1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static bool cond_accept_memory(struct zone *zone, unsigned int order); 290 static bool __free_unaccepted(struct page *page); 291 292 int page_group_by_mobility_disabled __read_mostly; 293 294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 295 /* 296 * During boot we initialize deferred pages on-demand, as needed, but once 297 * page_alloc_init_late() has finished, the deferred pages are all initialized, 298 * and we can permanently disable that path. 299 */ 300 DEFINE_STATIC_KEY_TRUE(deferred_pages); 301 302 static inline bool deferred_pages_enabled(void) 303 { 304 return static_branch_unlikely(&deferred_pages); 305 } 306 307 /* 308 * deferred_grow_zone() is __init, but it is called from 309 * get_page_from_freelist() during early boot until deferred_pages permanently 310 * disables this call. This is why we have refdata wrapper to avoid warning, 311 * and to ensure that the function body gets unloaded. 312 */ 313 static bool __ref 314 _deferred_grow_zone(struct zone *zone, unsigned int order) 315 { 316 return deferred_grow_zone(zone, order); 317 } 318 #else 319 static inline bool deferred_pages_enabled(void) 320 { 321 return false; 322 } 323 324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 325 { 326 return false; 327 } 328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 329 330 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 331 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 332 unsigned long pfn) 333 { 334 #ifdef CONFIG_SPARSEMEM 335 return section_to_usemap(__pfn_to_section(pfn)); 336 #else 337 return page_zone(page)->pageblock_flags; 338 #endif /* CONFIG_SPARSEMEM */ 339 } 340 341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 342 { 343 #ifdef CONFIG_SPARSEMEM 344 pfn &= (PAGES_PER_SECTION-1); 345 #else 346 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 347 #endif /* CONFIG_SPARSEMEM */ 348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 349 } 350 351 /** 352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 353 * @page: The page within the block of interest 354 * @pfn: The target page frame number 355 * @mask: mask of bits that the caller is interested in 356 * 357 * Return: pageblock_bits flags 358 */ 359 unsigned long get_pfnblock_flags_mask(const struct page *page, 360 unsigned long pfn, unsigned long mask) 361 { 362 unsigned long *bitmap; 363 unsigned long bitidx, word_bitidx; 364 unsigned long word; 365 366 bitmap = get_pageblock_bitmap(page, pfn); 367 bitidx = pfn_to_bitidx(page, pfn); 368 word_bitidx = bitidx / BITS_PER_LONG; 369 bitidx &= (BITS_PER_LONG-1); 370 /* 371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 372 * a consistent read of the memory array, so that results, even though 373 * racy, are not corrupted. 374 */ 375 word = READ_ONCE(bitmap[word_bitidx]); 376 return (word >> bitidx) & mask; 377 } 378 379 static __always_inline int get_pfnblock_migratetype(const struct page *page, 380 unsigned long pfn) 381 { 382 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 383 } 384 385 /** 386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @flags: The flags to set 389 * @pfn: The target page frame number 390 * @mask: mask of bits that the caller is interested in 391 */ 392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 393 unsigned long pfn, 394 unsigned long mask) 395 { 396 unsigned long *bitmap; 397 unsigned long bitidx, word_bitidx; 398 unsigned long word; 399 400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 401 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 402 403 bitmap = get_pageblock_bitmap(page, pfn); 404 bitidx = pfn_to_bitidx(page, pfn); 405 word_bitidx = bitidx / BITS_PER_LONG; 406 bitidx &= (BITS_PER_LONG-1); 407 408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 409 410 mask <<= bitidx; 411 flags <<= bitidx; 412 413 word = READ_ONCE(bitmap[word_bitidx]); 414 do { 415 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 416 } 417 418 void set_pageblock_migratetype(struct page *page, int migratetype) 419 { 420 if (unlikely(page_group_by_mobility_disabled && 421 migratetype < MIGRATE_PCPTYPES)) 422 migratetype = MIGRATE_UNMOVABLE; 423 424 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 425 page_to_pfn(page), MIGRATETYPE_MASK); 426 } 427 428 #ifdef CONFIG_DEBUG_VM 429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 430 { 431 int ret; 432 unsigned seq; 433 unsigned long pfn = page_to_pfn(page); 434 unsigned long sp, start_pfn; 435 436 do { 437 seq = zone_span_seqbegin(zone); 438 start_pfn = zone->zone_start_pfn; 439 sp = zone->spanned_pages; 440 ret = !zone_spans_pfn(zone, pfn); 441 } while (zone_span_seqretry(zone, seq)); 442 443 if (ret) 444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 445 pfn, zone_to_nid(zone), zone->name, 446 start_pfn, start_pfn + sp); 447 448 return ret; 449 } 450 451 /* 452 * Temporary debugging check for pages not lying within a given zone. 453 */ 454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 455 { 456 if (page_outside_zone_boundaries(zone, page)) 457 return true; 458 if (zone != page_zone(page)) 459 return true; 460 461 return false; 462 } 463 #else 464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 465 { 466 return false; 467 } 468 #endif 469 470 static void bad_page(struct page *page, const char *reason) 471 { 472 static unsigned long resume; 473 static unsigned long nr_shown; 474 static unsigned long nr_unshown; 475 476 /* 477 * Allow a burst of 60 reports, then keep quiet for that minute; 478 * or allow a steady drip of one report per second. 479 */ 480 if (nr_shown == 60) { 481 if (time_before(jiffies, resume)) { 482 nr_unshown++; 483 goto out; 484 } 485 if (nr_unshown) { 486 pr_alert( 487 "BUG: Bad page state: %lu messages suppressed\n", 488 nr_unshown); 489 nr_unshown = 0; 490 } 491 nr_shown = 0; 492 } 493 if (nr_shown++ == 0) 494 resume = jiffies + 60 * HZ; 495 496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 497 current->comm, page_to_pfn(page)); 498 dump_page(page, reason); 499 500 print_modules(); 501 dump_stack(); 502 out: 503 /* Leave bad fields for debug, except PageBuddy could make trouble */ 504 if (PageBuddy(page)) 505 __ClearPageBuddy(page); 506 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 507 } 508 509 static inline unsigned int order_to_pindex(int migratetype, int order) 510 { 511 bool __maybe_unused movable; 512 513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 514 if (order > PAGE_ALLOC_COSTLY_ORDER) { 515 VM_BUG_ON(order != HPAGE_PMD_ORDER); 516 517 movable = migratetype == MIGRATE_MOVABLE; 518 519 return NR_LOWORDER_PCP_LISTS + movable; 520 } 521 #else 522 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 523 #endif 524 525 return (MIGRATE_PCPTYPES * order) + migratetype; 526 } 527 528 static inline int pindex_to_order(unsigned int pindex) 529 { 530 int order = pindex / MIGRATE_PCPTYPES; 531 532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 533 if (pindex >= NR_LOWORDER_PCP_LISTS) 534 order = HPAGE_PMD_ORDER; 535 #else 536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 537 #endif 538 539 return order; 540 } 541 542 static inline bool pcp_allowed_order(unsigned int order) 543 { 544 if (order <= PAGE_ALLOC_COSTLY_ORDER) 545 return true; 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 if (order == HPAGE_PMD_ORDER) 548 return true; 549 #endif 550 return false; 551 } 552 553 /* 554 * Higher-order pages are called "compound pages". They are structured thusly: 555 * 556 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 557 * 558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 560 * 561 * The first tail page's ->compound_order holds the order of allocation. 562 * This usage means that zero-order pages may not be compound. 563 */ 564 565 void prep_compound_page(struct page *page, unsigned int order) 566 { 567 int i; 568 int nr_pages = 1 << order; 569 570 __SetPageHead(page); 571 for (i = 1; i < nr_pages; i++) 572 prep_compound_tail(page, i); 573 574 prep_compound_head(page, order); 575 } 576 577 static inline void set_buddy_order(struct page *page, unsigned int order) 578 { 579 set_page_private(page, order); 580 __SetPageBuddy(page); 581 } 582 583 #ifdef CONFIG_COMPACTION 584 static inline struct capture_control *task_capc(struct zone *zone) 585 { 586 struct capture_control *capc = current->capture_control; 587 588 return unlikely(capc) && 589 !(current->flags & PF_KTHREAD) && 590 !capc->page && 591 capc->cc->zone == zone ? capc : NULL; 592 } 593 594 static inline bool 595 compaction_capture(struct capture_control *capc, struct page *page, 596 int order, int migratetype) 597 { 598 if (!capc || order != capc->cc->order) 599 return false; 600 601 /* Do not accidentally pollute CMA or isolated regions*/ 602 if (is_migrate_cma(migratetype) || 603 is_migrate_isolate(migratetype)) 604 return false; 605 606 /* 607 * Do not let lower order allocations pollute a movable pageblock 608 * unless compaction is also requesting movable pages. 609 * This might let an unmovable request use a reclaimable pageblock 610 * and vice-versa but no more than normal fallback logic which can 611 * have trouble finding a high-order free page. 612 */ 613 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 614 capc->cc->migratetype != MIGRATE_MOVABLE) 615 return false; 616 617 capc->page = page; 618 return true; 619 } 620 621 #else 622 static inline struct capture_control *task_capc(struct zone *zone) 623 { 624 return NULL; 625 } 626 627 static inline bool 628 compaction_capture(struct capture_control *capc, struct page *page, 629 int order, int migratetype) 630 { 631 return false; 632 } 633 #endif /* CONFIG_COMPACTION */ 634 635 static inline void account_freepages(struct zone *zone, int nr_pages, 636 int migratetype) 637 { 638 lockdep_assert_held(&zone->lock); 639 640 if (is_migrate_isolate(migratetype)) 641 return; 642 643 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 644 645 if (is_migrate_cma(migratetype)) 646 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 647 else if (is_migrate_highatomic(migratetype)) 648 WRITE_ONCE(zone->nr_free_highatomic, 649 zone->nr_free_highatomic + nr_pages); 650 } 651 652 /* Used for pages not on another list */ 653 static inline void __add_to_free_list(struct page *page, struct zone *zone, 654 unsigned int order, int migratetype, 655 bool tail) 656 { 657 struct free_area *area = &zone->free_area[order]; 658 659 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 660 "page type is %lu, passed migratetype is %d (nr=%d)\n", 661 get_pageblock_migratetype(page), migratetype, 1 << order); 662 663 if (tail) 664 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 665 else 666 list_add(&page->buddy_list, &area->free_list[migratetype]); 667 area->nr_free++; 668 } 669 670 /* 671 * Used for pages which are on another list. Move the pages to the tail 672 * of the list - so the moved pages won't immediately be considered for 673 * allocation again (e.g., optimization for memory onlining). 674 */ 675 static inline void move_to_free_list(struct page *page, struct zone *zone, 676 unsigned int order, int old_mt, int new_mt) 677 { 678 struct free_area *area = &zone->free_area[order]; 679 680 /* Free page moving can fail, so it happens before the type update */ 681 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 682 "page type is %lu, passed migratetype is %d (nr=%d)\n", 683 get_pageblock_migratetype(page), old_mt, 1 << order); 684 685 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 686 687 account_freepages(zone, -(1 << order), old_mt); 688 account_freepages(zone, 1 << order, new_mt); 689 } 690 691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 692 unsigned int order, int migratetype) 693 { 694 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 695 "page type is %lu, passed migratetype is %d (nr=%d)\n", 696 get_pageblock_migratetype(page), migratetype, 1 << order); 697 698 /* clear reported state and update reported page count */ 699 if (page_reported(page)) 700 __ClearPageReported(page); 701 702 list_del(&page->buddy_list); 703 __ClearPageBuddy(page); 704 set_page_private(page, 0); 705 zone->free_area[order].nr_free--; 706 } 707 708 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 709 unsigned int order, int migratetype) 710 { 711 __del_page_from_free_list(page, zone, order, migratetype); 712 account_freepages(zone, -(1 << order), migratetype); 713 } 714 715 static inline struct page *get_page_from_free_area(struct free_area *area, 716 int migratetype) 717 { 718 return list_first_entry_or_null(&area->free_list[migratetype], 719 struct page, buddy_list); 720 } 721 722 /* 723 * If this is less than the 2nd largest possible page, check if the buddy 724 * of the next-higher order is free. If it is, it's possible 725 * that pages are being freed that will coalesce soon. In case, 726 * that is happening, add the free page to the tail of the list 727 * so it's less likely to be used soon and more likely to be merged 728 * as a 2-level higher order page 729 */ 730 static inline bool 731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 732 struct page *page, unsigned int order) 733 { 734 unsigned long higher_page_pfn; 735 struct page *higher_page; 736 737 if (order >= MAX_PAGE_ORDER - 1) 738 return false; 739 740 higher_page_pfn = buddy_pfn & pfn; 741 higher_page = page + (higher_page_pfn - pfn); 742 743 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 744 NULL) != NULL; 745 } 746 747 /* 748 * Freeing function for a buddy system allocator. 749 * 750 * The concept of a buddy system is to maintain direct-mapped table 751 * (containing bit values) for memory blocks of various "orders". 752 * The bottom level table contains the map for the smallest allocatable 753 * units of memory (here, pages), and each level above it describes 754 * pairs of units from the levels below, hence, "buddies". 755 * At a high level, all that happens here is marking the table entry 756 * at the bottom level available, and propagating the changes upward 757 * as necessary, plus some accounting needed to play nicely with other 758 * parts of the VM system. 759 * At each level, we keep a list of pages, which are heads of continuous 760 * free pages of length of (1 << order) and marked with PageBuddy. 761 * Page's order is recorded in page_private(page) field. 762 * So when we are allocating or freeing one, we can derive the state of the 763 * other. That is, if we allocate a small block, and both were 764 * free, the remainder of the region must be split into blocks. 765 * If a block is freed, and its buddy is also free, then this 766 * triggers coalescing into a block of larger size. 767 * 768 * -- nyc 769 */ 770 771 static inline void __free_one_page(struct page *page, 772 unsigned long pfn, 773 struct zone *zone, unsigned int order, 774 int migratetype, fpi_t fpi_flags) 775 { 776 struct capture_control *capc = task_capc(zone); 777 unsigned long buddy_pfn = 0; 778 unsigned long combined_pfn; 779 struct page *buddy; 780 bool to_tail; 781 782 VM_BUG_ON(!zone_is_initialized(zone)); 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 784 785 VM_BUG_ON(migratetype == -1); 786 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 787 VM_BUG_ON_PAGE(bad_range(zone, page), page); 788 789 account_freepages(zone, 1 << order, migratetype); 790 791 while (order < MAX_PAGE_ORDER) { 792 int buddy_mt = migratetype; 793 794 if (compaction_capture(capc, page, order, migratetype)) { 795 account_freepages(zone, -(1 << order), migratetype); 796 return; 797 } 798 799 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 800 if (!buddy) 801 goto done_merging; 802 803 if (unlikely(order >= pageblock_order)) { 804 /* 805 * We want to prevent merge between freepages on pageblock 806 * without fallbacks and normal pageblock. Without this, 807 * pageblock isolation could cause incorrect freepage or CMA 808 * accounting or HIGHATOMIC accounting. 809 */ 810 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 811 812 if (migratetype != buddy_mt && 813 (!migratetype_is_mergeable(migratetype) || 814 !migratetype_is_mergeable(buddy_mt))) 815 goto done_merging; 816 } 817 818 /* 819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 820 * merge with it and move up one order. 821 */ 822 if (page_is_guard(buddy)) 823 clear_page_guard(zone, buddy, order); 824 else 825 __del_page_from_free_list(buddy, zone, order, buddy_mt); 826 827 if (unlikely(buddy_mt != migratetype)) { 828 /* 829 * Match buddy type. This ensures that an 830 * expand() down the line puts the sub-blocks 831 * on the right freelists. 832 */ 833 set_pageblock_migratetype(buddy, migratetype); 834 } 835 836 combined_pfn = buddy_pfn & pfn; 837 page = page + (combined_pfn - pfn); 838 pfn = combined_pfn; 839 order++; 840 } 841 842 done_merging: 843 set_buddy_order(page, order); 844 845 if (fpi_flags & FPI_TO_TAIL) 846 to_tail = true; 847 else if (is_shuffle_order(order)) 848 to_tail = shuffle_pick_tail(); 849 else 850 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 851 852 __add_to_free_list(page, zone, order, migratetype, to_tail); 853 854 /* Notify page reporting subsystem of freed page */ 855 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 856 page_reporting_notify_free(order); 857 } 858 859 /* 860 * A bad page could be due to a number of fields. Instead of multiple branches, 861 * try and check multiple fields with one check. The caller must do a detailed 862 * check if necessary. 863 */ 864 static inline bool page_expected_state(struct page *page, 865 unsigned long check_flags) 866 { 867 if (unlikely(atomic_read(&page->_mapcount) != -1)) 868 return false; 869 870 if (unlikely((unsigned long)page->mapping | 871 page_ref_count(page) | 872 #ifdef CONFIG_MEMCG 873 page->memcg_data | 874 #endif 875 #ifdef CONFIG_PAGE_POOL 876 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 877 #endif 878 (page->flags & check_flags))) 879 return false; 880 881 return true; 882 } 883 884 static const char *page_bad_reason(struct page *page, unsigned long flags) 885 { 886 const char *bad_reason = NULL; 887 888 if (unlikely(atomic_read(&page->_mapcount) != -1)) 889 bad_reason = "nonzero mapcount"; 890 if (unlikely(page->mapping != NULL)) 891 bad_reason = "non-NULL mapping"; 892 if (unlikely(page_ref_count(page) != 0)) 893 bad_reason = "nonzero _refcount"; 894 if (unlikely(page->flags & flags)) { 895 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 896 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 897 else 898 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 899 } 900 #ifdef CONFIG_MEMCG 901 if (unlikely(page->memcg_data)) 902 bad_reason = "page still charged to cgroup"; 903 #endif 904 #ifdef CONFIG_PAGE_POOL 905 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 906 bad_reason = "page_pool leak"; 907 #endif 908 return bad_reason; 909 } 910 911 static void free_page_is_bad_report(struct page *page) 912 { 913 bad_page(page, 914 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 915 } 916 917 static inline bool free_page_is_bad(struct page *page) 918 { 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 920 return false; 921 922 /* Something has gone sideways, find it */ 923 free_page_is_bad_report(page); 924 return true; 925 } 926 927 static inline bool is_check_pages_enabled(void) 928 { 929 return static_branch_unlikely(&check_pages_enabled); 930 } 931 932 static int free_tail_page_prepare(struct page *head_page, struct page *page) 933 { 934 struct folio *folio = (struct folio *)head_page; 935 int ret = 1; 936 937 /* 938 * We rely page->lru.next never has bit 0 set, unless the page 939 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 940 */ 941 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 942 943 if (!is_check_pages_enabled()) { 944 ret = 0; 945 goto out; 946 } 947 switch (page - head_page) { 948 case 1: 949 /* the first tail page: these may be in place of ->mapping */ 950 if (unlikely(folio_entire_mapcount(folio))) { 951 bad_page(page, "nonzero entire_mapcount"); 952 goto out; 953 } 954 if (unlikely(folio_large_mapcount(folio))) { 955 bad_page(page, "nonzero large_mapcount"); 956 goto out; 957 } 958 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 959 bad_page(page, "nonzero nr_pages_mapped"); 960 goto out; 961 } 962 if (unlikely(atomic_read(&folio->_pincount))) { 963 bad_page(page, "nonzero pincount"); 964 goto out; 965 } 966 break; 967 case 2: 968 /* the second tail page: deferred_list overlaps ->mapping */ 969 if (unlikely(!list_empty(&folio->_deferred_list))) { 970 bad_page(page, "on deferred list"); 971 goto out; 972 } 973 break; 974 default: 975 if (page->mapping != TAIL_MAPPING) { 976 bad_page(page, "corrupted mapping in tail page"); 977 goto out; 978 } 979 break; 980 } 981 if (unlikely(!PageTail(page))) { 982 bad_page(page, "PageTail not set"); 983 goto out; 984 } 985 if (unlikely(compound_head(page) != head_page)) { 986 bad_page(page, "compound_head not consistent"); 987 goto out; 988 } 989 ret = 0; 990 out: 991 page->mapping = NULL; 992 clear_compound_head(page); 993 return ret; 994 } 995 996 /* 997 * Skip KASAN memory poisoning when either: 998 * 999 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1000 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1001 * using page tags instead (see below). 1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1003 * that error detection is disabled for accesses via the page address. 1004 * 1005 * Pages will have match-all tags in the following circumstances: 1006 * 1007 * 1. Pages are being initialized for the first time, including during deferred 1008 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1010 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1011 * 3. The allocation was excluded from being checked due to sampling, 1012 * see the call to kasan_unpoison_pages. 1013 * 1014 * Poisoning pages during deferred memory init will greatly lengthen the 1015 * process and cause problem in large memory systems as the deferred pages 1016 * initialization is done with interrupt disabled. 1017 * 1018 * Assuming that there will be no reference to those newly initialized 1019 * pages before they are ever allocated, this should have no effect on 1020 * KASAN memory tracking as the poison will be properly inserted at page 1021 * allocation time. The only corner case is when pages are allocated by 1022 * on-demand allocation and then freed again before the deferred pages 1023 * initialization is done, but this is not likely to happen. 1024 */ 1025 static inline bool should_skip_kasan_poison(struct page *page) 1026 { 1027 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1028 return deferred_pages_enabled(); 1029 1030 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1031 } 1032 1033 static void kernel_init_pages(struct page *page, int numpages) 1034 { 1035 int i; 1036 1037 /* s390's use of memset() could override KASAN redzones. */ 1038 kasan_disable_current(); 1039 for (i = 0; i < numpages; i++) 1040 clear_highpage_kasan_tagged(page + i); 1041 kasan_enable_current(); 1042 } 1043 1044 __always_inline bool free_pages_prepare(struct page *page, 1045 unsigned int order) 1046 { 1047 int bad = 0; 1048 bool skip_kasan_poison = should_skip_kasan_poison(page); 1049 bool init = want_init_on_free(); 1050 bool compound = PageCompound(page); 1051 struct folio *folio = page_folio(page); 1052 1053 VM_BUG_ON_PAGE(PageTail(page), page); 1054 1055 trace_mm_page_free(page, order); 1056 kmsan_free_page(page, order); 1057 1058 if (memcg_kmem_online() && PageMemcgKmem(page)) 1059 __memcg_kmem_uncharge_page(page, order); 1060 1061 /* 1062 * In rare cases, when truncation or holepunching raced with 1063 * munlock after VM_LOCKED was cleared, Mlocked may still be 1064 * found set here. This does not indicate a problem, unless 1065 * "unevictable_pgs_cleared" appears worryingly large. 1066 */ 1067 if (unlikely(folio_test_mlocked(folio))) { 1068 long nr_pages = folio_nr_pages(folio); 1069 1070 __folio_clear_mlocked(folio); 1071 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1072 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1073 } 1074 1075 if (unlikely(PageHWPoison(page)) && !order) { 1076 /* Do not let hwpoison pages hit pcplists/buddy */ 1077 reset_page_owner(page, order); 1078 page_table_check_free(page, order); 1079 pgalloc_tag_sub(page, 1 << order); 1080 1081 /* 1082 * The page is isolated and accounted for. 1083 * Mark the codetag as empty to avoid accounting error 1084 * when the page is freed by unpoison_memory(). 1085 */ 1086 clear_page_tag_ref(page); 1087 return false; 1088 } 1089 1090 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1091 1092 /* 1093 * Check tail pages before head page information is cleared to 1094 * avoid checking PageCompound for order-0 pages. 1095 */ 1096 if (unlikely(order)) { 1097 int i; 1098 1099 if (compound) 1100 page[1].flags &= ~PAGE_FLAGS_SECOND; 1101 for (i = 1; i < (1 << order); i++) { 1102 if (compound) 1103 bad += free_tail_page_prepare(page, page + i); 1104 if (is_check_pages_enabled()) { 1105 if (free_page_is_bad(page + i)) { 1106 bad++; 1107 continue; 1108 } 1109 } 1110 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1111 } 1112 } 1113 if (PageMappingFlags(page)) { 1114 if (PageAnon(page)) 1115 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1116 page->mapping = NULL; 1117 } 1118 if (is_check_pages_enabled()) { 1119 if (free_page_is_bad(page)) 1120 bad++; 1121 if (bad) 1122 return false; 1123 } 1124 1125 page_cpupid_reset_last(page); 1126 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1127 reset_page_owner(page, order); 1128 page_table_check_free(page, order); 1129 pgalloc_tag_sub(page, 1 << order); 1130 1131 if (!PageHighMem(page)) { 1132 debug_check_no_locks_freed(page_address(page), 1133 PAGE_SIZE << order); 1134 debug_check_no_obj_freed(page_address(page), 1135 PAGE_SIZE << order); 1136 } 1137 1138 kernel_poison_pages(page, 1 << order); 1139 1140 /* 1141 * As memory initialization might be integrated into KASAN, 1142 * KASAN poisoning and memory initialization code must be 1143 * kept together to avoid discrepancies in behavior. 1144 * 1145 * With hardware tag-based KASAN, memory tags must be set before the 1146 * page becomes unavailable via debug_pagealloc or arch_free_page. 1147 */ 1148 if (!skip_kasan_poison) { 1149 kasan_poison_pages(page, order, init); 1150 1151 /* Memory is already initialized if KASAN did it internally. */ 1152 if (kasan_has_integrated_init()) 1153 init = false; 1154 } 1155 if (init) 1156 kernel_init_pages(page, 1 << order); 1157 1158 /* 1159 * arch_free_page() can make the page's contents inaccessible. s390 1160 * does this. So nothing which can access the page's contents should 1161 * happen after this. 1162 */ 1163 arch_free_page(page, order); 1164 1165 debug_pagealloc_unmap_pages(page, 1 << order); 1166 1167 return true; 1168 } 1169 1170 /* 1171 * Frees a number of pages from the PCP lists 1172 * Assumes all pages on list are in same zone. 1173 * count is the number of pages to free. 1174 */ 1175 static void free_pcppages_bulk(struct zone *zone, int count, 1176 struct per_cpu_pages *pcp, 1177 int pindex) 1178 { 1179 unsigned long flags; 1180 unsigned int order; 1181 struct page *page; 1182 1183 /* 1184 * Ensure proper count is passed which otherwise would stuck in the 1185 * below while (list_empty(list)) loop. 1186 */ 1187 count = min(pcp->count, count); 1188 1189 /* Ensure requested pindex is drained first. */ 1190 pindex = pindex - 1; 1191 1192 spin_lock_irqsave(&zone->lock, flags); 1193 1194 while (count > 0) { 1195 struct list_head *list; 1196 int nr_pages; 1197 1198 /* Remove pages from lists in a round-robin fashion. */ 1199 do { 1200 if (++pindex > NR_PCP_LISTS - 1) 1201 pindex = 0; 1202 list = &pcp->lists[pindex]; 1203 } while (list_empty(list)); 1204 1205 order = pindex_to_order(pindex); 1206 nr_pages = 1 << order; 1207 do { 1208 unsigned long pfn; 1209 int mt; 1210 1211 page = list_last_entry(list, struct page, pcp_list); 1212 pfn = page_to_pfn(page); 1213 mt = get_pfnblock_migratetype(page, pfn); 1214 1215 /* must delete to avoid corrupting pcp list */ 1216 list_del(&page->pcp_list); 1217 count -= nr_pages; 1218 pcp->count -= nr_pages; 1219 1220 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1221 trace_mm_page_pcpu_drain(page, order, mt); 1222 } while (count > 0 && !list_empty(list)); 1223 } 1224 1225 spin_unlock_irqrestore(&zone->lock, flags); 1226 } 1227 1228 /* Split a multi-block free page into its individual pageblocks. */ 1229 static void split_large_buddy(struct zone *zone, struct page *page, 1230 unsigned long pfn, int order, fpi_t fpi) 1231 { 1232 unsigned long end = pfn + (1 << order); 1233 1234 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1235 /* Caller removed page from freelist, buddy info cleared! */ 1236 VM_WARN_ON_ONCE(PageBuddy(page)); 1237 1238 if (order > pageblock_order) 1239 order = pageblock_order; 1240 1241 do { 1242 int mt = get_pfnblock_migratetype(page, pfn); 1243 1244 __free_one_page(page, pfn, zone, order, mt, fpi); 1245 pfn += 1 << order; 1246 if (pfn == end) 1247 break; 1248 page = pfn_to_page(pfn); 1249 } while (1); 1250 } 1251 1252 static void free_one_page(struct zone *zone, struct page *page, 1253 unsigned long pfn, unsigned int order, 1254 fpi_t fpi_flags) 1255 { 1256 unsigned long flags; 1257 1258 spin_lock_irqsave(&zone->lock, flags); 1259 split_large_buddy(zone, page, pfn, order, fpi_flags); 1260 spin_unlock_irqrestore(&zone->lock, flags); 1261 1262 __count_vm_events(PGFREE, 1 << order); 1263 } 1264 1265 static void __free_pages_ok(struct page *page, unsigned int order, 1266 fpi_t fpi_flags) 1267 { 1268 unsigned long pfn = page_to_pfn(page); 1269 struct zone *zone = page_zone(page); 1270 1271 if (free_pages_prepare(page, order)) 1272 free_one_page(zone, page, pfn, order, fpi_flags); 1273 } 1274 1275 void __meminit __free_pages_core(struct page *page, unsigned int order, 1276 enum meminit_context context) 1277 { 1278 unsigned int nr_pages = 1 << order; 1279 struct page *p = page; 1280 unsigned int loop; 1281 1282 /* 1283 * When initializing the memmap, __init_single_page() sets the refcount 1284 * of all pages to 1 ("allocated"/"not free"). We have to set the 1285 * refcount of all involved pages to 0. 1286 * 1287 * Note that hotplugged memory pages are initialized to PageOffline(). 1288 * Pages freed from memblock might be marked as reserved. 1289 */ 1290 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1291 unlikely(context == MEMINIT_HOTPLUG)) { 1292 for (loop = 0; loop < nr_pages; loop++, p++) { 1293 VM_WARN_ON_ONCE(PageReserved(p)); 1294 __ClearPageOffline(p); 1295 set_page_count(p, 0); 1296 } 1297 1298 /* 1299 * Freeing the page with debug_pagealloc enabled will try to 1300 * unmap it; some archs don't like double-unmappings, so 1301 * map it first. 1302 */ 1303 debug_pagealloc_map_pages(page, nr_pages); 1304 adjust_managed_page_count(page, nr_pages); 1305 } else { 1306 for (loop = 0; loop < nr_pages; loop++, p++) { 1307 __ClearPageReserved(p); 1308 set_page_count(p, 0); 1309 } 1310 1311 /* memblock adjusts totalram_pages() manually. */ 1312 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1313 } 1314 1315 if (page_contains_unaccepted(page, order)) { 1316 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1317 return; 1318 1319 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1320 } 1321 1322 /* 1323 * Bypass PCP and place fresh pages right to the tail, primarily 1324 * relevant for memory onlining. 1325 */ 1326 __free_pages_ok(page, order, FPI_TO_TAIL); 1327 } 1328 1329 /* 1330 * Check that the whole (or subset of) a pageblock given by the interval of 1331 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1332 * with the migration of free compaction scanner. 1333 * 1334 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1335 * 1336 * It's possible on some configurations to have a setup like node0 node1 node0 1337 * i.e. it's possible that all pages within a zones range of pages do not 1338 * belong to a single zone. We assume that a border between node0 and node1 1339 * can occur within a single pageblock, but not a node0 node1 node0 1340 * interleaving within a single pageblock. It is therefore sufficient to check 1341 * the first and last page of a pageblock and avoid checking each individual 1342 * page in a pageblock. 1343 * 1344 * Note: the function may return non-NULL struct page even for a page block 1345 * which contains a memory hole (i.e. there is no physical memory for a subset 1346 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1347 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1348 * even though the start pfn is online and valid. This should be safe most of 1349 * the time because struct pages are still initialized via init_unavailable_range() 1350 * and pfn walkers shouldn't touch any physical memory range for which they do 1351 * not recognize any specific metadata in struct pages. 1352 */ 1353 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1354 unsigned long end_pfn, struct zone *zone) 1355 { 1356 struct page *start_page; 1357 struct page *end_page; 1358 1359 /* end_pfn is one past the range we are checking */ 1360 end_pfn--; 1361 1362 if (!pfn_valid(end_pfn)) 1363 return NULL; 1364 1365 start_page = pfn_to_online_page(start_pfn); 1366 if (!start_page) 1367 return NULL; 1368 1369 if (page_zone(start_page) != zone) 1370 return NULL; 1371 1372 end_page = pfn_to_page(end_pfn); 1373 1374 /* This gives a shorter code than deriving page_zone(end_page) */ 1375 if (page_zone_id(start_page) != page_zone_id(end_page)) 1376 return NULL; 1377 1378 return start_page; 1379 } 1380 1381 /* 1382 * The order of subdivision here is critical for the IO subsystem. 1383 * Please do not alter this order without good reasons and regression 1384 * testing. Specifically, as large blocks of memory are subdivided, 1385 * the order in which smaller blocks are delivered depends on the order 1386 * they're subdivided in this function. This is the primary factor 1387 * influencing the order in which pages are delivered to the IO 1388 * subsystem according to empirical testing, and this is also justified 1389 * by considering the behavior of a buddy system containing a single 1390 * large block of memory acted on by a series of small allocations. 1391 * This behavior is a critical factor in sglist merging's success. 1392 * 1393 * -- nyc 1394 */ 1395 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1396 int high, int migratetype) 1397 { 1398 unsigned int size = 1 << high; 1399 unsigned int nr_added = 0; 1400 1401 while (high > low) { 1402 high--; 1403 size >>= 1; 1404 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1405 1406 /* 1407 * Mark as guard pages (or page), that will allow to 1408 * merge back to allocator when buddy will be freed. 1409 * Corresponding page table entries will not be touched, 1410 * pages will stay not present in virtual address space 1411 */ 1412 if (set_page_guard(zone, &page[size], high)) 1413 continue; 1414 1415 __add_to_free_list(&page[size], zone, high, migratetype, false); 1416 set_buddy_order(&page[size], high); 1417 nr_added += size; 1418 } 1419 1420 return nr_added; 1421 } 1422 1423 static __always_inline void page_del_and_expand(struct zone *zone, 1424 struct page *page, int low, 1425 int high, int migratetype) 1426 { 1427 int nr_pages = 1 << high; 1428 1429 __del_page_from_free_list(page, zone, high, migratetype); 1430 nr_pages -= expand(zone, page, low, high, migratetype); 1431 account_freepages(zone, -nr_pages, migratetype); 1432 } 1433 1434 static void check_new_page_bad(struct page *page) 1435 { 1436 if (unlikely(page->flags & __PG_HWPOISON)) { 1437 /* Don't complain about hwpoisoned pages */ 1438 if (PageBuddy(page)) 1439 __ClearPageBuddy(page); 1440 return; 1441 } 1442 1443 bad_page(page, 1444 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1445 } 1446 1447 /* 1448 * This page is about to be returned from the page allocator 1449 */ 1450 static bool check_new_page(struct page *page) 1451 { 1452 if (likely(page_expected_state(page, 1453 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1454 return false; 1455 1456 check_new_page_bad(page); 1457 return true; 1458 } 1459 1460 static inline bool check_new_pages(struct page *page, unsigned int order) 1461 { 1462 if (is_check_pages_enabled()) { 1463 for (int i = 0; i < (1 << order); i++) { 1464 struct page *p = page + i; 1465 1466 if (check_new_page(p)) 1467 return true; 1468 } 1469 } 1470 1471 return false; 1472 } 1473 1474 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1475 { 1476 /* Don't skip if a software KASAN mode is enabled. */ 1477 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1478 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1479 return false; 1480 1481 /* Skip, if hardware tag-based KASAN is not enabled. */ 1482 if (!kasan_hw_tags_enabled()) 1483 return true; 1484 1485 /* 1486 * With hardware tag-based KASAN enabled, skip if this has been 1487 * requested via __GFP_SKIP_KASAN. 1488 */ 1489 return flags & __GFP_SKIP_KASAN; 1490 } 1491 1492 static inline bool should_skip_init(gfp_t flags) 1493 { 1494 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1495 if (!kasan_hw_tags_enabled()) 1496 return false; 1497 1498 /* For hardware tag-based KASAN, skip if requested. */ 1499 return (flags & __GFP_SKIP_ZERO); 1500 } 1501 1502 inline void post_alloc_hook(struct page *page, unsigned int order, 1503 gfp_t gfp_flags) 1504 { 1505 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1506 !should_skip_init(gfp_flags); 1507 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1508 int i; 1509 1510 set_page_private(page, 0); 1511 set_page_refcounted(page); 1512 1513 arch_alloc_page(page, order); 1514 debug_pagealloc_map_pages(page, 1 << order); 1515 1516 /* 1517 * Page unpoisoning must happen before memory initialization. 1518 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1519 * allocations and the page unpoisoning code will complain. 1520 */ 1521 kernel_unpoison_pages(page, 1 << order); 1522 1523 /* 1524 * As memory initialization might be integrated into KASAN, 1525 * KASAN unpoisoning and memory initializion code must be 1526 * kept together to avoid discrepancies in behavior. 1527 */ 1528 1529 /* 1530 * If memory tags should be zeroed 1531 * (which happens only when memory should be initialized as well). 1532 */ 1533 if (zero_tags) { 1534 /* Initialize both memory and memory tags. */ 1535 for (i = 0; i != 1 << order; ++i) 1536 tag_clear_highpage(page + i); 1537 1538 /* Take note that memory was initialized by the loop above. */ 1539 init = false; 1540 } 1541 if (!should_skip_kasan_unpoison(gfp_flags) && 1542 kasan_unpoison_pages(page, order, init)) { 1543 /* Take note that memory was initialized by KASAN. */ 1544 if (kasan_has_integrated_init()) 1545 init = false; 1546 } else { 1547 /* 1548 * If memory tags have not been set by KASAN, reset the page 1549 * tags to ensure page_address() dereferencing does not fault. 1550 */ 1551 for (i = 0; i != 1 << order; ++i) 1552 page_kasan_tag_reset(page + i); 1553 } 1554 /* If memory is still not initialized, initialize it now. */ 1555 if (init) 1556 kernel_init_pages(page, 1 << order); 1557 1558 set_page_owner(page, order, gfp_flags); 1559 page_table_check_alloc(page, order); 1560 pgalloc_tag_add(page, current, 1 << order); 1561 } 1562 1563 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1564 unsigned int alloc_flags) 1565 { 1566 post_alloc_hook(page, order, gfp_flags); 1567 1568 if (order && (gfp_flags & __GFP_COMP)) 1569 prep_compound_page(page, order); 1570 1571 /* 1572 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1573 * allocate the page. The expectation is that the caller is taking 1574 * steps that will free more memory. The caller should avoid the page 1575 * being used for !PFMEMALLOC purposes. 1576 */ 1577 if (alloc_flags & ALLOC_NO_WATERMARKS) 1578 set_page_pfmemalloc(page); 1579 else 1580 clear_page_pfmemalloc(page); 1581 } 1582 1583 /* 1584 * Go through the free lists for the given migratetype and remove 1585 * the smallest available page from the freelists 1586 */ 1587 static __always_inline 1588 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1589 int migratetype) 1590 { 1591 unsigned int current_order; 1592 struct free_area *area; 1593 struct page *page; 1594 1595 /* Find a page of the appropriate size in the preferred list */ 1596 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1597 area = &(zone->free_area[current_order]); 1598 page = get_page_from_free_area(area, migratetype); 1599 if (!page) 1600 continue; 1601 1602 page_del_and_expand(zone, page, order, current_order, 1603 migratetype); 1604 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1605 pcp_allowed_order(order) && 1606 migratetype < MIGRATE_PCPTYPES); 1607 return page; 1608 } 1609 1610 return NULL; 1611 } 1612 1613 1614 /* 1615 * This array describes the order lists are fallen back to when 1616 * the free lists for the desirable migrate type are depleted 1617 * 1618 * The other migratetypes do not have fallbacks. 1619 */ 1620 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1621 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1622 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1623 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1624 }; 1625 1626 #ifdef CONFIG_CMA 1627 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1628 unsigned int order) 1629 { 1630 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1631 } 1632 #else 1633 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1634 unsigned int order) { return NULL; } 1635 #endif 1636 1637 /* 1638 * Change the type of a block and move all its free pages to that 1639 * type's freelist. 1640 */ 1641 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1642 int old_mt, int new_mt) 1643 { 1644 struct page *page; 1645 unsigned long pfn, end_pfn; 1646 unsigned int order; 1647 int pages_moved = 0; 1648 1649 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1650 end_pfn = pageblock_end_pfn(start_pfn); 1651 1652 for (pfn = start_pfn; pfn < end_pfn;) { 1653 page = pfn_to_page(pfn); 1654 if (!PageBuddy(page)) { 1655 pfn++; 1656 continue; 1657 } 1658 1659 /* Make sure we are not inadvertently changing nodes */ 1660 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1661 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1662 1663 order = buddy_order(page); 1664 1665 move_to_free_list(page, zone, order, old_mt, new_mt); 1666 1667 pfn += 1 << order; 1668 pages_moved += 1 << order; 1669 } 1670 1671 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1672 1673 return pages_moved; 1674 } 1675 1676 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1677 unsigned long *start_pfn, 1678 int *num_free, int *num_movable) 1679 { 1680 unsigned long pfn, start, end; 1681 1682 pfn = page_to_pfn(page); 1683 start = pageblock_start_pfn(pfn); 1684 end = pageblock_end_pfn(pfn); 1685 1686 /* 1687 * The caller only has the lock for @zone, don't touch ranges 1688 * that straddle into other zones. While we could move part of 1689 * the range that's inside the zone, this call is usually 1690 * accompanied by other operations such as migratetype updates 1691 * which also should be locked. 1692 */ 1693 if (!zone_spans_pfn(zone, start)) 1694 return false; 1695 if (!zone_spans_pfn(zone, end - 1)) 1696 return false; 1697 1698 *start_pfn = start; 1699 1700 if (num_free) { 1701 *num_free = 0; 1702 *num_movable = 0; 1703 for (pfn = start; pfn < end;) { 1704 page = pfn_to_page(pfn); 1705 if (PageBuddy(page)) { 1706 int nr = 1 << buddy_order(page); 1707 1708 *num_free += nr; 1709 pfn += nr; 1710 continue; 1711 } 1712 /* 1713 * We assume that pages that could be isolated for 1714 * migration are movable. But we don't actually try 1715 * isolating, as that would be expensive. 1716 */ 1717 if (PageLRU(page) || __PageMovable(page)) 1718 (*num_movable)++; 1719 pfn++; 1720 } 1721 } 1722 1723 return true; 1724 } 1725 1726 static int move_freepages_block(struct zone *zone, struct page *page, 1727 int old_mt, int new_mt) 1728 { 1729 unsigned long start_pfn; 1730 1731 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1732 return -1; 1733 1734 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1735 } 1736 1737 #ifdef CONFIG_MEMORY_ISOLATION 1738 /* Look for a buddy that straddles start_pfn */ 1739 static unsigned long find_large_buddy(unsigned long start_pfn) 1740 { 1741 int order = 0; 1742 struct page *page; 1743 unsigned long pfn = start_pfn; 1744 1745 while (!PageBuddy(page = pfn_to_page(pfn))) { 1746 /* Nothing found */ 1747 if (++order > MAX_PAGE_ORDER) 1748 return start_pfn; 1749 pfn &= ~0UL << order; 1750 } 1751 1752 /* 1753 * Found a preceding buddy, but does it straddle? 1754 */ 1755 if (pfn + (1 << buddy_order(page)) > start_pfn) 1756 return pfn; 1757 1758 /* Nothing found */ 1759 return start_pfn; 1760 } 1761 1762 /** 1763 * move_freepages_block_isolate - move free pages in block for page isolation 1764 * @zone: the zone 1765 * @page: the pageblock page 1766 * @migratetype: migratetype to set on the pageblock 1767 * 1768 * This is similar to move_freepages_block(), but handles the special 1769 * case encountered in page isolation, where the block of interest 1770 * might be part of a larger buddy spanning multiple pageblocks. 1771 * 1772 * Unlike the regular page allocator path, which moves pages while 1773 * stealing buddies off the freelist, page isolation is interested in 1774 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1775 * 1776 * This function handles that. Straddling buddies are split into 1777 * individual pageblocks. Only the block of interest is moved. 1778 * 1779 * Returns %true if pages could be moved, %false otherwise. 1780 */ 1781 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1782 int migratetype) 1783 { 1784 unsigned long start_pfn, pfn; 1785 1786 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1787 return false; 1788 1789 /* No splits needed if buddies can't span multiple blocks */ 1790 if (pageblock_order == MAX_PAGE_ORDER) 1791 goto move; 1792 1793 /* We're a tail block in a larger buddy */ 1794 pfn = find_large_buddy(start_pfn); 1795 if (pfn != start_pfn) { 1796 struct page *buddy = pfn_to_page(pfn); 1797 int order = buddy_order(buddy); 1798 1799 del_page_from_free_list(buddy, zone, order, 1800 get_pfnblock_migratetype(buddy, pfn)); 1801 set_pageblock_migratetype(page, migratetype); 1802 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1803 return true; 1804 } 1805 1806 /* We're the starting block of a larger buddy */ 1807 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1808 int order = buddy_order(page); 1809 1810 del_page_from_free_list(page, zone, order, 1811 get_pfnblock_migratetype(page, pfn)); 1812 set_pageblock_migratetype(page, migratetype); 1813 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1814 return true; 1815 } 1816 move: 1817 __move_freepages_block(zone, start_pfn, 1818 get_pfnblock_migratetype(page, start_pfn), 1819 migratetype); 1820 return true; 1821 } 1822 #endif /* CONFIG_MEMORY_ISOLATION */ 1823 1824 static void change_pageblock_range(struct page *pageblock_page, 1825 int start_order, int migratetype) 1826 { 1827 int nr_pageblocks = 1 << (start_order - pageblock_order); 1828 1829 while (nr_pageblocks--) { 1830 set_pageblock_migratetype(pageblock_page, migratetype); 1831 pageblock_page += pageblock_nr_pages; 1832 } 1833 } 1834 1835 /* 1836 * When we are falling back to another migratetype during allocation, try to 1837 * steal extra free pages from the same pageblocks to satisfy further 1838 * allocations, instead of polluting multiple pageblocks. 1839 * 1840 * If we are stealing a relatively large buddy page, it is likely there will 1841 * be more free pages in the pageblock, so try to steal them all. For 1842 * reclaimable and unmovable allocations, we steal regardless of page size, 1843 * as fragmentation caused by those allocations polluting movable pageblocks 1844 * is worse than movable allocations stealing from unmovable and reclaimable 1845 * pageblocks. 1846 */ 1847 static bool can_steal_fallback(unsigned int order, int start_mt) 1848 { 1849 /* 1850 * Leaving this order check is intended, although there is 1851 * relaxed order check in next check. The reason is that 1852 * we can actually steal whole pageblock if this condition met, 1853 * but, below check doesn't guarantee it and that is just heuristic 1854 * so could be changed anytime. 1855 */ 1856 if (order >= pageblock_order) 1857 return true; 1858 1859 if (order >= pageblock_order / 2 || 1860 start_mt == MIGRATE_RECLAIMABLE || 1861 start_mt == MIGRATE_UNMOVABLE || 1862 page_group_by_mobility_disabled) 1863 return true; 1864 1865 return false; 1866 } 1867 1868 static inline bool boost_watermark(struct zone *zone) 1869 { 1870 unsigned long max_boost; 1871 1872 if (!watermark_boost_factor) 1873 return false; 1874 /* 1875 * Don't bother in zones that are unlikely to produce results. 1876 * On small machines, including kdump capture kernels running 1877 * in a small area, boosting the watermark can cause an out of 1878 * memory situation immediately. 1879 */ 1880 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1881 return false; 1882 1883 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1884 watermark_boost_factor, 10000); 1885 1886 /* 1887 * high watermark may be uninitialised if fragmentation occurs 1888 * very early in boot so do not boost. We do not fall 1889 * through and boost by pageblock_nr_pages as failing 1890 * allocations that early means that reclaim is not going 1891 * to help and it may even be impossible to reclaim the 1892 * boosted watermark resulting in a hang. 1893 */ 1894 if (!max_boost) 1895 return false; 1896 1897 max_boost = max(pageblock_nr_pages, max_boost); 1898 1899 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1900 max_boost); 1901 1902 return true; 1903 } 1904 1905 /* 1906 * This function implements actual steal behaviour. If order is large enough, we 1907 * can claim the whole pageblock for the requested migratetype. If not, we check 1908 * the pageblock for constituent pages; if at least half of the pages are free 1909 * or compatible, we can still claim the whole block, so pages freed in the 1910 * future will be put on the correct free list. Otherwise, we isolate exactly 1911 * the order we need from the fallback block and leave its migratetype alone. 1912 */ 1913 static struct page * 1914 steal_suitable_fallback(struct zone *zone, struct page *page, 1915 int current_order, int order, int start_type, 1916 unsigned int alloc_flags, bool whole_block) 1917 { 1918 int free_pages, movable_pages, alike_pages; 1919 unsigned long start_pfn; 1920 int block_type; 1921 1922 block_type = get_pageblock_migratetype(page); 1923 1924 /* 1925 * This can happen due to races and we want to prevent broken 1926 * highatomic accounting. 1927 */ 1928 if (is_migrate_highatomic(block_type)) 1929 goto single_page; 1930 1931 /* Take ownership for orders >= pageblock_order */ 1932 if (current_order >= pageblock_order) { 1933 unsigned int nr_added; 1934 1935 del_page_from_free_list(page, zone, current_order, block_type); 1936 change_pageblock_range(page, current_order, start_type); 1937 nr_added = expand(zone, page, order, current_order, start_type); 1938 account_freepages(zone, nr_added, start_type); 1939 return page; 1940 } 1941 1942 /* 1943 * Boost watermarks to increase reclaim pressure to reduce the 1944 * likelihood of future fallbacks. Wake kswapd now as the node 1945 * may be balanced overall and kswapd will not wake naturally. 1946 */ 1947 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1948 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1949 1950 /* We are not allowed to try stealing from the whole block */ 1951 if (!whole_block) 1952 goto single_page; 1953 1954 /* moving whole block can fail due to zone boundary conditions */ 1955 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1956 &movable_pages)) 1957 goto single_page; 1958 1959 /* 1960 * Determine how many pages are compatible with our allocation. 1961 * For movable allocation, it's the number of movable pages which 1962 * we just obtained. For other types it's a bit more tricky. 1963 */ 1964 if (start_type == MIGRATE_MOVABLE) { 1965 alike_pages = movable_pages; 1966 } else { 1967 /* 1968 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1969 * to MOVABLE pageblock, consider all non-movable pages as 1970 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1971 * vice versa, be conservative since we can't distinguish the 1972 * exact migratetype of non-movable pages. 1973 */ 1974 if (block_type == MIGRATE_MOVABLE) 1975 alike_pages = pageblock_nr_pages 1976 - (free_pages + movable_pages); 1977 else 1978 alike_pages = 0; 1979 } 1980 /* 1981 * If a sufficient number of pages in the block are either free or of 1982 * compatible migratability as our allocation, claim the whole block. 1983 */ 1984 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1985 page_group_by_mobility_disabled) { 1986 __move_freepages_block(zone, start_pfn, block_type, start_type); 1987 return __rmqueue_smallest(zone, order, start_type); 1988 } 1989 1990 single_page: 1991 page_del_and_expand(zone, page, order, current_order, block_type); 1992 return page; 1993 } 1994 1995 /* 1996 * Check whether there is a suitable fallback freepage with requested order. 1997 * If only_stealable is true, this function returns fallback_mt only if 1998 * we can steal other freepages all together. This would help to reduce 1999 * fragmentation due to mixed migratetype pages in one pageblock. 2000 */ 2001 int find_suitable_fallback(struct free_area *area, unsigned int order, 2002 int migratetype, bool only_stealable, bool *can_steal) 2003 { 2004 int i; 2005 int fallback_mt; 2006 2007 if (area->nr_free == 0) 2008 return -1; 2009 2010 *can_steal = false; 2011 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2012 fallback_mt = fallbacks[migratetype][i]; 2013 if (free_area_empty(area, fallback_mt)) 2014 continue; 2015 2016 if (can_steal_fallback(order, migratetype)) 2017 *can_steal = true; 2018 2019 if (!only_stealable) 2020 return fallback_mt; 2021 2022 if (*can_steal) 2023 return fallback_mt; 2024 } 2025 2026 return -1; 2027 } 2028 2029 /* 2030 * Reserve the pageblock(s) surrounding an allocation request for 2031 * exclusive use of high-order atomic allocations if there are no 2032 * empty page blocks that contain a page with a suitable order 2033 */ 2034 static void reserve_highatomic_pageblock(struct page *page, int order, 2035 struct zone *zone) 2036 { 2037 int mt; 2038 unsigned long max_managed, flags; 2039 2040 /* 2041 * The number reserved as: minimum is 1 pageblock, maximum is 2042 * roughly 1% of a zone. But if 1% of a zone falls below a 2043 * pageblock size, then don't reserve any pageblocks. 2044 * Check is race-prone but harmless. 2045 */ 2046 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 2047 return; 2048 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 2049 if (zone->nr_reserved_highatomic >= max_managed) 2050 return; 2051 2052 spin_lock_irqsave(&zone->lock, flags); 2053 2054 /* Recheck the nr_reserved_highatomic limit under the lock */ 2055 if (zone->nr_reserved_highatomic >= max_managed) 2056 goto out_unlock; 2057 2058 /* Yoink! */ 2059 mt = get_pageblock_migratetype(page); 2060 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2061 if (!migratetype_is_mergeable(mt)) 2062 goto out_unlock; 2063 2064 if (order < pageblock_order) { 2065 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 2066 goto out_unlock; 2067 zone->nr_reserved_highatomic += pageblock_nr_pages; 2068 } else { 2069 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 2070 zone->nr_reserved_highatomic += 1 << order; 2071 } 2072 2073 out_unlock: 2074 spin_unlock_irqrestore(&zone->lock, flags); 2075 } 2076 2077 /* 2078 * Used when an allocation is about to fail under memory pressure. This 2079 * potentially hurts the reliability of high-order allocations when under 2080 * intense memory pressure but failed atomic allocations should be easier 2081 * to recover from than an OOM. 2082 * 2083 * If @force is true, try to unreserve pageblocks even though highatomic 2084 * pageblock is exhausted. 2085 */ 2086 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2087 bool force) 2088 { 2089 struct zonelist *zonelist = ac->zonelist; 2090 unsigned long flags; 2091 struct zoneref *z; 2092 struct zone *zone; 2093 struct page *page; 2094 int order; 2095 int ret; 2096 2097 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2098 ac->nodemask) { 2099 /* 2100 * Preserve at least one pageblock unless memory pressure 2101 * is really high. 2102 */ 2103 if (!force && zone->nr_reserved_highatomic <= 2104 pageblock_nr_pages) 2105 continue; 2106 2107 spin_lock_irqsave(&zone->lock, flags); 2108 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2109 struct free_area *area = &(zone->free_area[order]); 2110 int mt; 2111 2112 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2113 if (!page) 2114 continue; 2115 2116 mt = get_pageblock_migratetype(page); 2117 /* 2118 * In page freeing path, migratetype change is racy so 2119 * we can counter several free pages in a pageblock 2120 * in this loop although we changed the pageblock type 2121 * from highatomic to ac->migratetype. So we should 2122 * adjust the count once. 2123 */ 2124 if (is_migrate_highatomic(mt)) { 2125 unsigned long size; 2126 /* 2127 * It should never happen but changes to 2128 * locking could inadvertently allow a per-cpu 2129 * drain to add pages to MIGRATE_HIGHATOMIC 2130 * while unreserving so be safe and watch for 2131 * underflows. 2132 */ 2133 size = max(pageblock_nr_pages, 1UL << order); 2134 size = min(size, zone->nr_reserved_highatomic); 2135 zone->nr_reserved_highatomic -= size; 2136 } 2137 2138 /* 2139 * Convert to ac->migratetype and avoid the normal 2140 * pageblock stealing heuristics. Minimally, the caller 2141 * is doing the work and needs the pages. More 2142 * importantly, if the block was always converted to 2143 * MIGRATE_UNMOVABLE or another type then the number 2144 * of pageblocks that cannot be completely freed 2145 * may increase. 2146 */ 2147 if (order < pageblock_order) 2148 ret = move_freepages_block(zone, page, mt, 2149 ac->migratetype); 2150 else { 2151 move_to_free_list(page, zone, order, mt, 2152 ac->migratetype); 2153 change_pageblock_range(page, order, 2154 ac->migratetype); 2155 ret = 1; 2156 } 2157 /* 2158 * Reserving the block(s) already succeeded, 2159 * so this should not fail on zone boundaries. 2160 */ 2161 WARN_ON_ONCE(ret == -1); 2162 if (ret > 0) { 2163 spin_unlock_irqrestore(&zone->lock, flags); 2164 return ret; 2165 } 2166 } 2167 spin_unlock_irqrestore(&zone->lock, flags); 2168 } 2169 2170 return false; 2171 } 2172 2173 /* 2174 * Try finding a free buddy page on the fallback list and put it on the free 2175 * list of requested migratetype, possibly along with other pages from the same 2176 * block, depending on fragmentation avoidance heuristics. Returns true if 2177 * fallback was found so that __rmqueue_smallest() can grab it. 2178 * 2179 * The use of signed ints for order and current_order is a deliberate 2180 * deviation from the rest of this file, to make the for loop 2181 * condition simpler. 2182 */ 2183 static __always_inline struct page * 2184 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2185 unsigned int alloc_flags) 2186 { 2187 struct free_area *area; 2188 int current_order; 2189 int min_order = order; 2190 struct page *page; 2191 int fallback_mt; 2192 bool can_steal; 2193 2194 /* 2195 * Do not steal pages from freelists belonging to other pageblocks 2196 * i.e. orders < pageblock_order. If there are no local zones free, 2197 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2198 */ 2199 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2200 min_order = pageblock_order; 2201 2202 /* 2203 * Find the largest available free page in the other list. This roughly 2204 * approximates finding the pageblock with the most free pages, which 2205 * would be too costly to do exactly. 2206 */ 2207 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2208 --current_order) { 2209 area = &(zone->free_area[current_order]); 2210 fallback_mt = find_suitable_fallback(area, current_order, 2211 start_migratetype, false, &can_steal); 2212 if (fallback_mt == -1) 2213 continue; 2214 2215 /* 2216 * We cannot steal all free pages from the pageblock and the 2217 * requested migratetype is movable. In that case it's better to 2218 * steal and split the smallest available page instead of the 2219 * largest available page, because even if the next movable 2220 * allocation falls back into a different pageblock than this 2221 * one, it won't cause permanent fragmentation. 2222 */ 2223 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2224 && current_order > order) 2225 goto find_smallest; 2226 2227 goto do_steal; 2228 } 2229 2230 return NULL; 2231 2232 find_smallest: 2233 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2234 area = &(zone->free_area[current_order]); 2235 fallback_mt = find_suitable_fallback(area, current_order, 2236 start_migratetype, false, &can_steal); 2237 if (fallback_mt != -1) 2238 break; 2239 } 2240 2241 /* 2242 * This should not happen - we already found a suitable fallback 2243 * when looking for the largest page. 2244 */ 2245 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2246 2247 do_steal: 2248 page = get_page_from_free_area(area, fallback_mt); 2249 2250 /* take off list, maybe claim block, expand remainder */ 2251 page = steal_suitable_fallback(zone, page, current_order, order, 2252 start_migratetype, alloc_flags, can_steal); 2253 2254 trace_mm_page_alloc_extfrag(page, order, current_order, 2255 start_migratetype, fallback_mt); 2256 2257 return page; 2258 } 2259 2260 /* 2261 * Do the hard work of removing an element from the buddy allocator. 2262 * Call me with the zone->lock already held. 2263 */ 2264 static __always_inline struct page * 2265 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2266 unsigned int alloc_flags) 2267 { 2268 struct page *page; 2269 2270 if (IS_ENABLED(CONFIG_CMA)) { 2271 /* 2272 * Balance movable allocations between regular and CMA areas by 2273 * allocating from CMA when over half of the zone's free memory 2274 * is in the CMA area. 2275 */ 2276 if (alloc_flags & ALLOC_CMA && 2277 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2278 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2279 page = __rmqueue_cma_fallback(zone, order); 2280 if (page) 2281 return page; 2282 } 2283 } 2284 2285 page = __rmqueue_smallest(zone, order, migratetype); 2286 if (unlikely(!page)) { 2287 if (alloc_flags & ALLOC_CMA) 2288 page = __rmqueue_cma_fallback(zone, order); 2289 2290 if (!page) 2291 page = __rmqueue_fallback(zone, order, migratetype, 2292 alloc_flags); 2293 } 2294 return page; 2295 } 2296 2297 /* 2298 * Obtain a specified number of elements from the buddy allocator, all under 2299 * a single hold of the lock, for efficiency. Add them to the supplied list. 2300 * Returns the number of new pages which were placed at *list. 2301 */ 2302 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2303 unsigned long count, struct list_head *list, 2304 int migratetype, unsigned int alloc_flags) 2305 { 2306 unsigned long flags; 2307 int i; 2308 2309 spin_lock_irqsave(&zone->lock, flags); 2310 for (i = 0; i < count; ++i) { 2311 struct page *page = __rmqueue(zone, order, migratetype, 2312 alloc_flags); 2313 if (unlikely(page == NULL)) 2314 break; 2315 2316 /* 2317 * Split buddy pages returned by expand() are received here in 2318 * physical page order. The page is added to the tail of 2319 * caller's list. From the callers perspective, the linked list 2320 * is ordered by page number under some conditions. This is 2321 * useful for IO devices that can forward direction from the 2322 * head, thus also in the physical page order. This is useful 2323 * for IO devices that can merge IO requests if the physical 2324 * pages are ordered properly. 2325 */ 2326 list_add_tail(&page->pcp_list, list); 2327 } 2328 spin_unlock_irqrestore(&zone->lock, flags); 2329 2330 return i; 2331 } 2332 2333 /* 2334 * Called from the vmstat counter updater to decay the PCP high. 2335 * Return whether there are addition works to do. 2336 */ 2337 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2338 { 2339 int high_min, to_drain, batch; 2340 int todo = 0; 2341 2342 high_min = READ_ONCE(pcp->high_min); 2343 batch = READ_ONCE(pcp->batch); 2344 /* 2345 * Decrease pcp->high periodically to try to free possible 2346 * idle PCP pages. And, avoid to free too many pages to 2347 * control latency. This caps pcp->high decrement too. 2348 */ 2349 if (pcp->high > high_min) { 2350 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2351 pcp->high - (pcp->high >> 3), high_min); 2352 if (pcp->high > high_min) 2353 todo++; 2354 } 2355 2356 to_drain = pcp->count - pcp->high; 2357 if (to_drain > 0) { 2358 spin_lock(&pcp->lock); 2359 free_pcppages_bulk(zone, to_drain, pcp, 0); 2360 spin_unlock(&pcp->lock); 2361 todo++; 2362 } 2363 2364 return todo; 2365 } 2366 2367 #ifdef CONFIG_NUMA 2368 /* 2369 * Called from the vmstat counter updater to drain pagesets of this 2370 * currently executing processor on remote nodes after they have 2371 * expired. 2372 */ 2373 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2374 { 2375 int to_drain, batch; 2376 2377 batch = READ_ONCE(pcp->batch); 2378 to_drain = min(pcp->count, batch); 2379 if (to_drain > 0) { 2380 spin_lock(&pcp->lock); 2381 free_pcppages_bulk(zone, to_drain, pcp, 0); 2382 spin_unlock(&pcp->lock); 2383 } 2384 } 2385 #endif 2386 2387 /* 2388 * Drain pcplists of the indicated processor and zone. 2389 */ 2390 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2391 { 2392 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2393 int count; 2394 2395 do { 2396 spin_lock(&pcp->lock); 2397 count = pcp->count; 2398 if (count) { 2399 int to_drain = min(count, 2400 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2401 2402 free_pcppages_bulk(zone, to_drain, pcp, 0); 2403 count -= to_drain; 2404 } 2405 spin_unlock(&pcp->lock); 2406 } while (count); 2407 } 2408 2409 /* 2410 * Drain pcplists of all zones on the indicated processor. 2411 */ 2412 static void drain_pages(unsigned int cpu) 2413 { 2414 struct zone *zone; 2415 2416 for_each_populated_zone(zone) { 2417 drain_pages_zone(cpu, zone); 2418 } 2419 } 2420 2421 /* 2422 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2423 */ 2424 void drain_local_pages(struct zone *zone) 2425 { 2426 int cpu = smp_processor_id(); 2427 2428 if (zone) 2429 drain_pages_zone(cpu, zone); 2430 else 2431 drain_pages(cpu); 2432 } 2433 2434 /* 2435 * The implementation of drain_all_pages(), exposing an extra parameter to 2436 * drain on all cpus. 2437 * 2438 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2439 * not empty. The check for non-emptiness can however race with a free to 2440 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2441 * that need the guarantee that every CPU has drained can disable the 2442 * optimizing racy check. 2443 */ 2444 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2445 { 2446 int cpu; 2447 2448 /* 2449 * Allocate in the BSS so we won't require allocation in 2450 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2451 */ 2452 static cpumask_t cpus_with_pcps; 2453 2454 /* 2455 * Do not drain if one is already in progress unless it's specific to 2456 * a zone. Such callers are primarily CMA and memory hotplug and need 2457 * the drain to be complete when the call returns. 2458 */ 2459 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2460 if (!zone) 2461 return; 2462 mutex_lock(&pcpu_drain_mutex); 2463 } 2464 2465 /* 2466 * We don't care about racing with CPU hotplug event 2467 * as offline notification will cause the notified 2468 * cpu to drain that CPU pcps and on_each_cpu_mask 2469 * disables preemption as part of its processing 2470 */ 2471 for_each_online_cpu(cpu) { 2472 struct per_cpu_pages *pcp; 2473 struct zone *z; 2474 bool has_pcps = false; 2475 2476 if (force_all_cpus) { 2477 /* 2478 * The pcp.count check is racy, some callers need a 2479 * guarantee that no cpu is missed. 2480 */ 2481 has_pcps = true; 2482 } else if (zone) { 2483 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2484 if (pcp->count) 2485 has_pcps = true; 2486 } else { 2487 for_each_populated_zone(z) { 2488 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2489 if (pcp->count) { 2490 has_pcps = true; 2491 break; 2492 } 2493 } 2494 } 2495 2496 if (has_pcps) 2497 cpumask_set_cpu(cpu, &cpus_with_pcps); 2498 else 2499 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2500 } 2501 2502 for_each_cpu(cpu, &cpus_with_pcps) { 2503 if (zone) 2504 drain_pages_zone(cpu, zone); 2505 else 2506 drain_pages(cpu); 2507 } 2508 2509 mutex_unlock(&pcpu_drain_mutex); 2510 } 2511 2512 /* 2513 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2514 * 2515 * When zone parameter is non-NULL, spill just the single zone's pages. 2516 */ 2517 void drain_all_pages(struct zone *zone) 2518 { 2519 __drain_all_pages(zone, false); 2520 } 2521 2522 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2523 { 2524 int min_nr_free, max_nr_free; 2525 2526 /* Free as much as possible if batch freeing high-order pages. */ 2527 if (unlikely(free_high)) 2528 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2529 2530 /* Check for PCP disabled or boot pageset */ 2531 if (unlikely(high < batch)) 2532 return 1; 2533 2534 /* Leave at least pcp->batch pages on the list */ 2535 min_nr_free = batch; 2536 max_nr_free = high - batch; 2537 2538 /* 2539 * Increase the batch number to the number of the consecutive 2540 * freed pages to reduce zone lock contention. 2541 */ 2542 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2543 2544 return batch; 2545 } 2546 2547 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2548 int batch, bool free_high) 2549 { 2550 int high, high_min, high_max; 2551 2552 high_min = READ_ONCE(pcp->high_min); 2553 high_max = READ_ONCE(pcp->high_max); 2554 high = pcp->high = clamp(pcp->high, high_min, high_max); 2555 2556 if (unlikely(!high)) 2557 return 0; 2558 2559 if (unlikely(free_high)) { 2560 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2561 high_min); 2562 return 0; 2563 } 2564 2565 /* 2566 * If reclaim is active, limit the number of pages that can be 2567 * stored on pcp lists 2568 */ 2569 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2570 int free_count = max_t(int, pcp->free_count, batch); 2571 2572 pcp->high = max(high - free_count, high_min); 2573 return min(batch << 2, pcp->high); 2574 } 2575 2576 if (high_min == high_max) 2577 return high; 2578 2579 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2580 int free_count = max_t(int, pcp->free_count, batch); 2581 2582 pcp->high = max(high - free_count, high_min); 2583 high = max(pcp->count, high_min); 2584 } else if (pcp->count >= high) { 2585 int need_high = pcp->free_count + batch; 2586 2587 /* pcp->high should be large enough to hold batch freed pages */ 2588 if (pcp->high < need_high) 2589 pcp->high = clamp(need_high, high_min, high_max); 2590 } 2591 2592 return high; 2593 } 2594 2595 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2596 struct page *page, int migratetype, 2597 unsigned int order) 2598 { 2599 int high, batch; 2600 int pindex; 2601 bool free_high = false; 2602 2603 /* 2604 * On freeing, reduce the number of pages that are batch allocated. 2605 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2606 * allocations. 2607 */ 2608 pcp->alloc_factor >>= 1; 2609 __count_vm_events(PGFREE, 1 << order); 2610 pindex = order_to_pindex(migratetype, order); 2611 list_add(&page->pcp_list, &pcp->lists[pindex]); 2612 pcp->count += 1 << order; 2613 2614 batch = READ_ONCE(pcp->batch); 2615 /* 2616 * As high-order pages other than THP's stored on PCP can contribute 2617 * to fragmentation, limit the number stored when PCP is heavily 2618 * freeing without allocation. The remainder after bulk freeing 2619 * stops will be drained from vmstat refresh context. 2620 */ 2621 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2622 free_high = (pcp->free_count >= batch && 2623 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2624 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2625 pcp->count >= READ_ONCE(batch))); 2626 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2627 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2628 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2629 } 2630 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2631 pcp->free_count += (1 << order); 2632 high = nr_pcp_high(pcp, zone, batch, free_high); 2633 if (pcp->count >= high) { 2634 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2635 pcp, pindex); 2636 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2637 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2638 ZONE_MOVABLE, 0)) 2639 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2640 } 2641 } 2642 2643 /* 2644 * Free a pcp page 2645 */ 2646 void free_unref_page(struct page *page, unsigned int order) 2647 { 2648 unsigned long __maybe_unused UP_flags; 2649 struct per_cpu_pages *pcp; 2650 struct zone *zone; 2651 unsigned long pfn = page_to_pfn(page); 2652 int migratetype; 2653 2654 if (!pcp_allowed_order(order)) { 2655 __free_pages_ok(page, order, FPI_NONE); 2656 return; 2657 } 2658 2659 if (!free_pages_prepare(page, order)) 2660 return; 2661 2662 /* 2663 * We only track unmovable, reclaimable and movable on pcp lists. 2664 * Place ISOLATE pages on the isolated list because they are being 2665 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2666 * get those areas back if necessary. Otherwise, we may have to free 2667 * excessively into the page allocator 2668 */ 2669 migratetype = get_pfnblock_migratetype(page, pfn); 2670 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2671 if (unlikely(is_migrate_isolate(migratetype))) { 2672 free_one_page(page_zone(page), page, pfn, order, FPI_NONE); 2673 return; 2674 } 2675 migratetype = MIGRATE_MOVABLE; 2676 } 2677 2678 zone = page_zone(page); 2679 pcp_trylock_prepare(UP_flags); 2680 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2681 if (pcp) { 2682 free_unref_page_commit(zone, pcp, page, migratetype, order); 2683 pcp_spin_unlock(pcp); 2684 } else { 2685 free_one_page(zone, page, pfn, order, FPI_NONE); 2686 } 2687 pcp_trylock_finish(UP_flags); 2688 } 2689 2690 /* 2691 * Free a batch of folios 2692 */ 2693 void free_unref_folios(struct folio_batch *folios) 2694 { 2695 unsigned long __maybe_unused UP_flags; 2696 struct per_cpu_pages *pcp = NULL; 2697 struct zone *locked_zone = NULL; 2698 int i, j; 2699 2700 /* Prepare folios for freeing */ 2701 for (i = 0, j = 0; i < folios->nr; i++) { 2702 struct folio *folio = folios->folios[i]; 2703 unsigned long pfn = folio_pfn(folio); 2704 unsigned int order = folio_order(folio); 2705 2706 if (!free_pages_prepare(&folio->page, order)) 2707 continue; 2708 /* 2709 * Free orders not handled on the PCP directly to the 2710 * allocator. 2711 */ 2712 if (!pcp_allowed_order(order)) { 2713 free_one_page(folio_zone(folio), &folio->page, 2714 pfn, order, FPI_NONE); 2715 continue; 2716 } 2717 folio->private = (void *)(unsigned long)order; 2718 if (j != i) 2719 folios->folios[j] = folio; 2720 j++; 2721 } 2722 folios->nr = j; 2723 2724 for (i = 0; i < folios->nr; i++) { 2725 struct folio *folio = folios->folios[i]; 2726 struct zone *zone = folio_zone(folio); 2727 unsigned long pfn = folio_pfn(folio); 2728 unsigned int order = (unsigned long)folio->private; 2729 int migratetype; 2730 2731 folio->private = NULL; 2732 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2733 2734 /* Different zone requires a different pcp lock */ 2735 if (zone != locked_zone || 2736 is_migrate_isolate(migratetype)) { 2737 if (pcp) { 2738 pcp_spin_unlock(pcp); 2739 pcp_trylock_finish(UP_flags); 2740 locked_zone = NULL; 2741 pcp = NULL; 2742 } 2743 2744 /* 2745 * Free isolated pages directly to the 2746 * allocator, see comment in free_unref_page. 2747 */ 2748 if (is_migrate_isolate(migratetype)) { 2749 free_one_page(zone, &folio->page, pfn, 2750 order, FPI_NONE); 2751 continue; 2752 } 2753 2754 /* 2755 * trylock is necessary as folios may be getting freed 2756 * from IRQ or SoftIRQ context after an IO completion. 2757 */ 2758 pcp_trylock_prepare(UP_flags); 2759 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2760 if (unlikely(!pcp)) { 2761 pcp_trylock_finish(UP_flags); 2762 free_one_page(zone, &folio->page, pfn, 2763 order, FPI_NONE); 2764 continue; 2765 } 2766 locked_zone = zone; 2767 } 2768 2769 /* 2770 * Non-isolated types over MIGRATE_PCPTYPES get added 2771 * to the MIGRATE_MOVABLE pcp list. 2772 */ 2773 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2774 migratetype = MIGRATE_MOVABLE; 2775 2776 trace_mm_page_free_batched(&folio->page); 2777 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2778 order); 2779 } 2780 2781 if (pcp) { 2782 pcp_spin_unlock(pcp); 2783 pcp_trylock_finish(UP_flags); 2784 } 2785 folio_batch_reinit(folios); 2786 } 2787 2788 /* 2789 * split_page takes a non-compound higher-order page, and splits it into 2790 * n (1<<order) sub-pages: page[0..n] 2791 * Each sub-page must be freed individually. 2792 * 2793 * Note: this is probably too low level an operation for use in drivers. 2794 * Please consult with lkml before using this in your driver. 2795 */ 2796 void split_page(struct page *page, unsigned int order) 2797 { 2798 int i; 2799 2800 VM_BUG_ON_PAGE(PageCompound(page), page); 2801 VM_BUG_ON_PAGE(!page_count(page), page); 2802 2803 for (i = 1; i < (1 << order); i++) 2804 set_page_refcounted(page + i); 2805 split_page_owner(page, order, 0); 2806 pgalloc_tag_split(page_folio(page), order, 0); 2807 split_page_memcg(page, order, 0); 2808 } 2809 EXPORT_SYMBOL_GPL(split_page); 2810 2811 int __isolate_free_page(struct page *page, unsigned int order) 2812 { 2813 struct zone *zone = page_zone(page); 2814 int mt = get_pageblock_migratetype(page); 2815 2816 if (!is_migrate_isolate(mt)) { 2817 unsigned long watermark; 2818 /* 2819 * Obey watermarks as if the page was being allocated. We can 2820 * emulate a high-order watermark check with a raised order-0 2821 * watermark, because we already know our high-order page 2822 * exists. 2823 */ 2824 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2825 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2826 return 0; 2827 } 2828 2829 del_page_from_free_list(page, zone, order, mt); 2830 2831 /* 2832 * Set the pageblock if the isolated page is at least half of a 2833 * pageblock 2834 */ 2835 if (order >= pageblock_order - 1) { 2836 struct page *endpage = page + (1 << order) - 1; 2837 for (; page < endpage; page += pageblock_nr_pages) { 2838 int mt = get_pageblock_migratetype(page); 2839 /* 2840 * Only change normal pageblocks (i.e., they can merge 2841 * with others) 2842 */ 2843 if (migratetype_is_mergeable(mt)) 2844 move_freepages_block(zone, page, mt, 2845 MIGRATE_MOVABLE); 2846 } 2847 } 2848 2849 return 1UL << order; 2850 } 2851 2852 /** 2853 * __putback_isolated_page - Return a now-isolated page back where we got it 2854 * @page: Page that was isolated 2855 * @order: Order of the isolated page 2856 * @mt: The page's pageblock's migratetype 2857 * 2858 * This function is meant to return a page pulled from the free lists via 2859 * __isolate_free_page back to the free lists they were pulled from. 2860 */ 2861 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2862 { 2863 struct zone *zone = page_zone(page); 2864 2865 /* zone lock should be held when this function is called */ 2866 lockdep_assert_held(&zone->lock); 2867 2868 /* Return isolated page to tail of freelist. */ 2869 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2870 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2871 } 2872 2873 /* 2874 * Update NUMA hit/miss statistics 2875 */ 2876 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2877 long nr_account) 2878 { 2879 #ifdef CONFIG_NUMA 2880 enum numa_stat_item local_stat = NUMA_LOCAL; 2881 2882 /* skip numa counters update if numa stats is disabled */ 2883 if (!static_branch_likely(&vm_numa_stat_key)) 2884 return; 2885 2886 if (zone_to_nid(z) != numa_node_id()) 2887 local_stat = NUMA_OTHER; 2888 2889 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2890 __count_numa_events(z, NUMA_HIT, nr_account); 2891 else { 2892 __count_numa_events(z, NUMA_MISS, nr_account); 2893 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2894 } 2895 __count_numa_events(z, local_stat, nr_account); 2896 #endif 2897 } 2898 2899 static __always_inline 2900 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2901 unsigned int order, unsigned int alloc_flags, 2902 int migratetype) 2903 { 2904 struct page *page; 2905 unsigned long flags; 2906 2907 do { 2908 page = NULL; 2909 spin_lock_irqsave(&zone->lock, flags); 2910 if (alloc_flags & ALLOC_HIGHATOMIC) 2911 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2912 if (!page) { 2913 page = __rmqueue(zone, order, migratetype, alloc_flags); 2914 2915 /* 2916 * If the allocation fails, allow OOM handling and 2917 * order-0 (atomic) allocs access to HIGHATOMIC 2918 * reserves as failing now is worse than failing a 2919 * high-order atomic allocation in the future. 2920 */ 2921 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 2922 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2923 2924 if (!page) { 2925 spin_unlock_irqrestore(&zone->lock, flags); 2926 return NULL; 2927 } 2928 } 2929 spin_unlock_irqrestore(&zone->lock, flags); 2930 } while (check_new_pages(page, order)); 2931 2932 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2933 zone_statistics(preferred_zone, zone, 1); 2934 2935 return page; 2936 } 2937 2938 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2939 { 2940 int high, base_batch, batch, max_nr_alloc; 2941 int high_max, high_min; 2942 2943 base_batch = READ_ONCE(pcp->batch); 2944 high_min = READ_ONCE(pcp->high_min); 2945 high_max = READ_ONCE(pcp->high_max); 2946 high = pcp->high = clamp(pcp->high, high_min, high_max); 2947 2948 /* Check for PCP disabled or boot pageset */ 2949 if (unlikely(high < base_batch)) 2950 return 1; 2951 2952 if (order) 2953 batch = base_batch; 2954 else 2955 batch = (base_batch << pcp->alloc_factor); 2956 2957 /* 2958 * If we had larger pcp->high, we could avoid to allocate from 2959 * zone. 2960 */ 2961 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2962 high = pcp->high = min(high + batch, high_max); 2963 2964 if (!order) { 2965 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2966 /* 2967 * Double the number of pages allocated each time there is 2968 * subsequent allocation of order-0 pages without any freeing. 2969 */ 2970 if (batch <= max_nr_alloc && 2971 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2972 pcp->alloc_factor++; 2973 batch = min(batch, max_nr_alloc); 2974 } 2975 2976 /* 2977 * Scale batch relative to order if batch implies free pages 2978 * can be stored on the PCP. Batch can be 1 for small zones or 2979 * for boot pagesets which should never store free pages as 2980 * the pages may belong to arbitrary zones. 2981 */ 2982 if (batch > 1) 2983 batch = max(batch >> order, 2); 2984 2985 return batch; 2986 } 2987 2988 /* Remove page from the per-cpu list, caller must protect the list */ 2989 static inline 2990 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2991 int migratetype, 2992 unsigned int alloc_flags, 2993 struct per_cpu_pages *pcp, 2994 struct list_head *list) 2995 { 2996 struct page *page; 2997 2998 do { 2999 if (list_empty(list)) { 3000 int batch = nr_pcp_alloc(pcp, zone, order); 3001 int alloced; 3002 3003 alloced = rmqueue_bulk(zone, order, 3004 batch, list, 3005 migratetype, alloc_flags); 3006 3007 pcp->count += alloced << order; 3008 if (unlikely(list_empty(list))) 3009 return NULL; 3010 } 3011 3012 page = list_first_entry(list, struct page, pcp_list); 3013 list_del(&page->pcp_list); 3014 pcp->count -= 1 << order; 3015 } while (check_new_pages(page, order)); 3016 3017 return page; 3018 } 3019 3020 /* Lock and remove page from the per-cpu list */ 3021 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3022 struct zone *zone, unsigned int order, 3023 int migratetype, unsigned int alloc_flags) 3024 { 3025 struct per_cpu_pages *pcp; 3026 struct list_head *list; 3027 struct page *page; 3028 unsigned long __maybe_unused UP_flags; 3029 3030 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3031 pcp_trylock_prepare(UP_flags); 3032 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3033 if (!pcp) { 3034 pcp_trylock_finish(UP_flags); 3035 return NULL; 3036 } 3037 3038 /* 3039 * On allocation, reduce the number of pages that are batch freed. 3040 * See nr_pcp_free() where free_factor is increased for subsequent 3041 * frees. 3042 */ 3043 pcp->free_count >>= 1; 3044 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3045 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3046 pcp_spin_unlock(pcp); 3047 pcp_trylock_finish(UP_flags); 3048 if (page) { 3049 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3050 zone_statistics(preferred_zone, zone, 1); 3051 } 3052 return page; 3053 } 3054 3055 /* 3056 * Allocate a page from the given zone. 3057 * Use pcplists for THP or "cheap" high-order allocations. 3058 */ 3059 3060 /* 3061 * Do not instrument rmqueue() with KMSAN. This function may call 3062 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3063 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3064 * may call rmqueue() again, which will result in a deadlock. 3065 */ 3066 __no_sanitize_memory 3067 static inline 3068 struct page *rmqueue(struct zone *preferred_zone, 3069 struct zone *zone, unsigned int order, 3070 gfp_t gfp_flags, unsigned int alloc_flags, 3071 int migratetype) 3072 { 3073 struct page *page; 3074 3075 if (likely(pcp_allowed_order(order))) { 3076 page = rmqueue_pcplist(preferred_zone, zone, order, 3077 migratetype, alloc_flags); 3078 if (likely(page)) 3079 goto out; 3080 } 3081 3082 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3083 migratetype); 3084 3085 out: 3086 /* Separate test+clear to avoid unnecessary atomics */ 3087 if ((alloc_flags & ALLOC_KSWAPD) && 3088 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3089 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3090 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3091 } 3092 3093 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3094 return page; 3095 } 3096 3097 static inline long __zone_watermark_unusable_free(struct zone *z, 3098 unsigned int order, unsigned int alloc_flags) 3099 { 3100 long unusable_free = (1 << order) - 1; 3101 3102 /* 3103 * If the caller does not have rights to reserves below the min 3104 * watermark then subtract the free pages reserved for highatomic. 3105 */ 3106 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3107 unusable_free += READ_ONCE(z->nr_free_highatomic); 3108 3109 #ifdef CONFIG_CMA 3110 /* If allocation can't use CMA areas don't use free CMA pages */ 3111 if (!(alloc_flags & ALLOC_CMA)) 3112 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3113 #endif 3114 3115 return unusable_free; 3116 } 3117 3118 /* 3119 * Return true if free base pages are above 'mark'. For high-order checks it 3120 * will return true of the order-0 watermark is reached and there is at least 3121 * one free page of a suitable size. Checking now avoids taking the zone lock 3122 * to check in the allocation paths if no pages are free. 3123 */ 3124 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3125 int highest_zoneidx, unsigned int alloc_flags, 3126 long free_pages) 3127 { 3128 long min = mark; 3129 int o; 3130 3131 /* free_pages may go negative - that's OK */ 3132 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3133 3134 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3135 /* 3136 * __GFP_HIGH allows access to 50% of the min reserve as well 3137 * as OOM. 3138 */ 3139 if (alloc_flags & ALLOC_MIN_RESERVE) { 3140 min -= min / 2; 3141 3142 /* 3143 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3144 * access more reserves than just __GFP_HIGH. Other 3145 * non-blocking allocations requests such as GFP_NOWAIT 3146 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3147 * access to the min reserve. 3148 */ 3149 if (alloc_flags & ALLOC_NON_BLOCK) 3150 min -= min / 4; 3151 } 3152 3153 /* 3154 * OOM victims can try even harder than the normal reserve 3155 * users on the grounds that it's definitely going to be in 3156 * the exit path shortly and free memory. Any allocation it 3157 * makes during the free path will be small and short-lived. 3158 */ 3159 if (alloc_flags & ALLOC_OOM) 3160 min -= min / 2; 3161 } 3162 3163 /* 3164 * Check watermarks for an order-0 allocation request. If these 3165 * are not met, then a high-order request also cannot go ahead 3166 * even if a suitable page happened to be free. 3167 */ 3168 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3169 return false; 3170 3171 /* If this is an order-0 request then the watermark is fine */ 3172 if (!order) 3173 return true; 3174 3175 /* For a high-order request, check at least one suitable page is free */ 3176 for (o = order; o < NR_PAGE_ORDERS; o++) { 3177 struct free_area *area = &z->free_area[o]; 3178 int mt; 3179 3180 if (!area->nr_free) 3181 continue; 3182 3183 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3184 if (!free_area_empty(area, mt)) 3185 return true; 3186 } 3187 3188 #ifdef CONFIG_CMA 3189 if ((alloc_flags & ALLOC_CMA) && 3190 !free_area_empty(area, MIGRATE_CMA)) { 3191 return true; 3192 } 3193 #endif 3194 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3195 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3196 return true; 3197 } 3198 } 3199 return false; 3200 } 3201 3202 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3203 int highest_zoneidx, unsigned int alloc_flags) 3204 { 3205 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3206 zone_page_state(z, NR_FREE_PAGES)); 3207 } 3208 3209 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3210 unsigned long mark, int highest_zoneidx, 3211 unsigned int alloc_flags, gfp_t gfp_mask) 3212 { 3213 long free_pages; 3214 3215 free_pages = zone_page_state(z, NR_FREE_PAGES); 3216 3217 /* 3218 * Fast check for order-0 only. If this fails then the reserves 3219 * need to be calculated. 3220 */ 3221 if (!order) { 3222 long usable_free; 3223 long reserved; 3224 3225 usable_free = free_pages; 3226 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3227 3228 /* reserved may over estimate high-atomic reserves. */ 3229 usable_free -= min(usable_free, reserved); 3230 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3231 return true; 3232 } 3233 3234 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3235 free_pages)) 3236 return true; 3237 3238 /* 3239 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3240 * when checking the min watermark. The min watermark is the 3241 * point where boosting is ignored so that kswapd is woken up 3242 * when below the low watermark. 3243 */ 3244 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3245 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3246 mark = z->_watermark[WMARK_MIN]; 3247 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3248 alloc_flags, free_pages); 3249 } 3250 3251 return false; 3252 } 3253 3254 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3255 unsigned long mark, int highest_zoneidx) 3256 { 3257 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3258 3259 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3260 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3261 3262 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3263 free_pages); 3264 } 3265 3266 #ifdef CONFIG_NUMA 3267 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3268 3269 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3270 { 3271 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3272 node_reclaim_distance; 3273 } 3274 #else /* CONFIG_NUMA */ 3275 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3276 { 3277 return true; 3278 } 3279 #endif /* CONFIG_NUMA */ 3280 3281 /* 3282 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3283 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3284 * premature use of a lower zone may cause lowmem pressure problems that 3285 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3286 * probably too small. It only makes sense to spread allocations to avoid 3287 * fragmentation between the Normal and DMA32 zones. 3288 */ 3289 static inline unsigned int 3290 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3291 { 3292 unsigned int alloc_flags; 3293 3294 /* 3295 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3296 * to save a branch. 3297 */ 3298 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3299 3300 #ifdef CONFIG_ZONE_DMA32 3301 if (!zone) 3302 return alloc_flags; 3303 3304 if (zone_idx(zone) != ZONE_NORMAL) 3305 return alloc_flags; 3306 3307 /* 3308 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3309 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3310 * on UMA that if Normal is populated then so is DMA32. 3311 */ 3312 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3313 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3314 return alloc_flags; 3315 3316 alloc_flags |= ALLOC_NOFRAGMENT; 3317 #endif /* CONFIG_ZONE_DMA32 */ 3318 return alloc_flags; 3319 } 3320 3321 /* Must be called after current_gfp_context() which can change gfp_mask */ 3322 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3323 unsigned int alloc_flags) 3324 { 3325 #ifdef CONFIG_CMA 3326 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3327 alloc_flags |= ALLOC_CMA; 3328 #endif 3329 return alloc_flags; 3330 } 3331 3332 /* 3333 * get_page_from_freelist goes through the zonelist trying to allocate 3334 * a page. 3335 */ 3336 static struct page * 3337 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3338 const struct alloc_context *ac) 3339 { 3340 struct zoneref *z; 3341 struct zone *zone; 3342 struct pglist_data *last_pgdat = NULL; 3343 bool last_pgdat_dirty_ok = false; 3344 bool no_fallback; 3345 3346 retry: 3347 /* 3348 * Scan zonelist, looking for a zone with enough free. 3349 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3350 */ 3351 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3352 z = ac->preferred_zoneref; 3353 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3354 ac->nodemask) { 3355 struct page *page; 3356 unsigned long mark; 3357 3358 if (cpusets_enabled() && 3359 (alloc_flags & ALLOC_CPUSET) && 3360 !__cpuset_zone_allowed(zone, gfp_mask)) 3361 continue; 3362 /* 3363 * When allocating a page cache page for writing, we 3364 * want to get it from a node that is within its dirty 3365 * limit, such that no single node holds more than its 3366 * proportional share of globally allowed dirty pages. 3367 * The dirty limits take into account the node's 3368 * lowmem reserves and high watermark so that kswapd 3369 * should be able to balance it without having to 3370 * write pages from its LRU list. 3371 * 3372 * XXX: For now, allow allocations to potentially 3373 * exceed the per-node dirty limit in the slowpath 3374 * (spread_dirty_pages unset) before going into reclaim, 3375 * which is important when on a NUMA setup the allowed 3376 * nodes are together not big enough to reach the 3377 * global limit. The proper fix for these situations 3378 * will require awareness of nodes in the 3379 * dirty-throttling and the flusher threads. 3380 */ 3381 if (ac->spread_dirty_pages) { 3382 if (last_pgdat != zone->zone_pgdat) { 3383 last_pgdat = zone->zone_pgdat; 3384 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3385 } 3386 3387 if (!last_pgdat_dirty_ok) 3388 continue; 3389 } 3390 3391 if (no_fallback && nr_online_nodes > 1 && 3392 zone != zonelist_zone(ac->preferred_zoneref)) { 3393 int local_nid; 3394 3395 /* 3396 * If moving to a remote node, retry but allow 3397 * fragmenting fallbacks. Locality is more important 3398 * than fragmentation avoidance. 3399 */ 3400 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3401 if (zone_to_nid(zone) != local_nid) { 3402 alloc_flags &= ~ALLOC_NOFRAGMENT; 3403 goto retry; 3404 } 3405 } 3406 3407 cond_accept_memory(zone, order); 3408 3409 /* 3410 * Detect whether the number of free pages is below high 3411 * watermark. If so, we will decrease pcp->high and free 3412 * PCP pages in free path to reduce the possibility of 3413 * premature page reclaiming. Detection is done here to 3414 * avoid to do that in hotter free path. 3415 */ 3416 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3417 goto check_alloc_wmark; 3418 3419 mark = high_wmark_pages(zone); 3420 if (zone_watermark_fast(zone, order, mark, 3421 ac->highest_zoneidx, alloc_flags, 3422 gfp_mask)) 3423 goto try_this_zone; 3424 else 3425 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3426 3427 check_alloc_wmark: 3428 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3429 if (!zone_watermark_fast(zone, order, mark, 3430 ac->highest_zoneidx, alloc_flags, 3431 gfp_mask)) { 3432 int ret; 3433 3434 if (cond_accept_memory(zone, order)) 3435 goto try_this_zone; 3436 3437 /* 3438 * Watermark failed for this zone, but see if we can 3439 * grow this zone if it contains deferred pages. 3440 */ 3441 if (deferred_pages_enabled()) { 3442 if (_deferred_grow_zone(zone, order)) 3443 goto try_this_zone; 3444 } 3445 /* Checked here to keep the fast path fast */ 3446 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3447 if (alloc_flags & ALLOC_NO_WATERMARKS) 3448 goto try_this_zone; 3449 3450 if (!node_reclaim_enabled() || 3451 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3452 continue; 3453 3454 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3455 switch (ret) { 3456 case NODE_RECLAIM_NOSCAN: 3457 /* did not scan */ 3458 continue; 3459 case NODE_RECLAIM_FULL: 3460 /* scanned but unreclaimable */ 3461 continue; 3462 default: 3463 /* did we reclaim enough */ 3464 if (zone_watermark_ok(zone, order, mark, 3465 ac->highest_zoneidx, alloc_flags)) 3466 goto try_this_zone; 3467 3468 continue; 3469 } 3470 } 3471 3472 try_this_zone: 3473 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3474 gfp_mask, alloc_flags, ac->migratetype); 3475 if (page) { 3476 prep_new_page(page, order, gfp_mask, alloc_flags); 3477 3478 /* 3479 * If this is a high-order atomic allocation then check 3480 * if the pageblock should be reserved for the future 3481 */ 3482 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3483 reserve_highatomic_pageblock(page, order, zone); 3484 3485 return page; 3486 } else { 3487 if (cond_accept_memory(zone, order)) 3488 goto try_this_zone; 3489 3490 /* Try again if zone has deferred pages */ 3491 if (deferred_pages_enabled()) { 3492 if (_deferred_grow_zone(zone, order)) 3493 goto try_this_zone; 3494 } 3495 } 3496 } 3497 3498 /* 3499 * It's possible on a UMA machine to get through all zones that are 3500 * fragmented. If avoiding fragmentation, reset and try again. 3501 */ 3502 if (no_fallback) { 3503 alloc_flags &= ~ALLOC_NOFRAGMENT; 3504 goto retry; 3505 } 3506 3507 return NULL; 3508 } 3509 3510 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3511 { 3512 unsigned int filter = SHOW_MEM_FILTER_NODES; 3513 3514 /* 3515 * This documents exceptions given to allocations in certain 3516 * contexts that are allowed to allocate outside current's set 3517 * of allowed nodes. 3518 */ 3519 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3520 if (tsk_is_oom_victim(current) || 3521 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3522 filter &= ~SHOW_MEM_FILTER_NODES; 3523 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3524 filter &= ~SHOW_MEM_FILTER_NODES; 3525 3526 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3527 } 3528 3529 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3530 { 3531 struct va_format vaf; 3532 va_list args; 3533 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3534 3535 if ((gfp_mask & __GFP_NOWARN) || 3536 !__ratelimit(&nopage_rs) || 3537 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3538 return; 3539 3540 va_start(args, fmt); 3541 vaf.fmt = fmt; 3542 vaf.va = &args; 3543 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3544 current->comm, &vaf, gfp_mask, &gfp_mask, 3545 nodemask_pr_args(nodemask)); 3546 va_end(args); 3547 3548 cpuset_print_current_mems_allowed(); 3549 pr_cont("\n"); 3550 dump_stack(); 3551 warn_alloc_show_mem(gfp_mask, nodemask); 3552 } 3553 3554 static inline struct page * 3555 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3556 unsigned int alloc_flags, 3557 const struct alloc_context *ac) 3558 { 3559 struct page *page; 3560 3561 page = get_page_from_freelist(gfp_mask, order, 3562 alloc_flags|ALLOC_CPUSET, ac); 3563 /* 3564 * fallback to ignore cpuset restriction if our nodes 3565 * are depleted 3566 */ 3567 if (!page) 3568 page = get_page_from_freelist(gfp_mask, order, 3569 alloc_flags, ac); 3570 3571 return page; 3572 } 3573 3574 static inline struct page * 3575 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3576 const struct alloc_context *ac, unsigned long *did_some_progress) 3577 { 3578 struct oom_control oc = { 3579 .zonelist = ac->zonelist, 3580 .nodemask = ac->nodemask, 3581 .memcg = NULL, 3582 .gfp_mask = gfp_mask, 3583 .order = order, 3584 }; 3585 struct page *page; 3586 3587 *did_some_progress = 0; 3588 3589 /* 3590 * Acquire the oom lock. If that fails, somebody else is 3591 * making progress for us. 3592 */ 3593 if (!mutex_trylock(&oom_lock)) { 3594 *did_some_progress = 1; 3595 schedule_timeout_uninterruptible(1); 3596 return NULL; 3597 } 3598 3599 /* 3600 * Go through the zonelist yet one more time, keep very high watermark 3601 * here, this is only to catch a parallel oom killing, we must fail if 3602 * we're still under heavy pressure. But make sure that this reclaim 3603 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3604 * allocation which will never fail due to oom_lock already held. 3605 */ 3606 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3607 ~__GFP_DIRECT_RECLAIM, order, 3608 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3609 if (page) 3610 goto out; 3611 3612 /* Coredumps can quickly deplete all memory reserves */ 3613 if (current->flags & PF_DUMPCORE) 3614 goto out; 3615 /* The OOM killer will not help higher order allocs */ 3616 if (order > PAGE_ALLOC_COSTLY_ORDER) 3617 goto out; 3618 /* 3619 * We have already exhausted all our reclaim opportunities without any 3620 * success so it is time to admit defeat. We will skip the OOM killer 3621 * because it is very likely that the caller has a more reasonable 3622 * fallback than shooting a random task. 3623 * 3624 * The OOM killer may not free memory on a specific node. 3625 */ 3626 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3627 goto out; 3628 /* The OOM killer does not needlessly kill tasks for lowmem */ 3629 if (ac->highest_zoneidx < ZONE_NORMAL) 3630 goto out; 3631 if (pm_suspended_storage()) 3632 goto out; 3633 /* 3634 * XXX: GFP_NOFS allocations should rather fail than rely on 3635 * other request to make a forward progress. 3636 * We are in an unfortunate situation where out_of_memory cannot 3637 * do much for this context but let's try it to at least get 3638 * access to memory reserved if the current task is killed (see 3639 * out_of_memory). Once filesystems are ready to handle allocation 3640 * failures more gracefully we should just bail out here. 3641 */ 3642 3643 /* Exhausted what can be done so it's blame time */ 3644 if (out_of_memory(&oc) || 3645 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3646 *did_some_progress = 1; 3647 3648 /* 3649 * Help non-failing allocations by giving them access to memory 3650 * reserves 3651 */ 3652 if (gfp_mask & __GFP_NOFAIL) 3653 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3654 ALLOC_NO_WATERMARKS, ac); 3655 } 3656 out: 3657 mutex_unlock(&oom_lock); 3658 return page; 3659 } 3660 3661 /* 3662 * Maximum number of compaction retries with a progress before OOM 3663 * killer is consider as the only way to move forward. 3664 */ 3665 #define MAX_COMPACT_RETRIES 16 3666 3667 #ifdef CONFIG_COMPACTION 3668 /* Try memory compaction for high-order allocations before reclaim */ 3669 static struct page * 3670 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3671 unsigned int alloc_flags, const struct alloc_context *ac, 3672 enum compact_priority prio, enum compact_result *compact_result) 3673 { 3674 struct page *page = NULL; 3675 unsigned long pflags; 3676 unsigned int noreclaim_flag; 3677 3678 if (!order) 3679 return NULL; 3680 3681 psi_memstall_enter(&pflags); 3682 delayacct_compact_start(); 3683 noreclaim_flag = memalloc_noreclaim_save(); 3684 3685 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3686 prio, &page); 3687 3688 memalloc_noreclaim_restore(noreclaim_flag); 3689 psi_memstall_leave(&pflags); 3690 delayacct_compact_end(); 3691 3692 if (*compact_result == COMPACT_SKIPPED) 3693 return NULL; 3694 /* 3695 * At least in one zone compaction wasn't deferred or skipped, so let's 3696 * count a compaction stall 3697 */ 3698 count_vm_event(COMPACTSTALL); 3699 3700 /* Prep a captured page if available */ 3701 if (page) 3702 prep_new_page(page, order, gfp_mask, alloc_flags); 3703 3704 /* Try get a page from the freelist if available */ 3705 if (!page) 3706 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3707 3708 if (page) { 3709 struct zone *zone = page_zone(page); 3710 3711 zone->compact_blockskip_flush = false; 3712 compaction_defer_reset(zone, order, true); 3713 count_vm_event(COMPACTSUCCESS); 3714 return page; 3715 } 3716 3717 /* 3718 * It's bad if compaction run occurs and fails. The most likely reason 3719 * is that pages exist, but not enough to satisfy watermarks. 3720 */ 3721 count_vm_event(COMPACTFAIL); 3722 3723 cond_resched(); 3724 3725 return NULL; 3726 } 3727 3728 static inline bool 3729 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3730 enum compact_result compact_result, 3731 enum compact_priority *compact_priority, 3732 int *compaction_retries) 3733 { 3734 int max_retries = MAX_COMPACT_RETRIES; 3735 int min_priority; 3736 bool ret = false; 3737 int retries = *compaction_retries; 3738 enum compact_priority priority = *compact_priority; 3739 3740 if (!order) 3741 return false; 3742 3743 if (fatal_signal_pending(current)) 3744 return false; 3745 3746 /* 3747 * Compaction was skipped due to a lack of free order-0 3748 * migration targets. Continue if reclaim can help. 3749 */ 3750 if (compact_result == COMPACT_SKIPPED) { 3751 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3752 goto out; 3753 } 3754 3755 /* 3756 * Compaction managed to coalesce some page blocks, but the 3757 * allocation failed presumably due to a race. Retry some. 3758 */ 3759 if (compact_result == COMPACT_SUCCESS) { 3760 /* 3761 * !costly requests are much more important than 3762 * __GFP_RETRY_MAYFAIL costly ones because they are de 3763 * facto nofail and invoke OOM killer to move on while 3764 * costly can fail and users are ready to cope with 3765 * that. 1/4 retries is rather arbitrary but we would 3766 * need much more detailed feedback from compaction to 3767 * make a better decision. 3768 */ 3769 if (order > PAGE_ALLOC_COSTLY_ORDER) 3770 max_retries /= 4; 3771 3772 if (++(*compaction_retries) <= max_retries) { 3773 ret = true; 3774 goto out; 3775 } 3776 } 3777 3778 /* 3779 * Compaction failed. Retry with increasing priority. 3780 */ 3781 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3782 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3783 3784 if (*compact_priority > min_priority) { 3785 (*compact_priority)--; 3786 *compaction_retries = 0; 3787 ret = true; 3788 } 3789 out: 3790 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3791 return ret; 3792 } 3793 #else 3794 static inline struct page * 3795 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3796 unsigned int alloc_flags, const struct alloc_context *ac, 3797 enum compact_priority prio, enum compact_result *compact_result) 3798 { 3799 *compact_result = COMPACT_SKIPPED; 3800 return NULL; 3801 } 3802 3803 static inline bool 3804 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3805 enum compact_result compact_result, 3806 enum compact_priority *compact_priority, 3807 int *compaction_retries) 3808 { 3809 struct zone *zone; 3810 struct zoneref *z; 3811 3812 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3813 return false; 3814 3815 /* 3816 * There are setups with compaction disabled which would prefer to loop 3817 * inside the allocator rather than hit the oom killer prematurely. 3818 * Let's give them a good hope and keep retrying while the order-0 3819 * watermarks are OK. 3820 */ 3821 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3822 ac->highest_zoneidx, ac->nodemask) { 3823 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3824 ac->highest_zoneidx, alloc_flags)) 3825 return true; 3826 } 3827 return false; 3828 } 3829 #endif /* CONFIG_COMPACTION */ 3830 3831 #ifdef CONFIG_LOCKDEP 3832 static struct lockdep_map __fs_reclaim_map = 3833 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3834 3835 static bool __need_reclaim(gfp_t gfp_mask) 3836 { 3837 /* no reclaim without waiting on it */ 3838 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3839 return false; 3840 3841 /* this guy won't enter reclaim */ 3842 if (current->flags & PF_MEMALLOC) 3843 return false; 3844 3845 if (gfp_mask & __GFP_NOLOCKDEP) 3846 return false; 3847 3848 return true; 3849 } 3850 3851 void __fs_reclaim_acquire(unsigned long ip) 3852 { 3853 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3854 } 3855 3856 void __fs_reclaim_release(unsigned long ip) 3857 { 3858 lock_release(&__fs_reclaim_map, ip); 3859 } 3860 3861 void fs_reclaim_acquire(gfp_t gfp_mask) 3862 { 3863 gfp_mask = current_gfp_context(gfp_mask); 3864 3865 if (__need_reclaim(gfp_mask)) { 3866 if (gfp_mask & __GFP_FS) 3867 __fs_reclaim_acquire(_RET_IP_); 3868 3869 #ifdef CONFIG_MMU_NOTIFIER 3870 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3871 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3872 #endif 3873 3874 } 3875 } 3876 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3877 3878 void fs_reclaim_release(gfp_t gfp_mask) 3879 { 3880 gfp_mask = current_gfp_context(gfp_mask); 3881 3882 if (__need_reclaim(gfp_mask)) { 3883 if (gfp_mask & __GFP_FS) 3884 __fs_reclaim_release(_RET_IP_); 3885 } 3886 } 3887 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3888 #endif 3889 3890 /* 3891 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3892 * have been rebuilt so allocation retries. Reader side does not lock and 3893 * retries the allocation if zonelist changes. Writer side is protected by the 3894 * embedded spin_lock. 3895 */ 3896 static DEFINE_SEQLOCK(zonelist_update_seq); 3897 3898 static unsigned int zonelist_iter_begin(void) 3899 { 3900 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3901 return read_seqbegin(&zonelist_update_seq); 3902 3903 return 0; 3904 } 3905 3906 static unsigned int check_retry_zonelist(unsigned int seq) 3907 { 3908 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3909 return read_seqretry(&zonelist_update_seq, seq); 3910 3911 return seq; 3912 } 3913 3914 /* Perform direct synchronous page reclaim */ 3915 static unsigned long 3916 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3917 const struct alloc_context *ac) 3918 { 3919 unsigned int noreclaim_flag; 3920 unsigned long progress; 3921 3922 cond_resched(); 3923 3924 /* We now go into synchronous reclaim */ 3925 cpuset_memory_pressure_bump(); 3926 fs_reclaim_acquire(gfp_mask); 3927 noreclaim_flag = memalloc_noreclaim_save(); 3928 3929 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3930 ac->nodemask); 3931 3932 memalloc_noreclaim_restore(noreclaim_flag); 3933 fs_reclaim_release(gfp_mask); 3934 3935 cond_resched(); 3936 3937 return progress; 3938 } 3939 3940 /* The really slow allocator path where we enter direct reclaim */ 3941 static inline struct page * 3942 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3943 unsigned int alloc_flags, const struct alloc_context *ac, 3944 unsigned long *did_some_progress) 3945 { 3946 struct page *page = NULL; 3947 unsigned long pflags; 3948 bool drained = false; 3949 3950 psi_memstall_enter(&pflags); 3951 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3952 if (unlikely(!(*did_some_progress))) 3953 goto out; 3954 3955 retry: 3956 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3957 3958 /* 3959 * If an allocation failed after direct reclaim, it could be because 3960 * pages are pinned on the per-cpu lists or in high alloc reserves. 3961 * Shrink them and try again 3962 */ 3963 if (!page && !drained) { 3964 unreserve_highatomic_pageblock(ac, false); 3965 drain_all_pages(NULL); 3966 drained = true; 3967 goto retry; 3968 } 3969 out: 3970 psi_memstall_leave(&pflags); 3971 3972 return page; 3973 } 3974 3975 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3976 const struct alloc_context *ac) 3977 { 3978 struct zoneref *z; 3979 struct zone *zone; 3980 pg_data_t *last_pgdat = NULL; 3981 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3982 3983 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3984 ac->nodemask) { 3985 if (!managed_zone(zone)) 3986 continue; 3987 if (last_pgdat != zone->zone_pgdat) { 3988 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3989 last_pgdat = zone->zone_pgdat; 3990 } 3991 } 3992 } 3993 3994 static inline unsigned int 3995 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3996 { 3997 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3998 3999 /* 4000 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4001 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4002 * to save two branches. 4003 */ 4004 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4005 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4006 4007 /* 4008 * The caller may dip into page reserves a bit more if the caller 4009 * cannot run direct reclaim, or if the caller has realtime scheduling 4010 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4011 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4012 */ 4013 alloc_flags |= (__force int) 4014 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4015 4016 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4017 /* 4018 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4019 * if it can't schedule. 4020 */ 4021 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4022 alloc_flags |= ALLOC_NON_BLOCK; 4023 4024 if (order > 0) 4025 alloc_flags |= ALLOC_HIGHATOMIC; 4026 } 4027 4028 /* 4029 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4030 * GFP_ATOMIC) rather than fail, see the comment for 4031 * cpuset_node_allowed(). 4032 */ 4033 if (alloc_flags & ALLOC_MIN_RESERVE) 4034 alloc_flags &= ~ALLOC_CPUSET; 4035 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4036 alloc_flags |= ALLOC_MIN_RESERVE; 4037 4038 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4039 4040 return alloc_flags; 4041 } 4042 4043 static bool oom_reserves_allowed(struct task_struct *tsk) 4044 { 4045 if (!tsk_is_oom_victim(tsk)) 4046 return false; 4047 4048 /* 4049 * !MMU doesn't have oom reaper so give access to memory reserves 4050 * only to the thread with TIF_MEMDIE set 4051 */ 4052 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4053 return false; 4054 4055 return true; 4056 } 4057 4058 /* 4059 * Distinguish requests which really need access to full memory 4060 * reserves from oom victims which can live with a portion of it 4061 */ 4062 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4063 { 4064 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4065 return 0; 4066 if (gfp_mask & __GFP_MEMALLOC) 4067 return ALLOC_NO_WATERMARKS; 4068 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4069 return ALLOC_NO_WATERMARKS; 4070 if (!in_interrupt()) { 4071 if (current->flags & PF_MEMALLOC) 4072 return ALLOC_NO_WATERMARKS; 4073 else if (oom_reserves_allowed(current)) 4074 return ALLOC_OOM; 4075 } 4076 4077 return 0; 4078 } 4079 4080 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4081 { 4082 return !!__gfp_pfmemalloc_flags(gfp_mask); 4083 } 4084 4085 /* 4086 * Checks whether it makes sense to retry the reclaim to make a forward progress 4087 * for the given allocation request. 4088 * 4089 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4090 * without success, or when we couldn't even meet the watermark if we 4091 * reclaimed all remaining pages on the LRU lists. 4092 * 4093 * Returns true if a retry is viable or false to enter the oom path. 4094 */ 4095 static inline bool 4096 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4097 struct alloc_context *ac, int alloc_flags, 4098 bool did_some_progress, int *no_progress_loops) 4099 { 4100 struct zone *zone; 4101 struct zoneref *z; 4102 bool ret = false; 4103 4104 /* 4105 * Costly allocations might have made a progress but this doesn't mean 4106 * their order will become available due to high fragmentation so 4107 * always increment the no progress counter for them 4108 */ 4109 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4110 *no_progress_loops = 0; 4111 else 4112 (*no_progress_loops)++; 4113 4114 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4115 goto out; 4116 4117 4118 /* 4119 * Keep reclaiming pages while there is a chance this will lead 4120 * somewhere. If none of the target zones can satisfy our allocation 4121 * request even if all reclaimable pages are considered then we are 4122 * screwed and have to go OOM. 4123 */ 4124 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4125 ac->highest_zoneidx, ac->nodemask) { 4126 unsigned long available; 4127 unsigned long reclaimable; 4128 unsigned long min_wmark = min_wmark_pages(zone); 4129 bool wmark; 4130 4131 if (cpusets_enabled() && 4132 (alloc_flags & ALLOC_CPUSET) && 4133 !__cpuset_zone_allowed(zone, gfp_mask)) 4134 continue; 4135 4136 available = reclaimable = zone_reclaimable_pages(zone); 4137 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4138 4139 /* 4140 * Would the allocation succeed if we reclaimed all 4141 * reclaimable pages? 4142 */ 4143 wmark = __zone_watermark_ok(zone, order, min_wmark, 4144 ac->highest_zoneidx, alloc_flags, available); 4145 trace_reclaim_retry_zone(z, order, reclaimable, 4146 available, min_wmark, *no_progress_loops, wmark); 4147 if (wmark) { 4148 ret = true; 4149 break; 4150 } 4151 } 4152 4153 /* 4154 * Memory allocation/reclaim might be called from a WQ context and the 4155 * current implementation of the WQ concurrency control doesn't 4156 * recognize that a particular WQ is congested if the worker thread is 4157 * looping without ever sleeping. Therefore we have to do a short sleep 4158 * here rather than calling cond_resched(). 4159 */ 4160 if (current->flags & PF_WQ_WORKER) 4161 schedule_timeout_uninterruptible(1); 4162 else 4163 cond_resched(); 4164 out: 4165 /* Before OOM, exhaust highatomic_reserve */ 4166 if (!ret) 4167 return unreserve_highatomic_pageblock(ac, true); 4168 4169 return ret; 4170 } 4171 4172 static inline bool 4173 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4174 { 4175 /* 4176 * It's possible that cpuset's mems_allowed and the nodemask from 4177 * mempolicy don't intersect. This should be normally dealt with by 4178 * policy_nodemask(), but it's possible to race with cpuset update in 4179 * such a way the check therein was true, and then it became false 4180 * before we got our cpuset_mems_cookie here. 4181 * This assumes that for all allocations, ac->nodemask can come only 4182 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4183 * when it does not intersect with the cpuset restrictions) or the 4184 * caller can deal with a violated nodemask. 4185 */ 4186 if (cpusets_enabled() && ac->nodemask && 4187 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4188 ac->nodemask = NULL; 4189 return true; 4190 } 4191 4192 /* 4193 * When updating a task's mems_allowed or mempolicy nodemask, it is 4194 * possible to race with parallel threads in such a way that our 4195 * allocation can fail while the mask is being updated. If we are about 4196 * to fail, check if the cpuset changed during allocation and if so, 4197 * retry. 4198 */ 4199 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4200 return true; 4201 4202 return false; 4203 } 4204 4205 static inline struct page * 4206 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4207 struct alloc_context *ac) 4208 { 4209 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4210 bool can_compact = gfp_compaction_allowed(gfp_mask); 4211 bool nofail = gfp_mask & __GFP_NOFAIL; 4212 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4213 struct page *page = NULL; 4214 unsigned int alloc_flags; 4215 unsigned long did_some_progress; 4216 enum compact_priority compact_priority; 4217 enum compact_result compact_result; 4218 int compaction_retries; 4219 int no_progress_loops; 4220 unsigned int cpuset_mems_cookie; 4221 unsigned int zonelist_iter_cookie; 4222 int reserve_flags; 4223 4224 if (unlikely(nofail)) { 4225 /* 4226 * We most definitely don't want callers attempting to 4227 * allocate greater than order-1 page units with __GFP_NOFAIL. 4228 */ 4229 WARN_ON_ONCE(order > 1); 4230 /* 4231 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4232 * otherwise, we may result in lockup. 4233 */ 4234 WARN_ON_ONCE(!can_direct_reclaim); 4235 /* 4236 * PF_MEMALLOC request from this context is rather bizarre 4237 * because we cannot reclaim anything and only can loop waiting 4238 * for somebody to do a work for us. 4239 */ 4240 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4241 } 4242 4243 restart: 4244 compaction_retries = 0; 4245 no_progress_loops = 0; 4246 compact_priority = DEF_COMPACT_PRIORITY; 4247 cpuset_mems_cookie = read_mems_allowed_begin(); 4248 zonelist_iter_cookie = zonelist_iter_begin(); 4249 4250 /* 4251 * The fast path uses conservative alloc_flags to succeed only until 4252 * kswapd needs to be woken up, and to avoid the cost of setting up 4253 * alloc_flags precisely. So we do that now. 4254 */ 4255 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4256 4257 /* 4258 * We need to recalculate the starting point for the zonelist iterator 4259 * because we might have used different nodemask in the fast path, or 4260 * there was a cpuset modification and we are retrying - otherwise we 4261 * could end up iterating over non-eligible zones endlessly. 4262 */ 4263 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4264 ac->highest_zoneidx, ac->nodemask); 4265 if (!zonelist_zone(ac->preferred_zoneref)) 4266 goto nopage; 4267 4268 /* 4269 * Check for insane configurations where the cpuset doesn't contain 4270 * any suitable zone to satisfy the request - e.g. non-movable 4271 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4272 */ 4273 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4274 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4275 ac->highest_zoneidx, 4276 &cpuset_current_mems_allowed); 4277 if (!zonelist_zone(z)) 4278 goto nopage; 4279 } 4280 4281 if (alloc_flags & ALLOC_KSWAPD) 4282 wake_all_kswapds(order, gfp_mask, ac); 4283 4284 /* 4285 * The adjusted alloc_flags might result in immediate success, so try 4286 * that first 4287 */ 4288 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4289 if (page) 4290 goto got_pg; 4291 4292 /* 4293 * For costly allocations, try direct compaction first, as it's likely 4294 * that we have enough base pages and don't need to reclaim. For non- 4295 * movable high-order allocations, do that as well, as compaction will 4296 * try prevent permanent fragmentation by migrating from blocks of the 4297 * same migratetype. 4298 * Don't try this for allocations that are allowed to ignore 4299 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4300 */ 4301 if (can_direct_reclaim && can_compact && 4302 (costly_order || 4303 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4304 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4305 page = __alloc_pages_direct_compact(gfp_mask, order, 4306 alloc_flags, ac, 4307 INIT_COMPACT_PRIORITY, 4308 &compact_result); 4309 if (page) 4310 goto got_pg; 4311 4312 /* 4313 * Checks for costly allocations with __GFP_NORETRY, which 4314 * includes some THP page fault allocations 4315 */ 4316 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4317 /* 4318 * If allocating entire pageblock(s) and compaction 4319 * failed because all zones are below low watermarks 4320 * or is prohibited because it recently failed at this 4321 * order, fail immediately unless the allocator has 4322 * requested compaction and reclaim retry. 4323 * 4324 * Reclaim is 4325 * - potentially very expensive because zones are far 4326 * below their low watermarks or this is part of very 4327 * bursty high order allocations, 4328 * - not guaranteed to help because isolate_freepages() 4329 * may not iterate over freed pages as part of its 4330 * linear scan, and 4331 * - unlikely to make entire pageblocks free on its 4332 * own. 4333 */ 4334 if (compact_result == COMPACT_SKIPPED || 4335 compact_result == COMPACT_DEFERRED) 4336 goto nopage; 4337 4338 /* 4339 * Looks like reclaim/compaction is worth trying, but 4340 * sync compaction could be very expensive, so keep 4341 * using async compaction. 4342 */ 4343 compact_priority = INIT_COMPACT_PRIORITY; 4344 } 4345 } 4346 4347 retry: 4348 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4349 if (alloc_flags & ALLOC_KSWAPD) 4350 wake_all_kswapds(order, gfp_mask, ac); 4351 4352 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4353 if (reserve_flags) 4354 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4355 (alloc_flags & ALLOC_KSWAPD); 4356 4357 /* 4358 * Reset the nodemask and zonelist iterators if memory policies can be 4359 * ignored. These allocations are high priority and system rather than 4360 * user oriented. 4361 */ 4362 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4363 ac->nodemask = NULL; 4364 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4365 ac->highest_zoneidx, ac->nodemask); 4366 } 4367 4368 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4369 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4370 if (page) 4371 goto got_pg; 4372 4373 /* Caller is not willing to reclaim, we can't balance anything */ 4374 if (!can_direct_reclaim) 4375 goto nopage; 4376 4377 /* Avoid recursion of direct reclaim */ 4378 if (current->flags & PF_MEMALLOC) 4379 goto nopage; 4380 4381 /* Try direct reclaim and then allocating */ 4382 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4383 &did_some_progress); 4384 if (page) 4385 goto got_pg; 4386 4387 /* Try direct compaction and then allocating */ 4388 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4389 compact_priority, &compact_result); 4390 if (page) 4391 goto got_pg; 4392 4393 /* Do not loop if specifically requested */ 4394 if (gfp_mask & __GFP_NORETRY) 4395 goto nopage; 4396 4397 /* 4398 * Do not retry costly high order allocations unless they are 4399 * __GFP_RETRY_MAYFAIL and we can compact 4400 */ 4401 if (costly_order && (!can_compact || 4402 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4403 goto nopage; 4404 4405 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4406 did_some_progress > 0, &no_progress_loops)) 4407 goto retry; 4408 4409 /* 4410 * It doesn't make any sense to retry for the compaction if the order-0 4411 * reclaim is not able to make any progress because the current 4412 * implementation of the compaction depends on the sufficient amount 4413 * of free memory (see __compaction_suitable) 4414 */ 4415 if (did_some_progress > 0 && can_compact && 4416 should_compact_retry(ac, order, alloc_flags, 4417 compact_result, &compact_priority, 4418 &compaction_retries)) 4419 goto retry; 4420 4421 4422 /* 4423 * Deal with possible cpuset update races or zonelist updates to avoid 4424 * a unnecessary OOM kill. 4425 */ 4426 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4427 check_retry_zonelist(zonelist_iter_cookie)) 4428 goto restart; 4429 4430 /* Reclaim has failed us, start killing things */ 4431 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4432 if (page) 4433 goto got_pg; 4434 4435 /* Avoid allocations with no watermarks from looping endlessly */ 4436 if (tsk_is_oom_victim(current) && 4437 (alloc_flags & ALLOC_OOM || 4438 (gfp_mask & __GFP_NOMEMALLOC))) 4439 goto nopage; 4440 4441 /* Retry as long as the OOM killer is making progress */ 4442 if (did_some_progress) { 4443 no_progress_loops = 0; 4444 goto retry; 4445 } 4446 4447 nopage: 4448 /* 4449 * Deal with possible cpuset update races or zonelist updates to avoid 4450 * a unnecessary OOM kill. 4451 */ 4452 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4453 check_retry_zonelist(zonelist_iter_cookie)) 4454 goto restart; 4455 4456 /* 4457 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4458 * we always retry 4459 */ 4460 if (unlikely(nofail)) { 4461 /* 4462 * Lacking direct_reclaim we can't do anything to reclaim memory, 4463 * we disregard these unreasonable nofail requests and still 4464 * return NULL 4465 */ 4466 if (!can_direct_reclaim) 4467 goto fail; 4468 4469 /* 4470 * Help non-failing allocations by giving some access to memory 4471 * reserves normally used for high priority non-blocking 4472 * allocations but do not use ALLOC_NO_WATERMARKS because this 4473 * could deplete whole memory reserves which would just make 4474 * the situation worse. 4475 */ 4476 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4477 if (page) 4478 goto got_pg; 4479 4480 cond_resched(); 4481 goto retry; 4482 } 4483 fail: 4484 warn_alloc(gfp_mask, ac->nodemask, 4485 "page allocation failure: order:%u", order); 4486 got_pg: 4487 return page; 4488 } 4489 4490 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4491 int preferred_nid, nodemask_t *nodemask, 4492 struct alloc_context *ac, gfp_t *alloc_gfp, 4493 unsigned int *alloc_flags) 4494 { 4495 ac->highest_zoneidx = gfp_zone(gfp_mask); 4496 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4497 ac->nodemask = nodemask; 4498 ac->migratetype = gfp_migratetype(gfp_mask); 4499 4500 if (cpusets_enabled()) { 4501 *alloc_gfp |= __GFP_HARDWALL; 4502 /* 4503 * When we are in the interrupt context, it is irrelevant 4504 * to the current task context. It means that any node ok. 4505 */ 4506 if (in_task() && !ac->nodemask) 4507 ac->nodemask = &cpuset_current_mems_allowed; 4508 else 4509 *alloc_flags |= ALLOC_CPUSET; 4510 } 4511 4512 might_alloc(gfp_mask); 4513 4514 if (should_fail_alloc_page(gfp_mask, order)) 4515 return false; 4516 4517 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4518 4519 /* Dirty zone balancing only done in the fast path */ 4520 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4521 4522 /* 4523 * The preferred zone is used for statistics but crucially it is 4524 * also used as the starting point for the zonelist iterator. It 4525 * may get reset for allocations that ignore memory policies. 4526 */ 4527 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4528 ac->highest_zoneidx, ac->nodemask); 4529 4530 return true; 4531 } 4532 4533 /* 4534 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4535 * @gfp: GFP flags for the allocation 4536 * @preferred_nid: The preferred NUMA node ID to allocate from 4537 * @nodemask: Set of nodes to allocate from, may be NULL 4538 * @nr_pages: The number of pages desired on the list or array 4539 * @page_list: Optional list to store the allocated pages 4540 * @page_array: Optional array to store the pages 4541 * 4542 * This is a batched version of the page allocator that attempts to 4543 * allocate nr_pages quickly. Pages are added to page_list if page_list 4544 * is not NULL, otherwise it is assumed that the page_array is valid. 4545 * 4546 * For lists, nr_pages is the number of pages that should be allocated. 4547 * 4548 * For arrays, only NULL elements are populated with pages and nr_pages 4549 * is the maximum number of pages that will be stored in the array. 4550 * 4551 * Returns the number of pages on the list or array. 4552 */ 4553 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4554 nodemask_t *nodemask, int nr_pages, 4555 struct list_head *page_list, 4556 struct page **page_array) 4557 { 4558 struct page *page; 4559 unsigned long __maybe_unused UP_flags; 4560 struct zone *zone; 4561 struct zoneref *z; 4562 struct per_cpu_pages *pcp; 4563 struct list_head *pcp_list; 4564 struct alloc_context ac; 4565 gfp_t alloc_gfp; 4566 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4567 int nr_populated = 0, nr_account = 0; 4568 4569 /* 4570 * Skip populated array elements to determine if any pages need 4571 * to be allocated before disabling IRQs. 4572 */ 4573 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4574 nr_populated++; 4575 4576 /* No pages requested? */ 4577 if (unlikely(nr_pages <= 0)) 4578 goto out; 4579 4580 /* Already populated array? */ 4581 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4582 goto out; 4583 4584 /* Bulk allocator does not support memcg accounting. */ 4585 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4586 goto failed; 4587 4588 /* Use the single page allocator for one page. */ 4589 if (nr_pages - nr_populated == 1) 4590 goto failed; 4591 4592 #ifdef CONFIG_PAGE_OWNER 4593 /* 4594 * PAGE_OWNER may recurse into the allocator to allocate space to 4595 * save the stack with pagesets.lock held. Releasing/reacquiring 4596 * removes much of the performance benefit of bulk allocation so 4597 * force the caller to allocate one page at a time as it'll have 4598 * similar performance to added complexity to the bulk allocator. 4599 */ 4600 if (static_branch_unlikely(&page_owner_inited)) 4601 goto failed; 4602 #endif 4603 4604 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4605 gfp &= gfp_allowed_mask; 4606 alloc_gfp = gfp; 4607 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4608 goto out; 4609 gfp = alloc_gfp; 4610 4611 /* Find an allowed local zone that meets the low watermark. */ 4612 z = ac.preferred_zoneref; 4613 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4614 unsigned long mark; 4615 4616 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4617 !__cpuset_zone_allowed(zone, gfp)) { 4618 continue; 4619 } 4620 4621 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4622 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4623 goto failed; 4624 } 4625 4626 cond_accept_memory(zone, 0); 4627 retry_this_zone: 4628 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4629 if (zone_watermark_fast(zone, 0, mark, 4630 zonelist_zone_idx(ac.preferred_zoneref), 4631 alloc_flags, gfp)) { 4632 break; 4633 } 4634 4635 if (cond_accept_memory(zone, 0)) 4636 goto retry_this_zone; 4637 4638 /* Try again if zone has deferred pages */ 4639 if (deferred_pages_enabled()) { 4640 if (_deferred_grow_zone(zone, 0)) 4641 goto retry_this_zone; 4642 } 4643 } 4644 4645 /* 4646 * If there are no allowed local zones that meets the watermarks then 4647 * try to allocate a single page and reclaim if necessary. 4648 */ 4649 if (unlikely(!zone)) 4650 goto failed; 4651 4652 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4653 pcp_trylock_prepare(UP_flags); 4654 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4655 if (!pcp) 4656 goto failed_irq; 4657 4658 /* Attempt the batch allocation */ 4659 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4660 while (nr_populated < nr_pages) { 4661 4662 /* Skip existing pages */ 4663 if (page_array && page_array[nr_populated]) { 4664 nr_populated++; 4665 continue; 4666 } 4667 4668 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4669 pcp, pcp_list); 4670 if (unlikely(!page)) { 4671 /* Try and allocate at least one page */ 4672 if (!nr_account) { 4673 pcp_spin_unlock(pcp); 4674 goto failed_irq; 4675 } 4676 break; 4677 } 4678 nr_account++; 4679 4680 prep_new_page(page, 0, gfp, 0); 4681 if (page_list) 4682 list_add(&page->lru, page_list); 4683 else 4684 page_array[nr_populated] = page; 4685 nr_populated++; 4686 } 4687 4688 pcp_spin_unlock(pcp); 4689 pcp_trylock_finish(UP_flags); 4690 4691 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4692 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4693 4694 out: 4695 return nr_populated; 4696 4697 failed_irq: 4698 pcp_trylock_finish(UP_flags); 4699 4700 failed: 4701 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4702 if (page) { 4703 if (page_list) 4704 list_add(&page->lru, page_list); 4705 else 4706 page_array[nr_populated] = page; 4707 nr_populated++; 4708 } 4709 4710 goto out; 4711 } 4712 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4713 4714 /* 4715 * This is the 'heart' of the zoned buddy allocator. 4716 */ 4717 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4718 int preferred_nid, nodemask_t *nodemask) 4719 { 4720 struct page *page; 4721 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4722 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4723 struct alloc_context ac = { }; 4724 4725 /* 4726 * There are several places where we assume that the order value is sane 4727 * so bail out early if the request is out of bound. 4728 */ 4729 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4730 return NULL; 4731 4732 gfp &= gfp_allowed_mask; 4733 /* 4734 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4735 * resp. GFP_NOIO which has to be inherited for all allocation requests 4736 * from a particular context which has been marked by 4737 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4738 * movable zones are not used during allocation. 4739 */ 4740 gfp = current_gfp_context(gfp); 4741 alloc_gfp = gfp; 4742 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4743 &alloc_gfp, &alloc_flags)) 4744 return NULL; 4745 4746 /* 4747 * Forbid the first pass from falling back to types that fragment 4748 * memory until all local zones are considered. 4749 */ 4750 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4751 4752 /* First allocation attempt */ 4753 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4754 if (likely(page)) 4755 goto out; 4756 4757 alloc_gfp = gfp; 4758 ac.spread_dirty_pages = false; 4759 4760 /* 4761 * Restore the original nodemask if it was potentially replaced with 4762 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4763 */ 4764 ac.nodemask = nodemask; 4765 4766 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4767 4768 out: 4769 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4770 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4771 __free_pages(page, order); 4772 page = NULL; 4773 } 4774 4775 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4776 kmsan_alloc_page(page, order, alloc_gfp); 4777 4778 return page; 4779 } 4780 EXPORT_SYMBOL(__alloc_pages_noprof); 4781 4782 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4783 nodemask_t *nodemask) 4784 { 4785 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4786 preferred_nid, nodemask); 4787 return page_rmappable_folio(page); 4788 } 4789 EXPORT_SYMBOL(__folio_alloc_noprof); 4790 4791 /* 4792 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4793 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4794 * you need to access high mem. 4795 */ 4796 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4797 { 4798 struct page *page; 4799 4800 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4801 if (!page) 4802 return 0; 4803 return (unsigned long) page_address(page); 4804 } 4805 EXPORT_SYMBOL(get_free_pages_noprof); 4806 4807 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4808 { 4809 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4810 } 4811 EXPORT_SYMBOL(get_zeroed_page_noprof); 4812 4813 /** 4814 * __free_pages - Free pages allocated with alloc_pages(). 4815 * @page: The page pointer returned from alloc_pages(). 4816 * @order: The order of the allocation. 4817 * 4818 * This function can free multi-page allocations that are not compound 4819 * pages. It does not check that the @order passed in matches that of 4820 * the allocation, so it is easy to leak memory. Freeing more memory 4821 * than was allocated will probably emit a warning. 4822 * 4823 * If the last reference to this page is speculative, it will be released 4824 * by put_page() which only frees the first page of a non-compound 4825 * allocation. To prevent the remaining pages from being leaked, we free 4826 * the subsequent pages here. If you want to use the page's reference 4827 * count to decide when to free the allocation, you should allocate a 4828 * compound page, and use put_page() instead of __free_pages(). 4829 * 4830 * Context: May be called in interrupt context or while holding a normal 4831 * spinlock, but not in NMI context or while holding a raw spinlock. 4832 */ 4833 void __free_pages(struct page *page, unsigned int order) 4834 { 4835 /* get PageHead before we drop reference */ 4836 int head = PageHead(page); 4837 struct alloc_tag *tag = pgalloc_tag_get(page); 4838 4839 if (put_page_testzero(page)) 4840 free_unref_page(page, order); 4841 else if (!head) { 4842 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4843 while (order-- > 0) 4844 free_unref_page(page + (1 << order), order); 4845 } 4846 } 4847 EXPORT_SYMBOL(__free_pages); 4848 4849 void free_pages(unsigned long addr, unsigned int order) 4850 { 4851 if (addr != 0) { 4852 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4853 __free_pages(virt_to_page((void *)addr), order); 4854 } 4855 } 4856 4857 EXPORT_SYMBOL(free_pages); 4858 4859 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4860 size_t size) 4861 { 4862 if (addr) { 4863 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4864 struct page *page = virt_to_page((void *)addr); 4865 struct page *last = page + nr; 4866 4867 split_page_owner(page, order, 0); 4868 pgalloc_tag_split(page_folio(page), order, 0); 4869 split_page_memcg(page, order, 0); 4870 while (page < --last) 4871 set_page_refcounted(last); 4872 4873 last = page + (1UL << order); 4874 for (page += nr; page < last; page++) 4875 __free_pages_ok(page, 0, FPI_TO_TAIL); 4876 } 4877 return (void *)addr; 4878 } 4879 4880 /** 4881 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4882 * @size: the number of bytes to allocate 4883 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4884 * 4885 * This function is similar to alloc_pages(), except that it allocates the 4886 * minimum number of pages to satisfy the request. alloc_pages() can only 4887 * allocate memory in power-of-two pages. 4888 * 4889 * This function is also limited by MAX_PAGE_ORDER. 4890 * 4891 * Memory allocated by this function must be released by free_pages_exact(). 4892 * 4893 * Return: pointer to the allocated area or %NULL in case of error. 4894 */ 4895 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 4896 { 4897 unsigned int order = get_order(size); 4898 unsigned long addr; 4899 4900 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4901 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4902 4903 addr = get_free_pages_noprof(gfp_mask, order); 4904 return make_alloc_exact(addr, order, size); 4905 } 4906 EXPORT_SYMBOL(alloc_pages_exact_noprof); 4907 4908 /** 4909 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4910 * pages on a node. 4911 * @nid: the preferred node ID where memory should be allocated 4912 * @size: the number of bytes to allocate 4913 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4914 * 4915 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4916 * back. 4917 * 4918 * Return: pointer to the allocated area or %NULL in case of error. 4919 */ 4920 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 4921 { 4922 unsigned int order = get_order(size); 4923 struct page *p; 4924 4925 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4926 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4927 4928 p = alloc_pages_node_noprof(nid, gfp_mask, order); 4929 if (!p) 4930 return NULL; 4931 return make_alloc_exact((unsigned long)page_address(p), order, size); 4932 } 4933 4934 /** 4935 * free_pages_exact - release memory allocated via alloc_pages_exact() 4936 * @virt: the value returned by alloc_pages_exact. 4937 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4938 * 4939 * Release the memory allocated by a previous call to alloc_pages_exact. 4940 */ 4941 void free_pages_exact(void *virt, size_t size) 4942 { 4943 unsigned long addr = (unsigned long)virt; 4944 unsigned long end = addr + PAGE_ALIGN(size); 4945 4946 while (addr < end) { 4947 free_page(addr); 4948 addr += PAGE_SIZE; 4949 } 4950 } 4951 EXPORT_SYMBOL(free_pages_exact); 4952 4953 /** 4954 * nr_free_zone_pages - count number of pages beyond high watermark 4955 * @offset: The zone index of the highest zone 4956 * 4957 * nr_free_zone_pages() counts the number of pages which are beyond the 4958 * high watermark within all zones at or below a given zone index. For each 4959 * zone, the number of pages is calculated as: 4960 * 4961 * nr_free_zone_pages = managed_pages - high_pages 4962 * 4963 * Return: number of pages beyond high watermark. 4964 */ 4965 static unsigned long nr_free_zone_pages(int offset) 4966 { 4967 struct zoneref *z; 4968 struct zone *zone; 4969 4970 /* Just pick one node, since fallback list is circular */ 4971 unsigned long sum = 0; 4972 4973 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4974 4975 for_each_zone_zonelist(zone, z, zonelist, offset) { 4976 unsigned long size = zone_managed_pages(zone); 4977 unsigned long high = high_wmark_pages(zone); 4978 if (size > high) 4979 sum += size - high; 4980 } 4981 4982 return sum; 4983 } 4984 4985 /** 4986 * nr_free_buffer_pages - count number of pages beyond high watermark 4987 * 4988 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4989 * watermark within ZONE_DMA and ZONE_NORMAL. 4990 * 4991 * Return: number of pages beyond high watermark within ZONE_DMA and 4992 * ZONE_NORMAL. 4993 */ 4994 unsigned long nr_free_buffer_pages(void) 4995 { 4996 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4997 } 4998 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4999 5000 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5001 { 5002 zoneref->zone = zone; 5003 zoneref->zone_idx = zone_idx(zone); 5004 } 5005 5006 /* 5007 * Builds allocation fallback zone lists. 5008 * 5009 * Add all populated zones of a node to the zonelist. 5010 */ 5011 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5012 { 5013 struct zone *zone; 5014 enum zone_type zone_type = MAX_NR_ZONES; 5015 int nr_zones = 0; 5016 5017 do { 5018 zone_type--; 5019 zone = pgdat->node_zones + zone_type; 5020 if (populated_zone(zone)) { 5021 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5022 check_highest_zone(zone_type); 5023 } 5024 } while (zone_type); 5025 5026 return nr_zones; 5027 } 5028 5029 #ifdef CONFIG_NUMA 5030 5031 static int __parse_numa_zonelist_order(char *s) 5032 { 5033 /* 5034 * We used to support different zonelists modes but they turned 5035 * out to be just not useful. Let's keep the warning in place 5036 * if somebody still use the cmd line parameter so that we do 5037 * not fail it silently 5038 */ 5039 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5040 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5041 return -EINVAL; 5042 } 5043 return 0; 5044 } 5045 5046 static char numa_zonelist_order[] = "Node"; 5047 #define NUMA_ZONELIST_ORDER_LEN 16 5048 /* 5049 * sysctl handler for numa_zonelist_order 5050 */ 5051 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5052 void *buffer, size_t *length, loff_t *ppos) 5053 { 5054 if (write) 5055 return __parse_numa_zonelist_order(buffer); 5056 return proc_dostring(table, write, buffer, length, ppos); 5057 } 5058 5059 static int node_load[MAX_NUMNODES]; 5060 5061 /** 5062 * find_next_best_node - find the next node that should appear in a given node's fallback list 5063 * @node: node whose fallback list we're appending 5064 * @used_node_mask: nodemask_t of already used nodes 5065 * 5066 * We use a number of factors to determine which is the next node that should 5067 * appear on a given node's fallback list. The node should not have appeared 5068 * already in @node's fallback list, and it should be the next closest node 5069 * according to the distance array (which contains arbitrary distance values 5070 * from each node to each node in the system), and should also prefer nodes 5071 * with no CPUs, since presumably they'll have very little allocation pressure 5072 * on them otherwise. 5073 * 5074 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5075 */ 5076 int find_next_best_node(int node, nodemask_t *used_node_mask) 5077 { 5078 int n, val; 5079 int min_val = INT_MAX; 5080 int best_node = NUMA_NO_NODE; 5081 5082 /* 5083 * Use the local node if we haven't already, but for memoryless local 5084 * node, we should skip it and fall back to other nodes. 5085 */ 5086 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5087 node_set(node, *used_node_mask); 5088 return node; 5089 } 5090 5091 for_each_node_state(n, N_MEMORY) { 5092 5093 /* Don't want a node to appear more than once */ 5094 if (node_isset(n, *used_node_mask)) 5095 continue; 5096 5097 /* Use the distance array to find the distance */ 5098 val = node_distance(node, n); 5099 5100 /* Penalize nodes under us ("prefer the next node") */ 5101 val += (n < node); 5102 5103 /* Give preference to headless and unused nodes */ 5104 if (!cpumask_empty(cpumask_of_node(n))) 5105 val += PENALTY_FOR_NODE_WITH_CPUS; 5106 5107 /* Slight preference for less loaded node */ 5108 val *= MAX_NUMNODES; 5109 val += node_load[n]; 5110 5111 if (val < min_val) { 5112 min_val = val; 5113 best_node = n; 5114 } 5115 } 5116 5117 if (best_node >= 0) 5118 node_set(best_node, *used_node_mask); 5119 5120 return best_node; 5121 } 5122 5123 5124 /* 5125 * Build zonelists ordered by node and zones within node. 5126 * This results in maximum locality--normal zone overflows into local 5127 * DMA zone, if any--but risks exhausting DMA zone. 5128 */ 5129 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5130 unsigned nr_nodes) 5131 { 5132 struct zoneref *zonerefs; 5133 int i; 5134 5135 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5136 5137 for (i = 0; i < nr_nodes; i++) { 5138 int nr_zones; 5139 5140 pg_data_t *node = NODE_DATA(node_order[i]); 5141 5142 nr_zones = build_zonerefs_node(node, zonerefs); 5143 zonerefs += nr_zones; 5144 } 5145 zonerefs->zone = NULL; 5146 zonerefs->zone_idx = 0; 5147 } 5148 5149 /* 5150 * Build __GFP_THISNODE zonelists 5151 */ 5152 static void build_thisnode_zonelists(pg_data_t *pgdat) 5153 { 5154 struct zoneref *zonerefs; 5155 int nr_zones; 5156 5157 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5158 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5159 zonerefs += nr_zones; 5160 zonerefs->zone = NULL; 5161 zonerefs->zone_idx = 0; 5162 } 5163 5164 /* 5165 * Build zonelists ordered by zone and nodes within zones. 5166 * This results in conserving DMA zone[s] until all Normal memory is 5167 * exhausted, but results in overflowing to remote node while memory 5168 * may still exist in local DMA zone. 5169 */ 5170 5171 static void build_zonelists(pg_data_t *pgdat) 5172 { 5173 static int node_order[MAX_NUMNODES]; 5174 int node, nr_nodes = 0; 5175 nodemask_t used_mask = NODE_MASK_NONE; 5176 int local_node, prev_node; 5177 5178 /* NUMA-aware ordering of nodes */ 5179 local_node = pgdat->node_id; 5180 prev_node = local_node; 5181 5182 memset(node_order, 0, sizeof(node_order)); 5183 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5184 /* 5185 * We don't want to pressure a particular node. 5186 * So adding penalty to the first node in same 5187 * distance group to make it round-robin. 5188 */ 5189 if (node_distance(local_node, node) != 5190 node_distance(local_node, prev_node)) 5191 node_load[node] += 1; 5192 5193 node_order[nr_nodes++] = node; 5194 prev_node = node; 5195 } 5196 5197 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5198 build_thisnode_zonelists(pgdat); 5199 pr_info("Fallback order for Node %d: ", local_node); 5200 for (node = 0; node < nr_nodes; node++) 5201 pr_cont("%d ", node_order[node]); 5202 pr_cont("\n"); 5203 } 5204 5205 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5206 /* 5207 * Return node id of node used for "local" allocations. 5208 * I.e., first node id of first zone in arg node's generic zonelist. 5209 * Used for initializing percpu 'numa_mem', which is used primarily 5210 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5211 */ 5212 int local_memory_node(int node) 5213 { 5214 struct zoneref *z; 5215 5216 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5217 gfp_zone(GFP_KERNEL), 5218 NULL); 5219 return zonelist_node_idx(z); 5220 } 5221 #endif 5222 5223 static void setup_min_unmapped_ratio(void); 5224 static void setup_min_slab_ratio(void); 5225 #else /* CONFIG_NUMA */ 5226 5227 static void build_zonelists(pg_data_t *pgdat) 5228 { 5229 struct zoneref *zonerefs; 5230 int nr_zones; 5231 5232 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5233 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5234 zonerefs += nr_zones; 5235 5236 zonerefs->zone = NULL; 5237 zonerefs->zone_idx = 0; 5238 } 5239 5240 #endif /* CONFIG_NUMA */ 5241 5242 /* 5243 * Boot pageset table. One per cpu which is going to be used for all 5244 * zones and all nodes. The parameters will be set in such a way 5245 * that an item put on a list will immediately be handed over to 5246 * the buddy list. This is safe since pageset manipulation is done 5247 * with interrupts disabled. 5248 * 5249 * The boot_pagesets must be kept even after bootup is complete for 5250 * unused processors and/or zones. They do play a role for bootstrapping 5251 * hotplugged processors. 5252 * 5253 * zoneinfo_show() and maybe other functions do 5254 * not check if the processor is online before following the pageset pointer. 5255 * Other parts of the kernel may not check if the zone is available. 5256 */ 5257 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5258 /* These effectively disable the pcplists in the boot pageset completely */ 5259 #define BOOT_PAGESET_HIGH 0 5260 #define BOOT_PAGESET_BATCH 1 5261 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5262 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5263 5264 static void __build_all_zonelists(void *data) 5265 { 5266 int nid; 5267 int __maybe_unused cpu; 5268 pg_data_t *self = data; 5269 unsigned long flags; 5270 5271 /* 5272 * The zonelist_update_seq must be acquired with irqsave because the 5273 * reader can be invoked from IRQ with GFP_ATOMIC. 5274 */ 5275 write_seqlock_irqsave(&zonelist_update_seq, flags); 5276 /* 5277 * Also disable synchronous printk() to prevent any printk() from 5278 * trying to hold port->lock, for 5279 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5280 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5281 */ 5282 printk_deferred_enter(); 5283 5284 #ifdef CONFIG_NUMA 5285 memset(node_load, 0, sizeof(node_load)); 5286 #endif 5287 5288 /* 5289 * This node is hotadded and no memory is yet present. So just 5290 * building zonelists is fine - no need to touch other nodes. 5291 */ 5292 if (self && !node_online(self->node_id)) { 5293 build_zonelists(self); 5294 } else { 5295 /* 5296 * All possible nodes have pgdat preallocated 5297 * in free_area_init 5298 */ 5299 for_each_node(nid) { 5300 pg_data_t *pgdat = NODE_DATA(nid); 5301 5302 build_zonelists(pgdat); 5303 } 5304 5305 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5306 /* 5307 * We now know the "local memory node" for each node-- 5308 * i.e., the node of the first zone in the generic zonelist. 5309 * Set up numa_mem percpu variable for on-line cpus. During 5310 * boot, only the boot cpu should be on-line; we'll init the 5311 * secondary cpus' numa_mem as they come on-line. During 5312 * node/memory hotplug, we'll fixup all on-line cpus. 5313 */ 5314 for_each_online_cpu(cpu) 5315 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5316 #endif 5317 } 5318 5319 printk_deferred_exit(); 5320 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5321 } 5322 5323 static noinline void __init 5324 build_all_zonelists_init(void) 5325 { 5326 int cpu; 5327 5328 __build_all_zonelists(NULL); 5329 5330 /* 5331 * Initialize the boot_pagesets that are going to be used 5332 * for bootstrapping processors. The real pagesets for 5333 * each zone will be allocated later when the per cpu 5334 * allocator is available. 5335 * 5336 * boot_pagesets are used also for bootstrapping offline 5337 * cpus if the system is already booted because the pagesets 5338 * are needed to initialize allocators on a specific cpu too. 5339 * F.e. the percpu allocator needs the page allocator which 5340 * needs the percpu allocator in order to allocate its pagesets 5341 * (a chicken-egg dilemma). 5342 */ 5343 for_each_possible_cpu(cpu) 5344 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5345 5346 mminit_verify_zonelist(); 5347 cpuset_init_current_mems_allowed(); 5348 } 5349 5350 /* 5351 * unless system_state == SYSTEM_BOOTING. 5352 * 5353 * __ref due to call of __init annotated helper build_all_zonelists_init 5354 * [protected by SYSTEM_BOOTING]. 5355 */ 5356 void __ref build_all_zonelists(pg_data_t *pgdat) 5357 { 5358 unsigned long vm_total_pages; 5359 5360 if (system_state == SYSTEM_BOOTING) { 5361 build_all_zonelists_init(); 5362 } else { 5363 __build_all_zonelists(pgdat); 5364 /* cpuset refresh routine should be here */ 5365 } 5366 /* Get the number of free pages beyond high watermark in all zones. */ 5367 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5368 /* 5369 * Disable grouping by mobility if the number of pages in the 5370 * system is too low to allow the mechanism to work. It would be 5371 * more accurate, but expensive to check per-zone. This check is 5372 * made on memory-hotadd so a system can start with mobility 5373 * disabled and enable it later 5374 */ 5375 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5376 page_group_by_mobility_disabled = 1; 5377 else 5378 page_group_by_mobility_disabled = 0; 5379 5380 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5381 nr_online_nodes, 5382 str_off_on(page_group_by_mobility_disabled), 5383 vm_total_pages); 5384 #ifdef CONFIG_NUMA 5385 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5386 #endif 5387 } 5388 5389 static int zone_batchsize(struct zone *zone) 5390 { 5391 #ifdef CONFIG_MMU 5392 int batch; 5393 5394 /* 5395 * The number of pages to batch allocate is either ~0.1% 5396 * of the zone or 1MB, whichever is smaller. The batch 5397 * size is striking a balance between allocation latency 5398 * and zone lock contention. 5399 */ 5400 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5401 batch /= 4; /* We effectively *= 4 below */ 5402 if (batch < 1) 5403 batch = 1; 5404 5405 /* 5406 * Clamp the batch to a 2^n - 1 value. Having a power 5407 * of 2 value was found to be more likely to have 5408 * suboptimal cache aliasing properties in some cases. 5409 * 5410 * For example if 2 tasks are alternately allocating 5411 * batches of pages, one task can end up with a lot 5412 * of pages of one half of the possible page colors 5413 * and the other with pages of the other colors. 5414 */ 5415 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5416 5417 return batch; 5418 5419 #else 5420 /* The deferral and batching of frees should be suppressed under NOMMU 5421 * conditions. 5422 * 5423 * The problem is that NOMMU needs to be able to allocate large chunks 5424 * of contiguous memory as there's no hardware page translation to 5425 * assemble apparent contiguous memory from discontiguous pages. 5426 * 5427 * Queueing large contiguous runs of pages for batching, however, 5428 * causes the pages to actually be freed in smaller chunks. As there 5429 * can be a significant delay between the individual batches being 5430 * recycled, this leads to the once large chunks of space being 5431 * fragmented and becoming unavailable for high-order allocations. 5432 */ 5433 return 0; 5434 #endif 5435 } 5436 5437 static int percpu_pagelist_high_fraction; 5438 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5439 int high_fraction) 5440 { 5441 #ifdef CONFIG_MMU 5442 int high; 5443 int nr_split_cpus; 5444 unsigned long total_pages; 5445 5446 if (!high_fraction) { 5447 /* 5448 * By default, the high value of the pcp is based on the zone 5449 * low watermark so that if they are full then background 5450 * reclaim will not be started prematurely. 5451 */ 5452 total_pages = low_wmark_pages(zone); 5453 } else { 5454 /* 5455 * If percpu_pagelist_high_fraction is configured, the high 5456 * value is based on a fraction of the managed pages in the 5457 * zone. 5458 */ 5459 total_pages = zone_managed_pages(zone) / high_fraction; 5460 } 5461 5462 /* 5463 * Split the high value across all online CPUs local to the zone. Note 5464 * that early in boot that CPUs may not be online yet and that during 5465 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5466 * onlined. For memory nodes that have no CPUs, split the high value 5467 * across all online CPUs to mitigate the risk that reclaim is triggered 5468 * prematurely due to pages stored on pcp lists. 5469 */ 5470 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5471 if (!nr_split_cpus) 5472 nr_split_cpus = num_online_cpus(); 5473 high = total_pages / nr_split_cpus; 5474 5475 /* 5476 * Ensure high is at least batch*4. The multiple is based on the 5477 * historical relationship between high and batch. 5478 */ 5479 high = max(high, batch << 2); 5480 5481 return high; 5482 #else 5483 return 0; 5484 #endif 5485 } 5486 5487 /* 5488 * pcp->high and pcp->batch values are related and generally batch is lower 5489 * than high. They are also related to pcp->count such that count is lower 5490 * than high, and as soon as it reaches high, the pcplist is flushed. 5491 * 5492 * However, guaranteeing these relations at all times would require e.g. write 5493 * barriers here but also careful usage of read barriers at the read side, and 5494 * thus be prone to error and bad for performance. Thus the update only prevents 5495 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5496 * should ensure they can cope with those fields changing asynchronously, and 5497 * fully trust only the pcp->count field on the local CPU with interrupts 5498 * disabled. 5499 * 5500 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5501 * outside of boot time (or some other assurance that no concurrent updaters 5502 * exist). 5503 */ 5504 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5505 unsigned long high_max, unsigned long batch) 5506 { 5507 WRITE_ONCE(pcp->batch, batch); 5508 WRITE_ONCE(pcp->high_min, high_min); 5509 WRITE_ONCE(pcp->high_max, high_max); 5510 } 5511 5512 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5513 { 5514 int pindex; 5515 5516 memset(pcp, 0, sizeof(*pcp)); 5517 memset(pzstats, 0, sizeof(*pzstats)); 5518 5519 spin_lock_init(&pcp->lock); 5520 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5521 INIT_LIST_HEAD(&pcp->lists[pindex]); 5522 5523 /* 5524 * Set batch and high values safe for a boot pageset. A true percpu 5525 * pageset's initialization will update them subsequently. Here we don't 5526 * need to be as careful as pageset_update() as nobody can access the 5527 * pageset yet. 5528 */ 5529 pcp->high_min = BOOT_PAGESET_HIGH; 5530 pcp->high_max = BOOT_PAGESET_HIGH; 5531 pcp->batch = BOOT_PAGESET_BATCH; 5532 pcp->free_count = 0; 5533 } 5534 5535 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5536 unsigned long high_max, unsigned long batch) 5537 { 5538 struct per_cpu_pages *pcp; 5539 int cpu; 5540 5541 for_each_possible_cpu(cpu) { 5542 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5543 pageset_update(pcp, high_min, high_max, batch); 5544 } 5545 } 5546 5547 /* 5548 * Calculate and set new high and batch values for all per-cpu pagesets of a 5549 * zone based on the zone's size. 5550 */ 5551 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5552 { 5553 int new_high_min, new_high_max, new_batch; 5554 5555 new_batch = max(1, zone_batchsize(zone)); 5556 if (percpu_pagelist_high_fraction) { 5557 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5558 percpu_pagelist_high_fraction); 5559 /* 5560 * PCP high is tuned manually, disable auto-tuning via 5561 * setting high_min and high_max to the manual value. 5562 */ 5563 new_high_max = new_high_min; 5564 } else { 5565 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5566 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5567 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5568 } 5569 5570 if (zone->pageset_high_min == new_high_min && 5571 zone->pageset_high_max == new_high_max && 5572 zone->pageset_batch == new_batch) 5573 return; 5574 5575 zone->pageset_high_min = new_high_min; 5576 zone->pageset_high_max = new_high_max; 5577 zone->pageset_batch = new_batch; 5578 5579 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5580 new_batch); 5581 } 5582 5583 void __meminit setup_zone_pageset(struct zone *zone) 5584 { 5585 int cpu; 5586 5587 /* Size may be 0 on !SMP && !NUMA */ 5588 if (sizeof(struct per_cpu_zonestat) > 0) 5589 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5590 5591 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5592 for_each_possible_cpu(cpu) { 5593 struct per_cpu_pages *pcp; 5594 struct per_cpu_zonestat *pzstats; 5595 5596 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5597 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5598 per_cpu_pages_init(pcp, pzstats); 5599 } 5600 5601 zone_set_pageset_high_and_batch(zone, 0); 5602 } 5603 5604 /* 5605 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5606 * page high values need to be recalculated. 5607 */ 5608 static void zone_pcp_update(struct zone *zone, int cpu_online) 5609 { 5610 mutex_lock(&pcp_batch_high_lock); 5611 zone_set_pageset_high_and_batch(zone, cpu_online); 5612 mutex_unlock(&pcp_batch_high_lock); 5613 } 5614 5615 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5616 { 5617 struct per_cpu_pages *pcp; 5618 struct cpu_cacheinfo *cci; 5619 5620 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5621 cci = get_cpu_cacheinfo(cpu); 5622 /* 5623 * If data cache slice of CPU is large enough, "pcp->batch" 5624 * pages can be preserved in PCP before draining PCP for 5625 * consecutive high-order pages freeing without allocation. 5626 * This can reduce zone lock contention without hurting 5627 * cache-hot pages sharing. 5628 */ 5629 spin_lock(&pcp->lock); 5630 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5631 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5632 else 5633 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5634 spin_unlock(&pcp->lock); 5635 } 5636 5637 void setup_pcp_cacheinfo(unsigned int cpu) 5638 { 5639 struct zone *zone; 5640 5641 for_each_populated_zone(zone) 5642 zone_pcp_update_cacheinfo(zone, cpu); 5643 } 5644 5645 /* 5646 * Allocate per cpu pagesets and initialize them. 5647 * Before this call only boot pagesets were available. 5648 */ 5649 void __init setup_per_cpu_pageset(void) 5650 { 5651 struct pglist_data *pgdat; 5652 struct zone *zone; 5653 int __maybe_unused cpu; 5654 5655 for_each_populated_zone(zone) 5656 setup_zone_pageset(zone); 5657 5658 #ifdef CONFIG_NUMA 5659 /* 5660 * Unpopulated zones continue using the boot pagesets. 5661 * The numa stats for these pagesets need to be reset. 5662 * Otherwise, they will end up skewing the stats of 5663 * the nodes these zones are associated with. 5664 */ 5665 for_each_possible_cpu(cpu) { 5666 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5667 memset(pzstats->vm_numa_event, 0, 5668 sizeof(pzstats->vm_numa_event)); 5669 } 5670 #endif 5671 5672 for_each_online_pgdat(pgdat) 5673 pgdat->per_cpu_nodestats = 5674 alloc_percpu(struct per_cpu_nodestat); 5675 } 5676 5677 __meminit void zone_pcp_init(struct zone *zone) 5678 { 5679 /* 5680 * per cpu subsystem is not up at this point. The following code 5681 * relies on the ability of the linker to provide the 5682 * offset of a (static) per cpu variable into the per cpu area. 5683 */ 5684 zone->per_cpu_pageset = &boot_pageset; 5685 zone->per_cpu_zonestats = &boot_zonestats; 5686 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5687 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5688 zone->pageset_batch = BOOT_PAGESET_BATCH; 5689 5690 if (populated_zone(zone)) 5691 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5692 zone->present_pages, zone_batchsize(zone)); 5693 } 5694 5695 void adjust_managed_page_count(struct page *page, long count) 5696 { 5697 atomic_long_add(count, &page_zone(page)->managed_pages); 5698 totalram_pages_add(count); 5699 } 5700 EXPORT_SYMBOL(adjust_managed_page_count); 5701 5702 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5703 { 5704 void *pos; 5705 unsigned long pages = 0; 5706 5707 start = (void *)PAGE_ALIGN((unsigned long)start); 5708 end = (void *)((unsigned long)end & PAGE_MASK); 5709 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5710 struct page *page = virt_to_page(pos); 5711 void *direct_map_addr; 5712 5713 /* 5714 * 'direct_map_addr' might be different from 'pos' 5715 * because some architectures' virt_to_page() 5716 * work with aliases. Getting the direct map 5717 * address ensures that we get a _writeable_ 5718 * alias for the memset(). 5719 */ 5720 direct_map_addr = page_address(page); 5721 /* 5722 * Perform a kasan-unchecked memset() since this memory 5723 * has not been initialized. 5724 */ 5725 direct_map_addr = kasan_reset_tag(direct_map_addr); 5726 if ((unsigned int)poison <= 0xFF) 5727 memset(direct_map_addr, poison, PAGE_SIZE); 5728 5729 free_reserved_page(page); 5730 } 5731 5732 if (pages && s) 5733 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5734 5735 return pages; 5736 } 5737 5738 void free_reserved_page(struct page *page) 5739 { 5740 clear_page_tag_ref(page); 5741 ClearPageReserved(page); 5742 init_page_count(page); 5743 __free_page(page); 5744 adjust_managed_page_count(page, 1); 5745 } 5746 EXPORT_SYMBOL(free_reserved_page); 5747 5748 static int page_alloc_cpu_dead(unsigned int cpu) 5749 { 5750 struct zone *zone; 5751 5752 lru_add_drain_cpu(cpu); 5753 mlock_drain_remote(cpu); 5754 drain_pages(cpu); 5755 5756 /* 5757 * Spill the event counters of the dead processor 5758 * into the current processors event counters. 5759 * This artificially elevates the count of the current 5760 * processor. 5761 */ 5762 vm_events_fold_cpu(cpu); 5763 5764 /* 5765 * Zero the differential counters of the dead processor 5766 * so that the vm statistics are consistent. 5767 * 5768 * This is only okay since the processor is dead and cannot 5769 * race with what we are doing. 5770 */ 5771 cpu_vm_stats_fold(cpu); 5772 5773 for_each_populated_zone(zone) 5774 zone_pcp_update(zone, 0); 5775 5776 return 0; 5777 } 5778 5779 static int page_alloc_cpu_online(unsigned int cpu) 5780 { 5781 struct zone *zone; 5782 5783 for_each_populated_zone(zone) 5784 zone_pcp_update(zone, 1); 5785 return 0; 5786 } 5787 5788 void __init page_alloc_init_cpuhp(void) 5789 { 5790 int ret; 5791 5792 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5793 "mm/page_alloc:pcp", 5794 page_alloc_cpu_online, 5795 page_alloc_cpu_dead); 5796 WARN_ON(ret < 0); 5797 } 5798 5799 /* 5800 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5801 * or min_free_kbytes changes. 5802 */ 5803 static void calculate_totalreserve_pages(void) 5804 { 5805 struct pglist_data *pgdat; 5806 unsigned long reserve_pages = 0; 5807 enum zone_type i, j; 5808 5809 for_each_online_pgdat(pgdat) { 5810 5811 pgdat->totalreserve_pages = 0; 5812 5813 for (i = 0; i < MAX_NR_ZONES; i++) { 5814 struct zone *zone = pgdat->node_zones + i; 5815 long max = 0; 5816 unsigned long managed_pages = zone_managed_pages(zone); 5817 5818 /* Find valid and maximum lowmem_reserve in the zone */ 5819 for (j = i; j < MAX_NR_ZONES; j++) { 5820 if (zone->lowmem_reserve[j] > max) 5821 max = zone->lowmem_reserve[j]; 5822 } 5823 5824 /* we treat the high watermark as reserved pages. */ 5825 max += high_wmark_pages(zone); 5826 5827 if (max > managed_pages) 5828 max = managed_pages; 5829 5830 pgdat->totalreserve_pages += max; 5831 5832 reserve_pages += max; 5833 } 5834 } 5835 totalreserve_pages = reserve_pages; 5836 } 5837 5838 /* 5839 * setup_per_zone_lowmem_reserve - called whenever 5840 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5841 * has a correct pages reserved value, so an adequate number of 5842 * pages are left in the zone after a successful __alloc_pages(). 5843 */ 5844 static void setup_per_zone_lowmem_reserve(void) 5845 { 5846 struct pglist_data *pgdat; 5847 enum zone_type i, j; 5848 5849 for_each_online_pgdat(pgdat) { 5850 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5851 struct zone *zone = &pgdat->node_zones[i]; 5852 int ratio = sysctl_lowmem_reserve_ratio[i]; 5853 bool clear = !ratio || !zone_managed_pages(zone); 5854 unsigned long managed_pages = 0; 5855 5856 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5857 struct zone *upper_zone = &pgdat->node_zones[j]; 5858 bool empty = !zone_managed_pages(upper_zone); 5859 5860 managed_pages += zone_managed_pages(upper_zone); 5861 5862 if (clear || empty) 5863 zone->lowmem_reserve[j] = 0; 5864 else 5865 zone->lowmem_reserve[j] = managed_pages / ratio; 5866 } 5867 } 5868 } 5869 5870 /* update totalreserve_pages */ 5871 calculate_totalreserve_pages(); 5872 } 5873 5874 static void __setup_per_zone_wmarks(void) 5875 { 5876 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5877 unsigned long lowmem_pages = 0; 5878 struct zone *zone; 5879 unsigned long flags; 5880 5881 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5882 for_each_zone(zone) { 5883 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5884 lowmem_pages += zone_managed_pages(zone); 5885 } 5886 5887 for_each_zone(zone) { 5888 u64 tmp; 5889 5890 spin_lock_irqsave(&zone->lock, flags); 5891 tmp = (u64)pages_min * zone_managed_pages(zone); 5892 tmp = div64_ul(tmp, lowmem_pages); 5893 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5894 /* 5895 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5896 * need highmem and movable zones pages, so cap pages_min 5897 * to a small value here. 5898 * 5899 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5900 * deltas control async page reclaim, and so should 5901 * not be capped for highmem and movable zones. 5902 */ 5903 unsigned long min_pages; 5904 5905 min_pages = zone_managed_pages(zone) / 1024; 5906 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5907 zone->_watermark[WMARK_MIN] = min_pages; 5908 } else { 5909 /* 5910 * If it's a lowmem zone, reserve a number of pages 5911 * proportionate to the zone's size. 5912 */ 5913 zone->_watermark[WMARK_MIN] = tmp; 5914 } 5915 5916 /* 5917 * Set the kswapd watermarks distance according to the 5918 * scale factor in proportion to available memory, but 5919 * ensure a minimum size on small systems. 5920 */ 5921 tmp = max_t(u64, tmp >> 2, 5922 mult_frac(zone_managed_pages(zone), 5923 watermark_scale_factor, 10000)); 5924 5925 zone->watermark_boost = 0; 5926 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5927 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5928 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5929 5930 spin_unlock_irqrestore(&zone->lock, flags); 5931 } 5932 5933 /* update totalreserve_pages */ 5934 calculate_totalreserve_pages(); 5935 } 5936 5937 /** 5938 * setup_per_zone_wmarks - called when min_free_kbytes changes 5939 * or when memory is hot-{added|removed} 5940 * 5941 * Ensures that the watermark[min,low,high] values for each zone are set 5942 * correctly with respect to min_free_kbytes. 5943 */ 5944 void setup_per_zone_wmarks(void) 5945 { 5946 struct zone *zone; 5947 static DEFINE_SPINLOCK(lock); 5948 5949 spin_lock(&lock); 5950 __setup_per_zone_wmarks(); 5951 spin_unlock(&lock); 5952 5953 /* 5954 * The watermark size have changed so update the pcpu batch 5955 * and high limits or the limits may be inappropriate. 5956 */ 5957 for_each_zone(zone) 5958 zone_pcp_update(zone, 0); 5959 } 5960 5961 /* 5962 * Initialise min_free_kbytes. 5963 * 5964 * For small machines we want it small (128k min). For large machines 5965 * we want it large (256MB max). But it is not linear, because network 5966 * bandwidth does not increase linearly with machine size. We use 5967 * 5968 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5969 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5970 * 5971 * which yields 5972 * 5973 * 16MB: 512k 5974 * 32MB: 724k 5975 * 64MB: 1024k 5976 * 128MB: 1448k 5977 * 256MB: 2048k 5978 * 512MB: 2896k 5979 * 1024MB: 4096k 5980 * 2048MB: 5792k 5981 * 4096MB: 8192k 5982 * 8192MB: 11584k 5983 * 16384MB: 16384k 5984 */ 5985 void calculate_min_free_kbytes(void) 5986 { 5987 unsigned long lowmem_kbytes; 5988 int new_min_free_kbytes; 5989 5990 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5991 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5992 5993 if (new_min_free_kbytes > user_min_free_kbytes) 5994 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 5995 else 5996 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5997 new_min_free_kbytes, user_min_free_kbytes); 5998 5999 } 6000 6001 int __meminit init_per_zone_wmark_min(void) 6002 { 6003 calculate_min_free_kbytes(); 6004 setup_per_zone_wmarks(); 6005 refresh_zone_stat_thresholds(); 6006 setup_per_zone_lowmem_reserve(); 6007 6008 #ifdef CONFIG_NUMA 6009 setup_min_unmapped_ratio(); 6010 setup_min_slab_ratio(); 6011 #endif 6012 6013 khugepaged_min_free_kbytes_update(); 6014 6015 return 0; 6016 } 6017 postcore_initcall(init_per_zone_wmark_min) 6018 6019 /* 6020 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6021 * that we can call two helper functions whenever min_free_kbytes 6022 * changes. 6023 */ 6024 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6025 void *buffer, size_t *length, loff_t *ppos) 6026 { 6027 int rc; 6028 6029 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6030 if (rc) 6031 return rc; 6032 6033 if (write) { 6034 user_min_free_kbytes = min_free_kbytes; 6035 setup_per_zone_wmarks(); 6036 } 6037 return 0; 6038 } 6039 6040 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6041 void *buffer, size_t *length, loff_t *ppos) 6042 { 6043 int rc; 6044 6045 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6046 if (rc) 6047 return rc; 6048 6049 if (write) 6050 setup_per_zone_wmarks(); 6051 6052 return 0; 6053 } 6054 6055 #ifdef CONFIG_NUMA 6056 static void setup_min_unmapped_ratio(void) 6057 { 6058 pg_data_t *pgdat; 6059 struct zone *zone; 6060 6061 for_each_online_pgdat(pgdat) 6062 pgdat->min_unmapped_pages = 0; 6063 6064 for_each_zone(zone) 6065 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6066 sysctl_min_unmapped_ratio) / 100; 6067 } 6068 6069 6070 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6071 void *buffer, size_t *length, loff_t *ppos) 6072 { 6073 int rc; 6074 6075 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6076 if (rc) 6077 return rc; 6078 6079 setup_min_unmapped_ratio(); 6080 6081 return 0; 6082 } 6083 6084 static void setup_min_slab_ratio(void) 6085 { 6086 pg_data_t *pgdat; 6087 struct zone *zone; 6088 6089 for_each_online_pgdat(pgdat) 6090 pgdat->min_slab_pages = 0; 6091 6092 for_each_zone(zone) 6093 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6094 sysctl_min_slab_ratio) / 100; 6095 } 6096 6097 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6098 void *buffer, size_t *length, loff_t *ppos) 6099 { 6100 int rc; 6101 6102 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6103 if (rc) 6104 return rc; 6105 6106 setup_min_slab_ratio(); 6107 6108 return 0; 6109 } 6110 #endif 6111 6112 /* 6113 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6114 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6115 * whenever sysctl_lowmem_reserve_ratio changes. 6116 * 6117 * The reserve ratio obviously has absolutely no relation with the 6118 * minimum watermarks. The lowmem reserve ratio can only make sense 6119 * if in function of the boot time zone sizes. 6120 */ 6121 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6122 int write, void *buffer, size_t *length, loff_t *ppos) 6123 { 6124 int i; 6125 6126 proc_dointvec_minmax(table, write, buffer, length, ppos); 6127 6128 for (i = 0; i < MAX_NR_ZONES; i++) { 6129 if (sysctl_lowmem_reserve_ratio[i] < 1) 6130 sysctl_lowmem_reserve_ratio[i] = 0; 6131 } 6132 6133 setup_per_zone_lowmem_reserve(); 6134 return 0; 6135 } 6136 6137 /* 6138 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6139 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6140 * pagelist can have before it gets flushed back to buddy allocator. 6141 */ 6142 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6143 int write, void *buffer, size_t *length, loff_t *ppos) 6144 { 6145 struct zone *zone; 6146 int old_percpu_pagelist_high_fraction; 6147 int ret; 6148 6149 mutex_lock(&pcp_batch_high_lock); 6150 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6151 6152 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6153 if (!write || ret < 0) 6154 goto out; 6155 6156 /* Sanity checking to avoid pcp imbalance */ 6157 if (percpu_pagelist_high_fraction && 6158 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6159 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6160 ret = -EINVAL; 6161 goto out; 6162 } 6163 6164 /* No change? */ 6165 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6166 goto out; 6167 6168 for_each_populated_zone(zone) 6169 zone_set_pageset_high_and_batch(zone, 0); 6170 out: 6171 mutex_unlock(&pcp_batch_high_lock); 6172 return ret; 6173 } 6174 6175 static struct ctl_table page_alloc_sysctl_table[] = { 6176 { 6177 .procname = "min_free_kbytes", 6178 .data = &min_free_kbytes, 6179 .maxlen = sizeof(min_free_kbytes), 6180 .mode = 0644, 6181 .proc_handler = min_free_kbytes_sysctl_handler, 6182 .extra1 = SYSCTL_ZERO, 6183 }, 6184 { 6185 .procname = "watermark_boost_factor", 6186 .data = &watermark_boost_factor, 6187 .maxlen = sizeof(watermark_boost_factor), 6188 .mode = 0644, 6189 .proc_handler = proc_dointvec_minmax, 6190 .extra1 = SYSCTL_ZERO, 6191 }, 6192 { 6193 .procname = "watermark_scale_factor", 6194 .data = &watermark_scale_factor, 6195 .maxlen = sizeof(watermark_scale_factor), 6196 .mode = 0644, 6197 .proc_handler = watermark_scale_factor_sysctl_handler, 6198 .extra1 = SYSCTL_ONE, 6199 .extra2 = SYSCTL_THREE_THOUSAND, 6200 }, 6201 { 6202 .procname = "percpu_pagelist_high_fraction", 6203 .data = &percpu_pagelist_high_fraction, 6204 .maxlen = sizeof(percpu_pagelist_high_fraction), 6205 .mode = 0644, 6206 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6207 .extra1 = SYSCTL_ZERO, 6208 }, 6209 { 6210 .procname = "lowmem_reserve_ratio", 6211 .data = &sysctl_lowmem_reserve_ratio, 6212 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6213 .mode = 0644, 6214 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6215 }, 6216 #ifdef CONFIG_NUMA 6217 { 6218 .procname = "numa_zonelist_order", 6219 .data = &numa_zonelist_order, 6220 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6221 .mode = 0644, 6222 .proc_handler = numa_zonelist_order_handler, 6223 }, 6224 { 6225 .procname = "min_unmapped_ratio", 6226 .data = &sysctl_min_unmapped_ratio, 6227 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6228 .mode = 0644, 6229 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6230 .extra1 = SYSCTL_ZERO, 6231 .extra2 = SYSCTL_ONE_HUNDRED, 6232 }, 6233 { 6234 .procname = "min_slab_ratio", 6235 .data = &sysctl_min_slab_ratio, 6236 .maxlen = sizeof(sysctl_min_slab_ratio), 6237 .mode = 0644, 6238 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6239 .extra1 = SYSCTL_ZERO, 6240 .extra2 = SYSCTL_ONE_HUNDRED, 6241 }, 6242 #endif 6243 }; 6244 6245 void __init page_alloc_sysctl_init(void) 6246 { 6247 register_sysctl_init("vm", page_alloc_sysctl_table); 6248 } 6249 6250 #ifdef CONFIG_CONTIG_ALLOC 6251 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6252 static void alloc_contig_dump_pages(struct list_head *page_list) 6253 { 6254 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6255 6256 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6257 struct page *page; 6258 6259 dump_stack(); 6260 list_for_each_entry(page, page_list, lru) 6261 dump_page(page, "migration failure"); 6262 } 6263 } 6264 6265 /* 6266 * [start, end) must belong to a single zone. 6267 * @migratetype: using migratetype to filter the type of migration in 6268 * trace_mm_alloc_contig_migrate_range_info. 6269 */ 6270 int __alloc_contig_migrate_range(struct compact_control *cc, 6271 unsigned long start, unsigned long end, 6272 int migratetype) 6273 { 6274 /* This function is based on compact_zone() from compaction.c. */ 6275 unsigned int nr_reclaimed; 6276 unsigned long pfn = start; 6277 unsigned int tries = 0; 6278 int ret = 0; 6279 struct migration_target_control mtc = { 6280 .nid = zone_to_nid(cc->zone), 6281 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6282 .reason = MR_CONTIG_RANGE, 6283 }; 6284 struct page *page; 6285 unsigned long total_mapped = 0; 6286 unsigned long total_migrated = 0; 6287 unsigned long total_reclaimed = 0; 6288 6289 lru_cache_disable(); 6290 6291 while (pfn < end || !list_empty(&cc->migratepages)) { 6292 if (fatal_signal_pending(current)) { 6293 ret = -EINTR; 6294 break; 6295 } 6296 6297 if (list_empty(&cc->migratepages)) { 6298 cc->nr_migratepages = 0; 6299 ret = isolate_migratepages_range(cc, pfn, end); 6300 if (ret && ret != -EAGAIN) 6301 break; 6302 pfn = cc->migrate_pfn; 6303 tries = 0; 6304 } else if (++tries == 5) { 6305 ret = -EBUSY; 6306 break; 6307 } 6308 6309 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6310 &cc->migratepages); 6311 cc->nr_migratepages -= nr_reclaimed; 6312 6313 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6314 total_reclaimed += nr_reclaimed; 6315 list_for_each_entry(page, &cc->migratepages, lru) { 6316 struct folio *folio = page_folio(page); 6317 6318 total_mapped += folio_mapped(folio) * 6319 folio_nr_pages(folio); 6320 } 6321 } 6322 6323 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6324 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6325 6326 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6327 total_migrated += cc->nr_migratepages; 6328 6329 /* 6330 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6331 * to retry again over this error, so do the same here. 6332 */ 6333 if (ret == -ENOMEM) 6334 break; 6335 } 6336 6337 lru_cache_enable(); 6338 if (ret < 0) { 6339 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6340 alloc_contig_dump_pages(&cc->migratepages); 6341 putback_movable_pages(&cc->migratepages); 6342 } 6343 6344 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6345 total_migrated, 6346 total_reclaimed, 6347 total_mapped); 6348 return (ret < 0) ? ret : 0; 6349 } 6350 6351 static void split_free_pages(struct list_head *list) 6352 { 6353 int order; 6354 6355 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6356 struct page *page, *next; 6357 int nr_pages = 1 << order; 6358 6359 list_for_each_entry_safe(page, next, &list[order], lru) { 6360 int i; 6361 6362 post_alloc_hook(page, order, __GFP_MOVABLE); 6363 if (!order) 6364 continue; 6365 6366 split_page(page, order); 6367 6368 /* Add all subpages to the order-0 head, in sequence. */ 6369 list_del(&page->lru); 6370 for (i = 0; i < nr_pages; i++) 6371 list_add_tail(&page[i].lru, &list[0]); 6372 } 6373 } 6374 } 6375 6376 /** 6377 * alloc_contig_range() -- tries to allocate given range of pages 6378 * @start: start PFN to allocate 6379 * @end: one-past-the-last PFN to allocate 6380 * @migratetype: migratetype of the underlying pageblocks (either 6381 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6382 * in range must have the same migratetype and it must 6383 * be either of the two. 6384 * @gfp_mask: GFP mask to use during compaction 6385 * 6386 * The PFN range does not have to be pageblock aligned. The PFN range must 6387 * belong to a single zone. 6388 * 6389 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6390 * pageblocks in the range. Once isolated, the pageblocks should not 6391 * be modified by others. 6392 * 6393 * Return: zero on success or negative error code. On success all 6394 * pages which PFN is in [start, end) are allocated for the caller and 6395 * need to be freed with free_contig_range(). 6396 */ 6397 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6398 unsigned migratetype, gfp_t gfp_mask) 6399 { 6400 unsigned long outer_start, outer_end; 6401 int ret = 0; 6402 6403 struct compact_control cc = { 6404 .nr_migratepages = 0, 6405 .order = -1, 6406 .zone = page_zone(pfn_to_page(start)), 6407 .mode = MIGRATE_SYNC, 6408 .ignore_skip_hint = true, 6409 .no_set_skip_hint = true, 6410 .gfp_mask = current_gfp_context(gfp_mask), 6411 .alloc_contig = true, 6412 }; 6413 INIT_LIST_HEAD(&cc.migratepages); 6414 6415 /* 6416 * What we do here is we mark all pageblocks in range as 6417 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6418 * have different sizes, and due to the way page allocator 6419 * work, start_isolate_page_range() has special handlings for this. 6420 * 6421 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6422 * migrate the pages from an unaligned range (ie. pages that 6423 * we are interested in). This will put all the pages in 6424 * range back to page allocator as MIGRATE_ISOLATE. 6425 * 6426 * When this is done, we take the pages in range from page 6427 * allocator removing them from the buddy system. This way 6428 * page allocator will never consider using them. 6429 * 6430 * This lets us mark the pageblocks back as 6431 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6432 * aligned range but not in the unaligned, original range are 6433 * put back to page allocator so that buddy can use them. 6434 */ 6435 6436 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6437 if (ret) 6438 goto done; 6439 6440 drain_all_pages(cc.zone); 6441 6442 /* 6443 * In case of -EBUSY, we'd like to know which page causes problem. 6444 * So, just fall through. test_pages_isolated() has a tracepoint 6445 * which will report the busy page. 6446 * 6447 * It is possible that busy pages could become available before 6448 * the call to test_pages_isolated, and the range will actually be 6449 * allocated. So, if we fall through be sure to clear ret so that 6450 * -EBUSY is not accidentally used or returned to caller. 6451 */ 6452 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6453 if (ret && ret != -EBUSY) 6454 goto done; 6455 ret = 0; 6456 6457 /* 6458 * Pages from [start, end) are within a pageblock_nr_pages 6459 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6460 * more, all pages in [start, end) are free in page allocator. 6461 * What we are going to do is to allocate all pages from 6462 * [start, end) (that is remove them from page allocator). 6463 * 6464 * The only problem is that pages at the beginning and at the 6465 * end of interesting range may be not aligned with pages that 6466 * page allocator holds, ie. they can be part of higher order 6467 * pages. Because of this, we reserve the bigger range and 6468 * once this is done free the pages we are not interested in. 6469 * 6470 * We don't have to hold zone->lock here because the pages are 6471 * isolated thus they won't get removed from buddy. 6472 */ 6473 outer_start = find_large_buddy(start); 6474 6475 /* Make sure the range is really isolated. */ 6476 if (test_pages_isolated(outer_start, end, 0)) { 6477 ret = -EBUSY; 6478 goto done; 6479 } 6480 6481 /* Grab isolated pages from freelists. */ 6482 outer_end = isolate_freepages_range(&cc, outer_start, end); 6483 if (!outer_end) { 6484 ret = -EBUSY; 6485 goto done; 6486 } 6487 6488 if (!(gfp_mask & __GFP_COMP)) { 6489 split_free_pages(cc.freepages); 6490 6491 /* Free head and tail (if any) */ 6492 if (start != outer_start) 6493 free_contig_range(outer_start, start - outer_start); 6494 if (end != outer_end) 6495 free_contig_range(end, outer_end - end); 6496 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6497 struct page *head = pfn_to_page(start); 6498 int order = ilog2(end - start); 6499 6500 check_new_pages(head, order); 6501 prep_new_page(head, order, gfp_mask, 0); 6502 } else { 6503 ret = -EINVAL; 6504 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6505 start, end, outer_start, outer_end); 6506 } 6507 done: 6508 undo_isolate_page_range(start, end, migratetype); 6509 return ret; 6510 } 6511 EXPORT_SYMBOL(alloc_contig_range_noprof); 6512 6513 static int __alloc_contig_pages(unsigned long start_pfn, 6514 unsigned long nr_pages, gfp_t gfp_mask) 6515 { 6516 unsigned long end_pfn = start_pfn + nr_pages; 6517 6518 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6519 gfp_mask); 6520 } 6521 6522 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6523 unsigned long nr_pages) 6524 { 6525 unsigned long i, end_pfn = start_pfn + nr_pages; 6526 struct page *page; 6527 6528 for (i = start_pfn; i < end_pfn; i++) { 6529 page = pfn_to_online_page(i); 6530 if (!page) 6531 return false; 6532 6533 if (page_zone(page) != z) 6534 return false; 6535 6536 if (PageReserved(page)) 6537 return false; 6538 6539 if (PageHuge(page)) 6540 return false; 6541 } 6542 return true; 6543 } 6544 6545 static bool zone_spans_last_pfn(const struct zone *zone, 6546 unsigned long start_pfn, unsigned long nr_pages) 6547 { 6548 unsigned long last_pfn = start_pfn + nr_pages - 1; 6549 6550 return zone_spans_pfn(zone, last_pfn); 6551 } 6552 6553 /** 6554 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6555 * @nr_pages: Number of contiguous pages to allocate 6556 * @gfp_mask: GFP mask to limit search and used during compaction 6557 * @nid: Target node 6558 * @nodemask: Mask for other possible nodes 6559 * 6560 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6561 * on an applicable zonelist to find a contiguous pfn range which can then be 6562 * tried for allocation with alloc_contig_range(). This routine is intended 6563 * for allocation requests which can not be fulfilled with the buddy allocator. 6564 * 6565 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6566 * power of two, then allocated range is also guaranteed to be aligned to same 6567 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6568 * 6569 * Allocated pages can be freed with free_contig_range() or by manually calling 6570 * __free_page() on each allocated page. 6571 * 6572 * Return: pointer to contiguous pages on success, or NULL if not successful. 6573 */ 6574 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6575 int nid, nodemask_t *nodemask) 6576 { 6577 unsigned long ret, pfn, flags; 6578 struct zonelist *zonelist; 6579 struct zone *zone; 6580 struct zoneref *z; 6581 6582 zonelist = node_zonelist(nid, gfp_mask); 6583 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6584 gfp_zone(gfp_mask), nodemask) { 6585 spin_lock_irqsave(&zone->lock, flags); 6586 6587 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6588 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6589 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6590 /* 6591 * We release the zone lock here because 6592 * alloc_contig_range() will also lock the zone 6593 * at some point. If there's an allocation 6594 * spinning on this lock, it may win the race 6595 * and cause alloc_contig_range() to fail... 6596 */ 6597 spin_unlock_irqrestore(&zone->lock, flags); 6598 ret = __alloc_contig_pages(pfn, nr_pages, 6599 gfp_mask); 6600 if (!ret) 6601 return pfn_to_page(pfn); 6602 spin_lock_irqsave(&zone->lock, flags); 6603 } 6604 pfn += nr_pages; 6605 } 6606 spin_unlock_irqrestore(&zone->lock, flags); 6607 } 6608 return NULL; 6609 } 6610 #endif /* CONFIG_CONTIG_ALLOC */ 6611 6612 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6613 { 6614 unsigned long count = 0; 6615 struct folio *folio = pfn_folio(pfn); 6616 6617 if (folio_test_large(folio)) { 6618 int expected = folio_nr_pages(folio); 6619 6620 if (nr_pages == expected) 6621 folio_put(folio); 6622 else 6623 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6624 pfn, nr_pages, expected); 6625 return; 6626 } 6627 6628 for (; nr_pages--; pfn++) { 6629 struct page *page = pfn_to_page(pfn); 6630 6631 count += page_count(page) != 1; 6632 __free_page(page); 6633 } 6634 WARN(count != 0, "%lu pages are still in use!\n", count); 6635 } 6636 EXPORT_SYMBOL(free_contig_range); 6637 6638 /* 6639 * Effectively disable pcplists for the zone by setting the high limit to 0 6640 * and draining all cpus. A concurrent page freeing on another CPU that's about 6641 * to put the page on pcplist will either finish before the drain and the page 6642 * will be drained, or observe the new high limit and skip the pcplist. 6643 * 6644 * Must be paired with a call to zone_pcp_enable(). 6645 */ 6646 void zone_pcp_disable(struct zone *zone) 6647 { 6648 mutex_lock(&pcp_batch_high_lock); 6649 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6650 __drain_all_pages(zone, true); 6651 } 6652 6653 void zone_pcp_enable(struct zone *zone) 6654 { 6655 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6656 zone->pageset_high_max, zone->pageset_batch); 6657 mutex_unlock(&pcp_batch_high_lock); 6658 } 6659 6660 void zone_pcp_reset(struct zone *zone) 6661 { 6662 int cpu; 6663 struct per_cpu_zonestat *pzstats; 6664 6665 if (zone->per_cpu_pageset != &boot_pageset) { 6666 for_each_online_cpu(cpu) { 6667 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6668 drain_zonestat(zone, pzstats); 6669 } 6670 free_percpu(zone->per_cpu_pageset); 6671 zone->per_cpu_pageset = &boot_pageset; 6672 if (zone->per_cpu_zonestats != &boot_zonestats) { 6673 free_percpu(zone->per_cpu_zonestats); 6674 zone->per_cpu_zonestats = &boot_zonestats; 6675 } 6676 } 6677 } 6678 6679 #ifdef CONFIG_MEMORY_HOTREMOVE 6680 /* 6681 * All pages in the range must be in a single zone, must not contain holes, 6682 * must span full sections, and must be isolated before calling this function. 6683 * 6684 * Returns the number of managed (non-PageOffline()) pages in the range: the 6685 * number of pages for which memory offlining code must adjust managed page 6686 * counters using adjust_managed_page_count(). 6687 */ 6688 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6689 unsigned long end_pfn) 6690 { 6691 unsigned long already_offline = 0, flags; 6692 unsigned long pfn = start_pfn; 6693 struct page *page; 6694 struct zone *zone; 6695 unsigned int order; 6696 6697 offline_mem_sections(pfn, end_pfn); 6698 zone = page_zone(pfn_to_page(pfn)); 6699 spin_lock_irqsave(&zone->lock, flags); 6700 while (pfn < end_pfn) { 6701 page = pfn_to_page(pfn); 6702 /* 6703 * The HWPoisoned page may be not in buddy system, and 6704 * page_count() is not 0. 6705 */ 6706 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6707 pfn++; 6708 continue; 6709 } 6710 /* 6711 * At this point all remaining PageOffline() pages have a 6712 * reference count of 0 and can simply be skipped. 6713 */ 6714 if (PageOffline(page)) { 6715 BUG_ON(page_count(page)); 6716 BUG_ON(PageBuddy(page)); 6717 already_offline++; 6718 pfn++; 6719 continue; 6720 } 6721 6722 BUG_ON(page_count(page)); 6723 BUG_ON(!PageBuddy(page)); 6724 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6725 order = buddy_order(page); 6726 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6727 pfn += (1 << order); 6728 } 6729 spin_unlock_irqrestore(&zone->lock, flags); 6730 6731 return end_pfn - start_pfn - already_offline; 6732 } 6733 #endif 6734 6735 /* 6736 * This function returns a stable result only if called under zone lock. 6737 */ 6738 bool is_free_buddy_page(const struct page *page) 6739 { 6740 unsigned long pfn = page_to_pfn(page); 6741 unsigned int order; 6742 6743 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6744 const struct page *head = page - (pfn & ((1 << order) - 1)); 6745 6746 if (PageBuddy(head) && 6747 buddy_order_unsafe(head) >= order) 6748 break; 6749 } 6750 6751 return order <= MAX_PAGE_ORDER; 6752 } 6753 EXPORT_SYMBOL(is_free_buddy_page); 6754 6755 #ifdef CONFIG_MEMORY_FAILURE 6756 static inline void add_to_free_list(struct page *page, struct zone *zone, 6757 unsigned int order, int migratetype, 6758 bool tail) 6759 { 6760 __add_to_free_list(page, zone, order, migratetype, tail); 6761 account_freepages(zone, 1 << order, migratetype); 6762 } 6763 6764 /* 6765 * Break down a higher-order page in sub-pages, and keep our target out of 6766 * buddy allocator. 6767 */ 6768 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6769 struct page *target, int low, int high, 6770 int migratetype) 6771 { 6772 unsigned long size = 1 << high; 6773 struct page *current_buddy; 6774 6775 while (high > low) { 6776 high--; 6777 size >>= 1; 6778 6779 if (target >= &page[size]) { 6780 current_buddy = page; 6781 page = page + size; 6782 } else { 6783 current_buddy = page + size; 6784 } 6785 6786 if (set_page_guard(zone, current_buddy, high)) 6787 continue; 6788 6789 add_to_free_list(current_buddy, zone, high, migratetype, false); 6790 set_buddy_order(current_buddy, high); 6791 } 6792 } 6793 6794 /* 6795 * Take a page that will be marked as poisoned off the buddy allocator. 6796 */ 6797 bool take_page_off_buddy(struct page *page) 6798 { 6799 struct zone *zone = page_zone(page); 6800 unsigned long pfn = page_to_pfn(page); 6801 unsigned long flags; 6802 unsigned int order; 6803 bool ret = false; 6804 6805 spin_lock_irqsave(&zone->lock, flags); 6806 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6807 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6808 int page_order = buddy_order(page_head); 6809 6810 if (PageBuddy(page_head) && page_order >= order) { 6811 unsigned long pfn_head = page_to_pfn(page_head); 6812 int migratetype = get_pfnblock_migratetype(page_head, 6813 pfn_head); 6814 6815 del_page_from_free_list(page_head, zone, page_order, 6816 migratetype); 6817 break_down_buddy_pages(zone, page_head, page, 0, 6818 page_order, migratetype); 6819 SetPageHWPoisonTakenOff(page); 6820 ret = true; 6821 break; 6822 } 6823 if (page_count(page_head) > 0) 6824 break; 6825 } 6826 spin_unlock_irqrestore(&zone->lock, flags); 6827 return ret; 6828 } 6829 6830 /* 6831 * Cancel takeoff done by take_page_off_buddy(). 6832 */ 6833 bool put_page_back_buddy(struct page *page) 6834 { 6835 struct zone *zone = page_zone(page); 6836 unsigned long flags; 6837 bool ret = false; 6838 6839 spin_lock_irqsave(&zone->lock, flags); 6840 if (put_page_testzero(page)) { 6841 unsigned long pfn = page_to_pfn(page); 6842 int migratetype = get_pfnblock_migratetype(page, pfn); 6843 6844 ClearPageHWPoisonTakenOff(page); 6845 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6846 if (TestClearPageHWPoison(page)) { 6847 ret = true; 6848 } 6849 } 6850 spin_unlock_irqrestore(&zone->lock, flags); 6851 6852 return ret; 6853 } 6854 #endif 6855 6856 #ifdef CONFIG_ZONE_DMA 6857 bool has_managed_dma(void) 6858 { 6859 struct pglist_data *pgdat; 6860 6861 for_each_online_pgdat(pgdat) { 6862 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6863 6864 if (managed_zone(zone)) 6865 return true; 6866 } 6867 return false; 6868 } 6869 #endif /* CONFIG_ZONE_DMA */ 6870 6871 #ifdef CONFIG_UNACCEPTED_MEMORY 6872 6873 /* Counts number of zones with unaccepted pages. */ 6874 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6875 6876 static bool lazy_accept = true; 6877 6878 static int __init accept_memory_parse(char *p) 6879 { 6880 if (!strcmp(p, "lazy")) { 6881 lazy_accept = true; 6882 return 0; 6883 } else if (!strcmp(p, "eager")) { 6884 lazy_accept = false; 6885 return 0; 6886 } else { 6887 return -EINVAL; 6888 } 6889 } 6890 early_param("accept_memory", accept_memory_parse); 6891 6892 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6893 { 6894 phys_addr_t start = page_to_phys(page); 6895 6896 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 6897 } 6898 6899 static void __accept_page(struct zone *zone, unsigned long *flags, 6900 struct page *page) 6901 { 6902 bool last; 6903 6904 list_del(&page->lru); 6905 last = list_empty(&zone->unaccepted_pages); 6906 6907 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6908 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6909 __ClearPageUnaccepted(page); 6910 spin_unlock_irqrestore(&zone->lock, *flags); 6911 6912 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 6913 6914 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6915 6916 if (last) 6917 static_branch_dec(&zones_with_unaccepted_pages); 6918 } 6919 6920 void accept_page(struct page *page) 6921 { 6922 struct zone *zone = page_zone(page); 6923 unsigned long flags; 6924 6925 spin_lock_irqsave(&zone->lock, flags); 6926 if (!PageUnaccepted(page)) { 6927 spin_unlock_irqrestore(&zone->lock, flags); 6928 return; 6929 } 6930 6931 /* Unlocks zone->lock */ 6932 __accept_page(zone, &flags, page); 6933 } 6934 6935 static bool try_to_accept_memory_one(struct zone *zone) 6936 { 6937 unsigned long flags; 6938 struct page *page; 6939 6940 spin_lock_irqsave(&zone->lock, flags); 6941 page = list_first_entry_or_null(&zone->unaccepted_pages, 6942 struct page, lru); 6943 if (!page) { 6944 spin_unlock_irqrestore(&zone->lock, flags); 6945 return false; 6946 } 6947 6948 /* Unlocks zone->lock */ 6949 __accept_page(zone, &flags, page); 6950 6951 return true; 6952 } 6953 6954 static inline bool has_unaccepted_memory(void) 6955 { 6956 return static_branch_unlikely(&zones_with_unaccepted_pages); 6957 } 6958 6959 static bool cond_accept_memory(struct zone *zone, unsigned int order) 6960 { 6961 long to_accept; 6962 bool ret = false; 6963 6964 if (!has_unaccepted_memory()) 6965 return false; 6966 6967 if (list_empty(&zone->unaccepted_pages)) 6968 return false; 6969 6970 /* How much to accept to get to promo watermark? */ 6971 to_accept = promo_wmark_pages(zone) - 6972 (zone_page_state(zone, NR_FREE_PAGES) - 6973 __zone_watermark_unusable_free(zone, order, 0) - 6974 zone_page_state(zone, NR_UNACCEPTED)); 6975 6976 while (to_accept > 0) { 6977 if (!try_to_accept_memory_one(zone)) 6978 break; 6979 ret = true; 6980 to_accept -= MAX_ORDER_NR_PAGES; 6981 } 6982 6983 return ret; 6984 } 6985 6986 static bool __free_unaccepted(struct page *page) 6987 { 6988 struct zone *zone = page_zone(page); 6989 unsigned long flags; 6990 bool first = false; 6991 6992 if (!lazy_accept) 6993 return false; 6994 6995 spin_lock_irqsave(&zone->lock, flags); 6996 first = list_empty(&zone->unaccepted_pages); 6997 list_add_tail(&page->lru, &zone->unaccepted_pages); 6998 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6999 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7000 __SetPageUnaccepted(page); 7001 spin_unlock_irqrestore(&zone->lock, flags); 7002 7003 if (first) 7004 static_branch_inc(&zones_with_unaccepted_pages); 7005 7006 return true; 7007 } 7008 7009 #else 7010 7011 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7012 { 7013 return false; 7014 } 7015 7016 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7017 { 7018 return false; 7019 } 7020 7021 static bool __free_unaccepted(struct page *page) 7022 { 7023 BUILD_BUG(); 7024 return false; 7025 } 7026 7027 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7028