xref: /linux/mm/page_alloc.c (revision 16e5ac127d8d18adf85fe5ba847d77b58d1ed418)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <linux/cacheinfo.h>
56 #include <asm/div64.h>
57 #include "internal.h"
58 #include "shuffle.h"
59 #include "page_reporting.h"
60 
61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
62 typedef int __bitwise fpi_t;
63 
64 /* No special request */
65 #define FPI_NONE		((__force fpi_t)0)
66 
67 /*
68  * Skip free page reporting notification for the (possibly merged) page.
69  * This does not hinder free page reporting from grabbing the page,
70  * reporting it and marking it "reported" -  it only skips notifying
71  * the free page reporting infrastructure about a newly freed page. For
72  * example, used when temporarily pulling a page from a freelist and
73  * putting it back unmodified.
74  */
75 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
76 
77 /*
78  * Place the (possibly merged) page to the tail of the freelist. Will ignore
79  * page shuffling (relevant code - e.g., memory onlining - is expected to
80  * shuffle the whole zone).
81  *
82  * Note: No code should rely on this flag for correctness - it's purely
83  *       to allow for optimizations when handing back either fresh pages
84  *       (memory onlining) or untouched pages (page isolation, free page
85  *       reporting).
86  */
87 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
88 
89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
90 static DEFINE_MUTEX(pcp_batch_high_lock);
91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
92 
93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
94 /*
95  * On SMP, spin_trylock is sufficient protection.
96  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
97  */
98 #define pcp_trylock_prepare(flags)	do { } while (0)
99 #define pcp_trylock_finish(flag)	do { } while (0)
100 #else
101 
102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
103 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
104 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
105 #endif
106 
107 /*
108  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
109  * a migration causing the wrong PCP to be locked and remote memory being
110  * potentially allocated, pin the task to the CPU for the lookup+lock.
111  * preempt_disable is used on !RT because it is faster than migrate_disable.
112  * migrate_disable is used on RT because otherwise RT spinlock usage is
113  * interfered with and a high priority task cannot preempt the allocator.
114  */
115 #ifndef CONFIG_PREEMPT_RT
116 #define pcpu_task_pin()		preempt_disable()
117 #define pcpu_task_unpin()	preempt_enable()
118 #else
119 #define pcpu_task_pin()		migrate_disable()
120 #define pcpu_task_unpin()	migrate_enable()
121 #endif
122 
123 /*
124  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
125  * Return value should be used with equivalent unlock helper.
126  */
127 #define pcpu_spin_lock(type, member, ptr)				\
128 ({									\
129 	type *_ret;							\
130 	pcpu_task_pin();						\
131 	_ret = this_cpu_ptr(ptr);					\
132 	spin_lock(&_ret->member);					\
133 	_ret;								\
134 })
135 
136 #define pcpu_spin_trylock(type, member, ptr)				\
137 ({									\
138 	type *_ret;							\
139 	pcpu_task_pin();						\
140 	_ret = this_cpu_ptr(ptr);					\
141 	if (!spin_trylock(&_ret->member)) {				\
142 		pcpu_task_unpin();					\
143 		_ret = NULL;						\
144 	}								\
145 	_ret;								\
146 })
147 
148 #define pcpu_spin_unlock(member, ptr)					\
149 ({									\
150 	spin_unlock(&ptr->member);					\
151 	pcpu_task_unpin();						\
152 })
153 
154 /* struct per_cpu_pages specific helpers. */
155 #define pcp_spin_lock(ptr)						\
156 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
157 
158 #define pcp_spin_trylock(ptr)						\
159 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
160 
161 #define pcp_spin_unlock(ptr)						\
162 	pcpu_spin_unlock(lock, ptr)
163 
164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
165 DEFINE_PER_CPU(int, numa_node);
166 EXPORT_PER_CPU_SYMBOL(numa_node);
167 #endif
168 
169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
170 
171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
172 /*
173  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
174  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
175  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
176  * defined in <linux/topology.h>.
177  */
178 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
179 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
180 #endif
181 
182 static DEFINE_MUTEX(pcpu_drain_mutex);
183 
184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
185 volatile unsigned long latent_entropy __latent_entropy;
186 EXPORT_SYMBOL(latent_entropy);
187 #endif
188 
189 /*
190  * Array of node states.
191  */
192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
193 	[N_POSSIBLE] = NODE_MASK_ALL,
194 	[N_ONLINE] = { { [0] = 1UL } },
195 #ifndef CONFIG_NUMA
196 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
197 #ifdef CONFIG_HIGHMEM
198 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
199 #endif
200 	[N_MEMORY] = { { [0] = 1UL } },
201 	[N_CPU] = { { [0] = 1UL } },
202 #endif	/* NUMA */
203 };
204 EXPORT_SYMBOL(node_states);
205 
206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
207 
208 /*
209  * A cached value of the page's pageblock's migratetype, used when the page is
210  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
211  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
212  * Also the migratetype set in the page does not necessarily match the pcplist
213  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
214  * other index - this ensures that it will be put on the correct CMA freelist.
215  */
216 static inline int get_pcppage_migratetype(struct page *page)
217 {
218 	return page->index;
219 }
220 
221 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
222 {
223 	page->index = migratetype;
224 }
225 
226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
227 unsigned int pageblock_order __read_mostly;
228 #endif
229 
230 static void __free_pages_ok(struct page *page, unsigned int order,
231 			    fpi_t fpi_flags);
232 
233 /*
234  * results with 256, 32 in the lowmem_reserve sysctl:
235  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
236  *	1G machine -> (16M dma, 784M normal, 224M high)
237  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
238  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
239  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
240  *
241  * TBD: should special case ZONE_DMA32 machines here - in those we normally
242  * don't need any ZONE_NORMAL reservation
243  */
244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
245 #ifdef CONFIG_ZONE_DMA
246 	[ZONE_DMA] = 256,
247 #endif
248 #ifdef CONFIG_ZONE_DMA32
249 	[ZONE_DMA32] = 256,
250 #endif
251 	[ZONE_NORMAL] = 32,
252 #ifdef CONFIG_HIGHMEM
253 	[ZONE_HIGHMEM] = 0,
254 #endif
255 	[ZONE_MOVABLE] = 0,
256 };
257 
258 char * const zone_names[MAX_NR_ZONES] = {
259 #ifdef CONFIG_ZONE_DMA
260 	 "DMA",
261 #endif
262 #ifdef CONFIG_ZONE_DMA32
263 	 "DMA32",
264 #endif
265 	 "Normal",
266 #ifdef CONFIG_HIGHMEM
267 	 "HighMem",
268 #endif
269 	 "Movable",
270 #ifdef CONFIG_ZONE_DEVICE
271 	 "Device",
272 #endif
273 };
274 
275 const char * const migratetype_names[MIGRATE_TYPES] = {
276 	"Unmovable",
277 	"Movable",
278 	"Reclaimable",
279 	"HighAtomic",
280 #ifdef CONFIG_CMA
281 	"CMA",
282 #endif
283 #ifdef CONFIG_MEMORY_ISOLATION
284 	"Isolate",
285 #endif
286 };
287 
288 int min_free_kbytes = 1024;
289 int user_min_free_kbytes = -1;
290 static int watermark_boost_factor __read_mostly = 15000;
291 static int watermark_scale_factor = 10;
292 
293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
294 int movable_zone;
295 EXPORT_SYMBOL(movable_zone);
296 
297 #if MAX_NUMNODES > 1
298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
299 unsigned int nr_online_nodes __read_mostly = 1;
300 EXPORT_SYMBOL(nr_node_ids);
301 EXPORT_SYMBOL(nr_online_nodes);
302 #endif
303 
304 static bool page_contains_unaccepted(struct page *page, unsigned int order);
305 static void accept_page(struct page *page, unsigned int order);
306 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
307 static inline bool has_unaccepted_memory(void);
308 static bool __free_unaccepted(struct page *page);
309 
310 int page_group_by_mobility_disabled __read_mostly;
311 
312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
313 /*
314  * During boot we initialize deferred pages on-demand, as needed, but once
315  * page_alloc_init_late() has finished, the deferred pages are all initialized,
316  * and we can permanently disable that path.
317  */
318 DEFINE_STATIC_KEY_TRUE(deferred_pages);
319 
320 static inline bool deferred_pages_enabled(void)
321 {
322 	return static_branch_unlikely(&deferred_pages);
323 }
324 
325 /*
326  * deferred_grow_zone() is __init, but it is called from
327  * get_page_from_freelist() during early boot until deferred_pages permanently
328  * disables this call. This is why we have refdata wrapper to avoid warning,
329  * and to ensure that the function body gets unloaded.
330  */
331 static bool __ref
332 _deferred_grow_zone(struct zone *zone, unsigned int order)
333 {
334        return deferred_grow_zone(zone, order);
335 }
336 #else
337 static inline bool deferred_pages_enabled(void)
338 {
339 	return false;
340 }
341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
342 
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
344 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
345 							unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 	return section_to_usemap(__pfn_to_section(pfn));
349 #else
350 	return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
352 }
353 
354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
355 {
356 #ifdef CONFIG_SPARSEMEM
357 	pfn &= (PAGES_PER_SECTION-1);
358 #else
359 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
360 #endif /* CONFIG_SPARSEMEM */
361 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362 }
363 
364 /**
365  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366  * @page: The page within the block of interest
367  * @pfn: The target page frame number
368  * @mask: mask of bits that the caller is interested in
369  *
370  * Return: pageblock_bits flags
371  */
372 unsigned long get_pfnblock_flags_mask(const struct page *page,
373 					unsigned long pfn, unsigned long mask)
374 {
375 	unsigned long *bitmap;
376 	unsigned long bitidx, word_bitidx;
377 	unsigned long word;
378 
379 	bitmap = get_pageblock_bitmap(page, pfn);
380 	bitidx = pfn_to_bitidx(page, pfn);
381 	word_bitidx = bitidx / BITS_PER_LONG;
382 	bitidx &= (BITS_PER_LONG-1);
383 	/*
384 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
385 	 * a consistent read of the memory array, so that results, even though
386 	 * racy, are not corrupted.
387 	 */
388 	word = READ_ONCE(bitmap[word_bitidx]);
389 	return (word >> bitidx) & mask;
390 }
391 
392 static __always_inline int get_pfnblock_migratetype(const struct page *page,
393 					unsigned long pfn)
394 {
395 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
396 }
397 
398 /**
399  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
400  * @page: The page within the block of interest
401  * @flags: The flags to set
402  * @pfn: The target page frame number
403  * @mask: mask of bits that the caller is interested in
404  */
405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
406 					unsigned long pfn,
407 					unsigned long mask)
408 {
409 	unsigned long *bitmap;
410 	unsigned long bitidx, word_bitidx;
411 	unsigned long word;
412 
413 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
414 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
415 
416 	bitmap = get_pageblock_bitmap(page, pfn);
417 	bitidx = pfn_to_bitidx(page, pfn);
418 	word_bitidx = bitidx / BITS_PER_LONG;
419 	bitidx &= (BITS_PER_LONG-1);
420 
421 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
422 
423 	mask <<= bitidx;
424 	flags <<= bitidx;
425 
426 	word = READ_ONCE(bitmap[word_bitidx]);
427 	do {
428 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
429 }
430 
431 void set_pageblock_migratetype(struct page *page, int migratetype)
432 {
433 	if (unlikely(page_group_by_mobility_disabled &&
434 		     migratetype < MIGRATE_PCPTYPES))
435 		migratetype = MIGRATE_UNMOVABLE;
436 
437 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
438 				page_to_pfn(page), MIGRATETYPE_MASK);
439 }
440 
441 #ifdef CONFIG_DEBUG_VM
442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
443 {
444 	int ret;
445 	unsigned seq;
446 	unsigned long pfn = page_to_pfn(page);
447 	unsigned long sp, start_pfn;
448 
449 	do {
450 		seq = zone_span_seqbegin(zone);
451 		start_pfn = zone->zone_start_pfn;
452 		sp = zone->spanned_pages;
453 		ret = !zone_spans_pfn(zone, pfn);
454 	} while (zone_span_seqretry(zone, seq));
455 
456 	if (ret)
457 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
458 			pfn, zone_to_nid(zone), zone->name,
459 			start_pfn, start_pfn + sp);
460 
461 	return ret;
462 }
463 
464 /*
465  * Temporary debugging check for pages not lying within a given zone.
466  */
467 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
468 {
469 	if (page_outside_zone_boundaries(zone, page))
470 		return 1;
471 	if (zone != page_zone(page))
472 		return 1;
473 
474 	return 0;
475 }
476 #else
477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
478 {
479 	return 0;
480 }
481 #endif
482 
483 static void bad_page(struct page *page, const char *reason)
484 {
485 	static unsigned long resume;
486 	static unsigned long nr_shown;
487 	static unsigned long nr_unshown;
488 
489 	/*
490 	 * Allow a burst of 60 reports, then keep quiet for that minute;
491 	 * or allow a steady drip of one report per second.
492 	 */
493 	if (nr_shown == 60) {
494 		if (time_before(jiffies, resume)) {
495 			nr_unshown++;
496 			goto out;
497 		}
498 		if (nr_unshown) {
499 			pr_alert(
500 			      "BUG: Bad page state: %lu messages suppressed\n",
501 				nr_unshown);
502 			nr_unshown = 0;
503 		}
504 		nr_shown = 0;
505 	}
506 	if (nr_shown++ == 0)
507 		resume = jiffies + 60 * HZ;
508 
509 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
510 		current->comm, page_to_pfn(page));
511 	dump_page(page, reason);
512 
513 	print_modules();
514 	dump_stack();
515 out:
516 	/* Leave bad fields for debug, except PageBuddy could make trouble */
517 	page_mapcount_reset(page); /* remove PageBuddy */
518 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
519 }
520 
521 static inline unsigned int order_to_pindex(int migratetype, int order)
522 {
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 		VM_BUG_ON(order != pageblock_order);
526 		return NR_LOWORDER_PCP_LISTS;
527 	}
528 #else
529 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
530 #endif
531 
532 	return (MIGRATE_PCPTYPES * order) + migratetype;
533 }
534 
535 static inline int pindex_to_order(unsigned int pindex)
536 {
537 	int order = pindex / MIGRATE_PCPTYPES;
538 
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 	if (pindex == NR_LOWORDER_PCP_LISTS)
541 		order = pageblock_order;
542 #else
543 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
544 #endif
545 
546 	return order;
547 }
548 
549 static inline bool pcp_allowed_order(unsigned int order)
550 {
551 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
552 		return true;
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 	if (order == pageblock_order)
555 		return true;
556 #endif
557 	return false;
558 }
559 
560 static inline void free_the_page(struct page *page, unsigned int order)
561 {
562 	if (pcp_allowed_order(order))		/* Via pcp? */
563 		free_unref_page(page, order);
564 	else
565 		__free_pages_ok(page, order, FPI_NONE);
566 }
567 
568 /*
569  * Higher-order pages are called "compound pages".  They are structured thusly:
570  *
571  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572  *
573  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575  *
576  * The first tail page's ->compound_order holds the order of allocation.
577  * This usage means that zero-order pages may not be compound.
578  */
579 
580 void prep_compound_page(struct page *page, unsigned int order)
581 {
582 	int i;
583 	int nr_pages = 1 << order;
584 
585 	__SetPageHead(page);
586 	for (i = 1; i < nr_pages; i++)
587 		prep_compound_tail(page, i);
588 
589 	prep_compound_head(page, order);
590 }
591 
592 void destroy_large_folio(struct folio *folio)
593 {
594 	if (folio_test_hugetlb(folio)) {
595 		free_huge_folio(folio);
596 		return;
597 	}
598 
599 	if (folio_test_large_rmappable(folio))
600 		folio_undo_large_rmappable(folio);
601 
602 	mem_cgroup_uncharge(folio);
603 	free_the_page(&folio->page, folio_order(folio));
604 }
605 
606 static inline void set_buddy_order(struct page *page, unsigned int order)
607 {
608 	set_page_private(page, order);
609 	__SetPageBuddy(page);
610 }
611 
612 #ifdef CONFIG_COMPACTION
613 static inline struct capture_control *task_capc(struct zone *zone)
614 {
615 	struct capture_control *capc = current->capture_control;
616 
617 	return unlikely(capc) &&
618 		!(current->flags & PF_KTHREAD) &&
619 		!capc->page &&
620 		capc->cc->zone == zone ? capc : NULL;
621 }
622 
623 static inline bool
624 compaction_capture(struct capture_control *capc, struct page *page,
625 		   int order, int migratetype)
626 {
627 	if (!capc || order != capc->cc->order)
628 		return false;
629 
630 	/* Do not accidentally pollute CMA or isolated regions*/
631 	if (is_migrate_cma(migratetype) ||
632 	    is_migrate_isolate(migratetype))
633 		return false;
634 
635 	/*
636 	 * Do not let lower order allocations pollute a movable pageblock.
637 	 * This might let an unmovable request use a reclaimable pageblock
638 	 * and vice-versa but no more than normal fallback logic which can
639 	 * have trouble finding a high-order free page.
640 	 */
641 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
642 		return false;
643 
644 	capc->page = page;
645 	return true;
646 }
647 
648 #else
649 static inline struct capture_control *task_capc(struct zone *zone)
650 {
651 	return NULL;
652 }
653 
654 static inline bool
655 compaction_capture(struct capture_control *capc, struct page *page,
656 		   int order, int migratetype)
657 {
658 	return false;
659 }
660 #endif /* CONFIG_COMPACTION */
661 
662 /* Used for pages not on another list */
663 static inline void add_to_free_list(struct page *page, struct zone *zone,
664 				    unsigned int order, int migratetype)
665 {
666 	struct free_area *area = &zone->free_area[order];
667 
668 	list_add(&page->buddy_list, &area->free_list[migratetype]);
669 	area->nr_free++;
670 }
671 
672 /* Used for pages not on another list */
673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
674 					 unsigned int order, int migratetype)
675 {
676 	struct free_area *area = &zone->free_area[order];
677 
678 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
679 	area->nr_free++;
680 }
681 
682 /*
683  * Used for pages which are on another list. Move the pages to the tail
684  * of the list - so the moved pages won't immediately be considered for
685  * allocation again (e.g., optimization for memory onlining).
686  */
687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 				     unsigned int order, int migratetype)
689 {
690 	struct free_area *area = &zone->free_area[order];
691 
692 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
693 }
694 
695 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
696 					   unsigned int order)
697 {
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline struct page *get_page_from_free_area(struct free_area *area,
709 					    int migratetype)
710 {
711 	return list_first_entry_or_null(&area->free_list[migratetype],
712 					struct page, buddy_list);
713 }
714 
715 /*
716  * If this is not the largest possible page, check if the buddy
717  * of the next-highest order is free. If it is, it's possible
718  * that pages are being freed that will coalesce soon. In case,
719  * that is happening, add the free page to the tail of the list
720  * so it's less likely to be used soon and more likely to be merged
721  * as a higher order page
722  */
723 static inline bool
724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
725 		   struct page *page, unsigned int order)
726 {
727 	unsigned long higher_page_pfn;
728 	struct page *higher_page;
729 
730 	if (order >= MAX_ORDER - 1)
731 		return false;
732 
733 	higher_page_pfn = buddy_pfn & pfn;
734 	higher_page = page + (higher_page_pfn - pfn);
735 
736 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
737 			NULL) != NULL;
738 }
739 
740 /*
741  * Freeing function for a buddy system allocator.
742  *
743  * The concept of a buddy system is to maintain direct-mapped table
744  * (containing bit values) for memory blocks of various "orders".
745  * The bottom level table contains the map for the smallest allocatable
746  * units of memory (here, pages), and each level above it describes
747  * pairs of units from the levels below, hence, "buddies".
748  * At a high level, all that happens here is marking the table entry
749  * at the bottom level available, and propagating the changes upward
750  * as necessary, plus some accounting needed to play nicely with other
751  * parts of the VM system.
752  * At each level, we keep a list of pages, which are heads of continuous
753  * free pages of length of (1 << order) and marked with PageBuddy.
754  * Page's order is recorded in page_private(page) field.
755  * So when we are allocating or freeing one, we can derive the state of the
756  * other.  That is, if we allocate a small block, and both were
757  * free, the remainder of the region must be split into blocks.
758  * If a block is freed, and its buddy is also free, then this
759  * triggers coalescing into a block of larger size.
760  *
761  * -- nyc
762  */
763 
764 static inline void __free_one_page(struct page *page,
765 		unsigned long pfn,
766 		struct zone *zone, unsigned int order,
767 		int migratetype, fpi_t fpi_flags)
768 {
769 	struct capture_control *capc = task_capc(zone);
770 	unsigned long buddy_pfn = 0;
771 	unsigned long combined_pfn;
772 	struct page *buddy;
773 	bool to_tail;
774 
775 	VM_BUG_ON(!zone_is_initialized(zone));
776 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
777 
778 	VM_BUG_ON(migratetype == -1);
779 	if (likely(!is_migrate_isolate(migratetype)))
780 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
781 
782 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
784 
785 	while (order < MAX_ORDER) {
786 		if (compaction_capture(capc, page, order, migratetype)) {
787 			__mod_zone_freepage_state(zone, -(1 << order),
788 								migratetype);
789 			return;
790 		}
791 
792 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
793 		if (!buddy)
794 			goto done_merging;
795 
796 		if (unlikely(order >= pageblock_order)) {
797 			/*
798 			 * We want to prevent merge between freepages on pageblock
799 			 * without fallbacks and normal pageblock. Without this,
800 			 * pageblock isolation could cause incorrect freepage or CMA
801 			 * accounting or HIGHATOMIC accounting.
802 			 */
803 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
804 
805 			if (migratetype != buddy_mt
806 					&& (!migratetype_is_mergeable(migratetype) ||
807 						!migratetype_is_mergeable(buddy_mt)))
808 				goto done_merging;
809 		}
810 
811 		/*
812 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 		 * merge with it and move up one order.
814 		 */
815 		if (page_is_guard(buddy))
816 			clear_page_guard(zone, buddy, order, migratetype);
817 		else
818 			del_page_from_free_list(buddy, zone, order);
819 		combined_pfn = buddy_pfn & pfn;
820 		page = page + (combined_pfn - pfn);
821 		pfn = combined_pfn;
822 		order++;
823 	}
824 
825 done_merging:
826 	set_buddy_order(page, order);
827 
828 	if (fpi_flags & FPI_TO_TAIL)
829 		to_tail = true;
830 	else if (is_shuffle_order(order))
831 		to_tail = shuffle_pick_tail();
832 	else
833 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
834 
835 	if (to_tail)
836 		add_to_free_list_tail(page, zone, order, migratetype);
837 	else
838 		add_to_free_list(page, zone, order, migratetype);
839 
840 	/* Notify page reporting subsystem of freed page */
841 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 		page_reporting_notify_free(order);
843 }
844 
845 /**
846  * split_free_page() -- split a free page at split_pfn_offset
847  * @free_page:		the original free page
848  * @order:		the order of the page
849  * @split_pfn_offset:	split offset within the page
850  *
851  * Return -ENOENT if the free page is changed, otherwise 0
852  *
853  * It is used when the free page crosses two pageblocks with different migratetypes
854  * at split_pfn_offset within the page. The split free page will be put into
855  * separate migratetype lists afterwards. Otherwise, the function achieves
856  * nothing.
857  */
858 int split_free_page(struct page *free_page,
859 			unsigned int order, unsigned long split_pfn_offset)
860 {
861 	struct zone *zone = page_zone(free_page);
862 	unsigned long free_page_pfn = page_to_pfn(free_page);
863 	unsigned long pfn;
864 	unsigned long flags;
865 	int free_page_order;
866 	int mt;
867 	int ret = 0;
868 
869 	if (split_pfn_offset == 0)
870 		return ret;
871 
872 	spin_lock_irqsave(&zone->lock, flags);
873 
874 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
875 		ret = -ENOENT;
876 		goto out;
877 	}
878 
879 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
880 	if (likely(!is_migrate_isolate(mt)))
881 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
882 
883 	del_page_from_free_list(free_page, zone, order);
884 	for (pfn = free_page_pfn;
885 	     pfn < free_page_pfn + (1UL << order);) {
886 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
887 
888 		free_page_order = min_t(unsigned int,
889 					pfn ? __ffs(pfn) : order,
890 					__fls(split_pfn_offset));
891 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
892 				mt, FPI_NONE);
893 		pfn += 1UL << free_page_order;
894 		split_pfn_offset -= (1UL << free_page_order);
895 		/* we have done the first part, now switch to second part */
896 		if (split_pfn_offset == 0)
897 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
898 	}
899 out:
900 	spin_unlock_irqrestore(&zone->lock, flags);
901 	return ret;
902 }
903 /*
904  * A bad page could be due to a number of fields. Instead of multiple branches,
905  * try and check multiple fields with one check. The caller must do a detailed
906  * check if necessary.
907  */
908 static inline bool page_expected_state(struct page *page,
909 					unsigned long check_flags)
910 {
911 	if (unlikely(atomic_read(&page->_mapcount) != -1))
912 		return false;
913 
914 	if (unlikely((unsigned long)page->mapping |
915 			page_ref_count(page) |
916 #ifdef CONFIG_MEMCG
917 			page->memcg_data |
918 #endif
919 			(page->flags & check_flags)))
920 		return false;
921 
922 	return true;
923 }
924 
925 static const char *page_bad_reason(struct page *page, unsigned long flags)
926 {
927 	const char *bad_reason = NULL;
928 
929 	if (unlikely(atomic_read(&page->_mapcount) != -1))
930 		bad_reason = "nonzero mapcount";
931 	if (unlikely(page->mapping != NULL))
932 		bad_reason = "non-NULL mapping";
933 	if (unlikely(page_ref_count(page) != 0))
934 		bad_reason = "nonzero _refcount";
935 	if (unlikely(page->flags & flags)) {
936 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
937 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
938 		else
939 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
940 	}
941 #ifdef CONFIG_MEMCG
942 	if (unlikely(page->memcg_data))
943 		bad_reason = "page still charged to cgroup";
944 #endif
945 	return bad_reason;
946 }
947 
948 static void free_page_is_bad_report(struct page *page)
949 {
950 	bad_page(page,
951 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
952 }
953 
954 static inline bool free_page_is_bad(struct page *page)
955 {
956 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
957 		return false;
958 
959 	/* Something has gone sideways, find it */
960 	free_page_is_bad_report(page);
961 	return true;
962 }
963 
964 static inline bool is_check_pages_enabled(void)
965 {
966 	return static_branch_unlikely(&check_pages_enabled);
967 }
968 
969 static int free_tail_page_prepare(struct page *head_page, struct page *page)
970 {
971 	struct folio *folio = (struct folio *)head_page;
972 	int ret = 1;
973 
974 	/*
975 	 * We rely page->lru.next never has bit 0 set, unless the page
976 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
977 	 */
978 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
979 
980 	if (!is_check_pages_enabled()) {
981 		ret = 0;
982 		goto out;
983 	}
984 	switch (page - head_page) {
985 	case 1:
986 		/* the first tail page: these may be in place of ->mapping */
987 		if (unlikely(folio_entire_mapcount(folio))) {
988 			bad_page(page, "nonzero entire_mapcount");
989 			goto out;
990 		}
991 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
992 			bad_page(page, "nonzero nr_pages_mapped");
993 			goto out;
994 		}
995 		if (unlikely(atomic_read(&folio->_pincount))) {
996 			bad_page(page, "nonzero pincount");
997 			goto out;
998 		}
999 		break;
1000 	case 2:
1001 		/*
1002 		 * the second tail page: ->mapping is
1003 		 * deferred_list.next -- ignore value.
1004 		 */
1005 		break;
1006 	default:
1007 		if (page->mapping != TAIL_MAPPING) {
1008 			bad_page(page, "corrupted mapping in tail page");
1009 			goto out;
1010 		}
1011 		break;
1012 	}
1013 	if (unlikely(!PageTail(page))) {
1014 		bad_page(page, "PageTail not set");
1015 		goto out;
1016 	}
1017 	if (unlikely(compound_head(page) != head_page)) {
1018 		bad_page(page, "compound_head not consistent");
1019 		goto out;
1020 	}
1021 	ret = 0;
1022 out:
1023 	page->mapping = NULL;
1024 	clear_compound_head(page);
1025 	return ret;
1026 }
1027 
1028 /*
1029  * Skip KASAN memory poisoning when either:
1030  *
1031  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1032  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1033  *    using page tags instead (see below).
1034  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1035  *    that error detection is disabled for accesses via the page address.
1036  *
1037  * Pages will have match-all tags in the following circumstances:
1038  *
1039  * 1. Pages are being initialized for the first time, including during deferred
1040  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1041  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1042  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1043  * 3. The allocation was excluded from being checked due to sampling,
1044  *    see the call to kasan_unpoison_pages.
1045  *
1046  * Poisoning pages during deferred memory init will greatly lengthen the
1047  * process and cause problem in large memory systems as the deferred pages
1048  * initialization is done with interrupt disabled.
1049  *
1050  * Assuming that there will be no reference to those newly initialized
1051  * pages before they are ever allocated, this should have no effect on
1052  * KASAN memory tracking as the poison will be properly inserted at page
1053  * allocation time. The only corner case is when pages are allocated by
1054  * on-demand allocation and then freed again before the deferred pages
1055  * initialization is done, but this is not likely to happen.
1056  */
1057 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1058 {
1059 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1060 		return deferred_pages_enabled();
1061 
1062 	return page_kasan_tag(page) == 0xff;
1063 }
1064 
1065 static void kernel_init_pages(struct page *page, int numpages)
1066 {
1067 	int i;
1068 
1069 	/* s390's use of memset() could override KASAN redzones. */
1070 	kasan_disable_current();
1071 	for (i = 0; i < numpages; i++)
1072 		clear_highpage_kasan_tagged(page + i);
1073 	kasan_enable_current();
1074 }
1075 
1076 static __always_inline bool free_pages_prepare(struct page *page,
1077 			unsigned int order, fpi_t fpi_flags)
1078 {
1079 	int bad = 0;
1080 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1081 	bool init = want_init_on_free();
1082 	bool compound = PageCompound(page);
1083 
1084 	VM_BUG_ON_PAGE(PageTail(page), page);
1085 
1086 	trace_mm_page_free(page, order);
1087 	kmsan_free_page(page, order);
1088 
1089 	if (unlikely(PageHWPoison(page)) && !order) {
1090 		/*
1091 		 * Do not let hwpoison pages hit pcplists/buddy
1092 		 * Untie memcg state and reset page's owner
1093 		 */
1094 		if (memcg_kmem_online() && PageMemcgKmem(page))
1095 			__memcg_kmem_uncharge_page(page, order);
1096 		reset_page_owner(page, order);
1097 		page_table_check_free(page, order);
1098 		return false;
1099 	}
1100 
1101 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1102 
1103 	/*
1104 	 * Check tail pages before head page information is cleared to
1105 	 * avoid checking PageCompound for order-0 pages.
1106 	 */
1107 	if (unlikely(order)) {
1108 		int i;
1109 
1110 		if (compound)
1111 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1112 		for (i = 1; i < (1 << order); i++) {
1113 			if (compound)
1114 				bad += free_tail_page_prepare(page, page + i);
1115 			if (is_check_pages_enabled()) {
1116 				if (free_page_is_bad(page + i)) {
1117 					bad++;
1118 					continue;
1119 				}
1120 			}
1121 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1122 		}
1123 	}
1124 	if (PageMappingFlags(page))
1125 		page->mapping = NULL;
1126 	if (memcg_kmem_online() && PageMemcgKmem(page))
1127 		__memcg_kmem_uncharge_page(page, order);
1128 	if (is_check_pages_enabled()) {
1129 		if (free_page_is_bad(page))
1130 			bad++;
1131 		if (bad)
1132 			return false;
1133 	}
1134 
1135 	page_cpupid_reset_last(page);
1136 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1137 	reset_page_owner(page, order);
1138 	page_table_check_free(page, order);
1139 
1140 	if (!PageHighMem(page)) {
1141 		debug_check_no_locks_freed(page_address(page),
1142 					   PAGE_SIZE << order);
1143 		debug_check_no_obj_freed(page_address(page),
1144 					   PAGE_SIZE << order);
1145 	}
1146 
1147 	kernel_poison_pages(page, 1 << order);
1148 
1149 	/*
1150 	 * As memory initialization might be integrated into KASAN,
1151 	 * KASAN poisoning and memory initialization code must be
1152 	 * kept together to avoid discrepancies in behavior.
1153 	 *
1154 	 * With hardware tag-based KASAN, memory tags must be set before the
1155 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1156 	 */
1157 	if (!skip_kasan_poison) {
1158 		kasan_poison_pages(page, order, init);
1159 
1160 		/* Memory is already initialized if KASAN did it internally. */
1161 		if (kasan_has_integrated_init())
1162 			init = false;
1163 	}
1164 	if (init)
1165 		kernel_init_pages(page, 1 << order);
1166 
1167 	/*
1168 	 * arch_free_page() can make the page's contents inaccessible.  s390
1169 	 * does this.  So nothing which can access the page's contents should
1170 	 * happen after this.
1171 	 */
1172 	arch_free_page(page, order);
1173 
1174 	debug_pagealloc_unmap_pages(page, 1 << order);
1175 
1176 	return true;
1177 }
1178 
1179 /*
1180  * Frees a number of pages from the PCP lists
1181  * Assumes all pages on list are in same zone.
1182  * count is the number of pages to free.
1183  */
1184 static void free_pcppages_bulk(struct zone *zone, int count,
1185 					struct per_cpu_pages *pcp,
1186 					int pindex)
1187 {
1188 	unsigned long flags;
1189 	unsigned int order;
1190 	bool isolated_pageblocks;
1191 	struct page *page;
1192 
1193 	/*
1194 	 * Ensure proper count is passed which otherwise would stuck in the
1195 	 * below while (list_empty(list)) loop.
1196 	 */
1197 	count = min(pcp->count, count);
1198 
1199 	/* Ensure requested pindex is drained first. */
1200 	pindex = pindex - 1;
1201 
1202 	spin_lock_irqsave(&zone->lock, flags);
1203 	isolated_pageblocks = has_isolate_pageblock(zone);
1204 
1205 	while (count > 0) {
1206 		struct list_head *list;
1207 		int nr_pages;
1208 
1209 		/* Remove pages from lists in a round-robin fashion. */
1210 		do {
1211 			if (++pindex > NR_PCP_LISTS - 1)
1212 				pindex = 0;
1213 			list = &pcp->lists[pindex];
1214 		} while (list_empty(list));
1215 
1216 		order = pindex_to_order(pindex);
1217 		nr_pages = 1 << order;
1218 		do {
1219 			int mt;
1220 
1221 			page = list_last_entry(list, struct page, pcp_list);
1222 			mt = get_pcppage_migratetype(page);
1223 
1224 			/* must delete to avoid corrupting pcp list */
1225 			list_del(&page->pcp_list);
1226 			count -= nr_pages;
1227 			pcp->count -= nr_pages;
1228 
1229 			/* MIGRATE_ISOLATE page should not go to pcplists */
1230 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1231 			/* Pageblock could have been isolated meanwhile */
1232 			if (unlikely(isolated_pageblocks))
1233 				mt = get_pageblock_migratetype(page);
1234 
1235 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1236 			trace_mm_page_pcpu_drain(page, order, mt);
1237 		} while (count > 0 && !list_empty(list));
1238 	}
1239 
1240 	spin_unlock_irqrestore(&zone->lock, flags);
1241 }
1242 
1243 static void free_one_page(struct zone *zone,
1244 				struct page *page, unsigned long pfn,
1245 				unsigned int order,
1246 				int migratetype, fpi_t fpi_flags)
1247 {
1248 	unsigned long flags;
1249 
1250 	spin_lock_irqsave(&zone->lock, flags);
1251 	if (unlikely(has_isolate_pageblock(zone) ||
1252 		is_migrate_isolate(migratetype))) {
1253 		migratetype = get_pfnblock_migratetype(page, pfn);
1254 	}
1255 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1256 	spin_unlock_irqrestore(&zone->lock, flags);
1257 }
1258 
1259 static void __free_pages_ok(struct page *page, unsigned int order,
1260 			    fpi_t fpi_flags)
1261 {
1262 	unsigned long flags;
1263 	int migratetype;
1264 	unsigned long pfn = page_to_pfn(page);
1265 	struct zone *zone = page_zone(page);
1266 
1267 	if (!free_pages_prepare(page, order, fpi_flags))
1268 		return;
1269 
1270 	/*
1271 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1272 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1273 	 * This will reduce the lock holding time.
1274 	 */
1275 	migratetype = get_pfnblock_migratetype(page, pfn);
1276 
1277 	spin_lock_irqsave(&zone->lock, flags);
1278 	if (unlikely(has_isolate_pageblock(zone) ||
1279 		is_migrate_isolate(migratetype))) {
1280 		migratetype = get_pfnblock_migratetype(page, pfn);
1281 	}
1282 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1283 	spin_unlock_irqrestore(&zone->lock, flags);
1284 
1285 	__count_vm_events(PGFREE, 1 << order);
1286 }
1287 
1288 void __free_pages_core(struct page *page, unsigned int order)
1289 {
1290 	unsigned int nr_pages = 1 << order;
1291 	struct page *p = page;
1292 	unsigned int loop;
1293 
1294 	/*
1295 	 * When initializing the memmap, __init_single_page() sets the refcount
1296 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1297 	 * refcount of all involved pages to 0.
1298 	 */
1299 	prefetchw(p);
1300 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1301 		prefetchw(p + 1);
1302 		__ClearPageReserved(p);
1303 		set_page_count(p, 0);
1304 	}
1305 	__ClearPageReserved(p);
1306 	set_page_count(p, 0);
1307 
1308 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1309 
1310 	if (page_contains_unaccepted(page, order)) {
1311 		if (order == MAX_ORDER && __free_unaccepted(page))
1312 			return;
1313 
1314 		accept_page(page, order);
1315 	}
1316 
1317 	/*
1318 	 * Bypass PCP and place fresh pages right to the tail, primarily
1319 	 * relevant for memory onlining.
1320 	 */
1321 	__free_pages_ok(page, order, FPI_TO_TAIL);
1322 }
1323 
1324 /*
1325  * Check that the whole (or subset of) a pageblock given by the interval of
1326  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1327  * with the migration of free compaction scanner.
1328  *
1329  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1330  *
1331  * It's possible on some configurations to have a setup like node0 node1 node0
1332  * i.e. it's possible that all pages within a zones range of pages do not
1333  * belong to a single zone. We assume that a border between node0 and node1
1334  * can occur within a single pageblock, but not a node0 node1 node0
1335  * interleaving within a single pageblock. It is therefore sufficient to check
1336  * the first and last page of a pageblock and avoid checking each individual
1337  * page in a pageblock.
1338  *
1339  * Note: the function may return non-NULL struct page even for a page block
1340  * which contains a memory hole (i.e. there is no physical memory for a subset
1341  * of the pfn range). For example, if the pageblock order is MAX_ORDER, which
1342  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1343  * even though the start pfn is online and valid. This should be safe most of
1344  * the time because struct pages are still initialized via init_unavailable_range()
1345  * and pfn walkers shouldn't touch any physical memory range for which they do
1346  * not recognize any specific metadata in struct pages.
1347  */
1348 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1349 				     unsigned long end_pfn, struct zone *zone)
1350 {
1351 	struct page *start_page;
1352 	struct page *end_page;
1353 
1354 	/* end_pfn is one past the range we are checking */
1355 	end_pfn--;
1356 
1357 	if (!pfn_valid(end_pfn))
1358 		return NULL;
1359 
1360 	start_page = pfn_to_online_page(start_pfn);
1361 	if (!start_page)
1362 		return NULL;
1363 
1364 	if (page_zone(start_page) != zone)
1365 		return NULL;
1366 
1367 	end_page = pfn_to_page(end_pfn);
1368 
1369 	/* This gives a shorter code than deriving page_zone(end_page) */
1370 	if (page_zone_id(start_page) != page_zone_id(end_page))
1371 		return NULL;
1372 
1373 	return start_page;
1374 }
1375 
1376 /*
1377  * The order of subdivision here is critical for the IO subsystem.
1378  * Please do not alter this order without good reasons and regression
1379  * testing. Specifically, as large blocks of memory are subdivided,
1380  * the order in which smaller blocks are delivered depends on the order
1381  * they're subdivided in this function. This is the primary factor
1382  * influencing the order in which pages are delivered to the IO
1383  * subsystem according to empirical testing, and this is also justified
1384  * by considering the behavior of a buddy system containing a single
1385  * large block of memory acted on by a series of small allocations.
1386  * This behavior is a critical factor in sglist merging's success.
1387  *
1388  * -- nyc
1389  */
1390 static inline void expand(struct zone *zone, struct page *page,
1391 	int low, int high, int migratetype)
1392 {
1393 	unsigned long size = 1 << high;
1394 
1395 	while (high > low) {
1396 		high--;
1397 		size >>= 1;
1398 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1399 
1400 		/*
1401 		 * Mark as guard pages (or page), that will allow to
1402 		 * merge back to allocator when buddy will be freed.
1403 		 * Corresponding page table entries will not be touched,
1404 		 * pages will stay not present in virtual address space
1405 		 */
1406 		if (set_page_guard(zone, &page[size], high, migratetype))
1407 			continue;
1408 
1409 		add_to_free_list(&page[size], zone, high, migratetype);
1410 		set_buddy_order(&page[size], high);
1411 	}
1412 }
1413 
1414 static void check_new_page_bad(struct page *page)
1415 {
1416 	if (unlikely(page->flags & __PG_HWPOISON)) {
1417 		/* Don't complain about hwpoisoned pages */
1418 		page_mapcount_reset(page); /* remove PageBuddy */
1419 		return;
1420 	}
1421 
1422 	bad_page(page,
1423 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1424 }
1425 
1426 /*
1427  * This page is about to be returned from the page allocator
1428  */
1429 static int check_new_page(struct page *page)
1430 {
1431 	if (likely(page_expected_state(page,
1432 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1433 		return 0;
1434 
1435 	check_new_page_bad(page);
1436 	return 1;
1437 }
1438 
1439 static inline bool check_new_pages(struct page *page, unsigned int order)
1440 {
1441 	if (is_check_pages_enabled()) {
1442 		for (int i = 0; i < (1 << order); i++) {
1443 			struct page *p = page + i;
1444 
1445 			if (check_new_page(p))
1446 				return true;
1447 		}
1448 	}
1449 
1450 	return false;
1451 }
1452 
1453 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1454 {
1455 	/* Don't skip if a software KASAN mode is enabled. */
1456 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1457 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1458 		return false;
1459 
1460 	/* Skip, if hardware tag-based KASAN is not enabled. */
1461 	if (!kasan_hw_tags_enabled())
1462 		return true;
1463 
1464 	/*
1465 	 * With hardware tag-based KASAN enabled, skip if this has been
1466 	 * requested via __GFP_SKIP_KASAN.
1467 	 */
1468 	return flags & __GFP_SKIP_KASAN;
1469 }
1470 
1471 static inline bool should_skip_init(gfp_t flags)
1472 {
1473 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1474 	if (!kasan_hw_tags_enabled())
1475 		return false;
1476 
1477 	/* For hardware tag-based KASAN, skip if requested. */
1478 	return (flags & __GFP_SKIP_ZERO);
1479 }
1480 
1481 inline void post_alloc_hook(struct page *page, unsigned int order,
1482 				gfp_t gfp_flags)
1483 {
1484 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1485 			!should_skip_init(gfp_flags);
1486 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1487 	int i;
1488 
1489 	set_page_private(page, 0);
1490 	set_page_refcounted(page);
1491 
1492 	arch_alloc_page(page, order);
1493 	debug_pagealloc_map_pages(page, 1 << order);
1494 
1495 	/*
1496 	 * Page unpoisoning must happen before memory initialization.
1497 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1498 	 * allocations and the page unpoisoning code will complain.
1499 	 */
1500 	kernel_unpoison_pages(page, 1 << order);
1501 
1502 	/*
1503 	 * As memory initialization might be integrated into KASAN,
1504 	 * KASAN unpoisoning and memory initializion code must be
1505 	 * kept together to avoid discrepancies in behavior.
1506 	 */
1507 
1508 	/*
1509 	 * If memory tags should be zeroed
1510 	 * (which happens only when memory should be initialized as well).
1511 	 */
1512 	if (zero_tags) {
1513 		/* Initialize both memory and memory tags. */
1514 		for (i = 0; i != 1 << order; ++i)
1515 			tag_clear_highpage(page + i);
1516 
1517 		/* Take note that memory was initialized by the loop above. */
1518 		init = false;
1519 	}
1520 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1521 	    kasan_unpoison_pages(page, order, init)) {
1522 		/* Take note that memory was initialized by KASAN. */
1523 		if (kasan_has_integrated_init())
1524 			init = false;
1525 	} else {
1526 		/*
1527 		 * If memory tags have not been set by KASAN, reset the page
1528 		 * tags to ensure page_address() dereferencing does not fault.
1529 		 */
1530 		for (i = 0; i != 1 << order; ++i)
1531 			page_kasan_tag_reset(page + i);
1532 	}
1533 	/* If memory is still not initialized, initialize it now. */
1534 	if (init)
1535 		kernel_init_pages(page, 1 << order);
1536 
1537 	set_page_owner(page, order, gfp_flags);
1538 	page_table_check_alloc(page, order);
1539 }
1540 
1541 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1542 							unsigned int alloc_flags)
1543 {
1544 	post_alloc_hook(page, order, gfp_flags);
1545 
1546 	if (order && (gfp_flags & __GFP_COMP))
1547 		prep_compound_page(page, order);
1548 
1549 	/*
1550 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1551 	 * allocate the page. The expectation is that the caller is taking
1552 	 * steps that will free more memory. The caller should avoid the page
1553 	 * being used for !PFMEMALLOC purposes.
1554 	 */
1555 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1556 		set_page_pfmemalloc(page);
1557 	else
1558 		clear_page_pfmemalloc(page);
1559 }
1560 
1561 /*
1562  * Go through the free lists for the given migratetype and remove
1563  * the smallest available page from the freelists
1564  */
1565 static __always_inline
1566 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1567 						int migratetype)
1568 {
1569 	unsigned int current_order;
1570 	struct free_area *area;
1571 	struct page *page;
1572 
1573 	/* Find a page of the appropriate size in the preferred list */
1574 	for (current_order = order; current_order <= MAX_ORDER; ++current_order) {
1575 		area = &(zone->free_area[current_order]);
1576 		page = get_page_from_free_area(area, migratetype);
1577 		if (!page)
1578 			continue;
1579 		del_page_from_free_list(page, zone, current_order);
1580 		expand(zone, page, order, current_order, migratetype);
1581 		set_pcppage_migratetype(page, migratetype);
1582 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1583 				pcp_allowed_order(order) &&
1584 				migratetype < MIGRATE_PCPTYPES);
1585 		return page;
1586 	}
1587 
1588 	return NULL;
1589 }
1590 
1591 
1592 /*
1593  * This array describes the order lists are fallen back to when
1594  * the free lists for the desirable migrate type are depleted
1595  *
1596  * The other migratetypes do not have fallbacks.
1597  */
1598 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1599 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1600 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1601 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1602 };
1603 
1604 #ifdef CONFIG_CMA
1605 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1606 					unsigned int order)
1607 {
1608 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1609 }
1610 #else
1611 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1612 					unsigned int order) { return NULL; }
1613 #endif
1614 
1615 /*
1616  * Move the free pages in a range to the freelist tail of the requested type.
1617  * Note that start_page and end_pages are not aligned on a pageblock
1618  * boundary. If alignment is required, use move_freepages_block()
1619  */
1620 static int move_freepages(struct zone *zone,
1621 			  unsigned long start_pfn, unsigned long end_pfn,
1622 			  int migratetype, int *num_movable)
1623 {
1624 	struct page *page;
1625 	unsigned long pfn;
1626 	unsigned int order;
1627 	int pages_moved = 0;
1628 
1629 	for (pfn = start_pfn; pfn <= end_pfn;) {
1630 		page = pfn_to_page(pfn);
1631 		if (!PageBuddy(page)) {
1632 			/*
1633 			 * We assume that pages that could be isolated for
1634 			 * migration are movable. But we don't actually try
1635 			 * isolating, as that would be expensive.
1636 			 */
1637 			if (num_movable &&
1638 					(PageLRU(page) || __PageMovable(page)))
1639 				(*num_movable)++;
1640 			pfn++;
1641 			continue;
1642 		}
1643 
1644 		/* Make sure we are not inadvertently changing nodes */
1645 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1646 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1647 
1648 		order = buddy_order(page);
1649 		move_to_free_list(page, zone, order, migratetype);
1650 		pfn += 1 << order;
1651 		pages_moved += 1 << order;
1652 	}
1653 
1654 	return pages_moved;
1655 }
1656 
1657 int move_freepages_block(struct zone *zone, struct page *page,
1658 				int migratetype, int *num_movable)
1659 {
1660 	unsigned long start_pfn, end_pfn, pfn;
1661 
1662 	if (num_movable)
1663 		*num_movable = 0;
1664 
1665 	pfn = page_to_pfn(page);
1666 	start_pfn = pageblock_start_pfn(pfn);
1667 	end_pfn = pageblock_end_pfn(pfn) - 1;
1668 
1669 	/* Do not cross zone boundaries */
1670 	if (!zone_spans_pfn(zone, start_pfn))
1671 		start_pfn = pfn;
1672 	if (!zone_spans_pfn(zone, end_pfn))
1673 		return 0;
1674 
1675 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1676 								num_movable);
1677 }
1678 
1679 static void change_pageblock_range(struct page *pageblock_page,
1680 					int start_order, int migratetype)
1681 {
1682 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1683 
1684 	while (nr_pageblocks--) {
1685 		set_pageblock_migratetype(pageblock_page, migratetype);
1686 		pageblock_page += pageblock_nr_pages;
1687 	}
1688 }
1689 
1690 /*
1691  * When we are falling back to another migratetype during allocation, try to
1692  * steal extra free pages from the same pageblocks to satisfy further
1693  * allocations, instead of polluting multiple pageblocks.
1694  *
1695  * If we are stealing a relatively large buddy page, it is likely there will
1696  * be more free pages in the pageblock, so try to steal them all. For
1697  * reclaimable and unmovable allocations, we steal regardless of page size,
1698  * as fragmentation caused by those allocations polluting movable pageblocks
1699  * is worse than movable allocations stealing from unmovable and reclaimable
1700  * pageblocks.
1701  */
1702 static bool can_steal_fallback(unsigned int order, int start_mt)
1703 {
1704 	/*
1705 	 * Leaving this order check is intended, although there is
1706 	 * relaxed order check in next check. The reason is that
1707 	 * we can actually steal whole pageblock if this condition met,
1708 	 * but, below check doesn't guarantee it and that is just heuristic
1709 	 * so could be changed anytime.
1710 	 */
1711 	if (order >= pageblock_order)
1712 		return true;
1713 
1714 	if (order >= pageblock_order / 2 ||
1715 		start_mt == MIGRATE_RECLAIMABLE ||
1716 		start_mt == MIGRATE_UNMOVABLE ||
1717 		page_group_by_mobility_disabled)
1718 		return true;
1719 
1720 	return false;
1721 }
1722 
1723 static inline bool boost_watermark(struct zone *zone)
1724 {
1725 	unsigned long max_boost;
1726 
1727 	if (!watermark_boost_factor)
1728 		return false;
1729 	/*
1730 	 * Don't bother in zones that are unlikely to produce results.
1731 	 * On small machines, including kdump capture kernels running
1732 	 * in a small area, boosting the watermark can cause an out of
1733 	 * memory situation immediately.
1734 	 */
1735 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1736 		return false;
1737 
1738 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1739 			watermark_boost_factor, 10000);
1740 
1741 	/*
1742 	 * high watermark may be uninitialised if fragmentation occurs
1743 	 * very early in boot so do not boost. We do not fall
1744 	 * through and boost by pageblock_nr_pages as failing
1745 	 * allocations that early means that reclaim is not going
1746 	 * to help and it may even be impossible to reclaim the
1747 	 * boosted watermark resulting in a hang.
1748 	 */
1749 	if (!max_boost)
1750 		return false;
1751 
1752 	max_boost = max(pageblock_nr_pages, max_boost);
1753 
1754 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1755 		max_boost);
1756 
1757 	return true;
1758 }
1759 
1760 /*
1761  * This function implements actual steal behaviour. If order is large enough,
1762  * we can steal whole pageblock. If not, we first move freepages in this
1763  * pageblock to our migratetype and determine how many already-allocated pages
1764  * are there in the pageblock with a compatible migratetype. If at least half
1765  * of pages are free or compatible, we can change migratetype of the pageblock
1766  * itself, so pages freed in the future will be put on the correct free list.
1767  */
1768 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1769 		unsigned int alloc_flags, int start_type, bool whole_block)
1770 {
1771 	unsigned int current_order = buddy_order(page);
1772 	int free_pages, movable_pages, alike_pages;
1773 	int old_block_type;
1774 
1775 	old_block_type = get_pageblock_migratetype(page);
1776 
1777 	/*
1778 	 * This can happen due to races and we want to prevent broken
1779 	 * highatomic accounting.
1780 	 */
1781 	if (is_migrate_highatomic(old_block_type))
1782 		goto single_page;
1783 
1784 	/* Take ownership for orders >= pageblock_order */
1785 	if (current_order >= pageblock_order) {
1786 		change_pageblock_range(page, current_order, start_type);
1787 		goto single_page;
1788 	}
1789 
1790 	/*
1791 	 * Boost watermarks to increase reclaim pressure to reduce the
1792 	 * likelihood of future fallbacks. Wake kswapd now as the node
1793 	 * may be balanced overall and kswapd will not wake naturally.
1794 	 */
1795 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1796 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1797 
1798 	/* We are not allowed to try stealing from the whole block */
1799 	if (!whole_block)
1800 		goto single_page;
1801 
1802 	free_pages = move_freepages_block(zone, page, start_type,
1803 						&movable_pages);
1804 	/* moving whole block can fail due to zone boundary conditions */
1805 	if (!free_pages)
1806 		goto single_page;
1807 
1808 	/*
1809 	 * Determine how many pages are compatible with our allocation.
1810 	 * For movable allocation, it's the number of movable pages which
1811 	 * we just obtained. For other types it's a bit more tricky.
1812 	 */
1813 	if (start_type == MIGRATE_MOVABLE) {
1814 		alike_pages = movable_pages;
1815 	} else {
1816 		/*
1817 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1818 		 * to MOVABLE pageblock, consider all non-movable pages as
1819 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1820 		 * vice versa, be conservative since we can't distinguish the
1821 		 * exact migratetype of non-movable pages.
1822 		 */
1823 		if (old_block_type == MIGRATE_MOVABLE)
1824 			alike_pages = pageblock_nr_pages
1825 						- (free_pages + movable_pages);
1826 		else
1827 			alike_pages = 0;
1828 	}
1829 	/*
1830 	 * If a sufficient number of pages in the block are either free or of
1831 	 * compatible migratability as our allocation, claim the whole block.
1832 	 */
1833 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1834 			page_group_by_mobility_disabled)
1835 		set_pageblock_migratetype(page, start_type);
1836 
1837 	return;
1838 
1839 single_page:
1840 	move_to_free_list(page, zone, current_order, start_type);
1841 }
1842 
1843 /*
1844  * Check whether there is a suitable fallback freepage with requested order.
1845  * If only_stealable is true, this function returns fallback_mt only if
1846  * we can steal other freepages all together. This would help to reduce
1847  * fragmentation due to mixed migratetype pages in one pageblock.
1848  */
1849 int find_suitable_fallback(struct free_area *area, unsigned int order,
1850 			int migratetype, bool only_stealable, bool *can_steal)
1851 {
1852 	int i;
1853 	int fallback_mt;
1854 
1855 	if (area->nr_free == 0)
1856 		return -1;
1857 
1858 	*can_steal = false;
1859 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1860 		fallback_mt = fallbacks[migratetype][i];
1861 		if (free_area_empty(area, fallback_mt))
1862 			continue;
1863 
1864 		if (can_steal_fallback(order, migratetype))
1865 			*can_steal = true;
1866 
1867 		if (!only_stealable)
1868 			return fallback_mt;
1869 
1870 		if (*can_steal)
1871 			return fallback_mt;
1872 	}
1873 
1874 	return -1;
1875 }
1876 
1877 /*
1878  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1879  * there are no empty page blocks that contain a page with a suitable order
1880  */
1881 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1882 {
1883 	int mt;
1884 	unsigned long max_managed, flags;
1885 
1886 	/*
1887 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1888 	 * Check is race-prone but harmless.
1889 	 */
1890 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
1891 	if (zone->nr_reserved_highatomic >= max_managed)
1892 		return;
1893 
1894 	spin_lock_irqsave(&zone->lock, flags);
1895 
1896 	/* Recheck the nr_reserved_highatomic limit under the lock */
1897 	if (zone->nr_reserved_highatomic >= max_managed)
1898 		goto out_unlock;
1899 
1900 	/* Yoink! */
1901 	mt = get_pageblock_migratetype(page);
1902 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1903 	if (migratetype_is_mergeable(mt)) {
1904 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1905 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1906 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1907 	}
1908 
1909 out_unlock:
1910 	spin_unlock_irqrestore(&zone->lock, flags);
1911 }
1912 
1913 /*
1914  * Used when an allocation is about to fail under memory pressure. This
1915  * potentially hurts the reliability of high-order allocations when under
1916  * intense memory pressure but failed atomic allocations should be easier
1917  * to recover from than an OOM.
1918  *
1919  * If @force is true, try to unreserve a pageblock even though highatomic
1920  * pageblock is exhausted.
1921  */
1922 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1923 						bool force)
1924 {
1925 	struct zonelist *zonelist = ac->zonelist;
1926 	unsigned long flags;
1927 	struct zoneref *z;
1928 	struct zone *zone;
1929 	struct page *page;
1930 	int order;
1931 	bool ret;
1932 
1933 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1934 								ac->nodemask) {
1935 		/*
1936 		 * Preserve at least one pageblock unless memory pressure
1937 		 * is really high.
1938 		 */
1939 		if (!force && zone->nr_reserved_highatomic <=
1940 					pageblock_nr_pages)
1941 			continue;
1942 
1943 		spin_lock_irqsave(&zone->lock, flags);
1944 		for (order = 0; order <= MAX_ORDER; order++) {
1945 			struct free_area *area = &(zone->free_area[order]);
1946 
1947 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1948 			if (!page)
1949 				continue;
1950 
1951 			/*
1952 			 * In page freeing path, migratetype change is racy so
1953 			 * we can counter several free pages in a pageblock
1954 			 * in this loop although we changed the pageblock type
1955 			 * from highatomic to ac->migratetype. So we should
1956 			 * adjust the count once.
1957 			 */
1958 			if (is_migrate_highatomic_page(page)) {
1959 				/*
1960 				 * It should never happen but changes to
1961 				 * locking could inadvertently allow a per-cpu
1962 				 * drain to add pages to MIGRATE_HIGHATOMIC
1963 				 * while unreserving so be safe and watch for
1964 				 * underflows.
1965 				 */
1966 				zone->nr_reserved_highatomic -= min(
1967 						pageblock_nr_pages,
1968 						zone->nr_reserved_highatomic);
1969 			}
1970 
1971 			/*
1972 			 * Convert to ac->migratetype and avoid the normal
1973 			 * pageblock stealing heuristics. Minimally, the caller
1974 			 * is doing the work and needs the pages. More
1975 			 * importantly, if the block was always converted to
1976 			 * MIGRATE_UNMOVABLE or another type then the number
1977 			 * of pageblocks that cannot be completely freed
1978 			 * may increase.
1979 			 */
1980 			set_pageblock_migratetype(page, ac->migratetype);
1981 			ret = move_freepages_block(zone, page, ac->migratetype,
1982 									NULL);
1983 			if (ret) {
1984 				spin_unlock_irqrestore(&zone->lock, flags);
1985 				return ret;
1986 			}
1987 		}
1988 		spin_unlock_irqrestore(&zone->lock, flags);
1989 	}
1990 
1991 	return false;
1992 }
1993 
1994 /*
1995  * Try finding a free buddy page on the fallback list and put it on the free
1996  * list of requested migratetype, possibly along with other pages from the same
1997  * block, depending on fragmentation avoidance heuristics. Returns true if
1998  * fallback was found so that __rmqueue_smallest() can grab it.
1999  *
2000  * The use of signed ints for order and current_order is a deliberate
2001  * deviation from the rest of this file, to make the for loop
2002  * condition simpler.
2003  */
2004 static __always_inline bool
2005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2006 						unsigned int alloc_flags)
2007 {
2008 	struct free_area *area;
2009 	int current_order;
2010 	int min_order = order;
2011 	struct page *page;
2012 	int fallback_mt;
2013 	bool can_steal;
2014 
2015 	/*
2016 	 * Do not steal pages from freelists belonging to other pageblocks
2017 	 * i.e. orders < pageblock_order. If there are no local zones free,
2018 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2019 	 */
2020 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2021 		min_order = pageblock_order;
2022 
2023 	/*
2024 	 * Find the largest available free page in the other list. This roughly
2025 	 * approximates finding the pageblock with the most free pages, which
2026 	 * would be too costly to do exactly.
2027 	 */
2028 	for (current_order = MAX_ORDER; current_order >= min_order;
2029 				--current_order) {
2030 		area = &(zone->free_area[current_order]);
2031 		fallback_mt = find_suitable_fallback(area, current_order,
2032 				start_migratetype, false, &can_steal);
2033 		if (fallback_mt == -1)
2034 			continue;
2035 
2036 		/*
2037 		 * We cannot steal all free pages from the pageblock and the
2038 		 * requested migratetype is movable. In that case it's better to
2039 		 * steal and split the smallest available page instead of the
2040 		 * largest available page, because even if the next movable
2041 		 * allocation falls back into a different pageblock than this
2042 		 * one, it won't cause permanent fragmentation.
2043 		 */
2044 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2045 					&& current_order > order)
2046 			goto find_smallest;
2047 
2048 		goto do_steal;
2049 	}
2050 
2051 	return false;
2052 
2053 find_smallest:
2054 	for (current_order = order; current_order <= MAX_ORDER;
2055 							current_order++) {
2056 		area = &(zone->free_area[current_order]);
2057 		fallback_mt = find_suitable_fallback(area, current_order,
2058 				start_migratetype, false, &can_steal);
2059 		if (fallback_mt != -1)
2060 			break;
2061 	}
2062 
2063 	/*
2064 	 * This should not happen - we already found a suitable fallback
2065 	 * when looking for the largest page.
2066 	 */
2067 	VM_BUG_ON(current_order > MAX_ORDER);
2068 
2069 do_steal:
2070 	page = get_page_from_free_area(area, fallback_mt);
2071 
2072 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2073 								can_steal);
2074 
2075 	trace_mm_page_alloc_extfrag(page, order, current_order,
2076 		start_migratetype, fallback_mt);
2077 
2078 	return true;
2079 
2080 }
2081 
2082 /*
2083  * Do the hard work of removing an element from the buddy allocator.
2084  * Call me with the zone->lock already held.
2085  */
2086 static __always_inline struct page *
2087 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2088 						unsigned int alloc_flags)
2089 {
2090 	struct page *page;
2091 
2092 	if (IS_ENABLED(CONFIG_CMA)) {
2093 		/*
2094 		 * Balance movable allocations between regular and CMA areas by
2095 		 * allocating from CMA when over half of the zone's free memory
2096 		 * is in the CMA area.
2097 		 */
2098 		if (alloc_flags & ALLOC_CMA &&
2099 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2100 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2101 			page = __rmqueue_cma_fallback(zone, order);
2102 			if (page)
2103 				return page;
2104 		}
2105 	}
2106 retry:
2107 	page = __rmqueue_smallest(zone, order, migratetype);
2108 	if (unlikely(!page)) {
2109 		if (alloc_flags & ALLOC_CMA)
2110 			page = __rmqueue_cma_fallback(zone, order);
2111 
2112 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2113 								alloc_flags))
2114 			goto retry;
2115 	}
2116 	return page;
2117 }
2118 
2119 /*
2120  * Obtain a specified number of elements from the buddy allocator, all under
2121  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2122  * Returns the number of new pages which were placed at *list.
2123  */
2124 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2125 			unsigned long count, struct list_head *list,
2126 			int migratetype, unsigned int alloc_flags)
2127 {
2128 	unsigned long flags;
2129 	int i;
2130 
2131 	spin_lock_irqsave(&zone->lock, flags);
2132 	for (i = 0; i < count; ++i) {
2133 		struct page *page = __rmqueue(zone, order, migratetype,
2134 								alloc_flags);
2135 		if (unlikely(page == NULL))
2136 			break;
2137 
2138 		/*
2139 		 * Split buddy pages returned by expand() are received here in
2140 		 * physical page order. The page is added to the tail of
2141 		 * caller's list. From the callers perspective, the linked list
2142 		 * is ordered by page number under some conditions. This is
2143 		 * useful for IO devices that can forward direction from the
2144 		 * head, thus also in the physical page order. This is useful
2145 		 * for IO devices that can merge IO requests if the physical
2146 		 * pages are ordered properly.
2147 		 */
2148 		list_add_tail(&page->pcp_list, list);
2149 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2150 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2151 					      -(1 << order));
2152 	}
2153 
2154 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2155 	spin_unlock_irqrestore(&zone->lock, flags);
2156 
2157 	return i;
2158 }
2159 
2160 /*
2161  * Called from the vmstat counter updater to decay the PCP high.
2162  * Return whether there are addition works to do.
2163  */
2164 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2165 {
2166 	int high_min, to_drain, batch;
2167 	int todo = 0;
2168 
2169 	high_min = READ_ONCE(pcp->high_min);
2170 	batch = READ_ONCE(pcp->batch);
2171 	/*
2172 	 * Decrease pcp->high periodically to try to free possible
2173 	 * idle PCP pages.  And, avoid to free too many pages to
2174 	 * control latency.  This caps pcp->high decrement too.
2175 	 */
2176 	if (pcp->high > high_min) {
2177 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2178 				 pcp->high - (pcp->high >> 3), high_min);
2179 		if (pcp->high > high_min)
2180 			todo++;
2181 	}
2182 
2183 	to_drain = pcp->count - pcp->high;
2184 	if (to_drain > 0) {
2185 		spin_lock(&pcp->lock);
2186 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2187 		spin_unlock(&pcp->lock);
2188 		todo++;
2189 	}
2190 
2191 	return todo;
2192 }
2193 
2194 #ifdef CONFIG_NUMA
2195 /*
2196  * Called from the vmstat counter updater to drain pagesets of this
2197  * currently executing processor on remote nodes after they have
2198  * expired.
2199  */
2200 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2201 {
2202 	int to_drain, batch;
2203 
2204 	batch = READ_ONCE(pcp->batch);
2205 	to_drain = min(pcp->count, batch);
2206 	if (to_drain > 0) {
2207 		spin_lock(&pcp->lock);
2208 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2209 		spin_unlock(&pcp->lock);
2210 	}
2211 }
2212 #endif
2213 
2214 /*
2215  * Drain pcplists of the indicated processor and zone.
2216  */
2217 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2218 {
2219 	struct per_cpu_pages *pcp;
2220 
2221 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2222 	if (pcp->count) {
2223 		spin_lock(&pcp->lock);
2224 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2225 		spin_unlock(&pcp->lock);
2226 	}
2227 }
2228 
2229 /*
2230  * Drain pcplists of all zones on the indicated processor.
2231  */
2232 static void drain_pages(unsigned int cpu)
2233 {
2234 	struct zone *zone;
2235 
2236 	for_each_populated_zone(zone) {
2237 		drain_pages_zone(cpu, zone);
2238 	}
2239 }
2240 
2241 /*
2242  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2243  */
2244 void drain_local_pages(struct zone *zone)
2245 {
2246 	int cpu = smp_processor_id();
2247 
2248 	if (zone)
2249 		drain_pages_zone(cpu, zone);
2250 	else
2251 		drain_pages(cpu);
2252 }
2253 
2254 /*
2255  * The implementation of drain_all_pages(), exposing an extra parameter to
2256  * drain on all cpus.
2257  *
2258  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2259  * not empty. The check for non-emptiness can however race with a free to
2260  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2261  * that need the guarantee that every CPU has drained can disable the
2262  * optimizing racy check.
2263  */
2264 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2265 {
2266 	int cpu;
2267 
2268 	/*
2269 	 * Allocate in the BSS so we won't require allocation in
2270 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2271 	 */
2272 	static cpumask_t cpus_with_pcps;
2273 
2274 	/*
2275 	 * Do not drain if one is already in progress unless it's specific to
2276 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2277 	 * the drain to be complete when the call returns.
2278 	 */
2279 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2280 		if (!zone)
2281 			return;
2282 		mutex_lock(&pcpu_drain_mutex);
2283 	}
2284 
2285 	/*
2286 	 * We don't care about racing with CPU hotplug event
2287 	 * as offline notification will cause the notified
2288 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2289 	 * disables preemption as part of its processing
2290 	 */
2291 	for_each_online_cpu(cpu) {
2292 		struct per_cpu_pages *pcp;
2293 		struct zone *z;
2294 		bool has_pcps = false;
2295 
2296 		if (force_all_cpus) {
2297 			/*
2298 			 * The pcp.count check is racy, some callers need a
2299 			 * guarantee that no cpu is missed.
2300 			 */
2301 			has_pcps = true;
2302 		} else if (zone) {
2303 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2304 			if (pcp->count)
2305 				has_pcps = true;
2306 		} else {
2307 			for_each_populated_zone(z) {
2308 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2309 				if (pcp->count) {
2310 					has_pcps = true;
2311 					break;
2312 				}
2313 			}
2314 		}
2315 
2316 		if (has_pcps)
2317 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2318 		else
2319 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2320 	}
2321 
2322 	for_each_cpu(cpu, &cpus_with_pcps) {
2323 		if (zone)
2324 			drain_pages_zone(cpu, zone);
2325 		else
2326 			drain_pages(cpu);
2327 	}
2328 
2329 	mutex_unlock(&pcpu_drain_mutex);
2330 }
2331 
2332 /*
2333  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2334  *
2335  * When zone parameter is non-NULL, spill just the single zone's pages.
2336  */
2337 void drain_all_pages(struct zone *zone)
2338 {
2339 	__drain_all_pages(zone, false);
2340 }
2341 
2342 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2343 							unsigned int order)
2344 {
2345 	int migratetype;
2346 
2347 	if (!free_pages_prepare(page, order, FPI_NONE))
2348 		return false;
2349 
2350 	migratetype = get_pfnblock_migratetype(page, pfn);
2351 	set_pcppage_migratetype(page, migratetype);
2352 	return true;
2353 }
2354 
2355 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2356 {
2357 	int min_nr_free, max_nr_free;
2358 
2359 	/* Free as much as possible if batch freeing high-order pages. */
2360 	if (unlikely(free_high))
2361 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2362 
2363 	/* Check for PCP disabled or boot pageset */
2364 	if (unlikely(high < batch))
2365 		return 1;
2366 
2367 	/* Leave at least pcp->batch pages on the list */
2368 	min_nr_free = batch;
2369 	max_nr_free = high - batch;
2370 
2371 	/*
2372 	 * Increase the batch number to the number of the consecutive
2373 	 * freed pages to reduce zone lock contention.
2374 	 */
2375 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2376 
2377 	return batch;
2378 }
2379 
2380 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2381 		       int batch, bool free_high)
2382 {
2383 	int high, high_min, high_max;
2384 
2385 	high_min = READ_ONCE(pcp->high_min);
2386 	high_max = READ_ONCE(pcp->high_max);
2387 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2388 
2389 	if (unlikely(!high))
2390 		return 0;
2391 
2392 	if (unlikely(free_high)) {
2393 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2394 				high_min);
2395 		return 0;
2396 	}
2397 
2398 	/*
2399 	 * If reclaim is active, limit the number of pages that can be
2400 	 * stored on pcp lists
2401 	 */
2402 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2403 		int free_count = max_t(int, pcp->free_count, batch);
2404 
2405 		pcp->high = max(high - free_count, high_min);
2406 		return min(batch << 2, pcp->high);
2407 	}
2408 
2409 	if (high_min == high_max)
2410 		return high;
2411 
2412 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2413 		int free_count = max_t(int, pcp->free_count, batch);
2414 
2415 		pcp->high = max(high - free_count, high_min);
2416 		high = max(pcp->count, high_min);
2417 	} else if (pcp->count >= high) {
2418 		int need_high = pcp->free_count + batch;
2419 
2420 		/* pcp->high should be large enough to hold batch freed pages */
2421 		if (pcp->high < need_high)
2422 			pcp->high = clamp(need_high, high_min, high_max);
2423 	}
2424 
2425 	return high;
2426 }
2427 
2428 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2429 				   struct page *page, int migratetype,
2430 				   unsigned int order)
2431 {
2432 	int high, batch;
2433 	int pindex;
2434 	bool free_high = false;
2435 
2436 	/*
2437 	 * On freeing, reduce the number of pages that are batch allocated.
2438 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2439 	 * allocations.
2440 	 */
2441 	pcp->alloc_factor >>= 1;
2442 	__count_vm_events(PGFREE, 1 << order);
2443 	pindex = order_to_pindex(migratetype, order);
2444 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2445 	pcp->count += 1 << order;
2446 
2447 	batch = READ_ONCE(pcp->batch);
2448 	/*
2449 	 * As high-order pages other than THP's stored on PCP can contribute
2450 	 * to fragmentation, limit the number stored when PCP is heavily
2451 	 * freeing without allocation. The remainder after bulk freeing
2452 	 * stops will be drained from vmstat refresh context.
2453 	 */
2454 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2455 		free_high = (pcp->free_count >= batch &&
2456 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2457 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2458 			      pcp->count >= READ_ONCE(batch)));
2459 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2460 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2461 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2462 	}
2463 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2464 		pcp->free_count += (1 << order);
2465 	high = nr_pcp_high(pcp, zone, batch, free_high);
2466 	if (pcp->count >= high) {
2467 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2468 				   pcp, pindex);
2469 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2470 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2471 				      ZONE_MOVABLE, 0))
2472 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2473 	}
2474 }
2475 
2476 /*
2477  * Free a pcp page
2478  */
2479 void free_unref_page(struct page *page, unsigned int order)
2480 {
2481 	unsigned long __maybe_unused UP_flags;
2482 	struct per_cpu_pages *pcp;
2483 	struct zone *zone;
2484 	unsigned long pfn = page_to_pfn(page);
2485 	int migratetype, pcpmigratetype;
2486 
2487 	if (!free_unref_page_prepare(page, pfn, order))
2488 		return;
2489 
2490 	/*
2491 	 * We only track unmovable, reclaimable and movable on pcp lists.
2492 	 * Place ISOLATE pages on the isolated list because they are being
2493 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2494 	 * get those areas back if necessary. Otherwise, we may have to free
2495 	 * excessively into the page allocator
2496 	 */
2497 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2498 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2499 		if (unlikely(is_migrate_isolate(migratetype))) {
2500 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2501 			return;
2502 		}
2503 		pcpmigratetype = MIGRATE_MOVABLE;
2504 	}
2505 
2506 	zone = page_zone(page);
2507 	pcp_trylock_prepare(UP_flags);
2508 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2509 	if (pcp) {
2510 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2511 		pcp_spin_unlock(pcp);
2512 	} else {
2513 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2514 	}
2515 	pcp_trylock_finish(UP_flags);
2516 }
2517 
2518 /*
2519  * Free a list of 0-order pages
2520  */
2521 void free_unref_page_list(struct list_head *list)
2522 {
2523 	unsigned long __maybe_unused UP_flags;
2524 	struct page *page, *next;
2525 	struct per_cpu_pages *pcp = NULL;
2526 	struct zone *locked_zone = NULL;
2527 	int batch_count = 0;
2528 	int migratetype;
2529 
2530 	/* Prepare pages for freeing */
2531 	list_for_each_entry_safe(page, next, list, lru) {
2532 		unsigned long pfn = page_to_pfn(page);
2533 		if (!free_unref_page_prepare(page, pfn, 0)) {
2534 			list_del(&page->lru);
2535 			continue;
2536 		}
2537 
2538 		/*
2539 		 * Free isolated pages directly to the allocator, see
2540 		 * comment in free_unref_page.
2541 		 */
2542 		migratetype = get_pcppage_migratetype(page);
2543 		if (unlikely(is_migrate_isolate(migratetype))) {
2544 			list_del(&page->lru);
2545 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2546 			continue;
2547 		}
2548 	}
2549 
2550 	list_for_each_entry_safe(page, next, list, lru) {
2551 		struct zone *zone = page_zone(page);
2552 
2553 		list_del(&page->lru);
2554 		migratetype = get_pcppage_migratetype(page);
2555 
2556 		/*
2557 		 * Either different zone requiring a different pcp lock or
2558 		 * excessive lock hold times when freeing a large list of
2559 		 * pages.
2560 		 */
2561 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2562 			if (pcp) {
2563 				pcp_spin_unlock(pcp);
2564 				pcp_trylock_finish(UP_flags);
2565 			}
2566 
2567 			batch_count = 0;
2568 
2569 			/*
2570 			 * trylock is necessary as pages may be getting freed
2571 			 * from IRQ or SoftIRQ context after an IO completion.
2572 			 */
2573 			pcp_trylock_prepare(UP_flags);
2574 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2575 			if (unlikely(!pcp)) {
2576 				pcp_trylock_finish(UP_flags);
2577 				free_one_page(zone, page, page_to_pfn(page),
2578 					      0, migratetype, FPI_NONE);
2579 				locked_zone = NULL;
2580 				continue;
2581 			}
2582 			locked_zone = zone;
2583 		}
2584 
2585 		/*
2586 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2587 		 * to the MIGRATE_MOVABLE pcp list.
2588 		 */
2589 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2590 			migratetype = MIGRATE_MOVABLE;
2591 
2592 		trace_mm_page_free_batched(page);
2593 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2594 		batch_count++;
2595 	}
2596 
2597 	if (pcp) {
2598 		pcp_spin_unlock(pcp);
2599 		pcp_trylock_finish(UP_flags);
2600 	}
2601 }
2602 
2603 /*
2604  * split_page takes a non-compound higher-order page, and splits it into
2605  * n (1<<order) sub-pages: page[0..n]
2606  * Each sub-page must be freed individually.
2607  *
2608  * Note: this is probably too low level an operation for use in drivers.
2609  * Please consult with lkml before using this in your driver.
2610  */
2611 void split_page(struct page *page, unsigned int order)
2612 {
2613 	int i;
2614 
2615 	VM_BUG_ON_PAGE(PageCompound(page), page);
2616 	VM_BUG_ON_PAGE(!page_count(page), page);
2617 
2618 	for (i = 1; i < (1 << order); i++)
2619 		set_page_refcounted(page + i);
2620 	split_page_owner(page, 1 << order);
2621 	split_page_memcg(page, 1 << order);
2622 }
2623 EXPORT_SYMBOL_GPL(split_page);
2624 
2625 int __isolate_free_page(struct page *page, unsigned int order)
2626 {
2627 	struct zone *zone = page_zone(page);
2628 	int mt = get_pageblock_migratetype(page);
2629 
2630 	if (!is_migrate_isolate(mt)) {
2631 		unsigned long watermark;
2632 		/*
2633 		 * Obey watermarks as if the page was being allocated. We can
2634 		 * emulate a high-order watermark check with a raised order-0
2635 		 * watermark, because we already know our high-order page
2636 		 * exists.
2637 		 */
2638 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2639 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2640 			return 0;
2641 
2642 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2643 	}
2644 
2645 	del_page_from_free_list(page, zone, order);
2646 
2647 	/*
2648 	 * Set the pageblock if the isolated page is at least half of a
2649 	 * pageblock
2650 	 */
2651 	if (order >= pageblock_order - 1) {
2652 		struct page *endpage = page + (1 << order) - 1;
2653 		for (; page < endpage; page += pageblock_nr_pages) {
2654 			int mt = get_pageblock_migratetype(page);
2655 			/*
2656 			 * Only change normal pageblocks (i.e., they can merge
2657 			 * with others)
2658 			 */
2659 			if (migratetype_is_mergeable(mt))
2660 				set_pageblock_migratetype(page,
2661 							  MIGRATE_MOVABLE);
2662 		}
2663 	}
2664 
2665 	return 1UL << order;
2666 }
2667 
2668 /**
2669  * __putback_isolated_page - Return a now-isolated page back where we got it
2670  * @page: Page that was isolated
2671  * @order: Order of the isolated page
2672  * @mt: The page's pageblock's migratetype
2673  *
2674  * This function is meant to return a page pulled from the free lists via
2675  * __isolate_free_page back to the free lists they were pulled from.
2676  */
2677 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2678 {
2679 	struct zone *zone = page_zone(page);
2680 
2681 	/* zone lock should be held when this function is called */
2682 	lockdep_assert_held(&zone->lock);
2683 
2684 	/* Return isolated page to tail of freelist. */
2685 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2686 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2687 }
2688 
2689 /*
2690  * Update NUMA hit/miss statistics
2691  */
2692 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2693 				   long nr_account)
2694 {
2695 #ifdef CONFIG_NUMA
2696 	enum numa_stat_item local_stat = NUMA_LOCAL;
2697 
2698 	/* skip numa counters update if numa stats is disabled */
2699 	if (!static_branch_likely(&vm_numa_stat_key))
2700 		return;
2701 
2702 	if (zone_to_nid(z) != numa_node_id())
2703 		local_stat = NUMA_OTHER;
2704 
2705 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2706 		__count_numa_events(z, NUMA_HIT, nr_account);
2707 	else {
2708 		__count_numa_events(z, NUMA_MISS, nr_account);
2709 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2710 	}
2711 	__count_numa_events(z, local_stat, nr_account);
2712 #endif
2713 }
2714 
2715 static __always_inline
2716 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2717 			   unsigned int order, unsigned int alloc_flags,
2718 			   int migratetype)
2719 {
2720 	struct page *page;
2721 	unsigned long flags;
2722 
2723 	do {
2724 		page = NULL;
2725 		spin_lock_irqsave(&zone->lock, flags);
2726 		if (alloc_flags & ALLOC_HIGHATOMIC)
2727 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2728 		if (!page) {
2729 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2730 
2731 			/*
2732 			 * If the allocation fails, allow OOM handling access
2733 			 * to HIGHATOMIC reserves as failing now is worse than
2734 			 * failing a high-order atomic allocation in the
2735 			 * future.
2736 			 */
2737 			if (!page && (alloc_flags & ALLOC_OOM))
2738 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2739 
2740 			if (!page) {
2741 				spin_unlock_irqrestore(&zone->lock, flags);
2742 				return NULL;
2743 			}
2744 		}
2745 		__mod_zone_freepage_state(zone, -(1 << order),
2746 					  get_pcppage_migratetype(page));
2747 		spin_unlock_irqrestore(&zone->lock, flags);
2748 	} while (check_new_pages(page, order));
2749 
2750 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2751 	zone_statistics(preferred_zone, zone, 1);
2752 
2753 	return page;
2754 }
2755 
2756 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2757 {
2758 	int high, base_batch, batch, max_nr_alloc;
2759 	int high_max, high_min;
2760 
2761 	base_batch = READ_ONCE(pcp->batch);
2762 	high_min = READ_ONCE(pcp->high_min);
2763 	high_max = READ_ONCE(pcp->high_max);
2764 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2765 
2766 	/* Check for PCP disabled or boot pageset */
2767 	if (unlikely(high < base_batch))
2768 		return 1;
2769 
2770 	if (order)
2771 		batch = base_batch;
2772 	else
2773 		batch = (base_batch << pcp->alloc_factor);
2774 
2775 	/*
2776 	 * If we had larger pcp->high, we could avoid to allocate from
2777 	 * zone.
2778 	 */
2779 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2780 		high = pcp->high = min(high + batch, high_max);
2781 
2782 	if (!order) {
2783 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2784 		/*
2785 		 * Double the number of pages allocated each time there is
2786 		 * subsequent allocation of order-0 pages without any freeing.
2787 		 */
2788 		if (batch <= max_nr_alloc &&
2789 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2790 			pcp->alloc_factor++;
2791 		batch = min(batch, max_nr_alloc);
2792 	}
2793 
2794 	/*
2795 	 * Scale batch relative to order if batch implies free pages
2796 	 * can be stored on the PCP. Batch can be 1 for small zones or
2797 	 * for boot pagesets which should never store free pages as
2798 	 * the pages may belong to arbitrary zones.
2799 	 */
2800 	if (batch > 1)
2801 		batch = max(batch >> order, 2);
2802 
2803 	return batch;
2804 }
2805 
2806 /* Remove page from the per-cpu list, caller must protect the list */
2807 static inline
2808 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2809 			int migratetype,
2810 			unsigned int alloc_flags,
2811 			struct per_cpu_pages *pcp,
2812 			struct list_head *list)
2813 {
2814 	struct page *page;
2815 
2816 	do {
2817 		if (list_empty(list)) {
2818 			int batch = nr_pcp_alloc(pcp, zone, order);
2819 			int alloced;
2820 
2821 			alloced = rmqueue_bulk(zone, order,
2822 					batch, list,
2823 					migratetype, alloc_flags);
2824 
2825 			pcp->count += alloced << order;
2826 			if (unlikely(list_empty(list)))
2827 				return NULL;
2828 		}
2829 
2830 		page = list_first_entry(list, struct page, pcp_list);
2831 		list_del(&page->pcp_list);
2832 		pcp->count -= 1 << order;
2833 	} while (check_new_pages(page, order));
2834 
2835 	return page;
2836 }
2837 
2838 /* Lock and remove page from the per-cpu list */
2839 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2840 			struct zone *zone, unsigned int order,
2841 			int migratetype, unsigned int alloc_flags)
2842 {
2843 	struct per_cpu_pages *pcp;
2844 	struct list_head *list;
2845 	struct page *page;
2846 	unsigned long __maybe_unused UP_flags;
2847 
2848 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2849 	pcp_trylock_prepare(UP_flags);
2850 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2851 	if (!pcp) {
2852 		pcp_trylock_finish(UP_flags);
2853 		return NULL;
2854 	}
2855 
2856 	/*
2857 	 * On allocation, reduce the number of pages that are batch freed.
2858 	 * See nr_pcp_free() where free_factor is increased for subsequent
2859 	 * frees.
2860 	 */
2861 	pcp->free_count >>= 1;
2862 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2863 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2864 	pcp_spin_unlock(pcp);
2865 	pcp_trylock_finish(UP_flags);
2866 	if (page) {
2867 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2868 		zone_statistics(preferred_zone, zone, 1);
2869 	}
2870 	return page;
2871 }
2872 
2873 /*
2874  * Allocate a page from the given zone.
2875  * Use pcplists for THP or "cheap" high-order allocations.
2876  */
2877 
2878 /*
2879  * Do not instrument rmqueue() with KMSAN. This function may call
2880  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2881  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2882  * may call rmqueue() again, which will result in a deadlock.
2883  */
2884 __no_sanitize_memory
2885 static inline
2886 struct page *rmqueue(struct zone *preferred_zone,
2887 			struct zone *zone, unsigned int order,
2888 			gfp_t gfp_flags, unsigned int alloc_flags,
2889 			int migratetype)
2890 {
2891 	struct page *page;
2892 
2893 	/*
2894 	 * We most definitely don't want callers attempting to
2895 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2896 	 */
2897 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2898 
2899 	if (likely(pcp_allowed_order(order))) {
2900 		page = rmqueue_pcplist(preferred_zone, zone, order,
2901 				       migratetype, alloc_flags);
2902 		if (likely(page))
2903 			goto out;
2904 	}
2905 
2906 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2907 							migratetype);
2908 
2909 out:
2910 	/* Separate test+clear to avoid unnecessary atomics */
2911 	if ((alloc_flags & ALLOC_KSWAPD) &&
2912 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2913 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2914 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2915 	}
2916 
2917 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2918 	return page;
2919 }
2920 
2921 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2922 {
2923 	return __should_fail_alloc_page(gfp_mask, order);
2924 }
2925 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2926 
2927 static inline long __zone_watermark_unusable_free(struct zone *z,
2928 				unsigned int order, unsigned int alloc_flags)
2929 {
2930 	long unusable_free = (1 << order) - 1;
2931 
2932 	/*
2933 	 * If the caller does not have rights to reserves below the min
2934 	 * watermark then subtract the high-atomic reserves. This will
2935 	 * over-estimate the size of the atomic reserve but it avoids a search.
2936 	 */
2937 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2938 		unusable_free += z->nr_reserved_highatomic;
2939 
2940 #ifdef CONFIG_CMA
2941 	/* If allocation can't use CMA areas don't use free CMA pages */
2942 	if (!(alloc_flags & ALLOC_CMA))
2943 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2944 #endif
2945 #ifdef CONFIG_UNACCEPTED_MEMORY
2946 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2947 #endif
2948 
2949 	return unusable_free;
2950 }
2951 
2952 /*
2953  * Return true if free base pages are above 'mark'. For high-order checks it
2954  * will return true of the order-0 watermark is reached and there is at least
2955  * one free page of a suitable size. Checking now avoids taking the zone lock
2956  * to check in the allocation paths if no pages are free.
2957  */
2958 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2959 			 int highest_zoneidx, unsigned int alloc_flags,
2960 			 long free_pages)
2961 {
2962 	long min = mark;
2963 	int o;
2964 
2965 	/* free_pages may go negative - that's OK */
2966 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2967 
2968 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2969 		/*
2970 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2971 		 * as OOM.
2972 		 */
2973 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2974 			min -= min / 2;
2975 
2976 			/*
2977 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2978 			 * access more reserves than just __GFP_HIGH. Other
2979 			 * non-blocking allocations requests such as GFP_NOWAIT
2980 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2981 			 * access to the min reserve.
2982 			 */
2983 			if (alloc_flags & ALLOC_NON_BLOCK)
2984 				min -= min / 4;
2985 		}
2986 
2987 		/*
2988 		 * OOM victims can try even harder than the normal reserve
2989 		 * users on the grounds that it's definitely going to be in
2990 		 * the exit path shortly and free memory. Any allocation it
2991 		 * makes during the free path will be small and short-lived.
2992 		 */
2993 		if (alloc_flags & ALLOC_OOM)
2994 			min -= min / 2;
2995 	}
2996 
2997 	/*
2998 	 * Check watermarks for an order-0 allocation request. If these
2999 	 * are not met, then a high-order request also cannot go ahead
3000 	 * even if a suitable page happened to be free.
3001 	 */
3002 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3003 		return false;
3004 
3005 	/* If this is an order-0 request then the watermark is fine */
3006 	if (!order)
3007 		return true;
3008 
3009 	/* For a high-order request, check at least one suitable page is free */
3010 	for (o = order; o <= MAX_ORDER; o++) {
3011 		struct free_area *area = &z->free_area[o];
3012 		int mt;
3013 
3014 		if (!area->nr_free)
3015 			continue;
3016 
3017 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3018 			if (!free_area_empty(area, mt))
3019 				return true;
3020 		}
3021 
3022 #ifdef CONFIG_CMA
3023 		if ((alloc_flags & ALLOC_CMA) &&
3024 		    !free_area_empty(area, MIGRATE_CMA)) {
3025 			return true;
3026 		}
3027 #endif
3028 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3029 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3030 			return true;
3031 		}
3032 	}
3033 	return false;
3034 }
3035 
3036 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3037 		      int highest_zoneidx, unsigned int alloc_flags)
3038 {
3039 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3040 					zone_page_state(z, NR_FREE_PAGES));
3041 }
3042 
3043 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3044 				unsigned long mark, int highest_zoneidx,
3045 				unsigned int alloc_flags, gfp_t gfp_mask)
3046 {
3047 	long free_pages;
3048 
3049 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3050 
3051 	/*
3052 	 * Fast check for order-0 only. If this fails then the reserves
3053 	 * need to be calculated.
3054 	 */
3055 	if (!order) {
3056 		long usable_free;
3057 		long reserved;
3058 
3059 		usable_free = free_pages;
3060 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3061 
3062 		/* reserved may over estimate high-atomic reserves. */
3063 		usable_free -= min(usable_free, reserved);
3064 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3065 			return true;
3066 	}
3067 
3068 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3069 					free_pages))
3070 		return true;
3071 
3072 	/*
3073 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3074 	 * when checking the min watermark. The min watermark is the
3075 	 * point where boosting is ignored so that kswapd is woken up
3076 	 * when below the low watermark.
3077 	 */
3078 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3079 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3080 		mark = z->_watermark[WMARK_MIN];
3081 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3082 					alloc_flags, free_pages);
3083 	}
3084 
3085 	return false;
3086 }
3087 
3088 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3089 			unsigned long mark, int highest_zoneidx)
3090 {
3091 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3092 
3093 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3094 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3095 
3096 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3097 								free_pages);
3098 }
3099 
3100 #ifdef CONFIG_NUMA
3101 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3102 
3103 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3104 {
3105 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3106 				node_reclaim_distance;
3107 }
3108 #else	/* CONFIG_NUMA */
3109 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3110 {
3111 	return true;
3112 }
3113 #endif	/* CONFIG_NUMA */
3114 
3115 /*
3116  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3117  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3118  * premature use of a lower zone may cause lowmem pressure problems that
3119  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3120  * probably too small. It only makes sense to spread allocations to avoid
3121  * fragmentation between the Normal and DMA32 zones.
3122  */
3123 static inline unsigned int
3124 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3125 {
3126 	unsigned int alloc_flags;
3127 
3128 	/*
3129 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3130 	 * to save a branch.
3131 	 */
3132 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3133 
3134 #ifdef CONFIG_ZONE_DMA32
3135 	if (!zone)
3136 		return alloc_flags;
3137 
3138 	if (zone_idx(zone) != ZONE_NORMAL)
3139 		return alloc_flags;
3140 
3141 	/*
3142 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3143 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3144 	 * on UMA that if Normal is populated then so is DMA32.
3145 	 */
3146 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3147 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3148 		return alloc_flags;
3149 
3150 	alloc_flags |= ALLOC_NOFRAGMENT;
3151 #endif /* CONFIG_ZONE_DMA32 */
3152 	return alloc_flags;
3153 }
3154 
3155 /* Must be called after current_gfp_context() which can change gfp_mask */
3156 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3157 						  unsigned int alloc_flags)
3158 {
3159 #ifdef CONFIG_CMA
3160 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3161 		alloc_flags |= ALLOC_CMA;
3162 #endif
3163 	return alloc_flags;
3164 }
3165 
3166 /*
3167  * get_page_from_freelist goes through the zonelist trying to allocate
3168  * a page.
3169  */
3170 static struct page *
3171 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3172 						const struct alloc_context *ac)
3173 {
3174 	struct zoneref *z;
3175 	struct zone *zone;
3176 	struct pglist_data *last_pgdat = NULL;
3177 	bool last_pgdat_dirty_ok = false;
3178 	bool no_fallback;
3179 
3180 retry:
3181 	/*
3182 	 * Scan zonelist, looking for a zone with enough free.
3183 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3184 	 */
3185 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3186 	z = ac->preferred_zoneref;
3187 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3188 					ac->nodemask) {
3189 		struct page *page;
3190 		unsigned long mark;
3191 
3192 		if (cpusets_enabled() &&
3193 			(alloc_flags & ALLOC_CPUSET) &&
3194 			!__cpuset_zone_allowed(zone, gfp_mask))
3195 				continue;
3196 		/*
3197 		 * When allocating a page cache page for writing, we
3198 		 * want to get it from a node that is within its dirty
3199 		 * limit, such that no single node holds more than its
3200 		 * proportional share of globally allowed dirty pages.
3201 		 * The dirty limits take into account the node's
3202 		 * lowmem reserves and high watermark so that kswapd
3203 		 * should be able to balance it without having to
3204 		 * write pages from its LRU list.
3205 		 *
3206 		 * XXX: For now, allow allocations to potentially
3207 		 * exceed the per-node dirty limit in the slowpath
3208 		 * (spread_dirty_pages unset) before going into reclaim,
3209 		 * which is important when on a NUMA setup the allowed
3210 		 * nodes are together not big enough to reach the
3211 		 * global limit.  The proper fix for these situations
3212 		 * will require awareness of nodes in the
3213 		 * dirty-throttling and the flusher threads.
3214 		 */
3215 		if (ac->spread_dirty_pages) {
3216 			if (last_pgdat != zone->zone_pgdat) {
3217 				last_pgdat = zone->zone_pgdat;
3218 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3219 			}
3220 
3221 			if (!last_pgdat_dirty_ok)
3222 				continue;
3223 		}
3224 
3225 		if (no_fallback && nr_online_nodes > 1 &&
3226 		    zone != ac->preferred_zoneref->zone) {
3227 			int local_nid;
3228 
3229 			/*
3230 			 * If moving to a remote node, retry but allow
3231 			 * fragmenting fallbacks. Locality is more important
3232 			 * than fragmentation avoidance.
3233 			 */
3234 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3235 			if (zone_to_nid(zone) != local_nid) {
3236 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3237 				goto retry;
3238 			}
3239 		}
3240 
3241 		/*
3242 		 * Detect whether the number of free pages is below high
3243 		 * watermark.  If so, we will decrease pcp->high and free
3244 		 * PCP pages in free path to reduce the possibility of
3245 		 * premature page reclaiming.  Detection is done here to
3246 		 * avoid to do that in hotter free path.
3247 		 */
3248 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3249 			goto check_alloc_wmark;
3250 
3251 		mark = high_wmark_pages(zone);
3252 		if (zone_watermark_fast(zone, order, mark,
3253 					ac->highest_zoneidx, alloc_flags,
3254 					gfp_mask))
3255 			goto try_this_zone;
3256 		else
3257 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3258 
3259 check_alloc_wmark:
3260 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3261 		if (!zone_watermark_fast(zone, order, mark,
3262 				       ac->highest_zoneidx, alloc_flags,
3263 				       gfp_mask)) {
3264 			int ret;
3265 
3266 			if (has_unaccepted_memory()) {
3267 				if (try_to_accept_memory(zone, order))
3268 					goto try_this_zone;
3269 			}
3270 
3271 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3272 			/*
3273 			 * Watermark failed for this zone, but see if we can
3274 			 * grow this zone if it contains deferred pages.
3275 			 */
3276 			if (deferred_pages_enabled()) {
3277 				if (_deferred_grow_zone(zone, order))
3278 					goto try_this_zone;
3279 			}
3280 #endif
3281 			/* Checked here to keep the fast path fast */
3282 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3283 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3284 				goto try_this_zone;
3285 
3286 			if (!node_reclaim_enabled() ||
3287 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3288 				continue;
3289 
3290 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3291 			switch (ret) {
3292 			case NODE_RECLAIM_NOSCAN:
3293 				/* did not scan */
3294 				continue;
3295 			case NODE_RECLAIM_FULL:
3296 				/* scanned but unreclaimable */
3297 				continue;
3298 			default:
3299 				/* did we reclaim enough */
3300 				if (zone_watermark_ok(zone, order, mark,
3301 					ac->highest_zoneidx, alloc_flags))
3302 					goto try_this_zone;
3303 
3304 				continue;
3305 			}
3306 		}
3307 
3308 try_this_zone:
3309 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3310 				gfp_mask, alloc_flags, ac->migratetype);
3311 		if (page) {
3312 			prep_new_page(page, order, gfp_mask, alloc_flags);
3313 
3314 			/*
3315 			 * If this is a high-order atomic allocation then check
3316 			 * if the pageblock should be reserved for the future
3317 			 */
3318 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3319 				reserve_highatomic_pageblock(page, zone);
3320 
3321 			return page;
3322 		} else {
3323 			if (has_unaccepted_memory()) {
3324 				if (try_to_accept_memory(zone, order))
3325 					goto try_this_zone;
3326 			}
3327 
3328 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3329 			/* Try again if zone has deferred pages */
3330 			if (deferred_pages_enabled()) {
3331 				if (_deferred_grow_zone(zone, order))
3332 					goto try_this_zone;
3333 			}
3334 #endif
3335 		}
3336 	}
3337 
3338 	/*
3339 	 * It's possible on a UMA machine to get through all zones that are
3340 	 * fragmented. If avoiding fragmentation, reset and try again.
3341 	 */
3342 	if (no_fallback) {
3343 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3344 		goto retry;
3345 	}
3346 
3347 	return NULL;
3348 }
3349 
3350 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3351 {
3352 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3353 
3354 	/*
3355 	 * This documents exceptions given to allocations in certain
3356 	 * contexts that are allowed to allocate outside current's set
3357 	 * of allowed nodes.
3358 	 */
3359 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3360 		if (tsk_is_oom_victim(current) ||
3361 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3362 			filter &= ~SHOW_MEM_FILTER_NODES;
3363 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3364 		filter &= ~SHOW_MEM_FILTER_NODES;
3365 
3366 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3367 }
3368 
3369 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3370 {
3371 	struct va_format vaf;
3372 	va_list args;
3373 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3374 
3375 	if ((gfp_mask & __GFP_NOWARN) ||
3376 	     !__ratelimit(&nopage_rs) ||
3377 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3378 		return;
3379 
3380 	va_start(args, fmt);
3381 	vaf.fmt = fmt;
3382 	vaf.va = &args;
3383 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3384 			current->comm, &vaf, gfp_mask, &gfp_mask,
3385 			nodemask_pr_args(nodemask));
3386 	va_end(args);
3387 
3388 	cpuset_print_current_mems_allowed();
3389 	pr_cont("\n");
3390 	dump_stack();
3391 	warn_alloc_show_mem(gfp_mask, nodemask);
3392 }
3393 
3394 static inline struct page *
3395 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3396 			      unsigned int alloc_flags,
3397 			      const struct alloc_context *ac)
3398 {
3399 	struct page *page;
3400 
3401 	page = get_page_from_freelist(gfp_mask, order,
3402 			alloc_flags|ALLOC_CPUSET, ac);
3403 	/*
3404 	 * fallback to ignore cpuset restriction if our nodes
3405 	 * are depleted
3406 	 */
3407 	if (!page)
3408 		page = get_page_from_freelist(gfp_mask, order,
3409 				alloc_flags, ac);
3410 
3411 	return page;
3412 }
3413 
3414 static inline struct page *
3415 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3416 	const struct alloc_context *ac, unsigned long *did_some_progress)
3417 {
3418 	struct oom_control oc = {
3419 		.zonelist = ac->zonelist,
3420 		.nodemask = ac->nodemask,
3421 		.memcg = NULL,
3422 		.gfp_mask = gfp_mask,
3423 		.order = order,
3424 	};
3425 	struct page *page;
3426 
3427 	*did_some_progress = 0;
3428 
3429 	/*
3430 	 * Acquire the oom lock.  If that fails, somebody else is
3431 	 * making progress for us.
3432 	 */
3433 	if (!mutex_trylock(&oom_lock)) {
3434 		*did_some_progress = 1;
3435 		schedule_timeout_uninterruptible(1);
3436 		return NULL;
3437 	}
3438 
3439 	/*
3440 	 * Go through the zonelist yet one more time, keep very high watermark
3441 	 * here, this is only to catch a parallel oom killing, we must fail if
3442 	 * we're still under heavy pressure. But make sure that this reclaim
3443 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3444 	 * allocation which will never fail due to oom_lock already held.
3445 	 */
3446 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3447 				      ~__GFP_DIRECT_RECLAIM, order,
3448 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3449 	if (page)
3450 		goto out;
3451 
3452 	/* Coredumps can quickly deplete all memory reserves */
3453 	if (current->flags & PF_DUMPCORE)
3454 		goto out;
3455 	/* The OOM killer will not help higher order allocs */
3456 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3457 		goto out;
3458 	/*
3459 	 * We have already exhausted all our reclaim opportunities without any
3460 	 * success so it is time to admit defeat. We will skip the OOM killer
3461 	 * because it is very likely that the caller has a more reasonable
3462 	 * fallback than shooting a random task.
3463 	 *
3464 	 * The OOM killer may not free memory on a specific node.
3465 	 */
3466 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3467 		goto out;
3468 	/* The OOM killer does not needlessly kill tasks for lowmem */
3469 	if (ac->highest_zoneidx < ZONE_NORMAL)
3470 		goto out;
3471 	if (pm_suspended_storage())
3472 		goto out;
3473 	/*
3474 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3475 	 * other request to make a forward progress.
3476 	 * We are in an unfortunate situation where out_of_memory cannot
3477 	 * do much for this context but let's try it to at least get
3478 	 * access to memory reserved if the current task is killed (see
3479 	 * out_of_memory). Once filesystems are ready to handle allocation
3480 	 * failures more gracefully we should just bail out here.
3481 	 */
3482 
3483 	/* Exhausted what can be done so it's blame time */
3484 	if (out_of_memory(&oc) ||
3485 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3486 		*did_some_progress = 1;
3487 
3488 		/*
3489 		 * Help non-failing allocations by giving them access to memory
3490 		 * reserves
3491 		 */
3492 		if (gfp_mask & __GFP_NOFAIL)
3493 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3494 					ALLOC_NO_WATERMARKS, ac);
3495 	}
3496 out:
3497 	mutex_unlock(&oom_lock);
3498 	return page;
3499 }
3500 
3501 /*
3502  * Maximum number of compaction retries with a progress before OOM
3503  * killer is consider as the only way to move forward.
3504  */
3505 #define MAX_COMPACT_RETRIES 16
3506 
3507 #ifdef CONFIG_COMPACTION
3508 /* Try memory compaction for high-order allocations before reclaim */
3509 static struct page *
3510 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3511 		unsigned int alloc_flags, const struct alloc_context *ac,
3512 		enum compact_priority prio, enum compact_result *compact_result)
3513 {
3514 	struct page *page = NULL;
3515 	unsigned long pflags;
3516 	unsigned int noreclaim_flag;
3517 
3518 	if (!order)
3519 		return NULL;
3520 
3521 	psi_memstall_enter(&pflags);
3522 	delayacct_compact_start();
3523 	noreclaim_flag = memalloc_noreclaim_save();
3524 
3525 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3526 								prio, &page);
3527 
3528 	memalloc_noreclaim_restore(noreclaim_flag);
3529 	psi_memstall_leave(&pflags);
3530 	delayacct_compact_end();
3531 
3532 	if (*compact_result == COMPACT_SKIPPED)
3533 		return NULL;
3534 	/*
3535 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3536 	 * count a compaction stall
3537 	 */
3538 	count_vm_event(COMPACTSTALL);
3539 
3540 	/* Prep a captured page if available */
3541 	if (page)
3542 		prep_new_page(page, order, gfp_mask, alloc_flags);
3543 
3544 	/* Try get a page from the freelist if available */
3545 	if (!page)
3546 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3547 
3548 	if (page) {
3549 		struct zone *zone = page_zone(page);
3550 
3551 		zone->compact_blockskip_flush = false;
3552 		compaction_defer_reset(zone, order, true);
3553 		count_vm_event(COMPACTSUCCESS);
3554 		return page;
3555 	}
3556 
3557 	/*
3558 	 * It's bad if compaction run occurs and fails. The most likely reason
3559 	 * is that pages exist, but not enough to satisfy watermarks.
3560 	 */
3561 	count_vm_event(COMPACTFAIL);
3562 
3563 	cond_resched();
3564 
3565 	return NULL;
3566 }
3567 
3568 static inline bool
3569 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3570 		     enum compact_result compact_result,
3571 		     enum compact_priority *compact_priority,
3572 		     int *compaction_retries)
3573 {
3574 	int max_retries = MAX_COMPACT_RETRIES;
3575 	int min_priority;
3576 	bool ret = false;
3577 	int retries = *compaction_retries;
3578 	enum compact_priority priority = *compact_priority;
3579 
3580 	if (!order)
3581 		return false;
3582 
3583 	if (fatal_signal_pending(current))
3584 		return false;
3585 
3586 	/*
3587 	 * Compaction was skipped due to a lack of free order-0
3588 	 * migration targets. Continue if reclaim can help.
3589 	 */
3590 	if (compact_result == COMPACT_SKIPPED) {
3591 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3592 		goto out;
3593 	}
3594 
3595 	/*
3596 	 * Compaction managed to coalesce some page blocks, but the
3597 	 * allocation failed presumably due to a race. Retry some.
3598 	 */
3599 	if (compact_result == COMPACT_SUCCESS) {
3600 		/*
3601 		 * !costly requests are much more important than
3602 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3603 		 * facto nofail and invoke OOM killer to move on while
3604 		 * costly can fail and users are ready to cope with
3605 		 * that. 1/4 retries is rather arbitrary but we would
3606 		 * need much more detailed feedback from compaction to
3607 		 * make a better decision.
3608 		 */
3609 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3610 			max_retries /= 4;
3611 
3612 		if (++(*compaction_retries) <= max_retries) {
3613 			ret = true;
3614 			goto out;
3615 		}
3616 	}
3617 
3618 	/*
3619 	 * Compaction failed. Retry with increasing priority.
3620 	 */
3621 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3622 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3623 
3624 	if (*compact_priority > min_priority) {
3625 		(*compact_priority)--;
3626 		*compaction_retries = 0;
3627 		ret = true;
3628 	}
3629 out:
3630 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3631 	return ret;
3632 }
3633 #else
3634 static inline struct page *
3635 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3636 		unsigned int alloc_flags, const struct alloc_context *ac,
3637 		enum compact_priority prio, enum compact_result *compact_result)
3638 {
3639 	*compact_result = COMPACT_SKIPPED;
3640 	return NULL;
3641 }
3642 
3643 static inline bool
3644 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3645 		     enum compact_result compact_result,
3646 		     enum compact_priority *compact_priority,
3647 		     int *compaction_retries)
3648 {
3649 	struct zone *zone;
3650 	struct zoneref *z;
3651 
3652 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3653 		return false;
3654 
3655 	/*
3656 	 * There are setups with compaction disabled which would prefer to loop
3657 	 * inside the allocator rather than hit the oom killer prematurely.
3658 	 * Let's give them a good hope and keep retrying while the order-0
3659 	 * watermarks are OK.
3660 	 */
3661 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3662 				ac->highest_zoneidx, ac->nodemask) {
3663 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3664 					ac->highest_zoneidx, alloc_flags))
3665 			return true;
3666 	}
3667 	return false;
3668 }
3669 #endif /* CONFIG_COMPACTION */
3670 
3671 #ifdef CONFIG_LOCKDEP
3672 static struct lockdep_map __fs_reclaim_map =
3673 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3674 
3675 static bool __need_reclaim(gfp_t gfp_mask)
3676 {
3677 	/* no reclaim without waiting on it */
3678 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3679 		return false;
3680 
3681 	/* this guy won't enter reclaim */
3682 	if (current->flags & PF_MEMALLOC)
3683 		return false;
3684 
3685 	if (gfp_mask & __GFP_NOLOCKDEP)
3686 		return false;
3687 
3688 	return true;
3689 }
3690 
3691 void __fs_reclaim_acquire(unsigned long ip)
3692 {
3693 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3694 }
3695 
3696 void __fs_reclaim_release(unsigned long ip)
3697 {
3698 	lock_release(&__fs_reclaim_map, ip);
3699 }
3700 
3701 void fs_reclaim_acquire(gfp_t gfp_mask)
3702 {
3703 	gfp_mask = current_gfp_context(gfp_mask);
3704 
3705 	if (__need_reclaim(gfp_mask)) {
3706 		if (gfp_mask & __GFP_FS)
3707 			__fs_reclaim_acquire(_RET_IP_);
3708 
3709 #ifdef CONFIG_MMU_NOTIFIER
3710 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3711 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3712 #endif
3713 
3714 	}
3715 }
3716 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3717 
3718 void fs_reclaim_release(gfp_t gfp_mask)
3719 {
3720 	gfp_mask = current_gfp_context(gfp_mask);
3721 
3722 	if (__need_reclaim(gfp_mask)) {
3723 		if (gfp_mask & __GFP_FS)
3724 			__fs_reclaim_release(_RET_IP_);
3725 	}
3726 }
3727 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3728 #endif
3729 
3730 /*
3731  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3732  * have been rebuilt so allocation retries. Reader side does not lock and
3733  * retries the allocation if zonelist changes. Writer side is protected by the
3734  * embedded spin_lock.
3735  */
3736 static DEFINE_SEQLOCK(zonelist_update_seq);
3737 
3738 static unsigned int zonelist_iter_begin(void)
3739 {
3740 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3741 		return read_seqbegin(&zonelist_update_seq);
3742 
3743 	return 0;
3744 }
3745 
3746 static unsigned int check_retry_zonelist(unsigned int seq)
3747 {
3748 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3749 		return read_seqretry(&zonelist_update_seq, seq);
3750 
3751 	return seq;
3752 }
3753 
3754 /* Perform direct synchronous page reclaim */
3755 static unsigned long
3756 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3757 					const struct alloc_context *ac)
3758 {
3759 	unsigned int noreclaim_flag;
3760 	unsigned long progress;
3761 
3762 	cond_resched();
3763 
3764 	/* We now go into synchronous reclaim */
3765 	cpuset_memory_pressure_bump();
3766 	fs_reclaim_acquire(gfp_mask);
3767 	noreclaim_flag = memalloc_noreclaim_save();
3768 
3769 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3770 								ac->nodemask);
3771 
3772 	memalloc_noreclaim_restore(noreclaim_flag);
3773 	fs_reclaim_release(gfp_mask);
3774 
3775 	cond_resched();
3776 
3777 	return progress;
3778 }
3779 
3780 /* The really slow allocator path where we enter direct reclaim */
3781 static inline struct page *
3782 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3783 		unsigned int alloc_flags, const struct alloc_context *ac,
3784 		unsigned long *did_some_progress)
3785 {
3786 	struct page *page = NULL;
3787 	unsigned long pflags;
3788 	bool drained = false;
3789 
3790 	psi_memstall_enter(&pflags);
3791 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3792 	if (unlikely(!(*did_some_progress)))
3793 		goto out;
3794 
3795 retry:
3796 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3797 
3798 	/*
3799 	 * If an allocation failed after direct reclaim, it could be because
3800 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3801 	 * Shrink them and try again
3802 	 */
3803 	if (!page && !drained) {
3804 		unreserve_highatomic_pageblock(ac, false);
3805 		drain_all_pages(NULL);
3806 		drained = true;
3807 		goto retry;
3808 	}
3809 out:
3810 	psi_memstall_leave(&pflags);
3811 
3812 	return page;
3813 }
3814 
3815 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3816 			     const struct alloc_context *ac)
3817 {
3818 	struct zoneref *z;
3819 	struct zone *zone;
3820 	pg_data_t *last_pgdat = NULL;
3821 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3822 
3823 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3824 					ac->nodemask) {
3825 		if (!managed_zone(zone))
3826 			continue;
3827 		if (last_pgdat != zone->zone_pgdat) {
3828 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3829 			last_pgdat = zone->zone_pgdat;
3830 		}
3831 	}
3832 }
3833 
3834 static inline unsigned int
3835 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3836 {
3837 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3838 
3839 	/*
3840 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3841 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3842 	 * to save two branches.
3843 	 */
3844 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3845 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3846 
3847 	/*
3848 	 * The caller may dip into page reserves a bit more if the caller
3849 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3850 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3851 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3852 	 */
3853 	alloc_flags |= (__force int)
3854 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3855 
3856 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3857 		/*
3858 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3859 		 * if it can't schedule.
3860 		 */
3861 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3862 			alloc_flags |= ALLOC_NON_BLOCK;
3863 
3864 			if (order > 0)
3865 				alloc_flags |= ALLOC_HIGHATOMIC;
3866 		}
3867 
3868 		/*
3869 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3870 		 * GFP_ATOMIC) rather than fail, see the comment for
3871 		 * cpuset_node_allowed().
3872 		 */
3873 		if (alloc_flags & ALLOC_MIN_RESERVE)
3874 			alloc_flags &= ~ALLOC_CPUSET;
3875 	} else if (unlikely(rt_task(current)) && in_task())
3876 		alloc_flags |= ALLOC_MIN_RESERVE;
3877 
3878 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3879 
3880 	return alloc_flags;
3881 }
3882 
3883 static bool oom_reserves_allowed(struct task_struct *tsk)
3884 {
3885 	if (!tsk_is_oom_victim(tsk))
3886 		return false;
3887 
3888 	/*
3889 	 * !MMU doesn't have oom reaper so give access to memory reserves
3890 	 * only to the thread with TIF_MEMDIE set
3891 	 */
3892 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3893 		return false;
3894 
3895 	return true;
3896 }
3897 
3898 /*
3899  * Distinguish requests which really need access to full memory
3900  * reserves from oom victims which can live with a portion of it
3901  */
3902 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3903 {
3904 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3905 		return 0;
3906 	if (gfp_mask & __GFP_MEMALLOC)
3907 		return ALLOC_NO_WATERMARKS;
3908 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3909 		return ALLOC_NO_WATERMARKS;
3910 	if (!in_interrupt()) {
3911 		if (current->flags & PF_MEMALLOC)
3912 			return ALLOC_NO_WATERMARKS;
3913 		else if (oom_reserves_allowed(current))
3914 			return ALLOC_OOM;
3915 	}
3916 
3917 	return 0;
3918 }
3919 
3920 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3921 {
3922 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3923 }
3924 
3925 /*
3926  * Checks whether it makes sense to retry the reclaim to make a forward progress
3927  * for the given allocation request.
3928  *
3929  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3930  * without success, or when we couldn't even meet the watermark if we
3931  * reclaimed all remaining pages on the LRU lists.
3932  *
3933  * Returns true if a retry is viable or false to enter the oom path.
3934  */
3935 static inline bool
3936 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3937 		     struct alloc_context *ac, int alloc_flags,
3938 		     bool did_some_progress, int *no_progress_loops)
3939 {
3940 	struct zone *zone;
3941 	struct zoneref *z;
3942 	bool ret = false;
3943 
3944 	/*
3945 	 * Costly allocations might have made a progress but this doesn't mean
3946 	 * their order will become available due to high fragmentation so
3947 	 * always increment the no progress counter for them
3948 	 */
3949 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3950 		*no_progress_loops = 0;
3951 	else
3952 		(*no_progress_loops)++;
3953 
3954 	/*
3955 	 * Make sure we converge to OOM if we cannot make any progress
3956 	 * several times in the row.
3957 	 */
3958 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3959 		/* Before OOM, exhaust highatomic_reserve */
3960 		return unreserve_highatomic_pageblock(ac, true);
3961 	}
3962 
3963 	/*
3964 	 * Keep reclaiming pages while there is a chance this will lead
3965 	 * somewhere.  If none of the target zones can satisfy our allocation
3966 	 * request even if all reclaimable pages are considered then we are
3967 	 * screwed and have to go OOM.
3968 	 */
3969 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3970 				ac->highest_zoneidx, ac->nodemask) {
3971 		unsigned long available;
3972 		unsigned long reclaimable;
3973 		unsigned long min_wmark = min_wmark_pages(zone);
3974 		bool wmark;
3975 
3976 		available = reclaimable = zone_reclaimable_pages(zone);
3977 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3978 
3979 		/*
3980 		 * Would the allocation succeed if we reclaimed all
3981 		 * reclaimable pages?
3982 		 */
3983 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3984 				ac->highest_zoneidx, alloc_flags, available);
3985 		trace_reclaim_retry_zone(z, order, reclaimable,
3986 				available, min_wmark, *no_progress_loops, wmark);
3987 		if (wmark) {
3988 			ret = true;
3989 			break;
3990 		}
3991 	}
3992 
3993 	/*
3994 	 * Memory allocation/reclaim might be called from a WQ context and the
3995 	 * current implementation of the WQ concurrency control doesn't
3996 	 * recognize that a particular WQ is congested if the worker thread is
3997 	 * looping without ever sleeping. Therefore we have to do a short sleep
3998 	 * here rather than calling cond_resched().
3999 	 */
4000 	if (current->flags & PF_WQ_WORKER)
4001 		schedule_timeout_uninterruptible(1);
4002 	else
4003 		cond_resched();
4004 	return ret;
4005 }
4006 
4007 static inline bool
4008 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4009 {
4010 	/*
4011 	 * It's possible that cpuset's mems_allowed and the nodemask from
4012 	 * mempolicy don't intersect. This should be normally dealt with by
4013 	 * policy_nodemask(), but it's possible to race with cpuset update in
4014 	 * such a way the check therein was true, and then it became false
4015 	 * before we got our cpuset_mems_cookie here.
4016 	 * This assumes that for all allocations, ac->nodemask can come only
4017 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4018 	 * when it does not intersect with the cpuset restrictions) or the
4019 	 * caller can deal with a violated nodemask.
4020 	 */
4021 	if (cpusets_enabled() && ac->nodemask &&
4022 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4023 		ac->nodemask = NULL;
4024 		return true;
4025 	}
4026 
4027 	/*
4028 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4029 	 * possible to race with parallel threads in such a way that our
4030 	 * allocation can fail while the mask is being updated. If we are about
4031 	 * to fail, check if the cpuset changed during allocation and if so,
4032 	 * retry.
4033 	 */
4034 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4035 		return true;
4036 
4037 	return false;
4038 }
4039 
4040 static inline struct page *
4041 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4042 						struct alloc_context *ac)
4043 {
4044 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4045 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4046 	struct page *page = NULL;
4047 	unsigned int alloc_flags;
4048 	unsigned long did_some_progress;
4049 	enum compact_priority compact_priority;
4050 	enum compact_result compact_result;
4051 	int compaction_retries;
4052 	int no_progress_loops;
4053 	unsigned int cpuset_mems_cookie;
4054 	unsigned int zonelist_iter_cookie;
4055 	int reserve_flags;
4056 
4057 restart:
4058 	compaction_retries = 0;
4059 	no_progress_loops = 0;
4060 	compact_priority = DEF_COMPACT_PRIORITY;
4061 	cpuset_mems_cookie = read_mems_allowed_begin();
4062 	zonelist_iter_cookie = zonelist_iter_begin();
4063 
4064 	/*
4065 	 * The fast path uses conservative alloc_flags to succeed only until
4066 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4067 	 * alloc_flags precisely. So we do that now.
4068 	 */
4069 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4070 
4071 	/*
4072 	 * We need to recalculate the starting point for the zonelist iterator
4073 	 * because we might have used different nodemask in the fast path, or
4074 	 * there was a cpuset modification and we are retrying - otherwise we
4075 	 * could end up iterating over non-eligible zones endlessly.
4076 	 */
4077 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4078 					ac->highest_zoneidx, ac->nodemask);
4079 	if (!ac->preferred_zoneref->zone)
4080 		goto nopage;
4081 
4082 	/*
4083 	 * Check for insane configurations where the cpuset doesn't contain
4084 	 * any suitable zone to satisfy the request - e.g. non-movable
4085 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4086 	 */
4087 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4088 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4089 					ac->highest_zoneidx,
4090 					&cpuset_current_mems_allowed);
4091 		if (!z->zone)
4092 			goto nopage;
4093 	}
4094 
4095 	if (alloc_flags & ALLOC_KSWAPD)
4096 		wake_all_kswapds(order, gfp_mask, ac);
4097 
4098 	/*
4099 	 * The adjusted alloc_flags might result in immediate success, so try
4100 	 * that first
4101 	 */
4102 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4103 	if (page)
4104 		goto got_pg;
4105 
4106 	/*
4107 	 * For costly allocations, try direct compaction first, as it's likely
4108 	 * that we have enough base pages and don't need to reclaim. For non-
4109 	 * movable high-order allocations, do that as well, as compaction will
4110 	 * try prevent permanent fragmentation by migrating from blocks of the
4111 	 * same migratetype.
4112 	 * Don't try this for allocations that are allowed to ignore
4113 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4114 	 */
4115 	if (can_direct_reclaim &&
4116 			(costly_order ||
4117 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4118 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4119 		page = __alloc_pages_direct_compact(gfp_mask, order,
4120 						alloc_flags, ac,
4121 						INIT_COMPACT_PRIORITY,
4122 						&compact_result);
4123 		if (page)
4124 			goto got_pg;
4125 
4126 		/*
4127 		 * Checks for costly allocations with __GFP_NORETRY, which
4128 		 * includes some THP page fault allocations
4129 		 */
4130 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4131 			/*
4132 			 * If allocating entire pageblock(s) and compaction
4133 			 * failed because all zones are below low watermarks
4134 			 * or is prohibited because it recently failed at this
4135 			 * order, fail immediately unless the allocator has
4136 			 * requested compaction and reclaim retry.
4137 			 *
4138 			 * Reclaim is
4139 			 *  - potentially very expensive because zones are far
4140 			 *    below their low watermarks or this is part of very
4141 			 *    bursty high order allocations,
4142 			 *  - not guaranteed to help because isolate_freepages()
4143 			 *    may not iterate over freed pages as part of its
4144 			 *    linear scan, and
4145 			 *  - unlikely to make entire pageblocks free on its
4146 			 *    own.
4147 			 */
4148 			if (compact_result == COMPACT_SKIPPED ||
4149 			    compact_result == COMPACT_DEFERRED)
4150 				goto nopage;
4151 
4152 			/*
4153 			 * Looks like reclaim/compaction is worth trying, but
4154 			 * sync compaction could be very expensive, so keep
4155 			 * using async compaction.
4156 			 */
4157 			compact_priority = INIT_COMPACT_PRIORITY;
4158 		}
4159 	}
4160 
4161 retry:
4162 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4163 	if (alloc_flags & ALLOC_KSWAPD)
4164 		wake_all_kswapds(order, gfp_mask, ac);
4165 
4166 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4167 	if (reserve_flags)
4168 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4169 					  (alloc_flags & ALLOC_KSWAPD);
4170 
4171 	/*
4172 	 * Reset the nodemask and zonelist iterators if memory policies can be
4173 	 * ignored. These allocations are high priority and system rather than
4174 	 * user oriented.
4175 	 */
4176 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4177 		ac->nodemask = NULL;
4178 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4179 					ac->highest_zoneidx, ac->nodemask);
4180 	}
4181 
4182 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4183 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4184 	if (page)
4185 		goto got_pg;
4186 
4187 	/* Caller is not willing to reclaim, we can't balance anything */
4188 	if (!can_direct_reclaim)
4189 		goto nopage;
4190 
4191 	/* Avoid recursion of direct reclaim */
4192 	if (current->flags & PF_MEMALLOC)
4193 		goto nopage;
4194 
4195 	/* Try direct reclaim and then allocating */
4196 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4197 							&did_some_progress);
4198 	if (page)
4199 		goto got_pg;
4200 
4201 	/* Try direct compaction and then allocating */
4202 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4203 					compact_priority, &compact_result);
4204 	if (page)
4205 		goto got_pg;
4206 
4207 	/* Do not loop if specifically requested */
4208 	if (gfp_mask & __GFP_NORETRY)
4209 		goto nopage;
4210 
4211 	/*
4212 	 * Do not retry costly high order allocations unless they are
4213 	 * __GFP_RETRY_MAYFAIL
4214 	 */
4215 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4216 		goto nopage;
4217 
4218 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4219 				 did_some_progress > 0, &no_progress_loops))
4220 		goto retry;
4221 
4222 	/*
4223 	 * It doesn't make any sense to retry for the compaction if the order-0
4224 	 * reclaim is not able to make any progress because the current
4225 	 * implementation of the compaction depends on the sufficient amount
4226 	 * of free memory (see __compaction_suitable)
4227 	 */
4228 	if (did_some_progress > 0 &&
4229 			should_compact_retry(ac, order, alloc_flags,
4230 				compact_result, &compact_priority,
4231 				&compaction_retries))
4232 		goto retry;
4233 
4234 
4235 	/*
4236 	 * Deal with possible cpuset update races or zonelist updates to avoid
4237 	 * a unnecessary OOM kill.
4238 	 */
4239 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4240 	    check_retry_zonelist(zonelist_iter_cookie))
4241 		goto restart;
4242 
4243 	/* Reclaim has failed us, start killing things */
4244 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4245 	if (page)
4246 		goto got_pg;
4247 
4248 	/* Avoid allocations with no watermarks from looping endlessly */
4249 	if (tsk_is_oom_victim(current) &&
4250 	    (alloc_flags & ALLOC_OOM ||
4251 	     (gfp_mask & __GFP_NOMEMALLOC)))
4252 		goto nopage;
4253 
4254 	/* Retry as long as the OOM killer is making progress */
4255 	if (did_some_progress) {
4256 		no_progress_loops = 0;
4257 		goto retry;
4258 	}
4259 
4260 nopage:
4261 	/*
4262 	 * Deal with possible cpuset update races or zonelist updates to avoid
4263 	 * a unnecessary OOM kill.
4264 	 */
4265 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4266 	    check_retry_zonelist(zonelist_iter_cookie))
4267 		goto restart;
4268 
4269 	/*
4270 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4271 	 * we always retry
4272 	 */
4273 	if (gfp_mask & __GFP_NOFAIL) {
4274 		/*
4275 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4276 		 * of any new users that actually require GFP_NOWAIT
4277 		 */
4278 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4279 			goto fail;
4280 
4281 		/*
4282 		 * PF_MEMALLOC request from this context is rather bizarre
4283 		 * because we cannot reclaim anything and only can loop waiting
4284 		 * for somebody to do a work for us
4285 		 */
4286 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4287 
4288 		/*
4289 		 * non failing costly orders are a hard requirement which we
4290 		 * are not prepared for much so let's warn about these users
4291 		 * so that we can identify them and convert them to something
4292 		 * else.
4293 		 */
4294 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4295 
4296 		/*
4297 		 * Help non-failing allocations by giving some access to memory
4298 		 * reserves normally used for high priority non-blocking
4299 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4300 		 * could deplete whole memory reserves which would just make
4301 		 * the situation worse.
4302 		 */
4303 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4304 		if (page)
4305 			goto got_pg;
4306 
4307 		cond_resched();
4308 		goto retry;
4309 	}
4310 fail:
4311 	warn_alloc(gfp_mask, ac->nodemask,
4312 			"page allocation failure: order:%u", order);
4313 got_pg:
4314 	return page;
4315 }
4316 
4317 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4318 		int preferred_nid, nodemask_t *nodemask,
4319 		struct alloc_context *ac, gfp_t *alloc_gfp,
4320 		unsigned int *alloc_flags)
4321 {
4322 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4323 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4324 	ac->nodemask = nodemask;
4325 	ac->migratetype = gfp_migratetype(gfp_mask);
4326 
4327 	if (cpusets_enabled()) {
4328 		*alloc_gfp |= __GFP_HARDWALL;
4329 		/*
4330 		 * When we are in the interrupt context, it is irrelevant
4331 		 * to the current task context. It means that any node ok.
4332 		 */
4333 		if (in_task() && !ac->nodemask)
4334 			ac->nodemask = &cpuset_current_mems_allowed;
4335 		else
4336 			*alloc_flags |= ALLOC_CPUSET;
4337 	}
4338 
4339 	might_alloc(gfp_mask);
4340 
4341 	if (should_fail_alloc_page(gfp_mask, order))
4342 		return false;
4343 
4344 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4345 
4346 	/* Dirty zone balancing only done in the fast path */
4347 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4348 
4349 	/*
4350 	 * The preferred zone is used for statistics but crucially it is
4351 	 * also used as the starting point for the zonelist iterator. It
4352 	 * may get reset for allocations that ignore memory policies.
4353 	 */
4354 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4355 					ac->highest_zoneidx, ac->nodemask);
4356 
4357 	return true;
4358 }
4359 
4360 /*
4361  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4362  * @gfp: GFP flags for the allocation
4363  * @preferred_nid: The preferred NUMA node ID to allocate from
4364  * @nodemask: Set of nodes to allocate from, may be NULL
4365  * @nr_pages: The number of pages desired on the list or array
4366  * @page_list: Optional list to store the allocated pages
4367  * @page_array: Optional array to store the pages
4368  *
4369  * This is a batched version of the page allocator that attempts to
4370  * allocate nr_pages quickly. Pages are added to page_list if page_list
4371  * is not NULL, otherwise it is assumed that the page_array is valid.
4372  *
4373  * For lists, nr_pages is the number of pages that should be allocated.
4374  *
4375  * For arrays, only NULL elements are populated with pages and nr_pages
4376  * is the maximum number of pages that will be stored in the array.
4377  *
4378  * Returns the number of pages on the list or array.
4379  */
4380 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4381 			nodemask_t *nodemask, int nr_pages,
4382 			struct list_head *page_list,
4383 			struct page **page_array)
4384 {
4385 	struct page *page;
4386 	unsigned long __maybe_unused UP_flags;
4387 	struct zone *zone;
4388 	struct zoneref *z;
4389 	struct per_cpu_pages *pcp;
4390 	struct list_head *pcp_list;
4391 	struct alloc_context ac;
4392 	gfp_t alloc_gfp;
4393 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4394 	int nr_populated = 0, nr_account = 0;
4395 
4396 	/*
4397 	 * Skip populated array elements to determine if any pages need
4398 	 * to be allocated before disabling IRQs.
4399 	 */
4400 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4401 		nr_populated++;
4402 
4403 	/* No pages requested? */
4404 	if (unlikely(nr_pages <= 0))
4405 		goto out;
4406 
4407 	/* Already populated array? */
4408 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4409 		goto out;
4410 
4411 	/* Bulk allocator does not support memcg accounting. */
4412 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4413 		goto failed;
4414 
4415 	/* Use the single page allocator for one page. */
4416 	if (nr_pages - nr_populated == 1)
4417 		goto failed;
4418 
4419 #ifdef CONFIG_PAGE_OWNER
4420 	/*
4421 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4422 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4423 	 * removes much of the performance benefit of bulk allocation so
4424 	 * force the caller to allocate one page at a time as it'll have
4425 	 * similar performance to added complexity to the bulk allocator.
4426 	 */
4427 	if (static_branch_unlikely(&page_owner_inited))
4428 		goto failed;
4429 #endif
4430 
4431 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4432 	gfp &= gfp_allowed_mask;
4433 	alloc_gfp = gfp;
4434 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4435 		goto out;
4436 	gfp = alloc_gfp;
4437 
4438 	/* Find an allowed local zone that meets the low watermark. */
4439 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4440 		unsigned long mark;
4441 
4442 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4443 		    !__cpuset_zone_allowed(zone, gfp)) {
4444 			continue;
4445 		}
4446 
4447 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4448 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4449 			goto failed;
4450 		}
4451 
4452 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4453 		if (zone_watermark_fast(zone, 0,  mark,
4454 				zonelist_zone_idx(ac.preferred_zoneref),
4455 				alloc_flags, gfp)) {
4456 			break;
4457 		}
4458 	}
4459 
4460 	/*
4461 	 * If there are no allowed local zones that meets the watermarks then
4462 	 * try to allocate a single page and reclaim if necessary.
4463 	 */
4464 	if (unlikely(!zone))
4465 		goto failed;
4466 
4467 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4468 	pcp_trylock_prepare(UP_flags);
4469 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4470 	if (!pcp)
4471 		goto failed_irq;
4472 
4473 	/* Attempt the batch allocation */
4474 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4475 	while (nr_populated < nr_pages) {
4476 
4477 		/* Skip existing pages */
4478 		if (page_array && page_array[nr_populated]) {
4479 			nr_populated++;
4480 			continue;
4481 		}
4482 
4483 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4484 								pcp, pcp_list);
4485 		if (unlikely(!page)) {
4486 			/* Try and allocate at least one page */
4487 			if (!nr_account) {
4488 				pcp_spin_unlock(pcp);
4489 				goto failed_irq;
4490 			}
4491 			break;
4492 		}
4493 		nr_account++;
4494 
4495 		prep_new_page(page, 0, gfp, 0);
4496 		if (page_list)
4497 			list_add(&page->lru, page_list);
4498 		else
4499 			page_array[nr_populated] = page;
4500 		nr_populated++;
4501 	}
4502 
4503 	pcp_spin_unlock(pcp);
4504 	pcp_trylock_finish(UP_flags);
4505 
4506 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4507 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4508 
4509 out:
4510 	return nr_populated;
4511 
4512 failed_irq:
4513 	pcp_trylock_finish(UP_flags);
4514 
4515 failed:
4516 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4517 	if (page) {
4518 		if (page_list)
4519 			list_add(&page->lru, page_list);
4520 		else
4521 			page_array[nr_populated] = page;
4522 		nr_populated++;
4523 	}
4524 
4525 	goto out;
4526 }
4527 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4528 
4529 /*
4530  * This is the 'heart' of the zoned buddy allocator.
4531  */
4532 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4533 							nodemask_t *nodemask)
4534 {
4535 	struct page *page;
4536 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4537 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4538 	struct alloc_context ac = { };
4539 
4540 	/*
4541 	 * There are several places where we assume that the order value is sane
4542 	 * so bail out early if the request is out of bound.
4543 	 */
4544 	if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp))
4545 		return NULL;
4546 
4547 	gfp &= gfp_allowed_mask;
4548 	/*
4549 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4550 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4551 	 * from a particular context which has been marked by
4552 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4553 	 * movable zones are not used during allocation.
4554 	 */
4555 	gfp = current_gfp_context(gfp);
4556 	alloc_gfp = gfp;
4557 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4558 			&alloc_gfp, &alloc_flags))
4559 		return NULL;
4560 
4561 	/*
4562 	 * Forbid the first pass from falling back to types that fragment
4563 	 * memory until all local zones are considered.
4564 	 */
4565 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4566 
4567 	/* First allocation attempt */
4568 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4569 	if (likely(page))
4570 		goto out;
4571 
4572 	alloc_gfp = gfp;
4573 	ac.spread_dirty_pages = false;
4574 
4575 	/*
4576 	 * Restore the original nodemask if it was potentially replaced with
4577 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4578 	 */
4579 	ac.nodemask = nodemask;
4580 
4581 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4582 
4583 out:
4584 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4585 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4586 		__free_pages(page, order);
4587 		page = NULL;
4588 	}
4589 
4590 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4591 	kmsan_alloc_page(page, order, alloc_gfp);
4592 
4593 	return page;
4594 }
4595 EXPORT_SYMBOL(__alloc_pages);
4596 
4597 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4598 		nodemask_t *nodemask)
4599 {
4600 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4601 					preferred_nid, nodemask);
4602 	return page_rmappable_folio(page);
4603 }
4604 EXPORT_SYMBOL(__folio_alloc);
4605 
4606 /*
4607  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4608  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4609  * you need to access high mem.
4610  */
4611 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4612 {
4613 	struct page *page;
4614 
4615 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4616 	if (!page)
4617 		return 0;
4618 	return (unsigned long) page_address(page);
4619 }
4620 EXPORT_SYMBOL(__get_free_pages);
4621 
4622 unsigned long get_zeroed_page(gfp_t gfp_mask)
4623 {
4624 	return __get_free_page(gfp_mask | __GFP_ZERO);
4625 }
4626 EXPORT_SYMBOL(get_zeroed_page);
4627 
4628 /**
4629  * __free_pages - Free pages allocated with alloc_pages().
4630  * @page: The page pointer returned from alloc_pages().
4631  * @order: The order of the allocation.
4632  *
4633  * This function can free multi-page allocations that are not compound
4634  * pages.  It does not check that the @order passed in matches that of
4635  * the allocation, so it is easy to leak memory.  Freeing more memory
4636  * than was allocated will probably emit a warning.
4637  *
4638  * If the last reference to this page is speculative, it will be released
4639  * by put_page() which only frees the first page of a non-compound
4640  * allocation.  To prevent the remaining pages from being leaked, we free
4641  * the subsequent pages here.  If you want to use the page's reference
4642  * count to decide when to free the allocation, you should allocate a
4643  * compound page, and use put_page() instead of __free_pages().
4644  *
4645  * Context: May be called in interrupt context or while holding a normal
4646  * spinlock, but not in NMI context or while holding a raw spinlock.
4647  */
4648 void __free_pages(struct page *page, unsigned int order)
4649 {
4650 	/* get PageHead before we drop reference */
4651 	int head = PageHead(page);
4652 
4653 	if (put_page_testzero(page))
4654 		free_the_page(page, order);
4655 	else if (!head)
4656 		while (order-- > 0)
4657 			free_the_page(page + (1 << order), order);
4658 }
4659 EXPORT_SYMBOL(__free_pages);
4660 
4661 void free_pages(unsigned long addr, unsigned int order)
4662 {
4663 	if (addr != 0) {
4664 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4665 		__free_pages(virt_to_page((void *)addr), order);
4666 	}
4667 }
4668 
4669 EXPORT_SYMBOL(free_pages);
4670 
4671 /*
4672  * Page Fragment:
4673  *  An arbitrary-length arbitrary-offset area of memory which resides
4674  *  within a 0 or higher order page.  Multiple fragments within that page
4675  *  are individually refcounted, in the page's reference counter.
4676  *
4677  * The page_frag functions below provide a simple allocation framework for
4678  * page fragments.  This is used by the network stack and network device
4679  * drivers to provide a backing region of memory for use as either an
4680  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4681  */
4682 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4683 					     gfp_t gfp_mask)
4684 {
4685 	struct page *page = NULL;
4686 	gfp_t gfp = gfp_mask;
4687 
4688 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4689 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4690 		    __GFP_NOMEMALLOC;
4691 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4692 				PAGE_FRAG_CACHE_MAX_ORDER);
4693 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4694 #endif
4695 	if (unlikely(!page))
4696 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4697 
4698 	nc->va = page ? page_address(page) : NULL;
4699 
4700 	return page;
4701 }
4702 
4703 void __page_frag_cache_drain(struct page *page, unsigned int count)
4704 {
4705 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4706 
4707 	if (page_ref_sub_and_test(page, count))
4708 		free_the_page(page, compound_order(page));
4709 }
4710 EXPORT_SYMBOL(__page_frag_cache_drain);
4711 
4712 void *page_frag_alloc_align(struct page_frag_cache *nc,
4713 		      unsigned int fragsz, gfp_t gfp_mask,
4714 		      unsigned int align_mask)
4715 {
4716 	unsigned int size = PAGE_SIZE;
4717 	struct page *page;
4718 	int offset;
4719 
4720 	if (unlikely(!nc->va)) {
4721 refill:
4722 		page = __page_frag_cache_refill(nc, gfp_mask);
4723 		if (!page)
4724 			return NULL;
4725 
4726 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4727 		/* if size can vary use size else just use PAGE_SIZE */
4728 		size = nc->size;
4729 #endif
4730 		/* Even if we own the page, we do not use atomic_set().
4731 		 * This would break get_page_unless_zero() users.
4732 		 */
4733 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4734 
4735 		/* reset page count bias and offset to start of new frag */
4736 		nc->pfmemalloc = page_is_pfmemalloc(page);
4737 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4738 		nc->offset = size;
4739 	}
4740 
4741 	offset = nc->offset - fragsz;
4742 	if (unlikely(offset < 0)) {
4743 		page = virt_to_page(nc->va);
4744 
4745 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4746 			goto refill;
4747 
4748 		if (unlikely(nc->pfmemalloc)) {
4749 			free_the_page(page, compound_order(page));
4750 			goto refill;
4751 		}
4752 
4753 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4754 		/* if size can vary use size else just use PAGE_SIZE */
4755 		size = nc->size;
4756 #endif
4757 		/* OK, page count is 0, we can safely set it */
4758 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4759 
4760 		/* reset page count bias and offset to start of new frag */
4761 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4762 		offset = size - fragsz;
4763 		if (unlikely(offset < 0)) {
4764 			/*
4765 			 * The caller is trying to allocate a fragment
4766 			 * with fragsz > PAGE_SIZE but the cache isn't big
4767 			 * enough to satisfy the request, this may
4768 			 * happen in low memory conditions.
4769 			 * We don't release the cache page because
4770 			 * it could make memory pressure worse
4771 			 * so we simply return NULL here.
4772 			 */
4773 			return NULL;
4774 		}
4775 	}
4776 
4777 	nc->pagecnt_bias--;
4778 	offset &= align_mask;
4779 	nc->offset = offset;
4780 
4781 	return nc->va + offset;
4782 }
4783 EXPORT_SYMBOL(page_frag_alloc_align);
4784 
4785 /*
4786  * Frees a page fragment allocated out of either a compound or order 0 page.
4787  */
4788 void page_frag_free(void *addr)
4789 {
4790 	struct page *page = virt_to_head_page(addr);
4791 
4792 	if (unlikely(put_page_testzero(page)))
4793 		free_the_page(page, compound_order(page));
4794 }
4795 EXPORT_SYMBOL(page_frag_free);
4796 
4797 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4798 		size_t size)
4799 {
4800 	if (addr) {
4801 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4802 		struct page *page = virt_to_page((void *)addr);
4803 		struct page *last = page + nr;
4804 
4805 		split_page_owner(page, 1 << order);
4806 		split_page_memcg(page, 1 << order);
4807 		while (page < --last)
4808 			set_page_refcounted(last);
4809 
4810 		last = page + (1UL << order);
4811 		for (page += nr; page < last; page++)
4812 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4813 	}
4814 	return (void *)addr;
4815 }
4816 
4817 /**
4818  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4819  * @size: the number of bytes to allocate
4820  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4821  *
4822  * This function is similar to alloc_pages(), except that it allocates the
4823  * minimum number of pages to satisfy the request.  alloc_pages() can only
4824  * allocate memory in power-of-two pages.
4825  *
4826  * This function is also limited by MAX_ORDER.
4827  *
4828  * Memory allocated by this function must be released by free_pages_exact().
4829  *
4830  * Return: pointer to the allocated area or %NULL in case of error.
4831  */
4832 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4833 {
4834 	unsigned int order = get_order(size);
4835 	unsigned long addr;
4836 
4837 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4838 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4839 
4840 	addr = __get_free_pages(gfp_mask, order);
4841 	return make_alloc_exact(addr, order, size);
4842 }
4843 EXPORT_SYMBOL(alloc_pages_exact);
4844 
4845 /**
4846  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4847  *			   pages on a node.
4848  * @nid: the preferred node ID where memory should be allocated
4849  * @size: the number of bytes to allocate
4850  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4851  *
4852  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4853  * back.
4854  *
4855  * Return: pointer to the allocated area or %NULL in case of error.
4856  */
4857 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4858 {
4859 	unsigned int order = get_order(size);
4860 	struct page *p;
4861 
4862 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4863 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4864 
4865 	p = alloc_pages_node(nid, gfp_mask, order);
4866 	if (!p)
4867 		return NULL;
4868 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4869 }
4870 
4871 /**
4872  * free_pages_exact - release memory allocated via alloc_pages_exact()
4873  * @virt: the value returned by alloc_pages_exact.
4874  * @size: size of allocation, same value as passed to alloc_pages_exact().
4875  *
4876  * Release the memory allocated by a previous call to alloc_pages_exact.
4877  */
4878 void free_pages_exact(void *virt, size_t size)
4879 {
4880 	unsigned long addr = (unsigned long)virt;
4881 	unsigned long end = addr + PAGE_ALIGN(size);
4882 
4883 	while (addr < end) {
4884 		free_page(addr);
4885 		addr += PAGE_SIZE;
4886 	}
4887 }
4888 EXPORT_SYMBOL(free_pages_exact);
4889 
4890 /**
4891  * nr_free_zone_pages - count number of pages beyond high watermark
4892  * @offset: The zone index of the highest zone
4893  *
4894  * nr_free_zone_pages() counts the number of pages which are beyond the
4895  * high watermark within all zones at or below a given zone index.  For each
4896  * zone, the number of pages is calculated as:
4897  *
4898  *     nr_free_zone_pages = managed_pages - high_pages
4899  *
4900  * Return: number of pages beyond high watermark.
4901  */
4902 static unsigned long nr_free_zone_pages(int offset)
4903 {
4904 	struct zoneref *z;
4905 	struct zone *zone;
4906 
4907 	/* Just pick one node, since fallback list is circular */
4908 	unsigned long sum = 0;
4909 
4910 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4911 
4912 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4913 		unsigned long size = zone_managed_pages(zone);
4914 		unsigned long high = high_wmark_pages(zone);
4915 		if (size > high)
4916 			sum += size - high;
4917 	}
4918 
4919 	return sum;
4920 }
4921 
4922 /**
4923  * nr_free_buffer_pages - count number of pages beyond high watermark
4924  *
4925  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4926  * watermark within ZONE_DMA and ZONE_NORMAL.
4927  *
4928  * Return: number of pages beyond high watermark within ZONE_DMA and
4929  * ZONE_NORMAL.
4930  */
4931 unsigned long nr_free_buffer_pages(void)
4932 {
4933 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4934 }
4935 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4936 
4937 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4938 {
4939 	zoneref->zone = zone;
4940 	zoneref->zone_idx = zone_idx(zone);
4941 }
4942 
4943 /*
4944  * Builds allocation fallback zone lists.
4945  *
4946  * Add all populated zones of a node to the zonelist.
4947  */
4948 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4949 {
4950 	struct zone *zone;
4951 	enum zone_type zone_type = MAX_NR_ZONES;
4952 	int nr_zones = 0;
4953 
4954 	do {
4955 		zone_type--;
4956 		zone = pgdat->node_zones + zone_type;
4957 		if (populated_zone(zone)) {
4958 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4959 			check_highest_zone(zone_type);
4960 		}
4961 	} while (zone_type);
4962 
4963 	return nr_zones;
4964 }
4965 
4966 #ifdef CONFIG_NUMA
4967 
4968 static int __parse_numa_zonelist_order(char *s)
4969 {
4970 	/*
4971 	 * We used to support different zonelists modes but they turned
4972 	 * out to be just not useful. Let's keep the warning in place
4973 	 * if somebody still use the cmd line parameter so that we do
4974 	 * not fail it silently
4975 	 */
4976 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4977 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4978 		return -EINVAL;
4979 	}
4980 	return 0;
4981 }
4982 
4983 static char numa_zonelist_order[] = "Node";
4984 #define NUMA_ZONELIST_ORDER_LEN	16
4985 /*
4986  * sysctl handler for numa_zonelist_order
4987  */
4988 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4989 		void *buffer, size_t *length, loff_t *ppos)
4990 {
4991 	if (write)
4992 		return __parse_numa_zonelist_order(buffer);
4993 	return proc_dostring(table, write, buffer, length, ppos);
4994 }
4995 
4996 static int node_load[MAX_NUMNODES];
4997 
4998 /**
4999  * find_next_best_node - find the next node that should appear in a given node's fallback list
5000  * @node: node whose fallback list we're appending
5001  * @used_node_mask: nodemask_t of already used nodes
5002  *
5003  * We use a number of factors to determine which is the next node that should
5004  * appear on a given node's fallback list.  The node should not have appeared
5005  * already in @node's fallback list, and it should be the next closest node
5006  * according to the distance array (which contains arbitrary distance values
5007  * from each node to each node in the system), and should also prefer nodes
5008  * with no CPUs, since presumably they'll have very little allocation pressure
5009  * on them otherwise.
5010  *
5011  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5012  */
5013 int find_next_best_node(int node, nodemask_t *used_node_mask)
5014 {
5015 	int n, val;
5016 	int min_val = INT_MAX;
5017 	int best_node = NUMA_NO_NODE;
5018 
5019 	/*
5020 	 * Use the local node if we haven't already, but for memoryless local
5021 	 * node, we should skip it and fall back to other nodes.
5022 	 */
5023 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5024 		node_set(node, *used_node_mask);
5025 		return node;
5026 	}
5027 
5028 	for_each_node_state(n, N_MEMORY) {
5029 
5030 		/* Don't want a node to appear more than once */
5031 		if (node_isset(n, *used_node_mask))
5032 			continue;
5033 
5034 		/* Use the distance array to find the distance */
5035 		val = node_distance(node, n);
5036 
5037 		/* Penalize nodes under us ("prefer the next node") */
5038 		val += (n < node);
5039 
5040 		/* Give preference to headless and unused nodes */
5041 		if (!cpumask_empty(cpumask_of_node(n)))
5042 			val += PENALTY_FOR_NODE_WITH_CPUS;
5043 
5044 		/* Slight preference for less loaded node */
5045 		val *= MAX_NUMNODES;
5046 		val += node_load[n];
5047 
5048 		if (val < min_val) {
5049 			min_val = val;
5050 			best_node = n;
5051 		}
5052 	}
5053 
5054 	if (best_node >= 0)
5055 		node_set(best_node, *used_node_mask);
5056 
5057 	return best_node;
5058 }
5059 
5060 
5061 /*
5062  * Build zonelists ordered by node and zones within node.
5063  * This results in maximum locality--normal zone overflows into local
5064  * DMA zone, if any--but risks exhausting DMA zone.
5065  */
5066 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5067 		unsigned nr_nodes)
5068 {
5069 	struct zoneref *zonerefs;
5070 	int i;
5071 
5072 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5073 
5074 	for (i = 0; i < nr_nodes; i++) {
5075 		int nr_zones;
5076 
5077 		pg_data_t *node = NODE_DATA(node_order[i]);
5078 
5079 		nr_zones = build_zonerefs_node(node, zonerefs);
5080 		zonerefs += nr_zones;
5081 	}
5082 	zonerefs->zone = NULL;
5083 	zonerefs->zone_idx = 0;
5084 }
5085 
5086 /*
5087  * Build gfp_thisnode zonelists
5088  */
5089 static void build_thisnode_zonelists(pg_data_t *pgdat)
5090 {
5091 	struct zoneref *zonerefs;
5092 	int nr_zones;
5093 
5094 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5095 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5096 	zonerefs += nr_zones;
5097 	zonerefs->zone = NULL;
5098 	zonerefs->zone_idx = 0;
5099 }
5100 
5101 /*
5102  * Build zonelists ordered by zone and nodes within zones.
5103  * This results in conserving DMA zone[s] until all Normal memory is
5104  * exhausted, but results in overflowing to remote node while memory
5105  * may still exist in local DMA zone.
5106  */
5107 
5108 static void build_zonelists(pg_data_t *pgdat)
5109 {
5110 	static int node_order[MAX_NUMNODES];
5111 	int node, nr_nodes = 0;
5112 	nodemask_t used_mask = NODE_MASK_NONE;
5113 	int local_node, prev_node;
5114 
5115 	/* NUMA-aware ordering of nodes */
5116 	local_node = pgdat->node_id;
5117 	prev_node = local_node;
5118 
5119 	memset(node_order, 0, sizeof(node_order));
5120 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5121 		/*
5122 		 * We don't want to pressure a particular node.
5123 		 * So adding penalty to the first node in same
5124 		 * distance group to make it round-robin.
5125 		 */
5126 		if (node_distance(local_node, node) !=
5127 		    node_distance(local_node, prev_node))
5128 			node_load[node] += 1;
5129 
5130 		node_order[nr_nodes++] = node;
5131 		prev_node = node;
5132 	}
5133 
5134 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5135 	build_thisnode_zonelists(pgdat);
5136 	pr_info("Fallback order for Node %d: ", local_node);
5137 	for (node = 0; node < nr_nodes; node++)
5138 		pr_cont("%d ", node_order[node]);
5139 	pr_cont("\n");
5140 }
5141 
5142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5143 /*
5144  * Return node id of node used for "local" allocations.
5145  * I.e., first node id of first zone in arg node's generic zonelist.
5146  * Used for initializing percpu 'numa_mem', which is used primarily
5147  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5148  */
5149 int local_memory_node(int node)
5150 {
5151 	struct zoneref *z;
5152 
5153 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5154 				   gfp_zone(GFP_KERNEL),
5155 				   NULL);
5156 	return zone_to_nid(z->zone);
5157 }
5158 #endif
5159 
5160 static void setup_min_unmapped_ratio(void);
5161 static void setup_min_slab_ratio(void);
5162 #else	/* CONFIG_NUMA */
5163 
5164 static void build_zonelists(pg_data_t *pgdat)
5165 {
5166 	int node, local_node;
5167 	struct zoneref *zonerefs;
5168 	int nr_zones;
5169 
5170 	local_node = pgdat->node_id;
5171 
5172 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5173 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5174 	zonerefs += nr_zones;
5175 
5176 	/*
5177 	 * Now we build the zonelist so that it contains the zones
5178 	 * of all the other nodes.
5179 	 * We don't want to pressure a particular node, so when
5180 	 * building the zones for node N, we make sure that the
5181 	 * zones coming right after the local ones are those from
5182 	 * node N+1 (modulo N)
5183 	 */
5184 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5185 		if (!node_online(node))
5186 			continue;
5187 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5188 		zonerefs += nr_zones;
5189 	}
5190 	for (node = 0; node < local_node; node++) {
5191 		if (!node_online(node))
5192 			continue;
5193 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5194 		zonerefs += nr_zones;
5195 	}
5196 
5197 	zonerefs->zone = NULL;
5198 	zonerefs->zone_idx = 0;
5199 }
5200 
5201 #endif	/* CONFIG_NUMA */
5202 
5203 /*
5204  * Boot pageset table. One per cpu which is going to be used for all
5205  * zones and all nodes. The parameters will be set in such a way
5206  * that an item put on a list will immediately be handed over to
5207  * the buddy list. This is safe since pageset manipulation is done
5208  * with interrupts disabled.
5209  *
5210  * The boot_pagesets must be kept even after bootup is complete for
5211  * unused processors and/or zones. They do play a role for bootstrapping
5212  * hotplugged processors.
5213  *
5214  * zoneinfo_show() and maybe other functions do
5215  * not check if the processor is online before following the pageset pointer.
5216  * Other parts of the kernel may not check if the zone is available.
5217  */
5218 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5219 /* These effectively disable the pcplists in the boot pageset completely */
5220 #define BOOT_PAGESET_HIGH	0
5221 #define BOOT_PAGESET_BATCH	1
5222 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5223 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5224 
5225 static void __build_all_zonelists(void *data)
5226 {
5227 	int nid;
5228 	int __maybe_unused cpu;
5229 	pg_data_t *self = data;
5230 	unsigned long flags;
5231 
5232 	/*
5233 	 * The zonelist_update_seq must be acquired with irqsave because the
5234 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5235 	 */
5236 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5237 	/*
5238 	 * Also disable synchronous printk() to prevent any printk() from
5239 	 * trying to hold port->lock, for
5240 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5241 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5242 	 */
5243 	printk_deferred_enter();
5244 
5245 #ifdef CONFIG_NUMA
5246 	memset(node_load, 0, sizeof(node_load));
5247 #endif
5248 
5249 	/*
5250 	 * This node is hotadded and no memory is yet present.   So just
5251 	 * building zonelists is fine - no need to touch other nodes.
5252 	 */
5253 	if (self && !node_online(self->node_id)) {
5254 		build_zonelists(self);
5255 	} else {
5256 		/*
5257 		 * All possible nodes have pgdat preallocated
5258 		 * in free_area_init
5259 		 */
5260 		for_each_node(nid) {
5261 			pg_data_t *pgdat = NODE_DATA(nid);
5262 
5263 			build_zonelists(pgdat);
5264 		}
5265 
5266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5267 		/*
5268 		 * We now know the "local memory node" for each node--
5269 		 * i.e., the node of the first zone in the generic zonelist.
5270 		 * Set up numa_mem percpu variable for on-line cpus.  During
5271 		 * boot, only the boot cpu should be on-line;  we'll init the
5272 		 * secondary cpus' numa_mem as they come on-line.  During
5273 		 * node/memory hotplug, we'll fixup all on-line cpus.
5274 		 */
5275 		for_each_online_cpu(cpu)
5276 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5277 #endif
5278 	}
5279 
5280 	printk_deferred_exit();
5281 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5282 }
5283 
5284 static noinline void __init
5285 build_all_zonelists_init(void)
5286 {
5287 	int cpu;
5288 
5289 	__build_all_zonelists(NULL);
5290 
5291 	/*
5292 	 * Initialize the boot_pagesets that are going to be used
5293 	 * for bootstrapping processors. The real pagesets for
5294 	 * each zone will be allocated later when the per cpu
5295 	 * allocator is available.
5296 	 *
5297 	 * boot_pagesets are used also for bootstrapping offline
5298 	 * cpus if the system is already booted because the pagesets
5299 	 * are needed to initialize allocators on a specific cpu too.
5300 	 * F.e. the percpu allocator needs the page allocator which
5301 	 * needs the percpu allocator in order to allocate its pagesets
5302 	 * (a chicken-egg dilemma).
5303 	 */
5304 	for_each_possible_cpu(cpu)
5305 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5306 
5307 	mminit_verify_zonelist();
5308 	cpuset_init_current_mems_allowed();
5309 }
5310 
5311 /*
5312  * unless system_state == SYSTEM_BOOTING.
5313  *
5314  * __ref due to call of __init annotated helper build_all_zonelists_init
5315  * [protected by SYSTEM_BOOTING].
5316  */
5317 void __ref build_all_zonelists(pg_data_t *pgdat)
5318 {
5319 	unsigned long vm_total_pages;
5320 
5321 	if (system_state == SYSTEM_BOOTING) {
5322 		build_all_zonelists_init();
5323 	} else {
5324 		__build_all_zonelists(pgdat);
5325 		/* cpuset refresh routine should be here */
5326 	}
5327 	/* Get the number of free pages beyond high watermark in all zones. */
5328 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5329 	/*
5330 	 * Disable grouping by mobility if the number of pages in the
5331 	 * system is too low to allow the mechanism to work. It would be
5332 	 * more accurate, but expensive to check per-zone. This check is
5333 	 * made on memory-hotadd so a system can start with mobility
5334 	 * disabled and enable it later
5335 	 */
5336 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5337 		page_group_by_mobility_disabled = 1;
5338 	else
5339 		page_group_by_mobility_disabled = 0;
5340 
5341 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5342 		nr_online_nodes,
5343 		page_group_by_mobility_disabled ? "off" : "on",
5344 		vm_total_pages);
5345 #ifdef CONFIG_NUMA
5346 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5347 #endif
5348 }
5349 
5350 static int zone_batchsize(struct zone *zone)
5351 {
5352 #ifdef CONFIG_MMU
5353 	int batch;
5354 
5355 	/*
5356 	 * The number of pages to batch allocate is either ~0.1%
5357 	 * of the zone or 1MB, whichever is smaller. The batch
5358 	 * size is striking a balance between allocation latency
5359 	 * and zone lock contention.
5360 	 */
5361 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5362 	batch /= 4;		/* We effectively *= 4 below */
5363 	if (batch < 1)
5364 		batch = 1;
5365 
5366 	/*
5367 	 * Clamp the batch to a 2^n - 1 value. Having a power
5368 	 * of 2 value was found to be more likely to have
5369 	 * suboptimal cache aliasing properties in some cases.
5370 	 *
5371 	 * For example if 2 tasks are alternately allocating
5372 	 * batches of pages, one task can end up with a lot
5373 	 * of pages of one half of the possible page colors
5374 	 * and the other with pages of the other colors.
5375 	 */
5376 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5377 
5378 	return batch;
5379 
5380 #else
5381 	/* The deferral and batching of frees should be suppressed under NOMMU
5382 	 * conditions.
5383 	 *
5384 	 * The problem is that NOMMU needs to be able to allocate large chunks
5385 	 * of contiguous memory as there's no hardware page translation to
5386 	 * assemble apparent contiguous memory from discontiguous pages.
5387 	 *
5388 	 * Queueing large contiguous runs of pages for batching, however,
5389 	 * causes the pages to actually be freed in smaller chunks.  As there
5390 	 * can be a significant delay between the individual batches being
5391 	 * recycled, this leads to the once large chunks of space being
5392 	 * fragmented and becoming unavailable for high-order allocations.
5393 	 */
5394 	return 0;
5395 #endif
5396 }
5397 
5398 static int percpu_pagelist_high_fraction;
5399 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5400 			 int high_fraction)
5401 {
5402 #ifdef CONFIG_MMU
5403 	int high;
5404 	int nr_split_cpus;
5405 	unsigned long total_pages;
5406 
5407 	if (!high_fraction) {
5408 		/*
5409 		 * By default, the high value of the pcp is based on the zone
5410 		 * low watermark so that if they are full then background
5411 		 * reclaim will not be started prematurely.
5412 		 */
5413 		total_pages = low_wmark_pages(zone);
5414 	} else {
5415 		/*
5416 		 * If percpu_pagelist_high_fraction is configured, the high
5417 		 * value is based on a fraction of the managed pages in the
5418 		 * zone.
5419 		 */
5420 		total_pages = zone_managed_pages(zone) / high_fraction;
5421 	}
5422 
5423 	/*
5424 	 * Split the high value across all online CPUs local to the zone. Note
5425 	 * that early in boot that CPUs may not be online yet and that during
5426 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5427 	 * onlined. For memory nodes that have no CPUs, split the high value
5428 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5429 	 * prematurely due to pages stored on pcp lists.
5430 	 */
5431 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5432 	if (!nr_split_cpus)
5433 		nr_split_cpus = num_online_cpus();
5434 	high = total_pages / nr_split_cpus;
5435 
5436 	/*
5437 	 * Ensure high is at least batch*4. The multiple is based on the
5438 	 * historical relationship between high and batch.
5439 	 */
5440 	high = max(high, batch << 2);
5441 
5442 	return high;
5443 #else
5444 	return 0;
5445 #endif
5446 }
5447 
5448 /*
5449  * pcp->high and pcp->batch values are related and generally batch is lower
5450  * than high. They are also related to pcp->count such that count is lower
5451  * than high, and as soon as it reaches high, the pcplist is flushed.
5452  *
5453  * However, guaranteeing these relations at all times would require e.g. write
5454  * barriers here but also careful usage of read barriers at the read side, and
5455  * thus be prone to error and bad for performance. Thus the update only prevents
5456  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5457  * should ensure they can cope with those fields changing asynchronously, and
5458  * fully trust only the pcp->count field on the local CPU with interrupts
5459  * disabled.
5460  *
5461  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5462  * outside of boot time (or some other assurance that no concurrent updaters
5463  * exist).
5464  */
5465 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5466 			   unsigned long high_max, unsigned long batch)
5467 {
5468 	WRITE_ONCE(pcp->batch, batch);
5469 	WRITE_ONCE(pcp->high_min, high_min);
5470 	WRITE_ONCE(pcp->high_max, high_max);
5471 }
5472 
5473 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5474 {
5475 	int pindex;
5476 
5477 	memset(pcp, 0, sizeof(*pcp));
5478 	memset(pzstats, 0, sizeof(*pzstats));
5479 
5480 	spin_lock_init(&pcp->lock);
5481 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5482 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5483 
5484 	/*
5485 	 * Set batch and high values safe for a boot pageset. A true percpu
5486 	 * pageset's initialization will update them subsequently. Here we don't
5487 	 * need to be as careful as pageset_update() as nobody can access the
5488 	 * pageset yet.
5489 	 */
5490 	pcp->high_min = BOOT_PAGESET_HIGH;
5491 	pcp->high_max = BOOT_PAGESET_HIGH;
5492 	pcp->batch = BOOT_PAGESET_BATCH;
5493 	pcp->free_count = 0;
5494 }
5495 
5496 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5497 					      unsigned long high_max, unsigned long batch)
5498 {
5499 	struct per_cpu_pages *pcp;
5500 	int cpu;
5501 
5502 	for_each_possible_cpu(cpu) {
5503 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5504 		pageset_update(pcp, high_min, high_max, batch);
5505 	}
5506 }
5507 
5508 /*
5509  * Calculate and set new high and batch values for all per-cpu pagesets of a
5510  * zone based on the zone's size.
5511  */
5512 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5513 {
5514 	int new_high_min, new_high_max, new_batch;
5515 
5516 	new_batch = max(1, zone_batchsize(zone));
5517 	if (percpu_pagelist_high_fraction) {
5518 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5519 					     percpu_pagelist_high_fraction);
5520 		/*
5521 		 * PCP high is tuned manually, disable auto-tuning via
5522 		 * setting high_min and high_max to the manual value.
5523 		 */
5524 		new_high_max = new_high_min;
5525 	} else {
5526 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5527 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5528 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5529 	}
5530 
5531 	if (zone->pageset_high_min == new_high_min &&
5532 	    zone->pageset_high_max == new_high_max &&
5533 	    zone->pageset_batch == new_batch)
5534 		return;
5535 
5536 	zone->pageset_high_min = new_high_min;
5537 	zone->pageset_high_max = new_high_max;
5538 	zone->pageset_batch = new_batch;
5539 
5540 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5541 					  new_batch);
5542 }
5543 
5544 void __meminit setup_zone_pageset(struct zone *zone)
5545 {
5546 	int cpu;
5547 
5548 	/* Size may be 0 on !SMP && !NUMA */
5549 	if (sizeof(struct per_cpu_zonestat) > 0)
5550 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5551 
5552 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5553 	for_each_possible_cpu(cpu) {
5554 		struct per_cpu_pages *pcp;
5555 		struct per_cpu_zonestat *pzstats;
5556 
5557 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5558 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5559 		per_cpu_pages_init(pcp, pzstats);
5560 	}
5561 
5562 	zone_set_pageset_high_and_batch(zone, 0);
5563 }
5564 
5565 /*
5566  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5567  * page high values need to be recalculated.
5568  */
5569 static void zone_pcp_update(struct zone *zone, int cpu_online)
5570 {
5571 	mutex_lock(&pcp_batch_high_lock);
5572 	zone_set_pageset_high_and_batch(zone, cpu_online);
5573 	mutex_unlock(&pcp_batch_high_lock);
5574 }
5575 
5576 static void zone_pcp_update_cacheinfo(struct zone *zone)
5577 {
5578 	int cpu;
5579 	struct per_cpu_pages *pcp;
5580 	struct cpu_cacheinfo *cci;
5581 
5582 	for_each_online_cpu(cpu) {
5583 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5584 		cci = get_cpu_cacheinfo(cpu);
5585 		/*
5586 		 * If data cache slice of CPU is large enough, "pcp->batch"
5587 		 * pages can be preserved in PCP before draining PCP for
5588 		 * consecutive high-order pages freeing without allocation.
5589 		 * This can reduce zone lock contention without hurting
5590 		 * cache-hot pages sharing.
5591 		 */
5592 		spin_lock(&pcp->lock);
5593 		if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5594 			pcp->flags |= PCPF_FREE_HIGH_BATCH;
5595 		else
5596 			pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5597 		spin_unlock(&pcp->lock);
5598 	}
5599 }
5600 
5601 void setup_pcp_cacheinfo(void)
5602 {
5603 	struct zone *zone;
5604 
5605 	for_each_populated_zone(zone)
5606 		zone_pcp_update_cacheinfo(zone);
5607 }
5608 
5609 /*
5610  * Allocate per cpu pagesets and initialize them.
5611  * Before this call only boot pagesets were available.
5612  */
5613 void __init setup_per_cpu_pageset(void)
5614 {
5615 	struct pglist_data *pgdat;
5616 	struct zone *zone;
5617 	int __maybe_unused cpu;
5618 
5619 	for_each_populated_zone(zone)
5620 		setup_zone_pageset(zone);
5621 
5622 #ifdef CONFIG_NUMA
5623 	/*
5624 	 * Unpopulated zones continue using the boot pagesets.
5625 	 * The numa stats for these pagesets need to be reset.
5626 	 * Otherwise, they will end up skewing the stats of
5627 	 * the nodes these zones are associated with.
5628 	 */
5629 	for_each_possible_cpu(cpu) {
5630 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5631 		memset(pzstats->vm_numa_event, 0,
5632 		       sizeof(pzstats->vm_numa_event));
5633 	}
5634 #endif
5635 
5636 	for_each_online_pgdat(pgdat)
5637 		pgdat->per_cpu_nodestats =
5638 			alloc_percpu(struct per_cpu_nodestat);
5639 }
5640 
5641 __meminit void zone_pcp_init(struct zone *zone)
5642 {
5643 	/*
5644 	 * per cpu subsystem is not up at this point. The following code
5645 	 * relies on the ability of the linker to provide the
5646 	 * offset of a (static) per cpu variable into the per cpu area.
5647 	 */
5648 	zone->per_cpu_pageset = &boot_pageset;
5649 	zone->per_cpu_zonestats = &boot_zonestats;
5650 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5651 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5652 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5653 
5654 	if (populated_zone(zone))
5655 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5656 			 zone->present_pages, zone_batchsize(zone));
5657 }
5658 
5659 void adjust_managed_page_count(struct page *page, long count)
5660 {
5661 	atomic_long_add(count, &page_zone(page)->managed_pages);
5662 	totalram_pages_add(count);
5663 #ifdef CONFIG_HIGHMEM
5664 	if (PageHighMem(page))
5665 		totalhigh_pages_add(count);
5666 #endif
5667 }
5668 EXPORT_SYMBOL(adjust_managed_page_count);
5669 
5670 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5671 {
5672 	void *pos;
5673 	unsigned long pages = 0;
5674 
5675 	start = (void *)PAGE_ALIGN((unsigned long)start);
5676 	end = (void *)((unsigned long)end & PAGE_MASK);
5677 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5678 		struct page *page = virt_to_page(pos);
5679 		void *direct_map_addr;
5680 
5681 		/*
5682 		 * 'direct_map_addr' might be different from 'pos'
5683 		 * because some architectures' virt_to_page()
5684 		 * work with aliases.  Getting the direct map
5685 		 * address ensures that we get a _writeable_
5686 		 * alias for the memset().
5687 		 */
5688 		direct_map_addr = page_address(page);
5689 		/*
5690 		 * Perform a kasan-unchecked memset() since this memory
5691 		 * has not been initialized.
5692 		 */
5693 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5694 		if ((unsigned int)poison <= 0xFF)
5695 			memset(direct_map_addr, poison, PAGE_SIZE);
5696 
5697 		free_reserved_page(page);
5698 	}
5699 
5700 	if (pages && s)
5701 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5702 
5703 	return pages;
5704 }
5705 
5706 static int page_alloc_cpu_dead(unsigned int cpu)
5707 {
5708 	struct zone *zone;
5709 
5710 	lru_add_drain_cpu(cpu);
5711 	mlock_drain_remote(cpu);
5712 	drain_pages(cpu);
5713 
5714 	/*
5715 	 * Spill the event counters of the dead processor
5716 	 * into the current processors event counters.
5717 	 * This artificially elevates the count of the current
5718 	 * processor.
5719 	 */
5720 	vm_events_fold_cpu(cpu);
5721 
5722 	/*
5723 	 * Zero the differential counters of the dead processor
5724 	 * so that the vm statistics are consistent.
5725 	 *
5726 	 * This is only okay since the processor is dead and cannot
5727 	 * race with what we are doing.
5728 	 */
5729 	cpu_vm_stats_fold(cpu);
5730 
5731 	for_each_populated_zone(zone)
5732 		zone_pcp_update(zone, 0);
5733 
5734 	return 0;
5735 }
5736 
5737 static int page_alloc_cpu_online(unsigned int cpu)
5738 {
5739 	struct zone *zone;
5740 
5741 	for_each_populated_zone(zone)
5742 		zone_pcp_update(zone, 1);
5743 	return 0;
5744 }
5745 
5746 void __init page_alloc_init_cpuhp(void)
5747 {
5748 	int ret;
5749 
5750 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5751 					"mm/page_alloc:pcp",
5752 					page_alloc_cpu_online,
5753 					page_alloc_cpu_dead);
5754 	WARN_ON(ret < 0);
5755 }
5756 
5757 /*
5758  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5759  *	or min_free_kbytes changes.
5760  */
5761 static void calculate_totalreserve_pages(void)
5762 {
5763 	struct pglist_data *pgdat;
5764 	unsigned long reserve_pages = 0;
5765 	enum zone_type i, j;
5766 
5767 	for_each_online_pgdat(pgdat) {
5768 
5769 		pgdat->totalreserve_pages = 0;
5770 
5771 		for (i = 0; i < MAX_NR_ZONES; i++) {
5772 			struct zone *zone = pgdat->node_zones + i;
5773 			long max = 0;
5774 			unsigned long managed_pages = zone_managed_pages(zone);
5775 
5776 			/* Find valid and maximum lowmem_reserve in the zone */
5777 			for (j = i; j < MAX_NR_ZONES; j++) {
5778 				if (zone->lowmem_reserve[j] > max)
5779 					max = zone->lowmem_reserve[j];
5780 			}
5781 
5782 			/* we treat the high watermark as reserved pages. */
5783 			max += high_wmark_pages(zone);
5784 
5785 			if (max > managed_pages)
5786 				max = managed_pages;
5787 
5788 			pgdat->totalreserve_pages += max;
5789 
5790 			reserve_pages += max;
5791 		}
5792 	}
5793 	totalreserve_pages = reserve_pages;
5794 }
5795 
5796 /*
5797  * setup_per_zone_lowmem_reserve - called whenever
5798  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5799  *	has a correct pages reserved value, so an adequate number of
5800  *	pages are left in the zone after a successful __alloc_pages().
5801  */
5802 static void setup_per_zone_lowmem_reserve(void)
5803 {
5804 	struct pglist_data *pgdat;
5805 	enum zone_type i, j;
5806 
5807 	for_each_online_pgdat(pgdat) {
5808 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5809 			struct zone *zone = &pgdat->node_zones[i];
5810 			int ratio = sysctl_lowmem_reserve_ratio[i];
5811 			bool clear = !ratio || !zone_managed_pages(zone);
5812 			unsigned long managed_pages = 0;
5813 
5814 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5815 				struct zone *upper_zone = &pgdat->node_zones[j];
5816 
5817 				managed_pages += zone_managed_pages(upper_zone);
5818 
5819 				if (clear)
5820 					zone->lowmem_reserve[j] = 0;
5821 				else
5822 					zone->lowmem_reserve[j] = managed_pages / ratio;
5823 			}
5824 		}
5825 	}
5826 
5827 	/* update totalreserve_pages */
5828 	calculate_totalreserve_pages();
5829 }
5830 
5831 static void __setup_per_zone_wmarks(void)
5832 {
5833 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5834 	unsigned long lowmem_pages = 0;
5835 	struct zone *zone;
5836 	unsigned long flags;
5837 
5838 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5839 	for_each_zone(zone) {
5840 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5841 			lowmem_pages += zone_managed_pages(zone);
5842 	}
5843 
5844 	for_each_zone(zone) {
5845 		u64 tmp;
5846 
5847 		spin_lock_irqsave(&zone->lock, flags);
5848 		tmp = (u64)pages_min * zone_managed_pages(zone);
5849 		do_div(tmp, lowmem_pages);
5850 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5851 			/*
5852 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5853 			 * need highmem and movable zones pages, so cap pages_min
5854 			 * to a small  value here.
5855 			 *
5856 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5857 			 * deltas control async page reclaim, and so should
5858 			 * not be capped for highmem and movable zones.
5859 			 */
5860 			unsigned long min_pages;
5861 
5862 			min_pages = zone_managed_pages(zone) / 1024;
5863 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5864 			zone->_watermark[WMARK_MIN] = min_pages;
5865 		} else {
5866 			/*
5867 			 * If it's a lowmem zone, reserve a number of pages
5868 			 * proportionate to the zone's size.
5869 			 */
5870 			zone->_watermark[WMARK_MIN] = tmp;
5871 		}
5872 
5873 		/*
5874 		 * Set the kswapd watermarks distance according to the
5875 		 * scale factor in proportion to available memory, but
5876 		 * ensure a minimum size on small systems.
5877 		 */
5878 		tmp = max_t(u64, tmp >> 2,
5879 			    mult_frac(zone_managed_pages(zone),
5880 				      watermark_scale_factor, 10000));
5881 
5882 		zone->watermark_boost = 0;
5883 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5884 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5885 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5886 
5887 		spin_unlock_irqrestore(&zone->lock, flags);
5888 	}
5889 
5890 	/* update totalreserve_pages */
5891 	calculate_totalreserve_pages();
5892 }
5893 
5894 /**
5895  * setup_per_zone_wmarks - called when min_free_kbytes changes
5896  * or when memory is hot-{added|removed}
5897  *
5898  * Ensures that the watermark[min,low,high] values for each zone are set
5899  * correctly with respect to min_free_kbytes.
5900  */
5901 void setup_per_zone_wmarks(void)
5902 {
5903 	struct zone *zone;
5904 	static DEFINE_SPINLOCK(lock);
5905 
5906 	spin_lock(&lock);
5907 	__setup_per_zone_wmarks();
5908 	spin_unlock(&lock);
5909 
5910 	/*
5911 	 * The watermark size have changed so update the pcpu batch
5912 	 * and high limits or the limits may be inappropriate.
5913 	 */
5914 	for_each_zone(zone)
5915 		zone_pcp_update(zone, 0);
5916 }
5917 
5918 /*
5919  * Initialise min_free_kbytes.
5920  *
5921  * For small machines we want it small (128k min).  For large machines
5922  * we want it large (256MB max).  But it is not linear, because network
5923  * bandwidth does not increase linearly with machine size.  We use
5924  *
5925  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5926  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5927  *
5928  * which yields
5929  *
5930  * 16MB:	512k
5931  * 32MB:	724k
5932  * 64MB:	1024k
5933  * 128MB:	1448k
5934  * 256MB:	2048k
5935  * 512MB:	2896k
5936  * 1024MB:	4096k
5937  * 2048MB:	5792k
5938  * 4096MB:	8192k
5939  * 8192MB:	11584k
5940  * 16384MB:	16384k
5941  */
5942 void calculate_min_free_kbytes(void)
5943 {
5944 	unsigned long lowmem_kbytes;
5945 	int new_min_free_kbytes;
5946 
5947 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5948 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5949 
5950 	if (new_min_free_kbytes > user_min_free_kbytes)
5951 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5952 	else
5953 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5954 				new_min_free_kbytes, user_min_free_kbytes);
5955 
5956 }
5957 
5958 int __meminit init_per_zone_wmark_min(void)
5959 {
5960 	calculate_min_free_kbytes();
5961 	setup_per_zone_wmarks();
5962 	refresh_zone_stat_thresholds();
5963 	setup_per_zone_lowmem_reserve();
5964 
5965 #ifdef CONFIG_NUMA
5966 	setup_min_unmapped_ratio();
5967 	setup_min_slab_ratio();
5968 #endif
5969 
5970 	khugepaged_min_free_kbytes_update();
5971 
5972 	return 0;
5973 }
5974 postcore_initcall(init_per_zone_wmark_min)
5975 
5976 /*
5977  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5978  *	that we can call two helper functions whenever min_free_kbytes
5979  *	changes.
5980  */
5981 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5982 		void *buffer, size_t *length, loff_t *ppos)
5983 {
5984 	int rc;
5985 
5986 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5987 	if (rc)
5988 		return rc;
5989 
5990 	if (write) {
5991 		user_min_free_kbytes = min_free_kbytes;
5992 		setup_per_zone_wmarks();
5993 	}
5994 	return 0;
5995 }
5996 
5997 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5998 		void *buffer, size_t *length, loff_t *ppos)
5999 {
6000 	int rc;
6001 
6002 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6003 	if (rc)
6004 		return rc;
6005 
6006 	if (write)
6007 		setup_per_zone_wmarks();
6008 
6009 	return 0;
6010 }
6011 
6012 #ifdef CONFIG_NUMA
6013 static void setup_min_unmapped_ratio(void)
6014 {
6015 	pg_data_t *pgdat;
6016 	struct zone *zone;
6017 
6018 	for_each_online_pgdat(pgdat)
6019 		pgdat->min_unmapped_pages = 0;
6020 
6021 	for_each_zone(zone)
6022 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6023 						         sysctl_min_unmapped_ratio) / 100;
6024 }
6025 
6026 
6027 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6028 		void *buffer, size_t *length, loff_t *ppos)
6029 {
6030 	int rc;
6031 
6032 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6033 	if (rc)
6034 		return rc;
6035 
6036 	setup_min_unmapped_ratio();
6037 
6038 	return 0;
6039 }
6040 
6041 static void setup_min_slab_ratio(void)
6042 {
6043 	pg_data_t *pgdat;
6044 	struct zone *zone;
6045 
6046 	for_each_online_pgdat(pgdat)
6047 		pgdat->min_slab_pages = 0;
6048 
6049 	for_each_zone(zone)
6050 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6051 						     sysctl_min_slab_ratio) / 100;
6052 }
6053 
6054 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6055 		void *buffer, size_t *length, loff_t *ppos)
6056 {
6057 	int rc;
6058 
6059 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6060 	if (rc)
6061 		return rc;
6062 
6063 	setup_min_slab_ratio();
6064 
6065 	return 0;
6066 }
6067 #endif
6068 
6069 /*
6070  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6071  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6072  *	whenever sysctl_lowmem_reserve_ratio changes.
6073  *
6074  * The reserve ratio obviously has absolutely no relation with the
6075  * minimum watermarks. The lowmem reserve ratio can only make sense
6076  * if in function of the boot time zone sizes.
6077  */
6078 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6079 		int write, void *buffer, size_t *length, loff_t *ppos)
6080 {
6081 	int i;
6082 
6083 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6084 
6085 	for (i = 0; i < MAX_NR_ZONES; i++) {
6086 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6087 			sysctl_lowmem_reserve_ratio[i] = 0;
6088 	}
6089 
6090 	setup_per_zone_lowmem_reserve();
6091 	return 0;
6092 }
6093 
6094 /*
6095  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6096  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6097  * pagelist can have before it gets flushed back to buddy allocator.
6098  */
6099 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6100 		int write, void *buffer, size_t *length, loff_t *ppos)
6101 {
6102 	struct zone *zone;
6103 	int old_percpu_pagelist_high_fraction;
6104 	int ret;
6105 
6106 	mutex_lock(&pcp_batch_high_lock);
6107 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6108 
6109 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6110 	if (!write || ret < 0)
6111 		goto out;
6112 
6113 	/* Sanity checking to avoid pcp imbalance */
6114 	if (percpu_pagelist_high_fraction &&
6115 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6116 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6117 		ret = -EINVAL;
6118 		goto out;
6119 	}
6120 
6121 	/* No change? */
6122 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6123 		goto out;
6124 
6125 	for_each_populated_zone(zone)
6126 		zone_set_pageset_high_and_batch(zone, 0);
6127 out:
6128 	mutex_unlock(&pcp_batch_high_lock);
6129 	return ret;
6130 }
6131 
6132 static struct ctl_table page_alloc_sysctl_table[] = {
6133 	{
6134 		.procname	= "min_free_kbytes",
6135 		.data		= &min_free_kbytes,
6136 		.maxlen		= sizeof(min_free_kbytes),
6137 		.mode		= 0644,
6138 		.proc_handler	= min_free_kbytes_sysctl_handler,
6139 		.extra1		= SYSCTL_ZERO,
6140 	},
6141 	{
6142 		.procname	= "watermark_boost_factor",
6143 		.data		= &watermark_boost_factor,
6144 		.maxlen		= sizeof(watermark_boost_factor),
6145 		.mode		= 0644,
6146 		.proc_handler	= proc_dointvec_minmax,
6147 		.extra1		= SYSCTL_ZERO,
6148 	},
6149 	{
6150 		.procname	= "watermark_scale_factor",
6151 		.data		= &watermark_scale_factor,
6152 		.maxlen		= sizeof(watermark_scale_factor),
6153 		.mode		= 0644,
6154 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6155 		.extra1		= SYSCTL_ONE,
6156 		.extra2		= SYSCTL_THREE_THOUSAND,
6157 	},
6158 	{
6159 		.procname	= "percpu_pagelist_high_fraction",
6160 		.data		= &percpu_pagelist_high_fraction,
6161 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6162 		.mode		= 0644,
6163 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6164 		.extra1		= SYSCTL_ZERO,
6165 	},
6166 	{
6167 		.procname	= "lowmem_reserve_ratio",
6168 		.data		= &sysctl_lowmem_reserve_ratio,
6169 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6170 		.mode		= 0644,
6171 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6172 	},
6173 #ifdef CONFIG_NUMA
6174 	{
6175 		.procname	= "numa_zonelist_order",
6176 		.data		= &numa_zonelist_order,
6177 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6178 		.mode		= 0644,
6179 		.proc_handler	= numa_zonelist_order_handler,
6180 	},
6181 	{
6182 		.procname	= "min_unmapped_ratio",
6183 		.data		= &sysctl_min_unmapped_ratio,
6184 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6185 		.mode		= 0644,
6186 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6187 		.extra1		= SYSCTL_ZERO,
6188 		.extra2		= SYSCTL_ONE_HUNDRED,
6189 	},
6190 	{
6191 		.procname	= "min_slab_ratio",
6192 		.data		= &sysctl_min_slab_ratio,
6193 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6194 		.mode		= 0644,
6195 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6196 		.extra1		= SYSCTL_ZERO,
6197 		.extra2		= SYSCTL_ONE_HUNDRED,
6198 	},
6199 #endif
6200 	{}
6201 };
6202 
6203 void __init page_alloc_sysctl_init(void)
6204 {
6205 	register_sysctl_init("vm", page_alloc_sysctl_table);
6206 }
6207 
6208 #ifdef CONFIG_CONTIG_ALLOC
6209 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6210 static void alloc_contig_dump_pages(struct list_head *page_list)
6211 {
6212 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6213 
6214 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6215 		struct page *page;
6216 
6217 		dump_stack();
6218 		list_for_each_entry(page, page_list, lru)
6219 			dump_page(page, "migration failure");
6220 	}
6221 }
6222 
6223 /* [start, end) must belong to a single zone. */
6224 int __alloc_contig_migrate_range(struct compact_control *cc,
6225 					unsigned long start, unsigned long end)
6226 {
6227 	/* This function is based on compact_zone() from compaction.c. */
6228 	unsigned int nr_reclaimed;
6229 	unsigned long pfn = start;
6230 	unsigned int tries = 0;
6231 	int ret = 0;
6232 	struct migration_target_control mtc = {
6233 		.nid = zone_to_nid(cc->zone),
6234 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6235 	};
6236 
6237 	lru_cache_disable();
6238 
6239 	while (pfn < end || !list_empty(&cc->migratepages)) {
6240 		if (fatal_signal_pending(current)) {
6241 			ret = -EINTR;
6242 			break;
6243 		}
6244 
6245 		if (list_empty(&cc->migratepages)) {
6246 			cc->nr_migratepages = 0;
6247 			ret = isolate_migratepages_range(cc, pfn, end);
6248 			if (ret && ret != -EAGAIN)
6249 				break;
6250 			pfn = cc->migrate_pfn;
6251 			tries = 0;
6252 		} else if (++tries == 5) {
6253 			ret = -EBUSY;
6254 			break;
6255 		}
6256 
6257 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6258 							&cc->migratepages);
6259 		cc->nr_migratepages -= nr_reclaimed;
6260 
6261 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6262 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6263 
6264 		/*
6265 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6266 		 * to retry again over this error, so do the same here.
6267 		 */
6268 		if (ret == -ENOMEM)
6269 			break;
6270 	}
6271 
6272 	lru_cache_enable();
6273 	if (ret < 0) {
6274 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6275 			alloc_contig_dump_pages(&cc->migratepages);
6276 		putback_movable_pages(&cc->migratepages);
6277 		return ret;
6278 	}
6279 	return 0;
6280 }
6281 
6282 /**
6283  * alloc_contig_range() -- tries to allocate given range of pages
6284  * @start:	start PFN to allocate
6285  * @end:	one-past-the-last PFN to allocate
6286  * @migratetype:	migratetype of the underlying pageblocks (either
6287  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6288  *			in range must have the same migratetype and it must
6289  *			be either of the two.
6290  * @gfp_mask:	GFP mask to use during compaction
6291  *
6292  * The PFN range does not have to be pageblock aligned. The PFN range must
6293  * belong to a single zone.
6294  *
6295  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6296  * pageblocks in the range.  Once isolated, the pageblocks should not
6297  * be modified by others.
6298  *
6299  * Return: zero on success or negative error code.  On success all
6300  * pages which PFN is in [start, end) are allocated for the caller and
6301  * need to be freed with free_contig_range().
6302  */
6303 int alloc_contig_range(unsigned long start, unsigned long end,
6304 		       unsigned migratetype, gfp_t gfp_mask)
6305 {
6306 	unsigned long outer_start, outer_end;
6307 	int order;
6308 	int ret = 0;
6309 
6310 	struct compact_control cc = {
6311 		.nr_migratepages = 0,
6312 		.order = -1,
6313 		.zone = page_zone(pfn_to_page(start)),
6314 		.mode = MIGRATE_SYNC,
6315 		.ignore_skip_hint = true,
6316 		.no_set_skip_hint = true,
6317 		.gfp_mask = current_gfp_context(gfp_mask),
6318 		.alloc_contig = true,
6319 	};
6320 	INIT_LIST_HEAD(&cc.migratepages);
6321 
6322 	/*
6323 	 * What we do here is we mark all pageblocks in range as
6324 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6325 	 * have different sizes, and due to the way page allocator
6326 	 * work, start_isolate_page_range() has special handlings for this.
6327 	 *
6328 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6329 	 * migrate the pages from an unaligned range (ie. pages that
6330 	 * we are interested in). This will put all the pages in
6331 	 * range back to page allocator as MIGRATE_ISOLATE.
6332 	 *
6333 	 * When this is done, we take the pages in range from page
6334 	 * allocator removing them from the buddy system.  This way
6335 	 * page allocator will never consider using them.
6336 	 *
6337 	 * This lets us mark the pageblocks back as
6338 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6339 	 * aligned range but not in the unaligned, original range are
6340 	 * put back to page allocator so that buddy can use them.
6341 	 */
6342 
6343 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6344 	if (ret)
6345 		goto done;
6346 
6347 	drain_all_pages(cc.zone);
6348 
6349 	/*
6350 	 * In case of -EBUSY, we'd like to know which page causes problem.
6351 	 * So, just fall through. test_pages_isolated() has a tracepoint
6352 	 * which will report the busy page.
6353 	 *
6354 	 * It is possible that busy pages could become available before
6355 	 * the call to test_pages_isolated, and the range will actually be
6356 	 * allocated.  So, if we fall through be sure to clear ret so that
6357 	 * -EBUSY is not accidentally used or returned to caller.
6358 	 */
6359 	ret = __alloc_contig_migrate_range(&cc, start, end);
6360 	if (ret && ret != -EBUSY)
6361 		goto done;
6362 	ret = 0;
6363 
6364 	/*
6365 	 * Pages from [start, end) are within a pageblock_nr_pages
6366 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6367 	 * more, all pages in [start, end) are free in page allocator.
6368 	 * What we are going to do is to allocate all pages from
6369 	 * [start, end) (that is remove them from page allocator).
6370 	 *
6371 	 * The only problem is that pages at the beginning and at the
6372 	 * end of interesting range may be not aligned with pages that
6373 	 * page allocator holds, ie. they can be part of higher order
6374 	 * pages.  Because of this, we reserve the bigger range and
6375 	 * once this is done free the pages we are not interested in.
6376 	 *
6377 	 * We don't have to hold zone->lock here because the pages are
6378 	 * isolated thus they won't get removed from buddy.
6379 	 */
6380 
6381 	order = 0;
6382 	outer_start = start;
6383 	while (!PageBuddy(pfn_to_page(outer_start))) {
6384 		if (++order > MAX_ORDER) {
6385 			outer_start = start;
6386 			break;
6387 		}
6388 		outer_start &= ~0UL << order;
6389 	}
6390 
6391 	if (outer_start != start) {
6392 		order = buddy_order(pfn_to_page(outer_start));
6393 
6394 		/*
6395 		 * outer_start page could be small order buddy page and
6396 		 * it doesn't include start page. Adjust outer_start
6397 		 * in this case to report failed page properly
6398 		 * on tracepoint in test_pages_isolated()
6399 		 */
6400 		if (outer_start + (1UL << order) <= start)
6401 			outer_start = start;
6402 	}
6403 
6404 	/* Make sure the range is really isolated. */
6405 	if (test_pages_isolated(outer_start, end, 0)) {
6406 		ret = -EBUSY;
6407 		goto done;
6408 	}
6409 
6410 	/* Grab isolated pages from freelists. */
6411 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6412 	if (!outer_end) {
6413 		ret = -EBUSY;
6414 		goto done;
6415 	}
6416 
6417 	/* Free head and tail (if any) */
6418 	if (start != outer_start)
6419 		free_contig_range(outer_start, start - outer_start);
6420 	if (end != outer_end)
6421 		free_contig_range(end, outer_end - end);
6422 
6423 done:
6424 	undo_isolate_page_range(start, end, migratetype);
6425 	return ret;
6426 }
6427 EXPORT_SYMBOL(alloc_contig_range);
6428 
6429 static int __alloc_contig_pages(unsigned long start_pfn,
6430 				unsigned long nr_pages, gfp_t gfp_mask)
6431 {
6432 	unsigned long end_pfn = start_pfn + nr_pages;
6433 
6434 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6435 				  gfp_mask);
6436 }
6437 
6438 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6439 				   unsigned long nr_pages)
6440 {
6441 	unsigned long i, end_pfn = start_pfn + nr_pages;
6442 	struct page *page;
6443 
6444 	for (i = start_pfn; i < end_pfn; i++) {
6445 		page = pfn_to_online_page(i);
6446 		if (!page)
6447 			return false;
6448 
6449 		if (page_zone(page) != z)
6450 			return false;
6451 
6452 		if (PageReserved(page))
6453 			return false;
6454 
6455 		if (PageHuge(page))
6456 			return false;
6457 	}
6458 	return true;
6459 }
6460 
6461 static bool zone_spans_last_pfn(const struct zone *zone,
6462 				unsigned long start_pfn, unsigned long nr_pages)
6463 {
6464 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6465 
6466 	return zone_spans_pfn(zone, last_pfn);
6467 }
6468 
6469 /**
6470  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6471  * @nr_pages:	Number of contiguous pages to allocate
6472  * @gfp_mask:	GFP mask to limit search and used during compaction
6473  * @nid:	Target node
6474  * @nodemask:	Mask for other possible nodes
6475  *
6476  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6477  * on an applicable zonelist to find a contiguous pfn range which can then be
6478  * tried for allocation with alloc_contig_range(). This routine is intended
6479  * for allocation requests which can not be fulfilled with the buddy allocator.
6480  *
6481  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6482  * power of two, then allocated range is also guaranteed to be aligned to same
6483  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6484  *
6485  * Allocated pages can be freed with free_contig_range() or by manually calling
6486  * __free_page() on each allocated page.
6487  *
6488  * Return: pointer to contiguous pages on success, or NULL if not successful.
6489  */
6490 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6491 				int nid, nodemask_t *nodemask)
6492 {
6493 	unsigned long ret, pfn, flags;
6494 	struct zonelist *zonelist;
6495 	struct zone *zone;
6496 	struct zoneref *z;
6497 
6498 	zonelist = node_zonelist(nid, gfp_mask);
6499 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6500 					gfp_zone(gfp_mask), nodemask) {
6501 		spin_lock_irqsave(&zone->lock, flags);
6502 
6503 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6504 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6505 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6506 				/*
6507 				 * We release the zone lock here because
6508 				 * alloc_contig_range() will also lock the zone
6509 				 * at some point. If there's an allocation
6510 				 * spinning on this lock, it may win the race
6511 				 * and cause alloc_contig_range() to fail...
6512 				 */
6513 				spin_unlock_irqrestore(&zone->lock, flags);
6514 				ret = __alloc_contig_pages(pfn, nr_pages,
6515 							gfp_mask);
6516 				if (!ret)
6517 					return pfn_to_page(pfn);
6518 				spin_lock_irqsave(&zone->lock, flags);
6519 			}
6520 			pfn += nr_pages;
6521 		}
6522 		spin_unlock_irqrestore(&zone->lock, flags);
6523 	}
6524 	return NULL;
6525 }
6526 #endif /* CONFIG_CONTIG_ALLOC */
6527 
6528 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6529 {
6530 	unsigned long count = 0;
6531 
6532 	for (; nr_pages--; pfn++) {
6533 		struct page *page = pfn_to_page(pfn);
6534 
6535 		count += page_count(page) != 1;
6536 		__free_page(page);
6537 	}
6538 	WARN(count != 0, "%lu pages are still in use!\n", count);
6539 }
6540 EXPORT_SYMBOL(free_contig_range);
6541 
6542 /*
6543  * Effectively disable pcplists for the zone by setting the high limit to 0
6544  * and draining all cpus. A concurrent page freeing on another CPU that's about
6545  * to put the page on pcplist will either finish before the drain and the page
6546  * will be drained, or observe the new high limit and skip the pcplist.
6547  *
6548  * Must be paired with a call to zone_pcp_enable().
6549  */
6550 void zone_pcp_disable(struct zone *zone)
6551 {
6552 	mutex_lock(&pcp_batch_high_lock);
6553 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6554 	__drain_all_pages(zone, true);
6555 }
6556 
6557 void zone_pcp_enable(struct zone *zone)
6558 {
6559 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6560 		zone->pageset_high_max, zone->pageset_batch);
6561 	mutex_unlock(&pcp_batch_high_lock);
6562 }
6563 
6564 void zone_pcp_reset(struct zone *zone)
6565 {
6566 	int cpu;
6567 	struct per_cpu_zonestat *pzstats;
6568 
6569 	if (zone->per_cpu_pageset != &boot_pageset) {
6570 		for_each_online_cpu(cpu) {
6571 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6572 			drain_zonestat(zone, pzstats);
6573 		}
6574 		free_percpu(zone->per_cpu_pageset);
6575 		zone->per_cpu_pageset = &boot_pageset;
6576 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6577 			free_percpu(zone->per_cpu_zonestats);
6578 			zone->per_cpu_zonestats = &boot_zonestats;
6579 		}
6580 	}
6581 }
6582 
6583 #ifdef CONFIG_MEMORY_HOTREMOVE
6584 /*
6585  * All pages in the range must be in a single zone, must not contain holes,
6586  * must span full sections, and must be isolated before calling this function.
6587  */
6588 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6589 {
6590 	unsigned long pfn = start_pfn;
6591 	struct page *page;
6592 	struct zone *zone;
6593 	unsigned int order;
6594 	unsigned long flags;
6595 
6596 	offline_mem_sections(pfn, end_pfn);
6597 	zone = page_zone(pfn_to_page(pfn));
6598 	spin_lock_irqsave(&zone->lock, flags);
6599 	while (pfn < end_pfn) {
6600 		page = pfn_to_page(pfn);
6601 		/*
6602 		 * The HWPoisoned page may be not in buddy system, and
6603 		 * page_count() is not 0.
6604 		 */
6605 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6606 			pfn++;
6607 			continue;
6608 		}
6609 		/*
6610 		 * At this point all remaining PageOffline() pages have a
6611 		 * reference count of 0 and can simply be skipped.
6612 		 */
6613 		if (PageOffline(page)) {
6614 			BUG_ON(page_count(page));
6615 			BUG_ON(PageBuddy(page));
6616 			pfn++;
6617 			continue;
6618 		}
6619 
6620 		BUG_ON(page_count(page));
6621 		BUG_ON(!PageBuddy(page));
6622 		order = buddy_order(page);
6623 		del_page_from_free_list(page, zone, order);
6624 		pfn += (1 << order);
6625 	}
6626 	spin_unlock_irqrestore(&zone->lock, flags);
6627 }
6628 #endif
6629 
6630 /*
6631  * This function returns a stable result only if called under zone lock.
6632  */
6633 bool is_free_buddy_page(struct page *page)
6634 {
6635 	unsigned long pfn = page_to_pfn(page);
6636 	unsigned int order;
6637 
6638 	for (order = 0; order <= MAX_ORDER; order++) {
6639 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6640 
6641 		if (PageBuddy(page_head) &&
6642 		    buddy_order_unsafe(page_head) >= order)
6643 			break;
6644 	}
6645 
6646 	return order <= MAX_ORDER;
6647 }
6648 EXPORT_SYMBOL(is_free_buddy_page);
6649 
6650 #ifdef CONFIG_MEMORY_FAILURE
6651 /*
6652  * Break down a higher-order page in sub-pages, and keep our target out of
6653  * buddy allocator.
6654  */
6655 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6656 				   struct page *target, int low, int high,
6657 				   int migratetype)
6658 {
6659 	unsigned long size = 1 << high;
6660 	struct page *current_buddy;
6661 
6662 	while (high > low) {
6663 		high--;
6664 		size >>= 1;
6665 
6666 		if (target >= &page[size]) {
6667 			current_buddy = page;
6668 			page = page + size;
6669 		} else {
6670 			current_buddy = page + size;
6671 		}
6672 
6673 		if (set_page_guard(zone, current_buddy, high, migratetype))
6674 			continue;
6675 
6676 		add_to_free_list(current_buddy, zone, high, migratetype);
6677 		set_buddy_order(current_buddy, high);
6678 	}
6679 }
6680 
6681 /*
6682  * Take a page that will be marked as poisoned off the buddy allocator.
6683  */
6684 bool take_page_off_buddy(struct page *page)
6685 {
6686 	struct zone *zone = page_zone(page);
6687 	unsigned long pfn = page_to_pfn(page);
6688 	unsigned long flags;
6689 	unsigned int order;
6690 	bool ret = false;
6691 
6692 	spin_lock_irqsave(&zone->lock, flags);
6693 	for (order = 0; order <= MAX_ORDER; order++) {
6694 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6695 		int page_order = buddy_order(page_head);
6696 
6697 		if (PageBuddy(page_head) && page_order >= order) {
6698 			unsigned long pfn_head = page_to_pfn(page_head);
6699 			int migratetype = get_pfnblock_migratetype(page_head,
6700 								   pfn_head);
6701 
6702 			del_page_from_free_list(page_head, zone, page_order);
6703 			break_down_buddy_pages(zone, page_head, page, 0,
6704 						page_order, migratetype);
6705 			SetPageHWPoisonTakenOff(page);
6706 			if (!is_migrate_isolate(migratetype))
6707 				__mod_zone_freepage_state(zone, -1, migratetype);
6708 			ret = true;
6709 			break;
6710 		}
6711 		if (page_count(page_head) > 0)
6712 			break;
6713 	}
6714 	spin_unlock_irqrestore(&zone->lock, flags);
6715 	return ret;
6716 }
6717 
6718 /*
6719  * Cancel takeoff done by take_page_off_buddy().
6720  */
6721 bool put_page_back_buddy(struct page *page)
6722 {
6723 	struct zone *zone = page_zone(page);
6724 	unsigned long pfn = page_to_pfn(page);
6725 	unsigned long flags;
6726 	int migratetype = get_pfnblock_migratetype(page, pfn);
6727 	bool ret = false;
6728 
6729 	spin_lock_irqsave(&zone->lock, flags);
6730 	if (put_page_testzero(page)) {
6731 		ClearPageHWPoisonTakenOff(page);
6732 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6733 		if (TestClearPageHWPoison(page)) {
6734 			ret = true;
6735 		}
6736 	}
6737 	spin_unlock_irqrestore(&zone->lock, flags);
6738 
6739 	return ret;
6740 }
6741 #endif
6742 
6743 #ifdef CONFIG_ZONE_DMA
6744 bool has_managed_dma(void)
6745 {
6746 	struct pglist_data *pgdat;
6747 
6748 	for_each_online_pgdat(pgdat) {
6749 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6750 
6751 		if (managed_zone(zone))
6752 			return true;
6753 	}
6754 	return false;
6755 }
6756 #endif /* CONFIG_ZONE_DMA */
6757 
6758 #ifdef CONFIG_UNACCEPTED_MEMORY
6759 
6760 /* Counts number of zones with unaccepted pages. */
6761 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6762 
6763 static bool lazy_accept = true;
6764 
6765 static int __init accept_memory_parse(char *p)
6766 {
6767 	if (!strcmp(p, "lazy")) {
6768 		lazy_accept = true;
6769 		return 0;
6770 	} else if (!strcmp(p, "eager")) {
6771 		lazy_accept = false;
6772 		return 0;
6773 	} else {
6774 		return -EINVAL;
6775 	}
6776 }
6777 early_param("accept_memory", accept_memory_parse);
6778 
6779 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6780 {
6781 	phys_addr_t start = page_to_phys(page);
6782 	phys_addr_t end = start + (PAGE_SIZE << order);
6783 
6784 	return range_contains_unaccepted_memory(start, end);
6785 }
6786 
6787 static void accept_page(struct page *page, unsigned int order)
6788 {
6789 	phys_addr_t start = page_to_phys(page);
6790 
6791 	accept_memory(start, start + (PAGE_SIZE << order));
6792 }
6793 
6794 static bool try_to_accept_memory_one(struct zone *zone)
6795 {
6796 	unsigned long flags;
6797 	struct page *page;
6798 	bool last;
6799 
6800 	if (list_empty(&zone->unaccepted_pages))
6801 		return false;
6802 
6803 	spin_lock_irqsave(&zone->lock, flags);
6804 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6805 					struct page, lru);
6806 	if (!page) {
6807 		spin_unlock_irqrestore(&zone->lock, flags);
6808 		return false;
6809 	}
6810 
6811 	list_del(&page->lru);
6812 	last = list_empty(&zone->unaccepted_pages);
6813 
6814 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6815 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6816 	spin_unlock_irqrestore(&zone->lock, flags);
6817 
6818 	accept_page(page, MAX_ORDER);
6819 
6820 	__free_pages_ok(page, MAX_ORDER, FPI_TO_TAIL);
6821 
6822 	if (last)
6823 		static_branch_dec(&zones_with_unaccepted_pages);
6824 
6825 	return true;
6826 }
6827 
6828 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6829 {
6830 	long to_accept;
6831 	int ret = false;
6832 
6833 	/* How much to accept to get to high watermark? */
6834 	to_accept = high_wmark_pages(zone) -
6835 		    (zone_page_state(zone, NR_FREE_PAGES) -
6836 		    __zone_watermark_unusable_free(zone, order, 0));
6837 
6838 	/* Accept at least one page */
6839 	do {
6840 		if (!try_to_accept_memory_one(zone))
6841 			break;
6842 		ret = true;
6843 		to_accept -= MAX_ORDER_NR_PAGES;
6844 	} while (to_accept > 0);
6845 
6846 	return ret;
6847 }
6848 
6849 static inline bool has_unaccepted_memory(void)
6850 {
6851 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6852 }
6853 
6854 static bool __free_unaccepted(struct page *page)
6855 {
6856 	struct zone *zone = page_zone(page);
6857 	unsigned long flags;
6858 	bool first = false;
6859 
6860 	if (!lazy_accept)
6861 		return false;
6862 
6863 	spin_lock_irqsave(&zone->lock, flags);
6864 	first = list_empty(&zone->unaccepted_pages);
6865 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6866 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6867 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6868 	spin_unlock_irqrestore(&zone->lock, flags);
6869 
6870 	if (first)
6871 		static_branch_inc(&zones_with_unaccepted_pages);
6872 
6873 	return true;
6874 }
6875 
6876 #else
6877 
6878 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6879 {
6880 	return false;
6881 }
6882 
6883 static void accept_page(struct page *page, unsigned int order)
6884 {
6885 }
6886 
6887 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6888 {
6889 	return false;
6890 }
6891 
6892 static inline bool has_unaccepted_memory(void)
6893 {
6894 	return false;
6895 }
6896 
6897 static bool __free_unaccepted(struct page *page)
6898 {
6899 	BUILD_BUG();
6900 	return false;
6901 }
6902 
6903 #endif /* CONFIG_UNACCEPTED_MEMORY */
6904