn, &zone_end_pfn);
3216 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3217 }
3218 
3219 #else
3220 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3221 					unsigned long zone_type,
3222 					unsigned long *zones_size)
3223 {
3224 	return zones_size[zone_type];
3225 }
3226 
3227 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3228 						unsigned long zone_type,
3229 						unsigned long *zholes_size)
3230 {
3231 	if (!zholes_size)
3232 		return 0;
3233 
3234 	return zholes_size[zone_type];
3235 }
3236 
3237 #endif
3238 
3239 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3240 		unsigned long *zones_size, unsigned long *zholes_size)
3241 {
3242 	unsigned long realtotalpages, totalpages = 0;
3243 	enum zone_type i;
3244 
3245 	for (i = 0; i < MAX_NR_ZONES; i++)
3246 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3247 								zones_size);
3248 	pgdat->node_spanned_pages = totalpages;
3249 
3250 	realtotalpages = totalpages;
3251 	for (i = 0; i < MAX_NR_ZONES; i++)
3252 		realtotalpages -=
3253 			zone_absent_pages_in_node(pgdat->node_id, i,
3254 								zholes_size);
3255 	pgdat->node_present_pages = realtotalpages;
3256 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3257 							realtotalpages);
3258 }
3259 
3260 #ifndef CONFIG_SPARSEMEM
3261 /*
3262  * Calculate the size of the zone->blockflags rounded to an unsigned long
3263  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3264  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3265  * round what is now in bits to nearest long in bits, then return it in
3266  * bytes.
3267  */
3268 static unsigned long __init usemap_size(unsigned long zonesize)
3269 {
3270 	unsigned long usemapsize;
3271 
3272 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3273 	usemapsize = usemapsize >> pageblock_order;
3274 	usemapsize *= NR_PAGEBLOCK_BITS;
3275 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3276 
3277 	return usemapsize / 8;
3278 }
3279 
3280 static void __init setup_usemap(struct pglist_data *pgdat,
3281 				struct zone *zone, unsigned long zonesize)
3282 {
3283 	unsigned long usemapsize = usemap_size(zonesize);
3284 	zone->pageblock_flags = NULL;
3285 	if (usemapsize) {
3286 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3287 		memset(zone->pageblock_flags, 0, usemapsize);
3288 	}
3289 }
3290 #else
3291 static void inline setup_usemap(struct pglist_data *pgdat,
3292 				struct zone *zone, unsigned long zonesize) {}
3293 #endif /* CONFIG_SPARSEMEM */
3294 
3295 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3296 
3297 /* Return a sensible default order for the pageblock size. */
3298 static inline int pageblock_default_order(void)
3299 {
3300 	if (HPAGE_SHIFT > PAGE_SHIFT)
3301 		return HUGETLB_PAGE_ORDER;
3302 
3303 	return MAX_ORDER-1;
3304 }
3305 
3306 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3307 static inline void __init set_pageblock_order(unsigned int order)
3308 {
3309 	/* Check that pageblock_nr_pages has not already been setup */
3310 	if (pageblock_order)
3311 		return;
3312 
3313 	/*
3314 	 * Assume the largest contiguous order of interest is a huge page.
3315 	 * This value may be variable depending on boot parameters on IA64
3316 	 */
3317 	pageblock_order = order;
3318 }
3319 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3320 
3321 /*
3322  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3323  * and pageblock_default_order() are unused as pageblock_order is set
3324  * at compile-time. See include/linux/pageblock-flags.h for the values of
3325  * pageblock_order based on the kernel config
3326  */
3327 static inline int pageblock_default_order(unsigned int order)
3328 {
3329 	return MAX_ORDER-1;
3330 }
3331 #define set_pageblock_order(x)	do {} while (0)
3332 
3333 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3334 
3335 /*
3336  * Set up the zone data structures:
3337  *   - mark all pages reserved
3338  *   - mark all memory queues empty
3339  *   - clear the memory bitmaps
3340  */
3341 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3342 		unsigned long *zones_size, unsigned long *zholes_size)
3343 {
3344 	enum zone_type j;
3345 	int nid = pgdat->node_id;
3346 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3347 	int ret;
3348 
3349 	pgdat_resize_init(pgdat);
3350 	pgdat->nr_zones = 0;
3351 	init_waitqueue_head(&pgdat->kswapd_wait);
3352 	pgdat->kswapd_max_order = 0;
3353 
3354 	for (j = 0; j < MAX_NR_ZONES; j++) {
3355 		struct zone *zone = pgdat->node_zones + j;
3356 		unsigned long size, realsize, memmap_pages;
3357 
3358 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3359 		realsize = size - zone_absent_pages_in_node(nid, j,
3360 								zholes_size);
3361 
3362 		/*
3363 		 * Adjust realsize so that it accounts for how much memory
3364 		 * is used by this zone for memmap. This affects the watermark
3365 		 * and per-cpu initialisations
3366 		 */
3367 		memmap_pages =
3368 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3369 		if (realsize >= memmap_pages) {
3370 			realsize -= memmap_pages;
3371 			printk(KERN_DEBUG
3372 				"  %s zone: %lu pages used for memmap\n",
3373 				zone_names[j], memmap_pages);
3374 		} else
3375 			printk(KERN_WARNING
3376 				"  %s zone: %lu pages exceeds realsize %lu\n",
3377 				zone_names[j], memmap_pages, realsize);
3378 
3379 		/* Account for reserved pages */
3380 		if (j == 0 && realsize > dma_reserve) {
3381 			realsize -= dma_reserve;
3382 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3383 					zone_names[0], dma_reserve);
3384 		}
3385 
3386 		if (!is_highmem_idx(j))
3387 			nr_kernel_pages += realsize;
3388 		nr_all_pages += realsize;
3389 
3390 		zone->spanned_pages = size;
3391 		zone->present_pages = realsize;
3392 #ifdef CONFIG_NUMA
3393 		zone->node = nid;
3394 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3395 						/ 100;
3396 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3397 #endif
3398 		zone->name = zone_names[j];
3399 		spin_lock_init(&zone->lock);
3400 		spin_lock_init(&zone->lru_lock);
3401 		zone_seqlock_init(zone);
3402 		zone->zone_pgdat = pgdat;
3403 
3404 		zone->prev_priority = DEF_PRIORITY;
3405 
3406 		zone_pcp_init(zone);
3407 		INIT_LIST_HEAD(&zone->active_list);
3408 		INIT_LIST_HEAD(&zone->inactive_list);
3409 		zone->nr_scan_active = 0;
3410 		zone->nr_scan_inactive = 0;
3411 		zap_zone_vm_stats(zone);
3412 		zone->flags = 0;
3413 		if (!size)
3414 			continue;
3415 
3416 		set_pageblock_order(pageblock_default_order());
3417 		setup_usemap(pgdat, zone, size);
3418 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3419 						size, MEMMAP_EARLY);
3420 		BUG_ON(ret);
3421 		memmap_init(size, nid, j, zone_start_pfn);
3422 		zone_start_pfn += size;
3423 	}
3424 }
3425 
3426 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3427 {
3428 	/* Skip empty nodes */
3429 	if (!pgdat->node_spanned_pages)
3430 		return;
3431 
3432 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3433 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3434 	if (!pgdat->node_mem_map) {
3435 		unsigned long size, start, end;
3436 		struct page *map;
3437 
3438 		/*
3439 		 * The zone's endpoints aren't required to be MAX_ORDER
3440 		 * aligned but the node_mem_map endpoints must be in order
3441 		 * for the buddy allocator to function correctly.
3442 		 */
3443 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3444 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3445 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3446 		size =  (end - start) * sizeof(struct page);
3447 		map = alloc_remap(pgdat->node_id, size);
3448 		if (!map)
3449 			map = alloc_bootmem_node(pgdat, size);
3450 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3451 	}
3452 #ifndef CONFIG_NEED_MULTIPLE_NODES
3453 	/*
3454 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3455 	 */
3456 	if (pgdat == NODE_DATA(0)) {
3457 		mem_map = NODE_DATA(0)->node_mem_map;
3458 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3459 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3460 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3461 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3462 	}
3463 #endif
3464 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3465 }
3466 
3467 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3468 		unsigned long *zones_size, unsigned long node_start_pfn,
3469 		unsigned long *zholes_size)
3470 {
3471 	pgdat->node_id = nid;
3472 	pgdat->node_start_pfn = node_start_pfn;
3473 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3474 
3475 	alloc_node_mem_map(pgdat);
3476 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3477 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3478 		nid, (unsigned long)pgdat,
3479 		(unsigned long)pgdat->node_mem_map);
3480 #endif
3481 
3482 	free_area_init_core(pgdat, zones_size, zholes_size);
3483 }
3484 
3485 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3486 
3487 #if MAX_NUMNODES > 1
3488 /*
3489  * Figure out the number of possible node ids.
3490  */
3491 static void __init setup_nr_node_ids(void)
3492 {
3493 	unsigned int node;
3494 	unsigned int highest = 0;
3495 
3496 	for_each_node_mask(node, node_possible_map)
3497 		highest = node;
3498 	nr_node_ids = highest + 1;
3499 }
3500 #else
3501 static inline void setup_nr_node_ids(void)
3502 {
3503 }
3504 #endif
3505 
3506 /**
3507  * add_active_range - Register a range of PFNs backed by physical memory
3508  * @nid: The node ID the range resides on
3509  * @start_pfn: The start PFN of the available physical memory
3510  * @end_pfn: The end PFN of the available physical memory
3511  *
3512  * These ranges are stored in an early_node_map[] and later used by
3513  * free_area_init_nodes() to calculate zone sizes and holes. If the
3514  * range spans a memory hole, it is up to the architecture to ensure
3515  * the memory is not freed by the bootmem allocator. If possible
3516  * the range being registered will be merged with existing ranges.
3517  */
3518 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3519 						unsigned long end_pfn)
3520 {
3521 	int i;
3522 
3523 	printk(KERN_DEBUG "Entering add_active_range(%d, %#lx, %#lx) "
3524 			  "%d entries of %d used\n",
3525 			  nid, start_pfn, end_pfn,
3526 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3527 
3528 	/* Merge with existing active regions if possible */
3529 	for (i = 0; i < nr_nodemap_entries; i++) {
3530 		if (early_node_map[i].nid != nid)
3531 			continue;
3532 
3533 		/* Skip if an existing region covers this new one */
3534 		if (start_pfn >= early_node_map[i].start_pfn &&
3535 				end_pfn <= early_node_map[i].end_pfn)
3536 			return;
3537 
3538 		/* Merge forward if suitable */
3539 		if (start_pfn <= early_node_map[i].end_pfn &&
3540 				end_pfn > early_node_map[i].end_pfn) {
3541 			early_node_map[i].end_pfn = end_pfn;
3542 			return;
3543 		}
3544 
3545 		/* Merge backward if suitable */
3546 		if (start_pfn < early_node_map[i].end_pfn &&
3547 				end_pfn >= early_node_map[i].start_pfn) {
3548 			early_node_map[i].start_pfn = start_pfn;
3549 			return;
3550 		}
3551 	}
3552 
3553 	/* Check that early_node_map is large enough */
3554 	if (i >= MAX_ACTIVE_REGIONS) {
3555 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3556 							MAX_ACTIVE_REGIONS);
3557 		return;
3558 	}
3559 
3560 	early_node_map[i].nid = nid;
3561 	early_node_map[i].start_pfn = start_pfn;
3562 	early_node_map[i].end_pfn = end_pfn;
3563 	nr_nodemap_entries = i + 1;
3564 }
3565 
3566 /**
3567  * remove_active_range - Shrink an existing registered range of PFNs
3568  * @nid: The node id the range is on that should be shrunk
3569  * @start_pfn: The new PFN of the range
3570  * @end_pfn: The new PFN of the range
3571  *
3572  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3573  * The map is kept near the end physical page range that has already been
3574  * registered. This function allows an arch to shrink an existing registered
3575  * range.
3576  */
3577 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3578 				unsigned long end_pfn)
3579 {
3580 	int i, j;
3581 	int removed = 0;
3582 
3583 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3584 			  nid, start_pfn, end_pfn);
3585 
3586 	/* Find the old active region end and shrink */
3587 	for_each_active_range_index_in_nid(i, nid) {
3588 		if (early_node_map[i].start_pfn >= start_pfn &&
3589 		    early_node_map[i].end_pfn <= end_pfn) {
3590 			/* clear it */
3591 			early_node_map[i].start_pfn = 0;
3592 			early_node_map[i].end_pfn = 0;
3593 			removed = 1;
3594 			continue;
3595 		}
3596 		if (early_node_map[i].start_pfn < start_pfn &&
3597 		    early_node_map[i].end_pfn > start_pfn) {
3598 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3599 			early_node_map[i].end_pfn = start_pfn;
3600 			if (temp_end_pfn > end_pfn)
3601 				add_active_range(nid, end_pfn, temp_end_pfn);
3602 			continue;
3603 		}
3604 		if (early_node_map[i].start_pfn >= start_pfn &&
3605 		    early_node_map[i].end_pfn > end_pfn &&
3606 		    early_node_map[i].start_pfn < end_pfn) {
3607 			early_node_map[i].start_pfn = end_pfn;
3608 			continue;
3609 		}
3610 	}
3611 
3612 	if (!removed)
3613 		return;
3614 
3615 	/* remove the blank ones */
3616 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3617 		if (early_node_map[i].nid != nid)
3618 			continue;
3619 		if (early_node_map[i].end_pfn)
3620 			continue;
3621 		/* we found it, get rid of it */
3622 		for (j = i; j < nr_nodemap_entries - 1; j++)
3623 			memcpy(&early_node_map[j], &early_node_map[j+1],
3624 				sizeof(early_node_map[j]));
3625 		j = nr_nodemap_entries - 1;
3626 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3627 		nr_nodemap_entries--;
3628 	}
3629 }
3630 
3631 /**
3632  * remove_all_active_ranges - Remove all currently registered regions
3633  *
3634  * During discovery, it may be found that a table like SRAT is invalid
3635  * and an alternative discovery method must be used. This function removes
3636  * all currently registered regions.
3637  */
3638 void __init remove_all_active_ranges(void)
3639 {
3640 	memset(early_node_map, 0, sizeof(early_node_map));
3641 	nr_nodemap_entries = 0;
3642 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3643 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3644 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3645 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3646 }
3647 
3648 /* Compare two active node_active_regions */
3649 static int __init cmp_node_active_region(const void *a, const void *b)
3650 {
3651 	struct node_active_region *arange = (struct node_active_region *)a;
3652 	struct node_active_region *brange = (struct node_active_region *)b;
3653 
3654 	/* Done this way to avoid overflows */
3655 	if (arange->start_pfn > brange->start_pfn)
3656 		return 1;
3657 	if (arange->start_pfn < brange->start_pfn)
3658 		return -1;
3659 
3660 	return 0;
3661 }
3662 
3663 /* sort the node_map by start_pfn */
3664 static void __init sort_node_map(void)
3665 {
3666 	sort(early_node_map, (size_t)nr_nodemap_entries,
3667 			sizeof(struct node_active_region),
3668 			cmp_node_active_region, NULL);
3669 }
3670 
3671 /* Find the lowest pfn for a node */
3672 unsigned long __init find_min_pfn_for_node(int nid)
3673 {
3674 	int i;
3675 	unsigned long min_pfn = ULONG_MAX;
3676 
3677 	/* Assuming a sorted map, the first range found has the starting pfn */
3678 	for_each_active_range_index_in_nid(i, nid)
3679 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3680 
3681 	if (min_pfn == ULONG_MAX) {
3682 		printk(KERN_WARNING
3683 			"Could not find start_pfn for node %d\n", nid);
3684 		return 0;
3685 	}
3686 
3687 	return min_pfn;
3688 }
3689 
3690 /**
3691  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3692  *
3693  * It returns the minimum PFN based on information provided via
3694  * add_active_range().
3695  */
3696 unsigned long __init find_min_pfn_with_active_regions(void)
3697 {
3698 	return find_min_pfn_for_node(MAX_NUMNODES);
3699 }
3700 
3701 /**
3702  * find_max_pfn_with_active_regions - Find the maximum PFN registered
3703  *
3704  * It returns the maximum PFN based on information provided via
3705  * add_active_range().
3706  */
3707 unsigned long __init find_max_pfn_with_active_regions(void)
3708 {
3709 	int i;
3710 	unsigned long max_pfn = 0;
3711 
3712 	for (i = 0; i < nr_nodemap_entries; i++)
3713 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3714 
3715 	return max_pfn;
3716 }
3717 
3718 /*
3719  * early_calculate_totalpages()
3720  * Sum pages in active regions for movable zone.
3721  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3722  */
3723 static unsigned long __init early_calculate_totalpages(void)
3724 {
3725 	int i;
3726 	unsigned long totalpages = 0;
3727 
3728 	for (i = 0; i < nr_nodemap_entries; i++) {
3729 		unsigned long pages = early_node_map[i].end_pfn -
3730 						early_node_map[i].start_pfn;
3731 		totalpages += pages;
3732 		if (pages)
3733 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3734 	}
3735   	return totalpages;
3736 }
3737 
3738 /*
3739  * Find the PFN the Movable zone begins in each node. Kernel memory
3740  * is spread evenly between nodes as long as the nodes have enough
3741  * memory. When they don't, some nodes will have more kernelcore than
3742  * others
3743  */
3744 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3745 {
3746 	int i, nid;
3747 	unsigned long usable_startpfn;
3748 	unsigned long kernelcore_node, kernelcore_remaining;
3749 	unsigned long totalpages = early_calculate_totalpages();
3750 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3751 
3752 	/*
3753 	 * If movablecore was specified, calculate what size of
3754 	 * kernelcore that corresponds so that memory usable for
3755 	 * any allocation type is evenly spread. If both kernelcore
3756 	 * and movablecore are specified, then the value of kernelcore
3757 	 * will be used for required_kernelcore if it's greater than
3758 	 * what movablecore would have allowed.
3759 	 */
3760 	if (required_movablecore) {
3761 		unsigned long corepages;
3762 
3763 		/*
3764 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3765 		 * was requested by the user
3766 		 */
3767 		required_movablecore =
3768 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3769 		corepages = totalpages - required_movablecore;
3770 
3771 		required_kernelcore = max(required_kernelcore, corepages);
3772 	}
3773 
3774 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3775 	if (!required_kernelcore)
3776 		return;
3777 
3778 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3779 	find_usable_zone_for_movable();
3780 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3781 
3782 restart:
3783 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3784 	kernelcore_node = required_kernelcore / usable_nodes;
3785 	for_each_node_state(nid, N_HIGH_MEMORY) {
3786 		/*
3787 		 * Recalculate kernelcore_node if the division per node
3788 		 * now exceeds what is necessary to satisfy the requested
3789 		 * amount of memory for the kernel
3790 		 */
3791 		if (required_kernelcore < kernelcore_node)
3792 			kernelcore_node = required_kernelcore / usable_nodes;
3793 
3794 		/*
3795 		 * As the map is walked, we track how much memory is usable
3796 		 * by the kernel using kernelcore_remaining. When it is
3797 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3798 		 */
3799 		kernelcore_remaining = kernelcore_node;
3800 
3801 		/* Go through each range of PFNs within this node */
3802 		for_each_active_range_index_in_nid(i, nid) {
3803 			unsigned long start_pfn, end_pfn;
3804 			unsigned long size_pages;
3805 
3806 			start_pfn = max(early_node_map[i].start_pfn,
3807 						zone_movable_pfn[nid]);
3808 			end_pfn = early_node_map[i].end_pfn;
3809 			if (start_pfn >= end_pfn)
3810 				continue;
3811 
3812 			/* Account for what is only usable for kernelcore */
3813 			if (start_pfn < usable_startpfn) {
3814 				unsigned long kernel_pages;
3815 				kernel_pages = min(end_pfn, usable_startpfn)
3816 								- start_pfn;
3817 
3818 				kernelcore_remaining -= min(kernel_pages,
3819 							kernelcore_remaining);
3820 				required_kernelcore -= min(kernel_pages,
3821 							required_kernelcore);
3822 
3823 				/* Continue if range is now fully accounted */
3824 				if (end_pfn <= usable_startpfn) {
3825 
3826 					/*
3827 					 * Push zone_movable_pfn to the end so
3828 					 * that if we have to rebalance
3829 					 * kernelcore across nodes, we will
3830 					 * not double account here
3831 					 */
3832 					zone_movable_pfn[nid] = end_pfn;
3833 					continue;
3834 				}
3835 				start_pfn = usable_startpfn;
3836 			}
3837 
3838 			/*
3839 			 * The usable PFN range for ZONE_MOVABLE is from
3840 			 * start_pfn->end_pfn. Calculate size_pages as the
3841 			 * number of pages used as kernelcore
3842 			 */
3843 			size_pages = end_pfn - start_pfn;
3844 			if (size_pages > kernelcore_remaining)
3845 				size_pages = kernelcore_remaining;
3846 			zone_movable_pfn[nid] = start_pfn + size_pages;
3847 
3848 			/*
3849 			 * Some kernelcore has been met, update counts and
3850 			 * break if the kernelcore for this node has been
3851 			 * satisified
3852 			 */
3853 			required_kernelcore -= min(required_kernelcore,
3854 								size_pages);
3855 			kernelcore_remaining -= size_pages;
3856 			if (!kernelcore_remaining)
3857 				break;
3858 		}
3859 	}
3860 
3861 	/*
3862 	 * If there is still required_kernelcore, we do another pass with one
3863 	 * less node in the count. This will push zone_movable_pfn[nid] further
3864 	 * along on the nodes that still have memory until kernelcore is
3865 	 * satisified
3866 	 */
3867 	usable_nodes--;
3868 	if (usable_nodes && required_kernelcore > usable_nodes)
3869 		goto restart;
3870 
3871 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3872 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3873 		zone_movable_pfn[nid] =
3874 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3875 }
3876 
3877 /* Any regular memory on that node ? */
3878 static void check_for_regular_memory(pg_data_t *pgdat)
3879 {
3880 #ifdef CONFIG_HIGHMEM
3881 	enum zone_type zone_type;
3882 
3883 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3884 		struct zone *zone = &pgdat->node_zones[zone_type];
3885 		if (zone->present_pages)
3886 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3887 	}
3888 #endif
3889 }
3890 
3891 /**
3892  * free_area_init_nodes - Initialise all pg_data_t and zone data
3893  * @max_zone_pfn: an array of max PFNs for each zone
3894  *
3895  * This will call free_area_init_node() for each active node in the system.
3896  * Using the page ranges provided by add_active_range(), the size of each
3897  * zone in each node and their holes is calculated. If the maximum PFN
3898  * between two adjacent zones match, it is assumed that the zone is empty.
3899  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3900  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3901  * starts where the previous one ended. For example, ZONE_DMA32 starts
3902  * at arch_max_dma_pfn.
3903  */
3904 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3905 {
3906 	unsigned long nid;
3907 	enum zone_type i;
3908 
3909 	/* Sort early_node_map as initialisation assumes it is sorted */
3910 	sort_node_map();
3911 
3912 	/* Record where the zone boundaries are */
3913 	memset(arch_zone_lowest_possible_pfn, 0,
3914 				sizeof(arch_zone_lowest_possible_pfn));
3915 	memset(arch_zone_highest_possible_pfn, 0,
3916 				sizeof(arch_zone_highest_possible_pfn));
3917 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3918 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3919 	for (i = 1; i < MAX_NR_ZONES; i++) {
3920 		if (i == ZONE_MOVABLE)
3921 			continue;
3922 		arch_zone_lowest_possible_pfn[i] =
3923 			arch_zone_highest_possible_pfn[i-1];
3924 		arch_zone_highest_possible_pfn[i] =
3925 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3926 	}
3927 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3928 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3929 
3930 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3931 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3932 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3933 
3934 	/* Print out the zone ranges */
3935 	printk("Zone PFN ranges:\n");
3936 	for (i = 0; i < MAX_NR_ZONES; i++) {
3937 		if (i == ZONE_MOVABLE)
3938 			continue;
3939 		printk("  %-8s %0#10lx -> %0#10lx\n",
3940 				zone_names[i],
3941 				arch_zone_lowest_possible_pfn[i],
3942 				arch_zone_highest_possible_pfn[i]);
3943 	}
3944 
3945 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3946 	printk("Movable zone start PFN for each node\n");
3947 	for (i = 0; i < MAX_NUMNODES; i++) {
3948 		if (zone_movable_pfn[i])
3949 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3950 	}
3951 
3952 	/* Print out the early_node_map[] */
3953 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3954 	for (i = 0; i < nr_nodemap_entries; i++)
3955 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
3956 						early_node_map[i].start_pfn,
3957 						early_node_map[i].end_pfn);
3958 
3959 	/* Initialise every node */
3960 	setup_nr_node_ids();
3961 	for_each_online_node(nid) {
3962 		pg_data_t *pgdat = NODE_DATA(nid);
3963 		free_area_init_node(nid, pgdat, NULL,
3964 				find_min_pfn_for_node(nid), NULL);
3965 
3966 		/* Any memory on that node */
3967 		if (pgdat->node_present_pages)
3968 			node_set_state(nid, N_HIGH_MEMORY);
3969 		check_for_regular_memory(pgdat);
3970 	}
3971 }
3972 
3973 static int __init cmdline_parse_core(char *p, unsigned long *core)
3974 {
3975 	unsigned long long coremem;
3976 	if (!p)
3977 		return -EINVAL;
3978 
3979 	coremem = memparse(p, &p);
3980 	*core = coremem >> PAGE_SHIFT;
3981 
3982 	/* Paranoid check that UL is enough for the coremem value */
3983 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3984 
3985 	return 0;
3986 }
3987 
3988 /*
3989  * kernelcore=size sets the amount of memory for use for allocations that
3990  * cannot be reclaimed or migrated.
3991  */
3992 static int __init cmdline_parse_kernelcore(char *p)
3993 {
3994 	return cmdline_parse_core(p, &required_kernelcore);
3995 }
3996 
3997 /*
3998  * movablecore=size sets the amount of memory for use for allocations that
3999  * can be reclaimed or migrated.
4000  */
4001 static int __init cmdline_parse_movablecore(char *p)
4002 {
4003 	return cmdline_parse_core(p, &required_movablecore);
4004 }
4005 
4006 early_param("kernelcore", cmdline_parse_kernelcore);
4007 early_param("movablecore", cmdline_parse_movablecore);
4008 
4009 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4010 
4011 /**
4012  * set_dma_reserve - set the specified number of pages reserved in the first zone
4013  * @new_dma_reserve: The number of pages to mark reserved
4014  *
4015  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4016  * In the DMA zone, a significant percentage may be consumed by kernel image
4017  * and other unfreeable allocations which can skew the watermarks badly. This
4018  * function may optionally be used to account for unfreeable pages in the
4019  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4020  * smaller per-cpu batchsize.
4021  */
4022 void __init set_dma_reserve(unsigned long new_dma_reserve)
4023 {
4024 	dma_reserve = new_dma_reserve;
4025 }
4026 
4027 #ifndef CONFIG_NEED_MULTIPLE_NODES
4028 static bootmem_data_t contig_bootmem_data;
4029 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
4030 
4031 EXPORT_SYMBOL(contig_page_data);
4032 #endif
4033 
4034 void __init free_area_init(unsigned long *zones_size)
4035 {
4036 	free_area_init_node(0, NODE_DATA(0), zones_size,
4037 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4038 }
4039 
4040 static int page_alloc_cpu_notify(struct notifier_block *self,
4041 				 unsigned long action, void *hcpu)
4042 {
4043 	int cpu = (unsigned long)hcpu;
4044 
4045 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4046 		drain_pages(cpu);
4047 
4048 		/*
4049 		 * Spill the event counters of the dead processor
4050 		 * into the current processors event counters.
4051 		 * This artificially elevates the count of the current
4052 		 * processor.
4053 		 */
4054 		vm_events_fold_cpu(cpu);
4055 
4056 		/*
4057 		 * Zero the differential counters of the dead processor
4058 		 * so that the vm statistics are consistent.
4059 		 *
4060 		 * This is only okay since the processor is dead and cannot
4061 		 * race with what we are doing.
4062 		 */
4063 		refresh_cpu_vm_stats(cpu);
4064 	}
4065 	return NOTIFY_OK;
4066 }
4067 
4068 void __init page_alloc_init(void)
4069 {
4070 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4071 }
4072 
4073 /*
4074  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4075  *	or min_free_kbytes changes.
4076  */
4077 static void calculate_totalreserve_pages(void)
4078 {
4079 	struct pglist_data *pgdat;
4080 	unsigned long reserve_pages = 0;
4081 	enum zone_type i, j;
4082 
4083 	for_each_online_pgdat(pgdat) {
4084 		for (i = 0; i < MAX_NR_ZONES; i++) {
4085 			struct zone *zone = pgdat->node_zones + i;
4086 			unsigned long max = 0;
4087 
4088 			/* Find valid and maximum lowmem_reserve in the zone */
4089 			for (j = i; j < MAX_NR_ZONES; j++) {
4090 				if (zone->lowmem_reserve[j] > max)
4091 					max = zone->lowmem_reserve[j];
4092 			}
4093 
4094 			/* we treat pages_high as reserved pages. */
4095 			max += zone->pages_high;
4096 
4097 			if (max > zone->present_pages)
4098 				max = zone->present_pages;
4099 			reserve_pages += max;
4100 		}
4101 	}
4102 	totalreserve_pages = reserve_pages;
4103 }
4104 
4105 /*
4106  * setup_per_zone_lowmem_reserve - called whenever
4107  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4108  *	has a correct pages reserved value, so an adequate number of
4109  *	pages are left in the zone after a successful __alloc_pages().
4110  */
4111 static void setup_per_zone_lowmem_reserve(void)
4112 {
4113 	struct pglist_data *pgdat;
4114 	enum zone_type j, idx;
4115 
4116 	for_each_online_pgdat(pgdat) {
4117 		for (j = 0; j < MAX_NR_ZONES; j++) {
4118 			struct zone *zone = pgdat->node_zones + j;
4119 			unsigned long present_pages = zone->present_pages;
4120 
4121 			zone->lowmem_reserve[j] = 0;
4122 
4123 			idx = j;
4124 			while (idx) {
4125 				struct zone *lower_zone;
4126 
4127 				idx--;
4128 
4129 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4130 					sysctl_lowmem_reserve_ratio[idx] = 1;
4131 
4132 				lower_zone = pgdat->node_zones + idx;
4133 				lower_zone->lowmem_reserve[j] = present_pages /
4134 					sysctl_lowmem_reserve_ratio[idx];
4135 				present_pages += lower_zone->present_pages;
4136 			}
4137 		}
4138 	}
4139 
4140 	/* update totalreserve_pages */
4141 	calculate_totalreserve_pages();
4142 }
4143 
4144 /**
4145  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4146  *
4147  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4148  * with respect to min_free_kbytes.
4149  */
4150 void setup_per_zone_pages_min(void)
4151 {
4152 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4153 	unsigned long lowmem_pages = 0;
4154 	struct zone *zone;
4155 	unsigned long flags;
4156 
4157 	/* Calculate total number of !ZONE_HIGHMEM pages */
4158 	for_each_zone(zone) {
4159 		if (!is_highmem(zone))
4160 			lowmem_pages += zone->present_pages;
4161 	}
4162 
4163 	for_each_zone(zone) {
4164 		u64 tmp;
4165 
4166 		spin_lock_irqsave(&zone->lru_lock, flags);
4167 		tmp = (u64)pages_min * zone->present_pages;
4168 		do_div(tmp, lowmem_pages);
4169 		if (is_highmem(zone)) {
4170 			/*
4171 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4172 			 * need highmem pages, so cap pages_min to a small
4173 			 * value here.
4174 			 *
4175 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4176 			 * deltas controls asynch page reclaim, and so should
4177 			 * not be capped for highmem.
4178 			 */
4179 			int min_pages;
4180 
4181 			min_pages = zone->present_pages / 1024;
4182 			if (min_pages < SWAP_CLUSTER_MAX)
4183 				min_pages = SWAP_CLUSTER_MAX;
4184 			if (min_pages > 128)
4185 				min_pages = 128;
4186 			zone->pages_min = min_pages;
4187 		} else {
4188 			/*
4189 			 * If it's a lowmem zone, reserve a number of pages
4190 			 * proportionate to the zone's size.
4191 			 */
4192 			zone->pages_min = tmp;
4193 		}
4194 
4195 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4196 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4197 		setup_zone_migrate_reserve(zone);
4198 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4199 	}
4200 
4201 	/* update totalreserve_pages */
4202 	calculate_totalreserve_pages();
4203 }
4204 
4205 /*
4206  * Initialise min_free_kbytes.
4207  *
4208  * For small machines we want it small (128k min).  For large machines
4209  * we want it large (64MB max).  But it is not linear, because network
4210  * bandwidth does not increase linearly with machine size.  We use
4211  *
4212  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4213  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4214  *
4215  * which yields
4216  *
4217  * 16MB:	512k
4218  * 32MB:	724k
4219  * 64MB:	1024k
4220  * 128MB:	1448k
4221  * 256MB:	2048k
4222  * 512MB:	2896k
4223  * 1024MB:	4096k
4224  * 2048MB:	5792k
4225  * 4096MB:	8192k
4226  * 8192MB:	11584k
4227  * 16384MB:	16384k
4228  */
4229 static int __init init_per_zone_pages_min(void)
4230 {
4231 	unsigned long lowmem_kbytes;
4232 
4233 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4234 
4235 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4236 	if (min_free_kbytes < 128)
4237 		min_free_kbytes = 128;
4238 	if (min_free_kbytes > 65536)
4239 		min_free_kbytes = 65536;
4240 	setup_per_zone_pages_min();
4241 	setup_per_zone_lowmem_reserve();
4242 	return 0;
4243 }
4244 module_init(init_per_zone_pages_min)
4245 
4246 /*
4247  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4248  *	that we can call two helper functions whenever min_free_kbytes
4249  *	changes.
4250  */
4251 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4252 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4253 {
4254 	proc_dointvec(table, write, file, buffer, length, ppos);
4255 	if (write)
4256 		setup_per_zone_pages_min();
4257 	return 0;
4258 }
4259 
4260 #ifdef CONFIG_NUMA
4261 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4262 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4263 {
4264 	struct zone *zone;
4265 	int rc;
4266 
4267 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4268 	if (rc)
4269 		return rc;
4270 
4271 	for_each_zone(zone)
4272 		zone->min_unmapped_pages = (zone->present_pages *
4273 				sysctl_min_unmapped_ratio) / 100;
4274 	return 0;
4275 }
4276 
4277 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4278 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4279 {
4280 	struct zone *zone;
4281 	int rc;
4282 
4283 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4284 	if (rc)
4285 		return rc;
4286 
4287 	for_each_zone(zone)
4288 		zone->min_slab_pages = (zone->present_pages *
4289 				sysctl_min_slab_ratio) / 100;
4290 	return 0;
4291 }
4292 #endif
4293 
4294 /*
4295  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4296  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4297  *	whenever sysctl_lowmem_reserve_ratio changes.
4298  *
4299  * The reserve ratio obviously has absolutely no relation with the
4300  * pages_min watermarks. The lowmem reserve ratio can only make sense
4301  * if in function of the boot time zone sizes.
4302  */
4303 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4304 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4305 {
4306 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4307 	setup_per_zone_lowmem_reserve();
4308 	return 0;
4309 }
4310 
4311 /*
4312  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4313  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4314  * can have before it gets flushed back to buddy allocator.
4315  */
4316 
4317 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4318 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4319 {
4320 	struct zone *zone;
4321 	unsigned int cpu;
4322 	int ret;
4323 
4324 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4325 	if (!write || (ret == -EINVAL))
4326 		return ret;
4327 	for_each_zone(zone) {
4328 		for_each_online_cpu(cpu) {
4329 			unsigned long  high;
4330 			high = zone->present_pages / percpu_pagelist_fraction;
4331 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4332 		}
4333 	}
4334 	return 0;
4335 }
4336 
4337 int hashdist = HASHDIST_DEFAULT;
4338 
4339 #ifdef CONFIG_NUMA
4340 static int __init set_hashdist(char *str)
4341 {
4342 	if (!str)
4343 		return 0;
4344 	hashdist = simple_strtoul(str, &str, 0);
4345 	return 1;
4346 }
4347 __setup("hashdist=", set_hashdist);
4348 #endif
4349 
4350 /*
4351  * allocate a large system hash table from bootmem
4352  * - it is assumed that the hash table must contain an exact power-of-2
4353  *   quantity of entries
4354  * - limit is the number of hash buckets, not the total allocation size
4355  */
4356 void *__init alloc_large_system_hash(const char *tablename,
4357 				     unsigned long bucketsize,
4358 				     unsigned long numentries,
4359 				     int scale,
4360 				     int flags,
4361 				     unsigned int *_hash_shift,
4362 				     unsigned int *_hash_mask,
4363 				     unsigned long limit)
4364 {
4365 	unsigned long long max = limit;
4366 	unsigned long log2qty, size;
4367 	void *table = NULL;
4368 
4369 	/* allow the kernel cmdline to have a say */
4370 	if (!numentries) {
4371 		/* round applicable memory size up to nearest megabyte */
4372 		numentries = nr_kernel_pages;
4373 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4374 		numentries >>= 20 - PAGE_SHIFT;
4375 		numentries <<= 20 - PAGE_SHIFT;
4376 
4377 		/* limit to 1 bucket per 2^scale bytes of low memory */
4378 		if (scale > PAGE_SHIFT)
4379 			numentries >>= (scale - PAGE_SHIFT);
4380 		else
4381 			numentries <<= (PAGE_SHIFT - scale);
4382 
4383 		/* Make sure we've got at least a 0-order allocation.. */
4384 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4385 			numentries = PAGE_SIZE / bucketsize;
4386 	}
4387 	numentries = roundup_pow_of_two(numentries);
4388 
4389 	/* limit allocation size to 1/16 total memory by default */
4390 	if (max == 0) {
4391 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4392 		do_div(max, bucketsize);
4393 	}
4394 
4395 	if (numentries > max)
4396 		numentries = max;
4397 
4398 	log2qty = ilog2(numentries);
4399 
4400 	do {
4401 		size = bucketsize << log2qty;
4402 		if (flags & HASH_EARLY)
4403 			table = alloc_bootmem(size);
4404 		else if (hashdist)
4405 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4406 		else {
4407 			unsigned long order = get_order(size);
4408 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4409 			/*
4410 			 * If bucketsize is not a power-of-two, we may free
4411 			 * some pages at the end of hash table.
4412 			 */
4413 			if (table) {
4414 				unsigned long alloc_end = (unsigned long)table +
4415 						(PAGE_SIZE << order);
4416 				unsigned long used = (unsigned long)table +
4417 						PAGE_ALIGN(size);
4418 				split_page(virt_to_page(table), order);
4419 				while (used < alloc_end) {
4420 					free_page(used);
4421 					used += PAGE_SIZE;
4422 				}
4423 			}
4424 		}
4425 	} while (!table && size > PAGE_SIZE && --log2qty);
4426 
4427 	if (!table)
4428 		panic("Failed to allocate %s hash table\n", tablename);
4429 
4430 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4431 	       tablename,
4432 	       (1U << log2qty),
4433 	       ilog2(size) - PAGE_SHIFT,
4434 	       size);
4435 
4436 	if (_hash_shift)
4437 		*_hash_shift = log2qty;
4438 	if (_hash_mask)
4439 		*_hash_mask = (1 << log2qty) - 1;
4440 
4441 	return table;
4442 }
4443 
4444 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4445 struct page *pfn_to_page(unsigned long pfn)
4446 {
4447 	return __pfn_to_page(pfn);
4448 }
4449 unsigned long page_to_pfn(struct page *page)
4450 {
4451 	return __page_to_pfn(page);
4452 }
4453 EXPORT_SYMBOL(pfn_to_page);
4454 EXPORT_SYMBOL(page_to_pfn);
4455 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4456 
4457 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4458 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4459 							unsigned long pfn)
4460 {
4461 #ifdef CONFIG_SPARSEMEM
4462 	return __pfn_to_section(pfn)->pageblock_flags;
4463 #else
4464 	return zone->pageblock_flags;
4465 #endif /* CONFIG_SPARSEMEM */
4466 }
4467 
4468 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4469 {
4470 #ifdef CONFIG_SPARSEMEM
4471 	pfn &= (PAGES_PER_SECTION-1);
4472 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4473 #else
4474 	pfn = pfn - zone->zone_start_pfn;
4475 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4476 #endif /* CONFIG_SPARSEMEM */
4477 }
4478 
4479 /**
4480  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4481  * @page: The page within the block of interest
4482  * @start_bitidx: The first bit of interest to retrieve
4483  * @end_bitidx: The last bit of interest
4484  * returns pageblock_bits flags
4485  */
4486 unsigned long get_pageblock_flags_group(struct page *page,
4487 					int start_bitidx, int end_bitidx)
4488 {
4489 	struct zone *zone;
4490 	unsigned long *bitmap;
4491 	unsigned long pfn, bitidx;
4492 	unsigned long flags = 0;
4493 	unsigned long value = 1;
4494 
4495 	zone = page_zone(page);
4496 	pfn = page_to_pfn(page);
4497 	bitmap = get_pageblock_bitmap(zone, pfn);
4498 	bitidx = pfn_to_bitidx(zone, pfn);
4499 
4500 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4501 		if (test_bit(bitidx + start_bitidx, bitmap))
4502 			flags |= value;
4503 
4504 	return flags;
4505 }
4506 
4507 /**
4508  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4509  * @page: The page within the block of interest
4510  * @start_bitidx: The first bit of interest
4511  * @end_bitidx: The last bit of interest
4512  * @flags: The flags to set
4513  */
4514 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4515 					int start_bitidx, int end_bitidx)
4516 {
4517 	struct zone *zone;
4518 	unsigned long *bitmap;
4519 	unsigned long pfn, bitidx;
4520 	unsigned long value = 1;
4521 
4522 	zone = page_zone(page);
4523 	pfn = page_to_pfn(page);
4524 	bitmap = get_pageblock_bitmap(zone, pfn);
4525 	bitidx = pfn_to_bitidx(zone, pfn);
4526 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4527 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4528 
4529 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4530 		if (flags & value)
4531 			__set_bit(bitidx + start_bitidx, bitmap);
4532 		else
4533 			__clear_bit(bitidx + start_bitidx, bitmap);
4534 }
4535 
4536 /*
4537  * This is designed as sub function...plz see page_isolation.c also.
4538  * set/clear page block's type to be ISOLATE.
4539  * page allocater never alloc memory from ISOLATE block.
4540  */
4541 
4542 int set_migratetype_isolate(struct page *page)
4543 {
4544 	struct zone *zone;
4545 	unsigned long flags;
4546 	int ret = -EBUSY;
4547 
4548 	zone = page_zone(page);
4549 	spin_lock_irqsave(&zone->lock, flags);
4550 	/*
4551 	 * In future, more migrate types will be able to be isolation target.
4552 	 */
4553 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4554 		goto out;
4555 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4556 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4557 	ret = 0;
4558 out:
4559 	spin_unlock_irqrestore(&zone->lock, flags);
4560 	if (!ret)
4561 		drain_all_pages();
4562 	return ret;
4563 }
4564 
4565 void unset_migratetype_isolate(struct page *page)
4566 {
4567 	struct zone *zone;
4568 	unsigned long flags;
4569 	zone = page_zone(page);
4570 	spin_lock_irqsave(&zone->lock, flags);
4571 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4572 		goto out;
4573 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4574 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4575 out:
4576 	spin_unlock_irqrestore(&zone->lock, flags);
4577 }
4578 
4579 #ifdef CONFIG_MEMORY_HOTREMOVE
4580 /*
4581  * All pages in the range must be isolated before calling this.
4582  */
4583 void
4584 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4585 {
4586 	struct page *page;
4587 	struct zone *zone;
4588 	int order, i;
4589 	unsigned long pfn;
4590 	unsigned long flags;
4591 	/* find the first valid pfn */
4592 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4593 		if (pfn_valid(pfn))
4594 			break;
4595 	if (pfn == end_pfn)
4596 		return;
4597 	zone = page_zone(pfn_to_page(pfn));
4598 	spin_lock_irqsave(&zone->lock, flags);
4599 	pfn = start_pfn;
4600 	while (pfn < end_pfn) {
4601 		if (!pfn_valid(pfn)) {
4602 			pfn++;
4603 			continue;
4604 		}
4605 		page = pfn_to_page(pfn);
4606 		BUG_ON(page_count(page));
4607 		BUG_ON(!PageBuddy(page));
4608 		order = page_order(page);
4609 #ifdef CONFIG_DEBUG_VM
4610 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4611 		       pfn, 1 << order, end_pfn);
4612 #endif
4613 		list_del(&page->lru);
4614 		rmv_page_order(page);
4615 		zone->free_area[order].nr_free--;
4616 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4617 				      - (1UL << order));
4618 		for (i = 0; i < (1 << order); i++)
4619 			SetPageReserved((page+i));
4620 		pfn += (1 << order);
4621 	}
4622 	spin_unlock_irqrestore(&zone->lock, flags);
4623 }
4624 #endif
4625