1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmstat.h> 38 #include <linux/fault-inject.h> 39 #include <linux/compaction.h> 40 #include <trace/events/kmem.h> 41 #include <trace/events/oom.h> 42 #include <linux/prefetch.h> 43 #include <linux/mm_inline.h> 44 #include <linux/mmu_notifier.h> 45 #include <linux/migrate.h> 46 #include <linux/sched/mm.h> 47 #include <linux/page_owner.h> 48 #include <linux/page_table_check.h> 49 #include <linux/memcontrol.h> 50 #include <linux/ftrace.h> 51 #include <linux/lockdep.h> 52 #include <linux/psi.h> 53 #include <linux/khugepaged.h> 54 #include <linux/delayacct.h> 55 #include <linux/cacheinfo.h> 56 #include <asm/div64.h> 57 #include "internal.h" 58 #include "shuffle.h" 59 #include "page_reporting.h" 60 61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 62 typedef int __bitwise fpi_t; 63 64 /* No special request */ 65 #define FPI_NONE ((__force fpi_t)0) 66 67 /* 68 * Skip free page reporting notification for the (possibly merged) page. 69 * This does not hinder free page reporting from grabbing the page, 70 * reporting it and marking it "reported" - it only skips notifying 71 * the free page reporting infrastructure about a newly freed page. For 72 * example, used when temporarily pulling a page from a freelist and 73 * putting it back unmodified. 74 */ 75 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 76 77 /* 78 * Place the (possibly merged) page to the tail of the freelist. Will ignore 79 * page shuffling (relevant code - e.g., memory onlining - is expected to 80 * shuffle the whole zone). 81 * 82 * Note: No code should rely on this flag for correctness - it's purely 83 * to allow for optimizations when handing back either fresh pages 84 * (memory onlining) or untouched pages (page isolation, free page 85 * reporting). 86 */ 87 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 88 89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 90 static DEFINE_MUTEX(pcp_batch_high_lock); 91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 92 93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 94 /* 95 * On SMP, spin_trylock is sufficient protection. 96 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 97 */ 98 #define pcp_trylock_prepare(flags) do { } while (0) 99 #define pcp_trylock_finish(flag) do { } while (0) 100 #else 101 102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 103 #define pcp_trylock_prepare(flags) local_irq_save(flags) 104 #define pcp_trylock_finish(flags) local_irq_restore(flags) 105 #endif 106 107 /* 108 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 109 * a migration causing the wrong PCP to be locked and remote memory being 110 * potentially allocated, pin the task to the CPU for the lookup+lock. 111 * preempt_disable is used on !RT because it is faster than migrate_disable. 112 * migrate_disable is used on RT because otherwise RT spinlock usage is 113 * interfered with and a high priority task cannot preempt the allocator. 114 */ 115 #ifndef CONFIG_PREEMPT_RT 116 #define pcpu_task_pin() preempt_disable() 117 #define pcpu_task_unpin() preempt_enable() 118 #else 119 #define pcpu_task_pin() migrate_disable() 120 #define pcpu_task_unpin() migrate_enable() 121 #endif 122 123 /* 124 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 125 * Return value should be used with equivalent unlock helper. 126 */ 127 #define pcpu_spin_lock(type, member, ptr) \ 128 ({ \ 129 type *_ret; \ 130 pcpu_task_pin(); \ 131 _ret = this_cpu_ptr(ptr); \ 132 spin_lock(&_ret->member); \ 133 _ret; \ 134 }) 135 136 #define pcpu_spin_trylock(type, member, ptr) \ 137 ({ \ 138 type *_ret; \ 139 pcpu_task_pin(); \ 140 _ret = this_cpu_ptr(ptr); \ 141 if (!spin_trylock(&_ret->member)) { \ 142 pcpu_task_unpin(); \ 143 _ret = NULL; \ 144 } \ 145 _ret; \ 146 }) 147 148 #define pcpu_spin_unlock(member, ptr) \ 149 ({ \ 150 spin_unlock(&ptr->member); \ 151 pcpu_task_unpin(); \ 152 }) 153 154 /* struct per_cpu_pages specific helpers. */ 155 #define pcp_spin_lock(ptr) \ 156 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 157 158 #define pcp_spin_trylock(ptr) \ 159 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 160 161 #define pcp_spin_unlock(ptr) \ 162 pcpu_spin_unlock(lock, ptr) 163 164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 165 DEFINE_PER_CPU(int, numa_node); 166 EXPORT_PER_CPU_SYMBOL(numa_node); 167 #endif 168 169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 170 171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 172 /* 173 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 174 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 175 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 176 * defined in <linux/topology.h>. 177 */ 178 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 179 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 180 #endif 181 182 static DEFINE_MUTEX(pcpu_drain_mutex); 183 184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 185 volatile unsigned long latent_entropy __latent_entropy; 186 EXPORT_SYMBOL(latent_entropy); 187 #endif 188 189 /* 190 * Array of node states. 191 */ 192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 193 [N_POSSIBLE] = NODE_MASK_ALL, 194 [N_ONLINE] = { { [0] = 1UL } }, 195 #ifndef CONFIG_NUMA 196 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 197 #ifdef CONFIG_HIGHMEM 198 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 199 #endif 200 [N_MEMORY] = { { [0] = 1UL } }, 201 [N_CPU] = { { [0] = 1UL } }, 202 #endif /* NUMA */ 203 }; 204 EXPORT_SYMBOL(node_states); 205 206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 207 208 /* 209 * A cached value of the page's pageblock's migratetype, used when the page is 210 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 211 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 212 * Also the migratetype set in the page does not necessarily match the pcplist 213 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 214 * other index - this ensures that it will be put on the correct CMA freelist. 215 */ 216 static inline int get_pcppage_migratetype(struct page *page) 217 { 218 return page->index; 219 } 220 221 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 222 { 223 page->index = migratetype; 224 } 225 226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 227 unsigned int pageblock_order __read_mostly; 228 #endif 229 230 static void __free_pages_ok(struct page *page, unsigned int order, 231 fpi_t fpi_flags); 232 233 /* 234 * results with 256, 32 in the lowmem_reserve sysctl: 235 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 236 * 1G machine -> (16M dma, 784M normal, 224M high) 237 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 238 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 239 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 240 * 241 * TBD: should special case ZONE_DMA32 machines here - in those we normally 242 * don't need any ZONE_NORMAL reservation 243 */ 244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 245 #ifdef CONFIG_ZONE_DMA 246 [ZONE_DMA] = 256, 247 #endif 248 #ifdef CONFIG_ZONE_DMA32 249 [ZONE_DMA32] = 256, 250 #endif 251 [ZONE_NORMAL] = 32, 252 #ifdef CONFIG_HIGHMEM 253 [ZONE_HIGHMEM] = 0, 254 #endif 255 [ZONE_MOVABLE] = 0, 256 }; 257 258 char * const zone_names[MAX_NR_ZONES] = { 259 #ifdef CONFIG_ZONE_DMA 260 "DMA", 261 #endif 262 #ifdef CONFIG_ZONE_DMA32 263 "DMA32", 264 #endif 265 "Normal", 266 #ifdef CONFIG_HIGHMEM 267 "HighMem", 268 #endif 269 "Movable", 270 #ifdef CONFIG_ZONE_DEVICE 271 "Device", 272 #endif 273 }; 274 275 const char * const migratetype_names[MIGRATE_TYPES] = { 276 "Unmovable", 277 "Movable", 278 "Reclaimable", 279 "HighAtomic", 280 #ifdef CONFIG_CMA 281 "CMA", 282 #endif 283 #ifdef CONFIG_MEMORY_ISOLATION 284 "Isolate", 285 #endif 286 }; 287 288 int min_free_kbytes = 1024; 289 int user_min_free_kbytes = -1; 290 static int watermark_boost_factor __read_mostly = 15000; 291 static int watermark_scale_factor = 10; 292 293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 294 int movable_zone; 295 EXPORT_SYMBOL(movable_zone); 296 297 #if MAX_NUMNODES > 1 298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 299 unsigned int nr_online_nodes __read_mostly = 1; 300 EXPORT_SYMBOL(nr_node_ids); 301 EXPORT_SYMBOL(nr_online_nodes); 302 #endif 303 304 static bool page_contains_unaccepted(struct page *page, unsigned int order); 305 static void accept_page(struct page *page, unsigned int order); 306 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 307 static inline bool has_unaccepted_memory(void); 308 static bool __free_unaccepted(struct page *page); 309 310 int page_group_by_mobility_disabled __read_mostly; 311 312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 313 /* 314 * During boot we initialize deferred pages on-demand, as needed, but once 315 * page_alloc_init_late() has finished, the deferred pages are all initialized, 316 * and we can permanently disable that path. 317 */ 318 DEFINE_STATIC_KEY_TRUE(deferred_pages); 319 320 static inline bool deferred_pages_enabled(void) 321 { 322 return static_branch_unlikely(&deferred_pages); 323 } 324 325 /* 326 * deferred_grow_zone() is __init, but it is called from 327 * get_page_from_freelist() during early boot until deferred_pages permanently 328 * disables this call. This is why we have refdata wrapper to avoid warning, 329 * and to ensure that the function body gets unloaded. 330 */ 331 static bool __ref 332 _deferred_grow_zone(struct zone *zone, unsigned int order) 333 { 334 return deferred_grow_zone(zone, order); 335 } 336 #else 337 static inline bool deferred_pages_enabled(void) 338 { 339 return false; 340 } 341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 342 343 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 344 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 345 unsigned long pfn) 346 { 347 #ifdef CONFIG_SPARSEMEM 348 return section_to_usemap(__pfn_to_section(pfn)); 349 #else 350 return page_zone(page)->pageblock_flags; 351 #endif /* CONFIG_SPARSEMEM */ 352 } 353 354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 355 { 356 #ifdef CONFIG_SPARSEMEM 357 pfn &= (PAGES_PER_SECTION-1); 358 #else 359 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 360 #endif /* CONFIG_SPARSEMEM */ 361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 362 } 363 364 /** 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 366 * @page: The page within the block of interest 367 * @pfn: The target page frame number 368 * @mask: mask of bits that the caller is interested in 369 * 370 * Return: pageblock_bits flags 371 */ 372 unsigned long get_pfnblock_flags_mask(const struct page *page, 373 unsigned long pfn, unsigned long mask) 374 { 375 unsigned long *bitmap; 376 unsigned long bitidx, word_bitidx; 377 unsigned long word; 378 379 bitmap = get_pageblock_bitmap(page, pfn); 380 bitidx = pfn_to_bitidx(page, pfn); 381 word_bitidx = bitidx / BITS_PER_LONG; 382 bitidx &= (BITS_PER_LONG-1); 383 /* 384 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 385 * a consistent read of the memory array, so that results, even though 386 * racy, are not corrupted. 387 */ 388 word = READ_ONCE(bitmap[word_bitidx]); 389 return (word >> bitidx) & mask; 390 } 391 392 static __always_inline int get_pfnblock_migratetype(const struct page *page, 393 unsigned long pfn) 394 { 395 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 396 } 397 398 /** 399 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 400 * @page: The page within the block of interest 401 * @flags: The flags to set 402 * @pfn: The target page frame number 403 * @mask: mask of bits that the caller is interested in 404 */ 405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 406 unsigned long pfn, 407 unsigned long mask) 408 { 409 unsigned long *bitmap; 410 unsigned long bitidx, word_bitidx; 411 unsigned long word; 412 413 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 414 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 415 416 bitmap = get_pageblock_bitmap(page, pfn); 417 bitidx = pfn_to_bitidx(page, pfn); 418 word_bitidx = bitidx / BITS_PER_LONG; 419 bitidx &= (BITS_PER_LONG-1); 420 421 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 422 423 mask <<= bitidx; 424 flags <<= bitidx; 425 426 word = READ_ONCE(bitmap[word_bitidx]); 427 do { 428 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 429 } 430 431 void set_pageblock_migratetype(struct page *page, int migratetype) 432 { 433 if (unlikely(page_group_by_mobility_disabled && 434 migratetype < MIGRATE_PCPTYPES)) 435 migratetype = MIGRATE_UNMOVABLE; 436 437 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 438 page_to_pfn(page), MIGRATETYPE_MASK); 439 } 440 441 #ifdef CONFIG_DEBUG_VM 442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 443 { 444 int ret; 445 unsigned seq; 446 unsigned long pfn = page_to_pfn(page); 447 unsigned long sp, start_pfn; 448 449 do { 450 seq = zone_span_seqbegin(zone); 451 start_pfn = zone->zone_start_pfn; 452 sp = zone->spanned_pages; 453 ret = !zone_spans_pfn(zone, pfn); 454 } while (zone_span_seqretry(zone, seq)); 455 456 if (ret) 457 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 458 pfn, zone_to_nid(zone), zone->name, 459 start_pfn, start_pfn + sp); 460 461 return ret; 462 } 463 464 /* 465 * Temporary debugging check for pages not lying within a given zone. 466 */ 467 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 468 { 469 if (page_outside_zone_boundaries(zone, page)) 470 return 1; 471 if (zone != page_zone(page)) 472 return 1; 473 474 return 0; 475 } 476 #else 477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 478 { 479 return 0; 480 } 481 #endif 482 483 static void bad_page(struct page *page, const char *reason) 484 { 485 static unsigned long resume; 486 static unsigned long nr_shown; 487 static unsigned long nr_unshown; 488 489 /* 490 * Allow a burst of 60 reports, then keep quiet for that minute; 491 * or allow a steady drip of one report per second. 492 */ 493 if (nr_shown == 60) { 494 if (time_before(jiffies, resume)) { 495 nr_unshown++; 496 goto out; 497 } 498 if (nr_unshown) { 499 pr_alert( 500 "BUG: Bad page state: %lu messages suppressed\n", 501 nr_unshown); 502 nr_unshown = 0; 503 } 504 nr_shown = 0; 505 } 506 if (nr_shown++ == 0) 507 resume = jiffies + 60 * HZ; 508 509 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 510 current->comm, page_to_pfn(page)); 511 dump_page(page, reason); 512 513 print_modules(); 514 dump_stack(); 515 out: 516 /* Leave bad fields for debug, except PageBuddy could make trouble */ 517 page_mapcount_reset(page); /* remove PageBuddy */ 518 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 519 } 520 521 static inline unsigned int order_to_pindex(int migratetype, int order) 522 { 523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 524 if (order > PAGE_ALLOC_COSTLY_ORDER) { 525 VM_BUG_ON(order != pageblock_order); 526 return NR_LOWORDER_PCP_LISTS; 527 } 528 #else 529 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 530 #endif 531 532 return (MIGRATE_PCPTYPES * order) + migratetype; 533 } 534 535 static inline int pindex_to_order(unsigned int pindex) 536 { 537 int order = pindex / MIGRATE_PCPTYPES; 538 539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 540 if (pindex == NR_LOWORDER_PCP_LISTS) 541 order = pageblock_order; 542 #else 543 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 544 #endif 545 546 return order; 547 } 548 549 static inline bool pcp_allowed_order(unsigned int order) 550 { 551 if (order <= PAGE_ALLOC_COSTLY_ORDER) 552 return true; 553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 554 if (order == pageblock_order) 555 return true; 556 #endif 557 return false; 558 } 559 560 static inline void free_the_page(struct page *page, unsigned int order) 561 { 562 if (pcp_allowed_order(order)) /* Via pcp? */ 563 free_unref_page(page, order); 564 else 565 __free_pages_ok(page, order, FPI_NONE); 566 } 567 568 /* 569 * Higher-order pages are called "compound pages". They are structured thusly: 570 * 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 572 * 573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 575 * 576 * The first tail page's ->compound_order holds the order of allocation. 577 * This usage means that zero-order pages may not be compound. 578 */ 579 580 void prep_compound_page(struct page *page, unsigned int order) 581 { 582 int i; 583 int nr_pages = 1 << order; 584 585 __SetPageHead(page); 586 for (i = 1; i < nr_pages; i++) 587 prep_compound_tail(page, i); 588 589 prep_compound_head(page, order); 590 } 591 592 void destroy_large_folio(struct folio *folio) 593 { 594 if (folio_test_hugetlb(folio)) { 595 free_huge_folio(folio); 596 return; 597 } 598 599 if (folio_test_large_rmappable(folio)) 600 folio_undo_large_rmappable(folio); 601 602 mem_cgroup_uncharge(folio); 603 free_the_page(&folio->page, folio_order(folio)); 604 } 605 606 static inline void set_buddy_order(struct page *page, unsigned int order) 607 { 608 set_page_private(page, order); 609 __SetPageBuddy(page); 610 } 611 612 #ifdef CONFIG_COMPACTION 613 static inline struct capture_control *task_capc(struct zone *zone) 614 { 615 struct capture_control *capc = current->capture_control; 616 617 return unlikely(capc) && 618 !(current->flags & PF_KTHREAD) && 619 !capc->page && 620 capc->cc->zone == zone ? capc : NULL; 621 } 622 623 static inline bool 624 compaction_capture(struct capture_control *capc, struct page *page, 625 int order, int migratetype) 626 { 627 if (!capc || order != capc->cc->order) 628 return false; 629 630 /* Do not accidentally pollute CMA or isolated regions*/ 631 if (is_migrate_cma(migratetype) || 632 is_migrate_isolate(migratetype)) 633 return false; 634 635 /* 636 * Do not let lower order allocations pollute a movable pageblock. 637 * This might let an unmovable request use a reclaimable pageblock 638 * and vice-versa but no more than normal fallback logic which can 639 * have trouble finding a high-order free page. 640 */ 641 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 642 return false; 643 644 capc->page = page; 645 return true; 646 } 647 648 #else 649 static inline struct capture_control *task_capc(struct zone *zone) 650 { 651 return NULL; 652 } 653 654 static inline bool 655 compaction_capture(struct capture_control *capc, struct page *page, 656 int order, int migratetype) 657 { 658 return false; 659 } 660 #endif /* CONFIG_COMPACTION */ 661 662 /* Used for pages not on another list */ 663 static inline void add_to_free_list(struct page *page, struct zone *zone, 664 unsigned int order, int migratetype) 665 { 666 struct free_area *area = &zone->free_area[order]; 667 668 list_add(&page->buddy_list, &area->free_list[migratetype]); 669 area->nr_free++; 670 } 671 672 /* Used for pages not on another list */ 673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 674 unsigned int order, int migratetype) 675 { 676 struct free_area *area = &zone->free_area[order]; 677 678 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 679 area->nr_free++; 680 } 681 682 /* 683 * Used for pages which are on another list. Move the pages to the tail 684 * of the list - so the moved pages won't immediately be considered for 685 * allocation again (e.g., optimization for memory onlining). 686 */ 687 static inline void move_to_free_list(struct page *page, struct zone *zone, 688 unsigned int order, int migratetype) 689 { 690 struct free_area *area = &zone->free_area[order]; 691 692 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 693 } 694 695 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 696 unsigned int order) 697 { 698 /* clear reported state and update reported page count */ 699 if (page_reported(page)) 700 __ClearPageReported(page); 701 702 list_del(&page->buddy_list); 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 zone->free_area[order].nr_free--; 706 } 707 708 static inline struct page *get_page_from_free_area(struct free_area *area, 709 int migratetype) 710 { 711 return list_first_entry_or_null(&area->free_list[migratetype], 712 struct page, buddy_list); 713 } 714 715 /* 716 * If this is not the largest possible page, check if the buddy 717 * of the next-highest order is free. If it is, it's possible 718 * that pages are being freed that will coalesce soon. In case, 719 * that is happening, add the free page to the tail of the list 720 * so it's less likely to be used soon and more likely to be merged 721 * as a higher order page 722 */ 723 static inline bool 724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 725 struct page *page, unsigned int order) 726 { 727 unsigned long higher_page_pfn; 728 struct page *higher_page; 729 730 if (order >= MAX_ORDER - 1) 731 return false; 732 733 higher_page_pfn = buddy_pfn & pfn; 734 higher_page = page + (higher_page_pfn - pfn); 735 736 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 737 NULL) != NULL; 738 } 739 740 /* 741 * Freeing function for a buddy system allocator. 742 * 743 * The concept of a buddy system is to maintain direct-mapped table 744 * (containing bit values) for memory blocks of various "orders". 745 * The bottom level table contains the map for the smallest allocatable 746 * units of memory (here, pages), and each level above it describes 747 * pairs of units from the levels below, hence, "buddies". 748 * At a high level, all that happens here is marking the table entry 749 * at the bottom level available, and propagating the changes upward 750 * as necessary, plus some accounting needed to play nicely with other 751 * parts of the VM system. 752 * At each level, we keep a list of pages, which are heads of continuous 753 * free pages of length of (1 << order) and marked with PageBuddy. 754 * Page's order is recorded in page_private(page) field. 755 * So when we are allocating or freeing one, we can derive the state of the 756 * other. That is, if we allocate a small block, and both were 757 * free, the remainder of the region must be split into blocks. 758 * If a block is freed, and its buddy is also free, then this 759 * triggers coalescing into a block of larger size. 760 * 761 * -- nyc 762 */ 763 764 static inline void __free_one_page(struct page *page, 765 unsigned long pfn, 766 struct zone *zone, unsigned int order, 767 int migratetype, fpi_t fpi_flags) 768 { 769 struct capture_control *capc = task_capc(zone); 770 unsigned long buddy_pfn = 0; 771 unsigned long combined_pfn; 772 struct page *buddy; 773 bool to_tail; 774 775 VM_BUG_ON(!zone_is_initialized(zone)); 776 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 777 778 VM_BUG_ON(migratetype == -1); 779 if (likely(!is_migrate_isolate(migratetype))) 780 __mod_zone_freepage_state(zone, 1 << order, migratetype); 781 782 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 783 VM_BUG_ON_PAGE(bad_range(zone, page), page); 784 785 while (order < MAX_ORDER) { 786 if (compaction_capture(capc, page, order, migratetype)) { 787 __mod_zone_freepage_state(zone, -(1 << order), 788 migratetype); 789 return; 790 } 791 792 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 793 if (!buddy) 794 goto done_merging; 795 796 if (unlikely(order >= pageblock_order)) { 797 /* 798 * We want to prevent merge between freepages on pageblock 799 * without fallbacks and normal pageblock. Without this, 800 * pageblock isolation could cause incorrect freepage or CMA 801 * accounting or HIGHATOMIC accounting. 802 */ 803 int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 804 805 if (migratetype != buddy_mt 806 && (!migratetype_is_mergeable(migratetype) || 807 !migratetype_is_mergeable(buddy_mt))) 808 goto done_merging; 809 } 810 811 /* 812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 813 * merge with it and move up one order. 814 */ 815 if (page_is_guard(buddy)) 816 clear_page_guard(zone, buddy, order, migratetype); 817 else 818 del_page_from_free_list(buddy, zone, order); 819 combined_pfn = buddy_pfn & pfn; 820 page = page + (combined_pfn - pfn); 821 pfn = combined_pfn; 822 order++; 823 } 824 825 done_merging: 826 set_buddy_order(page, order); 827 828 if (fpi_flags & FPI_TO_TAIL) 829 to_tail = true; 830 else if (is_shuffle_order(order)) 831 to_tail = shuffle_pick_tail(); 832 else 833 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 834 835 if (to_tail) 836 add_to_free_list_tail(page, zone, order, migratetype); 837 else 838 add_to_free_list(page, zone, order, migratetype); 839 840 /* Notify page reporting subsystem of freed page */ 841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 842 page_reporting_notify_free(order); 843 } 844 845 /** 846 * split_free_page() -- split a free page at split_pfn_offset 847 * @free_page: the original free page 848 * @order: the order of the page 849 * @split_pfn_offset: split offset within the page 850 * 851 * Return -ENOENT if the free page is changed, otherwise 0 852 * 853 * It is used when the free page crosses two pageblocks with different migratetypes 854 * at split_pfn_offset within the page. The split free page will be put into 855 * separate migratetype lists afterwards. Otherwise, the function achieves 856 * nothing. 857 */ 858 int split_free_page(struct page *free_page, 859 unsigned int order, unsigned long split_pfn_offset) 860 { 861 struct zone *zone = page_zone(free_page); 862 unsigned long free_page_pfn = page_to_pfn(free_page); 863 unsigned long pfn; 864 unsigned long flags; 865 int free_page_order; 866 int mt; 867 int ret = 0; 868 869 if (split_pfn_offset == 0) 870 return ret; 871 872 spin_lock_irqsave(&zone->lock, flags); 873 874 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 875 ret = -ENOENT; 876 goto out; 877 } 878 879 mt = get_pfnblock_migratetype(free_page, free_page_pfn); 880 if (likely(!is_migrate_isolate(mt))) 881 __mod_zone_freepage_state(zone, -(1UL << order), mt); 882 883 del_page_from_free_list(free_page, zone, order); 884 for (pfn = free_page_pfn; 885 pfn < free_page_pfn + (1UL << order);) { 886 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 887 888 free_page_order = min_t(unsigned int, 889 pfn ? __ffs(pfn) : order, 890 __fls(split_pfn_offset)); 891 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 892 mt, FPI_NONE); 893 pfn += 1UL << free_page_order; 894 split_pfn_offset -= (1UL << free_page_order); 895 /* we have done the first part, now switch to second part */ 896 if (split_pfn_offset == 0) 897 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 898 } 899 out: 900 spin_unlock_irqrestore(&zone->lock, flags); 901 return ret; 902 } 903 /* 904 * A bad page could be due to a number of fields. Instead of multiple branches, 905 * try and check multiple fields with one check. The caller must do a detailed 906 * check if necessary. 907 */ 908 static inline bool page_expected_state(struct page *page, 909 unsigned long check_flags) 910 { 911 if (unlikely(atomic_read(&page->_mapcount) != -1)) 912 return false; 913 914 if (unlikely((unsigned long)page->mapping | 915 page_ref_count(page) | 916 #ifdef CONFIG_MEMCG 917 page->memcg_data | 918 #endif 919 (page->flags & check_flags))) 920 return false; 921 922 return true; 923 } 924 925 static const char *page_bad_reason(struct page *page, unsigned long flags) 926 { 927 const char *bad_reason = NULL; 928 929 if (unlikely(atomic_read(&page->_mapcount) != -1)) 930 bad_reason = "nonzero mapcount"; 931 if (unlikely(page->mapping != NULL)) 932 bad_reason = "non-NULL mapping"; 933 if (unlikely(page_ref_count(page) != 0)) 934 bad_reason = "nonzero _refcount"; 935 if (unlikely(page->flags & flags)) { 936 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 937 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 938 else 939 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 940 } 941 #ifdef CONFIG_MEMCG 942 if (unlikely(page->memcg_data)) 943 bad_reason = "page still charged to cgroup"; 944 #endif 945 return bad_reason; 946 } 947 948 static void free_page_is_bad_report(struct page *page) 949 { 950 bad_page(page, 951 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 952 } 953 954 static inline bool free_page_is_bad(struct page *page) 955 { 956 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 957 return false; 958 959 /* Something has gone sideways, find it */ 960 free_page_is_bad_report(page); 961 return true; 962 } 963 964 static inline bool is_check_pages_enabled(void) 965 { 966 return static_branch_unlikely(&check_pages_enabled); 967 } 968 969 static int free_tail_page_prepare(struct page *head_page, struct page *page) 970 { 971 struct folio *folio = (struct folio *)head_page; 972 int ret = 1; 973 974 /* 975 * We rely page->lru.next never has bit 0 set, unless the page 976 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 977 */ 978 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 979 980 if (!is_check_pages_enabled()) { 981 ret = 0; 982 goto out; 983 } 984 switch (page - head_page) { 985 case 1: 986 /* the first tail page: these may be in place of ->mapping */ 987 if (unlikely(folio_entire_mapcount(folio))) { 988 bad_page(page, "nonzero entire_mapcount"); 989 goto out; 990 } 991 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 992 bad_page(page, "nonzero nr_pages_mapped"); 993 goto out; 994 } 995 if (unlikely(atomic_read(&folio->_pincount))) { 996 bad_page(page, "nonzero pincount"); 997 goto out; 998 } 999 break; 1000 case 2: 1001 /* 1002 * the second tail page: ->mapping is 1003 * deferred_list.next -- ignore value. 1004 */ 1005 break; 1006 default: 1007 if (page->mapping != TAIL_MAPPING) { 1008 bad_page(page, "corrupted mapping in tail page"); 1009 goto out; 1010 } 1011 break; 1012 } 1013 if (unlikely(!PageTail(page))) { 1014 bad_page(page, "PageTail not set"); 1015 goto out; 1016 } 1017 if (unlikely(compound_head(page) != head_page)) { 1018 bad_page(page, "compound_head not consistent"); 1019 goto out; 1020 } 1021 ret = 0; 1022 out: 1023 page->mapping = NULL; 1024 clear_compound_head(page); 1025 return ret; 1026 } 1027 1028 /* 1029 * Skip KASAN memory poisoning when either: 1030 * 1031 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1032 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1033 * using page tags instead (see below). 1034 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1035 * that error detection is disabled for accesses via the page address. 1036 * 1037 * Pages will have match-all tags in the following circumstances: 1038 * 1039 * 1. Pages are being initialized for the first time, including during deferred 1040 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1041 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1042 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1043 * 3. The allocation was excluded from being checked due to sampling, 1044 * see the call to kasan_unpoison_pages. 1045 * 1046 * Poisoning pages during deferred memory init will greatly lengthen the 1047 * process and cause problem in large memory systems as the deferred pages 1048 * initialization is done with interrupt disabled. 1049 * 1050 * Assuming that there will be no reference to those newly initialized 1051 * pages before they are ever allocated, this should have no effect on 1052 * KASAN memory tracking as the poison will be properly inserted at page 1053 * allocation time. The only corner case is when pages are allocated by 1054 * on-demand allocation and then freed again before the deferred pages 1055 * initialization is done, but this is not likely to happen. 1056 */ 1057 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1058 { 1059 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1060 return deferred_pages_enabled(); 1061 1062 return page_kasan_tag(page) == 0xff; 1063 } 1064 1065 static void kernel_init_pages(struct page *page, int numpages) 1066 { 1067 int i; 1068 1069 /* s390's use of memset() could override KASAN redzones. */ 1070 kasan_disable_current(); 1071 for (i = 0; i < numpages; i++) 1072 clear_highpage_kasan_tagged(page + i); 1073 kasan_enable_current(); 1074 } 1075 1076 static __always_inline bool free_pages_prepare(struct page *page, 1077 unsigned int order, fpi_t fpi_flags) 1078 { 1079 int bad = 0; 1080 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1081 bool init = want_init_on_free(); 1082 bool compound = PageCompound(page); 1083 1084 VM_BUG_ON_PAGE(PageTail(page), page); 1085 1086 trace_mm_page_free(page, order); 1087 kmsan_free_page(page, order); 1088 1089 if (unlikely(PageHWPoison(page)) && !order) { 1090 /* 1091 * Do not let hwpoison pages hit pcplists/buddy 1092 * Untie memcg state and reset page's owner 1093 */ 1094 if (memcg_kmem_online() && PageMemcgKmem(page)) 1095 __memcg_kmem_uncharge_page(page, order); 1096 reset_page_owner(page, order); 1097 page_table_check_free(page, order); 1098 return false; 1099 } 1100 1101 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1102 1103 /* 1104 * Check tail pages before head page information is cleared to 1105 * avoid checking PageCompound for order-0 pages. 1106 */ 1107 if (unlikely(order)) { 1108 int i; 1109 1110 if (compound) 1111 page[1].flags &= ~PAGE_FLAGS_SECOND; 1112 for (i = 1; i < (1 << order); i++) { 1113 if (compound) 1114 bad += free_tail_page_prepare(page, page + i); 1115 if (is_check_pages_enabled()) { 1116 if (free_page_is_bad(page + i)) { 1117 bad++; 1118 continue; 1119 } 1120 } 1121 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1122 } 1123 } 1124 if (PageMappingFlags(page)) 1125 page->mapping = NULL; 1126 if (memcg_kmem_online() && PageMemcgKmem(page)) 1127 __memcg_kmem_uncharge_page(page, order); 1128 if (is_check_pages_enabled()) { 1129 if (free_page_is_bad(page)) 1130 bad++; 1131 if (bad) 1132 return false; 1133 } 1134 1135 page_cpupid_reset_last(page); 1136 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1137 reset_page_owner(page, order); 1138 page_table_check_free(page, order); 1139 1140 if (!PageHighMem(page)) { 1141 debug_check_no_locks_freed(page_address(page), 1142 PAGE_SIZE << order); 1143 debug_check_no_obj_freed(page_address(page), 1144 PAGE_SIZE << order); 1145 } 1146 1147 kernel_poison_pages(page, 1 << order); 1148 1149 /* 1150 * As memory initialization might be integrated into KASAN, 1151 * KASAN poisoning and memory initialization code must be 1152 * kept together to avoid discrepancies in behavior. 1153 * 1154 * With hardware tag-based KASAN, memory tags must be set before the 1155 * page becomes unavailable via debug_pagealloc or arch_free_page. 1156 */ 1157 if (!skip_kasan_poison) { 1158 kasan_poison_pages(page, order, init); 1159 1160 /* Memory is already initialized if KASAN did it internally. */ 1161 if (kasan_has_integrated_init()) 1162 init = false; 1163 } 1164 if (init) 1165 kernel_init_pages(page, 1 << order); 1166 1167 /* 1168 * arch_free_page() can make the page's contents inaccessible. s390 1169 * does this. So nothing which can access the page's contents should 1170 * happen after this. 1171 */ 1172 arch_free_page(page, order); 1173 1174 debug_pagealloc_unmap_pages(page, 1 << order); 1175 1176 return true; 1177 } 1178 1179 /* 1180 * Frees a number of pages from the PCP lists 1181 * Assumes all pages on list are in same zone. 1182 * count is the number of pages to free. 1183 */ 1184 static void free_pcppages_bulk(struct zone *zone, int count, 1185 struct per_cpu_pages *pcp, 1186 int pindex) 1187 { 1188 unsigned long flags; 1189 unsigned int order; 1190 bool isolated_pageblocks; 1191 struct page *page; 1192 1193 /* 1194 * Ensure proper count is passed which otherwise would stuck in the 1195 * below while (list_empty(list)) loop. 1196 */ 1197 count = min(pcp->count, count); 1198 1199 /* Ensure requested pindex is drained first. */ 1200 pindex = pindex - 1; 1201 1202 spin_lock_irqsave(&zone->lock, flags); 1203 isolated_pageblocks = has_isolate_pageblock(zone); 1204 1205 while (count > 0) { 1206 struct list_head *list; 1207 int nr_pages; 1208 1209 /* Remove pages from lists in a round-robin fashion. */ 1210 do { 1211 if (++pindex > NR_PCP_LISTS - 1) 1212 pindex = 0; 1213 list = &pcp->lists[pindex]; 1214 } while (list_empty(list)); 1215 1216 order = pindex_to_order(pindex); 1217 nr_pages = 1 << order; 1218 do { 1219 int mt; 1220 1221 page = list_last_entry(list, struct page, pcp_list); 1222 mt = get_pcppage_migratetype(page); 1223 1224 /* must delete to avoid corrupting pcp list */ 1225 list_del(&page->pcp_list); 1226 count -= nr_pages; 1227 pcp->count -= nr_pages; 1228 1229 /* MIGRATE_ISOLATE page should not go to pcplists */ 1230 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1231 /* Pageblock could have been isolated meanwhile */ 1232 if (unlikely(isolated_pageblocks)) 1233 mt = get_pageblock_migratetype(page); 1234 1235 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1236 trace_mm_page_pcpu_drain(page, order, mt); 1237 } while (count > 0 && !list_empty(list)); 1238 } 1239 1240 spin_unlock_irqrestore(&zone->lock, flags); 1241 } 1242 1243 static void free_one_page(struct zone *zone, 1244 struct page *page, unsigned long pfn, 1245 unsigned int order, 1246 int migratetype, fpi_t fpi_flags) 1247 { 1248 unsigned long flags; 1249 1250 spin_lock_irqsave(&zone->lock, flags); 1251 if (unlikely(has_isolate_pageblock(zone) || 1252 is_migrate_isolate(migratetype))) { 1253 migratetype = get_pfnblock_migratetype(page, pfn); 1254 } 1255 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1256 spin_unlock_irqrestore(&zone->lock, flags); 1257 } 1258 1259 static void __free_pages_ok(struct page *page, unsigned int order, 1260 fpi_t fpi_flags) 1261 { 1262 unsigned long flags; 1263 int migratetype; 1264 unsigned long pfn = page_to_pfn(page); 1265 struct zone *zone = page_zone(page); 1266 1267 if (!free_pages_prepare(page, order, fpi_flags)) 1268 return; 1269 1270 /* 1271 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1272 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1273 * This will reduce the lock holding time. 1274 */ 1275 migratetype = get_pfnblock_migratetype(page, pfn); 1276 1277 spin_lock_irqsave(&zone->lock, flags); 1278 if (unlikely(has_isolate_pageblock(zone) || 1279 is_migrate_isolate(migratetype))) { 1280 migratetype = get_pfnblock_migratetype(page, pfn); 1281 } 1282 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1283 spin_unlock_irqrestore(&zone->lock, flags); 1284 1285 __count_vm_events(PGFREE, 1 << order); 1286 } 1287 1288 void __free_pages_core(struct page *page, unsigned int order) 1289 { 1290 unsigned int nr_pages = 1 << order; 1291 struct page *p = page; 1292 unsigned int loop; 1293 1294 /* 1295 * When initializing the memmap, __init_single_page() sets the refcount 1296 * of all pages to 1 ("allocated"/"not free"). We have to set the 1297 * refcount of all involved pages to 0. 1298 */ 1299 prefetchw(p); 1300 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1301 prefetchw(p + 1); 1302 __ClearPageReserved(p); 1303 set_page_count(p, 0); 1304 } 1305 __ClearPageReserved(p); 1306 set_page_count(p, 0); 1307 1308 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1309 1310 if (page_contains_unaccepted(page, order)) { 1311 if (order == MAX_ORDER && __free_unaccepted(page)) 1312 return; 1313 1314 accept_page(page, order); 1315 } 1316 1317 /* 1318 * Bypass PCP and place fresh pages right to the tail, primarily 1319 * relevant for memory onlining. 1320 */ 1321 __free_pages_ok(page, order, FPI_TO_TAIL); 1322 } 1323 1324 /* 1325 * Check that the whole (or subset of) a pageblock given by the interval of 1326 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1327 * with the migration of free compaction scanner. 1328 * 1329 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1330 * 1331 * It's possible on some configurations to have a setup like node0 node1 node0 1332 * i.e. it's possible that all pages within a zones range of pages do not 1333 * belong to a single zone. We assume that a border between node0 and node1 1334 * can occur within a single pageblock, but not a node0 node1 node0 1335 * interleaving within a single pageblock. It is therefore sufficient to check 1336 * the first and last page of a pageblock and avoid checking each individual 1337 * page in a pageblock. 1338 * 1339 * Note: the function may return non-NULL struct page even for a page block 1340 * which contains a memory hole (i.e. there is no physical memory for a subset 1341 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which 1342 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1343 * even though the start pfn is online and valid. This should be safe most of 1344 * the time because struct pages are still initialized via init_unavailable_range() 1345 * and pfn walkers shouldn't touch any physical memory range for which they do 1346 * not recognize any specific metadata in struct pages. 1347 */ 1348 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1349 unsigned long end_pfn, struct zone *zone) 1350 { 1351 struct page *start_page; 1352 struct page *end_page; 1353 1354 /* end_pfn is one past the range we are checking */ 1355 end_pfn--; 1356 1357 if (!pfn_valid(end_pfn)) 1358 return NULL; 1359 1360 start_page = pfn_to_online_page(start_pfn); 1361 if (!start_page) 1362 return NULL; 1363 1364 if (page_zone(start_page) != zone) 1365 return NULL; 1366 1367 end_page = pfn_to_page(end_pfn); 1368 1369 /* This gives a shorter code than deriving page_zone(end_page) */ 1370 if (page_zone_id(start_page) != page_zone_id(end_page)) 1371 return NULL; 1372 1373 return start_page; 1374 } 1375 1376 /* 1377 * The order of subdivision here is critical for the IO subsystem. 1378 * Please do not alter this order without good reasons and regression 1379 * testing. Specifically, as large blocks of memory are subdivided, 1380 * the order in which smaller blocks are delivered depends on the order 1381 * they're subdivided in this function. This is the primary factor 1382 * influencing the order in which pages are delivered to the IO 1383 * subsystem according to empirical testing, and this is also justified 1384 * by considering the behavior of a buddy system containing a single 1385 * large block of memory acted on by a series of small allocations. 1386 * This behavior is a critical factor in sglist merging's success. 1387 * 1388 * -- nyc 1389 */ 1390 static inline void expand(struct zone *zone, struct page *page, 1391 int low, int high, int migratetype) 1392 { 1393 unsigned long size = 1 << high; 1394 1395 while (high > low) { 1396 high--; 1397 size >>= 1; 1398 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1399 1400 /* 1401 * Mark as guard pages (or page), that will allow to 1402 * merge back to allocator when buddy will be freed. 1403 * Corresponding page table entries will not be touched, 1404 * pages will stay not present in virtual address space 1405 */ 1406 if (set_page_guard(zone, &page[size], high, migratetype)) 1407 continue; 1408 1409 add_to_free_list(&page[size], zone, high, migratetype); 1410 set_buddy_order(&page[size], high); 1411 } 1412 } 1413 1414 static void check_new_page_bad(struct page *page) 1415 { 1416 if (unlikely(page->flags & __PG_HWPOISON)) { 1417 /* Don't complain about hwpoisoned pages */ 1418 page_mapcount_reset(page); /* remove PageBuddy */ 1419 return; 1420 } 1421 1422 bad_page(page, 1423 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1424 } 1425 1426 /* 1427 * This page is about to be returned from the page allocator 1428 */ 1429 static int check_new_page(struct page *page) 1430 { 1431 if (likely(page_expected_state(page, 1432 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1433 return 0; 1434 1435 check_new_page_bad(page); 1436 return 1; 1437 } 1438 1439 static inline bool check_new_pages(struct page *page, unsigned int order) 1440 { 1441 if (is_check_pages_enabled()) { 1442 for (int i = 0; i < (1 << order); i++) { 1443 struct page *p = page + i; 1444 1445 if (check_new_page(p)) 1446 return true; 1447 } 1448 } 1449 1450 return false; 1451 } 1452 1453 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1454 { 1455 /* Don't skip if a software KASAN mode is enabled. */ 1456 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1457 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1458 return false; 1459 1460 /* Skip, if hardware tag-based KASAN is not enabled. */ 1461 if (!kasan_hw_tags_enabled()) 1462 return true; 1463 1464 /* 1465 * With hardware tag-based KASAN enabled, skip if this has been 1466 * requested via __GFP_SKIP_KASAN. 1467 */ 1468 return flags & __GFP_SKIP_KASAN; 1469 } 1470 1471 static inline bool should_skip_init(gfp_t flags) 1472 { 1473 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1474 if (!kasan_hw_tags_enabled()) 1475 return false; 1476 1477 /* For hardware tag-based KASAN, skip if requested. */ 1478 return (flags & __GFP_SKIP_ZERO); 1479 } 1480 1481 inline void post_alloc_hook(struct page *page, unsigned int order, 1482 gfp_t gfp_flags) 1483 { 1484 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1485 !should_skip_init(gfp_flags); 1486 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1487 int i; 1488 1489 set_page_private(page, 0); 1490 set_page_refcounted(page); 1491 1492 arch_alloc_page(page, order); 1493 debug_pagealloc_map_pages(page, 1 << order); 1494 1495 /* 1496 * Page unpoisoning must happen before memory initialization. 1497 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1498 * allocations and the page unpoisoning code will complain. 1499 */ 1500 kernel_unpoison_pages(page, 1 << order); 1501 1502 /* 1503 * As memory initialization might be integrated into KASAN, 1504 * KASAN unpoisoning and memory initializion code must be 1505 * kept together to avoid discrepancies in behavior. 1506 */ 1507 1508 /* 1509 * If memory tags should be zeroed 1510 * (which happens only when memory should be initialized as well). 1511 */ 1512 if (zero_tags) { 1513 /* Initialize both memory and memory tags. */ 1514 for (i = 0; i != 1 << order; ++i) 1515 tag_clear_highpage(page + i); 1516 1517 /* Take note that memory was initialized by the loop above. */ 1518 init = false; 1519 } 1520 if (!should_skip_kasan_unpoison(gfp_flags) && 1521 kasan_unpoison_pages(page, order, init)) { 1522 /* Take note that memory was initialized by KASAN. */ 1523 if (kasan_has_integrated_init()) 1524 init = false; 1525 } else { 1526 /* 1527 * If memory tags have not been set by KASAN, reset the page 1528 * tags to ensure page_address() dereferencing does not fault. 1529 */ 1530 for (i = 0; i != 1 << order; ++i) 1531 page_kasan_tag_reset(page + i); 1532 } 1533 /* If memory is still not initialized, initialize it now. */ 1534 if (init) 1535 kernel_init_pages(page, 1 << order); 1536 1537 set_page_owner(page, order, gfp_flags); 1538 page_table_check_alloc(page, order); 1539 } 1540 1541 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1542 unsigned int alloc_flags) 1543 { 1544 post_alloc_hook(page, order, gfp_flags); 1545 1546 if (order && (gfp_flags & __GFP_COMP)) 1547 prep_compound_page(page, order); 1548 1549 /* 1550 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1551 * allocate the page. The expectation is that the caller is taking 1552 * steps that will free more memory. The caller should avoid the page 1553 * being used for !PFMEMALLOC purposes. 1554 */ 1555 if (alloc_flags & ALLOC_NO_WATERMARKS) 1556 set_page_pfmemalloc(page); 1557 else 1558 clear_page_pfmemalloc(page); 1559 } 1560 1561 /* 1562 * Go through the free lists for the given migratetype and remove 1563 * the smallest available page from the freelists 1564 */ 1565 static __always_inline 1566 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1567 int migratetype) 1568 { 1569 unsigned int current_order; 1570 struct free_area *area; 1571 struct page *page; 1572 1573 /* Find a page of the appropriate size in the preferred list */ 1574 for (current_order = order; current_order <= MAX_ORDER; ++current_order) { 1575 area = &(zone->free_area[current_order]); 1576 page = get_page_from_free_area(area, migratetype); 1577 if (!page) 1578 continue; 1579 del_page_from_free_list(page, zone, current_order); 1580 expand(zone, page, order, current_order, migratetype); 1581 set_pcppage_migratetype(page, migratetype); 1582 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1583 pcp_allowed_order(order) && 1584 migratetype < MIGRATE_PCPTYPES); 1585 return page; 1586 } 1587 1588 return NULL; 1589 } 1590 1591 1592 /* 1593 * This array describes the order lists are fallen back to when 1594 * the free lists for the desirable migrate type are depleted 1595 * 1596 * The other migratetypes do not have fallbacks. 1597 */ 1598 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1599 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1600 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1601 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1602 }; 1603 1604 #ifdef CONFIG_CMA 1605 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1606 unsigned int order) 1607 { 1608 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1609 } 1610 #else 1611 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1612 unsigned int order) { return NULL; } 1613 #endif 1614 1615 /* 1616 * Move the free pages in a range to the freelist tail of the requested type. 1617 * Note that start_page and end_pages are not aligned on a pageblock 1618 * boundary. If alignment is required, use move_freepages_block() 1619 */ 1620 static int move_freepages(struct zone *zone, 1621 unsigned long start_pfn, unsigned long end_pfn, 1622 int migratetype, int *num_movable) 1623 { 1624 struct page *page; 1625 unsigned long pfn; 1626 unsigned int order; 1627 int pages_moved = 0; 1628 1629 for (pfn = start_pfn; pfn <= end_pfn;) { 1630 page = pfn_to_page(pfn); 1631 if (!PageBuddy(page)) { 1632 /* 1633 * We assume that pages that could be isolated for 1634 * migration are movable. But we don't actually try 1635 * isolating, as that would be expensive. 1636 */ 1637 if (num_movable && 1638 (PageLRU(page) || __PageMovable(page))) 1639 (*num_movable)++; 1640 pfn++; 1641 continue; 1642 } 1643 1644 /* Make sure we are not inadvertently changing nodes */ 1645 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1646 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1647 1648 order = buddy_order(page); 1649 move_to_free_list(page, zone, order, migratetype); 1650 pfn += 1 << order; 1651 pages_moved += 1 << order; 1652 } 1653 1654 return pages_moved; 1655 } 1656 1657 int move_freepages_block(struct zone *zone, struct page *page, 1658 int migratetype, int *num_movable) 1659 { 1660 unsigned long start_pfn, end_pfn, pfn; 1661 1662 if (num_movable) 1663 *num_movable = 0; 1664 1665 pfn = page_to_pfn(page); 1666 start_pfn = pageblock_start_pfn(pfn); 1667 end_pfn = pageblock_end_pfn(pfn) - 1; 1668 1669 /* Do not cross zone boundaries */ 1670 if (!zone_spans_pfn(zone, start_pfn)) 1671 start_pfn = pfn; 1672 if (!zone_spans_pfn(zone, end_pfn)) 1673 return 0; 1674 1675 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1676 num_movable); 1677 } 1678 1679 static void change_pageblock_range(struct page *pageblock_page, 1680 int start_order, int migratetype) 1681 { 1682 int nr_pageblocks = 1 << (start_order - pageblock_order); 1683 1684 while (nr_pageblocks--) { 1685 set_pageblock_migratetype(pageblock_page, migratetype); 1686 pageblock_page += pageblock_nr_pages; 1687 } 1688 } 1689 1690 /* 1691 * When we are falling back to another migratetype during allocation, try to 1692 * steal extra free pages from the same pageblocks to satisfy further 1693 * allocations, instead of polluting multiple pageblocks. 1694 * 1695 * If we are stealing a relatively large buddy page, it is likely there will 1696 * be more free pages in the pageblock, so try to steal them all. For 1697 * reclaimable and unmovable allocations, we steal regardless of page size, 1698 * as fragmentation caused by those allocations polluting movable pageblocks 1699 * is worse than movable allocations stealing from unmovable and reclaimable 1700 * pageblocks. 1701 */ 1702 static bool can_steal_fallback(unsigned int order, int start_mt) 1703 { 1704 /* 1705 * Leaving this order check is intended, although there is 1706 * relaxed order check in next check. The reason is that 1707 * we can actually steal whole pageblock if this condition met, 1708 * but, below check doesn't guarantee it and that is just heuristic 1709 * so could be changed anytime. 1710 */ 1711 if (order >= pageblock_order) 1712 return true; 1713 1714 if (order >= pageblock_order / 2 || 1715 start_mt == MIGRATE_RECLAIMABLE || 1716 start_mt == MIGRATE_UNMOVABLE || 1717 page_group_by_mobility_disabled) 1718 return true; 1719 1720 return false; 1721 } 1722 1723 static inline bool boost_watermark(struct zone *zone) 1724 { 1725 unsigned long max_boost; 1726 1727 if (!watermark_boost_factor) 1728 return false; 1729 /* 1730 * Don't bother in zones that are unlikely to produce results. 1731 * On small machines, including kdump capture kernels running 1732 * in a small area, boosting the watermark can cause an out of 1733 * memory situation immediately. 1734 */ 1735 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1736 return false; 1737 1738 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1739 watermark_boost_factor, 10000); 1740 1741 /* 1742 * high watermark may be uninitialised if fragmentation occurs 1743 * very early in boot so do not boost. We do not fall 1744 * through and boost by pageblock_nr_pages as failing 1745 * allocations that early means that reclaim is not going 1746 * to help and it may even be impossible to reclaim the 1747 * boosted watermark resulting in a hang. 1748 */ 1749 if (!max_boost) 1750 return false; 1751 1752 max_boost = max(pageblock_nr_pages, max_boost); 1753 1754 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1755 max_boost); 1756 1757 return true; 1758 } 1759 1760 /* 1761 * This function implements actual steal behaviour. If order is large enough, 1762 * we can steal whole pageblock. If not, we first move freepages in this 1763 * pageblock to our migratetype and determine how many already-allocated pages 1764 * are there in the pageblock with a compatible migratetype. If at least half 1765 * of pages are free or compatible, we can change migratetype of the pageblock 1766 * itself, so pages freed in the future will be put on the correct free list. 1767 */ 1768 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1769 unsigned int alloc_flags, int start_type, bool whole_block) 1770 { 1771 unsigned int current_order = buddy_order(page); 1772 int free_pages, movable_pages, alike_pages; 1773 int old_block_type; 1774 1775 old_block_type = get_pageblock_migratetype(page); 1776 1777 /* 1778 * This can happen due to races and we want to prevent broken 1779 * highatomic accounting. 1780 */ 1781 if (is_migrate_highatomic(old_block_type)) 1782 goto single_page; 1783 1784 /* Take ownership for orders >= pageblock_order */ 1785 if (current_order >= pageblock_order) { 1786 change_pageblock_range(page, current_order, start_type); 1787 goto single_page; 1788 } 1789 1790 /* 1791 * Boost watermarks to increase reclaim pressure to reduce the 1792 * likelihood of future fallbacks. Wake kswapd now as the node 1793 * may be balanced overall and kswapd will not wake naturally. 1794 */ 1795 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1796 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1797 1798 /* We are not allowed to try stealing from the whole block */ 1799 if (!whole_block) 1800 goto single_page; 1801 1802 free_pages = move_freepages_block(zone, page, start_type, 1803 &movable_pages); 1804 /* moving whole block can fail due to zone boundary conditions */ 1805 if (!free_pages) 1806 goto single_page; 1807 1808 /* 1809 * Determine how many pages are compatible with our allocation. 1810 * For movable allocation, it's the number of movable pages which 1811 * we just obtained. For other types it's a bit more tricky. 1812 */ 1813 if (start_type == MIGRATE_MOVABLE) { 1814 alike_pages = movable_pages; 1815 } else { 1816 /* 1817 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1818 * to MOVABLE pageblock, consider all non-movable pages as 1819 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1820 * vice versa, be conservative since we can't distinguish the 1821 * exact migratetype of non-movable pages. 1822 */ 1823 if (old_block_type == MIGRATE_MOVABLE) 1824 alike_pages = pageblock_nr_pages 1825 - (free_pages + movable_pages); 1826 else 1827 alike_pages = 0; 1828 } 1829 /* 1830 * If a sufficient number of pages in the block are either free or of 1831 * compatible migratability as our allocation, claim the whole block. 1832 */ 1833 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1834 page_group_by_mobility_disabled) 1835 set_pageblock_migratetype(page, start_type); 1836 1837 return; 1838 1839 single_page: 1840 move_to_free_list(page, zone, current_order, start_type); 1841 } 1842 1843 /* 1844 * Check whether there is a suitable fallback freepage with requested order. 1845 * If only_stealable is true, this function returns fallback_mt only if 1846 * we can steal other freepages all together. This would help to reduce 1847 * fragmentation due to mixed migratetype pages in one pageblock. 1848 */ 1849 int find_suitable_fallback(struct free_area *area, unsigned int order, 1850 int migratetype, bool only_stealable, bool *can_steal) 1851 { 1852 int i; 1853 int fallback_mt; 1854 1855 if (area->nr_free == 0) 1856 return -1; 1857 1858 *can_steal = false; 1859 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1860 fallback_mt = fallbacks[migratetype][i]; 1861 if (free_area_empty(area, fallback_mt)) 1862 continue; 1863 1864 if (can_steal_fallback(order, migratetype)) 1865 *can_steal = true; 1866 1867 if (!only_stealable) 1868 return fallback_mt; 1869 1870 if (*can_steal) 1871 return fallback_mt; 1872 } 1873 1874 return -1; 1875 } 1876 1877 /* 1878 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1879 * there are no empty page blocks that contain a page with a suitable order 1880 */ 1881 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1882 { 1883 int mt; 1884 unsigned long max_managed, flags; 1885 1886 /* 1887 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1888 * Check is race-prone but harmless. 1889 */ 1890 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 1891 if (zone->nr_reserved_highatomic >= max_managed) 1892 return; 1893 1894 spin_lock_irqsave(&zone->lock, flags); 1895 1896 /* Recheck the nr_reserved_highatomic limit under the lock */ 1897 if (zone->nr_reserved_highatomic >= max_managed) 1898 goto out_unlock; 1899 1900 /* Yoink! */ 1901 mt = get_pageblock_migratetype(page); 1902 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1903 if (migratetype_is_mergeable(mt)) { 1904 zone->nr_reserved_highatomic += pageblock_nr_pages; 1905 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1906 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 1907 } 1908 1909 out_unlock: 1910 spin_unlock_irqrestore(&zone->lock, flags); 1911 } 1912 1913 /* 1914 * Used when an allocation is about to fail under memory pressure. This 1915 * potentially hurts the reliability of high-order allocations when under 1916 * intense memory pressure but failed atomic allocations should be easier 1917 * to recover from than an OOM. 1918 * 1919 * If @force is true, try to unreserve a pageblock even though highatomic 1920 * pageblock is exhausted. 1921 */ 1922 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 1923 bool force) 1924 { 1925 struct zonelist *zonelist = ac->zonelist; 1926 unsigned long flags; 1927 struct zoneref *z; 1928 struct zone *zone; 1929 struct page *page; 1930 int order; 1931 bool ret; 1932 1933 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 1934 ac->nodemask) { 1935 /* 1936 * Preserve at least one pageblock unless memory pressure 1937 * is really high. 1938 */ 1939 if (!force && zone->nr_reserved_highatomic <= 1940 pageblock_nr_pages) 1941 continue; 1942 1943 spin_lock_irqsave(&zone->lock, flags); 1944 for (order = 0; order <= MAX_ORDER; order++) { 1945 struct free_area *area = &(zone->free_area[order]); 1946 1947 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 1948 if (!page) 1949 continue; 1950 1951 /* 1952 * In page freeing path, migratetype change is racy so 1953 * we can counter several free pages in a pageblock 1954 * in this loop although we changed the pageblock type 1955 * from highatomic to ac->migratetype. So we should 1956 * adjust the count once. 1957 */ 1958 if (is_migrate_highatomic_page(page)) { 1959 /* 1960 * It should never happen but changes to 1961 * locking could inadvertently allow a per-cpu 1962 * drain to add pages to MIGRATE_HIGHATOMIC 1963 * while unreserving so be safe and watch for 1964 * underflows. 1965 */ 1966 zone->nr_reserved_highatomic -= min( 1967 pageblock_nr_pages, 1968 zone->nr_reserved_highatomic); 1969 } 1970 1971 /* 1972 * Convert to ac->migratetype and avoid the normal 1973 * pageblock stealing heuristics. Minimally, the caller 1974 * is doing the work and needs the pages. More 1975 * importantly, if the block was always converted to 1976 * MIGRATE_UNMOVABLE or another type then the number 1977 * of pageblocks that cannot be completely freed 1978 * may increase. 1979 */ 1980 set_pageblock_migratetype(page, ac->migratetype); 1981 ret = move_freepages_block(zone, page, ac->migratetype, 1982 NULL); 1983 if (ret) { 1984 spin_unlock_irqrestore(&zone->lock, flags); 1985 return ret; 1986 } 1987 } 1988 spin_unlock_irqrestore(&zone->lock, flags); 1989 } 1990 1991 return false; 1992 } 1993 1994 /* 1995 * Try finding a free buddy page on the fallback list and put it on the free 1996 * list of requested migratetype, possibly along with other pages from the same 1997 * block, depending on fragmentation avoidance heuristics. Returns true if 1998 * fallback was found so that __rmqueue_smallest() can grab it. 1999 * 2000 * The use of signed ints for order and current_order is a deliberate 2001 * deviation from the rest of this file, to make the for loop 2002 * condition simpler. 2003 */ 2004 static __always_inline bool 2005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2006 unsigned int alloc_flags) 2007 { 2008 struct free_area *area; 2009 int current_order; 2010 int min_order = order; 2011 struct page *page; 2012 int fallback_mt; 2013 bool can_steal; 2014 2015 /* 2016 * Do not steal pages from freelists belonging to other pageblocks 2017 * i.e. orders < pageblock_order. If there are no local zones free, 2018 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2019 */ 2020 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2021 min_order = pageblock_order; 2022 2023 /* 2024 * Find the largest available free page in the other list. This roughly 2025 * approximates finding the pageblock with the most free pages, which 2026 * would be too costly to do exactly. 2027 */ 2028 for (current_order = MAX_ORDER; current_order >= min_order; 2029 --current_order) { 2030 area = &(zone->free_area[current_order]); 2031 fallback_mt = find_suitable_fallback(area, current_order, 2032 start_migratetype, false, &can_steal); 2033 if (fallback_mt == -1) 2034 continue; 2035 2036 /* 2037 * We cannot steal all free pages from the pageblock and the 2038 * requested migratetype is movable. In that case it's better to 2039 * steal and split the smallest available page instead of the 2040 * largest available page, because even if the next movable 2041 * allocation falls back into a different pageblock than this 2042 * one, it won't cause permanent fragmentation. 2043 */ 2044 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2045 && current_order > order) 2046 goto find_smallest; 2047 2048 goto do_steal; 2049 } 2050 2051 return false; 2052 2053 find_smallest: 2054 for (current_order = order; current_order <= MAX_ORDER; 2055 current_order++) { 2056 area = &(zone->free_area[current_order]); 2057 fallback_mt = find_suitable_fallback(area, current_order, 2058 start_migratetype, false, &can_steal); 2059 if (fallback_mt != -1) 2060 break; 2061 } 2062 2063 /* 2064 * This should not happen - we already found a suitable fallback 2065 * when looking for the largest page. 2066 */ 2067 VM_BUG_ON(current_order > MAX_ORDER); 2068 2069 do_steal: 2070 page = get_page_from_free_area(area, fallback_mt); 2071 2072 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2073 can_steal); 2074 2075 trace_mm_page_alloc_extfrag(page, order, current_order, 2076 start_migratetype, fallback_mt); 2077 2078 return true; 2079 2080 } 2081 2082 /* 2083 * Do the hard work of removing an element from the buddy allocator. 2084 * Call me with the zone->lock already held. 2085 */ 2086 static __always_inline struct page * 2087 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2088 unsigned int alloc_flags) 2089 { 2090 struct page *page; 2091 2092 if (IS_ENABLED(CONFIG_CMA)) { 2093 /* 2094 * Balance movable allocations between regular and CMA areas by 2095 * allocating from CMA when over half of the zone's free memory 2096 * is in the CMA area. 2097 */ 2098 if (alloc_flags & ALLOC_CMA && 2099 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2100 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2101 page = __rmqueue_cma_fallback(zone, order); 2102 if (page) 2103 return page; 2104 } 2105 } 2106 retry: 2107 page = __rmqueue_smallest(zone, order, migratetype); 2108 if (unlikely(!page)) { 2109 if (alloc_flags & ALLOC_CMA) 2110 page = __rmqueue_cma_fallback(zone, order); 2111 2112 if (!page && __rmqueue_fallback(zone, order, migratetype, 2113 alloc_flags)) 2114 goto retry; 2115 } 2116 return page; 2117 } 2118 2119 /* 2120 * Obtain a specified number of elements from the buddy allocator, all under 2121 * a single hold of the lock, for efficiency. Add them to the supplied list. 2122 * Returns the number of new pages which were placed at *list. 2123 */ 2124 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2125 unsigned long count, struct list_head *list, 2126 int migratetype, unsigned int alloc_flags) 2127 { 2128 unsigned long flags; 2129 int i; 2130 2131 spin_lock_irqsave(&zone->lock, flags); 2132 for (i = 0; i < count; ++i) { 2133 struct page *page = __rmqueue(zone, order, migratetype, 2134 alloc_flags); 2135 if (unlikely(page == NULL)) 2136 break; 2137 2138 /* 2139 * Split buddy pages returned by expand() are received here in 2140 * physical page order. The page is added to the tail of 2141 * caller's list. From the callers perspective, the linked list 2142 * is ordered by page number under some conditions. This is 2143 * useful for IO devices that can forward direction from the 2144 * head, thus also in the physical page order. This is useful 2145 * for IO devices that can merge IO requests if the physical 2146 * pages are ordered properly. 2147 */ 2148 list_add_tail(&page->pcp_list, list); 2149 if (is_migrate_cma(get_pcppage_migratetype(page))) 2150 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2151 -(1 << order)); 2152 } 2153 2154 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2155 spin_unlock_irqrestore(&zone->lock, flags); 2156 2157 return i; 2158 } 2159 2160 /* 2161 * Called from the vmstat counter updater to decay the PCP high. 2162 * Return whether there are addition works to do. 2163 */ 2164 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2165 { 2166 int high_min, to_drain, batch; 2167 int todo = 0; 2168 2169 high_min = READ_ONCE(pcp->high_min); 2170 batch = READ_ONCE(pcp->batch); 2171 /* 2172 * Decrease pcp->high periodically to try to free possible 2173 * idle PCP pages. And, avoid to free too many pages to 2174 * control latency. This caps pcp->high decrement too. 2175 */ 2176 if (pcp->high > high_min) { 2177 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2178 pcp->high - (pcp->high >> 3), high_min); 2179 if (pcp->high > high_min) 2180 todo++; 2181 } 2182 2183 to_drain = pcp->count - pcp->high; 2184 if (to_drain > 0) { 2185 spin_lock(&pcp->lock); 2186 free_pcppages_bulk(zone, to_drain, pcp, 0); 2187 spin_unlock(&pcp->lock); 2188 todo++; 2189 } 2190 2191 return todo; 2192 } 2193 2194 #ifdef CONFIG_NUMA 2195 /* 2196 * Called from the vmstat counter updater to drain pagesets of this 2197 * currently executing processor on remote nodes after they have 2198 * expired. 2199 */ 2200 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2201 { 2202 int to_drain, batch; 2203 2204 batch = READ_ONCE(pcp->batch); 2205 to_drain = min(pcp->count, batch); 2206 if (to_drain > 0) { 2207 spin_lock(&pcp->lock); 2208 free_pcppages_bulk(zone, to_drain, pcp, 0); 2209 spin_unlock(&pcp->lock); 2210 } 2211 } 2212 #endif 2213 2214 /* 2215 * Drain pcplists of the indicated processor and zone. 2216 */ 2217 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2218 { 2219 struct per_cpu_pages *pcp; 2220 2221 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2222 if (pcp->count) { 2223 spin_lock(&pcp->lock); 2224 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2225 spin_unlock(&pcp->lock); 2226 } 2227 } 2228 2229 /* 2230 * Drain pcplists of all zones on the indicated processor. 2231 */ 2232 static void drain_pages(unsigned int cpu) 2233 { 2234 struct zone *zone; 2235 2236 for_each_populated_zone(zone) { 2237 drain_pages_zone(cpu, zone); 2238 } 2239 } 2240 2241 /* 2242 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2243 */ 2244 void drain_local_pages(struct zone *zone) 2245 { 2246 int cpu = smp_processor_id(); 2247 2248 if (zone) 2249 drain_pages_zone(cpu, zone); 2250 else 2251 drain_pages(cpu); 2252 } 2253 2254 /* 2255 * The implementation of drain_all_pages(), exposing an extra parameter to 2256 * drain on all cpus. 2257 * 2258 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2259 * not empty. The check for non-emptiness can however race with a free to 2260 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2261 * that need the guarantee that every CPU has drained can disable the 2262 * optimizing racy check. 2263 */ 2264 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2265 { 2266 int cpu; 2267 2268 /* 2269 * Allocate in the BSS so we won't require allocation in 2270 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2271 */ 2272 static cpumask_t cpus_with_pcps; 2273 2274 /* 2275 * Do not drain if one is already in progress unless it's specific to 2276 * a zone. Such callers are primarily CMA and memory hotplug and need 2277 * the drain to be complete when the call returns. 2278 */ 2279 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2280 if (!zone) 2281 return; 2282 mutex_lock(&pcpu_drain_mutex); 2283 } 2284 2285 /* 2286 * We don't care about racing with CPU hotplug event 2287 * as offline notification will cause the notified 2288 * cpu to drain that CPU pcps and on_each_cpu_mask 2289 * disables preemption as part of its processing 2290 */ 2291 for_each_online_cpu(cpu) { 2292 struct per_cpu_pages *pcp; 2293 struct zone *z; 2294 bool has_pcps = false; 2295 2296 if (force_all_cpus) { 2297 /* 2298 * The pcp.count check is racy, some callers need a 2299 * guarantee that no cpu is missed. 2300 */ 2301 has_pcps = true; 2302 } else if (zone) { 2303 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2304 if (pcp->count) 2305 has_pcps = true; 2306 } else { 2307 for_each_populated_zone(z) { 2308 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2309 if (pcp->count) { 2310 has_pcps = true; 2311 break; 2312 } 2313 } 2314 } 2315 2316 if (has_pcps) 2317 cpumask_set_cpu(cpu, &cpus_with_pcps); 2318 else 2319 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2320 } 2321 2322 for_each_cpu(cpu, &cpus_with_pcps) { 2323 if (zone) 2324 drain_pages_zone(cpu, zone); 2325 else 2326 drain_pages(cpu); 2327 } 2328 2329 mutex_unlock(&pcpu_drain_mutex); 2330 } 2331 2332 /* 2333 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2334 * 2335 * When zone parameter is non-NULL, spill just the single zone's pages. 2336 */ 2337 void drain_all_pages(struct zone *zone) 2338 { 2339 __drain_all_pages(zone, false); 2340 } 2341 2342 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2343 unsigned int order) 2344 { 2345 int migratetype; 2346 2347 if (!free_pages_prepare(page, order, FPI_NONE)) 2348 return false; 2349 2350 migratetype = get_pfnblock_migratetype(page, pfn); 2351 set_pcppage_migratetype(page, migratetype); 2352 return true; 2353 } 2354 2355 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2356 { 2357 int min_nr_free, max_nr_free; 2358 2359 /* Free as much as possible if batch freeing high-order pages. */ 2360 if (unlikely(free_high)) 2361 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2362 2363 /* Check for PCP disabled or boot pageset */ 2364 if (unlikely(high < batch)) 2365 return 1; 2366 2367 /* Leave at least pcp->batch pages on the list */ 2368 min_nr_free = batch; 2369 max_nr_free = high - batch; 2370 2371 /* 2372 * Increase the batch number to the number of the consecutive 2373 * freed pages to reduce zone lock contention. 2374 */ 2375 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2376 2377 return batch; 2378 } 2379 2380 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2381 int batch, bool free_high) 2382 { 2383 int high, high_min, high_max; 2384 2385 high_min = READ_ONCE(pcp->high_min); 2386 high_max = READ_ONCE(pcp->high_max); 2387 high = pcp->high = clamp(pcp->high, high_min, high_max); 2388 2389 if (unlikely(!high)) 2390 return 0; 2391 2392 if (unlikely(free_high)) { 2393 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2394 high_min); 2395 return 0; 2396 } 2397 2398 /* 2399 * If reclaim is active, limit the number of pages that can be 2400 * stored on pcp lists 2401 */ 2402 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2403 int free_count = max_t(int, pcp->free_count, batch); 2404 2405 pcp->high = max(high - free_count, high_min); 2406 return min(batch << 2, pcp->high); 2407 } 2408 2409 if (high_min == high_max) 2410 return high; 2411 2412 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2413 int free_count = max_t(int, pcp->free_count, batch); 2414 2415 pcp->high = max(high - free_count, high_min); 2416 high = max(pcp->count, high_min); 2417 } else if (pcp->count >= high) { 2418 int need_high = pcp->free_count + batch; 2419 2420 /* pcp->high should be large enough to hold batch freed pages */ 2421 if (pcp->high < need_high) 2422 pcp->high = clamp(need_high, high_min, high_max); 2423 } 2424 2425 return high; 2426 } 2427 2428 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2429 struct page *page, int migratetype, 2430 unsigned int order) 2431 { 2432 int high, batch; 2433 int pindex; 2434 bool free_high = false; 2435 2436 /* 2437 * On freeing, reduce the number of pages that are batch allocated. 2438 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2439 * allocations. 2440 */ 2441 pcp->alloc_factor >>= 1; 2442 __count_vm_events(PGFREE, 1 << order); 2443 pindex = order_to_pindex(migratetype, order); 2444 list_add(&page->pcp_list, &pcp->lists[pindex]); 2445 pcp->count += 1 << order; 2446 2447 batch = READ_ONCE(pcp->batch); 2448 /* 2449 * As high-order pages other than THP's stored on PCP can contribute 2450 * to fragmentation, limit the number stored when PCP is heavily 2451 * freeing without allocation. The remainder after bulk freeing 2452 * stops will be drained from vmstat refresh context. 2453 */ 2454 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2455 free_high = (pcp->free_count >= batch && 2456 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2457 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2458 pcp->count >= READ_ONCE(batch))); 2459 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2460 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2461 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2462 } 2463 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2464 pcp->free_count += (1 << order); 2465 high = nr_pcp_high(pcp, zone, batch, free_high); 2466 if (pcp->count >= high) { 2467 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2468 pcp, pindex); 2469 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2470 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2471 ZONE_MOVABLE, 0)) 2472 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2473 } 2474 } 2475 2476 /* 2477 * Free a pcp page 2478 */ 2479 void free_unref_page(struct page *page, unsigned int order) 2480 { 2481 unsigned long __maybe_unused UP_flags; 2482 struct per_cpu_pages *pcp; 2483 struct zone *zone; 2484 unsigned long pfn = page_to_pfn(page); 2485 int migratetype, pcpmigratetype; 2486 2487 if (!free_unref_page_prepare(page, pfn, order)) 2488 return; 2489 2490 /* 2491 * We only track unmovable, reclaimable and movable on pcp lists. 2492 * Place ISOLATE pages on the isolated list because they are being 2493 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2494 * get those areas back if necessary. Otherwise, we may have to free 2495 * excessively into the page allocator 2496 */ 2497 migratetype = pcpmigratetype = get_pcppage_migratetype(page); 2498 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2499 if (unlikely(is_migrate_isolate(migratetype))) { 2500 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2501 return; 2502 } 2503 pcpmigratetype = MIGRATE_MOVABLE; 2504 } 2505 2506 zone = page_zone(page); 2507 pcp_trylock_prepare(UP_flags); 2508 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2509 if (pcp) { 2510 free_unref_page_commit(zone, pcp, page, pcpmigratetype, order); 2511 pcp_spin_unlock(pcp); 2512 } else { 2513 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2514 } 2515 pcp_trylock_finish(UP_flags); 2516 } 2517 2518 /* 2519 * Free a list of 0-order pages 2520 */ 2521 void free_unref_page_list(struct list_head *list) 2522 { 2523 unsigned long __maybe_unused UP_flags; 2524 struct page *page, *next; 2525 struct per_cpu_pages *pcp = NULL; 2526 struct zone *locked_zone = NULL; 2527 int batch_count = 0; 2528 int migratetype; 2529 2530 /* Prepare pages for freeing */ 2531 list_for_each_entry_safe(page, next, list, lru) { 2532 unsigned long pfn = page_to_pfn(page); 2533 if (!free_unref_page_prepare(page, pfn, 0)) { 2534 list_del(&page->lru); 2535 continue; 2536 } 2537 2538 /* 2539 * Free isolated pages directly to the allocator, see 2540 * comment in free_unref_page. 2541 */ 2542 migratetype = get_pcppage_migratetype(page); 2543 if (unlikely(is_migrate_isolate(migratetype))) { 2544 list_del(&page->lru); 2545 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2546 continue; 2547 } 2548 } 2549 2550 list_for_each_entry_safe(page, next, list, lru) { 2551 struct zone *zone = page_zone(page); 2552 2553 list_del(&page->lru); 2554 migratetype = get_pcppage_migratetype(page); 2555 2556 /* 2557 * Either different zone requiring a different pcp lock or 2558 * excessive lock hold times when freeing a large list of 2559 * pages. 2560 */ 2561 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2562 if (pcp) { 2563 pcp_spin_unlock(pcp); 2564 pcp_trylock_finish(UP_flags); 2565 } 2566 2567 batch_count = 0; 2568 2569 /* 2570 * trylock is necessary as pages may be getting freed 2571 * from IRQ or SoftIRQ context after an IO completion. 2572 */ 2573 pcp_trylock_prepare(UP_flags); 2574 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2575 if (unlikely(!pcp)) { 2576 pcp_trylock_finish(UP_flags); 2577 free_one_page(zone, page, page_to_pfn(page), 2578 0, migratetype, FPI_NONE); 2579 locked_zone = NULL; 2580 continue; 2581 } 2582 locked_zone = zone; 2583 } 2584 2585 /* 2586 * Non-isolated types over MIGRATE_PCPTYPES get added 2587 * to the MIGRATE_MOVABLE pcp list. 2588 */ 2589 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2590 migratetype = MIGRATE_MOVABLE; 2591 2592 trace_mm_page_free_batched(page); 2593 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2594 batch_count++; 2595 } 2596 2597 if (pcp) { 2598 pcp_spin_unlock(pcp); 2599 pcp_trylock_finish(UP_flags); 2600 } 2601 } 2602 2603 /* 2604 * split_page takes a non-compound higher-order page, and splits it into 2605 * n (1<<order) sub-pages: page[0..n] 2606 * Each sub-page must be freed individually. 2607 * 2608 * Note: this is probably too low level an operation for use in drivers. 2609 * Please consult with lkml before using this in your driver. 2610 */ 2611 void split_page(struct page *page, unsigned int order) 2612 { 2613 int i; 2614 2615 VM_BUG_ON_PAGE(PageCompound(page), page); 2616 VM_BUG_ON_PAGE(!page_count(page), page); 2617 2618 for (i = 1; i < (1 << order); i++) 2619 set_page_refcounted(page + i); 2620 split_page_owner(page, 1 << order); 2621 split_page_memcg(page, 1 << order); 2622 } 2623 EXPORT_SYMBOL_GPL(split_page); 2624 2625 int __isolate_free_page(struct page *page, unsigned int order) 2626 { 2627 struct zone *zone = page_zone(page); 2628 int mt = get_pageblock_migratetype(page); 2629 2630 if (!is_migrate_isolate(mt)) { 2631 unsigned long watermark; 2632 /* 2633 * Obey watermarks as if the page was being allocated. We can 2634 * emulate a high-order watermark check with a raised order-0 2635 * watermark, because we already know our high-order page 2636 * exists. 2637 */ 2638 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2639 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2640 return 0; 2641 2642 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2643 } 2644 2645 del_page_from_free_list(page, zone, order); 2646 2647 /* 2648 * Set the pageblock if the isolated page is at least half of a 2649 * pageblock 2650 */ 2651 if (order >= pageblock_order - 1) { 2652 struct page *endpage = page + (1 << order) - 1; 2653 for (; page < endpage; page += pageblock_nr_pages) { 2654 int mt = get_pageblock_migratetype(page); 2655 /* 2656 * Only change normal pageblocks (i.e., they can merge 2657 * with others) 2658 */ 2659 if (migratetype_is_mergeable(mt)) 2660 set_pageblock_migratetype(page, 2661 MIGRATE_MOVABLE); 2662 } 2663 } 2664 2665 return 1UL << order; 2666 } 2667 2668 /** 2669 * __putback_isolated_page - Return a now-isolated page back where we got it 2670 * @page: Page that was isolated 2671 * @order: Order of the isolated page 2672 * @mt: The page's pageblock's migratetype 2673 * 2674 * This function is meant to return a page pulled from the free lists via 2675 * __isolate_free_page back to the free lists they were pulled from. 2676 */ 2677 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2678 { 2679 struct zone *zone = page_zone(page); 2680 2681 /* zone lock should be held when this function is called */ 2682 lockdep_assert_held(&zone->lock); 2683 2684 /* Return isolated page to tail of freelist. */ 2685 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2686 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2687 } 2688 2689 /* 2690 * Update NUMA hit/miss statistics 2691 */ 2692 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2693 long nr_account) 2694 { 2695 #ifdef CONFIG_NUMA 2696 enum numa_stat_item local_stat = NUMA_LOCAL; 2697 2698 /* skip numa counters update if numa stats is disabled */ 2699 if (!static_branch_likely(&vm_numa_stat_key)) 2700 return; 2701 2702 if (zone_to_nid(z) != numa_node_id()) 2703 local_stat = NUMA_OTHER; 2704 2705 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2706 __count_numa_events(z, NUMA_HIT, nr_account); 2707 else { 2708 __count_numa_events(z, NUMA_MISS, nr_account); 2709 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2710 } 2711 __count_numa_events(z, local_stat, nr_account); 2712 #endif 2713 } 2714 2715 static __always_inline 2716 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2717 unsigned int order, unsigned int alloc_flags, 2718 int migratetype) 2719 { 2720 struct page *page; 2721 unsigned long flags; 2722 2723 do { 2724 page = NULL; 2725 spin_lock_irqsave(&zone->lock, flags); 2726 if (alloc_flags & ALLOC_HIGHATOMIC) 2727 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2728 if (!page) { 2729 page = __rmqueue(zone, order, migratetype, alloc_flags); 2730 2731 /* 2732 * If the allocation fails, allow OOM handling access 2733 * to HIGHATOMIC reserves as failing now is worse than 2734 * failing a high-order atomic allocation in the 2735 * future. 2736 */ 2737 if (!page && (alloc_flags & ALLOC_OOM)) 2738 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2739 2740 if (!page) { 2741 spin_unlock_irqrestore(&zone->lock, flags); 2742 return NULL; 2743 } 2744 } 2745 __mod_zone_freepage_state(zone, -(1 << order), 2746 get_pcppage_migratetype(page)); 2747 spin_unlock_irqrestore(&zone->lock, flags); 2748 } while (check_new_pages(page, order)); 2749 2750 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2751 zone_statistics(preferred_zone, zone, 1); 2752 2753 return page; 2754 } 2755 2756 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2757 { 2758 int high, base_batch, batch, max_nr_alloc; 2759 int high_max, high_min; 2760 2761 base_batch = READ_ONCE(pcp->batch); 2762 high_min = READ_ONCE(pcp->high_min); 2763 high_max = READ_ONCE(pcp->high_max); 2764 high = pcp->high = clamp(pcp->high, high_min, high_max); 2765 2766 /* Check for PCP disabled or boot pageset */ 2767 if (unlikely(high < base_batch)) 2768 return 1; 2769 2770 if (order) 2771 batch = base_batch; 2772 else 2773 batch = (base_batch << pcp->alloc_factor); 2774 2775 /* 2776 * If we had larger pcp->high, we could avoid to allocate from 2777 * zone. 2778 */ 2779 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2780 high = pcp->high = min(high + batch, high_max); 2781 2782 if (!order) { 2783 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2784 /* 2785 * Double the number of pages allocated each time there is 2786 * subsequent allocation of order-0 pages without any freeing. 2787 */ 2788 if (batch <= max_nr_alloc && 2789 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2790 pcp->alloc_factor++; 2791 batch = min(batch, max_nr_alloc); 2792 } 2793 2794 /* 2795 * Scale batch relative to order if batch implies free pages 2796 * can be stored on the PCP. Batch can be 1 for small zones or 2797 * for boot pagesets which should never store free pages as 2798 * the pages may belong to arbitrary zones. 2799 */ 2800 if (batch > 1) 2801 batch = max(batch >> order, 2); 2802 2803 return batch; 2804 } 2805 2806 /* Remove page from the per-cpu list, caller must protect the list */ 2807 static inline 2808 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2809 int migratetype, 2810 unsigned int alloc_flags, 2811 struct per_cpu_pages *pcp, 2812 struct list_head *list) 2813 { 2814 struct page *page; 2815 2816 do { 2817 if (list_empty(list)) { 2818 int batch = nr_pcp_alloc(pcp, zone, order); 2819 int alloced; 2820 2821 alloced = rmqueue_bulk(zone, order, 2822 batch, list, 2823 migratetype, alloc_flags); 2824 2825 pcp->count += alloced << order; 2826 if (unlikely(list_empty(list))) 2827 return NULL; 2828 } 2829 2830 page = list_first_entry(list, struct page, pcp_list); 2831 list_del(&page->pcp_list); 2832 pcp->count -= 1 << order; 2833 } while (check_new_pages(page, order)); 2834 2835 return page; 2836 } 2837 2838 /* Lock and remove page from the per-cpu list */ 2839 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2840 struct zone *zone, unsigned int order, 2841 int migratetype, unsigned int alloc_flags) 2842 { 2843 struct per_cpu_pages *pcp; 2844 struct list_head *list; 2845 struct page *page; 2846 unsigned long __maybe_unused UP_flags; 2847 2848 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2849 pcp_trylock_prepare(UP_flags); 2850 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2851 if (!pcp) { 2852 pcp_trylock_finish(UP_flags); 2853 return NULL; 2854 } 2855 2856 /* 2857 * On allocation, reduce the number of pages that are batch freed. 2858 * See nr_pcp_free() where free_factor is increased for subsequent 2859 * frees. 2860 */ 2861 pcp->free_count >>= 1; 2862 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2863 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2864 pcp_spin_unlock(pcp); 2865 pcp_trylock_finish(UP_flags); 2866 if (page) { 2867 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2868 zone_statistics(preferred_zone, zone, 1); 2869 } 2870 return page; 2871 } 2872 2873 /* 2874 * Allocate a page from the given zone. 2875 * Use pcplists for THP or "cheap" high-order allocations. 2876 */ 2877 2878 /* 2879 * Do not instrument rmqueue() with KMSAN. This function may call 2880 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2881 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2882 * may call rmqueue() again, which will result in a deadlock. 2883 */ 2884 __no_sanitize_memory 2885 static inline 2886 struct page *rmqueue(struct zone *preferred_zone, 2887 struct zone *zone, unsigned int order, 2888 gfp_t gfp_flags, unsigned int alloc_flags, 2889 int migratetype) 2890 { 2891 struct page *page; 2892 2893 /* 2894 * We most definitely don't want callers attempting to 2895 * allocate greater than order-1 page units with __GFP_NOFAIL. 2896 */ 2897 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2898 2899 if (likely(pcp_allowed_order(order))) { 2900 page = rmqueue_pcplist(preferred_zone, zone, order, 2901 migratetype, alloc_flags); 2902 if (likely(page)) 2903 goto out; 2904 } 2905 2906 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2907 migratetype); 2908 2909 out: 2910 /* Separate test+clear to avoid unnecessary atomics */ 2911 if ((alloc_flags & ALLOC_KSWAPD) && 2912 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 2913 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2914 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 2915 } 2916 2917 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2918 return page; 2919 } 2920 2921 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2922 { 2923 return __should_fail_alloc_page(gfp_mask, order); 2924 } 2925 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 2926 2927 static inline long __zone_watermark_unusable_free(struct zone *z, 2928 unsigned int order, unsigned int alloc_flags) 2929 { 2930 long unusable_free = (1 << order) - 1; 2931 2932 /* 2933 * If the caller does not have rights to reserves below the min 2934 * watermark then subtract the high-atomic reserves. This will 2935 * over-estimate the size of the atomic reserve but it avoids a search. 2936 */ 2937 if (likely(!(alloc_flags & ALLOC_RESERVES))) 2938 unusable_free += z->nr_reserved_highatomic; 2939 2940 #ifdef CONFIG_CMA 2941 /* If allocation can't use CMA areas don't use free CMA pages */ 2942 if (!(alloc_flags & ALLOC_CMA)) 2943 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 2944 #endif 2945 #ifdef CONFIG_UNACCEPTED_MEMORY 2946 unusable_free += zone_page_state(z, NR_UNACCEPTED); 2947 #endif 2948 2949 return unusable_free; 2950 } 2951 2952 /* 2953 * Return true if free base pages are above 'mark'. For high-order checks it 2954 * will return true of the order-0 watermark is reached and there is at least 2955 * one free page of a suitable size. Checking now avoids taking the zone lock 2956 * to check in the allocation paths if no pages are free. 2957 */ 2958 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2959 int highest_zoneidx, unsigned int alloc_flags, 2960 long free_pages) 2961 { 2962 long min = mark; 2963 int o; 2964 2965 /* free_pages may go negative - that's OK */ 2966 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 2967 2968 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 2969 /* 2970 * __GFP_HIGH allows access to 50% of the min reserve as well 2971 * as OOM. 2972 */ 2973 if (alloc_flags & ALLOC_MIN_RESERVE) { 2974 min -= min / 2; 2975 2976 /* 2977 * Non-blocking allocations (e.g. GFP_ATOMIC) can 2978 * access more reserves than just __GFP_HIGH. Other 2979 * non-blocking allocations requests such as GFP_NOWAIT 2980 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 2981 * access to the min reserve. 2982 */ 2983 if (alloc_flags & ALLOC_NON_BLOCK) 2984 min -= min / 4; 2985 } 2986 2987 /* 2988 * OOM victims can try even harder than the normal reserve 2989 * users on the grounds that it's definitely going to be in 2990 * the exit path shortly and free memory. Any allocation it 2991 * makes during the free path will be small and short-lived. 2992 */ 2993 if (alloc_flags & ALLOC_OOM) 2994 min -= min / 2; 2995 } 2996 2997 /* 2998 * Check watermarks for an order-0 allocation request. If these 2999 * are not met, then a high-order request also cannot go ahead 3000 * even if a suitable page happened to be free. 3001 */ 3002 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3003 return false; 3004 3005 /* If this is an order-0 request then the watermark is fine */ 3006 if (!order) 3007 return true; 3008 3009 /* For a high-order request, check at least one suitable page is free */ 3010 for (o = order; o <= MAX_ORDER; o++) { 3011 struct free_area *area = &z->free_area[o]; 3012 int mt; 3013 3014 if (!area->nr_free) 3015 continue; 3016 3017 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3018 if (!free_area_empty(area, mt)) 3019 return true; 3020 } 3021 3022 #ifdef CONFIG_CMA 3023 if ((alloc_flags & ALLOC_CMA) && 3024 !free_area_empty(area, MIGRATE_CMA)) { 3025 return true; 3026 } 3027 #endif 3028 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3029 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3030 return true; 3031 } 3032 } 3033 return false; 3034 } 3035 3036 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3037 int highest_zoneidx, unsigned int alloc_flags) 3038 { 3039 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3040 zone_page_state(z, NR_FREE_PAGES)); 3041 } 3042 3043 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3044 unsigned long mark, int highest_zoneidx, 3045 unsigned int alloc_flags, gfp_t gfp_mask) 3046 { 3047 long free_pages; 3048 3049 free_pages = zone_page_state(z, NR_FREE_PAGES); 3050 3051 /* 3052 * Fast check for order-0 only. If this fails then the reserves 3053 * need to be calculated. 3054 */ 3055 if (!order) { 3056 long usable_free; 3057 long reserved; 3058 3059 usable_free = free_pages; 3060 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3061 3062 /* reserved may over estimate high-atomic reserves. */ 3063 usable_free -= min(usable_free, reserved); 3064 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3065 return true; 3066 } 3067 3068 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3069 free_pages)) 3070 return true; 3071 3072 /* 3073 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3074 * when checking the min watermark. The min watermark is the 3075 * point where boosting is ignored so that kswapd is woken up 3076 * when below the low watermark. 3077 */ 3078 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3079 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3080 mark = z->_watermark[WMARK_MIN]; 3081 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3082 alloc_flags, free_pages); 3083 } 3084 3085 return false; 3086 } 3087 3088 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3089 unsigned long mark, int highest_zoneidx) 3090 { 3091 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3092 3093 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3094 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3095 3096 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3097 free_pages); 3098 } 3099 3100 #ifdef CONFIG_NUMA 3101 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3102 3103 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3104 { 3105 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3106 node_reclaim_distance; 3107 } 3108 #else /* CONFIG_NUMA */ 3109 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3110 { 3111 return true; 3112 } 3113 #endif /* CONFIG_NUMA */ 3114 3115 /* 3116 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3117 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3118 * premature use of a lower zone may cause lowmem pressure problems that 3119 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3120 * probably too small. It only makes sense to spread allocations to avoid 3121 * fragmentation between the Normal and DMA32 zones. 3122 */ 3123 static inline unsigned int 3124 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3125 { 3126 unsigned int alloc_flags; 3127 3128 /* 3129 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3130 * to save a branch. 3131 */ 3132 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3133 3134 #ifdef CONFIG_ZONE_DMA32 3135 if (!zone) 3136 return alloc_flags; 3137 3138 if (zone_idx(zone) != ZONE_NORMAL) 3139 return alloc_flags; 3140 3141 /* 3142 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3143 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3144 * on UMA that if Normal is populated then so is DMA32. 3145 */ 3146 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3147 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3148 return alloc_flags; 3149 3150 alloc_flags |= ALLOC_NOFRAGMENT; 3151 #endif /* CONFIG_ZONE_DMA32 */ 3152 return alloc_flags; 3153 } 3154 3155 /* Must be called after current_gfp_context() which can change gfp_mask */ 3156 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3157 unsigned int alloc_flags) 3158 { 3159 #ifdef CONFIG_CMA 3160 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3161 alloc_flags |= ALLOC_CMA; 3162 #endif 3163 return alloc_flags; 3164 } 3165 3166 /* 3167 * get_page_from_freelist goes through the zonelist trying to allocate 3168 * a page. 3169 */ 3170 static struct page * 3171 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3172 const struct alloc_context *ac) 3173 { 3174 struct zoneref *z; 3175 struct zone *zone; 3176 struct pglist_data *last_pgdat = NULL; 3177 bool last_pgdat_dirty_ok = false; 3178 bool no_fallback; 3179 3180 retry: 3181 /* 3182 * Scan zonelist, looking for a zone with enough free. 3183 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3184 */ 3185 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3186 z = ac->preferred_zoneref; 3187 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3188 ac->nodemask) { 3189 struct page *page; 3190 unsigned long mark; 3191 3192 if (cpusets_enabled() && 3193 (alloc_flags & ALLOC_CPUSET) && 3194 !__cpuset_zone_allowed(zone, gfp_mask)) 3195 continue; 3196 /* 3197 * When allocating a page cache page for writing, we 3198 * want to get it from a node that is within its dirty 3199 * limit, such that no single node holds more than its 3200 * proportional share of globally allowed dirty pages. 3201 * The dirty limits take into account the node's 3202 * lowmem reserves and high watermark so that kswapd 3203 * should be able to balance it without having to 3204 * write pages from its LRU list. 3205 * 3206 * XXX: For now, allow allocations to potentially 3207 * exceed the per-node dirty limit in the slowpath 3208 * (spread_dirty_pages unset) before going into reclaim, 3209 * which is important when on a NUMA setup the allowed 3210 * nodes are together not big enough to reach the 3211 * global limit. The proper fix for these situations 3212 * will require awareness of nodes in the 3213 * dirty-throttling and the flusher threads. 3214 */ 3215 if (ac->spread_dirty_pages) { 3216 if (last_pgdat != zone->zone_pgdat) { 3217 last_pgdat = zone->zone_pgdat; 3218 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3219 } 3220 3221 if (!last_pgdat_dirty_ok) 3222 continue; 3223 } 3224 3225 if (no_fallback && nr_online_nodes > 1 && 3226 zone != ac->preferred_zoneref->zone) { 3227 int local_nid; 3228 3229 /* 3230 * If moving to a remote node, retry but allow 3231 * fragmenting fallbacks. Locality is more important 3232 * than fragmentation avoidance. 3233 */ 3234 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3235 if (zone_to_nid(zone) != local_nid) { 3236 alloc_flags &= ~ALLOC_NOFRAGMENT; 3237 goto retry; 3238 } 3239 } 3240 3241 /* 3242 * Detect whether the number of free pages is below high 3243 * watermark. If so, we will decrease pcp->high and free 3244 * PCP pages in free path to reduce the possibility of 3245 * premature page reclaiming. Detection is done here to 3246 * avoid to do that in hotter free path. 3247 */ 3248 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3249 goto check_alloc_wmark; 3250 3251 mark = high_wmark_pages(zone); 3252 if (zone_watermark_fast(zone, order, mark, 3253 ac->highest_zoneidx, alloc_flags, 3254 gfp_mask)) 3255 goto try_this_zone; 3256 else 3257 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3258 3259 check_alloc_wmark: 3260 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3261 if (!zone_watermark_fast(zone, order, mark, 3262 ac->highest_zoneidx, alloc_flags, 3263 gfp_mask)) { 3264 int ret; 3265 3266 if (has_unaccepted_memory()) { 3267 if (try_to_accept_memory(zone, order)) 3268 goto try_this_zone; 3269 } 3270 3271 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3272 /* 3273 * Watermark failed for this zone, but see if we can 3274 * grow this zone if it contains deferred pages. 3275 */ 3276 if (deferred_pages_enabled()) { 3277 if (_deferred_grow_zone(zone, order)) 3278 goto try_this_zone; 3279 } 3280 #endif 3281 /* Checked here to keep the fast path fast */ 3282 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3283 if (alloc_flags & ALLOC_NO_WATERMARKS) 3284 goto try_this_zone; 3285 3286 if (!node_reclaim_enabled() || 3287 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3288 continue; 3289 3290 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3291 switch (ret) { 3292 case NODE_RECLAIM_NOSCAN: 3293 /* did not scan */ 3294 continue; 3295 case NODE_RECLAIM_FULL: 3296 /* scanned but unreclaimable */ 3297 continue; 3298 default: 3299 /* did we reclaim enough */ 3300 if (zone_watermark_ok(zone, order, mark, 3301 ac->highest_zoneidx, alloc_flags)) 3302 goto try_this_zone; 3303 3304 continue; 3305 } 3306 } 3307 3308 try_this_zone: 3309 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3310 gfp_mask, alloc_flags, ac->migratetype); 3311 if (page) { 3312 prep_new_page(page, order, gfp_mask, alloc_flags); 3313 3314 /* 3315 * If this is a high-order atomic allocation then check 3316 * if the pageblock should be reserved for the future 3317 */ 3318 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3319 reserve_highatomic_pageblock(page, zone); 3320 3321 return page; 3322 } else { 3323 if (has_unaccepted_memory()) { 3324 if (try_to_accept_memory(zone, order)) 3325 goto try_this_zone; 3326 } 3327 3328 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3329 /* Try again if zone has deferred pages */ 3330 if (deferred_pages_enabled()) { 3331 if (_deferred_grow_zone(zone, order)) 3332 goto try_this_zone; 3333 } 3334 #endif 3335 } 3336 } 3337 3338 /* 3339 * It's possible on a UMA machine to get through all zones that are 3340 * fragmented. If avoiding fragmentation, reset and try again. 3341 */ 3342 if (no_fallback) { 3343 alloc_flags &= ~ALLOC_NOFRAGMENT; 3344 goto retry; 3345 } 3346 3347 return NULL; 3348 } 3349 3350 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3351 { 3352 unsigned int filter = SHOW_MEM_FILTER_NODES; 3353 3354 /* 3355 * This documents exceptions given to allocations in certain 3356 * contexts that are allowed to allocate outside current's set 3357 * of allowed nodes. 3358 */ 3359 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3360 if (tsk_is_oom_victim(current) || 3361 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3362 filter &= ~SHOW_MEM_FILTER_NODES; 3363 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3364 filter &= ~SHOW_MEM_FILTER_NODES; 3365 3366 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3367 } 3368 3369 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3370 { 3371 struct va_format vaf; 3372 va_list args; 3373 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3374 3375 if ((gfp_mask & __GFP_NOWARN) || 3376 !__ratelimit(&nopage_rs) || 3377 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3378 return; 3379 3380 va_start(args, fmt); 3381 vaf.fmt = fmt; 3382 vaf.va = &args; 3383 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3384 current->comm, &vaf, gfp_mask, &gfp_mask, 3385 nodemask_pr_args(nodemask)); 3386 va_end(args); 3387 3388 cpuset_print_current_mems_allowed(); 3389 pr_cont("\n"); 3390 dump_stack(); 3391 warn_alloc_show_mem(gfp_mask, nodemask); 3392 } 3393 3394 static inline struct page * 3395 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3396 unsigned int alloc_flags, 3397 const struct alloc_context *ac) 3398 { 3399 struct page *page; 3400 3401 page = get_page_from_freelist(gfp_mask, order, 3402 alloc_flags|ALLOC_CPUSET, ac); 3403 /* 3404 * fallback to ignore cpuset restriction if our nodes 3405 * are depleted 3406 */ 3407 if (!page) 3408 page = get_page_from_freelist(gfp_mask, order, 3409 alloc_flags, ac); 3410 3411 return page; 3412 } 3413 3414 static inline struct page * 3415 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3416 const struct alloc_context *ac, unsigned long *did_some_progress) 3417 { 3418 struct oom_control oc = { 3419 .zonelist = ac->zonelist, 3420 .nodemask = ac->nodemask, 3421 .memcg = NULL, 3422 .gfp_mask = gfp_mask, 3423 .order = order, 3424 }; 3425 struct page *page; 3426 3427 *did_some_progress = 0; 3428 3429 /* 3430 * Acquire the oom lock. If that fails, somebody else is 3431 * making progress for us. 3432 */ 3433 if (!mutex_trylock(&oom_lock)) { 3434 *did_some_progress = 1; 3435 schedule_timeout_uninterruptible(1); 3436 return NULL; 3437 } 3438 3439 /* 3440 * Go through the zonelist yet one more time, keep very high watermark 3441 * here, this is only to catch a parallel oom killing, we must fail if 3442 * we're still under heavy pressure. But make sure that this reclaim 3443 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3444 * allocation which will never fail due to oom_lock already held. 3445 */ 3446 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3447 ~__GFP_DIRECT_RECLAIM, order, 3448 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3449 if (page) 3450 goto out; 3451 3452 /* Coredumps can quickly deplete all memory reserves */ 3453 if (current->flags & PF_DUMPCORE) 3454 goto out; 3455 /* The OOM killer will not help higher order allocs */ 3456 if (order > PAGE_ALLOC_COSTLY_ORDER) 3457 goto out; 3458 /* 3459 * We have already exhausted all our reclaim opportunities without any 3460 * success so it is time to admit defeat. We will skip the OOM killer 3461 * because it is very likely that the caller has a more reasonable 3462 * fallback than shooting a random task. 3463 * 3464 * The OOM killer may not free memory on a specific node. 3465 */ 3466 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3467 goto out; 3468 /* The OOM killer does not needlessly kill tasks for lowmem */ 3469 if (ac->highest_zoneidx < ZONE_NORMAL) 3470 goto out; 3471 if (pm_suspended_storage()) 3472 goto out; 3473 /* 3474 * XXX: GFP_NOFS allocations should rather fail than rely on 3475 * other request to make a forward progress. 3476 * We are in an unfortunate situation where out_of_memory cannot 3477 * do much for this context but let's try it to at least get 3478 * access to memory reserved if the current task is killed (see 3479 * out_of_memory). Once filesystems are ready to handle allocation 3480 * failures more gracefully we should just bail out here. 3481 */ 3482 3483 /* Exhausted what can be done so it's blame time */ 3484 if (out_of_memory(&oc) || 3485 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3486 *did_some_progress = 1; 3487 3488 /* 3489 * Help non-failing allocations by giving them access to memory 3490 * reserves 3491 */ 3492 if (gfp_mask & __GFP_NOFAIL) 3493 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3494 ALLOC_NO_WATERMARKS, ac); 3495 } 3496 out: 3497 mutex_unlock(&oom_lock); 3498 return page; 3499 } 3500 3501 /* 3502 * Maximum number of compaction retries with a progress before OOM 3503 * killer is consider as the only way to move forward. 3504 */ 3505 #define MAX_COMPACT_RETRIES 16 3506 3507 #ifdef CONFIG_COMPACTION 3508 /* Try memory compaction for high-order allocations before reclaim */ 3509 static struct page * 3510 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3511 unsigned int alloc_flags, const struct alloc_context *ac, 3512 enum compact_priority prio, enum compact_result *compact_result) 3513 { 3514 struct page *page = NULL; 3515 unsigned long pflags; 3516 unsigned int noreclaim_flag; 3517 3518 if (!order) 3519 return NULL; 3520 3521 psi_memstall_enter(&pflags); 3522 delayacct_compact_start(); 3523 noreclaim_flag = memalloc_noreclaim_save(); 3524 3525 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3526 prio, &page); 3527 3528 memalloc_noreclaim_restore(noreclaim_flag); 3529 psi_memstall_leave(&pflags); 3530 delayacct_compact_end(); 3531 3532 if (*compact_result == COMPACT_SKIPPED) 3533 return NULL; 3534 /* 3535 * At least in one zone compaction wasn't deferred or skipped, so let's 3536 * count a compaction stall 3537 */ 3538 count_vm_event(COMPACTSTALL); 3539 3540 /* Prep a captured page if available */ 3541 if (page) 3542 prep_new_page(page, order, gfp_mask, alloc_flags); 3543 3544 /* Try get a page from the freelist if available */ 3545 if (!page) 3546 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3547 3548 if (page) { 3549 struct zone *zone = page_zone(page); 3550 3551 zone->compact_blockskip_flush = false; 3552 compaction_defer_reset(zone, order, true); 3553 count_vm_event(COMPACTSUCCESS); 3554 return page; 3555 } 3556 3557 /* 3558 * It's bad if compaction run occurs and fails. The most likely reason 3559 * is that pages exist, but not enough to satisfy watermarks. 3560 */ 3561 count_vm_event(COMPACTFAIL); 3562 3563 cond_resched(); 3564 3565 return NULL; 3566 } 3567 3568 static inline bool 3569 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3570 enum compact_result compact_result, 3571 enum compact_priority *compact_priority, 3572 int *compaction_retries) 3573 { 3574 int max_retries = MAX_COMPACT_RETRIES; 3575 int min_priority; 3576 bool ret = false; 3577 int retries = *compaction_retries; 3578 enum compact_priority priority = *compact_priority; 3579 3580 if (!order) 3581 return false; 3582 3583 if (fatal_signal_pending(current)) 3584 return false; 3585 3586 /* 3587 * Compaction was skipped due to a lack of free order-0 3588 * migration targets. Continue if reclaim can help. 3589 */ 3590 if (compact_result == COMPACT_SKIPPED) { 3591 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3592 goto out; 3593 } 3594 3595 /* 3596 * Compaction managed to coalesce some page blocks, but the 3597 * allocation failed presumably due to a race. Retry some. 3598 */ 3599 if (compact_result == COMPACT_SUCCESS) { 3600 /* 3601 * !costly requests are much more important than 3602 * __GFP_RETRY_MAYFAIL costly ones because they are de 3603 * facto nofail and invoke OOM killer to move on while 3604 * costly can fail and users are ready to cope with 3605 * that. 1/4 retries is rather arbitrary but we would 3606 * need much more detailed feedback from compaction to 3607 * make a better decision. 3608 */ 3609 if (order > PAGE_ALLOC_COSTLY_ORDER) 3610 max_retries /= 4; 3611 3612 if (++(*compaction_retries) <= max_retries) { 3613 ret = true; 3614 goto out; 3615 } 3616 } 3617 3618 /* 3619 * Compaction failed. Retry with increasing priority. 3620 */ 3621 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3622 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3623 3624 if (*compact_priority > min_priority) { 3625 (*compact_priority)--; 3626 *compaction_retries = 0; 3627 ret = true; 3628 } 3629 out: 3630 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3631 return ret; 3632 } 3633 #else 3634 static inline struct page * 3635 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3636 unsigned int alloc_flags, const struct alloc_context *ac, 3637 enum compact_priority prio, enum compact_result *compact_result) 3638 { 3639 *compact_result = COMPACT_SKIPPED; 3640 return NULL; 3641 } 3642 3643 static inline bool 3644 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3645 enum compact_result compact_result, 3646 enum compact_priority *compact_priority, 3647 int *compaction_retries) 3648 { 3649 struct zone *zone; 3650 struct zoneref *z; 3651 3652 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3653 return false; 3654 3655 /* 3656 * There are setups with compaction disabled which would prefer to loop 3657 * inside the allocator rather than hit the oom killer prematurely. 3658 * Let's give them a good hope and keep retrying while the order-0 3659 * watermarks are OK. 3660 */ 3661 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3662 ac->highest_zoneidx, ac->nodemask) { 3663 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3664 ac->highest_zoneidx, alloc_flags)) 3665 return true; 3666 } 3667 return false; 3668 } 3669 #endif /* CONFIG_COMPACTION */ 3670 3671 #ifdef CONFIG_LOCKDEP 3672 static struct lockdep_map __fs_reclaim_map = 3673 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3674 3675 static bool __need_reclaim(gfp_t gfp_mask) 3676 { 3677 /* no reclaim without waiting on it */ 3678 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3679 return false; 3680 3681 /* this guy won't enter reclaim */ 3682 if (current->flags & PF_MEMALLOC) 3683 return false; 3684 3685 if (gfp_mask & __GFP_NOLOCKDEP) 3686 return false; 3687 3688 return true; 3689 } 3690 3691 void __fs_reclaim_acquire(unsigned long ip) 3692 { 3693 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3694 } 3695 3696 void __fs_reclaim_release(unsigned long ip) 3697 { 3698 lock_release(&__fs_reclaim_map, ip); 3699 } 3700 3701 void fs_reclaim_acquire(gfp_t gfp_mask) 3702 { 3703 gfp_mask = current_gfp_context(gfp_mask); 3704 3705 if (__need_reclaim(gfp_mask)) { 3706 if (gfp_mask & __GFP_FS) 3707 __fs_reclaim_acquire(_RET_IP_); 3708 3709 #ifdef CONFIG_MMU_NOTIFIER 3710 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3711 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3712 #endif 3713 3714 } 3715 } 3716 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3717 3718 void fs_reclaim_release(gfp_t gfp_mask) 3719 { 3720 gfp_mask = current_gfp_context(gfp_mask); 3721 3722 if (__need_reclaim(gfp_mask)) { 3723 if (gfp_mask & __GFP_FS) 3724 __fs_reclaim_release(_RET_IP_); 3725 } 3726 } 3727 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3728 #endif 3729 3730 /* 3731 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3732 * have been rebuilt so allocation retries. Reader side does not lock and 3733 * retries the allocation if zonelist changes. Writer side is protected by the 3734 * embedded spin_lock. 3735 */ 3736 static DEFINE_SEQLOCK(zonelist_update_seq); 3737 3738 static unsigned int zonelist_iter_begin(void) 3739 { 3740 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3741 return read_seqbegin(&zonelist_update_seq); 3742 3743 return 0; 3744 } 3745 3746 static unsigned int check_retry_zonelist(unsigned int seq) 3747 { 3748 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3749 return read_seqretry(&zonelist_update_seq, seq); 3750 3751 return seq; 3752 } 3753 3754 /* Perform direct synchronous page reclaim */ 3755 static unsigned long 3756 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3757 const struct alloc_context *ac) 3758 { 3759 unsigned int noreclaim_flag; 3760 unsigned long progress; 3761 3762 cond_resched(); 3763 3764 /* We now go into synchronous reclaim */ 3765 cpuset_memory_pressure_bump(); 3766 fs_reclaim_acquire(gfp_mask); 3767 noreclaim_flag = memalloc_noreclaim_save(); 3768 3769 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3770 ac->nodemask); 3771 3772 memalloc_noreclaim_restore(noreclaim_flag); 3773 fs_reclaim_release(gfp_mask); 3774 3775 cond_resched(); 3776 3777 return progress; 3778 } 3779 3780 /* The really slow allocator path where we enter direct reclaim */ 3781 static inline struct page * 3782 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3783 unsigned int alloc_flags, const struct alloc_context *ac, 3784 unsigned long *did_some_progress) 3785 { 3786 struct page *page = NULL; 3787 unsigned long pflags; 3788 bool drained = false; 3789 3790 psi_memstall_enter(&pflags); 3791 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3792 if (unlikely(!(*did_some_progress))) 3793 goto out; 3794 3795 retry: 3796 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3797 3798 /* 3799 * If an allocation failed after direct reclaim, it could be because 3800 * pages are pinned on the per-cpu lists or in high alloc reserves. 3801 * Shrink them and try again 3802 */ 3803 if (!page && !drained) { 3804 unreserve_highatomic_pageblock(ac, false); 3805 drain_all_pages(NULL); 3806 drained = true; 3807 goto retry; 3808 } 3809 out: 3810 psi_memstall_leave(&pflags); 3811 3812 return page; 3813 } 3814 3815 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3816 const struct alloc_context *ac) 3817 { 3818 struct zoneref *z; 3819 struct zone *zone; 3820 pg_data_t *last_pgdat = NULL; 3821 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3822 3823 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3824 ac->nodemask) { 3825 if (!managed_zone(zone)) 3826 continue; 3827 if (last_pgdat != zone->zone_pgdat) { 3828 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3829 last_pgdat = zone->zone_pgdat; 3830 } 3831 } 3832 } 3833 3834 static inline unsigned int 3835 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3836 { 3837 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3838 3839 /* 3840 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3841 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3842 * to save two branches. 3843 */ 3844 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3845 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3846 3847 /* 3848 * The caller may dip into page reserves a bit more if the caller 3849 * cannot run direct reclaim, or if the caller has realtime scheduling 3850 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3851 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3852 */ 3853 alloc_flags |= (__force int) 3854 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3855 3856 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3857 /* 3858 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3859 * if it can't schedule. 3860 */ 3861 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3862 alloc_flags |= ALLOC_NON_BLOCK; 3863 3864 if (order > 0) 3865 alloc_flags |= ALLOC_HIGHATOMIC; 3866 } 3867 3868 /* 3869 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3870 * GFP_ATOMIC) rather than fail, see the comment for 3871 * cpuset_node_allowed(). 3872 */ 3873 if (alloc_flags & ALLOC_MIN_RESERVE) 3874 alloc_flags &= ~ALLOC_CPUSET; 3875 } else if (unlikely(rt_task(current)) && in_task()) 3876 alloc_flags |= ALLOC_MIN_RESERVE; 3877 3878 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3879 3880 return alloc_flags; 3881 } 3882 3883 static bool oom_reserves_allowed(struct task_struct *tsk) 3884 { 3885 if (!tsk_is_oom_victim(tsk)) 3886 return false; 3887 3888 /* 3889 * !MMU doesn't have oom reaper so give access to memory reserves 3890 * only to the thread with TIF_MEMDIE set 3891 */ 3892 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3893 return false; 3894 3895 return true; 3896 } 3897 3898 /* 3899 * Distinguish requests which really need access to full memory 3900 * reserves from oom victims which can live with a portion of it 3901 */ 3902 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3903 { 3904 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3905 return 0; 3906 if (gfp_mask & __GFP_MEMALLOC) 3907 return ALLOC_NO_WATERMARKS; 3908 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3909 return ALLOC_NO_WATERMARKS; 3910 if (!in_interrupt()) { 3911 if (current->flags & PF_MEMALLOC) 3912 return ALLOC_NO_WATERMARKS; 3913 else if (oom_reserves_allowed(current)) 3914 return ALLOC_OOM; 3915 } 3916 3917 return 0; 3918 } 3919 3920 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3921 { 3922 return !!__gfp_pfmemalloc_flags(gfp_mask); 3923 } 3924 3925 /* 3926 * Checks whether it makes sense to retry the reclaim to make a forward progress 3927 * for the given allocation request. 3928 * 3929 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3930 * without success, or when we couldn't even meet the watermark if we 3931 * reclaimed all remaining pages on the LRU lists. 3932 * 3933 * Returns true if a retry is viable or false to enter the oom path. 3934 */ 3935 static inline bool 3936 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3937 struct alloc_context *ac, int alloc_flags, 3938 bool did_some_progress, int *no_progress_loops) 3939 { 3940 struct zone *zone; 3941 struct zoneref *z; 3942 bool ret = false; 3943 3944 /* 3945 * Costly allocations might have made a progress but this doesn't mean 3946 * their order will become available due to high fragmentation so 3947 * always increment the no progress counter for them 3948 */ 3949 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3950 *no_progress_loops = 0; 3951 else 3952 (*no_progress_loops)++; 3953 3954 /* 3955 * Make sure we converge to OOM if we cannot make any progress 3956 * several times in the row. 3957 */ 3958 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3959 /* Before OOM, exhaust highatomic_reserve */ 3960 return unreserve_highatomic_pageblock(ac, true); 3961 } 3962 3963 /* 3964 * Keep reclaiming pages while there is a chance this will lead 3965 * somewhere. If none of the target zones can satisfy our allocation 3966 * request even if all reclaimable pages are considered then we are 3967 * screwed and have to go OOM. 3968 */ 3969 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3970 ac->highest_zoneidx, ac->nodemask) { 3971 unsigned long available; 3972 unsigned long reclaimable; 3973 unsigned long min_wmark = min_wmark_pages(zone); 3974 bool wmark; 3975 3976 available = reclaimable = zone_reclaimable_pages(zone); 3977 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3978 3979 /* 3980 * Would the allocation succeed if we reclaimed all 3981 * reclaimable pages? 3982 */ 3983 wmark = __zone_watermark_ok(zone, order, min_wmark, 3984 ac->highest_zoneidx, alloc_flags, available); 3985 trace_reclaim_retry_zone(z, order, reclaimable, 3986 available, min_wmark, *no_progress_loops, wmark); 3987 if (wmark) { 3988 ret = true; 3989 break; 3990 } 3991 } 3992 3993 /* 3994 * Memory allocation/reclaim might be called from a WQ context and the 3995 * current implementation of the WQ concurrency control doesn't 3996 * recognize that a particular WQ is congested if the worker thread is 3997 * looping without ever sleeping. Therefore we have to do a short sleep 3998 * here rather than calling cond_resched(). 3999 */ 4000 if (current->flags & PF_WQ_WORKER) 4001 schedule_timeout_uninterruptible(1); 4002 else 4003 cond_resched(); 4004 return ret; 4005 } 4006 4007 static inline bool 4008 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4009 { 4010 /* 4011 * It's possible that cpuset's mems_allowed and the nodemask from 4012 * mempolicy don't intersect. This should be normally dealt with by 4013 * policy_nodemask(), but it's possible to race with cpuset update in 4014 * such a way the check therein was true, and then it became false 4015 * before we got our cpuset_mems_cookie here. 4016 * This assumes that for all allocations, ac->nodemask can come only 4017 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4018 * when it does not intersect with the cpuset restrictions) or the 4019 * caller can deal with a violated nodemask. 4020 */ 4021 if (cpusets_enabled() && ac->nodemask && 4022 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4023 ac->nodemask = NULL; 4024 return true; 4025 } 4026 4027 /* 4028 * When updating a task's mems_allowed or mempolicy nodemask, it is 4029 * possible to race with parallel threads in such a way that our 4030 * allocation can fail while the mask is being updated. If we are about 4031 * to fail, check if the cpuset changed during allocation and if so, 4032 * retry. 4033 */ 4034 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4035 return true; 4036 4037 return false; 4038 } 4039 4040 static inline struct page * 4041 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4042 struct alloc_context *ac) 4043 { 4044 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4045 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4046 struct page *page = NULL; 4047 unsigned int alloc_flags; 4048 unsigned long did_some_progress; 4049 enum compact_priority compact_priority; 4050 enum compact_result compact_result; 4051 int compaction_retries; 4052 int no_progress_loops; 4053 unsigned int cpuset_mems_cookie; 4054 unsigned int zonelist_iter_cookie; 4055 int reserve_flags; 4056 4057 restart: 4058 compaction_retries = 0; 4059 no_progress_loops = 0; 4060 compact_priority = DEF_COMPACT_PRIORITY; 4061 cpuset_mems_cookie = read_mems_allowed_begin(); 4062 zonelist_iter_cookie = zonelist_iter_begin(); 4063 4064 /* 4065 * The fast path uses conservative alloc_flags to succeed only until 4066 * kswapd needs to be woken up, and to avoid the cost of setting up 4067 * alloc_flags precisely. So we do that now. 4068 */ 4069 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4070 4071 /* 4072 * We need to recalculate the starting point for the zonelist iterator 4073 * because we might have used different nodemask in the fast path, or 4074 * there was a cpuset modification and we are retrying - otherwise we 4075 * could end up iterating over non-eligible zones endlessly. 4076 */ 4077 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4078 ac->highest_zoneidx, ac->nodemask); 4079 if (!ac->preferred_zoneref->zone) 4080 goto nopage; 4081 4082 /* 4083 * Check for insane configurations where the cpuset doesn't contain 4084 * any suitable zone to satisfy the request - e.g. non-movable 4085 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4086 */ 4087 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4088 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4089 ac->highest_zoneidx, 4090 &cpuset_current_mems_allowed); 4091 if (!z->zone) 4092 goto nopage; 4093 } 4094 4095 if (alloc_flags & ALLOC_KSWAPD) 4096 wake_all_kswapds(order, gfp_mask, ac); 4097 4098 /* 4099 * The adjusted alloc_flags might result in immediate success, so try 4100 * that first 4101 */ 4102 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4103 if (page) 4104 goto got_pg; 4105 4106 /* 4107 * For costly allocations, try direct compaction first, as it's likely 4108 * that we have enough base pages and don't need to reclaim. For non- 4109 * movable high-order allocations, do that as well, as compaction will 4110 * try prevent permanent fragmentation by migrating from blocks of the 4111 * same migratetype. 4112 * Don't try this for allocations that are allowed to ignore 4113 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4114 */ 4115 if (can_direct_reclaim && 4116 (costly_order || 4117 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4118 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4119 page = __alloc_pages_direct_compact(gfp_mask, order, 4120 alloc_flags, ac, 4121 INIT_COMPACT_PRIORITY, 4122 &compact_result); 4123 if (page) 4124 goto got_pg; 4125 4126 /* 4127 * Checks for costly allocations with __GFP_NORETRY, which 4128 * includes some THP page fault allocations 4129 */ 4130 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4131 /* 4132 * If allocating entire pageblock(s) and compaction 4133 * failed because all zones are below low watermarks 4134 * or is prohibited because it recently failed at this 4135 * order, fail immediately unless the allocator has 4136 * requested compaction and reclaim retry. 4137 * 4138 * Reclaim is 4139 * - potentially very expensive because zones are far 4140 * below their low watermarks or this is part of very 4141 * bursty high order allocations, 4142 * - not guaranteed to help because isolate_freepages() 4143 * may not iterate over freed pages as part of its 4144 * linear scan, and 4145 * - unlikely to make entire pageblocks free on its 4146 * own. 4147 */ 4148 if (compact_result == COMPACT_SKIPPED || 4149 compact_result == COMPACT_DEFERRED) 4150 goto nopage; 4151 4152 /* 4153 * Looks like reclaim/compaction is worth trying, but 4154 * sync compaction could be very expensive, so keep 4155 * using async compaction. 4156 */ 4157 compact_priority = INIT_COMPACT_PRIORITY; 4158 } 4159 } 4160 4161 retry: 4162 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4163 if (alloc_flags & ALLOC_KSWAPD) 4164 wake_all_kswapds(order, gfp_mask, ac); 4165 4166 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4167 if (reserve_flags) 4168 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4169 (alloc_flags & ALLOC_KSWAPD); 4170 4171 /* 4172 * Reset the nodemask and zonelist iterators if memory policies can be 4173 * ignored. These allocations are high priority and system rather than 4174 * user oriented. 4175 */ 4176 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4177 ac->nodemask = NULL; 4178 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4179 ac->highest_zoneidx, ac->nodemask); 4180 } 4181 4182 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4183 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4184 if (page) 4185 goto got_pg; 4186 4187 /* Caller is not willing to reclaim, we can't balance anything */ 4188 if (!can_direct_reclaim) 4189 goto nopage; 4190 4191 /* Avoid recursion of direct reclaim */ 4192 if (current->flags & PF_MEMALLOC) 4193 goto nopage; 4194 4195 /* Try direct reclaim and then allocating */ 4196 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4197 &did_some_progress); 4198 if (page) 4199 goto got_pg; 4200 4201 /* Try direct compaction and then allocating */ 4202 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4203 compact_priority, &compact_result); 4204 if (page) 4205 goto got_pg; 4206 4207 /* Do not loop if specifically requested */ 4208 if (gfp_mask & __GFP_NORETRY) 4209 goto nopage; 4210 4211 /* 4212 * Do not retry costly high order allocations unless they are 4213 * __GFP_RETRY_MAYFAIL 4214 */ 4215 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4216 goto nopage; 4217 4218 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4219 did_some_progress > 0, &no_progress_loops)) 4220 goto retry; 4221 4222 /* 4223 * It doesn't make any sense to retry for the compaction if the order-0 4224 * reclaim is not able to make any progress because the current 4225 * implementation of the compaction depends on the sufficient amount 4226 * of free memory (see __compaction_suitable) 4227 */ 4228 if (did_some_progress > 0 && 4229 should_compact_retry(ac, order, alloc_flags, 4230 compact_result, &compact_priority, 4231 &compaction_retries)) 4232 goto retry; 4233 4234 4235 /* 4236 * Deal with possible cpuset update races or zonelist updates to avoid 4237 * a unnecessary OOM kill. 4238 */ 4239 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4240 check_retry_zonelist(zonelist_iter_cookie)) 4241 goto restart; 4242 4243 /* Reclaim has failed us, start killing things */ 4244 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4245 if (page) 4246 goto got_pg; 4247 4248 /* Avoid allocations with no watermarks from looping endlessly */ 4249 if (tsk_is_oom_victim(current) && 4250 (alloc_flags & ALLOC_OOM || 4251 (gfp_mask & __GFP_NOMEMALLOC))) 4252 goto nopage; 4253 4254 /* Retry as long as the OOM killer is making progress */ 4255 if (did_some_progress) { 4256 no_progress_loops = 0; 4257 goto retry; 4258 } 4259 4260 nopage: 4261 /* 4262 * Deal with possible cpuset update races or zonelist updates to avoid 4263 * a unnecessary OOM kill. 4264 */ 4265 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4266 check_retry_zonelist(zonelist_iter_cookie)) 4267 goto restart; 4268 4269 /* 4270 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4271 * we always retry 4272 */ 4273 if (gfp_mask & __GFP_NOFAIL) { 4274 /* 4275 * All existing users of the __GFP_NOFAIL are blockable, so warn 4276 * of any new users that actually require GFP_NOWAIT 4277 */ 4278 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4279 goto fail; 4280 4281 /* 4282 * PF_MEMALLOC request from this context is rather bizarre 4283 * because we cannot reclaim anything and only can loop waiting 4284 * for somebody to do a work for us 4285 */ 4286 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4287 4288 /* 4289 * non failing costly orders are a hard requirement which we 4290 * are not prepared for much so let's warn about these users 4291 * so that we can identify them and convert them to something 4292 * else. 4293 */ 4294 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4295 4296 /* 4297 * Help non-failing allocations by giving some access to memory 4298 * reserves normally used for high priority non-blocking 4299 * allocations but do not use ALLOC_NO_WATERMARKS because this 4300 * could deplete whole memory reserves which would just make 4301 * the situation worse. 4302 */ 4303 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4304 if (page) 4305 goto got_pg; 4306 4307 cond_resched(); 4308 goto retry; 4309 } 4310 fail: 4311 warn_alloc(gfp_mask, ac->nodemask, 4312 "page allocation failure: order:%u", order); 4313 got_pg: 4314 return page; 4315 } 4316 4317 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4318 int preferred_nid, nodemask_t *nodemask, 4319 struct alloc_context *ac, gfp_t *alloc_gfp, 4320 unsigned int *alloc_flags) 4321 { 4322 ac->highest_zoneidx = gfp_zone(gfp_mask); 4323 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4324 ac->nodemask = nodemask; 4325 ac->migratetype = gfp_migratetype(gfp_mask); 4326 4327 if (cpusets_enabled()) { 4328 *alloc_gfp |= __GFP_HARDWALL; 4329 /* 4330 * When we are in the interrupt context, it is irrelevant 4331 * to the current task context. It means that any node ok. 4332 */ 4333 if (in_task() && !ac->nodemask) 4334 ac->nodemask = &cpuset_current_mems_allowed; 4335 else 4336 *alloc_flags |= ALLOC_CPUSET; 4337 } 4338 4339 might_alloc(gfp_mask); 4340 4341 if (should_fail_alloc_page(gfp_mask, order)) 4342 return false; 4343 4344 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4345 4346 /* Dirty zone balancing only done in the fast path */ 4347 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4348 4349 /* 4350 * The preferred zone is used for statistics but crucially it is 4351 * also used as the starting point for the zonelist iterator. It 4352 * may get reset for allocations that ignore memory policies. 4353 */ 4354 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4355 ac->highest_zoneidx, ac->nodemask); 4356 4357 return true; 4358 } 4359 4360 /* 4361 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4362 * @gfp: GFP flags for the allocation 4363 * @preferred_nid: The preferred NUMA node ID to allocate from 4364 * @nodemask: Set of nodes to allocate from, may be NULL 4365 * @nr_pages: The number of pages desired on the list or array 4366 * @page_list: Optional list to store the allocated pages 4367 * @page_array: Optional array to store the pages 4368 * 4369 * This is a batched version of the page allocator that attempts to 4370 * allocate nr_pages quickly. Pages are added to page_list if page_list 4371 * is not NULL, otherwise it is assumed that the page_array is valid. 4372 * 4373 * For lists, nr_pages is the number of pages that should be allocated. 4374 * 4375 * For arrays, only NULL elements are populated with pages and nr_pages 4376 * is the maximum number of pages that will be stored in the array. 4377 * 4378 * Returns the number of pages on the list or array. 4379 */ 4380 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4381 nodemask_t *nodemask, int nr_pages, 4382 struct list_head *page_list, 4383 struct page **page_array) 4384 { 4385 struct page *page; 4386 unsigned long __maybe_unused UP_flags; 4387 struct zone *zone; 4388 struct zoneref *z; 4389 struct per_cpu_pages *pcp; 4390 struct list_head *pcp_list; 4391 struct alloc_context ac; 4392 gfp_t alloc_gfp; 4393 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4394 int nr_populated = 0, nr_account = 0; 4395 4396 /* 4397 * Skip populated array elements to determine if any pages need 4398 * to be allocated before disabling IRQs. 4399 */ 4400 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4401 nr_populated++; 4402 4403 /* No pages requested? */ 4404 if (unlikely(nr_pages <= 0)) 4405 goto out; 4406 4407 /* Already populated array? */ 4408 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4409 goto out; 4410 4411 /* Bulk allocator does not support memcg accounting. */ 4412 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4413 goto failed; 4414 4415 /* Use the single page allocator for one page. */ 4416 if (nr_pages - nr_populated == 1) 4417 goto failed; 4418 4419 #ifdef CONFIG_PAGE_OWNER 4420 /* 4421 * PAGE_OWNER may recurse into the allocator to allocate space to 4422 * save the stack with pagesets.lock held. Releasing/reacquiring 4423 * removes much of the performance benefit of bulk allocation so 4424 * force the caller to allocate one page at a time as it'll have 4425 * similar performance to added complexity to the bulk allocator. 4426 */ 4427 if (static_branch_unlikely(&page_owner_inited)) 4428 goto failed; 4429 #endif 4430 4431 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4432 gfp &= gfp_allowed_mask; 4433 alloc_gfp = gfp; 4434 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4435 goto out; 4436 gfp = alloc_gfp; 4437 4438 /* Find an allowed local zone that meets the low watermark. */ 4439 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4440 unsigned long mark; 4441 4442 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4443 !__cpuset_zone_allowed(zone, gfp)) { 4444 continue; 4445 } 4446 4447 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4448 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4449 goto failed; 4450 } 4451 4452 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4453 if (zone_watermark_fast(zone, 0, mark, 4454 zonelist_zone_idx(ac.preferred_zoneref), 4455 alloc_flags, gfp)) { 4456 break; 4457 } 4458 } 4459 4460 /* 4461 * If there are no allowed local zones that meets the watermarks then 4462 * try to allocate a single page and reclaim if necessary. 4463 */ 4464 if (unlikely(!zone)) 4465 goto failed; 4466 4467 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4468 pcp_trylock_prepare(UP_flags); 4469 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4470 if (!pcp) 4471 goto failed_irq; 4472 4473 /* Attempt the batch allocation */ 4474 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4475 while (nr_populated < nr_pages) { 4476 4477 /* Skip existing pages */ 4478 if (page_array && page_array[nr_populated]) { 4479 nr_populated++; 4480 continue; 4481 } 4482 4483 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4484 pcp, pcp_list); 4485 if (unlikely(!page)) { 4486 /* Try and allocate at least one page */ 4487 if (!nr_account) { 4488 pcp_spin_unlock(pcp); 4489 goto failed_irq; 4490 } 4491 break; 4492 } 4493 nr_account++; 4494 4495 prep_new_page(page, 0, gfp, 0); 4496 if (page_list) 4497 list_add(&page->lru, page_list); 4498 else 4499 page_array[nr_populated] = page; 4500 nr_populated++; 4501 } 4502 4503 pcp_spin_unlock(pcp); 4504 pcp_trylock_finish(UP_flags); 4505 4506 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4507 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4508 4509 out: 4510 return nr_populated; 4511 4512 failed_irq: 4513 pcp_trylock_finish(UP_flags); 4514 4515 failed: 4516 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4517 if (page) { 4518 if (page_list) 4519 list_add(&page->lru, page_list); 4520 else 4521 page_array[nr_populated] = page; 4522 nr_populated++; 4523 } 4524 4525 goto out; 4526 } 4527 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4528 4529 /* 4530 * This is the 'heart' of the zoned buddy allocator. 4531 */ 4532 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4533 nodemask_t *nodemask) 4534 { 4535 struct page *page; 4536 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4537 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4538 struct alloc_context ac = { }; 4539 4540 /* 4541 * There are several places where we assume that the order value is sane 4542 * so bail out early if the request is out of bound. 4543 */ 4544 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) 4545 return NULL; 4546 4547 gfp &= gfp_allowed_mask; 4548 /* 4549 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4550 * resp. GFP_NOIO which has to be inherited for all allocation requests 4551 * from a particular context which has been marked by 4552 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4553 * movable zones are not used during allocation. 4554 */ 4555 gfp = current_gfp_context(gfp); 4556 alloc_gfp = gfp; 4557 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4558 &alloc_gfp, &alloc_flags)) 4559 return NULL; 4560 4561 /* 4562 * Forbid the first pass from falling back to types that fragment 4563 * memory until all local zones are considered. 4564 */ 4565 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4566 4567 /* First allocation attempt */ 4568 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4569 if (likely(page)) 4570 goto out; 4571 4572 alloc_gfp = gfp; 4573 ac.spread_dirty_pages = false; 4574 4575 /* 4576 * Restore the original nodemask if it was potentially replaced with 4577 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4578 */ 4579 ac.nodemask = nodemask; 4580 4581 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4582 4583 out: 4584 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4585 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4586 __free_pages(page, order); 4587 page = NULL; 4588 } 4589 4590 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4591 kmsan_alloc_page(page, order, alloc_gfp); 4592 4593 return page; 4594 } 4595 EXPORT_SYMBOL(__alloc_pages); 4596 4597 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4598 nodemask_t *nodemask) 4599 { 4600 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4601 preferred_nid, nodemask); 4602 return page_rmappable_folio(page); 4603 } 4604 EXPORT_SYMBOL(__folio_alloc); 4605 4606 /* 4607 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4608 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4609 * you need to access high mem. 4610 */ 4611 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4612 { 4613 struct page *page; 4614 4615 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4616 if (!page) 4617 return 0; 4618 return (unsigned long) page_address(page); 4619 } 4620 EXPORT_SYMBOL(__get_free_pages); 4621 4622 unsigned long get_zeroed_page(gfp_t gfp_mask) 4623 { 4624 return __get_free_page(gfp_mask | __GFP_ZERO); 4625 } 4626 EXPORT_SYMBOL(get_zeroed_page); 4627 4628 /** 4629 * __free_pages - Free pages allocated with alloc_pages(). 4630 * @page: The page pointer returned from alloc_pages(). 4631 * @order: The order of the allocation. 4632 * 4633 * This function can free multi-page allocations that are not compound 4634 * pages. It does not check that the @order passed in matches that of 4635 * the allocation, so it is easy to leak memory. Freeing more memory 4636 * than was allocated will probably emit a warning. 4637 * 4638 * If the last reference to this page is speculative, it will be released 4639 * by put_page() which only frees the first page of a non-compound 4640 * allocation. To prevent the remaining pages from being leaked, we free 4641 * the subsequent pages here. If you want to use the page's reference 4642 * count to decide when to free the allocation, you should allocate a 4643 * compound page, and use put_page() instead of __free_pages(). 4644 * 4645 * Context: May be called in interrupt context or while holding a normal 4646 * spinlock, but not in NMI context or while holding a raw spinlock. 4647 */ 4648 void __free_pages(struct page *page, unsigned int order) 4649 { 4650 /* get PageHead before we drop reference */ 4651 int head = PageHead(page); 4652 4653 if (put_page_testzero(page)) 4654 free_the_page(page, order); 4655 else if (!head) 4656 while (order-- > 0) 4657 free_the_page(page + (1 << order), order); 4658 } 4659 EXPORT_SYMBOL(__free_pages); 4660 4661 void free_pages(unsigned long addr, unsigned int order) 4662 { 4663 if (addr != 0) { 4664 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4665 __free_pages(virt_to_page((void *)addr), order); 4666 } 4667 } 4668 4669 EXPORT_SYMBOL(free_pages); 4670 4671 /* 4672 * Page Fragment: 4673 * An arbitrary-length arbitrary-offset area of memory which resides 4674 * within a 0 or higher order page. Multiple fragments within that page 4675 * are individually refcounted, in the page's reference counter. 4676 * 4677 * The page_frag functions below provide a simple allocation framework for 4678 * page fragments. This is used by the network stack and network device 4679 * drivers to provide a backing region of memory for use as either an 4680 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4681 */ 4682 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4683 gfp_t gfp_mask) 4684 { 4685 struct page *page = NULL; 4686 gfp_t gfp = gfp_mask; 4687 4688 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4689 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4690 __GFP_NOMEMALLOC; 4691 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4692 PAGE_FRAG_CACHE_MAX_ORDER); 4693 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4694 #endif 4695 if (unlikely(!page)) 4696 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4697 4698 nc->va = page ? page_address(page) : NULL; 4699 4700 return page; 4701 } 4702 4703 void __page_frag_cache_drain(struct page *page, unsigned int count) 4704 { 4705 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4706 4707 if (page_ref_sub_and_test(page, count)) 4708 free_the_page(page, compound_order(page)); 4709 } 4710 EXPORT_SYMBOL(__page_frag_cache_drain); 4711 4712 void *page_frag_alloc_align(struct page_frag_cache *nc, 4713 unsigned int fragsz, gfp_t gfp_mask, 4714 unsigned int align_mask) 4715 { 4716 unsigned int size = PAGE_SIZE; 4717 struct page *page; 4718 int offset; 4719 4720 if (unlikely(!nc->va)) { 4721 refill: 4722 page = __page_frag_cache_refill(nc, gfp_mask); 4723 if (!page) 4724 return NULL; 4725 4726 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4727 /* if size can vary use size else just use PAGE_SIZE */ 4728 size = nc->size; 4729 #endif 4730 /* Even if we own the page, we do not use atomic_set(). 4731 * This would break get_page_unless_zero() users. 4732 */ 4733 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4734 4735 /* reset page count bias and offset to start of new frag */ 4736 nc->pfmemalloc = page_is_pfmemalloc(page); 4737 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4738 nc->offset = size; 4739 } 4740 4741 offset = nc->offset - fragsz; 4742 if (unlikely(offset < 0)) { 4743 page = virt_to_page(nc->va); 4744 4745 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4746 goto refill; 4747 4748 if (unlikely(nc->pfmemalloc)) { 4749 free_the_page(page, compound_order(page)); 4750 goto refill; 4751 } 4752 4753 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4754 /* if size can vary use size else just use PAGE_SIZE */ 4755 size = nc->size; 4756 #endif 4757 /* OK, page count is 0, we can safely set it */ 4758 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4759 4760 /* reset page count bias and offset to start of new frag */ 4761 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4762 offset = size - fragsz; 4763 if (unlikely(offset < 0)) { 4764 /* 4765 * The caller is trying to allocate a fragment 4766 * with fragsz > PAGE_SIZE but the cache isn't big 4767 * enough to satisfy the request, this may 4768 * happen in low memory conditions. 4769 * We don't release the cache page because 4770 * it could make memory pressure worse 4771 * so we simply return NULL here. 4772 */ 4773 return NULL; 4774 } 4775 } 4776 4777 nc->pagecnt_bias--; 4778 offset &= align_mask; 4779 nc->offset = offset; 4780 4781 return nc->va + offset; 4782 } 4783 EXPORT_SYMBOL(page_frag_alloc_align); 4784 4785 /* 4786 * Frees a page fragment allocated out of either a compound or order 0 page. 4787 */ 4788 void page_frag_free(void *addr) 4789 { 4790 struct page *page = virt_to_head_page(addr); 4791 4792 if (unlikely(put_page_testzero(page))) 4793 free_the_page(page, compound_order(page)); 4794 } 4795 EXPORT_SYMBOL(page_frag_free); 4796 4797 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4798 size_t size) 4799 { 4800 if (addr) { 4801 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4802 struct page *page = virt_to_page((void *)addr); 4803 struct page *last = page + nr; 4804 4805 split_page_owner(page, 1 << order); 4806 split_page_memcg(page, 1 << order); 4807 while (page < --last) 4808 set_page_refcounted(last); 4809 4810 last = page + (1UL << order); 4811 for (page += nr; page < last; page++) 4812 __free_pages_ok(page, 0, FPI_TO_TAIL); 4813 } 4814 return (void *)addr; 4815 } 4816 4817 /** 4818 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4819 * @size: the number of bytes to allocate 4820 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4821 * 4822 * This function is similar to alloc_pages(), except that it allocates the 4823 * minimum number of pages to satisfy the request. alloc_pages() can only 4824 * allocate memory in power-of-two pages. 4825 * 4826 * This function is also limited by MAX_ORDER. 4827 * 4828 * Memory allocated by this function must be released by free_pages_exact(). 4829 * 4830 * Return: pointer to the allocated area or %NULL in case of error. 4831 */ 4832 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4833 { 4834 unsigned int order = get_order(size); 4835 unsigned long addr; 4836 4837 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4838 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4839 4840 addr = __get_free_pages(gfp_mask, order); 4841 return make_alloc_exact(addr, order, size); 4842 } 4843 EXPORT_SYMBOL(alloc_pages_exact); 4844 4845 /** 4846 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4847 * pages on a node. 4848 * @nid: the preferred node ID where memory should be allocated 4849 * @size: the number of bytes to allocate 4850 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4851 * 4852 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4853 * back. 4854 * 4855 * Return: pointer to the allocated area or %NULL in case of error. 4856 */ 4857 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4858 { 4859 unsigned int order = get_order(size); 4860 struct page *p; 4861 4862 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4863 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4864 4865 p = alloc_pages_node(nid, gfp_mask, order); 4866 if (!p) 4867 return NULL; 4868 return make_alloc_exact((unsigned long)page_address(p), order, size); 4869 } 4870 4871 /** 4872 * free_pages_exact - release memory allocated via alloc_pages_exact() 4873 * @virt: the value returned by alloc_pages_exact. 4874 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4875 * 4876 * Release the memory allocated by a previous call to alloc_pages_exact. 4877 */ 4878 void free_pages_exact(void *virt, size_t size) 4879 { 4880 unsigned long addr = (unsigned long)virt; 4881 unsigned long end = addr + PAGE_ALIGN(size); 4882 4883 while (addr < end) { 4884 free_page(addr); 4885 addr += PAGE_SIZE; 4886 } 4887 } 4888 EXPORT_SYMBOL(free_pages_exact); 4889 4890 /** 4891 * nr_free_zone_pages - count number of pages beyond high watermark 4892 * @offset: The zone index of the highest zone 4893 * 4894 * nr_free_zone_pages() counts the number of pages which are beyond the 4895 * high watermark within all zones at or below a given zone index. For each 4896 * zone, the number of pages is calculated as: 4897 * 4898 * nr_free_zone_pages = managed_pages - high_pages 4899 * 4900 * Return: number of pages beyond high watermark. 4901 */ 4902 static unsigned long nr_free_zone_pages(int offset) 4903 { 4904 struct zoneref *z; 4905 struct zone *zone; 4906 4907 /* Just pick one node, since fallback list is circular */ 4908 unsigned long sum = 0; 4909 4910 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4911 4912 for_each_zone_zonelist(zone, z, zonelist, offset) { 4913 unsigned long size = zone_managed_pages(zone); 4914 unsigned long high = high_wmark_pages(zone); 4915 if (size > high) 4916 sum += size - high; 4917 } 4918 4919 return sum; 4920 } 4921 4922 /** 4923 * nr_free_buffer_pages - count number of pages beyond high watermark 4924 * 4925 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4926 * watermark within ZONE_DMA and ZONE_NORMAL. 4927 * 4928 * Return: number of pages beyond high watermark within ZONE_DMA and 4929 * ZONE_NORMAL. 4930 */ 4931 unsigned long nr_free_buffer_pages(void) 4932 { 4933 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4934 } 4935 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4936 4937 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4938 { 4939 zoneref->zone = zone; 4940 zoneref->zone_idx = zone_idx(zone); 4941 } 4942 4943 /* 4944 * Builds allocation fallback zone lists. 4945 * 4946 * Add all populated zones of a node to the zonelist. 4947 */ 4948 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4949 { 4950 struct zone *zone; 4951 enum zone_type zone_type = MAX_NR_ZONES; 4952 int nr_zones = 0; 4953 4954 do { 4955 zone_type--; 4956 zone = pgdat->node_zones + zone_type; 4957 if (populated_zone(zone)) { 4958 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4959 check_highest_zone(zone_type); 4960 } 4961 } while (zone_type); 4962 4963 return nr_zones; 4964 } 4965 4966 #ifdef CONFIG_NUMA 4967 4968 static int __parse_numa_zonelist_order(char *s) 4969 { 4970 /* 4971 * We used to support different zonelists modes but they turned 4972 * out to be just not useful. Let's keep the warning in place 4973 * if somebody still use the cmd line parameter so that we do 4974 * not fail it silently 4975 */ 4976 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4977 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4978 return -EINVAL; 4979 } 4980 return 0; 4981 } 4982 4983 static char numa_zonelist_order[] = "Node"; 4984 #define NUMA_ZONELIST_ORDER_LEN 16 4985 /* 4986 * sysctl handler for numa_zonelist_order 4987 */ 4988 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 4989 void *buffer, size_t *length, loff_t *ppos) 4990 { 4991 if (write) 4992 return __parse_numa_zonelist_order(buffer); 4993 return proc_dostring(table, write, buffer, length, ppos); 4994 } 4995 4996 static int node_load[MAX_NUMNODES]; 4997 4998 /** 4999 * find_next_best_node - find the next node that should appear in a given node's fallback list 5000 * @node: node whose fallback list we're appending 5001 * @used_node_mask: nodemask_t of already used nodes 5002 * 5003 * We use a number of factors to determine which is the next node that should 5004 * appear on a given node's fallback list. The node should not have appeared 5005 * already in @node's fallback list, and it should be the next closest node 5006 * according to the distance array (which contains arbitrary distance values 5007 * from each node to each node in the system), and should also prefer nodes 5008 * with no CPUs, since presumably they'll have very little allocation pressure 5009 * on them otherwise. 5010 * 5011 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5012 */ 5013 int find_next_best_node(int node, nodemask_t *used_node_mask) 5014 { 5015 int n, val; 5016 int min_val = INT_MAX; 5017 int best_node = NUMA_NO_NODE; 5018 5019 /* 5020 * Use the local node if we haven't already, but for memoryless local 5021 * node, we should skip it and fall back to other nodes. 5022 */ 5023 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5024 node_set(node, *used_node_mask); 5025 return node; 5026 } 5027 5028 for_each_node_state(n, N_MEMORY) { 5029 5030 /* Don't want a node to appear more than once */ 5031 if (node_isset(n, *used_node_mask)) 5032 continue; 5033 5034 /* Use the distance array to find the distance */ 5035 val = node_distance(node, n); 5036 5037 /* Penalize nodes under us ("prefer the next node") */ 5038 val += (n < node); 5039 5040 /* Give preference to headless and unused nodes */ 5041 if (!cpumask_empty(cpumask_of_node(n))) 5042 val += PENALTY_FOR_NODE_WITH_CPUS; 5043 5044 /* Slight preference for less loaded node */ 5045 val *= MAX_NUMNODES; 5046 val += node_load[n]; 5047 5048 if (val < min_val) { 5049 min_val = val; 5050 best_node = n; 5051 } 5052 } 5053 5054 if (best_node >= 0) 5055 node_set(best_node, *used_node_mask); 5056 5057 return best_node; 5058 } 5059 5060 5061 /* 5062 * Build zonelists ordered by node and zones within node. 5063 * This results in maximum locality--normal zone overflows into local 5064 * DMA zone, if any--but risks exhausting DMA zone. 5065 */ 5066 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5067 unsigned nr_nodes) 5068 { 5069 struct zoneref *zonerefs; 5070 int i; 5071 5072 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5073 5074 for (i = 0; i < nr_nodes; i++) { 5075 int nr_zones; 5076 5077 pg_data_t *node = NODE_DATA(node_order[i]); 5078 5079 nr_zones = build_zonerefs_node(node, zonerefs); 5080 zonerefs += nr_zones; 5081 } 5082 zonerefs->zone = NULL; 5083 zonerefs->zone_idx = 0; 5084 } 5085 5086 /* 5087 * Build gfp_thisnode zonelists 5088 */ 5089 static void build_thisnode_zonelists(pg_data_t *pgdat) 5090 { 5091 struct zoneref *zonerefs; 5092 int nr_zones; 5093 5094 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5095 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5096 zonerefs += nr_zones; 5097 zonerefs->zone = NULL; 5098 zonerefs->zone_idx = 0; 5099 } 5100 5101 /* 5102 * Build zonelists ordered by zone and nodes within zones. 5103 * This results in conserving DMA zone[s] until all Normal memory is 5104 * exhausted, but results in overflowing to remote node while memory 5105 * may still exist in local DMA zone. 5106 */ 5107 5108 static void build_zonelists(pg_data_t *pgdat) 5109 { 5110 static int node_order[MAX_NUMNODES]; 5111 int node, nr_nodes = 0; 5112 nodemask_t used_mask = NODE_MASK_NONE; 5113 int local_node, prev_node; 5114 5115 /* NUMA-aware ordering of nodes */ 5116 local_node = pgdat->node_id; 5117 prev_node = local_node; 5118 5119 memset(node_order, 0, sizeof(node_order)); 5120 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5121 /* 5122 * We don't want to pressure a particular node. 5123 * So adding penalty to the first node in same 5124 * distance group to make it round-robin. 5125 */ 5126 if (node_distance(local_node, node) != 5127 node_distance(local_node, prev_node)) 5128 node_load[node] += 1; 5129 5130 node_order[nr_nodes++] = node; 5131 prev_node = node; 5132 } 5133 5134 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5135 build_thisnode_zonelists(pgdat); 5136 pr_info("Fallback order for Node %d: ", local_node); 5137 for (node = 0; node < nr_nodes; node++) 5138 pr_cont("%d ", node_order[node]); 5139 pr_cont("\n"); 5140 } 5141 5142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5143 /* 5144 * Return node id of node used for "local" allocations. 5145 * I.e., first node id of first zone in arg node's generic zonelist. 5146 * Used for initializing percpu 'numa_mem', which is used primarily 5147 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5148 */ 5149 int local_memory_node(int node) 5150 { 5151 struct zoneref *z; 5152 5153 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5154 gfp_zone(GFP_KERNEL), 5155 NULL); 5156 return zone_to_nid(z->zone); 5157 } 5158 #endif 5159 5160 static void setup_min_unmapped_ratio(void); 5161 static void setup_min_slab_ratio(void); 5162 #else /* CONFIG_NUMA */ 5163 5164 static void build_zonelists(pg_data_t *pgdat) 5165 { 5166 int node, local_node; 5167 struct zoneref *zonerefs; 5168 int nr_zones; 5169 5170 local_node = pgdat->node_id; 5171 5172 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5173 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5174 zonerefs += nr_zones; 5175 5176 /* 5177 * Now we build the zonelist so that it contains the zones 5178 * of all the other nodes. 5179 * We don't want to pressure a particular node, so when 5180 * building the zones for node N, we make sure that the 5181 * zones coming right after the local ones are those from 5182 * node N+1 (modulo N) 5183 */ 5184 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5185 if (!node_online(node)) 5186 continue; 5187 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5188 zonerefs += nr_zones; 5189 } 5190 for (node = 0; node < local_node; node++) { 5191 if (!node_online(node)) 5192 continue; 5193 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5194 zonerefs += nr_zones; 5195 } 5196 5197 zonerefs->zone = NULL; 5198 zonerefs->zone_idx = 0; 5199 } 5200 5201 #endif /* CONFIG_NUMA */ 5202 5203 /* 5204 * Boot pageset table. One per cpu which is going to be used for all 5205 * zones and all nodes. The parameters will be set in such a way 5206 * that an item put on a list will immediately be handed over to 5207 * the buddy list. This is safe since pageset manipulation is done 5208 * with interrupts disabled. 5209 * 5210 * The boot_pagesets must be kept even after bootup is complete for 5211 * unused processors and/or zones. They do play a role for bootstrapping 5212 * hotplugged processors. 5213 * 5214 * zoneinfo_show() and maybe other functions do 5215 * not check if the processor is online before following the pageset pointer. 5216 * Other parts of the kernel may not check if the zone is available. 5217 */ 5218 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5219 /* These effectively disable the pcplists in the boot pageset completely */ 5220 #define BOOT_PAGESET_HIGH 0 5221 #define BOOT_PAGESET_BATCH 1 5222 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5223 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5224 5225 static void __build_all_zonelists(void *data) 5226 { 5227 int nid; 5228 int __maybe_unused cpu; 5229 pg_data_t *self = data; 5230 unsigned long flags; 5231 5232 /* 5233 * The zonelist_update_seq must be acquired with irqsave because the 5234 * reader can be invoked from IRQ with GFP_ATOMIC. 5235 */ 5236 write_seqlock_irqsave(&zonelist_update_seq, flags); 5237 /* 5238 * Also disable synchronous printk() to prevent any printk() from 5239 * trying to hold port->lock, for 5240 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5241 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5242 */ 5243 printk_deferred_enter(); 5244 5245 #ifdef CONFIG_NUMA 5246 memset(node_load, 0, sizeof(node_load)); 5247 #endif 5248 5249 /* 5250 * This node is hotadded and no memory is yet present. So just 5251 * building zonelists is fine - no need to touch other nodes. 5252 */ 5253 if (self && !node_online(self->node_id)) { 5254 build_zonelists(self); 5255 } else { 5256 /* 5257 * All possible nodes have pgdat preallocated 5258 * in free_area_init 5259 */ 5260 for_each_node(nid) { 5261 pg_data_t *pgdat = NODE_DATA(nid); 5262 5263 build_zonelists(pgdat); 5264 } 5265 5266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5267 /* 5268 * We now know the "local memory node" for each node-- 5269 * i.e., the node of the first zone in the generic zonelist. 5270 * Set up numa_mem percpu variable for on-line cpus. During 5271 * boot, only the boot cpu should be on-line; we'll init the 5272 * secondary cpus' numa_mem as they come on-line. During 5273 * node/memory hotplug, we'll fixup all on-line cpus. 5274 */ 5275 for_each_online_cpu(cpu) 5276 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5277 #endif 5278 } 5279 5280 printk_deferred_exit(); 5281 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5282 } 5283 5284 static noinline void __init 5285 build_all_zonelists_init(void) 5286 { 5287 int cpu; 5288 5289 __build_all_zonelists(NULL); 5290 5291 /* 5292 * Initialize the boot_pagesets that are going to be used 5293 * for bootstrapping processors. The real pagesets for 5294 * each zone will be allocated later when the per cpu 5295 * allocator is available. 5296 * 5297 * boot_pagesets are used also for bootstrapping offline 5298 * cpus if the system is already booted because the pagesets 5299 * are needed to initialize allocators on a specific cpu too. 5300 * F.e. the percpu allocator needs the page allocator which 5301 * needs the percpu allocator in order to allocate its pagesets 5302 * (a chicken-egg dilemma). 5303 */ 5304 for_each_possible_cpu(cpu) 5305 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5306 5307 mminit_verify_zonelist(); 5308 cpuset_init_current_mems_allowed(); 5309 } 5310 5311 /* 5312 * unless system_state == SYSTEM_BOOTING. 5313 * 5314 * __ref due to call of __init annotated helper build_all_zonelists_init 5315 * [protected by SYSTEM_BOOTING]. 5316 */ 5317 void __ref build_all_zonelists(pg_data_t *pgdat) 5318 { 5319 unsigned long vm_total_pages; 5320 5321 if (system_state == SYSTEM_BOOTING) { 5322 build_all_zonelists_init(); 5323 } else { 5324 __build_all_zonelists(pgdat); 5325 /* cpuset refresh routine should be here */ 5326 } 5327 /* Get the number of free pages beyond high watermark in all zones. */ 5328 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5329 /* 5330 * Disable grouping by mobility if the number of pages in the 5331 * system is too low to allow the mechanism to work. It would be 5332 * more accurate, but expensive to check per-zone. This check is 5333 * made on memory-hotadd so a system can start with mobility 5334 * disabled and enable it later 5335 */ 5336 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5337 page_group_by_mobility_disabled = 1; 5338 else 5339 page_group_by_mobility_disabled = 0; 5340 5341 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5342 nr_online_nodes, 5343 page_group_by_mobility_disabled ? "off" : "on", 5344 vm_total_pages); 5345 #ifdef CONFIG_NUMA 5346 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5347 #endif 5348 } 5349 5350 static int zone_batchsize(struct zone *zone) 5351 { 5352 #ifdef CONFIG_MMU 5353 int batch; 5354 5355 /* 5356 * The number of pages to batch allocate is either ~0.1% 5357 * of the zone or 1MB, whichever is smaller. The batch 5358 * size is striking a balance between allocation latency 5359 * and zone lock contention. 5360 */ 5361 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5362 batch /= 4; /* We effectively *= 4 below */ 5363 if (batch < 1) 5364 batch = 1; 5365 5366 /* 5367 * Clamp the batch to a 2^n - 1 value. Having a power 5368 * of 2 value was found to be more likely to have 5369 * suboptimal cache aliasing properties in some cases. 5370 * 5371 * For example if 2 tasks are alternately allocating 5372 * batches of pages, one task can end up with a lot 5373 * of pages of one half of the possible page colors 5374 * and the other with pages of the other colors. 5375 */ 5376 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5377 5378 return batch; 5379 5380 #else 5381 /* The deferral and batching of frees should be suppressed under NOMMU 5382 * conditions. 5383 * 5384 * The problem is that NOMMU needs to be able to allocate large chunks 5385 * of contiguous memory as there's no hardware page translation to 5386 * assemble apparent contiguous memory from discontiguous pages. 5387 * 5388 * Queueing large contiguous runs of pages for batching, however, 5389 * causes the pages to actually be freed in smaller chunks. As there 5390 * can be a significant delay between the individual batches being 5391 * recycled, this leads to the once large chunks of space being 5392 * fragmented and becoming unavailable for high-order allocations. 5393 */ 5394 return 0; 5395 #endif 5396 } 5397 5398 static int percpu_pagelist_high_fraction; 5399 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5400 int high_fraction) 5401 { 5402 #ifdef CONFIG_MMU 5403 int high; 5404 int nr_split_cpus; 5405 unsigned long total_pages; 5406 5407 if (!high_fraction) { 5408 /* 5409 * By default, the high value of the pcp is based on the zone 5410 * low watermark so that if they are full then background 5411 * reclaim will not be started prematurely. 5412 */ 5413 total_pages = low_wmark_pages(zone); 5414 } else { 5415 /* 5416 * If percpu_pagelist_high_fraction is configured, the high 5417 * value is based on a fraction of the managed pages in the 5418 * zone. 5419 */ 5420 total_pages = zone_managed_pages(zone) / high_fraction; 5421 } 5422 5423 /* 5424 * Split the high value across all online CPUs local to the zone. Note 5425 * that early in boot that CPUs may not be online yet and that during 5426 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5427 * onlined. For memory nodes that have no CPUs, split the high value 5428 * across all online CPUs to mitigate the risk that reclaim is triggered 5429 * prematurely due to pages stored on pcp lists. 5430 */ 5431 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5432 if (!nr_split_cpus) 5433 nr_split_cpus = num_online_cpus(); 5434 high = total_pages / nr_split_cpus; 5435 5436 /* 5437 * Ensure high is at least batch*4. The multiple is based on the 5438 * historical relationship between high and batch. 5439 */ 5440 high = max(high, batch << 2); 5441 5442 return high; 5443 #else 5444 return 0; 5445 #endif 5446 } 5447 5448 /* 5449 * pcp->high and pcp->batch values are related and generally batch is lower 5450 * than high. They are also related to pcp->count such that count is lower 5451 * than high, and as soon as it reaches high, the pcplist is flushed. 5452 * 5453 * However, guaranteeing these relations at all times would require e.g. write 5454 * barriers here but also careful usage of read barriers at the read side, and 5455 * thus be prone to error and bad for performance. Thus the update only prevents 5456 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5457 * should ensure they can cope with those fields changing asynchronously, and 5458 * fully trust only the pcp->count field on the local CPU with interrupts 5459 * disabled. 5460 * 5461 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5462 * outside of boot time (or some other assurance that no concurrent updaters 5463 * exist). 5464 */ 5465 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5466 unsigned long high_max, unsigned long batch) 5467 { 5468 WRITE_ONCE(pcp->batch, batch); 5469 WRITE_ONCE(pcp->high_min, high_min); 5470 WRITE_ONCE(pcp->high_max, high_max); 5471 } 5472 5473 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5474 { 5475 int pindex; 5476 5477 memset(pcp, 0, sizeof(*pcp)); 5478 memset(pzstats, 0, sizeof(*pzstats)); 5479 5480 spin_lock_init(&pcp->lock); 5481 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5482 INIT_LIST_HEAD(&pcp->lists[pindex]); 5483 5484 /* 5485 * Set batch and high values safe for a boot pageset. A true percpu 5486 * pageset's initialization will update them subsequently. Here we don't 5487 * need to be as careful as pageset_update() as nobody can access the 5488 * pageset yet. 5489 */ 5490 pcp->high_min = BOOT_PAGESET_HIGH; 5491 pcp->high_max = BOOT_PAGESET_HIGH; 5492 pcp->batch = BOOT_PAGESET_BATCH; 5493 pcp->free_count = 0; 5494 } 5495 5496 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5497 unsigned long high_max, unsigned long batch) 5498 { 5499 struct per_cpu_pages *pcp; 5500 int cpu; 5501 5502 for_each_possible_cpu(cpu) { 5503 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5504 pageset_update(pcp, high_min, high_max, batch); 5505 } 5506 } 5507 5508 /* 5509 * Calculate and set new high and batch values for all per-cpu pagesets of a 5510 * zone based on the zone's size. 5511 */ 5512 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5513 { 5514 int new_high_min, new_high_max, new_batch; 5515 5516 new_batch = max(1, zone_batchsize(zone)); 5517 if (percpu_pagelist_high_fraction) { 5518 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5519 percpu_pagelist_high_fraction); 5520 /* 5521 * PCP high is tuned manually, disable auto-tuning via 5522 * setting high_min and high_max to the manual value. 5523 */ 5524 new_high_max = new_high_min; 5525 } else { 5526 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5527 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5528 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5529 } 5530 5531 if (zone->pageset_high_min == new_high_min && 5532 zone->pageset_high_max == new_high_max && 5533 zone->pageset_batch == new_batch) 5534 return; 5535 5536 zone->pageset_high_min = new_high_min; 5537 zone->pageset_high_max = new_high_max; 5538 zone->pageset_batch = new_batch; 5539 5540 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5541 new_batch); 5542 } 5543 5544 void __meminit setup_zone_pageset(struct zone *zone) 5545 { 5546 int cpu; 5547 5548 /* Size may be 0 on !SMP && !NUMA */ 5549 if (sizeof(struct per_cpu_zonestat) > 0) 5550 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5551 5552 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5553 for_each_possible_cpu(cpu) { 5554 struct per_cpu_pages *pcp; 5555 struct per_cpu_zonestat *pzstats; 5556 5557 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5558 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5559 per_cpu_pages_init(pcp, pzstats); 5560 } 5561 5562 zone_set_pageset_high_and_batch(zone, 0); 5563 } 5564 5565 /* 5566 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5567 * page high values need to be recalculated. 5568 */ 5569 static void zone_pcp_update(struct zone *zone, int cpu_online) 5570 { 5571 mutex_lock(&pcp_batch_high_lock); 5572 zone_set_pageset_high_and_batch(zone, cpu_online); 5573 mutex_unlock(&pcp_batch_high_lock); 5574 } 5575 5576 static void zone_pcp_update_cacheinfo(struct zone *zone) 5577 { 5578 int cpu; 5579 struct per_cpu_pages *pcp; 5580 struct cpu_cacheinfo *cci; 5581 5582 for_each_online_cpu(cpu) { 5583 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5584 cci = get_cpu_cacheinfo(cpu); 5585 /* 5586 * If data cache slice of CPU is large enough, "pcp->batch" 5587 * pages can be preserved in PCP before draining PCP for 5588 * consecutive high-order pages freeing without allocation. 5589 * This can reduce zone lock contention without hurting 5590 * cache-hot pages sharing. 5591 */ 5592 spin_lock(&pcp->lock); 5593 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5594 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5595 else 5596 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5597 spin_unlock(&pcp->lock); 5598 } 5599 } 5600 5601 void setup_pcp_cacheinfo(void) 5602 { 5603 struct zone *zone; 5604 5605 for_each_populated_zone(zone) 5606 zone_pcp_update_cacheinfo(zone); 5607 } 5608 5609 /* 5610 * Allocate per cpu pagesets and initialize them. 5611 * Before this call only boot pagesets were available. 5612 */ 5613 void __init setup_per_cpu_pageset(void) 5614 { 5615 struct pglist_data *pgdat; 5616 struct zone *zone; 5617 int __maybe_unused cpu; 5618 5619 for_each_populated_zone(zone) 5620 setup_zone_pageset(zone); 5621 5622 #ifdef CONFIG_NUMA 5623 /* 5624 * Unpopulated zones continue using the boot pagesets. 5625 * The numa stats for these pagesets need to be reset. 5626 * Otherwise, they will end up skewing the stats of 5627 * the nodes these zones are associated with. 5628 */ 5629 for_each_possible_cpu(cpu) { 5630 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5631 memset(pzstats->vm_numa_event, 0, 5632 sizeof(pzstats->vm_numa_event)); 5633 } 5634 #endif 5635 5636 for_each_online_pgdat(pgdat) 5637 pgdat->per_cpu_nodestats = 5638 alloc_percpu(struct per_cpu_nodestat); 5639 } 5640 5641 __meminit void zone_pcp_init(struct zone *zone) 5642 { 5643 /* 5644 * per cpu subsystem is not up at this point. The following code 5645 * relies on the ability of the linker to provide the 5646 * offset of a (static) per cpu variable into the per cpu area. 5647 */ 5648 zone->per_cpu_pageset = &boot_pageset; 5649 zone->per_cpu_zonestats = &boot_zonestats; 5650 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5651 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5652 zone->pageset_batch = BOOT_PAGESET_BATCH; 5653 5654 if (populated_zone(zone)) 5655 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5656 zone->present_pages, zone_batchsize(zone)); 5657 } 5658 5659 void adjust_managed_page_count(struct page *page, long count) 5660 { 5661 atomic_long_add(count, &page_zone(page)->managed_pages); 5662 totalram_pages_add(count); 5663 #ifdef CONFIG_HIGHMEM 5664 if (PageHighMem(page)) 5665 totalhigh_pages_add(count); 5666 #endif 5667 } 5668 EXPORT_SYMBOL(adjust_managed_page_count); 5669 5670 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5671 { 5672 void *pos; 5673 unsigned long pages = 0; 5674 5675 start = (void *)PAGE_ALIGN((unsigned long)start); 5676 end = (void *)((unsigned long)end & PAGE_MASK); 5677 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5678 struct page *page = virt_to_page(pos); 5679 void *direct_map_addr; 5680 5681 /* 5682 * 'direct_map_addr' might be different from 'pos' 5683 * because some architectures' virt_to_page() 5684 * work with aliases. Getting the direct map 5685 * address ensures that we get a _writeable_ 5686 * alias for the memset(). 5687 */ 5688 direct_map_addr = page_address(page); 5689 /* 5690 * Perform a kasan-unchecked memset() since this memory 5691 * has not been initialized. 5692 */ 5693 direct_map_addr = kasan_reset_tag(direct_map_addr); 5694 if ((unsigned int)poison <= 0xFF) 5695 memset(direct_map_addr, poison, PAGE_SIZE); 5696 5697 free_reserved_page(page); 5698 } 5699 5700 if (pages && s) 5701 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5702 5703 return pages; 5704 } 5705 5706 static int page_alloc_cpu_dead(unsigned int cpu) 5707 { 5708 struct zone *zone; 5709 5710 lru_add_drain_cpu(cpu); 5711 mlock_drain_remote(cpu); 5712 drain_pages(cpu); 5713 5714 /* 5715 * Spill the event counters of the dead processor 5716 * into the current processors event counters. 5717 * This artificially elevates the count of the current 5718 * processor. 5719 */ 5720 vm_events_fold_cpu(cpu); 5721 5722 /* 5723 * Zero the differential counters of the dead processor 5724 * so that the vm statistics are consistent. 5725 * 5726 * This is only okay since the processor is dead and cannot 5727 * race with what we are doing. 5728 */ 5729 cpu_vm_stats_fold(cpu); 5730 5731 for_each_populated_zone(zone) 5732 zone_pcp_update(zone, 0); 5733 5734 return 0; 5735 } 5736 5737 static int page_alloc_cpu_online(unsigned int cpu) 5738 { 5739 struct zone *zone; 5740 5741 for_each_populated_zone(zone) 5742 zone_pcp_update(zone, 1); 5743 return 0; 5744 } 5745 5746 void __init page_alloc_init_cpuhp(void) 5747 { 5748 int ret; 5749 5750 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5751 "mm/page_alloc:pcp", 5752 page_alloc_cpu_online, 5753 page_alloc_cpu_dead); 5754 WARN_ON(ret < 0); 5755 } 5756 5757 /* 5758 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5759 * or min_free_kbytes changes. 5760 */ 5761 static void calculate_totalreserve_pages(void) 5762 { 5763 struct pglist_data *pgdat; 5764 unsigned long reserve_pages = 0; 5765 enum zone_type i, j; 5766 5767 for_each_online_pgdat(pgdat) { 5768 5769 pgdat->totalreserve_pages = 0; 5770 5771 for (i = 0; i < MAX_NR_ZONES; i++) { 5772 struct zone *zone = pgdat->node_zones + i; 5773 long max = 0; 5774 unsigned long managed_pages = zone_managed_pages(zone); 5775 5776 /* Find valid and maximum lowmem_reserve in the zone */ 5777 for (j = i; j < MAX_NR_ZONES; j++) { 5778 if (zone->lowmem_reserve[j] > max) 5779 max = zone->lowmem_reserve[j]; 5780 } 5781 5782 /* we treat the high watermark as reserved pages. */ 5783 max += high_wmark_pages(zone); 5784 5785 if (max > managed_pages) 5786 max = managed_pages; 5787 5788 pgdat->totalreserve_pages += max; 5789 5790 reserve_pages += max; 5791 } 5792 } 5793 totalreserve_pages = reserve_pages; 5794 } 5795 5796 /* 5797 * setup_per_zone_lowmem_reserve - called whenever 5798 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5799 * has a correct pages reserved value, so an adequate number of 5800 * pages are left in the zone after a successful __alloc_pages(). 5801 */ 5802 static void setup_per_zone_lowmem_reserve(void) 5803 { 5804 struct pglist_data *pgdat; 5805 enum zone_type i, j; 5806 5807 for_each_online_pgdat(pgdat) { 5808 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5809 struct zone *zone = &pgdat->node_zones[i]; 5810 int ratio = sysctl_lowmem_reserve_ratio[i]; 5811 bool clear = !ratio || !zone_managed_pages(zone); 5812 unsigned long managed_pages = 0; 5813 5814 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5815 struct zone *upper_zone = &pgdat->node_zones[j]; 5816 5817 managed_pages += zone_managed_pages(upper_zone); 5818 5819 if (clear) 5820 zone->lowmem_reserve[j] = 0; 5821 else 5822 zone->lowmem_reserve[j] = managed_pages / ratio; 5823 } 5824 } 5825 } 5826 5827 /* update totalreserve_pages */ 5828 calculate_totalreserve_pages(); 5829 } 5830 5831 static void __setup_per_zone_wmarks(void) 5832 { 5833 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5834 unsigned long lowmem_pages = 0; 5835 struct zone *zone; 5836 unsigned long flags; 5837 5838 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5839 for_each_zone(zone) { 5840 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5841 lowmem_pages += zone_managed_pages(zone); 5842 } 5843 5844 for_each_zone(zone) { 5845 u64 tmp; 5846 5847 spin_lock_irqsave(&zone->lock, flags); 5848 tmp = (u64)pages_min * zone_managed_pages(zone); 5849 do_div(tmp, lowmem_pages); 5850 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5851 /* 5852 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5853 * need highmem and movable zones pages, so cap pages_min 5854 * to a small value here. 5855 * 5856 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5857 * deltas control async page reclaim, and so should 5858 * not be capped for highmem and movable zones. 5859 */ 5860 unsigned long min_pages; 5861 5862 min_pages = zone_managed_pages(zone) / 1024; 5863 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5864 zone->_watermark[WMARK_MIN] = min_pages; 5865 } else { 5866 /* 5867 * If it's a lowmem zone, reserve a number of pages 5868 * proportionate to the zone's size. 5869 */ 5870 zone->_watermark[WMARK_MIN] = tmp; 5871 } 5872 5873 /* 5874 * Set the kswapd watermarks distance according to the 5875 * scale factor in proportion to available memory, but 5876 * ensure a minimum size on small systems. 5877 */ 5878 tmp = max_t(u64, tmp >> 2, 5879 mult_frac(zone_managed_pages(zone), 5880 watermark_scale_factor, 10000)); 5881 5882 zone->watermark_boost = 0; 5883 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5884 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5885 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5886 5887 spin_unlock_irqrestore(&zone->lock, flags); 5888 } 5889 5890 /* update totalreserve_pages */ 5891 calculate_totalreserve_pages(); 5892 } 5893 5894 /** 5895 * setup_per_zone_wmarks - called when min_free_kbytes changes 5896 * or when memory is hot-{added|removed} 5897 * 5898 * Ensures that the watermark[min,low,high] values for each zone are set 5899 * correctly with respect to min_free_kbytes. 5900 */ 5901 void setup_per_zone_wmarks(void) 5902 { 5903 struct zone *zone; 5904 static DEFINE_SPINLOCK(lock); 5905 5906 spin_lock(&lock); 5907 __setup_per_zone_wmarks(); 5908 spin_unlock(&lock); 5909 5910 /* 5911 * The watermark size have changed so update the pcpu batch 5912 * and high limits or the limits may be inappropriate. 5913 */ 5914 for_each_zone(zone) 5915 zone_pcp_update(zone, 0); 5916 } 5917 5918 /* 5919 * Initialise min_free_kbytes. 5920 * 5921 * For small machines we want it small (128k min). For large machines 5922 * we want it large (256MB max). But it is not linear, because network 5923 * bandwidth does not increase linearly with machine size. We use 5924 * 5925 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5926 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5927 * 5928 * which yields 5929 * 5930 * 16MB: 512k 5931 * 32MB: 724k 5932 * 64MB: 1024k 5933 * 128MB: 1448k 5934 * 256MB: 2048k 5935 * 512MB: 2896k 5936 * 1024MB: 4096k 5937 * 2048MB: 5792k 5938 * 4096MB: 8192k 5939 * 8192MB: 11584k 5940 * 16384MB: 16384k 5941 */ 5942 void calculate_min_free_kbytes(void) 5943 { 5944 unsigned long lowmem_kbytes; 5945 int new_min_free_kbytes; 5946 5947 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5948 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5949 5950 if (new_min_free_kbytes > user_min_free_kbytes) 5951 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5952 else 5953 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5954 new_min_free_kbytes, user_min_free_kbytes); 5955 5956 } 5957 5958 int __meminit init_per_zone_wmark_min(void) 5959 { 5960 calculate_min_free_kbytes(); 5961 setup_per_zone_wmarks(); 5962 refresh_zone_stat_thresholds(); 5963 setup_per_zone_lowmem_reserve(); 5964 5965 #ifdef CONFIG_NUMA 5966 setup_min_unmapped_ratio(); 5967 setup_min_slab_ratio(); 5968 #endif 5969 5970 khugepaged_min_free_kbytes_update(); 5971 5972 return 0; 5973 } 5974 postcore_initcall(init_per_zone_wmark_min) 5975 5976 /* 5977 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5978 * that we can call two helper functions whenever min_free_kbytes 5979 * changes. 5980 */ 5981 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 5982 void *buffer, size_t *length, loff_t *ppos) 5983 { 5984 int rc; 5985 5986 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5987 if (rc) 5988 return rc; 5989 5990 if (write) { 5991 user_min_free_kbytes = min_free_kbytes; 5992 setup_per_zone_wmarks(); 5993 } 5994 return 0; 5995 } 5996 5997 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 5998 void *buffer, size_t *length, loff_t *ppos) 5999 { 6000 int rc; 6001 6002 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6003 if (rc) 6004 return rc; 6005 6006 if (write) 6007 setup_per_zone_wmarks(); 6008 6009 return 0; 6010 } 6011 6012 #ifdef CONFIG_NUMA 6013 static void setup_min_unmapped_ratio(void) 6014 { 6015 pg_data_t *pgdat; 6016 struct zone *zone; 6017 6018 for_each_online_pgdat(pgdat) 6019 pgdat->min_unmapped_pages = 0; 6020 6021 for_each_zone(zone) 6022 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6023 sysctl_min_unmapped_ratio) / 100; 6024 } 6025 6026 6027 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6028 void *buffer, size_t *length, loff_t *ppos) 6029 { 6030 int rc; 6031 6032 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6033 if (rc) 6034 return rc; 6035 6036 setup_min_unmapped_ratio(); 6037 6038 return 0; 6039 } 6040 6041 static void setup_min_slab_ratio(void) 6042 { 6043 pg_data_t *pgdat; 6044 struct zone *zone; 6045 6046 for_each_online_pgdat(pgdat) 6047 pgdat->min_slab_pages = 0; 6048 6049 for_each_zone(zone) 6050 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6051 sysctl_min_slab_ratio) / 100; 6052 } 6053 6054 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6055 void *buffer, size_t *length, loff_t *ppos) 6056 { 6057 int rc; 6058 6059 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6060 if (rc) 6061 return rc; 6062 6063 setup_min_slab_ratio(); 6064 6065 return 0; 6066 } 6067 #endif 6068 6069 /* 6070 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6071 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6072 * whenever sysctl_lowmem_reserve_ratio changes. 6073 * 6074 * The reserve ratio obviously has absolutely no relation with the 6075 * minimum watermarks. The lowmem reserve ratio can only make sense 6076 * if in function of the boot time zone sizes. 6077 */ 6078 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 6079 int write, void *buffer, size_t *length, loff_t *ppos) 6080 { 6081 int i; 6082 6083 proc_dointvec_minmax(table, write, buffer, length, ppos); 6084 6085 for (i = 0; i < MAX_NR_ZONES; i++) { 6086 if (sysctl_lowmem_reserve_ratio[i] < 1) 6087 sysctl_lowmem_reserve_ratio[i] = 0; 6088 } 6089 6090 setup_per_zone_lowmem_reserve(); 6091 return 0; 6092 } 6093 6094 /* 6095 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6096 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6097 * pagelist can have before it gets flushed back to buddy allocator. 6098 */ 6099 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6100 int write, void *buffer, size_t *length, loff_t *ppos) 6101 { 6102 struct zone *zone; 6103 int old_percpu_pagelist_high_fraction; 6104 int ret; 6105 6106 mutex_lock(&pcp_batch_high_lock); 6107 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6108 6109 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6110 if (!write || ret < 0) 6111 goto out; 6112 6113 /* Sanity checking to avoid pcp imbalance */ 6114 if (percpu_pagelist_high_fraction && 6115 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6116 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6117 ret = -EINVAL; 6118 goto out; 6119 } 6120 6121 /* No change? */ 6122 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6123 goto out; 6124 6125 for_each_populated_zone(zone) 6126 zone_set_pageset_high_and_batch(zone, 0); 6127 out: 6128 mutex_unlock(&pcp_batch_high_lock); 6129 return ret; 6130 } 6131 6132 static struct ctl_table page_alloc_sysctl_table[] = { 6133 { 6134 .procname = "min_free_kbytes", 6135 .data = &min_free_kbytes, 6136 .maxlen = sizeof(min_free_kbytes), 6137 .mode = 0644, 6138 .proc_handler = min_free_kbytes_sysctl_handler, 6139 .extra1 = SYSCTL_ZERO, 6140 }, 6141 { 6142 .procname = "watermark_boost_factor", 6143 .data = &watermark_boost_factor, 6144 .maxlen = sizeof(watermark_boost_factor), 6145 .mode = 0644, 6146 .proc_handler = proc_dointvec_minmax, 6147 .extra1 = SYSCTL_ZERO, 6148 }, 6149 { 6150 .procname = "watermark_scale_factor", 6151 .data = &watermark_scale_factor, 6152 .maxlen = sizeof(watermark_scale_factor), 6153 .mode = 0644, 6154 .proc_handler = watermark_scale_factor_sysctl_handler, 6155 .extra1 = SYSCTL_ONE, 6156 .extra2 = SYSCTL_THREE_THOUSAND, 6157 }, 6158 { 6159 .procname = "percpu_pagelist_high_fraction", 6160 .data = &percpu_pagelist_high_fraction, 6161 .maxlen = sizeof(percpu_pagelist_high_fraction), 6162 .mode = 0644, 6163 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6164 .extra1 = SYSCTL_ZERO, 6165 }, 6166 { 6167 .procname = "lowmem_reserve_ratio", 6168 .data = &sysctl_lowmem_reserve_ratio, 6169 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6170 .mode = 0644, 6171 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6172 }, 6173 #ifdef CONFIG_NUMA 6174 { 6175 .procname = "numa_zonelist_order", 6176 .data = &numa_zonelist_order, 6177 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6178 .mode = 0644, 6179 .proc_handler = numa_zonelist_order_handler, 6180 }, 6181 { 6182 .procname = "min_unmapped_ratio", 6183 .data = &sysctl_min_unmapped_ratio, 6184 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6185 .mode = 0644, 6186 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6187 .extra1 = SYSCTL_ZERO, 6188 .extra2 = SYSCTL_ONE_HUNDRED, 6189 }, 6190 { 6191 .procname = "min_slab_ratio", 6192 .data = &sysctl_min_slab_ratio, 6193 .maxlen = sizeof(sysctl_min_slab_ratio), 6194 .mode = 0644, 6195 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6196 .extra1 = SYSCTL_ZERO, 6197 .extra2 = SYSCTL_ONE_HUNDRED, 6198 }, 6199 #endif 6200 {} 6201 }; 6202 6203 void __init page_alloc_sysctl_init(void) 6204 { 6205 register_sysctl_init("vm", page_alloc_sysctl_table); 6206 } 6207 6208 #ifdef CONFIG_CONTIG_ALLOC 6209 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6210 static void alloc_contig_dump_pages(struct list_head *page_list) 6211 { 6212 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6213 6214 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6215 struct page *page; 6216 6217 dump_stack(); 6218 list_for_each_entry(page, page_list, lru) 6219 dump_page(page, "migration failure"); 6220 } 6221 } 6222 6223 /* [start, end) must belong to a single zone. */ 6224 int __alloc_contig_migrate_range(struct compact_control *cc, 6225 unsigned long start, unsigned long end) 6226 { 6227 /* This function is based on compact_zone() from compaction.c. */ 6228 unsigned int nr_reclaimed; 6229 unsigned long pfn = start; 6230 unsigned int tries = 0; 6231 int ret = 0; 6232 struct migration_target_control mtc = { 6233 .nid = zone_to_nid(cc->zone), 6234 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6235 }; 6236 6237 lru_cache_disable(); 6238 6239 while (pfn < end || !list_empty(&cc->migratepages)) { 6240 if (fatal_signal_pending(current)) { 6241 ret = -EINTR; 6242 break; 6243 } 6244 6245 if (list_empty(&cc->migratepages)) { 6246 cc->nr_migratepages = 0; 6247 ret = isolate_migratepages_range(cc, pfn, end); 6248 if (ret && ret != -EAGAIN) 6249 break; 6250 pfn = cc->migrate_pfn; 6251 tries = 0; 6252 } else if (++tries == 5) { 6253 ret = -EBUSY; 6254 break; 6255 } 6256 6257 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6258 &cc->migratepages); 6259 cc->nr_migratepages -= nr_reclaimed; 6260 6261 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6262 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6263 6264 /* 6265 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6266 * to retry again over this error, so do the same here. 6267 */ 6268 if (ret == -ENOMEM) 6269 break; 6270 } 6271 6272 lru_cache_enable(); 6273 if (ret < 0) { 6274 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6275 alloc_contig_dump_pages(&cc->migratepages); 6276 putback_movable_pages(&cc->migratepages); 6277 return ret; 6278 } 6279 return 0; 6280 } 6281 6282 /** 6283 * alloc_contig_range() -- tries to allocate given range of pages 6284 * @start: start PFN to allocate 6285 * @end: one-past-the-last PFN to allocate 6286 * @migratetype: migratetype of the underlying pageblocks (either 6287 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6288 * in range must have the same migratetype and it must 6289 * be either of the two. 6290 * @gfp_mask: GFP mask to use during compaction 6291 * 6292 * The PFN range does not have to be pageblock aligned. The PFN range must 6293 * belong to a single zone. 6294 * 6295 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6296 * pageblocks in the range. Once isolated, the pageblocks should not 6297 * be modified by others. 6298 * 6299 * Return: zero on success or negative error code. On success all 6300 * pages which PFN is in [start, end) are allocated for the caller and 6301 * need to be freed with free_contig_range(). 6302 */ 6303 int alloc_contig_range(unsigned long start, unsigned long end, 6304 unsigned migratetype, gfp_t gfp_mask) 6305 { 6306 unsigned long outer_start, outer_end; 6307 int order; 6308 int ret = 0; 6309 6310 struct compact_control cc = { 6311 .nr_migratepages = 0, 6312 .order = -1, 6313 .zone = page_zone(pfn_to_page(start)), 6314 .mode = MIGRATE_SYNC, 6315 .ignore_skip_hint = true, 6316 .no_set_skip_hint = true, 6317 .gfp_mask = current_gfp_context(gfp_mask), 6318 .alloc_contig = true, 6319 }; 6320 INIT_LIST_HEAD(&cc.migratepages); 6321 6322 /* 6323 * What we do here is we mark all pageblocks in range as 6324 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6325 * have different sizes, and due to the way page allocator 6326 * work, start_isolate_page_range() has special handlings for this. 6327 * 6328 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6329 * migrate the pages from an unaligned range (ie. pages that 6330 * we are interested in). This will put all the pages in 6331 * range back to page allocator as MIGRATE_ISOLATE. 6332 * 6333 * When this is done, we take the pages in range from page 6334 * allocator removing them from the buddy system. This way 6335 * page allocator will never consider using them. 6336 * 6337 * This lets us mark the pageblocks back as 6338 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6339 * aligned range but not in the unaligned, original range are 6340 * put back to page allocator so that buddy can use them. 6341 */ 6342 6343 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6344 if (ret) 6345 goto done; 6346 6347 drain_all_pages(cc.zone); 6348 6349 /* 6350 * In case of -EBUSY, we'd like to know which page causes problem. 6351 * So, just fall through. test_pages_isolated() has a tracepoint 6352 * which will report the busy page. 6353 * 6354 * It is possible that busy pages could become available before 6355 * the call to test_pages_isolated, and the range will actually be 6356 * allocated. So, if we fall through be sure to clear ret so that 6357 * -EBUSY is not accidentally used or returned to caller. 6358 */ 6359 ret = __alloc_contig_migrate_range(&cc, start, end); 6360 if (ret && ret != -EBUSY) 6361 goto done; 6362 ret = 0; 6363 6364 /* 6365 * Pages from [start, end) are within a pageblock_nr_pages 6366 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6367 * more, all pages in [start, end) are free in page allocator. 6368 * What we are going to do is to allocate all pages from 6369 * [start, end) (that is remove them from page allocator). 6370 * 6371 * The only problem is that pages at the beginning and at the 6372 * end of interesting range may be not aligned with pages that 6373 * page allocator holds, ie. they can be part of higher order 6374 * pages. Because of this, we reserve the bigger range and 6375 * once this is done free the pages we are not interested in. 6376 * 6377 * We don't have to hold zone->lock here because the pages are 6378 * isolated thus they won't get removed from buddy. 6379 */ 6380 6381 order = 0; 6382 outer_start = start; 6383 while (!PageBuddy(pfn_to_page(outer_start))) { 6384 if (++order > MAX_ORDER) { 6385 outer_start = start; 6386 break; 6387 } 6388 outer_start &= ~0UL << order; 6389 } 6390 6391 if (outer_start != start) { 6392 order = buddy_order(pfn_to_page(outer_start)); 6393 6394 /* 6395 * outer_start page could be small order buddy page and 6396 * it doesn't include start page. Adjust outer_start 6397 * in this case to report failed page properly 6398 * on tracepoint in test_pages_isolated() 6399 */ 6400 if (outer_start + (1UL << order) <= start) 6401 outer_start = start; 6402 } 6403 6404 /* Make sure the range is really isolated. */ 6405 if (test_pages_isolated(outer_start, end, 0)) { 6406 ret = -EBUSY; 6407 goto done; 6408 } 6409 6410 /* Grab isolated pages from freelists. */ 6411 outer_end = isolate_freepages_range(&cc, outer_start, end); 6412 if (!outer_end) { 6413 ret = -EBUSY; 6414 goto done; 6415 } 6416 6417 /* Free head and tail (if any) */ 6418 if (start != outer_start) 6419 free_contig_range(outer_start, start - outer_start); 6420 if (end != outer_end) 6421 free_contig_range(end, outer_end - end); 6422 6423 done: 6424 undo_isolate_page_range(start, end, migratetype); 6425 return ret; 6426 } 6427 EXPORT_SYMBOL(alloc_contig_range); 6428 6429 static int __alloc_contig_pages(unsigned long start_pfn, 6430 unsigned long nr_pages, gfp_t gfp_mask) 6431 { 6432 unsigned long end_pfn = start_pfn + nr_pages; 6433 6434 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6435 gfp_mask); 6436 } 6437 6438 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6439 unsigned long nr_pages) 6440 { 6441 unsigned long i, end_pfn = start_pfn + nr_pages; 6442 struct page *page; 6443 6444 for (i = start_pfn; i < end_pfn; i++) { 6445 page = pfn_to_online_page(i); 6446 if (!page) 6447 return false; 6448 6449 if (page_zone(page) != z) 6450 return false; 6451 6452 if (PageReserved(page)) 6453 return false; 6454 6455 if (PageHuge(page)) 6456 return false; 6457 } 6458 return true; 6459 } 6460 6461 static bool zone_spans_last_pfn(const struct zone *zone, 6462 unsigned long start_pfn, unsigned long nr_pages) 6463 { 6464 unsigned long last_pfn = start_pfn + nr_pages - 1; 6465 6466 return zone_spans_pfn(zone, last_pfn); 6467 } 6468 6469 /** 6470 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6471 * @nr_pages: Number of contiguous pages to allocate 6472 * @gfp_mask: GFP mask to limit search and used during compaction 6473 * @nid: Target node 6474 * @nodemask: Mask for other possible nodes 6475 * 6476 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6477 * on an applicable zonelist to find a contiguous pfn range which can then be 6478 * tried for allocation with alloc_contig_range(). This routine is intended 6479 * for allocation requests which can not be fulfilled with the buddy allocator. 6480 * 6481 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6482 * power of two, then allocated range is also guaranteed to be aligned to same 6483 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6484 * 6485 * Allocated pages can be freed with free_contig_range() or by manually calling 6486 * __free_page() on each allocated page. 6487 * 6488 * Return: pointer to contiguous pages on success, or NULL if not successful. 6489 */ 6490 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6491 int nid, nodemask_t *nodemask) 6492 { 6493 unsigned long ret, pfn, flags; 6494 struct zonelist *zonelist; 6495 struct zone *zone; 6496 struct zoneref *z; 6497 6498 zonelist = node_zonelist(nid, gfp_mask); 6499 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6500 gfp_zone(gfp_mask), nodemask) { 6501 spin_lock_irqsave(&zone->lock, flags); 6502 6503 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6504 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6505 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6506 /* 6507 * We release the zone lock here because 6508 * alloc_contig_range() will also lock the zone 6509 * at some point. If there's an allocation 6510 * spinning on this lock, it may win the race 6511 * and cause alloc_contig_range() to fail... 6512 */ 6513 spin_unlock_irqrestore(&zone->lock, flags); 6514 ret = __alloc_contig_pages(pfn, nr_pages, 6515 gfp_mask); 6516 if (!ret) 6517 return pfn_to_page(pfn); 6518 spin_lock_irqsave(&zone->lock, flags); 6519 } 6520 pfn += nr_pages; 6521 } 6522 spin_unlock_irqrestore(&zone->lock, flags); 6523 } 6524 return NULL; 6525 } 6526 #endif /* CONFIG_CONTIG_ALLOC */ 6527 6528 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6529 { 6530 unsigned long count = 0; 6531 6532 for (; nr_pages--; pfn++) { 6533 struct page *page = pfn_to_page(pfn); 6534 6535 count += page_count(page) != 1; 6536 __free_page(page); 6537 } 6538 WARN(count != 0, "%lu pages are still in use!\n", count); 6539 } 6540 EXPORT_SYMBOL(free_contig_range); 6541 6542 /* 6543 * Effectively disable pcplists for the zone by setting the high limit to 0 6544 * and draining all cpus. A concurrent page freeing on another CPU that's about 6545 * to put the page on pcplist will either finish before the drain and the page 6546 * will be drained, or observe the new high limit and skip the pcplist. 6547 * 6548 * Must be paired with a call to zone_pcp_enable(). 6549 */ 6550 void zone_pcp_disable(struct zone *zone) 6551 { 6552 mutex_lock(&pcp_batch_high_lock); 6553 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6554 __drain_all_pages(zone, true); 6555 } 6556 6557 void zone_pcp_enable(struct zone *zone) 6558 { 6559 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6560 zone->pageset_high_max, zone->pageset_batch); 6561 mutex_unlock(&pcp_batch_high_lock); 6562 } 6563 6564 void zone_pcp_reset(struct zone *zone) 6565 { 6566 int cpu; 6567 struct per_cpu_zonestat *pzstats; 6568 6569 if (zone->per_cpu_pageset != &boot_pageset) { 6570 for_each_online_cpu(cpu) { 6571 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6572 drain_zonestat(zone, pzstats); 6573 } 6574 free_percpu(zone->per_cpu_pageset); 6575 zone->per_cpu_pageset = &boot_pageset; 6576 if (zone->per_cpu_zonestats != &boot_zonestats) { 6577 free_percpu(zone->per_cpu_zonestats); 6578 zone->per_cpu_zonestats = &boot_zonestats; 6579 } 6580 } 6581 } 6582 6583 #ifdef CONFIG_MEMORY_HOTREMOVE 6584 /* 6585 * All pages in the range must be in a single zone, must not contain holes, 6586 * must span full sections, and must be isolated before calling this function. 6587 */ 6588 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6589 { 6590 unsigned long pfn = start_pfn; 6591 struct page *page; 6592 struct zone *zone; 6593 unsigned int order; 6594 unsigned long flags; 6595 6596 offline_mem_sections(pfn, end_pfn); 6597 zone = page_zone(pfn_to_page(pfn)); 6598 spin_lock_irqsave(&zone->lock, flags); 6599 while (pfn < end_pfn) { 6600 page = pfn_to_page(pfn); 6601 /* 6602 * The HWPoisoned page may be not in buddy system, and 6603 * page_count() is not 0. 6604 */ 6605 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6606 pfn++; 6607 continue; 6608 } 6609 /* 6610 * At this point all remaining PageOffline() pages have a 6611 * reference count of 0 and can simply be skipped. 6612 */ 6613 if (PageOffline(page)) { 6614 BUG_ON(page_count(page)); 6615 BUG_ON(PageBuddy(page)); 6616 pfn++; 6617 continue; 6618 } 6619 6620 BUG_ON(page_count(page)); 6621 BUG_ON(!PageBuddy(page)); 6622 order = buddy_order(page); 6623 del_page_from_free_list(page, zone, order); 6624 pfn += (1 << order); 6625 } 6626 spin_unlock_irqrestore(&zone->lock, flags); 6627 } 6628 #endif 6629 6630 /* 6631 * This function returns a stable result only if called under zone lock. 6632 */ 6633 bool is_free_buddy_page(struct page *page) 6634 { 6635 unsigned long pfn = page_to_pfn(page); 6636 unsigned int order; 6637 6638 for (order = 0; order <= MAX_ORDER; order++) { 6639 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6640 6641 if (PageBuddy(page_head) && 6642 buddy_order_unsafe(page_head) >= order) 6643 break; 6644 } 6645 6646 return order <= MAX_ORDER; 6647 } 6648 EXPORT_SYMBOL(is_free_buddy_page); 6649 6650 #ifdef CONFIG_MEMORY_FAILURE 6651 /* 6652 * Break down a higher-order page in sub-pages, and keep our target out of 6653 * buddy allocator. 6654 */ 6655 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6656 struct page *target, int low, int high, 6657 int migratetype) 6658 { 6659 unsigned long size = 1 << high; 6660 struct page *current_buddy; 6661 6662 while (high > low) { 6663 high--; 6664 size >>= 1; 6665 6666 if (target >= &page[size]) { 6667 current_buddy = page; 6668 page = page + size; 6669 } else { 6670 current_buddy = page + size; 6671 } 6672 6673 if (set_page_guard(zone, current_buddy, high, migratetype)) 6674 continue; 6675 6676 add_to_free_list(current_buddy, zone, high, migratetype); 6677 set_buddy_order(current_buddy, high); 6678 } 6679 } 6680 6681 /* 6682 * Take a page that will be marked as poisoned off the buddy allocator. 6683 */ 6684 bool take_page_off_buddy(struct page *page) 6685 { 6686 struct zone *zone = page_zone(page); 6687 unsigned long pfn = page_to_pfn(page); 6688 unsigned long flags; 6689 unsigned int order; 6690 bool ret = false; 6691 6692 spin_lock_irqsave(&zone->lock, flags); 6693 for (order = 0; order <= MAX_ORDER; order++) { 6694 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6695 int page_order = buddy_order(page_head); 6696 6697 if (PageBuddy(page_head) && page_order >= order) { 6698 unsigned long pfn_head = page_to_pfn(page_head); 6699 int migratetype = get_pfnblock_migratetype(page_head, 6700 pfn_head); 6701 6702 del_page_from_free_list(page_head, zone, page_order); 6703 break_down_buddy_pages(zone, page_head, page, 0, 6704 page_order, migratetype); 6705 SetPageHWPoisonTakenOff(page); 6706 if (!is_migrate_isolate(migratetype)) 6707 __mod_zone_freepage_state(zone, -1, migratetype); 6708 ret = true; 6709 break; 6710 } 6711 if (page_count(page_head) > 0) 6712 break; 6713 } 6714 spin_unlock_irqrestore(&zone->lock, flags); 6715 return ret; 6716 } 6717 6718 /* 6719 * Cancel takeoff done by take_page_off_buddy(). 6720 */ 6721 bool put_page_back_buddy(struct page *page) 6722 { 6723 struct zone *zone = page_zone(page); 6724 unsigned long pfn = page_to_pfn(page); 6725 unsigned long flags; 6726 int migratetype = get_pfnblock_migratetype(page, pfn); 6727 bool ret = false; 6728 6729 spin_lock_irqsave(&zone->lock, flags); 6730 if (put_page_testzero(page)) { 6731 ClearPageHWPoisonTakenOff(page); 6732 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6733 if (TestClearPageHWPoison(page)) { 6734 ret = true; 6735 } 6736 } 6737 spin_unlock_irqrestore(&zone->lock, flags); 6738 6739 return ret; 6740 } 6741 #endif 6742 6743 #ifdef CONFIG_ZONE_DMA 6744 bool has_managed_dma(void) 6745 { 6746 struct pglist_data *pgdat; 6747 6748 for_each_online_pgdat(pgdat) { 6749 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6750 6751 if (managed_zone(zone)) 6752 return true; 6753 } 6754 return false; 6755 } 6756 #endif /* CONFIG_ZONE_DMA */ 6757 6758 #ifdef CONFIG_UNACCEPTED_MEMORY 6759 6760 /* Counts number of zones with unaccepted pages. */ 6761 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6762 6763 static bool lazy_accept = true; 6764 6765 static int __init accept_memory_parse(char *p) 6766 { 6767 if (!strcmp(p, "lazy")) { 6768 lazy_accept = true; 6769 return 0; 6770 } else if (!strcmp(p, "eager")) { 6771 lazy_accept = false; 6772 return 0; 6773 } else { 6774 return -EINVAL; 6775 } 6776 } 6777 early_param("accept_memory", accept_memory_parse); 6778 6779 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6780 { 6781 phys_addr_t start = page_to_phys(page); 6782 phys_addr_t end = start + (PAGE_SIZE << order); 6783 6784 return range_contains_unaccepted_memory(start, end); 6785 } 6786 6787 static void accept_page(struct page *page, unsigned int order) 6788 { 6789 phys_addr_t start = page_to_phys(page); 6790 6791 accept_memory(start, start + (PAGE_SIZE << order)); 6792 } 6793 6794 static bool try_to_accept_memory_one(struct zone *zone) 6795 { 6796 unsigned long flags; 6797 struct page *page; 6798 bool last; 6799 6800 if (list_empty(&zone->unaccepted_pages)) 6801 return false; 6802 6803 spin_lock_irqsave(&zone->lock, flags); 6804 page = list_first_entry_or_null(&zone->unaccepted_pages, 6805 struct page, lru); 6806 if (!page) { 6807 spin_unlock_irqrestore(&zone->lock, flags); 6808 return false; 6809 } 6810 6811 list_del(&page->lru); 6812 last = list_empty(&zone->unaccepted_pages); 6813 6814 __mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6815 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6816 spin_unlock_irqrestore(&zone->lock, flags); 6817 6818 accept_page(page, MAX_ORDER); 6819 6820 __free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL); 6821 6822 if (last) 6823 static_branch_dec(&zones_with_unaccepted_pages); 6824 6825 return true; 6826 } 6827 6828 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6829 { 6830 long to_accept; 6831 int ret = false; 6832 6833 /* How much to accept to get to high watermark? */ 6834 to_accept = high_wmark_pages(zone) - 6835 (zone_page_state(zone, NR_FREE_PAGES) - 6836 __zone_watermark_unusable_free(zone, order, 0)); 6837 6838 /* Accept at least one page */ 6839 do { 6840 if (!try_to_accept_memory_one(zone)) 6841 break; 6842 ret = true; 6843 to_accept -= MAX_ORDER_NR_PAGES; 6844 } while (to_accept > 0); 6845 6846 return ret; 6847 } 6848 6849 static inline bool has_unaccepted_memory(void) 6850 { 6851 return static_branch_unlikely(&zones_with_unaccepted_pages); 6852 } 6853 6854 static bool __free_unaccepted(struct page *page) 6855 { 6856 struct zone *zone = page_zone(page); 6857 unsigned long flags; 6858 bool first = false; 6859 6860 if (!lazy_accept) 6861 return false; 6862 6863 spin_lock_irqsave(&zone->lock, flags); 6864 first = list_empty(&zone->unaccepted_pages); 6865 list_add_tail(&page->lru, &zone->unaccepted_pages); 6866 __mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6867 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6868 spin_unlock_irqrestore(&zone->lock, flags); 6869 6870 if (first) 6871 static_branch_inc(&zones_with_unaccepted_pages); 6872 6873 return true; 6874 } 6875 6876 #else 6877 6878 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6879 { 6880 return false; 6881 } 6882 6883 static void accept_page(struct page *page, unsigned int order) 6884 { 6885 } 6886 6887 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6888 { 6889 return false; 6890 } 6891 6892 static inline bool has_unaccepted_memory(void) 6893 { 6894 return false; 6895 } 6896 6897 static bool __free_unaccepted(struct page *page) 6898 { 6899 BUILD_BUG(); 6900 return false; 6901 } 6902 6903 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6904