xref: /linux/mm/page_alloc.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107 
108 /*
109  * Array of node states.
110  */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 	[N_POSSIBLE] = NODE_MASK_ALL,
113 	[N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_MEMORY] = { { [0] = 1UL } },
120 	[N_CPU] = { { [0] = 1UL } },
121 #endif	/* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124 
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127 
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131 
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 
135 /*
136  * A cached value of the page's pageblock's migratetype, used when the page is
137  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139  * Also the migratetype set in the page does not necessarily match the pcplist
140  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141  * other index - this ensures that it will be put on the correct CMA freelist.
142  */
143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 	return page->index;
146 }
147 
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 	page->index = migratetype;
151 }
152 
153 #ifdef CONFIG_PM_SLEEP
154 /*
155  * The following functions are used by the suspend/hibernate code to temporarily
156  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157  * while devices are suspended.  To avoid races with the suspend/hibernate code,
158  * they should always be called with pm_mutex held (gfp_allowed_mask also should
159  * only be modified with pm_mutex held, unless the suspend/hibernate code is
160  * guaranteed not to run in parallel with that modification).
161  */
162 
163 static gfp_t saved_gfp_mask;
164 
165 void pm_restore_gfp_mask(void)
166 {
167 	WARN_ON(!mutex_is_locked(&pm_mutex));
168 	if (saved_gfp_mask) {
169 		gfp_allowed_mask = saved_gfp_mask;
170 		saved_gfp_mask = 0;
171 	}
172 }
173 
174 void pm_restrict_gfp_mask(void)
175 {
176 	WARN_ON(!mutex_is_locked(&pm_mutex));
177 	WARN_ON(saved_gfp_mask);
178 	saved_gfp_mask = gfp_allowed_mask;
179 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181 
182 bool pm_suspended_storage(void)
183 {
184 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 		return false;
186 	return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189 
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193 
194 static void __free_pages_ok(struct page *page, unsigned int order);
195 
196 /*
197  * results with 256, 32 in the lowmem_reserve sysctl:
198  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199  *	1G machine -> (16M dma, 784M normal, 224M high)
200  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203  *
204  * TBD: should special case ZONE_DMA32 machines here - in those we normally
205  * don't need any ZONE_NORMAL reservation
206  */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208 #ifdef CONFIG_ZONE_DMA
209 	 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 	 256,
213 #endif
214 #ifdef CONFIG_HIGHMEM
215 	 32,
216 #endif
217 	 32,
218 };
219 
220 EXPORT_SYMBOL(totalram_pages);
221 
222 static char * const zone_names[MAX_NR_ZONES] = {
223 #ifdef CONFIG_ZONE_DMA
224 	 "DMA",
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 	 "DMA32",
228 #endif
229 	 "Normal",
230 #ifdef CONFIG_HIGHMEM
231 	 "HighMem",
232 #endif
233 	 "Movable",
234 #ifdef CONFIG_ZONE_DEVICE
235 	 "Device",
236 #endif
237 };
238 
239 char * const migratetype_names[MIGRATE_TYPES] = {
240 	"Unmovable",
241 	"Movable",
242 	"Reclaimable",
243 	"HighAtomic",
244 #ifdef CONFIG_CMA
245 	"CMA",
246 #endif
247 #ifdef CONFIG_MEMORY_ISOLATION
248 	"Isolate",
249 #endif
250 };
251 
252 compound_page_dtor * const compound_page_dtors[] = {
253 	NULL,
254 	free_compound_page,
255 #ifdef CONFIG_HUGETLB_PAGE
256 	free_huge_page,
257 #endif
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 	free_transhuge_page,
260 #endif
261 };
262 
263 int min_free_kbytes = 1024;
264 int user_min_free_kbytes = -1;
265 int watermark_scale_factor = 10;
266 
267 static unsigned long __meminitdata nr_kernel_pages;
268 static unsigned long __meminitdata nr_all_pages;
269 static unsigned long __meminitdata dma_reserve;
270 
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __initdata required_kernelcore;
275 static unsigned long __initdata required_movablecore;
276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277 static bool mirrored_kernelcore;
278 
279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 int movable_zone;
281 EXPORT_SYMBOL(movable_zone);
282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283 
284 #if MAX_NUMNODES > 1
285 int nr_node_ids __read_mostly = MAX_NUMNODES;
286 int nr_online_nodes __read_mostly = 1;
287 EXPORT_SYMBOL(nr_node_ids);
288 EXPORT_SYMBOL(nr_online_nodes);
289 #endif
290 
291 int page_group_by_mobility_disabled __read_mostly;
292 
293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294 
295 /*
296  * Determine how many pages need to be initialized during early boot
297  * (non-deferred initialization).
298  * The value of first_deferred_pfn will be set later, once non-deferred pages
299  * are initialized, but for now set it ULONG_MAX.
300  */
301 static inline void reset_deferred_meminit(pg_data_t *pgdat)
302 {
303 	phys_addr_t start_addr, end_addr;
304 	unsigned long max_pgcnt;
305 	unsigned long reserved;
306 
307 	/*
308 	 * Initialise at least 2G of a node but also take into account that
309 	 * two large system hashes that can take up 1GB for 0.25TB/node.
310 	 */
311 	max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
312 			(pgdat->node_spanned_pages >> 8));
313 
314 	/*
315 	 * Compensate the all the memblock reservations (e.g. crash kernel)
316 	 * from the initial estimation to make sure we will initialize enough
317 	 * memory to boot.
318 	 */
319 	start_addr = PFN_PHYS(pgdat->node_start_pfn);
320 	end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
321 	reserved = memblock_reserved_memory_within(start_addr, end_addr);
322 	max_pgcnt += PHYS_PFN(reserved);
323 
324 	pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
325 	pgdat->first_deferred_pfn = ULONG_MAX;
326 }
327 
328 /* Returns true if the struct page for the pfn is uninitialised */
329 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
330 {
331 	int nid = early_pfn_to_nid(pfn);
332 
333 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
334 		return true;
335 
336 	return false;
337 }
338 
339 /*
340  * Returns false when the remaining initialisation should be deferred until
341  * later in the boot cycle when it can be parallelised.
342  */
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 				unsigned long pfn, unsigned long zone_end,
345 				unsigned long *nr_initialised)
346 {
347 	/* Always populate low zones for address-constrained allocations */
348 	if (zone_end < pgdat_end_pfn(pgdat))
349 		return true;
350 	(*nr_initialised)++;
351 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
352 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
353 		pgdat->first_deferred_pfn = pfn;
354 		return false;
355 	}
356 
357 	return true;
358 }
359 #else
360 static inline void reset_deferred_meminit(pg_data_t *pgdat)
361 {
362 }
363 
364 static inline bool early_page_uninitialised(unsigned long pfn)
365 {
366 	return false;
367 }
368 
369 static inline bool update_defer_init(pg_data_t *pgdat,
370 				unsigned long pfn, unsigned long zone_end,
371 				unsigned long *nr_initialised)
372 {
373 	return true;
374 }
375 #endif
376 
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page *page,
379 							unsigned long pfn)
380 {
381 #ifdef CONFIG_SPARSEMEM
382 	return __pfn_to_section(pfn)->pageblock_flags;
383 #else
384 	return page_zone(page)->pageblock_flags;
385 #endif /* CONFIG_SPARSEMEM */
386 }
387 
388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
389 {
390 #ifdef CONFIG_SPARSEMEM
391 	pfn &= (PAGES_PER_SECTION-1);
392 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
393 #else
394 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396 #endif /* CONFIG_SPARSEMEM */
397 }
398 
399 /**
400  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401  * @page: The page within the block of interest
402  * @pfn: The target page frame number
403  * @end_bitidx: The last bit of interest to retrieve
404  * @mask: mask of bits that the caller is interested in
405  *
406  * Return: pageblock_bits flags
407  */
408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
409 					unsigned long pfn,
410 					unsigned long end_bitidx,
411 					unsigned long mask)
412 {
413 	unsigned long *bitmap;
414 	unsigned long bitidx, word_bitidx;
415 	unsigned long word;
416 
417 	bitmap = get_pageblock_bitmap(page, pfn);
418 	bitidx = pfn_to_bitidx(page, pfn);
419 	word_bitidx = bitidx / BITS_PER_LONG;
420 	bitidx &= (BITS_PER_LONG-1);
421 
422 	word = bitmap[word_bitidx];
423 	bitidx += end_bitidx;
424 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
425 }
426 
427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 					unsigned long end_bitidx,
429 					unsigned long mask)
430 {
431 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
432 }
433 
434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
435 {
436 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
437 }
438 
439 /**
440  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441  * @page: The page within the block of interest
442  * @flags: The flags to set
443  * @pfn: The target page frame number
444  * @end_bitidx: The last bit of interest
445  * @mask: mask of bits that the caller is interested in
446  */
447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
448 					unsigned long pfn,
449 					unsigned long end_bitidx,
450 					unsigned long mask)
451 {
452 	unsigned long *bitmap;
453 	unsigned long bitidx, word_bitidx;
454 	unsigned long old_word, word;
455 
456 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
457 
458 	bitmap = get_pageblock_bitmap(page, pfn);
459 	bitidx = pfn_to_bitidx(page, pfn);
460 	word_bitidx = bitidx / BITS_PER_LONG;
461 	bitidx &= (BITS_PER_LONG-1);
462 
463 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
464 
465 	bitidx += end_bitidx;
466 	mask <<= (BITS_PER_LONG - bitidx - 1);
467 	flags <<= (BITS_PER_LONG - bitidx - 1);
468 
469 	word = READ_ONCE(bitmap[word_bitidx]);
470 	for (;;) {
471 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 		if (word == old_word)
473 			break;
474 		word = old_word;
475 	}
476 }
477 
478 void set_pageblock_migratetype(struct page *page, int migratetype)
479 {
480 	if (unlikely(page_group_by_mobility_disabled &&
481 		     migratetype < MIGRATE_PCPTYPES))
482 		migratetype = MIGRATE_UNMOVABLE;
483 
484 	set_pageblock_flags_group(page, (unsigned long)migratetype,
485 					PB_migrate, PB_migrate_end);
486 }
487 
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
490 {
491 	int ret = 0;
492 	unsigned seq;
493 	unsigned long pfn = page_to_pfn(page);
494 	unsigned long sp, start_pfn;
495 
496 	do {
497 		seq = zone_span_seqbegin(zone);
498 		start_pfn = zone->zone_start_pfn;
499 		sp = zone->spanned_pages;
500 		if (!zone_spans_pfn(zone, pfn))
501 			ret = 1;
502 	} while (zone_span_seqretry(zone, seq));
503 
504 	if (ret)
505 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 			pfn, zone_to_nid(zone), zone->name,
507 			start_pfn, start_pfn + sp);
508 
509 	return ret;
510 }
511 
512 static int page_is_consistent(struct zone *zone, struct page *page)
513 {
514 	if (!pfn_valid_within(page_to_pfn(page)))
515 		return 0;
516 	if (zone != page_zone(page))
517 		return 0;
518 
519 	return 1;
520 }
521 /*
522  * Temporary debugging check for pages not lying within a given zone.
523  */
524 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
525 {
526 	if (page_outside_zone_boundaries(zone, page))
527 		return 1;
528 	if (!page_is_consistent(zone, page))
529 		return 1;
530 
531 	return 0;
532 }
533 #else
534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 {
536 	return 0;
537 }
538 #endif
539 
540 static void bad_page(struct page *page, const char *reason,
541 		unsigned long bad_flags)
542 {
543 	static unsigned long resume;
544 	static unsigned long nr_shown;
545 	static unsigned long nr_unshown;
546 
547 	/*
548 	 * Allow a burst of 60 reports, then keep quiet for that minute;
549 	 * or allow a steady drip of one report per second.
550 	 */
551 	if (nr_shown == 60) {
552 		if (time_before(jiffies, resume)) {
553 			nr_unshown++;
554 			goto out;
555 		}
556 		if (nr_unshown) {
557 			pr_alert(
558 			      "BUG: Bad page state: %lu messages suppressed\n",
559 				nr_unshown);
560 			nr_unshown = 0;
561 		}
562 		nr_shown = 0;
563 	}
564 	if (nr_shown++ == 0)
565 		resume = jiffies + 60 * HZ;
566 
567 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
568 		current->comm, page_to_pfn(page));
569 	__dump_page(page, reason);
570 	bad_flags &= page->flags;
571 	if (bad_flags)
572 		pr_alert("bad because of flags: %#lx(%pGp)\n",
573 						bad_flags, &bad_flags);
574 	dump_page_owner(page);
575 
576 	print_modules();
577 	dump_stack();
578 out:
579 	/* Leave bad fields for debug, except PageBuddy could make trouble */
580 	page_mapcount_reset(page); /* remove PageBuddy */
581 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
582 }
583 
584 /*
585  * Higher-order pages are called "compound pages".  They are structured thusly:
586  *
587  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
588  *
589  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
591  *
592  * The first tail page's ->compound_dtor holds the offset in array of compound
593  * page destructors. See compound_page_dtors.
594  *
595  * The first tail page's ->compound_order holds the order of allocation.
596  * This usage means that zero-order pages may not be compound.
597  */
598 
599 void free_compound_page(struct page *page)
600 {
601 	__free_pages_ok(page, compound_order(page));
602 }
603 
604 void prep_compound_page(struct page *page, unsigned int order)
605 {
606 	int i;
607 	int nr_pages = 1 << order;
608 
609 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 	set_compound_order(page, order);
611 	__SetPageHead(page);
612 	for (i = 1; i < nr_pages; i++) {
613 		struct page *p = page + i;
614 		set_page_count(p, 0);
615 		p->mapping = TAIL_MAPPING;
616 		set_compound_head(p, page);
617 	}
618 	atomic_set(compound_mapcount_ptr(page), -1);
619 }
620 
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder;
623 bool _debug_pagealloc_enabled __read_mostly
624 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled);
626 bool _debug_guardpage_enabled __read_mostly;
627 
628 static int __init early_debug_pagealloc(char *buf)
629 {
630 	if (!buf)
631 		return -EINVAL;
632 	return kstrtobool(buf, &_debug_pagealloc_enabled);
633 }
634 early_param("debug_pagealloc", early_debug_pagealloc);
635 
636 static bool need_debug_guardpage(void)
637 {
638 	/* If we don't use debug_pagealloc, we don't need guard page */
639 	if (!debug_pagealloc_enabled())
640 		return false;
641 
642 	if (!debug_guardpage_minorder())
643 		return false;
644 
645 	return true;
646 }
647 
648 static void init_debug_guardpage(void)
649 {
650 	if (!debug_pagealloc_enabled())
651 		return;
652 
653 	if (!debug_guardpage_minorder())
654 		return;
655 
656 	_debug_guardpage_enabled = true;
657 }
658 
659 struct page_ext_operations debug_guardpage_ops = {
660 	.need = need_debug_guardpage,
661 	.init = init_debug_guardpage,
662 };
663 
664 static int __init debug_guardpage_minorder_setup(char *buf)
665 {
666 	unsigned long res;
667 
668 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
669 		pr_err("Bad debug_guardpage_minorder value\n");
670 		return 0;
671 	}
672 	_debug_guardpage_minorder = res;
673 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
674 	return 0;
675 }
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
677 
678 static inline bool set_page_guard(struct zone *zone, struct page *page,
679 				unsigned int order, int migratetype)
680 {
681 	struct page_ext *page_ext;
682 
683 	if (!debug_guardpage_enabled())
684 		return false;
685 
686 	if (order >= debug_guardpage_minorder())
687 		return false;
688 
689 	page_ext = lookup_page_ext(page);
690 	if (unlikely(!page_ext))
691 		return false;
692 
693 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694 
695 	INIT_LIST_HEAD(&page->lru);
696 	set_page_private(page, order);
697 	/* Guard pages are not available for any usage */
698 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
699 
700 	return true;
701 }
702 
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 				unsigned int order, int migratetype)
705 {
706 	struct page_ext *page_ext;
707 
708 	if (!debug_guardpage_enabled())
709 		return;
710 
711 	page_ext = lookup_page_ext(page);
712 	if (unlikely(!page_ext))
713 		return;
714 
715 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
716 
717 	set_page_private(page, 0);
718 	if (!is_migrate_isolate(migratetype))
719 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
720 }
721 #else
722 struct page_ext_operations debug_guardpage_ops;
723 static inline bool set_page_guard(struct zone *zone, struct page *page,
724 			unsigned int order, int migratetype) { return false; }
725 static inline void clear_page_guard(struct zone *zone, struct page *page,
726 				unsigned int order, int migratetype) {}
727 #endif
728 
729 static inline void set_page_order(struct page *page, unsigned int order)
730 {
731 	set_page_private(page, order);
732 	__SetPageBuddy(page);
733 }
734 
735 static inline void rmv_page_order(struct page *page)
736 {
737 	__ClearPageBuddy(page);
738 	set_page_private(page, 0);
739 }
740 
741 /*
742  * This function checks whether a page is free && is the buddy
743  * we can do coalesce a page and its buddy if
744  * (a) the buddy is not in a hole (check before calling!) &&
745  * (b) the buddy is in the buddy system &&
746  * (c) a page and its buddy have the same order &&
747  * (d) a page and its buddy are in the same zone.
748  *
749  * For recording whether a page is in the buddy system, we set ->_mapcount
750  * PAGE_BUDDY_MAPCOUNT_VALUE.
751  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752  * serialized by zone->lock.
753  *
754  * For recording page's order, we use page_private(page).
755  */
756 static inline int page_is_buddy(struct page *page, struct page *buddy,
757 							unsigned int order)
758 {
759 	if (page_is_guard(buddy) && page_order(buddy) == order) {
760 		if (page_zone_id(page) != page_zone_id(buddy))
761 			return 0;
762 
763 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
764 
765 		return 1;
766 	}
767 
768 	if (PageBuddy(buddy) && page_order(buddy) == order) {
769 		/*
770 		 * zone check is done late to avoid uselessly
771 		 * calculating zone/node ids for pages that could
772 		 * never merge.
773 		 */
774 		if (page_zone_id(page) != page_zone_id(buddy))
775 			return 0;
776 
777 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
778 
779 		return 1;
780 	}
781 	return 0;
782 }
783 
784 /*
785  * Freeing function for a buddy system allocator.
786  *
787  * The concept of a buddy system is to maintain direct-mapped table
788  * (containing bit values) for memory blocks of various "orders".
789  * The bottom level table contains the map for the smallest allocatable
790  * units of memory (here, pages), and each level above it describes
791  * pairs of units from the levels below, hence, "buddies".
792  * At a high level, all that happens here is marking the table entry
793  * at the bottom level available, and propagating the changes upward
794  * as necessary, plus some accounting needed to play nicely with other
795  * parts of the VM system.
796  * At each level, we keep a list of pages, which are heads of continuous
797  * free pages of length of (1 << order) and marked with _mapcount
798  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
799  * field.
800  * So when we are allocating or freeing one, we can derive the state of the
801  * other.  That is, if we allocate a small block, and both were
802  * free, the remainder of the region must be split into blocks.
803  * If a block is freed, and its buddy is also free, then this
804  * triggers coalescing into a block of larger size.
805  *
806  * -- nyc
807  */
808 
809 static inline void __free_one_page(struct page *page,
810 		unsigned long pfn,
811 		struct zone *zone, unsigned int order,
812 		int migratetype)
813 {
814 	unsigned long combined_pfn;
815 	unsigned long uninitialized_var(buddy_pfn);
816 	struct page *buddy;
817 	unsigned int max_order;
818 
819 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
820 
821 	VM_BUG_ON(!zone_is_initialized(zone));
822 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
823 
824 	VM_BUG_ON(migratetype == -1);
825 	if (likely(!is_migrate_isolate(migratetype)))
826 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
827 
828 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
829 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
830 
831 continue_merging:
832 	while (order < max_order - 1) {
833 		buddy_pfn = __find_buddy_pfn(pfn, order);
834 		buddy = page + (buddy_pfn - pfn);
835 
836 		if (!pfn_valid_within(buddy_pfn))
837 			goto done_merging;
838 		if (!page_is_buddy(page, buddy, order))
839 			goto done_merging;
840 		/*
841 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 		 * merge with it and move up one order.
843 		 */
844 		if (page_is_guard(buddy)) {
845 			clear_page_guard(zone, buddy, order, migratetype);
846 		} else {
847 			list_del(&buddy->lru);
848 			zone->free_area[order].nr_free--;
849 			rmv_page_order(buddy);
850 		}
851 		combined_pfn = buddy_pfn & pfn;
852 		page = page + (combined_pfn - pfn);
853 		pfn = combined_pfn;
854 		order++;
855 	}
856 	if (max_order < MAX_ORDER) {
857 		/* If we are here, it means order is >= pageblock_order.
858 		 * We want to prevent merge between freepages on isolate
859 		 * pageblock and normal pageblock. Without this, pageblock
860 		 * isolation could cause incorrect freepage or CMA accounting.
861 		 *
862 		 * We don't want to hit this code for the more frequent
863 		 * low-order merging.
864 		 */
865 		if (unlikely(has_isolate_pageblock(zone))) {
866 			int buddy_mt;
867 
868 			buddy_pfn = __find_buddy_pfn(pfn, order);
869 			buddy = page + (buddy_pfn - pfn);
870 			buddy_mt = get_pageblock_migratetype(buddy);
871 
872 			if (migratetype != buddy_mt
873 					&& (is_migrate_isolate(migratetype) ||
874 						is_migrate_isolate(buddy_mt)))
875 				goto done_merging;
876 		}
877 		max_order++;
878 		goto continue_merging;
879 	}
880 
881 done_merging:
882 	set_page_order(page, order);
883 
884 	/*
885 	 * If this is not the largest possible page, check if the buddy
886 	 * of the next-highest order is free. If it is, it's possible
887 	 * that pages are being freed that will coalesce soon. In case,
888 	 * that is happening, add the free page to the tail of the list
889 	 * so it's less likely to be used soon and more likely to be merged
890 	 * as a higher order page
891 	 */
892 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
893 		struct page *higher_page, *higher_buddy;
894 		combined_pfn = buddy_pfn & pfn;
895 		higher_page = page + (combined_pfn - pfn);
896 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
897 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
898 		if (pfn_valid_within(buddy_pfn) &&
899 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
900 			list_add_tail(&page->lru,
901 				&zone->free_area[order].free_list[migratetype]);
902 			goto out;
903 		}
904 	}
905 
906 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
907 out:
908 	zone->free_area[order].nr_free++;
909 }
910 
911 /*
912  * A bad page could be due to a number of fields. Instead of multiple branches,
913  * try and check multiple fields with one check. The caller must do a detailed
914  * check if necessary.
915  */
916 static inline bool page_expected_state(struct page *page,
917 					unsigned long check_flags)
918 {
919 	if (unlikely(atomic_read(&page->_mapcount) != -1))
920 		return false;
921 
922 	if (unlikely((unsigned long)page->mapping |
923 			page_ref_count(page) |
924 #ifdef CONFIG_MEMCG
925 			(unsigned long)page->mem_cgroup |
926 #endif
927 			(page->flags & check_flags)))
928 		return false;
929 
930 	return true;
931 }
932 
933 static void free_pages_check_bad(struct page *page)
934 {
935 	const char *bad_reason;
936 	unsigned long bad_flags;
937 
938 	bad_reason = NULL;
939 	bad_flags = 0;
940 
941 	if (unlikely(atomic_read(&page->_mapcount) != -1))
942 		bad_reason = "nonzero mapcount";
943 	if (unlikely(page->mapping != NULL))
944 		bad_reason = "non-NULL mapping";
945 	if (unlikely(page_ref_count(page) != 0))
946 		bad_reason = "nonzero _refcount";
947 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
948 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
950 	}
951 #ifdef CONFIG_MEMCG
952 	if (unlikely(page->mem_cgroup))
953 		bad_reason = "page still charged to cgroup";
954 #endif
955 	bad_page(page, bad_reason, bad_flags);
956 }
957 
958 static inline int free_pages_check(struct page *page)
959 {
960 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 		return 0;
962 
963 	/* Something has gone sideways, find it */
964 	free_pages_check_bad(page);
965 	return 1;
966 }
967 
968 static int free_tail_pages_check(struct page *head_page, struct page *page)
969 {
970 	int ret = 1;
971 
972 	/*
973 	 * We rely page->lru.next never has bit 0 set, unless the page
974 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
975 	 */
976 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
977 
978 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
979 		ret = 0;
980 		goto out;
981 	}
982 	switch (page - head_page) {
983 	case 1:
984 		/* the first tail page: ->mapping is compound_mapcount() */
985 		if (unlikely(compound_mapcount(page))) {
986 			bad_page(page, "nonzero compound_mapcount", 0);
987 			goto out;
988 		}
989 		break;
990 	case 2:
991 		/*
992 		 * the second tail page: ->mapping is
993 		 * page_deferred_list().next -- ignore value.
994 		 */
995 		break;
996 	default:
997 		if (page->mapping != TAIL_MAPPING) {
998 			bad_page(page, "corrupted mapping in tail page", 0);
999 			goto out;
1000 		}
1001 		break;
1002 	}
1003 	if (unlikely(!PageTail(page))) {
1004 		bad_page(page, "PageTail not set", 0);
1005 		goto out;
1006 	}
1007 	if (unlikely(compound_head(page) != head_page)) {
1008 		bad_page(page, "compound_head not consistent", 0);
1009 		goto out;
1010 	}
1011 	ret = 0;
1012 out:
1013 	page->mapping = NULL;
1014 	clear_compound_head(page);
1015 	return ret;
1016 }
1017 
1018 static __always_inline bool free_pages_prepare(struct page *page,
1019 					unsigned int order, bool check_free)
1020 {
1021 	int bad = 0;
1022 
1023 	VM_BUG_ON_PAGE(PageTail(page), page);
1024 
1025 	trace_mm_page_free(page, order);
1026 
1027 	/*
1028 	 * Check tail pages before head page information is cleared to
1029 	 * avoid checking PageCompound for order-0 pages.
1030 	 */
1031 	if (unlikely(order)) {
1032 		bool compound = PageCompound(page);
1033 		int i;
1034 
1035 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1036 
1037 		if (compound)
1038 			ClearPageDoubleMap(page);
1039 		for (i = 1; i < (1 << order); i++) {
1040 			if (compound)
1041 				bad += free_tail_pages_check(page, page + i);
1042 			if (unlikely(free_pages_check(page + i))) {
1043 				bad++;
1044 				continue;
1045 			}
1046 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1047 		}
1048 	}
1049 	if (PageMappingFlags(page))
1050 		page->mapping = NULL;
1051 	if (memcg_kmem_enabled() && PageKmemcg(page))
1052 		memcg_kmem_uncharge(page, order);
1053 	if (check_free)
1054 		bad += free_pages_check(page);
1055 	if (bad)
1056 		return false;
1057 
1058 	page_cpupid_reset_last(page);
1059 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1060 	reset_page_owner(page, order);
1061 
1062 	if (!PageHighMem(page)) {
1063 		debug_check_no_locks_freed(page_address(page),
1064 					   PAGE_SIZE << order);
1065 		debug_check_no_obj_freed(page_address(page),
1066 					   PAGE_SIZE << order);
1067 	}
1068 	arch_free_page(page, order);
1069 	kernel_poison_pages(page, 1 << order, 0);
1070 	kernel_map_pages(page, 1 << order, 0);
1071 	kasan_free_pages(page, order);
1072 
1073 	return true;
1074 }
1075 
1076 #ifdef CONFIG_DEBUG_VM
1077 static inline bool free_pcp_prepare(struct page *page)
1078 {
1079 	return free_pages_prepare(page, 0, true);
1080 }
1081 
1082 static inline bool bulkfree_pcp_prepare(struct page *page)
1083 {
1084 	return false;
1085 }
1086 #else
1087 static bool free_pcp_prepare(struct page *page)
1088 {
1089 	return free_pages_prepare(page, 0, false);
1090 }
1091 
1092 static bool bulkfree_pcp_prepare(struct page *page)
1093 {
1094 	return free_pages_check(page);
1095 }
1096 #endif /* CONFIG_DEBUG_VM */
1097 
1098 /*
1099  * Frees a number of pages from the PCP lists
1100  * Assumes all pages on list are in same zone, and of same order.
1101  * count is the number of pages to free.
1102  *
1103  * If the zone was previously in an "all pages pinned" state then look to
1104  * see if this freeing clears that state.
1105  *
1106  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107  * pinned" detection logic.
1108  */
1109 static void free_pcppages_bulk(struct zone *zone, int count,
1110 					struct per_cpu_pages *pcp)
1111 {
1112 	int migratetype = 0;
1113 	int batch_free = 0;
1114 	bool isolated_pageblocks;
1115 
1116 	spin_lock(&zone->lock);
1117 	isolated_pageblocks = has_isolate_pageblock(zone);
1118 
1119 	while (count) {
1120 		struct page *page;
1121 		struct list_head *list;
1122 
1123 		/*
1124 		 * Remove pages from lists in a round-robin fashion. A
1125 		 * batch_free count is maintained that is incremented when an
1126 		 * empty list is encountered.  This is so more pages are freed
1127 		 * off fuller lists instead of spinning excessively around empty
1128 		 * lists
1129 		 */
1130 		do {
1131 			batch_free++;
1132 			if (++migratetype == MIGRATE_PCPTYPES)
1133 				migratetype = 0;
1134 			list = &pcp->lists[migratetype];
1135 		} while (list_empty(list));
1136 
1137 		/* This is the only non-empty list. Free them all. */
1138 		if (batch_free == MIGRATE_PCPTYPES)
1139 			batch_free = count;
1140 
1141 		do {
1142 			int mt;	/* migratetype of the to-be-freed page */
1143 
1144 			page = list_last_entry(list, struct page, lru);
1145 			/* must delete as __free_one_page list manipulates */
1146 			list_del(&page->lru);
1147 
1148 			mt = get_pcppage_migratetype(page);
1149 			/* MIGRATE_ISOLATE page should not go to pcplists */
1150 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 			/* Pageblock could have been isolated meanwhile */
1152 			if (unlikely(isolated_pageblocks))
1153 				mt = get_pageblock_migratetype(page);
1154 
1155 			if (bulkfree_pcp_prepare(page))
1156 				continue;
1157 
1158 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 			trace_mm_page_pcpu_drain(page, 0, mt);
1160 		} while (--count && --batch_free && !list_empty(list));
1161 	}
1162 	spin_unlock(&zone->lock);
1163 }
1164 
1165 static void free_one_page(struct zone *zone,
1166 				struct page *page, unsigned long pfn,
1167 				unsigned int order,
1168 				int migratetype)
1169 {
1170 	spin_lock(&zone->lock);
1171 	if (unlikely(has_isolate_pageblock(zone) ||
1172 		is_migrate_isolate(migratetype))) {
1173 		migratetype = get_pfnblock_migratetype(page, pfn);
1174 	}
1175 	__free_one_page(page, pfn, zone, order, migratetype);
1176 	spin_unlock(&zone->lock);
1177 }
1178 
1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 				unsigned long zone, int nid, bool zero)
1181 {
1182 	if (zero)
1183 		mm_zero_struct_page(page);
1184 	set_page_links(page, zone, nid, pfn);
1185 	init_page_count(page);
1186 	page_mapcount_reset(page);
1187 	page_cpupid_reset_last(page);
1188 
1189 	INIT_LIST_HEAD(&page->lru);
1190 #ifdef WANT_PAGE_VIRTUAL
1191 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1192 	if (!is_highmem_idx(zone))
1193 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1194 #endif
1195 }
1196 
1197 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1198 					int nid, bool zero)
1199 {
1200 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1201 }
1202 
1203 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1204 static void __meminit init_reserved_page(unsigned long pfn)
1205 {
1206 	pg_data_t *pgdat;
1207 	int nid, zid;
1208 
1209 	if (!early_page_uninitialised(pfn))
1210 		return;
1211 
1212 	nid = early_pfn_to_nid(pfn);
1213 	pgdat = NODE_DATA(nid);
1214 
1215 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1216 		struct zone *zone = &pgdat->node_zones[zid];
1217 
1218 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1219 			break;
1220 	}
1221 	__init_single_pfn(pfn, zid, nid, true);
1222 }
1223 #else
1224 static inline void init_reserved_page(unsigned long pfn)
1225 {
1226 }
1227 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1228 
1229 /*
1230  * Initialised pages do not have PageReserved set. This function is
1231  * called for each range allocated by the bootmem allocator and
1232  * marks the pages PageReserved. The remaining valid pages are later
1233  * sent to the buddy page allocator.
1234  */
1235 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1236 {
1237 	unsigned long start_pfn = PFN_DOWN(start);
1238 	unsigned long end_pfn = PFN_UP(end);
1239 
1240 	for (; start_pfn < end_pfn; start_pfn++) {
1241 		if (pfn_valid(start_pfn)) {
1242 			struct page *page = pfn_to_page(start_pfn);
1243 
1244 			init_reserved_page(start_pfn);
1245 
1246 			/* Avoid false-positive PageTail() */
1247 			INIT_LIST_HEAD(&page->lru);
1248 
1249 			SetPageReserved(page);
1250 		}
1251 	}
1252 }
1253 
1254 static void __free_pages_ok(struct page *page, unsigned int order)
1255 {
1256 	unsigned long flags;
1257 	int migratetype;
1258 	unsigned long pfn = page_to_pfn(page);
1259 
1260 	if (!free_pages_prepare(page, order, true))
1261 		return;
1262 
1263 	migratetype = get_pfnblock_migratetype(page, pfn);
1264 	local_irq_save(flags);
1265 	__count_vm_events(PGFREE, 1 << order);
1266 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1267 	local_irq_restore(flags);
1268 }
1269 
1270 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1271 {
1272 	unsigned int nr_pages = 1 << order;
1273 	struct page *p = page;
1274 	unsigned int loop;
1275 
1276 	prefetchw(p);
1277 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1278 		prefetchw(p + 1);
1279 		__ClearPageReserved(p);
1280 		set_page_count(p, 0);
1281 	}
1282 	__ClearPageReserved(p);
1283 	set_page_count(p, 0);
1284 
1285 	page_zone(page)->managed_pages += nr_pages;
1286 	set_page_refcounted(page);
1287 	__free_pages(page, order);
1288 }
1289 
1290 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1291 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1292 
1293 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1294 
1295 int __meminit early_pfn_to_nid(unsigned long pfn)
1296 {
1297 	static DEFINE_SPINLOCK(early_pfn_lock);
1298 	int nid;
1299 
1300 	spin_lock(&early_pfn_lock);
1301 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1302 	if (nid < 0)
1303 		nid = first_online_node;
1304 	spin_unlock(&early_pfn_lock);
1305 
1306 	return nid;
1307 }
1308 #endif
1309 
1310 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1311 static inline bool __meminit __maybe_unused
1312 meminit_pfn_in_nid(unsigned long pfn, int node,
1313 		   struct mminit_pfnnid_cache *state)
1314 {
1315 	int nid;
1316 
1317 	nid = __early_pfn_to_nid(pfn, state);
1318 	if (nid >= 0 && nid != node)
1319 		return false;
1320 	return true;
1321 }
1322 
1323 /* Only safe to use early in boot when initialisation is single-threaded */
1324 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1325 {
1326 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1327 }
1328 
1329 #else
1330 
1331 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1332 {
1333 	return true;
1334 }
1335 static inline bool __meminit  __maybe_unused
1336 meminit_pfn_in_nid(unsigned long pfn, int node,
1337 		   struct mminit_pfnnid_cache *state)
1338 {
1339 	return true;
1340 }
1341 #endif
1342 
1343 
1344 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1345 							unsigned int order)
1346 {
1347 	if (early_page_uninitialised(pfn))
1348 		return;
1349 	return __free_pages_boot_core(page, order);
1350 }
1351 
1352 /*
1353  * Check that the whole (or subset of) a pageblock given by the interval of
1354  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1355  * with the migration of free compaction scanner. The scanners then need to
1356  * use only pfn_valid_within() check for arches that allow holes within
1357  * pageblocks.
1358  *
1359  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1360  *
1361  * It's possible on some configurations to have a setup like node0 node1 node0
1362  * i.e. it's possible that all pages within a zones range of pages do not
1363  * belong to a single zone. We assume that a border between node0 and node1
1364  * can occur within a single pageblock, but not a node0 node1 node0
1365  * interleaving within a single pageblock. It is therefore sufficient to check
1366  * the first and last page of a pageblock and avoid checking each individual
1367  * page in a pageblock.
1368  */
1369 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1370 				     unsigned long end_pfn, struct zone *zone)
1371 {
1372 	struct page *start_page;
1373 	struct page *end_page;
1374 
1375 	/* end_pfn is one past the range we are checking */
1376 	end_pfn--;
1377 
1378 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1379 		return NULL;
1380 
1381 	start_page = pfn_to_online_page(start_pfn);
1382 	if (!start_page)
1383 		return NULL;
1384 
1385 	if (page_zone(start_page) != zone)
1386 		return NULL;
1387 
1388 	end_page = pfn_to_page(end_pfn);
1389 
1390 	/* This gives a shorter code than deriving page_zone(end_page) */
1391 	if (page_zone_id(start_page) != page_zone_id(end_page))
1392 		return NULL;
1393 
1394 	return start_page;
1395 }
1396 
1397 void set_zone_contiguous(struct zone *zone)
1398 {
1399 	unsigned long block_start_pfn = zone->zone_start_pfn;
1400 	unsigned long block_end_pfn;
1401 
1402 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1403 	for (; block_start_pfn < zone_end_pfn(zone);
1404 			block_start_pfn = block_end_pfn,
1405 			 block_end_pfn += pageblock_nr_pages) {
1406 
1407 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1408 
1409 		if (!__pageblock_pfn_to_page(block_start_pfn,
1410 					     block_end_pfn, zone))
1411 			return;
1412 	}
1413 
1414 	/* We confirm that there is no hole */
1415 	zone->contiguous = true;
1416 }
1417 
1418 void clear_zone_contiguous(struct zone *zone)
1419 {
1420 	zone->contiguous = false;
1421 }
1422 
1423 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1424 static void __init deferred_free_range(unsigned long pfn,
1425 				       unsigned long nr_pages)
1426 {
1427 	struct page *page;
1428 	unsigned long i;
1429 
1430 	if (!nr_pages)
1431 		return;
1432 
1433 	page = pfn_to_page(pfn);
1434 
1435 	/* Free a large naturally-aligned chunk if possible */
1436 	if (nr_pages == pageblock_nr_pages &&
1437 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1438 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1439 		__free_pages_boot_core(page, pageblock_order);
1440 		return;
1441 	}
1442 
1443 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1444 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1445 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1446 		__free_pages_boot_core(page, 0);
1447 	}
1448 }
1449 
1450 /* Completion tracking for deferred_init_memmap() threads */
1451 static atomic_t pgdat_init_n_undone __initdata;
1452 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1453 
1454 static inline void __init pgdat_init_report_one_done(void)
1455 {
1456 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1457 		complete(&pgdat_init_all_done_comp);
1458 }
1459 
1460 /*
1461  * Returns true if page needs to be initialized or freed to buddy allocator.
1462  *
1463  * First we check if pfn is valid on architectures where it is possible to have
1464  * holes within pageblock_nr_pages. On systems where it is not possible, this
1465  * function is optimized out.
1466  *
1467  * Then, we check if a current large page is valid by only checking the validity
1468  * of the head pfn.
1469  *
1470  * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1471  * within a node: a pfn is between start and end of a node, but does not belong
1472  * to this memory node.
1473  */
1474 static inline bool __init
1475 deferred_pfn_valid(int nid, unsigned long pfn,
1476 		   struct mminit_pfnnid_cache *nid_init_state)
1477 {
1478 	if (!pfn_valid_within(pfn))
1479 		return false;
1480 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1481 		return false;
1482 	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1483 		return false;
1484 	return true;
1485 }
1486 
1487 /*
1488  * Free pages to buddy allocator. Try to free aligned pages in
1489  * pageblock_nr_pages sizes.
1490  */
1491 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1492 				       unsigned long end_pfn)
1493 {
1494 	struct mminit_pfnnid_cache nid_init_state = { };
1495 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1496 	unsigned long nr_free = 0;
1497 
1498 	for (; pfn < end_pfn; pfn++) {
1499 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1500 			deferred_free_range(pfn - nr_free, nr_free);
1501 			nr_free = 0;
1502 		} else if (!(pfn & nr_pgmask)) {
1503 			deferred_free_range(pfn - nr_free, nr_free);
1504 			nr_free = 1;
1505 			cond_resched();
1506 		} else {
1507 			nr_free++;
1508 		}
1509 	}
1510 	/* Free the last block of pages to allocator */
1511 	deferred_free_range(pfn - nr_free, nr_free);
1512 }
1513 
1514 /*
1515  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1516  * by performing it only once every pageblock_nr_pages.
1517  * Return number of pages initialized.
1518  */
1519 static unsigned long  __init deferred_init_pages(int nid, int zid,
1520 						 unsigned long pfn,
1521 						 unsigned long end_pfn)
1522 {
1523 	struct mminit_pfnnid_cache nid_init_state = { };
1524 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1525 	unsigned long nr_pages = 0;
1526 	struct page *page = NULL;
1527 
1528 	for (; pfn < end_pfn; pfn++) {
1529 		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1530 			page = NULL;
1531 			continue;
1532 		} else if (!page || !(pfn & nr_pgmask)) {
1533 			page = pfn_to_page(pfn);
1534 			cond_resched();
1535 		} else {
1536 			page++;
1537 		}
1538 		__init_single_page(page, pfn, zid, nid, true);
1539 		nr_pages++;
1540 	}
1541 	return (nr_pages);
1542 }
1543 
1544 /* Initialise remaining memory on a node */
1545 static int __init deferred_init_memmap(void *data)
1546 {
1547 	pg_data_t *pgdat = data;
1548 	int nid = pgdat->node_id;
1549 	unsigned long start = jiffies;
1550 	unsigned long nr_pages = 0;
1551 	unsigned long spfn, epfn;
1552 	phys_addr_t spa, epa;
1553 	int zid;
1554 	struct zone *zone;
1555 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1556 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1557 	u64 i;
1558 
1559 	if (first_init_pfn == ULONG_MAX) {
1560 		pgdat_init_report_one_done();
1561 		return 0;
1562 	}
1563 
1564 	/* Bind memory initialisation thread to a local node if possible */
1565 	if (!cpumask_empty(cpumask))
1566 		set_cpus_allowed_ptr(current, cpumask);
1567 
1568 	/* Sanity check boundaries */
1569 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1570 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1571 	pgdat->first_deferred_pfn = ULONG_MAX;
1572 
1573 	/* Only the highest zone is deferred so find it */
1574 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 		zone = pgdat->node_zones + zid;
1576 		if (first_init_pfn < zone_end_pfn(zone))
1577 			break;
1578 	}
1579 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1580 
1581 	/*
1582 	 * Initialize and free pages. We do it in two loops: first we initialize
1583 	 * struct page, than free to buddy allocator, because while we are
1584 	 * freeing pages we can access pages that are ahead (computing buddy
1585 	 * page in __free_one_page()).
1586 	 */
1587 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1588 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1589 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1590 		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1591 	}
1592 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1593 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1594 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1595 		deferred_free_pages(nid, zid, spfn, epfn);
1596 	}
1597 
1598 	/* Sanity check that the next zone really is unpopulated */
1599 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1600 
1601 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1602 					jiffies_to_msecs(jiffies - start));
1603 
1604 	pgdat_init_report_one_done();
1605 	return 0;
1606 }
1607 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1608 
1609 void __init page_alloc_init_late(void)
1610 {
1611 	struct zone *zone;
1612 
1613 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1614 	int nid;
1615 
1616 	/* There will be num_node_state(N_MEMORY) threads */
1617 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1618 	for_each_node_state(nid, N_MEMORY) {
1619 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1620 	}
1621 
1622 	/* Block until all are initialised */
1623 	wait_for_completion(&pgdat_init_all_done_comp);
1624 
1625 	/* Reinit limits that are based on free pages after the kernel is up */
1626 	files_maxfiles_init();
1627 #endif
1628 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1629 	/* Discard memblock private memory */
1630 	memblock_discard();
1631 #endif
1632 
1633 	for_each_populated_zone(zone)
1634 		set_zone_contiguous(zone);
1635 }
1636 
1637 #ifdef CONFIG_CMA
1638 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1639 void __init init_cma_reserved_pageblock(struct page *page)
1640 {
1641 	unsigned i = pageblock_nr_pages;
1642 	struct page *p = page;
1643 
1644 	do {
1645 		__ClearPageReserved(p);
1646 		set_page_count(p, 0);
1647 	} while (++p, --i);
1648 
1649 	set_pageblock_migratetype(page, MIGRATE_CMA);
1650 
1651 	if (pageblock_order >= MAX_ORDER) {
1652 		i = pageblock_nr_pages;
1653 		p = page;
1654 		do {
1655 			set_page_refcounted(p);
1656 			__free_pages(p, MAX_ORDER - 1);
1657 			p += MAX_ORDER_NR_PAGES;
1658 		} while (i -= MAX_ORDER_NR_PAGES);
1659 	} else {
1660 		set_page_refcounted(page);
1661 		__free_pages(page, pageblock_order);
1662 	}
1663 
1664 	adjust_managed_page_count(page, pageblock_nr_pages);
1665 }
1666 #endif
1667 
1668 /*
1669  * The order of subdivision here is critical for the IO subsystem.
1670  * Please do not alter this order without good reasons and regression
1671  * testing. Specifically, as large blocks of memory are subdivided,
1672  * the order in which smaller blocks are delivered depends on the order
1673  * they're subdivided in this function. This is the primary factor
1674  * influencing the order in which pages are delivered to the IO
1675  * subsystem according to empirical testing, and this is also justified
1676  * by considering the behavior of a buddy system containing a single
1677  * large block of memory acted on by a series of small allocations.
1678  * This behavior is a critical factor in sglist merging's success.
1679  *
1680  * -- nyc
1681  */
1682 static inline void expand(struct zone *zone, struct page *page,
1683 	int low, int high, struct free_area *area,
1684 	int migratetype)
1685 {
1686 	unsigned long size = 1 << high;
1687 
1688 	while (high > low) {
1689 		area--;
1690 		high--;
1691 		size >>= 1;
1692 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1693 
1694 		/*
1695 		 * Mark as guard pages (or page), that will allow to
1696 		 * merge back to allocator when buddy will be freed.
1697 		 * Corresponding page table entries will not be touched,
1698 		 * pages will stay not present in virtual address space
1699 		 */
1700 		if (set_page_guard(zone, &page[size], high, migratetype))
1701 			continue;
1702 
1703 		list_add(&page[size].lru, &area->free_list[migratetype]);
1704 		area->nr_free++;
1705 		set_page_order(&page[size], high);
1706 	}
1707 }
1708 
1709 static void check_new_page_bad(struct page *page)
1710 {
1711 	const char *bad_reason = NULL;
1712 	unsigned long bad_flags = 0;
1713 
1714 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1715 		bad_reason = "nonzero mapcount";
1716 	if (unlikely(page->mapping != NULL))
1717 		bad_reason = "non-NULL mapping";
1718 	if (unlikely(page_ref_count(page) != 0))
1719 		bad_reason = "nonzero _count";
1720 	if (unlikely(page->flags & __PG_HWPOISON)) {
1721 		bad_reason = "HWPoisoned (hardware-corrupted)";
1722 		bad_flags = __PG_HWPOISON;
1723 		/* Don't complain about hwpoisoned pages */
1724 		page_mapcount_reset(page); /* remove PageBuddy */
1725 		return;
1726 	}
1727 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1728 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1729 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1730 	}
1731 #ifdef CONFIG_MEMCG
1732 	if (unlikely(page->mem_cgroup))
1733 		bad_reason = "page still charged to cgroup";
1734 #endif
1735 	bad_page(page, bad_reason, bad_flags);
1736 }
1737 
1738 /*
1739  * This page is about to be returned from the page allocator
1740  */
1741 static inline int check_new_page(struct page *page)
1742 {
1743 	if (likely(page_expected_state(page,
1744 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1745 		return 0;
1746 
1747 	check_new_page_bad(page);
1748 	return 1;
1749 }
1750 
1751 static inline bool free_pages_prezeroed(void)
1752 {
1753 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1754 		page_poisoning_enabled();
1755 }
1756 
1757 #ifdef CONFIG_DEBUG_VM
1758 static bool check_pcp_refill(struct page *page)
1759 {
1760 	return false;
1761 }
1762 
1763 static bool check_new_pcp(struct page *page)
1764 {
1765 	return check_new_page(page);
1766 }
1767 #else
1768 static bool check_pcp_refill(struct page *page)
1769 {
1770 	return check_new_page(page);
1771 }
1772 static bool check_new_pcp(struct page *page)
1773 {
1774 	return false;
1775 }
1776 #endif /* CONFIG_DEBUG_VM */
1777 
1778 static bool check_new_pages(struct page *page, unsigned int order)
1779 {
1780 	int i;
1781 	for (i = 0; i < (1 << order); i++) {
1782 		struct page *p = page + i;
1783 
1784 		if (unlikely(check_new_page(p)))
1785 			return true;
1786 	}
1787 
1788 	return false;
1789 }
1790 
1791 inline void post_alloc_hook(struct page *page, unsigned int order,
1792 				gfp_t gfp_flags)
1793 {
1794 	set_page_private(page, 0);
1795 	set_page_refcounted(page);
1796 
1797 	arch_alloc_page(page, order);
1798 	kernel_map_pages(page, 1 << order, 1);
1799 	kernel_poison_pages(page, 1 << order, 1);
1800 	kasan_alloc_pages(page, order);
1801 	set_page_owner(page, order, gfp_flags);
1802 }
1803 
1804 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1805 							unsigned int alloc_flags)
1806 {
1807 	int i;
1808 
1809 	post_alloc_hook(page, order, gfp_flags);
1810 
1811 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1812 		for (i = 0; i < (1 << order); i++)
1813 			clear_highpage(page + i);
1814 
1815 	if (order && (gfp_flags & __GFP_COMP))
1816 		prep_compound_page(page, order);
1817 
1818 	/*
1819 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1820 	 * allocate the page. The expectation is that the caller is taking
1821 	 * steps that will free more memory. The caller should avoid the page
1822 	 * being used for !PFMEMALLOC purposes.
1823 	 */
1824 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1825 		set_page_pfmemalloc(page);
1826 	else
1827 		clear_page_pfmemalloc(page);
1828 }
1829 
1830 /*
1831  * Go through the free lists for the given migratetype and remove
1832  * the smallest available page from the freelists
1833  */
1834 static __always_inline
1835 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1836 						int migratetype)
1837 {
1838 	unsigned int current_order;
1839 	struct free_area *area;
1840 	struct page *page;
1841 
1842 	/* Find a page of the appropriate size in the preferred list */
1843 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1844 		area = &(zone->free_area[current_order]);
1845 		page = list_first_entry_or_null(&area->free_list[migratetype],
1846 							struct page, lru);
1847 		if (!page)
1848 			continue;
1849 		list_del(&page->lru);
1850 		rmv_page_order(page);
1851 		area->nr_free--;
1852 		expand(zone, page, order, current_order, area, migratetype);
1853 		set_pcppage_migratetype(page, migratetype);
1854 		return page;
1855 	}
1856 
1857 	return NULL;
1858 }
1859 
1860 
1861 /*
1862  * This array describes the order lists are fallen back to when
1863  * the free lists for the desirable migrate type are depleted
1864  */
1865 static int fallbacks[MIGRATE_TYPES][4] = {
1866 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1867 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1868 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1869 #ifdef CONFIG_CMA
1870 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1871 #endif
1872 #ifdef CONFIG_MEMORY_ISOLATION
1873 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1874 #endif
1875 };
1876 
1877 #ifdef CONFIG_CMA
1878 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1879 					unsigned int order)
1880 {
1881 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1882 }
1883 #else
1884 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1885 					unsigned int order) { return NULL; }
1886 #endif
1887 
1888 /*
1889  * Move the free pages in a range to the free lists of the requested type.
1890  * Note that start_page and end_pages are not aligned on a pageblock
1891  * boundary. If alignment is required, use move_freepages_block()
1892  */
1893 static int move_freepages(struct zone *zone,
1894 			  struct page *start_page, struct page *end_page,
1895 			  int migratetype, int *num_movable)
1896 {
1897 	struct page *page;
1898 	unsigned int order;
1899 	int pages_moved = 0;
1900 
1901 #ifndef CONFIG_HOLES_IN_ZONE
1902 	/*
1903 	 * page_zone is not safe to call in this context when
1904 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1905 	 * anyway as we check zone boundaries in move_freepages_block().
1906 	 * Remove at a later date when no bug reports exist related to
1907 	 * grouping pages by mobility
1908 	 */
1909 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1910 #endif
1911 
1912 	if (num_movable)
1913 		*num_movable = 0;
1914 
1915 	for (page = start_page; page <= end_page;) {
1916 		if (!pfn_valid_within(page_to_pfn(page))) {
1917 			page++;
1918 			continue;
1919 		}
1920 
1921 		/* Make sure we are not inadvertently changing nodes */
1922 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1923 
1924 		if (!PageBuddy(page)) {
1925 			/*
1926 			 * We assume that pages that could be isolated for
1927 			 * migration are movable. But we don't actually try
1928 			 * isolating, as that would be expensive.
1929 			 */
1930 			if (num_movable &&
1931 					(PageLRU(page) || __PageMovable(page)))
1932 				(*num_movable)++;
1933 
1934 			page++;
1935 			continue;
1936 		}
1937 
1938 		order = page_order(page);
1939 		list_move(&page->lru,
1940 			  &zone->free_area[order].free_list[migratetype]);
1941 		page += 1 << order;
1942 		pages_moved += 1 << order;
1943 	}
1944 
1945 	return pages_moved;
1946 }
1947 
1948 int move_freepages_block(struct zone *zone, struct page *page,
1949 				int migratetype, int *num_movable)
1950 {
1951 	unsigned long start_pfn, end_pfn;
1952 	struct page *start_page, *end_page;
1953 
1954 	start_pfn = page_to_pfn(page);
1955 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1956 	start_page = pfn_to_page(start_pfn);
1957 	end_page = start_page + pageblock_nr_pages - 1;
1958 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1959 
1960 	/* Do not cross zone boundaries */
1961 	if (!zone_spans_pfn(zone, start_pfn))
1962 		start_page = page;
1963 	if (!zone_spans_pfn(zone, end_pfn))
1964 		return 0;
1965 
1966 	return move_freepages(zone, start_page, end_page, migratetype,
1967 								num_movable);
1968 }
1969 
1970 static void change_pageblock_range(struct page *pageblock_page,
1971 					int start_order, int migratetype)
1972 {
1973 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1974 
1975 	while (nr_pageblocks--) {
1976 		set_pageblock_migratetype(pageblock_page, migratetype);
1977 		pageblock_page += pageblock_nr_pages;
1978 	}
1979 }
1980 
1981 /*
1982  * When we are falling back to another migratetype during allocation, try to
1983  * steal extra free pages from the same pageblocks to satisfy further
1984  * allocations, instead of polluting multiple pageblocks.
1985  *
1986  * If we are stealing a relatively large buddy page, it is likely there will
1987  * be more free pages in the pageblock, so try to steal them all. For
1988  * reclaimable and unmovable allocations, we steal regardless of page size,
1989  * as fragmentation caused by those allocations polluting movable pageblocks
1990  * is worse than movable allocations stealing from unmovable and reclaimable
1991  * pageblocks.
1992  */
1993 static bool can_steal_fallback(unsigned int order, int start_mt)
1994 {
1995 	/*
1996 	 * Leaving this order check is intended, although there is
1997 	 * relaxed order check in next check. The reason is that
1998 	 * we can actually steal whole pageblock if this condition met,
1999 	 * but, below check doesn't guarantee it and that is just heuristic
2000 	 * so could be changed anytime.
2001 	 */
2002 	if (order >= pageblock_order)
2003 		return true;
2004 
2005 	if (order >= pageblock_order / 2 ||
2006 		start_mt == MIGRATE_RECLAIMABLE ||
2007 		start_mt == MIGRATE_UNMOVABLE ||
2008 		page_group_by_mobility_disabled)
2009 		return true;
2010 
2011 	return false;
2012 }
2013 
2014 /*
2015  * This function implements actual steal behaviour. If order is large enough,
2016  * we can steal whole pageblock. If not, we first move freepages in this
2017  * pageblock to our migratetype and determine how many already-allocated pages
2018  * are there in the pageblock with a compatible migratetype. If at least half
2019  * of pages are free or compatible, we can change migratetype of the pageblock
2020  * itself, so pages freed in the future will be put on the correct free list.
2021  */
2022 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2023 					int start_type, bool whole_block)
2024 {
2025 	unsigned int current_order = page_order(page);
2026 	struct free_area *area;
2027 	int free_pages, movable_pages, alike_pages;
2028 	int old_block_type;
2029 
2030 	old_block_type = get_pageblock_migratetype(page);
2031 
2032 	/*
2033 	 * This can happen due to races and we want to prevent broken
2034 	 * highatomic accounting.
2035 	 */
2036 	if (is_migrate_highatomic(old_block_type))
2037 		goto single_page;
2038 
2039 	/* Take ownership for orders >= pageblock_order */
2040 	if (current_order >= pageblock_order) {
2041 		change_pageblock_range(page, current_order, start_type);
2042 		goto single_page;
2043 	}
2044 
2045 	/* We are not allowed to try stealing from the whole block */
2046 	if (!whole_block)
2047 		goto single_page;
2048 
2049 	free_pages = move_freepages_block(zone, page, start_type,
2050 						&movable_pages);
2051 	/*
2052 	 * Determine how many pages are compatible with our allocation.
2053 	 * For movable allocation, it's the number of movable pages which
2054 	 * we just obtained. For other types it's a bit more tricky.
2055 	 */
2056 	if (start_type == MIGRATE_MOVABLE) {
2057 		alike_pages = movable_pages;
2058 	} else {
2059 		/*
2060 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2061 		 * to MOVABLE pageblock, consider all non-movable pages as
2062 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2063 		 * vice versa, be conservative since we can't distinguish the
2064 		 * exact migratetype of non-movable pages.
2065 		 */
2066 		if (old_block_type == MIGRATE_MOVABLE)
2067 			alike_pages = pageblock_nr_pages
2068 						- (free_pages + movable_pages);
2069 		else
2070 			alike_pages = 0;
2071 	}
2072 
2073 	/* moving whole block can fail due to zone boundary conditions */
2074 	if (!free_pages)
2075 		goto single_page;
2076 
2077 	/*
2078 	 * If a sufficient number of pages in the block are either free or of
2079 	 * comparable migratability as our allocation, claim the whole block.
2080 	 */
2081 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2082 			page_group_by_mobility_disabled)
2083 		set_pageblock_migratetype(page, start_type);
2084 
2085 	return;
2086 
2087 single_page:
2088 	area = &zone->free_area[current_order];
2089 	list_move(&page->lru, &area->free_list[start_type]);
2090 }
2091 
2092 /*
2093  * Check whether there is a suitable fallback freepage with requested order.
2094  * If only_stealable is true, this function returns fallback_mt only if
2095  * we can steal other freepages all together. This would help to reduce
2096  * fragmentation due to mixed migratetype pages in one pageblock.
2097  */
2098 int find_suitable_fallback(struct free_area *area, unsigned int order,
2099 			int migratetype, bool only_stealable, bool *can_steal)
2100 {
2101 	int i;
2102 	int fallback_mt;
2103 
2104 	if (area->nr_free == 0)
2105 		return -1;
2106 
2107 	*can_steal = false;
2108 	for (i = 0;; i++) {
2109 		fallback_mt = fallbacks[migratetype][i];
2110 		if (fallback_mt == MIGRATE_TYPES)
2111 			break;
2112 
2113 		if (list_empty(&area->free_list[fallback_mt]))
2114 			continue;
2115 
2116 		if (can_steal_fallback(order, migratetype))
2117 			*can_steal = true;
2118 
2119 		if (!only_stealable)
2120 			return fallback_mt;
2121 
2122 		if (*can_steal)
2123 			return fallback_mt;
2124 	}
2125 
2126 	return -1;
2127 }
2128 
2129 /*
2130  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2131  * there are no empty page blocks that contain a page with a suitable order
2132  */
2133 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2134 				unsigned int alloc_order)
2135 {
2136 	int mt;
2137 	unsigned long max_managed, flags;
2138 
2139 	/*
2140 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2141 	 * Check is race-prone but harmless.
2142 	 */
2143 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2144 	if (zone->nr_reserved_highatomic >= max_managed)
2145 		return;
2146 
2147 	spin_lock_irqsave(&zone->lock, flags);
2148 
2149 	/* Recheck the nr_reserved_highatomic limit under the lock */
2150 	if (zone->nr_reserved_highatomic >= max_managed)
2151 		goto out_unlock;
2152 
2153 	/* Yoink! */
2154 	mt = get_pageblock_migratetype(page);
2155 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2156 	    && !is_migrate_cma(mt)) {
2157 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2158 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2159 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2160 	}
2161 
2162 out_unlock:
2163 	spin_unlock_irqrestore(&zone->lock, flags);
2164 }
2165 
2166 /*
2167  * Used when an allocation is about to fail under memory pressure. This
2168  * potentially hurts the reliability of high-order allocations when under
2169  * intense memory pressure but failed atomic allocations should be easier
2170  * to recover from than an OOM.
2171  *
2172  * If @force is true, try to unreserve a pageblock even though highatomic
2173  * pageblock is exhausted.
2174  */
2175 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2176 						bool force)
2177 {
2178 	struct zonelist *zonelist = ac->zonelist;
2179 	unsigned long flags;
2180 	struct zoneref *z;
2181 	struct zone *zone;
2182 	struct page *page;
2183 	int order;
2184 	bool ret;
2185 
2186 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2187 								ac->nodemask) {
2188 		/*
2189 		 * Preserve at least one pageblock unless memory pressure
2190 		 * is really high.
2191 		 */
2192 		if (!force && zone->nr_reserved_highatomic <=
2193 					pageblock_nr_pages)
2194 			continue;
2195 
2196 		spin_lock_irqsave(&zone->lock, flags);
2197 		for (order = 0; order < MAX_ORDER; order++) {
2198 			struct free_area *area = &(zone->free_area[order]);
2199 
2200 			page = list_first_entry_or_null(
2201 					&area->free_list[MIGRATE_HIGHATOMIC],
2202 					struct page, lru);
2203 			if (!page)
2204 				continue;
2205 
2206 			/*
2207 			 * In page freeing path, migratetype change is racy so
2208 			 * we can counter several free pages in a pageblock
2209 			 * in this loop althoug we changed the pageblock type
2210 			 * from highatomic to ac->migratetype. So we should
2211 			 * adjust the count once.
2212 			 */
2213 			if (is_migrate_highatomic_page(page)) {
2214 				/*
2215 				 * It should never happen but changes to
2216 				 * locking could inadvertently allow a per-cpu
2217 				 * drain to add pages to MIGRATE_HIGHATOMIC
2218 				 * while unreserving so be safe and watch for
2219 				 * underflows.
2220 				 */
2221 				zone->nr_reserved_highatomic -= min(
2222 						pageblock_nr_pages,
2223 						zone->nr_reserved_highatomic);
2224 			}
2225 
2226 			/*
2227 			 * Convert to ac->migratetype and avoid the normal
2228 			 * pageblock stealing heuristics. Minimally, the caller
2229 			 * is doing the work and needs the pages. More
2230 			 * importantly, if the block was always converted to
2231 			 * MIGRATE_UNMOVABLE or another type then the number
2232 			 * of pageblocks that cannot be completely freed
2233 			 * may increase.
2234 			 */
2235 			set_pageblock_migratetype(page, ac->migratetype);
2236 			ret = move_freepages_block(zone, page, ac->migratetype,
2237 									NULL);
2238 			if (ret) {
2239 				spin_unlock_irqrestore(&zone->lock, flags);
2240 				return ret;
2241 			}
2242 		}
2243 		spin_unlock_irqrestore(&zone->lock, flags);
2244 	}
2245 
2246 	return false;
2247 }
2248 
2249 /*
2250  * Try finding a free buddy page on the fallback list and put it on the free
2251  * list of requested migratetype, possibly along with other pages from the same
2252  * block, depending on fragmentation avoidance heuristics. Returns true if
2253  * fallback was found so that __rmqueue_smallest() can grab it.
2254  *
2255  * The use of signed ints for order and current_order is a deliberate
2256  * deviation from the rest of this file, to make the for loop
2257  * condition simpler.
2258  */
2259 static __always_inline bool
2260 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2261 {
2262 	struct free_area *area;
2263 	int current_order;
2264 	struct page *page;
2265 	int fallback_mt;
2266 	bool can_steal;
2267 
2268 	/*
2269 	 * Find the largest available free page in the other list. This roughly
2270 	 * approximates finding the pageblock with the most free pages, which
2271 	 * would be too costly to do exactly.
2272 	 */
2273 	for (current_order = MAX_ORDER - 1; current_order >= order;
2274 				--current_order) {
2275 		area = &(zone->free_area[current_order]);
2276 		fallback_mt = find_suitable_fallback(area, current_order,
2277 				start_migratetype, false, &can_steal);
2278 		if (fallback_mt == -1)
2279 			continue;
2280 
2281 		/*
2282 		 * We cannot steal all free pages from the pageblock and the
2283 		 * requested migratetype is movable. In that case it's better to
2284 		 * steal and split the smallest available page instead of the
2285 		 * largest available page, because even if the next movable
2286 		 * allocation falls back into a different pageblock than this
2287 		 * one, it won't cause permanent fragmentation.
2288 		 */
2289 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2290 					&& current_order > order)
2291 			goto find_smallest;
2292 
2293 		goto do_steal;
2294 	}
2295 
2296 	return false;
2297 
2298 find_smallest:
2299 	for (current_order = order; current_order < MAX_ORDER;
2300 							current_order++) {
2301 		area = &(zone->free_area[current_order]);
2302 		fallback_mt = find_suitable_fallback(area, current_order,
2303 				start_migratetype, false, &can_steal);
2304 		if (fallback_mt != -1)
2305 			break;
2306 	}
2307 
2308 	/*
2309 	 * This should not happen - we already found a suitable fallback
2310 	 * when looking for the largest page.
2311 	 */
2312 	VM_BUG_ON(current_order == MAX_ORDER);
2313 
2314 do_steal:
2315 	page = list_first_entry(&area->free_list[fallback_mt],
2316 							struct page, lru);
2317 
2318 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2319 
2320 	trace_mm_page_alloc_extfrag(page, order, current_order,
2321 		start_migratetype, fallback_mt);
2322 
2323 	return true;
2324 
2325 }
2326 
2327 /*
2328  * Do the hard work of removing an element from the buddy allocator.
2329  * Call me with the zone->lock already held.
2330  */
2331 static __always_inline struct page *
2332 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2333 {
2334 	struct page *page;
2335 
2336 retry:
2337 	page = __rmqueue_smallest(zone, order, migratetype);
2338 	if (unlikely(!page)) {
2339 		if (migratetype == MIGRATE_MOVABLE)
2340 			page = __rmqueue_cma_fallback(zone, order);
2341 
2342 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2343 			goto retry;
2344 	}
2345 
2346 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2347 	return page;
2348 }
2349 
2350 /*
2351  * Obtain a specified number of elements from the buddy allocator, all under
2352  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2353  * Returns the number of new pages which were placed at *list.
2354  */
2355 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2356 			unsigned long count, struct list_head *list,
2357 			int migratetype)
2358 {
2359 	int i, alloced = 0;
2360 
2361 	spin_lock(&zone->lock);
2362 	for (i = 0; i < count; ++i) {
2363 		struct page *page = __rmqueue(zone, order, migratetype);
2364 		if (unlikely(page == NULL))
2365 			break;
2366 
2367 		if (unlikely(check_pcp_refill(page)))
2368 			continue;
2369 
2370 		/*
2371 		 * Split buddy pages returned by expand() are received here in
2372 		 * physical page order. The page is added to the tail of
2373 		 * caller's list. From the callers perspective, the linked list
2374 		 * is ordered by page number under some conditions. This is
2375 		 * useful for IO devices that can forward direction from the
2376 		 * head, thus also in the physical page order. This is useful
2377 		 * for IO devices that can merge IO requests if the physical
2378 		 * pages are ordered properly.
2379 		 */
2380 		list_add_tail(&page->lru, list);
2381 		alloced++;
2382 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2383 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2384 					      -(1 << order));
2385 	}
2386 
2387 	/*
2388 	 * i pages were removed from the buddy list even if some leak due
2389 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2390 	 * on i. Do not confuse with 'alloced' which is the number of
2391 	 * pages added to the pcp list.
2392 	 */
2393 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2394 	spin_unlock(&zone->lock);
2395 	return alloced;
2396 }
2397 
2398 #ifdef CONFIG_NUMA
2399 /*
2400  * Called from the vmstat counter updater to drain pagesets of this
2401  * currently executing processor on remote nodes after they have
2402  * expired.
2403  *
2404  * Note that this function must be called with the thread pinned to
2405  * a single processor.
2406  */
2407 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2408 {
2409 	unsigned long flags;
2410 	int to_drain, batch;
2411 
2412 	local_irq_save(flags);
2413 	batch = READ_ONCE(pcp->batch);
2414 	to_drain = min(pcp->count, batch);
2415 	if (to_drain > 0) {
2416 		free_pcppages_bulk(zone, to_drain, pcp);
2417 		pcp->count -= to_drain;
2418 	}
2419 	local_irq_restore(flags);
2420 }
2421 #endif
2422 
2423 /*
2424  * Drain pcplists of the indicated processor and zone.
2425  *
2426  * The processor must either be the current processor and the
2427  * thread pinned to the current processor or a processor that
2428  * is not online.
2429  */
2430 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2431 {
2432 	unsigned long flags;
2433 	struct per_cpu_pageset *pset;
2434 	struct per_cpu_pages *pcp;
2435 
2436 	local_irq_save(flags);
2437 	pset = per_cpu_ptr(zone->pageset, cpu);
2438 
2439 	pcp = &pset->pcp;
2440 	if (pcp->count) {
2441 		free_pcppages_bulk(zone, pcp->count, pcp);
2442 		pcp->count = 0;
2443 	}
2444 	local_irq_restore(flags);
2445 }
2446 
2447 /*
2448  * Drain pcplists of all zones on the indicated processor.
2449  *
2450  * The processor must either be the current processor and the
2451  * thread pinned to the current processor or a processor that
2452  * is not online.
2453  */
2454 static void drain_pages(unsigned int cpu)
2455 {
2456 	struct zone *zone;
2457 
2458 	for_each_populated_zone(zone) {
2459 		drain_pages_zone(cpu, zone);
2460 	}
2461 }
2462 
2463 /*
2464  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2465  *
2466  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2467  * the single zone's pages.
2468  */
2469 void drain_local_pages(struct zone *zone)
2470 {
2471 	int cpu = smp_processor_id();
2472 
2473 	if (zone)
2474 		drain_pages_zone(cpu, zone);
2475 	else
2476 		drain_pages(cpu);
2477 }
2478 
2479 static void drain_local_pages_wq(struct work_struct *work)
2480 {
2481 	/*
2482 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2483 	 * we can race with cpu offline when the WQ can move this from
2484 	 * a cpu pinned worker to an unbound one. We can operate on a different
2485 	 * cpu which is allright but we also have to make sure to not move to
2486 	 * a different one.
2487 	 */
2488 	preempt_disable();
2489 	drain_local_pages(NULL);
2490 	preempt_enable();
2491 }
2492 
2493 /*
2494  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2495  *
2496  * When zone parameter is non-NULL, spill just the single zone's pages.
2497  *
2498  * Note that this can be extremely slow as the draining happens in a workqueue.
2499  */
2500 void drain_all_pages(struct zone *zone)
2501 {
2502 	int cpu;
2503 
2504 	/*
2505 	 * Allocate in the BSS so we wont require allocation in
2506 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2507 	 */
2508 	static cpumask_t cpus_with_pcps;
2509 
2510 	/*
2511 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2512 	 * initialized.
2513 	 */
2514 	if (WARN_ON_ONCE(!mm_percpu_wq))
2515 		return;
2516 
2517 	/*
2518 	 * Do not drain if one is already in progress unless it's specific to
2519 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2520 	 * the drain to be complete when the call returns.
2521 	 */
2522 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2523 		if (!zone)
2524 			return;
2525 		mutex_lock(&pcpu_drain_mutex);
2526 	}
2527 
2528 	/*
2529 	 * We don't care about racing with CPU hotplug event
2530 	 * as offline notification will cause the notified
2531 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2532 	 * disables preemption as part of its processing
2533 	 */
2534 	for_each_online_cpu(cpu) {
2535 		struct per_cpu_pageset *pcp;
2536 		struct zone *z;
2537 		bool has_pcps = false;
2538 
2539 		if (zone) {
2540 			pcp = per_cpu_ptr(zone->pageset, cpu);
2541 			if (pcp->pcp.count)
2542 				has_pcps = true;
2543 		} else {
2544 			for_each_populated_zone(z) {
2545 				pcp = per_cpu_ptr(z->pageset, cpu);
2546 				if (pcp->pcp.count) {
2547 					has_pcps = true;
2548 					break;
2549 				}
2550 			}
2551 		}
2552 
2553 		if (has_pcps)
2554 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2555 		else
2556 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2557 	}
2558 
2559 	for_each_cpu(cpu, &cpus_with_pcps) {
2560 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2561 		INIT_WORK(work, drain_local_pages_wq);
2562 		queue_work_on(cpu, mm_percpu_wq, work);
2563 	}
2564 	for_each_cpu(cpu, &cpus_with_pcps)
2565 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2566 
2567 	mutex_unlock(&pcpu_drain_mutex);
2568 }
2569 
2570 #ifdef CONFIG_HIBERNATION
2571 
2572 /*
2573  * Touch the watchdog for every WD_PAGE_COUNT pages.
2574  */
2575 #define WD_PAGE_COUNT	(128*1024)
2576 
2577 void mark_free_pages(struct zone *zone)
2578 {
2579 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2580 	unsigned long flags;
2581 	unsigned int order, t;
2582 	struct page *page;
2583 
2584 	if (zone_is_empty(zone))
2585 		return;
2586 
2587 	spin_lock_irqsave(&zone->lock, flags);
2588 
2589 	max_zone_pfn = zone_end_pfn(zone);
2590 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2591 		if (pfn_valid(pfn)) {
2592 			page = pfn_to_page(pfn);
2593 
2594 			if (!--page_count) {
2595 				touch_nmi_watchdog();
2596 				page_count = WD_PAGE_COUNT;
2597 			}
2598 
2599 			if (page_zone(page) != zone)
2600 				continue;
2601 
2602 			if (!swsusp_page_is_forbidden(page))
2603 				swsusp_unset_page_free(page);
2604 		}
2605 
2606 	for_each_migratetype_order(order, t) {
2607 		list_for_each_entry(page,
2608 				&zone->free_area[order].free_list[t], lru) {
2609 			unsigned long i;
2610 
2611 			pfn = page_to_pfn(page);
2612 			for (i = 0; i < (1UL << order); i++) {
2613 				if (!--page_count) {
2614 					touch_nmi_watchdog();
2615 					page_count = WD_PAGE_COUNT;
2616 				}
2617 				swsusp_set_page_free(pfn_to_page(pfn + i));
2618 			}
2619 		}
2620 	}
2621 	spin_unlock_irqrestore(&zone->lock, flags);
2622 }
2623 #endif /* CONFIG_PM */
2624 
2625 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2626 {
2627 	int migratetype;
2628 
2629 	if (!free_pcp_prepare(page))
2630 		return false;
2631 
2632 	migratetype = get_pfnblock_migratetype(page, pfn);
2633 	set_pcppage_migratetype(page, migratetype);
2634 	return true;
2635 }
2636 
2637 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2638 {
2639 	struct zone *zone = page_zone(page);
2640 	struct per_cpu_pages *pcp;
2641 	int migratetype;
2642 
2643 	migratetype = get_pcppage_migratetype(page);
2644 	__count_vm_event(PGFREE);
2645 
2646 	/*
2647 	 * We only track unmovable, reclaimable and movable on pcp lists.
2648 	 * Free ISOLATE pages back to the allocator because they are being
2649 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2650 	 * areas back if necessary. Otherwise, we may have to free
2651 	 * excessively into the page allocator
2652 	 */
2653 	if (migratetype >= MIGRATE_PCPTYPES) {
2654 		if (unlikely(is_migrate_isolate(migratetype))) {
2655 			free_one_page(zone, page, pfn, 0, migratetype);
2656 			return;
2657 		}
2658 		migratetype = MIGRATE_MOVABLE;
2659 	}
2660 
2661 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2662 	list_add(&page->lru, &pcp->lists[migratetype]);
2663 	pcp->count++;
2664 	if (pcp->count >= pcp->high) {
2665 		unsigned long batch = READ_ONCE(pcp->batch);
2666 		free_pcppages_bulk(zone, batch, pcp);
2667 		pcp->count -= batch;
2668 	}
2669 }
2670 
2671 /*
2672  * Free a 0-order page
2673  */
2674 void free_unref_page(struct page *page)
2675 {
2676 	unsigned long flags;
2677 	unsigned long pfn = page_to_pfn(page);
2678 
2679 	if (!free_unref_page_prepare(page, pfn))
2680 		return;
2681 
2682 	local_irq_save(flags);
2683 	free_unref_page_commit(page, pfn);
2684 	local_irq_restore(flags);
2685 }
2686 
2687 /*
2688  * Free a list of 0-order pages
2689  */
2690 void free_unref_page_list(struct list_head *list)
2691 {
2692 	struct page *page, *next;
2693 	unsigned long flags, pfn;
2694 	int batch_count = 0;
2695 
2696 	/* Prepare pages for freeing */
2697 	list_for_each_entry_safe(page, next, list, lru) {
2698 		pfn = page_to_pfn(page);
2699 		if (!free_unref_page_prepare(page, pfn))
2700 			list_del(&page->lru);
2701 		set_page_private(page, pfn);
2702 	}
2703 
2704 	local_irq_save(flags);
2705 	list_for_each_entry_safe(page, next, list, lru) {
2706 		unsigned long pfn = page_private(page);
2707 
2708 		set_page_private(page, 0);
2709 		trace_mm_page_free_batched(page);
2710 		free_unref_page_commit(page, pfn);
2711 
2712 		/*
2713 		 * Guard against excessive IRQ disabled times when we get
2714 		 * a large list of pages to free.
2715 		 */
2716 		if (++batch_count == SWAP_CLUSTER_MAX) {
2717 			local_irq_restore(flags);
2718 			batch_count = 0;
2719 			local_irq_save(flags);
2720 		}
2721 	}
2722 	local_irq_restore(flags);
2723 }
2724 
2725 /*
2726  * split_page takes a non-compound higher-order page, and splits it into
2727  * n (1<<order) sub-pages: page[0..n]
2728  * Each sub-page must be freed individually.
2729  *
2730  * Note: this is probably too low level an operation for use in drivers.
2731  * Please consult with lkml before using this in your driver.
2732  */
2733 void split_page(struct page *page, unsigned int order)
2734 {
2735 	int i;
2736 
2737 	VM_BUG_ON_PAGE(PageCompound(page), page);
2738 	VM_BUG_ON_PAGE(!page_count(page), page);
2739 
2740 	for (i = 1; i < (1 << order); i++)
2741 		set_page_refcounted(page + i);
2742 	split_page_owner(page, order);
2743 }
2744 EXPORT_SYMBOL_GPL(split_page);
2745 
2746 int __isolate_free_page(struct page *page, unsigned int order)
2747 {
2748 	unsigned long watermark;
2749 	struct zone *zone;
2750 	int mt;
2751 
2752 	BUG_ON(!PageBuddy(page));
2753 
2754 	zone = page_zone(page);
2755 	mt = get_pageblock_migratetype(page);
2756 
2757 	if (!is_migrate_isolate(mt)) {
2758 		/*
2759 		 * Obey watermarks as if the page was being allocated. We can
2760 		 * emulate a high-order watermark check with a raised order-0
2761 		 * watermark, because we already know our high-order page
2762 		 * exists.
2763 		 */
2764 		watermark = min_wmark_pages(zone) + (1UL << order);
2765 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2766 			return 0;
2767 
2768 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2769 	}
2770 
2771 	/* Remove page from free list */
2772 	list_del(&page->lru);
2773 	zone->free_area[order].nr_free--;
2774 	rmv_page_order(page);
2775 
2776 	/*
2777 	 * Set the pageblock if the isolated page is at least half of a
2778 	 * pageblock
2779 	 */
2780 	if (order >= pageblock_order - 1) {
2781 		struct page *endpage = page + (1 << order) - 1;
2782 		for (; page < endpage; page += pageblock_nr_pages) {
2783 			int mt = get_pageblock_migratetype(page);
2784 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2785 			    && !is_migrate_highatomic(mt))
2786 				set_pageblock_migratetype(page,
2787 							  MIGRATE_MOVABLE);
2788 		}
2789 	}
2790 
2791 
2792 	return 1UL << order;
2793 }
2794 
2795 /*
2796  * Update NUMA hit/miss statistics
2797  *
2798  * Must be called with interrupts disabled.
2799  */
2800 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2801 {
2802 #ifdef CONFIG_NUMA
2803 	enum numa_stat_item local_stat = NUMA_LOCAL;
2804 
2805 	/* skip numa counters update if numa stats is disabled */
2806 	if (!static_branch_likely(&vm_numa_stat_key))
2807 		return;
2808 
2809 	if (z->node != numa_node_id())
2810 		local_stat = NUMA_OTHER;
2811 
2812 	if (z->node == preferred_zone->node)
2813 		__inc_numa_state(z, NUMA_HIT);
2814 	else {
2815 		__inc_numa_state(z, NUMA_MISS);
2816 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2817 	}
2818 	__inc_numa_state(z, local_stat);
2819 #endif
2820 }
2821 
2822 /* Remove page from the per-cpu list, caller must protect the list */
2823 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2824 			struct per_cpu_pages *pcp,
2825 			struct list_head *list)
2826 {
2827 	struct page *page;
2828 
2829 	do {
2830 		if (list_empty(list)) {
2831 			pcp->count += rmqueue_bulk(zone, 0,
2832 					pcp->batch, list,
2833 					migratetype);
2834 			if (unlikely(list_empty(list)))
2835 				return NULL;
2836 		}
2837 
2838 		page = list_first_entry(list, struct page, lru);
2839 		list_del(&page->lru);
2840 		pcp->count--;
2841 	} while (check_new_pcp(page));
2842 
2843 	return page;
2844 }
2845 
2846 /* Lock and remove page from the per-cpu list */
2847 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2848 			struct zone *zone, unsigned int order,
2849 			gfp_t gfp_flags, int migratetype)
2850 {
2851 	struct per_cpu_pages *pcp;
2852 	struct list_head *list;
2853 	struct page *page;
2854 	unsigned long flags;
2855 
2856 	local_irq_save(flags);
2857 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2858 	list = &pcp->lists[migratetype];
2859 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2860 	if (page) {
2861 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2862 		zone_statistics(preferred_zone, zone);
2863 	}
2864 	local_irq_restore(flags);
2865 	return page;
2866 }
2867 
2868 /*
2869  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2870  */
2871 static inline
2872 struct page *rmqueue(struct zone *preferred_zone,
2873 			struct zone *zone, unsigned int order,
2874 			gfp_t gfp_flags, unsigned int alloc_flags,
2875 			int migratetype)
2876 {
2877 	unsigned long flags;
2878 	struct page *page;
2879 
2880 	if (likely(order == 0)) {
2881 		page = rmqueue_pcplist(preferred_zone, zone, order,
2882 				gfp_flags, migratetype);
2883 		goto out;
2884 	}
2885 
2886 	/*
2887 	 * We most definitely don't want callers attempting to
2888 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2889 	 */
2890 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2891 	spin_lock_irqsave(&zone->lock, flags);
2892 
2893 	do {
2894 		page = NULL;
2895 		if (alloc_flags & ALLOC_HARDER) {
2896 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2897 			if (page)
2898 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2899 		}
2900 		if (!page)
2901 			page = __rmqueue(zone, order, migratetype);
2902 	} while (page && check_new_pages(page, order));
2903 	spin_unlock(&zone->lock);
2904 	if (!page)
2905 		goto failed;
2906 	__mod_zone_freepage_state(zone, -(1 << order),
2907 				  get_pcppage_migratetype(page));
2908 
2909 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2910 	zone_statistics(preferred_zone, zone);
2911 	local_irq_restore(flags);
2912 
2913 out:
2914 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2915 	return page;
2916 
2917 failed:
2918 	local_irq_restore(flags);
2919 	return NULL;
2920 }
2921 
2922 #ifdef CONFIG_FAIL_PAGE_ALLOC
2923 
2924 static struct {
2925 	struct fault_attr attr;
2926 
2927 	bool ignore_gfp_highmem;
2928 	bool ignore_gfp_reclaim;
2929 	u32 min_order;
2930 } fail_page_alloc = {
2931 	.attr = FAULT_ATTR_INITIALIZER,
2932 	.ignore_gfp_reclaim = true,
2933 	.ignore_gfp_highmem = true,
2934 	.min_order = 1,
2935 };
2936 
2937 static int __init setup_fail_page_alloc(char *str)
2938 {
2939 	return setup_fault_attr(&fail_page_alloc.attr, str);
2940 }
2941 __setup("fail_page_alloc=", setup_fail_page_alloc);
2942 
2943 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2944 {
2945 	if (order < fail_page_alloc.min_order)
2946 		return false;
2947 	if (gfp_mask & __GFP_NOFAIL)
2948 		return false;
2949 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2950 		return false;
2951 	if (fail_page_alloc.ignore_gfp_reclaim &&
2952 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2953 		return false;
2954 
2955 	return should_fail(&fail_page_alloc.attr, 1 << order);
2956 }
2957 
2958 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2959 
2960 static int __init fail_page_alloc_debugfs(void)
2961 {
2962 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2963 	struct dentry *dir;
2964 
2965 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2966 					&fail_page_alloc.attr);
2967 	if (IS_ERR(dir))
2968 		return PTR_ERR(dir);
2969 
2970 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2971 				&fail_page_alloc.ignore_gfp_reclaim))
2972 		goto fail;
2973 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2974 				&fail_page_alloc.ignore_gfp_highmem))
2975 		goto fail;
2976 	if (!debugfs_create_u32("min-order", mode, dir,
2977 				&fail_page_alloc.min_order))
2978 		goto fail;
2979 
2980 	return 0;
2981 fail:
2982 	debugfs_remove_recursive(dir);
2983 
2984 	return -ENOMEM;
2985 }
2986 
2987 late_initcall(fail_page_alloc_debugfs);
2988 
2989 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2990 
2991 #else /* CONFIG_FAIL_PAGE_ALLOC */
2992 
2993 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2994 {
2995 	return false;
2996 }
2997 
2998 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2999 
3000 /*
3001  * Return true if free base pages are above 'mark'. For high-order checks it
3002  * will return true of the order-0 watermark is reached and there is at least
3003  * one free page of a suitable size. Checking now avoids taking the zone lock
3004  * to check in the allocation paths if no pages are free.
3005  */
3006 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3007 			 int classzone_idx, unsigned int alloc_flags,
3008 			 long free_pages)
3009 {
3010 	long min = mark;
3011 	int o;
3012 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3013 
3014 	/* free_pages may go negative - that's OK */
3015 	free_pages -= (1 << order) - 1;
3016 
3017 	if (alloc_flags & ALLOC_HIGH)
3018 		min -= min / 2;
3019 
3020 	/*
3021 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3022 	 * the high-atomic reserves. This will over-estimate the size of the
3023 	 * atomic reserve but it avoids a search.
3024 	 */
3025 	if (likely(!alloc_harder)) {
3026 		free_pages -= z->nr_reserved_highatomic;
3027 	} else {
3028 		/*
3029 		 * OOM victims can try even harder than normal ALLOC_HARDER
3030 		 * users on the grounds that it's definitely going to be in
3031 		 * the exit path shortly and free memory. Any allocation it
3032 		 * makes during the free path will be small and short-lived.
3033 		 */
3034 		if (alloc_flags & ALLOC_OOM)
3035 			min -= min / 2;
3036 		else
3037 			min -= min / 4;
3038 	}
3039 
3040 
3041 #ifdef CONFIG_CMA
3042 	/* If allocation can't use CMA areas don't use free CMA pages */
3043 	if (!(alloc_flags & ALLOC_CMA))
3044 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3045 #endif
3046 
3047 	/*
3048 	 * Check watermarks for an order-0 allocation request. If these
3049 	 * are not met, then a high-order request also cannot go ahead
3050 	 * even if a suitable page happened to be free.
3051 	 */
3052 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3053 		return false;
3054 
3055 	/* If this is an order-0 request then the watermark is fine */
3056 	if (!order)
3057 		return true;
3058 
3059 	/* For a high-order request, check at least one suitable page is free */
3060 	for (o = order; o < MAX_ORDER; o++) {
3061 		struct free_area *area = &z->free_area[o];
3062 		int mt;
3063 
3064 		if (!area->nr_free)
3065 			continue;
3066 
3067 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3068 			if (!list_empty(&area->free_list[mt]))
3069 				return true;
3070 		}
3071 
3072 #ifdef CONFIG_CMA
3073 		if ((alloc_flags & ALLOC_CMA) &&
3074 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3075 			return true;
3076 		}
3077 #endif
3078 		if (alloc_harder &&
3079 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3080 			return true;
3081 	}
3082 	return false;
3083 }
3084 
3085 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3086 		      int classzone_idx, unsigned int alloc_flags)
3087 {
3088 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3089 					zone_page_state(z, NR_FREE_PAGES));
3090 }
3091 
3092 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3093 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3094 {
3095 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3096 	long cma_pages = 0;
3097 
3098 #ifdef CONFIG_CMA
3099 	/* If allocation can't use CMA areas don't use free CMA pages */
3100 	if (!(alloc_flags & ALLOC_CMA))
3101 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3102 #endif
3103 
3104 	/*
3105 	 * Fast check for order-0 only. If this fails then the reserves
3106 	 * need to be calculated. There is a corner case where the check
3107 	 * passes but only the high-order atomic reserve are free. If
3108 	 * the caller is !atomic then it'll uselessly search the free
3109 	 * list. That corner case is then slower but it is harmless.
3110 	 */
3111 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3112 		return true;
3113 
3114 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3115 					free_pages);
3116 }
3117 
3118 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3119 			unsigned long mark, int classzone_idx)
3120 {
3121 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3122 
3123 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3124 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3125 
3126 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3127 								free_pages);
3128 }
3129 
3130 #ifdef CONFIG_NUMA
3131 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3132 {
3133 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3134 				RECLAIM_DISTANCE;
3135 }
3136 #else	/* CONFIG_NUMA */
3137 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3138 {
3139 	return true;
3140 }
3141 #endif	/* CONFIG_NUMA */
3142 
3143 /*
3144  * get_page_from_freelist goes through the zonelist trying to allocate
3145  * a page.
3146  */
3147 static struct page *
3148 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3149 						const struct alloc_context *ac)
3150 {
3151 	struct zoneref *z = ac->preferred_zoneref;
3152 	struct zone *zone;
3153 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3154 
3155 	/*
3156 	 * Scan zonelist, looking for a zone with enough free.
3157 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3158 	 */
3159 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3160 								ac->nodemask) {
3161 		struct page *page;
3162 		unsigned long mark;
3163 
3164 		if (cpusets_enabled() &&
3165 			(alloc_flags & ALLOC_CPUSET) &&
3166 			!__cpuset_zone_allowed(zone, gfp_mask))
3167 				continue;
3168 		/*
3169 		 * When allocating a page cache page for writing, we
3170 		 * want to get it from a node that is within its dirty
3171 		 * limit, such that no single node holds more than its
3172 		 * proportional share of globally allowed dirty pages.
3173 		 * The dirty limits take into account the node's
3174 		 * lowmem reserves and high watermark so that kswapd
3175 		 * should be able to balance it without having to
3176 		 * write pages from its LRU list.
3177 		 *
3178 		 * XXX: For now, allow allocations to potentially
3179 		 * exceed the per-node dirty limit in the slowpath
3180 		 * (spread_dirty_pages unset) before going into reclaim,
3181 		 * which is important when on a NUMA setup the allowed
3182 		 * nodes are together not big enough to reach the
3183 		 * global limit.  The proper fix for these situations
3184 		 * will require awareness of nodes in the
3185 		 * dirty-throttling and the flusher threads.
3186 		 */
3187 		if (ac->spread_dirty_pages) {
3188 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3189 				continue;
3190 
3191 			if (!node_dirty_ok(zone->zone_pgdat)) {
3192 				last_pgdat_dirty_limit = zone->zone_pgdat;
3193 				continue;
3194 			}
3195 		}
3196 
3197 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3198 		if (!zone_watermark_fast(zone, order, mark,
3199 				       ac_classzone_idx(ac), alloc_flags)) {
3200 			int ret;
3201 
3202 			/* Checked here to keep the fast path fast */
3203 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3204 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3205 				goto try_this_zone;
3206 
3207 			if (node_reclaim_mode == 0 ||
3208 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3209 				continue;
3210 
3211 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3212 			switch (ret) {
3213 			case NODE_RECLAIM_NOSCAN:
3214 				/* did not scan */
3215 				continue;
3216 			case NODE_RECLAIM_FULL:
3217 				/* scanned but unreclaimable */
3218 				continue;
3219 			default:
3220 				/* did we reclaim enough */
3221 				if (zone_watermark_ok(zone, order, mark,
3222 						ac_classzone_idx(ac), alloc_flags))
3223 					goto try_this_zone;
3224 
3225 				continue;
3226 			}
3227 		}
3228 
3229 try_this_zone:
3230 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3231 				gfp_mask, alloc_flags, ac->migratetype);
3232 		if (page) {
3233 			prep_new_page(page, order, gfp_mask, alloc_flags);
3234 
3235 			/*
3236 			 * If this is a high-order atomic allocation then check
3237 			 * if the pageblock should be reserved for the future
3238 			 */
3239 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3240 				reserve_highatomic_pageblock(page, zone, order);
3241 
3242 			return page;
3243 		}
3244 	}
3245 
3246 	return NULL;
3247 }
3248 
3249 /*
3250  * Large machines with many possible nodes should not always dump per-node
3251  * meminfo in irq context.
3252  */
3253 static inline bool should_suppress_show_mem(void)
3254 {
3255 	bool ret = false;
3256 
3257 #if NODES_SHIFT > 8
3258 	ret = in_interrupt();
3259 #endif
3260 	return ret;
3261 }
3262 
3263 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3264 {
3265 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3266 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3267 
3268 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3269 		return;
3270 
3271 	/*
3272 	 * This documents exceptions given to allocations in certain
3273 	 * contexts that are allowed to allocate outside current's set
3274 	 * of allowed nodes.
3275 	 */
3276 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3277 		if (tsk_is_oom_victim(current) ||
3278 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3279 			filter &= ~SHOW_MEM_FILTER_NODES;
3280 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3281 		filter &= ~SHOW_MEM_FILTER_NODES;
3282 
3283 	show_mem(filter, nodemask);
3284 }
3285 
3286 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3287 {
3288 	struct va_format vaf;
3289 	va_list args;
3290 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3291 				      DEFAULT_RATELIMIT_BURST);
3292 
3293 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3294 		return;
3295 
3296 	va_start(args, fmt);
3297 	vaf.fmt = fmt;
3298 	vaf.va = &args;
3299 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3300 			current->comm, &vaf, gfp_mask, &gfp_mask,
3301 			nodemask_pr_args(nodemask));
3302 	va_end(args);
3303 
3304 	cpuset_print_current_mems_allowed();
3305 
3306 	dump_stack();
3307 	warn_alloc_show_mem(gfp_mask, nodemask);
3308 }
3309 
3310 static inline struct page *
3311 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3312 			      unsigned int alloc_flags,
3313 			      const struct alloc_context *ac)
3314 {
3315 	struct page *page;
3316 
3317 	page = get_page_from_freelist(gfp_mask, order,
3318 			alloc_flags|ALLOC_CPUSET, ac);
3319 	/*
3320 	 * fallback to ignore cpuset restriction if our nodes
3321 	 * are depleted
3322 	 */
3323 	if (!page)
3324 		page = get_page_from_freelist(gfp_mask, order,
3325 				alloc_flags, ac);
3326 
3327 	return page;
3328 }
3329 
3330 static inline struct page *
3331 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3332 	const struct alloc_context *ac, unsigned long *did_some_progress)
3333 {
3334 	struct oom_control oc = {
3335 		.zonelist = ac->zonelist,
3336 		.nodemask = ac->nodemask,
3337 		.memcg = NULL,
3338 		.gfp_mask = gfp_mask,
3339 		.order = order,
3340 	};
3341 	struct page *page;
3342 
3343 	*did_some_progress = 0;
3344 
3345 	/*
3346 	 * Acquire the oom lock.  If that fails, somebody else is
3347 	 * making progress for us.
3348 	 */
3349 	if (!mutex_trylock(&oom_lock)) {
3350 		*did_some_progress = 1;
3351 		schedule_timeout_uninterruptible(1);
3352 		return NULL;
3353 	}
3354 
3355 	/*
3356 	 * Go through the zonelist yet one more time, keep very high watermark
3357 	 * here, this is only to catch a parallel oom killing, we must fail if
3358 	 * we're still under heavy pressure. But make sure that this reclaim
3359 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3360 	 * allocation which will never fail due to oom_lock already held.
3361 	 */
3362 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3363 				      ~__GFP_DIRECT_RECLAIM, order,
3364 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3365 	if (page)
3366 		goto out;
3367 
3368 	/* Coredumps can quickly deplete all memory reserves */
3369 	if (current->flags & PF_DUMPCORE)
3370 		goto out;
3371 	/* The OOM killer will not help higher order allocs */
3372 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3373 		goto out;
3374 	/*
3375 	 * We have already exhausted all our reclaim opportunities without any
3376 	 * success so it is time to admit defeat. We will skip the OOM killer
3377 	 * because it is very likely that the caller has a more reasonable
3378 	 * fallback than shooting a random task.
3379 	 */
3380 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3381 		goto out;
3382 	/* The OOM killer does not needlessly kill tasks for lowmem */
3383 	if (ac->high_zoneidx < ZONE_NORMAL)
3384 		goto out;
3385 	if (pm_suspended_storage())
3386 		goto out;
3387 	/*
3388 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3389 	 * other request to make a forward progress.
3390 	 * We are in an unfortunate situation where out_of_memory cannot
3391 	 * do much for this context but let's try it to at least get
3392 	 * access to memory reserved if the current task is killed (see
3393 	 * out_of_memory). Once filesystems are ready to handle allocation
3394 	 * failures more gracefully we should just bail out here.
3395 	 */
3396 
3397 	/* The OOM killer may not free memory on a specific node */
3398 	if (gfp_mask & __GFP_THISNODE)
3399 		goto out;
3400 
3401 	/* Exhausted what can be done so it's blame time */
3402 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3403 		*did_some_progress = 1;
3404 
3405 		/*
3406 		 * Help non-failing allocations by giving them access to memory
3407 		 * reserves
3408 		 */
3409 		if (gfp_mask & __GFP_NOFAIL)
3410 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3411 					ALLOC_NO_WATERMARKS, ac);
3412 	}
3413 out:
3414 	mutex_unlock(&oom_lock);
3415 	return page;
3416 }
3417 
3418 /*
3419  * Maximum number of compaction retries wit a progress before OOM
3420  * killer is consider as the only way to move forward.
3421  */
3422 #define MAX_COMPACT_RETRIES 16
3423 
3424 #ifdef CONFIG_COMPACTION
3425 /* Try memory compaction for high-order allocations before reclaim */
3426 static struct page *
3427 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3428 		unsigned int alloc_flags, const struct alloc_context *ac,
3429 		enum compact_priority prio, enum compact_result *compact_result)
3430 {
3431 	struct page *page;
3432 	unsigned int noreclaim_flag;
3433 
3434 	if (!order)
3435 		return NULL;
3436 
3437 	noreclaim_flag = memalloc_noreclaim_save();
3438 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3439 									prio);
3440 	memalloc_noreclaim_restore(noreclaim_flag);
3441 
3442 	if (*compact_result <= COMPACT_INACTIVE)
3443 		return NULL;
3444 
3445 	/*
3446 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3447 	 * count a compaction stall
3448 	 */
3449 	count_vm_event(COMPACTSTALL);
3450 
3451 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3452 
3453 	if (page) {
3454 		struct zone *zone = page_zone(page);
3455 
3456 		zone->compact_blockskip_flush = false;
3457 		compaction_defer_reset(zone, order, true);
3458 		count_vm_event(COMPACTSUCCESS);
3459 		return page;
3460 	}
3461 
3462 	/*
3463 	 * It's bad if compaction run occurs and fails. The most likely reason
3464 	 * is that pages exist, but not enough to satisfy watermarks.
3465 	 */
3466 	count_vm_event(COMPACTFAIL);
3467 
3468 	cond_resched();
3469 
3470 	return NULL;
3471 }
3472 
3473 static inline bool
3474 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3475 		     enum compact_result compact_result,
3476 		     enum compact_priority *compact_priority,
3477 		     int *compaction_retries)
3478 {
3479 	int max_retries = MAX_COMPACT_RETRIES;
3480 	int min_priority;
3481 	bool ret = false;
3482 	int retries = *compaction_retries;
3483 	enum compact_priority priority = *compact_priority;
3484 
3485 	if (!order)
3486 		return false;
3487 
3488 	if (compaction_made_progress(compact_result))
3489 		(*compaction_retries)++;
3490 
3491 	/*
3492 	 * compaction considers all the zone as desperately out of memory
3493 	 * so it doesn't really make much sense to retry except when the
3494 	 * failure could be caused by insufficient priority
3495 	 */
3496 	if (compaction_failed(compact_result))
3497 		goto check_priority;
3498 
3499 	/*
3500 	 * make sure the compaction wasn't deferred or didn't bail out early
3501 	 * due to locks contention before we declare that we should give up.
3502 	 * But do not retry if the given zonelist is not suitable for
3503 	 * compaction.
3504 	 */
3505 	if (compaction_withdrawn(compact_result)) {
3506 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3507 		goto out;
3508 	}
3509 
3510 	/*
3511 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3512 	 * costly ones because they are de facto nofail and invoke OOM
3513 	 * killer to move on while costly can fail and users are ready
3514 	 * to cope with that. 1/4 retries is rather arbitrary but we
3515 	 * would need much more detailed feedback from compaction to
3516 	 * make a better decision.
3517 	 */
3518 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3519 		max_retries /= 4;
3520 	if (*compaction_retries <= max_retries) {
3521 		ret = true;
3522 		goto out;
3523 	}
3524 
3525 	/*
3526 	 * Make sure there are attempts at the highest priority if we exhausted
3527 	 * all retries or failed at the lower priorities.
3528 	 */
3529 check_priority:
3530 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3531 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3532 
3533 	if (*compact_priority > min_priority) {
3534 		(*compact_priority)--;
3535 		*compaction_retries = 0;
3536 		ret = true;
3537 	}
3538 out:
3539 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3540 	return ret;
3541 }
3542 #else
3543 static inline struct page *
3544 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3545 		unsigned int alloc_flags, const struct alloc_context *ac,
3546 		enum compact_priority prio, enum compact_result *compact_result)
3547 {
3548 	*compact_result = COMPACT_SKIPPED;
3549 	return NULL;
3550 }
3551 
3552 static inline bool
3553 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3554 		     enum compact_result compact_result,
3555 		     enum compact_priority *compact_priority,
3556 		     int *compaction_retries)
3557 {
3558 	struct zone *zone;
3559 	struct zoneref *z;
3560 
3561 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3562 		return false;
3563 
3564 	/*
3565 	 * There are setups with compaction disabled which would prefer to loop
3566 	 * inside the allocator rather than hit the oom killer prematurely.
3567 	 * Let's give them a good hope and keep retrying while the order-0
3568 	 * watermarks are OK.
3569 	 */
3570 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3571 					ac->nodemask) {
3572 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3573 					ac_classzone_idx(ac), alloc_flags))
3574 			return true;
3575 	}
3576 	return false;
3577 }
3578 #endif /* CONFIG_COMPACTION */
3579 
3580 #ifdef CONFIG_LOCKDEP
3581 struct lockdep_map __fs_reclaim_map =
3582 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3583 
3584 static bool __need_fs_reclaim(gfp_t gfp_mask)
3585 {
3586 	gfp_mask = current_gfp_context(gfp_mask);
3587 
3588 	/* no reclaim without waiting on it */
3589 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3590 		return false;
3591 
3592 	/* this guy won't enter reclaim */
3593 	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3594 		return false;
3595 
3596 	/* We're only interested __GFP_FS allocations for now */
3597 	if (!(gfp_mask & __GFP_FS))
3598 		return false;
3599 
3600 	if (gfp_mask & __GFP_NOLOCKDEP)
3601 		return false;
3602 
3603 	return true;
3604 }
3605 
3606 void fs_reclaim_acquire(gfp_t gfp_mask)
3607 {
3608 	if (__need_fs_reclaim(gfp_mask))
3609 		lock_map_acquire(&__fs_reclaim_map);
3610 }
3611 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3612 
3613 void fs_reclaim_release(gfp_t gfp_mask)
3614 {
3615 	if (__need_fs_reclaim(gfp_mask))
3616 		lock_map_release(&__fs_reclaim_map);
3617 }
3618 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3619 #endif
3620 
3621 /* Perform direct synchronous page reclaim */
3622 static int
3623 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3624 					const struct alloc_context *ac)
3625 {
3626 	struct reclaim_state reclaim_state;
3627 	int progress;
3628 	unsigned int noreclaim_flag;
3629 
3630 	cond_resched();
3631 
3632 	/* We now go into synchronous reclaim */
3633 	cpuset_memory_pressure_bump();
3634 	noreclaim_flag = memalloc_noreclaim_save();
3635 	fs_reclaim_acquire(gfp_mask);
3636 	reclaim_state.reclaimed_slab = 0;
3637 	current->reclaim_state = &reclaim_state;
3638 
3639 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3640 								ac->nodemask);
3641 
3642 	current->reclaim_state = NULL;
3643 	fs_reclaim_release(gfp_mask);
3644 	memalloc_noreclaim_restore(noreclaim_flag);
3645 
3646 	cond_resched();
3647 
3648 	return progress;
3649 }
3650 
3651 /* The really slow allocator path where we enter direct reclaim */
3652 static inline struct page *
3653 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3654 		unsigned int alloc_flags, const struct alloc_context *ac,
3655 		unsigned long *did_some_progress)
3656 {
3657 	struct page *page = NULL;
3658 	bool drained = false;
3659 
3660 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3661 	if (unlikely(!(*did_some_progress)))
3662 		return NULL;
3663 
3664 retry:
3665 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3666 
3667 	/*
3668 	 * If an allocation failed after direct reclaim, it could be because
3669 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3670 	 * Shrink them them and try again
3671 	 */
3672 	if (!page && !drained) {
3673 		unreserve_highatomic_pageblock(ac, false);
3674 		drain_all_pages(NULL);
3675 		drained = true;
3676 		goto retry;
3677 	}
3678 
3679 	return page;
3680 }
3681 
3682 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3683 {
3684 	struct zoneref *z;
3685 	struct zone *zone;
3686 	pg_data_t *last_pgdat = NULL;
3687 
3688 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3689 					ac->high_zoneidx, ac->nodemask) {
3690 		if (last_pgdat != zone->zone_pgdat)
3691 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3692 		last_pgdat = zone->zone_pgdat;
3693 	}
3694 }
3695 
3696 static inline unsigned int
3697 gfp_to_alloc_flags(gfp_t gfp_mask)
3698 {
3699 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3700 
3701 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3702 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3703 
3704 	/*
3705 	 * The caller may dip into page reserves a bit more if the caller
3706 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3707 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3708 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3709 	 */
3710 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3711 
3712 	if (gfp_mask & __GFP_ATOMIC) {
3713 		/*
3714 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3715 		 * if it can't schedule.
3716 		 */
3717 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3718 			alloc_flags |= ALLOC_HARDER;
3719 		/*
3720 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3721 		 * comment for __cpuset_node_allowed().
3722 		 */
3723 		alloc_flags &= ~ALLOC_CPUSET;
3724 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3725 		alloc_flags |= ALLOC_HARDER;
3726 
3727 #ifdef CONFIG_CMA
3728 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3729 		alloc_flags |= ALLOC_CMA;
3730 #endif
3731 	return alloc_flags;
3732 }
3733 
3734 static bool oom_reserves_allowed(struct task_struct *tsk)
3735 {
3736 	if (!tsk_is_oom_victim(tsk))
3737 		return false;
3738 
3739 	/*
3740 	 * !MMU doesn't have oom reaper so give access to memory reserves
3741 	 * only to the thread with TIF_MEMDIE set
3742 	 */
3743 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3744 		return false;
3745 
3746 	return true;
3747 }
3748 
3749 /*
3750  * Distinguish requests which really need access to full memory
3751  * reserves from oom victims which can live with a portion of it
3752  */
3753 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3754 {
3755 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3756 		return 0;
3757 	if (gfp_mask & __GFP_MEMALLOC)
3758 		return ALLOC_NO_WATERMARKS;
3759 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3760 		return ALLOC_NO_WATERMARKS;
3761 	if (!in_interrupt()) {
3762 		if (current->flags & PF_MEMALLOC)
3763 			return ALLOC_NO_WATERMARKS;
3764 		else if (oom_reserves_allowed(current))
3765 			return ALLOC_OOM;
3766 	}
3767 
3768 	return 0;
3769 }
3770 
3771 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3772 {
3773 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3774 }
3775 
3776 /*
3777  * Checks whether it makes sense to retry the reclaim to make a forward progress
3778  * for the given allocation request.
3779  *
3780  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3781  * without success, or when we couldn't even meet the watermark if we
3782  * reclaimed all remaining pages on the LRU lists.
3783  *
3784  * Returns true if a retry is viable or false to enter the oom path.
3785  */
3786 static inline bool
3787 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3788 		     struct alloc_context *ac, int alloc_flags,
3789 		     bool did_some_progress, int *no_progress_loops)
3790 {
3791 	struct zone *zone;
3792 	struct zoneref *z;
3793 
3794 	/*
3795 	 * Costly allocations might have made a progress but this doesn't mean
3796 	 * their order will become available due to high fragmentation so
3797 	 * always increment the no progress counter for them
3798 	 */
3799 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3800 		*no_progress_loops = 0;
3801 	else
3802 		(*no_progress_loops)++;
3803 
3804 	/*
3805 	 * Make sure we converge to OOM if we cannot make any progress
3806 	 * several times in the row.
3807 	 */
3808 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3809 		/* Before OOM, exhaust highatomic_reserve */
3810 		return unreserve_highatomic_pageblock(ac, true);
3811 	}
3812 
3813 	/*
3814 	 * Keep reclaiming pages while there is a chance this will lead
3815 	 * somewhere.  If none of the target zones can satisfy our allocation
3816 	 * request even if all reclaimable pages are considered then we are
3817 	 * screwed and have to go OOM.
3818 	 */
3819 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3820 					ac->nodemask) {
3821 		unsigned long available;
3822 		unsigned long reclaimable;
3823 		unsigned long min_wmark = min_wmark_pages(zone);
3824 		bool wmark;
3825 
3826 		available = reclaimable = zone_reclaimable_pages(zone);
3827 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3828 
3829 		/*
3830 		 * Would the allocation succeed if we reclaimed all
3831 		 * reclaimable pages?
3832 		 */
3833 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3834 				ac_classzone_idx(ac), alloc_flags, available);
3835 		trace_reclaim_retry_zone(z, order, reclaimable,
3836 				available, min_wmark, *no_progress_loops, wmark);
3837 		if (wmark) {
3838 			/*
3839 			 * If we didn't make any progress and have a lot of
3840 			 * dirty + writeback pages then we should wait for
3841 			 * an IO to complete to slow down the reclaim and
3842 			 * prevent from pre mature OOM
3843 			 */
3844 			if (!did_some_progress) {
3845 				unsigned long write_pending;
3846 
3847 				write_pending = zone_page_state_snapshot(zone,
3848 							NR_ZONE_WRITE_PENDING);
3849 
3850 				if (2 * write_pending > reclaimable) {
3851 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3852 					return true;
3853 				}
3854 			}
3855 
3856 			/*
3857 			 * Memory allocation/reclaim might be called from a WQ
3858 			 * context and the current implementation of the WQ
3859 			 * concurrency control doesn't recognize that
3860 			 * a particular WQ is congested if the worker thread is
3861 			 * looping without ever sleeping. Therefore we have to
3862 			 * do a short sleep here rather than calling
3863 			 * cond_resched().
3864 			 */
3865 			if (current->flags & PF_WQ_WORKER)
3866 				schedule_timeout_uninterruptible(1);
3867 			else
3868 				cond_resched();
3869 
3870 			return true;
3871 		}
3872 	}
3873 
3874 	return false;
3875 }
3876 
3877 static inline bool
3878 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3879 {
3880 	/*
3881 	 * It's possible that cpuset's mems_allowed and the nodemask from
3882 	 * mempolicy don't intersect. This should be normally dealt with by
3883 	 * policy_nodemask(), but it's possible to race with cpuset update in
3884 	 * such a way the check therein was true, and then it became false
3885 	 * before we got our cpuset_mems_cookie here.
3886 	 * This assumes that for all allocations, ac->nodemask can come only
3887 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3888 	 * when it does not intersect with the cpuset restrictions) or the
3889 	 * caller can deal with a violated nodemask.
3890 	 */
3891 	if (cpusets_enabled() && ac->nodemask &&
3892 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3893 		ac->nodemask = NULL;
3894 		return true;
3895 	}
3896 
3897 	/*
3898 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3899 	 * possible to race with parallel threads in such a way that our
3900 	 * allocation can fail while the mask is being updated. If we are about
3901 	 * to fail, check if the cpuset changed during allocation and if so,
3902 	 * retry.
3903 	 */
3904 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3905 		return true;
3906 
3907 	return false;
3908 }
3909 
3910 static inline struct page *
3911 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3912 						struct alloc_context *ac)
3913 {
3914 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3915 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3916 	struct page *page = NULL;
3917 	unsigned int alloc_flags;
3918 	unsigned long did_some_progress;
3919 	enum compact_priority compact_priority;
3920 	enum compact_result compact_result;
3921 	int compaction_retries;
3922 	int no_progress_loops;
3923 	unsigned int cpuset_mems_cookie;
3924 	int reserve_flags;
3925 
3926 	/*
3927 	 * In the slowpath, we sanity check order to avoid ever trying to
3928 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3929 	 * be using allocators in order of preference for an area that is
3930 	 * too large.
3931 	 */
3932 	if (order >= MAX_ORDER) {
3933 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3934 		return NULL;
3935 	}
3936 
3937 	/*
3938 	 * We also sanity check to catch abuse of atomic reserves being used by
3939 	 * callers that are not in atomic context.
3940 	 */
3941 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3942 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3943 		gfp_mask &= ~__GFP_ATOMIC;
3944 
3945 retry_cpuset:
3946 	compaction_retries = 0;
3947 	no_progress_loops = 0;
3948 	compact_priority = DEF_COMPACT_PRIORITY;
3949 	cpuset_mems_cookie = read_mems_allowed_begin();
3950 
3951 	/*
3952 	 * The fast path uses conservative alloc_flags to succeed only until
3953 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3954 	 * alloc_flags precisely. So we do that now.
3955 	 */
3956 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3957 
3958 	/*
3959 	 * We need to recalculate the starting point for the zonelist iterator
3960 	 * because we might have used different nodemask in the fast path, or
3961 	 * there was a cpuset modification and we are retrying - otherwise we
3962 	 * could end up iterating over non-eligible zones endlessly.
3963 	 */
3964 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3965 					ac->high_zoneidx, ac->nodemask);
3966 	if (!ac->preferred_zoneref->zone)
3967 		goto nopage;
3968 
3969 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3970 		wake_all_kswapds(order, ac);
3971 
3972 	/*
3973 	 * The adjusted alloc_flags might result in immediate success, so try
3974 	 * that first
3975 	 */
3976 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3977 	if (page)
3978 		goto got_pg;
3979 
3980 	/*
3981 	 * For costly allocations, try direct compaction first, as it's likely
3982 	 * that we have enough base pages and don't need to reclaim. For non-
3983 	 * movable high-order allocations, do that as well, as compaction will
3984 	 * try prevent permanent fragmentation by migrating from blocks of the
3985 	 * same migratetype.
3986 	 * Don't try this for allocations that are allowed to ignore
3987 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3988 	 */
3989 	if (can_direct_reclaim &&
3990 			(costly_order ||
3991 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3992 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3993 		page = __alloc_pages_direct_compact(gfp_mask, order,
3994 						alloc_flags, ac,
3995 						INIT_COMPACT_PRIORITY,
3996 						&compact_result);
3997 		if (page)
3998 			goto got_pg;
3999 
4000 		/*
4001 		 * Checks for costly allocations with __GFP_NORETRY, which
4002 		 * includes THP page fault allocations
4003 		 */
4004 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4005 			/*
4006 			 * If compaction is deferred for high-order allocations,
4007 			 * it is because sync compaction recently failed. If
4008 			 * this is the case and the caller requested a THP
4009 			 * allocation, we do not want to heavily disrupt the
4010 			 * system, so we fail the allocation instead of entering
4011 			 * direct reclaim.
4012 			 */
4013 			if (compact_result == COMPACT_DEFERRED)
4014 				goto nopage;
4015 
4016 			/*
4017 			 * Looks like reclaim/compaction is worth trying, but
4018 			 * sync compaction could be very expensive, so keep
4019 			 * using async compaction.
4020 			 */
4021 			compact_priority = INIT_COMPACT_PRIORITY;
4022 		}
4023 	}
4024 
4025 retry:
4026 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4027 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4028 		wake_all_kswapds(order, ac);
4029 
4030 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4031 	if (reserve_flags)
4032 		alloc_flags = reserve_flags;
4033 
4034 	/*
4035 	 * Reset the zonelist iterators if memory policies can be ignored.
4036 	 * These allocations are high priority and system rather than user
4037 	 * orientated.
4038 	 */
4039 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4040 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4041 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4042 					ac->high_zoneidx, ac->nodemask);
4043 	}
4044 
4045 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4046 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4047 	if (page)
4048 		goto got_pg;
4049 
4050 	/* Caller is not willing to reclaim, we can't balance anything */
4051 	if (!can_direct_reclaim)
4052 		goto nopage;
4053 
4054 	/* Avoid recursion of direct reclaim */
4055 	if (current->flags & PF_MEMALLOC)
4056 		goto nopage;
4057 
4058 	/* Try direct reclaim and then allocating */
4059 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4060 							&did_some_progress);
4061 	if (page)
4062 		goto got_pg;
4063 
4064 	/* Try direct compaction and then allocating */
4065 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4066 					compact_priority, &compact_result);
4067 	if (page)
4068 		goto got_pg;
4069 
4070 	/* Do not loop if specifically requested */
4071 	if (gfp_mask & __GFP_NORETRY)
4072 		goto nopage;
4073 
4074 	/*
4075 	 * Do not retry costly high order allocations unless they are
4076 	 * __GFP_RETRY_MAYFAIL
4077 	 */
4078 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4079 		goto nopage;
4080 
4081 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4082 				 did_some_progress > 0, &no_progress_loops))
4083 		goto retry;
4084 
4085 	/*
4086 	 * It doesn't make any sense to retry for the compaction if the order-0
4087 	 * reclaim is not able to make any progress because the current
4088 	 * implementation of the compaction depends on the sufficient amount
4089 	 * of free memory (see __compaction_suitable)
4090 	 */
4091 	if (did_some_progress > 0 &&
4092 			should_compact_retry(ac, order, alloc_flags,
4093 				compact_result, &compact_priority,
4094 				&compaction_retries))
4095 		goto retry;
4096 
4097 
4098 	/* Deal with possible cpuset update races before we start OOM killing */
4099 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4100 		goto retry_cpuset;
4101 
4102 	/* Reclaim has failed us, start killing things */
4103 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4104 	if (page)
4105 		goto got_pg;
4106 
4107 	/* Avoid allocations with no watermarks from looping endlessly */
4108 	if (tsk_is_oom_victim(current) &&
4109 	    (alloc_flags == ALLOC_OOM ||
4110 	     (gfp_mask & __GFP_NOMEMALLOC)))
4111 		goto nopage;
4112 
4113 	/* Retry as long as the OOM killer is making progress */
4114 	if (did_some_progress) {
4115 		no_progress_loops = 0;
4116 		goto retry;
4117 	}
4118 
4119 nopage:
4120 	/* Deal with possible cpuset update races before we fail */
4121 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4122 		goto retry_cpuset;
4123 
4124 	/*
4125 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4126 	 * we always retry
4127 	 */
4128 	if (gfp_mask & __GFP_NOFAIL) {
4129 		/*
4130 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4131 		 * of any new users that actually require GFP_NOWAIT
4132 		 */
4133 		if (WARN_ON_ONCE(!can_direct_reclaim))
4134 			goto fail;
4135 
4136 		/*
4137 		 * PF_MEMALLOC request from this context is rather bizarre
4138 		 * because we cannot reclaim anything and only can loop waiting
4139 		 * for somebody to do a work for us
4140 		 */
4141 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4142 
4143 		/*
4144 		 * non failing costly orders are a hard requirement which we
4145 		 * are not prepared for much so let's warn about these users
4146 		 * so that we can identify them and convert them to something
4147 		 * else.
4148 		 */
4149 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4150 
4151 		/*
4152 		 * Help non-failing allocations by giving them access to memory
4153 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4154 		 * could deplete whole memory reserves which would just make
4155 		 * the situation worse
4156 		 */
4157 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4158 		if (page)
4159 			goto got_pg;
4160 
4161 		cond_resched();
4162 		goto retry;
4163 	}
4164 fail:
4165 	warn_alloc(gfp_mask, ac->nodemask,
4166 			"page allocation failure: order:%u", order);
4167 got_pg:
4168 	return page;
4169 }
4170 
4171 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4172 		int preferred_nid, nodemask_t *nodemask,
4173 		struct alloc_context *ac, gfp_t *alloc_mask,
4174 		unsigned int *alloc_flags)
4175 {
4176 	ac->high_zoneidx = gfp_zone(gfp_mask);
4177 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4178 	ac->nodemask = nodemask;
4179 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4180 
4181 	if (cpusets_enabled()) {
4182 		*alloc_mask |= __GFP_HARDWALL;
4183 		if (!ac->nodemask)
4184 			ac->nodemask = &cpuset_current_mems_allowed;
4185 		else
4186 			*alloc_flags |= ALLOC_CPUSET;
4187 	}
4188 
4189 	fs_reclaim_acquire(gfp_mask);
4190 	fs_reclaim_release(gfp_mask);
4191 
4192 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4193 
4194 	if (should_fail_alloc_page(gfp_mask, order))
4195 		return false;
4196 
4197 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4198 		*alloc_flags |= ALLOC_CMA;
4199 
4200 	return true;
4201 }
4202 
4203 /* Determine whether to spread dirty pages and what the first usable zone */
4204 static inline void finalise_ac(gfp_t gfp_mask,
4205 		unsigned int order, struct alloc_context *ac)
4206 {
4207 	/* Dirty zone balancing only done in the fast path */
4208 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4209 
4210 	/*
4211 	 * The preferred zone is used for statistics but crucially it is
4212 	 * also used as the starting point for the zonelist iterator. It
4213 	 * may get reset for allocations that ignore memory policies.
4214 	 */
4215 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4216 					ac->high_zoneidx, ac->nodemask);
4217 }
4218 
4219 /*
4220  * This is the 'heart' of the zoned buddy allocator.
4221  */
4222 struct page *
4223 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4224 							nodemask_t *nodemask)
4225 {
4226 	struct page *page;
4227 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4228 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4229 	struct alloc_context ac = { };
4230 
4231 	gfp_mask &= gfp_allowed_mask;
4232 	alloc_mask = gfp_mask;
4233 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4234 		return NULL;
4235 
4236 	finalise_ac(gfp_mask, order, &ac);
4237 
4238 	/* First allocation attempt */
4239 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4240 	if (likely(page))
4241 		goto out;
4242 
4243 	/*
4244 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4245 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4246 	 * from a particular context which has been marked by
4247 	 * memalloc_no{fs,io}_{save,restore}.
4248 	 */
4249 	alloc_mask = current_gfp_context(gfp_mask);
4250 	ac.spread_dirty_pages = false;
4251 
4252 	/*
4253 	 * Restore the original nodemask if it was potentially replaced with
4254 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4255 	 */
4256 	if (unlikely(ac.nodemask != nodemask))
4257 		ac.nodemask = nodemask;
4258 
4259 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4260 
4261 out:
4262 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4263 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4264 		__free_pages(page, order);
4265 		page = NULL;
4266 	}
4267 
4268 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4269 
4270 	return page;
4271 }
4272 EXPORT_SYMBOL(__alloc_pages_nodemask);
4273 
4274 /*
4275  * Common helper functions.
4276  */
4277 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4278 {
4279 	struct page *page;
4280 
4281 	/*
4282 	 * __get_free_pages() returns a virtual address, which cannot represent
4283 	 * a highmem page
4284 	 */
4285 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4286 
4287 	page = alloc_pages(gfp_mask, order);
4288 	if (!page)
4289 		return 0;
4290 	return (unsigned long) page_address(page);
4291 }
4292 EXPORT_SYMBOL(__get_free_pages);
4293 
4294 unsigned long get_zeroed_page(gfp_t gfp_mask)
4295 {
4296 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4297 }
4298 EXPORT_SYMBOL(get_zeroed_page);
4299 
4300 void __free_pages(struct page *page, unsigned int order)
4301 {
4302 	if (put_page_testzero(page)) {
4303 		if (order == 0)
4304 			free_unref_page(page);
4305 		else
4306 			__free_pages_ok(page, order);
4307 	}
4308 }
4309 
4310 EXPORT_SYMBOL(__free_pages);
4311 
4312 void free_pages(unsigned long addr, unsigned int order)
4313 {
4314 	if (addr != 0) {
4315 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4316 		__free_pages(virt_to_page((void *)addr), order);
4317 	}
4318 }
4319 
4320 EXPORT_SYMBOL(free_pages);
4321 
4322 /*
4323  * Page Fragment:
4324  *  An arbitrary-length arbitrary-offset area of memory which resides
4325  *  within a 0 or higher order page.  Multiple fragments within that page
4326  *  are individually refcounted, in the page's reference counter.
4327  *
4328  * The page_frag functions below provide a simple allocation framework for
4329  * page fragments.  This is used by the network stack and network device
4330  * drivers to provide a backing region of memory for use as either an
4331  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4332  */
4333 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4334 					     gfp_t gfp_mask)
4335 {
4336 	struct page *page = NULL;
4337 	gfp_t gfp = gfp_mask;
4338 
4339 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4340 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4341 		    __GFP_NOMEMALLOC;
4342 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4343 				PAGE_FRAG_CACHE_MAX_ORDER);
4344 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4345 #endif
4346 	if (unlikely(!page))
4347 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4348 
4349 	nc->va = page ? page_address(page) : NULL;
4350 
4351 	return page;
4352 }
4353 
4354 void __page_frag_cache_drain(struct page *page, unsigned int count)
4355 {
4356 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4357 
4358 	if (page_ref_sub_and_test(page, count)) {
4359 		unsigned int order = compound_order(page);
4360 
4361 		if (order == 0)
4362 			free_unref_page(page);
4363 		else
4364 			__free_pages_ok(page, order);
4365 	}
4366 }
4367 EXPORT_SYMBOL(__page_frag_cache_drain);
4368 
4369 void *page_frag_alloc(struct page_frag_cache *nc,
4370 		      unsigned int fragsz, gfp_t gfp_mask)
4371 {
4372 	unsigned int size = PAGE_SIZE;
4373 	struct page *page;
4374 	int offset;
4375 
4376 	if (unlikely(!nc->va)) {
4377 refill:
4378 		page = __page_frag_cache_refill(nc, gfp_mask);
4379 		if (!page)
4380 			return NULL;
4381 
4382 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4383 		/* if size can vary use size else just use PAGE_SIZE */
4384 		size = nc->size;
4385 #endif
4386 		/* Even if we own the page, we do not use atomic_set().
4387 		 * This would break get_page_unless_zero() users.
4388 		 */
4389 		page_ref_add(page, size - 1);
4390 
4391 		/* reset page count bias and offset to start of new frag */
4392 		nc->pfmemalloc = page_is_pfmemalloc(page);
4393 		nc->pagecnt_bias = size;
4394 		nc->offset = size;
4395 	}
4396 
4397 	offset = nc->offset - fragsz;
4398 	if (unlikely(offset < 0)) {
4399 		page = virt_to_page(nc->va);
4400 
4401 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4402 			goto refill;
4403 
4404 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4405 		/* if size can vary use size else just use PAGE_SIZE */
4406 		size = nc->size;
4407 #endif
4408 		/* OK, page count is 0, we can safely set it */
4409 		set_page_count(page, size);
4410 
4411 		/* reset page count bias and offset to start of new frag */
4412 		nc->pagecnt_bias = size;
4413 		offset = size - fragsz;
4414 	}
4415 
4416 	nc->pagecnt_bias--;
4417 	nc->offset = offset;
4418 
4419 	return nc->va + offset;
4420 }
4421 EXPORT_SYMBOL(page_frag_alloc);
4422 
4423 /*
4424  * Frees a page fragment allocated out of either a compound or order 0 page.
4425  */
4426 void page_frag_free(void *addr)
4427 {
4428 	struct page *page = virt_to_head_page(addr);
4429 
4430 	if (unlikely(put_page_testzero(page)))
4431 		__free_pages_ok(page, compound_order(page));
4432 }
4433 EXPORT_SYMBOL(page_frag_free);
4434 
4435 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4436 		size_t size)
4437 {
4438 	if (addr) {
4439 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4440 		unsigned long used = addr + PAGE_ALIGN(size);
4441 
4442 		split_page(virt_to_page((void *)addr), order);
4443 		while (used < alloc_end) {
4444 			free_page(used);
4445 			used += PAGE_SIZE;
4446 		}
4447 	}
4448 	return (void *)addr;
4449 }
4450 
4451 /**
4452  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4453  * @size: the number of bytes to allocate
4454  * @gfp_mask: GFP flags for the allocation
4455  *
4456  * This function is similar to alloc_pages(), except that it allocates the
4457  * minimum number of pages to satisfy the request.  alloc_pages() can only
4458  * allocate memory in power-of-two pages.
4459  *
4460  * This function is also limited by MAX_ORDER.
4461  *
4462  * Memory allocated by this function must be released by free_pages_exact().
4463  */
4464 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4465 {
4466 	unsigned int order = get_order(size);
4467 	unsigned long addr;
4468 
4469 	addr = __get_free_pages(gfp_mask, order);
4470 	return make_alloc_exact(addr, order, size);
4471 }
4472 EXPORT_SYMBOL(alloc_pages_exact);
4473 
4474 /**
4475  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4476  *			   pages on a node.
4477  * @nid: the preferred node ID where memory should be allocated
4478  * @size: the number of bytes to allocate
4479  * @gfp_mask: GFP flags for the allocation
4480  *
4481  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4482  * back.
4483  */
4484 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4485 {
4486 	unsigned int order = get_order(size);
4487 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4488 	if (!p)
4489 		return NULL;
4490 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4491 }
4492 
4493 /**
4494  * free_pages_exact - release memory allocated via alloc_pages_exact()
4495  * @virt: the value returned by alloc_pages_exact.
4496  * @size: size of allocation, same value as passed to alloc_pages_exact().
4497  *
4498  * Release the memory allocated by a previous call to alloc_pages_exact.
4499  */
4500 void free_pages_exact(void *virt, size_t size)
4501 {
4502 	unsigned long addr = (unsigned long)virt;
4503 	unsigned long end = addr + PAGE_ALIGN(size);
4504 
4505 	while (addr < end) {
4506 		free_page(addr);
4507 		addr += PAGE_SIZE;
4508 	}
4509 }
4510 EXPORT_SYMBOL(free_pages_exact);
4511 
4512 /**
4513  * nr_free_zone_pages - count number of pages beyond high watermark
4514  * @offset: The zone index of the highest zone
4515  *
4516  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4517  * high watermark within all zones at or below a given zone index.  For each
4518  * zone, the number of pages is calculated as:
4519  *
4520  *     nr_free_zone_pages = managed_pages - high_pages
4521  */
4522 static unsigned long nr_free_zone_pages(int offset)
4523 {
4524 	struct zoneref *z;
4525 	struct zone *zone;
4526 
4527 	/* Just pick one node, since fallback list is circular */
4528 	unsigned long sum = 0;
4529 
4530 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4531 
4532 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4533 		unsigned long size = zone->managed_pages;
4534 		unsigned long high = high_wmark_pages(zone);
4535 		if (size > high)
4536 			sum += size - high;
4537 	}
4538 
4539 	return sum;
4540 }
4541 
4542 /**
4543  * nr_free_buffer_pages - count number of pages beyond high watermark
4544  *
4545  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4546  * watermark within ZONE_DMA and ZONE_NORMAL.
4547  */
4548 unsigned long nr_free_buffer_pages(void)
4549 {
4550 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4551 }
4552 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4553 
4554 /**
4555  * nr_free_pagecache_pages - count number of pages beyond high watermark
4556  *
4557  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4558  * high watermark within all zones.
4559  */
4560 unsigned long nr_free_pagecache_pages(void)
4561 {
4562 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4563 }
4564 
4565 static inline void show_node(struct zone *zone)
4566 {
4567 	if (IS_ENABLED(CONFIG_NUMA))
4568 		printk("Node %d ", zone_to_nid(zone));
4569 }
4570 
4571 long si_mem_available(void)
4572 {
4573 	long available;
4574 	unsigned long pagecache;
4575 	unsigned long wmark_low = 0;
4576 	unsigned long pages[NR_LRU_LISTS];
4577 	struct zone *zone;
4578 	int lru;
4579 
4580 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4581 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4582 
4583 	for_each_zone(zone)
4584 		wmark_low += zone->watermark[WMARK_LOW];
4585 
4586 	/*
4587 	 * Estimate the amount of memory available for userspace allocations,
4588 	 * without causing swapping.
4589 	 */
4590 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4591 
4592 	/*
4593 	 * Not all the page cache can be freed, otherwise the system will
4594 	 * start swapping. Assume at least half of the page cache, or the
4595 	 * low watermark worth of cache, needs to stay.
4596 	 */
4597 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4598 	pagecache -= min(pagecache / 2, wmark_low);
4599 	available += pagecache;
4600 
4601 	/*
4602 	 * Part of the reclaimable slab consists of items that are in use,
4603 	 * and cannot be freed. Cap this estimate at the low watermark.
4604 	 */
4605 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4606 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4607 			 wmark_low);
4608 
4609 	if (available < 0)
4610 		available = 0;
4611 	return available;
4612 }
4613 EXPORT_SYMBOL_GPL(si_mem_available);
4614 
4615 void si_meminfo(struct sysinfo *val)
4616 {
4617 	val->totalram = totalram_pages;
4618 	val->sharedram = global_node_page_state(NR_SHMEM);
4619 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4620 	val->bufferram = nr_blockdev_pages();
4621 	val->totalhigh = totalhigh_pages;
4622 	val->freehigh = nr_free_highpages();
4623 	val->mem_unit = PAGE_SIZE;
4624 }
4625 
4626 EXPORT_SYMBOL(si_meminfo);
4627 
4628 #ifdef CONFIG_NUMA
4629 void si_meminfo_node(struct sysinfo *val, int nid)
4630 {
4631 	int zone_type;		/* needs to be signed */
4632 	unsigned long managed_pages = 0;
4633 	unsigned long managed_highpages = 0;
4634 	unsigned long free_highpages = 0;
4635 	pg_data_t *pgdat = NODE_DATA(nid);
4636 
4637 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4638 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4639 	val->totalram = managed_pages;
4640 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4641 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4642 #ifdef CONFIG_HIGHMEM
4643 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4644 		struct zone *zone = &pgdat->node_zones[zone_type];
4645 
4646 		if (is_highmem(zone)) {
4647 			managed_highpages += zone->managed_pages;
4648 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4649 		}
4650 	}
4651 	val->totalhigh = managed_highpages;
4652 	val->freehigh = free_highpages;
4653 #else
4654 	val->totalhigh = managed_highpages;
4655 	val->freehigh = free_highpages;
4656 #endif
4657 	val->mem_unit = PAGE_SIZE;
4658 }
4659 #endif
4660 
4661 /*
4662  * Determine whether the node should be displayed or not, depending on whether
4663  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4664  */
4665 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4666 {
4667 	if (!(flags & SHOW_MEM_FILTER_NODES))
4668 		return false;
4669 
4670 	/*
4671 	 * no node mask - aka implicit memory numa policy. Do not bother with
4672 	 * the synchronization - read_mems_allowed_begin - because we do not
4673 	 * have to be precise here.
4674 	 */
4675 	if (!nodemask)
4676 		nodemask = &cpuset_current_mems_allowed;
4677 
4678 	return !node_isset(nid, *nodemask);
4679 }
4680 
4681 #define K(x) ((x) << (PAGE_SHIFT-10))
4682 
4683 static void show_migration_types(unsigned char type)
4684 {
4685 	static const char types[MIGRATE_TYPES] = {
4686 		[MIGRATE_UNMOVABLE]	= 'U',
4687 		[MIGRATE_MOVABLE]	= 'M',
4688 		[MIGRATE_RECLAIMABLE]	= 'E',
4689 		[MIGRATE_HIGHATOMIC]	= 'H',
4690 #ifdef CONFIG_CMA
4691 		[MIGRATE_CMA]		= 'C',
4692 #endif
4693 #ifdef CONFIG_MEMORY_ISOLATION
4694 		[MIGRATE_ISOLATE]	= 'I',
4695 #endif
4696 	};
4697 	char tmp[MIGRATE_TYPES + 1];
4698 	char *p = tmp;
4699 	int i;
4700 
4701 	for (i = 0; i < MIGRATE_TYPES; i++) {
4702 		if (type & (1 << i))
4703 			*p++ = types[i];
4704 	}
4705 
4706 	*p = '\0';
4707 	printk(KERN_CONT "(%s) ", tmp);
4708 }
4709 
4710 /*
4711  * Show free area list (used inside shift_scroll-lock stuff)
4712  * We also calculate the percentage fragmentation. We do this by counting the
4713  * memory on each free list with the exception of the first item on the list.
4714  *
4715  * Bits in @filter:
4716  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4717  *   cpuset.
4718  */
4719 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4720 {
4721 	unsigned long free_pcp = 0;
4722 	int cpu;
4723 	struct zone *zone;
4724 	pg_data_t *pgdat;
4725 
4726 	for_each_populated_zone(zone) {
4727 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4728 			continue;
4729 
4730 		for_each_online_cpu(cpu)
4731 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4732 	}
4733 
4734 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4735 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4736 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4737 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4738 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4739 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4740 		global_node_page_state(NR_ACTIVE_ANON),
4741 		global_node_page_state(NR_INACTIVE_ANON),
4742 		global_node_page_state(NR_ISOLATED_ANON),
4743 		global_node_page_state(NR_ACTIVE_FILE),
4744 		global_node_page_state(NR_INACTIVE_FILE),
4745 		global_node_page_state(NR_ISOLATED_FILE),
4746 		global_node_page_state(NR_UNEVICTABLE),
4747 		global_node_page_state(NR_FILE_DIRTY),
4748 		global_node_page_state(NR_WRITEBACK),
4749 		global_node_page_state(NR_UNSTABLE_NFS),
4750 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4751 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4752 		global_node_page_state(NR_FILE_MAPPED),
4753 		global_node_page_state(NR_SHMEM),
4754 		global_zone_page_state(NR_PAGETABLE),
4755 		global_zone_page_state(NR_BOUNCE),
4756 		global_zone_page_state(NR_FREE_PAGES),
4757 		free_pcp,
4758 		global_zone_page_state(NR_FREE_CMA_PAGES));
4759 
4760 	for_each_online_pgdat(pgdat) {
4761 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4762 			continue;
4763 
4764 		printk("Node %d"
4765 			" active_anon:%lukB"
4766 			" inactive_anon:%lukB"
4767 			" active_file:%lukB"
4768 			" inactive_file:%lukB"
4769 			" unevictable:%lukB"
4770 			" isolated(anon):%lukB"
4771 			" isolated(file):%lukB"
4772 			" mapped:%lukB"
4773 			" dirty:%lukB"
4774 			" writeback:%lukB"
4775 			" shmem:%lukB"
4776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4777 			" shmem_thp: %lukB"
4778 			" shmem_pmdmapped: %lukB"
4779 			" anon_thp: %lukB"
4780 #endif
4781 			" writeback_tmp:%lukB"
4782 			" unstable:%lukB"
4783 			" all_unreclaimable? %s"
4784 			"\n",
4785 			pgdat->node_id,
4786 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4787 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4788 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4789 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4790 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4791 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4792 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4793 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4794 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4795 			K(node_page_state(pgdat, NR_WRITEBACK)),
4796 			K(node_page_state(pgdat, NR_SHMEM)),
4797 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4798 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4799 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4800 					* HPAGE_PMD_NR),
4801 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4802 #endif
4803 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4804 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4805 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4806 				"yes" : "no");
4807 	}
4808 
4809 	for_each_populated_zone(zone) {
4810 		int i;
4811 
4812 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4813 			continue;
4814 
4815 		free_pcp = 0;
4816 		for_each_online_cpu(cpu)
4817 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4818 
4819 		show_node(zone);
4820 		printk(KERN_CONT
4821 			"%s"
4822 			" free:%lukB"
4823 			" min:%lukB"
4824 			" low:%lukB"
4825 			" high:%lukB"
4826 			" active_anon:%lukB"
4827 			" inactive_anon:%lukB"
4828 			" active_file:%lukB"
4829 			" inactive_file:%lukB"
4830 			" unevictable:%lukB"
4831 			" writepending:%lukB"
4832 			" present:%lukB"
4833 			" managed:%lukB"
4834 			" mlocked:%lukB"
4835 			" kernel_stack:%lukB"
4836 			" pagetables:%lukB"
4837 			" bounce:%lukB"
4838 			" free_pcp:%lukB"
4839 			" local_pcp:%ukB"
4840 			" free_cma:%lukB"
4841 			"\n",
4842 			zone->name,
4843 			K(zone_page_state(zone, NR_FREE_PAGES)),
4844 			K(min_wmark_pages(zone)),
4845 			K(low_wmark_pages(zone)),
4846 			K(high_wmark_pages(zone)),
4847 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4848 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4849 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4850 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4851 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4852 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4853 			K(zone->present_pages),
4854 			K(zone->managed_pages),
4855 			K(zone_page_state(zone, NR_MLOCK)),
4856 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4857 			K(zone_page_state(zone, NR_PAGETABLE)),
4858 			K(zone_page_state(zone, NR_BOUNCE)),
4859 			K(free_pcp),
4860 			K(this_cpu_read(zone->pageset->pcp.count)),
4861 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4862 		printk("lowmem_reserve[]:");
4863 		for (i = 0; i < MAX_NR_ZONES; i++)
4864 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4865 		printk(KERN_CONT "\n");
4866 	}
4867 
4868 	for_each_populated_zone(zone) {
4869 		unsigned int order;
4870 		unsigned long nr[MAX_ORDER], flags, total = 0;
4871 		unsigned char types[MAX_ORDER];
4872 
4873 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4874 			continue;
4875 		show_node(zone);
4876 		printk(KERN_CONT "%s: ", zone->name);
4877 
4878 		spin_lock_irqsave(&zone->lock, flags);
4879 		for (order = 0; order < MAX_ORDER; order++) {
4880 			struct free_area *area = &zone->free_area[order];
4881 			int type;
4882 
4883 			nr[order] = area->nr_free;
4884 			total += nr[order] << order;
4885 
4886 			types[order] = 0;
4887 			for (type = 0; type < MIGRATE_TYPES; type++) {
4888 				if (!list_empty(&area->free_list[type]))
4889 					types[order] |= 1 << type;
4890 			}
4891 		}
4892 		spin_unlock_irqrestore(&zone->lock, flags);
4893 		for (order = 0; order < MAX_ORDER; order++) {
4894 			printk(KERN_CONT "%lu*%lukB ",
4895 			       nr[order], K(1UL) << order);
4896 			if (nr[order])
4897 				show_migration_types(types[order]);
4898 		}
4899 		printk(KERN_CONT "= %lukB\n", K(total));
4900 	}
4901 
4902 	hugetlb_show_meminfo();
4903 
4904 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4905 
4906 	show_swap_cache_info();
4907 }
4908 
4909 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4910 {
4911 	zoneref->zone = zone;
4912 	zoneref->zone_idx = zone_idx(zone);
4913 }
4914 
4915 /*
4916  * Builds allocation fallback zone lists.
4917  *
4918  * Add all populated zones of a node to the zonelist.
4919  */
4920 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4921 {
4922 	struct zone *zone;
4923 	enum zone_type zone_type = MAX_NR_ZONES;
4924 	int nr_zones = 0;
4925 
4926 	do {
4927 		zone_type--;
4928 		zone = pgdat->node_zones + zone_type;
4929 		if (managed_zone(zone)) {
4930 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4931 			check_highest_zone(zone_type);
4932 		}
4933 	} while (zone_type);
4934 
4935 	return nr_zones;
4936 }
4937 
4938 #ifdef CONFIG_NUMA
4939 
4940 static int __parse_numa_zonelist_order(char *s)
4941 {
4942 	/*
4943 	 * We used to support different zonlists modes but they turned
4944 	 * out to be just not useful. Let's keep the warning in place
4945 	 * if somebody still use the cmd line parameter so that we do
4946 	 * not fail it silently
4947 	 */
4948 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4949 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4950 		return -EINVAL;
4951 	}
4952 	return 0;
4953 }
4954 
4955 static __init int setup_numa_zonelist_order(char *s)
4956 {
4957 	if (!s)
4958 		return 0;
4959 
4960 	return __parse_numa_zonelist_order(s);
4961 }
4962 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4963 
4964 char numa_zonelist_order[] = "Node";
4965 
4966 /*
4967  * sysctl handler for numa_zonelist_order
4968  */
4969 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4970 		void __user *buffer, size_t *length,
4971 		loff_t *ppos)
4972 {
4973 	char *str;
4974 	int ret;
4975 
4976 	if (!write)
4977 		return proc_dostring(table, write, buffer, length, ppos);
4978 	str = memdup_user_nul(buffer, 16);
4979 	if (IS_ERR(str))
4980 		return PTR_ERR(str);
4981 
4982 	ret = __parse_numa_zonelist_order(str);
4983 	kfree(str);
4984 	return ret;
4985 }
4986 
4987 
4988 #define MAX_NODE_LOAD (nr_online_nodes)
4989 static int node_load[MAX_NUMNODES];
4990 
4991 /**
4992  * find_next_best_node - find the next node that should appear in a given node's fallback list
4993  * @node: node whose fallback list we're appending
4994  * @used_node_mask: nodemask_t of already used nodes
4995  *
4996  * We use a number of factors to determine which is the next node that should
4997  * appear on a given node's fallback list.  The node should not have appeared
4998  * already in @node's fallback list, and it should be the next closest node
4999  * according to the distance array (which contains arbitrary distance values
5000  * from each node to each node in the system), and should also prefer nodes
5001  * with no CPUs, since presumably they'll have very little allocation pressure
5002  * on them otherwise.
5003  * It returns -1 if no node is found.
5004  */
5005 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5006 {
5007 	int n, val;
5008 	int min_val = INT_MAX;
5009 	int best_node = NUMA_NO_NODE;
5010 	const struct cpumask *tmp = cpumask_of_node(0);
5011 
5012 	/* Use the local node if we haven't already */
5013 	if (!node_isset(node, *used_node_mask)) {
5014 		node_set(node, *used_node_mask);
5015 		return node;
5016 	}
5017 
5018 	for_each_node_state(n, N_MEMORY) {
5019 
5020 		/* Don't want a node to appear more than once */
5021 		if (node_isset(n, *used_node_mask))
5022 			continue;
5023 
5024 		/* Use the distance array to find the distance */
5025 		val = node_distance(node, n);
5026 
5027 		/* Penalize nodes under us ("prefer the next node") */
5028 		val += (n < node);
5029 
5030 		/* Give preference to headless and unused nodes */
5031 		tmp = cpumask_of_node(n);
5032 		if (!cpumask_empty(tmp))
5033 			val += PENALTY_FOR_NODE_WITH_CPUS;
5034 
5035 		/* Slight preference for less loaded node */
5036 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5037 		val += node_load[n];
5038 
5039 		if (val < min_val) {
5040 			min_val = val;
5041 			best_node = n;
5042 		}
5043 	}
5044 
5045 	if (best_node >= 0)
5046 		node_set(best_node, *used_node_mask);
5047 
5048 	return best_node;
5049 }
5050 
5051 
5052 /*
5053  * Build zonelists ordered by node and zones within node.
5054  * This results in maximum locality--normal zone overflows into local
5055  * DMA zone, if any--but risks exhausting DMA zone.
5056  */
5057 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5058 		unsigned nr_nodes)
5059 {
5060 	struct zoneref *zonerefs;
5061 	int i;
5062 
5063 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5064 
5065 	for (i = 0; i < nr_nodes; i++) {
5066 		int nr_zones;
5067 
5068 		pg_data_t *node = NODE_DATA(node_order[i]);
5069 
5070 		nr_zones = build_zonerefs_node(node, zonerefs);
5071 		zonerefs += nr_zones;
5072 	}
5073 	zonerefs->zone = NULL;
5074 	zonerefs->zone_idx = 0;
5075 }
5076 
5077 /*
5078  * Build gfp_thisnode zonelists
5079  */
5080 static void build_thisnode_zonelists(pg_data_t *pgdat)
5081 {
5082 	struct zoneref *zonerefs;
5083 	int nr_zones;
5084 
5085 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5086 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5087 	zonerefs += nr_zones;
5088 	zonerefs->zone = NULL;
5089 	zonerefs->zone_idx = 0;
5090 }
5091 
5092 /*
5093  * Build zonelists ordered by zone and nodes within zones.
5094  * This results in conserving DMA zone[s] until all Normal memory is
5095  * exhausted, but results in overflowing to remote node while memory
5096  * may still exist in local DMA zone.
5097  */
5098 
5099 static void build_zonelists(pg_data_t *pgdat)
5100 {
5101 	static int node_order[MAX_NUMNODES];
5102 	int node, load, nr_nodes = 0;
5103 	nodemask_t used_mask;
5104 	int local_node, prev_node;
5105 
5106 	/* NUMA-aware ordering of nodes */
5107 	local_node = pgdat->node_id;
5108 	load = nr_online_nodes;
5109 	prev_node = local_node;
5110 	nodes_clear(used_mask);
5111 
5112 	memset(node_order, 0, sizeof(node_order));
5113 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5114 		/*
5115 		 * We don't want to pressure a particular node.
5116 		 * So adding penalty to the first node in same
5117 		 * distance group to make it round-robin.
5118 		 */
5119 		if (node_distance(local_node, node) !=
5120 		    node_distance(local_node, prev_node))
5121 			node_load[node] = load;
5122 
5123 		node_order[nr_nodes++] = node;
5124 		prev_node = node;
5125 		load--;
5126 	}
5127 
5128 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5129 	build_thisnode_zonelists(pgdat);
5130 }
5131 
5132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5133 /*
5134  * Return node id of node used for "local" allocations.
5135  * I.e., first node id of first zone in arg node's generic zonelist.
5136  * Used for initializing percpu 'numa_mem', which is used primarily
5137  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5138  */
5139 int local_memory_node(int node)
5140 {
5141 	struct zoneref *z;
5142 
5143 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5144 				   gfp_zone(GFP_KERNEL),
5145 				   NULL);
5146 	return z->zone->node;
5147 }
5148 #endif
5149 
5150 static void setup_min_unmapped_ratio(void);
5151 static void setup_min_slab_ratio(void);
5152 #else	/* CONFIG_NUMA */
5153 
5154 static void build_zonelists(pg_data_t *pgdat)
5155 {
5156 	int node, local_node;
5157 	struct zoneref *zonerefs;
5158 	int nr_zones;
5159 
5160 	local_node = pgdat->node_id;
5161 
5162 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5163 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5164 	zonerefs += nr_zones;
5165 
5166 	/*
5167 	 * Now we build the zonelist so that it contains the zones
5168 	 * of all the other nodes.
5169 	 * We don't want to pressure a particular node, so when
5170 	 * building the zones for node N, we make sure that the
5171 	 * zones coming right after the local ones are those from
5172 	 * node N+1 (modulo N)
5173 	 */
5174 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5175 		if (!node_online(node))
5176 			continue;
5177 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5178 		zonerefs += nr_zones;
5179 	}
5180 	for (node = 0; node < local_node; node++) {
5181 		if (!node_online(node))
5182 			continue;
5183 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5184 		zonerefs += nr_zones;
5185 	}
5186 
5187 	zonerefs->zone = NULL;
5188 	zonerefs->zone_idx = 0;
5189 }
5190 
5191 #endif	/* CONFIG_NUMA */
5192 
5193 /*
5194  * Boot pageset table. One per cpu which is going to be used for all
5195  * zones and all nodes. The parameters will be set in such a way
5196  * that an item put on a list will immediately be handed over to
5197  * the buddy list. This is safe since pageset manipulation is done
5198  * with interrupts disabled.
5199  *
5200  * The boot_pagesets must be kept even after bootup is complete for
5201  * unused processors and/or zones. They do play a role for bootstrapping
5202  * hotplugged processors.
5203  *
5204  * zoneinfo_show() and maybe other functions do
5205  * not check if the processor is online before following the pageset pointer.
5206  * Other parts of the kernel may not check if the zone is available.
5207  */
5208 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5209 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5210 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5211 
5212 static void __build_all_zonelists(void *data)
5213 {
5214 	int nid;
5215 	int __maybe_unused cpu;
5216 	pg_data_t *self = data;
5217 	static DEFINE_SPINLOCK(lock);
5218 
5219 	spin_lock(&lock);
5220 
5221 #ifdef CONFIG_NUMA
5222 	memset(node_load, 0, sizeof(node_load));
5223 #endif
5224 
5225 	/*
5226 	 * This node is hotadded and no memory is yet present.   So just
5227 	 * building zonelists is fine - no need to touch other nodes.
5228 	 */
5229 	if (self && !node_online(self->node_id)) {
5230 		build_zonelists(self);
5231 	} else {
5232 		for_each_online_node(nid) {
5233 			pg_data_t *pgdat = NODE_DATA(nid);
5234 
5235 			build_zonelists(pgdat);
5236 		}
5237 
5238 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5239 		/*
5240 		 * We now know the "local memory node" for each node--
5241 		 * i.e., the node of the first zone in the generic zonelist.
5242 		 * Set up numa_mem percpu variable for on-line cpus.  During
5243 		 * boot, only the boot cpu should be on-line;  we'll init the
5244 		 * secondary cpus' numa_mem as they come on-line.  During
5245 		 * node/memory hotplug, we'll fixup all on-line cpus.
5246 		 */
5247 		for_each_online_cpu(cpu)
5248 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5249 #endif
5250 	}
5251 
5252 	spin_unlock(&lock);
5253 }
5254 
5255 static noinline void __init
5256 build_all_zonelists_init(void)
5257 {
5258 	int cpu;
5259 
5260 	__build_all_zonelists(NULL);
5261 
5262 	/*
5263 	 * Initialize the boot_pagesets that are going to be used
5264 	 * for bootstrapping processors. The real pagesets for
5265 	 * each zone will be allocated later when the per cpu
5266 	 * allocator is available.
5267 	 *
5268 	 * boot_pagesets are used also for bootstrapping offline
5269 	 * cpus if the system is already booted because the pagesets
5270 	 * are needed to initialize allocators on a specific cpu too.
5271 	 * F.e. the percpu allocator needs the page allocator which
5272 	 * needs the percpu allocator in order to allocate its pagesets
5273 	 * (a chicken-egg dilemma).
5274 	 */
5275 	for_each_possible_cpu(cpu)
5276 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5277 
5278 	mminit_verify_zonelist();
5279 	cpuset_init_current_mems_allowed();
5280 }
5281 
5282 /*
5283  * unless system_state == SYSTEM_BOOTING.
5284  *
5285  * __ref due to call of __init annotated helper build_all_zonelists_init
5286  * [protected by SYSTEM_BOOTING].
5287  */
5288 void __ref build_all_zonelists(pg_data_t *pgdat)
5289 {
5290 	if (system_state == SYSTEM_BOOTING) {
5291 		build_all_zonelists_init();
5292 	} else {
5293 		__build_all_zonelists(pgdat);
5294 		/* cpuset refresh routine should be here */
5295 	}
5296 	vm_total_pages = nr_free_pagecache_pages();
5297 	/*
5298 	 * Disable grouping by mobility if the number of pages in the
5299 	 * system is too low to allow the mechanism to work. It would be
5300 	 * more accurate, but expensive to check per-zone. This check is
5301 	 * made on memory-hotadd so a system can start with mobility
5302 	 * disabled and enable it later
5303 	 */
5304 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5305 		page_group_by_mobility_disabled = 1;
5306 	else
5307 		page_group_by_mobility_disabled = 0;
5308 
5309 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5310 		nr_online_nodes,
5311 		page_group_by_mobility_disabled ? "off" : "on",
5312 		vm_total_pages);
5313 #ifdef CONFIG_NUMA
5314 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5315 #endif
5316 }
5317 
5318 /*
5319  * Initially all pages are reserved - free ones are freed
5320  * up by free_all_bootmem() once the early boot process is
5321  * done. Non-atomic initialization, single-pass.
5322  */
5323 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5324 		unsigned long start_pfn, enum memmap_context context,
5325 		struct vmem_altmap *altmap)
5326 {
5327 	unsigned long end_pfn = start_pfn + size;
5328 	pg_data_t *pgdat = NODE_DATA(nid);
5329 	unsigned long pfn;
5330 	unsigned long nr_initialised = 0;
5331 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5332 	struct memblock_region *r = NULL, *tmp;
5333 #endif
5334 
5335 	if (highest_memmap_pfn < end_pfn - 1)
5336 		highest_memmap_pfn = end_pfn - 1;
5337 
5338 	/*
5339 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5340 	 * memory
5341 	 */
5342 	if (altmap && start_pfn == altmap->base_pfn)
5343 		start_pfn += altmap->reserve;
5344 
5345 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5346 		/*
5347 		 * There can be holes in boot-time mem_map[]s handed to this
5348 		 * function.  They do not exist on hotplugged memory.
5349 		 */
5350 		if (context != MEMMAP_EARLY)
5351 			goto not_early;
5352 
5353 		if (!early_pfn_valid(pfn)) {
5354 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5355 			/*
5356 			 * Skip to the pfn preceding the next valid one (or
5357 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5358 			 * on our next iteration of the loop.
5359 			 */
5360 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5361 #endif
5362 			continue;
5363 		}
5364 		if (!early_pfn_in_nid(pfn, nid))
5365 			continue;
5366 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5367 			break;
5368 
5369 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5370 		/*
5371 		 * Check given memblock attribute by firmware which can affect
5372 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5373 		 * mirrored, it's an overlapped memmap init. skip it.
5374 		 */
5375 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5376 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5377 				for_each_memblock(memory, tmp)
5378 					if (pfn < memblock_region_memory_end_pfn(tmp))
5379 						break;
5380 				r = tmp;
5381 			}
5382 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5383 			    memblock_is_mirror(r)) {
5384 				/* already initialized as NORMAL */
5385 				pfn = memblock_region_memory_end_pfn(r);
5386 				continue;
5387 			}
5388 		}
5389 #endif
5390 
5391 not_early:
5392 		/*
5393 		 * Mark the block movable so that blocks are reserved for
5394 		 * movable at startup. This will force kernel allocations
5395 		 * to reserve their blocks rather than leaking throughout
5396 		 * the address space during boot when many long-lived
5397 		 * kernel allocations are made.
5398 		 *
5399 		 * bitmap is created for zone's valid pfn range. but memmap
5400 		 * can be created for invalid pages (for alignment)
5401 		 * check here not to call set_pageblock_migratetype() against
5402 		 * pfn out of zone.
5403 		 *
5404 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5405 		 * because this is done early in sparse_add_one_section
5406 		 */
5407 		if (!(pfn & (pageblock_nr_pages - 1))) {
5408 			struct page *page = pfn_to_page(pfn);
5409 
5410 			__init_single_page(page, pfn, zone, nid,
5411 					context != MEMMAP_HOTPLUG);
5412 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5413 			cond_resched();
5414 		} else {
5415 			__init_single_pfn(pfn, zone, nid,
5416 					context != MEMMAP_HOTPLUG);
5417 		}
5418 	}
5419 }
5420 
5421 static void __meminit zone_init_free_lists(struct zone *zone)
5422 {
5423 	unsigned int order, t;
5424 	for_each_migratetype_order(order, t) {
5425 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5426 		zone->free_area[order].nr_free = 0;
5427 	}
5428 }
5429 
5430 #ifndef __HAVE_ARCH_MEMMAP_INIT
5431 #define memmap_init(size, nid, zone, start_pfn) \
5432 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5433 #endif
5434 
5435 static int zone_batchsize(struct zone *zone)
5436 {
5437 #ifdef CONFIG_MMU
5438 	int batch;
5439 
5440 	/*
5441 	 * The per-cpu-pages pools are set to around 1000th of the
5442 	 * size of the zone.  But no more than 1/2 of a meg.
5443 	 *
5444 	 * OK, so we don't know how big the cache is.  So guess.
5445 	 */
5446 	batch = zone->managed_pages / 1024;
5447 	if (batch * PAGE_SIZE > 512 * 1024)
5448 		batch = (512 * 1024) / PAGE_SIZE;
5449 	batch /= 4;		/* We effectively *= 4 below */
5450 	if (batch < 1)
5451 		batch = 1;
5452 
5453 	/*
5454 	 * Clamp the batch to a 2^n - 1 value. Having a power
5455 	 * of 2 value was found to be more likely to have
5456 	 * suboptimal cache aliasing properties in some cases.
5457 	 *
5458 	 * For example if 2 tasks are alternately allocating
5459 	 * batches of pages, one task can end up with a lot
5460 	 * of pages of one half of the possible page colors
5461 	 * and the other with pages of the other colors.
5462 	 */
5463 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5464 
5465 	return batch;
5466 
5467 #else
5468 	/* The deferral and batching of frees should be suppressed under NOMMU
5469 	 * conditions.
5470 	 *
5471 	 * The problem is that NOMMU needs to be able to allocate large chunks
5472 	 * of contiguous memory as there's no hardware page translation to
5473 	 * assemble apparent contiguous memory from discontiguous pages.
5474 	 *
5475 	 * Queueing large contiguous runs of pages for batching, however,
5476 	 * causes the pages to actually be freed in smaller chunks.  As there
5477 	 * can be a significant delay between the individual batches being
5478 	 * recycled, this leads to the once large chunks of space being
5479 	 * fragmented and becoming unavailable for high-order allocations.
5480 	 */
5481 	return 0;
5482 #endif
5483 }
5484 
5485 /*
5486  * pcp->high and pcp->batch values are related and dependent on one another:
5487  * ->batch must never be higher then ->high.
5488  * The following function updates them in a safe manner without read side
5489  * locking.
5490  *
5491  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5492  * those fields changing asynchronously (acording the the above rule).
5493  *
5494  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5495  * outside of boot time (or some other assurance that no concurrent updaters
5496  * exist).
5497  */
5498 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5499 		unsigned long batch)
5500 {
5501        /* start with a fail safe value for batch */
5502 	pcp->batch = 1;
5503 	smp_wmb();
5504 
5505        /* Update high, then batch, in order */
5506 	pcp->high = high;
5507 	smp_wmb();
5508 
5509 	pcp->batch = batch;
5510 }
5511 
5512 /* a companion to pageset_set_high() */
5513 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5514 {
5515 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5516 }
5517 
5518 static void pageset_init(struct per_cpu_pageset *p)
5519 {
5520 	struct per_cpu_pages *pcp;
5521 	int migratetype;
5522 
5523 	memset(p, 0, sizeof(*p));
5524 
5525 	pcp = &p->pcp;
5526 	pcp->count = 0;
5527 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5528 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5529 }
5530 
5531 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5532 {
5533 	pageset_init(p);
5534 	pageset_set_batch(p, batch);
5535 }
5536 
5537 /*
5538  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5539  * to the value high for the pageset p.
5540  */
5541 static void pageset_set_high(struct per_cpu_pageset *p,
5542 				unsigned long high)
5543 {
5544 	unsigned long batch = max(1UL, high / 4);
5545 	if ((high / 4) > (PAGE_SHIFT * 8))
5546 		batch = PAGE_SHIFT * 8;
5547 
5548 	pageset_update(&p->pcp, high, batch);
5549 }
5550 
5551 static void pageset_set_high_and_batch(struct zone *zone,
5552 				       struct per_cpu_pageset *pcp)
5553 {
5554 	if (percpu_pagelist_fraction)
5555 		pageset_set_high(pcp,
5556 			(zone->managed_pages /
5557 				percpu_pagelist_fraction));
5558 	else
5559 		pageset_set_batch(pcp, zone_batchsize(zone));
5560 }
5561 
5562 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5563 {
5564 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5565 
5566 	pageset_init(pcp);
5567 	pageset_set_high_and_batch(zone, pcp);
5568 }
5569 
5570 void __meminit setup_zone_pageset(struct zone *zone)
5571 {
5572 	int cpu;
5573 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5574 	for_each_possible_cpu(cpu)
5575 		zone_pageset_init(zone, cpu);
5576 }
5577 
5578 /*
5579  * Allocate per cpu pagesets and initialize them.
5580  * Before this call only boot pagesets were available.
5581  */
5582 void __init setup_per_cpu_pageset(void)
5583 {
5584 	struct pglist_data *pgdat;
5585 	struct zone *zone;
5586 
5587 	for_each_populated_zone(zone)
5588 		setup_zone_pageset(zone);
5589 
5590 	for_each_online_pgdat(pgdat)
5591 		pgdat->per_cpu_nodestats =
5592 			alloc_percpu(struct per_cpu_nodestat);
5593 }
5594 
5595 static __meminit void zone_pcp_init(struct zone *zone)
5596 {
5597 	/*
5598 	 * per cpu subsystem is not up at this point. The following code
5599 	 * relies on the ability of the linker to provide the
5600 	 * offset of a (static) per cpu variable into the per cpu area.
5601 	 */
5602 	zone->pageset = &boot_pageset;
5603 
5604 	if (populated_zone(zone))
5605 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5606 			zone->name, zone->present_pages,
5607 					 zone_batchsize(zone));
5608 }
5609 
5610 void __meminit init_currently_empty_zone(struct zone *zone,
5611 					unsigned long zone_start_pfn,
5612 					unsigned long size)
5613 {
5614 	struct pglist_data *pgdat = zone->zone_pgdat;
5615 
5616 	pgdat->nr_zones = zone_idx(zone) + 1;
5617 
5618 	zone->zone_start_pfn = zone_start_pfn;
5619 
5620 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5621 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5622 			pgdat->node_id,
5623 			(unsigned long)zone_idx(zone),
5624 			zone_start_pfn, (zone_start_pfn + size));
5625 
5626 	zone_init_free_lists(zone);
5627 	zone->initialized = 1;
5628 }
5629 
5630 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5631 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5632 
5633 /*
5634  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5635  */
5636 int __meminit __early_pfn_to_nid(unsigned long pfn,
5637 					struct mminit_pfnnid_cache *state)
5638 {
5639 	unsigned long start_pfn, end_pfn;
5640 	int nid;
5641 
5642 	if (state->last_start <= pfn && pfn < state->last_end)
5643 		return state->last_nid;
5644 
5645 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5646 	if (nid != -1) {
5647 		state->last_start = start_pfn;
5648 		state->last_end = end_pfn;
5649 		state->last_nid = nid;
5650 	}
5651 
5652 	return nid;
5653 }
5654 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5655 
5656 /**
5657  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5658  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5659  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5660  *
5661  * If an architecture guarantees that all ranges registered contain no holes
5662  * and may be freed, this this function may be used instead of calling
5663  * memblock_free_early_nid() manually.
5664  */
5665 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5666 {
5667 	unsigned long start_pfn, end_pfn;
5668 	int i, this_nid;
5669 
5670 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5671 		start_pfn = min(start_pfn, max_low_pfn);
5672 		end_pfn = min(end_pfn, max_low_pfn);
5673 
5674 		if (start_pfn < end_pfn)
5675 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5676 					(end_pfn - start_pfn) << PAGE_SHIFT,
5677 					this_nid);
5678 	}
5679 }
5680 
5681 /**
5682  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5683  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5684  *
5685  * If an architecture guarantees that all ranges registered contain no holes and may
5686  * be freed, this function may be used instead of calling memory_present() manually.
5687  */
5688 void __init sparse_memory_present_with_active_regions(int nid)
5689 {
5690 	unsigned long start_pfn, end_pfn;
5691 	int i, this_nid;
5692 
5693 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5694 		memory_present(this_nid, start_pfn, end_pfn);
5695 }
5696 
5697 /**
5698  * get_pfn_range_for_nid - Return the start and end page frames for a node
5699  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5700  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5701  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5702  *
5703  * It returns the start and end page frame of a node based on information
5704  * provided by memblock_set_node(). If called for a node
5705  * with no available memory, a warning is printed and the start and end
5706  * PFNs will be 0.
5707  */
5708 void __meminit get_pfn_range_for_nid(unsigned int nid,
5709 			unsigned long *start_pfn, unsigned long *end_pfn)
5710 {
5711 	unsigned long this_start_pfn, this_end_pfn;
5712 	int i;
5713 
5714 	*start_pfn = -1UL;
5715 	*end_pfn = 0;
5716 
5717 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5718 		*start_pfn = min(*start_pfn, this_start_pfn);
5719 		*end_pfn = max(*end_pfn, this_end_pfn);
5720 	}
5721 
5722 	if (*start_pfn == -1UL)
5723 		*start_pfn = 0;
5724 }
5725 
5726 /*
5727  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5728  * assumption is made that zones within a node are ordered in monotonic
5729  * increasing memory addresses so that the "highest" populated zone is used
5730  */
5731 static void __init find_usable_zone_for_movable(void)
5732 {
5733 	int zone_index;
5734 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5735 		if (zone_index == ZONE_MOVABLE)
5736 			continue;
5737 
5738 		if (arch_zone_highest_possible_pfn[zone_index] >
5739 				arch_zone_lowest_possible_pfn[zone_index])
5740 			break;
5741 	}
5742 
5743 	VM_BUG_ON(zone_index == -1);
5744 	movable_zone = zone_index;
5745 }
5746 
5747 /*
5748  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5749  * because it is sized independent of architecture. Unlike the other zones,
5750  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5751  * in each node depending on the size of each node and how evenly kernelcore
5752  * is distributed. This helper function adjusts the zone ranges
5753  * provided by the architecture for a given node by using the end of the
5754  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5755  * zones within a node are in order of monotonic increases memory addresses
5756  */
5757 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5758 					unsigned long zone_type,
5759 					unsigned long node_start_pfn,
5760 					unsigned long node_end_pfn,
5761 					unsigned long *zone_start_pfn,
5762 					unsigned long *zone_end_pfn)
5763 {
5764 	/* Only adjust if ZONE_MOVABLE is on this node */
5765 	if (zone_movable_pfn[nid]) {
5766 		/* Size ZONE_MOVABLE */
5767 		if (zone_type == ZONE_MOVABLE) {
5768 			*zone_start_pfn = zone_movable_pfn[nid];
5769 			*zone_end_pfn = min(node_end_pfn,
5770 				arch_zone_highest_possible_pfn[movable_zone]);
5771 
5772 		/* Adjust for ZONE_MOVABLE starting within this range */
5773 		} else if (!mirrored_kernelcore &&
5774 			*zone_start_pfn < zone_movable_pfn[nid] &&
5775 			*zone_end_pfn > zone_movable_pfn[nid]) {
5776 			*zone_end_pfn = zone_movable_pfn[nid];
5777 
5778 		/* Check if this whole range is within ZONE_MOVABLE */
5779 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5780 			*zone_start_pfn = *zone_end_pfn;
5781 	}
5782 }
5783 
5784 /*
5785  * Return the number of pages a zone spans in a node, including holes
5786  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5787  */
5788 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5789 					unsigned long zone_type,
5790 					unsigned long node_start_pfn,
5791 					unsigned long node_end_pfn,
5792 					unsigned long *zone_start_pfn,
5793 					unsigned long *zone_end_pfn,
5794 					unsigned long *ignored)
5795 {
5796 	/* When hotadd a new node from cpu_up(), the node should be empty */
5797 	if (!node_start_pfn && !node_end_pfn)
5798 		return 0;
5799 
5800 	/* Get the start and end of the zone */
5801 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5802 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5803 	adjust_zone_range_for_zone_movable(nid, zone_type,
5804 				node_start_pfn, node_end_pfn,
5805 				zone_start_pfn, zone_end_pfn);
5806 
5807 	/* Check that this node has pages within the zone's required range */
5808 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5809 		return 0;
5810 
5811 	/* Move the zone boundaries inside the node if necessary */
5812 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5813 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5814 
5815 	/* Return the spanned pages */
5816 	return *zone_end_pfn - *zone_start_pfn;
5817 }
5818 
5819 /*
5820  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5821  * then all holes in the requested range will be accounted for.
5822  */
5823 unsigned long __meminit __absent_pages_in_range(int nid,
5824 				unsigned long range_start_pfn,
5825 				unsigned long range_end_pfn)
5826 {
5827 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5828 	unsigned long start_pfn, end_pfn;
5829 	int i;
5830 
5831 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5832 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5833 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5834 		nr_absent -= end_pfn - start_pfn;
5835 	}
5836 	return nr_absent;
5837 }
5838 
5839 /**
5840  * absent_pages_in_range - Return number of page frames in holes within a range
5841  * @start_pfn: The start PFN to start searching for holes
5842  * @end_pfn: The end PFN to stop searching for holes
5843  *
5844  * It returns the number of pages frames in memory holes within a range.
5845  */
5846 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5847 							unsigned long end_pfn)
5848 {
5849 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5850 }
5851 
5852 /* Return the number of page frames in holes in a zone on a node */
5853 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5854 					unsigned long zone_type,
5855 					unsigned long node_start_pfn,
5856 					unsigned long node_end_pfn,
5857 					unsigned long *ignored)
5858 {
5859 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5860 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5861 	unsigned long zone_start_pfn, zone_end_pfn;
5862 	unsigned long nr_absent;
5863 
5864 	/* When hotadd a new node from cpu_up(), the node should be empty */
5865 	if (!node_start_pfn && !node_end_pfn)
5866 		return 0;
5867 
5868 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5869 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5870 
5871 	adjust_zone_range_for_zone_movable(nid, zone_type,
5872 			node_start_pfn, node_end_pfn,
5873 			&zone_start_pfn, &zone_end_pfn);
5874 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5875 
5876 	/*
5877 	 * ZONE_MOVABLE handling.
5878 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5879 	 * and vice versa.
5880 	 */
5881 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5882 		unsigned long start_pfn, end_pfn;
5883 		struct memblock_region *r;
5884 
5885 		for_each_memblock(memory, r) {
5886 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5887 					  zone_start_pfn, zone_end_pfn);
5888 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5889 					zone_start_pfn, zone_end_pfn);
5890 
5891 			if (zone_type == ZONE_MOVABLE &&
5892 			    memblock_is_mirror(r))
5893 				nr_absent += end_pfn - start_pfn;
5894 
5895 			if (zone_type == ZONE_NORMAL &&
5896 			    !memblock_is_mirror(r))
5897 				nr_absent += end_pfn - start_pfn;
5898 		}
5899 	}
5900 
5901 	return nr_absent;
5902 }
5903 
5904 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5905 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5906 					unsigned long zone_type,
5907 					unsigned long node_start_pfn,
5908 					unsigned long node_end_pfn,
5909 					unsigned long *zone_start_pfn,
5910 					unsigned long *zone_end_pfn,
5911 					unsigned long *zones_size)
5912 {
5913 	unsigned int zone;
5914 
5915 	*zone_start_pfn = node_start_pfn;
5916 	for (zone = 0; zone < zone_type; zone++)
5917 		*zone_start_pfn += zones_size[zone];
5918 
5919 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5920 
5921 	return zones_size[zone_type];
5922 }
5923 
5924 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5925 						unsigned long zone_type,
5926 						unsigned long node_start_pfn,
5927 						unsigned long node_end_pfn,
5928 						unsigned long *zholes_size)
5929 {
5930 	if (!zholes_size)
5931 		return 0;
5932 
5933 	return zholes_size[zone_type];
5934 }
5935 
5936 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5937 
5938 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5939 						unsigned long node_start_pfn,
5940 						unsigned long node_end_pfn,
5941 						unsigned long *zones_size,
5942 						unsigned long *zholes_size)
5943 {
5944 	unsigned long realtotalpages = 0, totalpages = 0;
5945 	enum zone_type i;
5946 
5947 	for (i = 0; i < MAX_NR_ZONES; i++) {
5948 		struct zone *zone = pgdat->node_zones + i;
5949 		unsigned long zone_start_pfn, zone_end_pfn;
5950 		unsigned long size, real_size;
5951 
5952 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5953 						  node_start_pfn,
5954 						  node_end_pfn,
5955 						  &zone_start_pfn,
5956 						  &zone_end_pfn,
5957 						  zones_size);
5958 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5959 						  node_start_pfn, node_end_pfn,
5960 						  zholes_size);
5961 		if (size)
5962 			zone->zone_start_pfn = zone_start_pfn;
5963 		else
5964 			zone->zone_start_pfn = 0;
5965 		zone->spanned_pages = size;
5966 		zone->present_pages = real_size;
5967 
5968 		totalpages += size;
5969 		realtotalpages += real_size;
5970 	}
5971 
5972 	pgdat->node_spanned_pages = totalpages;
5973 	pgdat->node_present_pages = realtotalpages;
5974 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5975 							realtotalpages);
5976 }
5977 
5978 #ifndef CONFIG_SPARSEMEM
5979 /*
5980  * Calculate the size of the zone->blockflags rounded to an unsigned long
5981  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5982  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5983  * round what is now in bits to nearest long in bits, then return it in
5984  * bytes.
5985  */
5986 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5987 {
5988 	unsigned long usemapsize;
5989 
5990 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5991 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5992 	usemapsize = usemapsize >> pageblock_order;
5993 	usemapsize *= NR_PAGEBLOCK_BITS;
5994 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5995 
5996 	return usemapsize / 8;
5997 }
5998 
5999 static void __init setup_usemap(struct pglist_data *pgdat,
6000 				struct zone *zone,
6001 				unsigned long zone_start_pfn,
6002 				unsigned long zonesize)
6003 {
6004 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6005 	zone->pageblock_flags = NULL;
6006 	if (usemapsize)
6007 		zone->pageblock_flags =
6008 			memblock_virt_alloc_node_nopanic(usemapsize,
6009 							 pgdat->node_id);
6010 }
6011 #else
6012 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6013 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6014 #endif /* CONFIG_SPARSEMEM */
6015 
6016 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6017 
6018 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6019 void __paginginit set_pageblock_order(void)
6020 {
6021 	unsigned int order;
6022 
6023 	/* Check that pageblock_nr_pages has not already been setup */
6024 	if (pageblock_order)
6025 		return;
6026 
6027 	if (HPAGE_SHIFT > PAGE_SHIFT)
6028 		order = HUGETLB_PAGE_ORDER;
6029 	else
6030 		order = MAX_ORDER - 1;
6031 
6032 	/*
6033 	 * Assume the largest contiguous order of interest is a huge page.
6034 	 * This value may be variable depending on boot parameters on IA64 and
6035 	 * powerpc.
6036 	 */
6037 	pageblock_order = order;
6038 }
6039 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6040 
6041 /*
6042  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6043  * is unused as pageblock_order is set at compile-time. See
6044  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6045  * the kernel config
6046  */
6047 void __paginginit set_pageblock_order(void)
6048 {
6049 }
6050 
6051 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6052 
6053 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6054 						   unsigned long present_pages)
6055 {
6056 	unsigned long pages = spanned_pages;
6057 
6058 	/*
6059 	 * Provide a more accurate estimation if there are holes within
6060 	 * the zone and SPARSEMEM is in use. If there are holes within the
6061 	 * zone, each populated memory region may cost us one or two extra
6062 	 * memmap pages due to alignment because memmap pages for each
6063 	 * populated regions may not be naturally aligned on page boundary.
6064 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6065 	 */
6066 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6067 	    IS_ENABLED(CONFIG_SPARSEMEM))
6068 		pages = present_pages;
6069 
6070 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6071 }
6072 
6073 /*
6074  * Set up the zone data structures:
6075  *   - mark all pages reserved
6076  *   - mark all memory queues empty
6077  *   - clear the memory bitmaps
6078  *
6079  * NOTE: pgdat should get zeroed by caller.
6080  */
6081 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6082 {
6083 	enum zone_type j;
6084 	int nid = pgdat->node_id;
6085 
6086 	pgdat_resize_init(pgdat);
6087 #ifdef CONFIG_NUMA_BALANCING
6088 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6089 	pgdat->numabalancing_migrate_nr_pages = 0;
6090 	pgdat->numabalancing_migrate_next_window = jiffies;
6091 #endif
6092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6093 	spin_lock_init(&pgdat->split_queue_lock);
6094 	INIT_LIST_HEAD(&pgdat->split_queue);
6095 	pgdat->split_queue_len = 0;
6096 #endif
6097 	init_waitqueue_head(&pgdat->kswapd_wait);
6098 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6099 #ifdef CONFIG_COMPACTION
6100 	init_waitqueue_head(&pgdat->kcompactd_wait);
6101 #endif
6102 	pgdat_page_ext_init(pgdat);
6103 	spin_lock_init(&pgdat->lru_lock);
6104 	lruvec_init(node_lruvec(pgdat));
6105 
6106 	pgdat->per_cpu_nodestats = &boot_nodestats;
6107 
6108 	for (j = 0; j < MAX_NR_ZONES; j++) {
6109 		struct zone *zone = pgdat->node_zones + j;
6110 		unsigned long size, realsize, freesize, memmap_pages;
6111 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6112 
6113 		size = zone->spanned_pages;
6114 		realsize = freesize = zone->present_pages;
6115 
6116 		/*
6117 		 * Adjust freesize so that it accounts for how much memory
6118 		 * is used by this zone for memmap. This affects the watermark
6119 		 * and per-cpu initialisations
6120 		 */
6121 		memmap_pages = calc_memmap_size(size, realsize);
6122 		if (!is_highmem_idx(j)) {
6123 			if (freesize >= memmap_pages) {
6124 				freesize -= memmap_pages;
6125 				if (memmap_pages)
6126 					printk(KERN_DEBUG
6127 					       "  %s zone: %lu pages used for memmap\n",
6128 					       zone_names[j], memmap_pages);
6129 			} else
6130 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6131 					zone_names[j], memmap_pages, freesize);
6132 		}
6133 
6134 		/* Account for reserved pages */
6135 		if (j == 0 && freesize > dma_reserve) {
6136 			freesize -= dma_reserve;
6137 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6138 					zone_names[0], dma_reserve);
6139 		}
6140 
6141 		if (!is_highmem_idx(j))
6142 			nr_kernel_pages += freesize;
6143 		/* Charge for highmem memmap if there are enough kernel pages */
6144 		else if (nr_kernel_pages > memmap_pages * 2)
6145 			nr_kernel_pages -= memmap_pages;
6146 		nr_all_pages += freesize;
6147 
6148 		/*
6149 		 * Set an approximate value for lowmem here, it will be adjusted
6150 		 * when the bootmem allocator frees pages into the buddy system.
6151 		 * And all highmem pages will be managed by the buddy system.
6152 		 */
6153 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6154 #ifdef CONFIG_NUMA
6155 		zone->node = nid;
6156 #endif
6157 		zone->name = zone_names[j];
6158 		zone->zone_pgdat = pgdat;
6159 		spin_lock_init(&zone->lock);
6160 		zone_seqlock_init(zone);
6161 		zone_pcp_init(zone);
6162 
6163 		if (!size)
6164 			continue;
6165 
6166 		set_pageblock_order();
6167 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6168 		init_currently_empty_zone(zone, zone_start_pfn, size);
6169 		memmap_init(size, nid, j, zone_start_pfn);
6170 	}
6171 }
6172 
6173 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6174 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6175 {
6176 	unsigned long __maybe_unused start = 0;
6177 	unsigned long __maybe_unused offset = 0;
6178 
6179 	/* Skip empty nodes */
6180 	if (!pgdat->node_spanned_pages)
6181 		return;
6182 
6183 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6184 	offset = pgdat->node_start_pfn - start;
6185 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6186 	if (!pgdat->node_mem_map) {
6187 		unsigned long size, end;
6188 		struct page *map;
6189 
6190 		/*
6191 		 * The zone's endpoints aren't required to be MAX_ORDER
6192 		 * aligned but the node_mem_map endpoints must be in order
6193 		 * for the buddy allocator to function correctly.
6194 		 */
6195 		end = pgdat_end_pfn(pgdat);
6196 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6197 		size =  (end - start) * sizeof(struct page);
6198 		map = alloc_remap(pgdat->node_id, size);
6199 		if (!map)
6200 			map = memblock_virt_alloc_node_nopanic(size,
6201 							       pgdat->node_id);
6202 		pgdat->node_mem_map = map + offset;
6203 	}
6204 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6205 				__func__, pgdat->node_id, (unsigned long)pgdat,
6206 				(unsigned long)pgdat->node_mem_map);
6207 #ifndef CONFIG_NEED_MULTIPLE_NODES
6208 	/*
6209 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6210 	 */
6211 	if (pgdat == NODE_DATA(0)) {
6212 		mem_map = NODE_DATA(0)->node_mem_map;
6213 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6214 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6215 			mem_map -= offset;
6216 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6217 	}
6218 #endif
6219 }
6220 #else
6221 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6222 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6223 
6224 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6225 		unsigned long node_start_pfn, unsigned long *zholes_size)
6226 {
6227 	pg_data_t *pgdat = NODE_DATA(nid);
6228 	unsigned long start_pfn = 0;
6229 	unsigned long end_pfn = 0;
6230 
6231 	/* pg_data_t should be reset to zero when it's allocated */
6232 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6233 
6234 	pgdat->node_id = nid;
6235 	pgdat->node_start_pfn = node_start_pfn;
6236 	pgdat->per_cpu_nodestats = NULL;
6237 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6238 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6239 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6240 		(u64)start_pfn << PAGE_SHIFT,
6241 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6242 #else
6243 	start_pfn = node_start_pfn;
6244 #endif
6245 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6246 				  zones_size, zholes_size);
6247 
6248 	alloc_node_mem_map(pgdat);
6249 
6250 	reset_deferred_meminit(pgdat);
6251 	free_area_init_core(pgdat);
6252 }
6253 
6254 #ifdef CONFIG_HAVE_MEMBLOCK
6255 /*
6256  * Only struct pages that are backed by physical memory are zeroed and
6257  * initialized by going through __init_single_page(). But, there are some
6258  * struct pages which are reserved in memblock allocator and their fields
6259  * may be accessed (for example page_to_pfn() on some configuration accesses
6260  * flags). We must explicitly zero those struct pages.
6261  */
6262 void __paginginit zero_resv_unavail(void)
6263 {
6264 	phys_addr_t start, end;
6265 	unsigned long pfn;
6266 	u64 i, pgcnt;
6267 
6268 	/*
6269 	 * Loop through ranges that are reserved, but do not have reported
6270 	 * physical memory backing.
6271 	 */
6272 	pgcnt = 0;
6273 	for_each_resv_unavail_range(i, &start, &end) {
6274 		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6275 			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6276 				continue;
6277 			mm_zero_struct_page(pfn_to_page(pfn));
6278 			pgcnt++;
6279 		}
6280 	}
6281 
6282 	/*
6283 	 * Struct pages that do not have backing memory. This could be because
6284 	 * firmware is using some of this memory, or for some other reasons.
6285 	 * Once memblock is changed so such behaviour is not allowed: i.e.
6286 	 * list of "reserved" memory must be a subset of list of "memory", then
6287 	 * this code can be removed.
6288 	 */
6289 	if (pgcnt)
6290 		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6291 }
6292 #endif /* CONFIG_HAVE_MEMBLOCK */
6293 
6294 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6295 
6296 #if MAX_NUMNODES > 1
6297 /*
6298  * Figure out the number of possible node ids.
6299  */
6300 void __init setup_nr_node_ids(void)
6301 {
6302 	unsigned int highest;
6303 
6304 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6305 	nr_node_ids = highest + 1;
6306 }
6307 #endif
6308 
6309 /**
6310  * node_map_pfn_alignment - determine the maximum internode alignment
6311  *
6312  * This function should be called after node map is populated and sorted.
6313  * It calculates the maximum power of two alignment which can distinguish
6314  * all the nodes.
6315  *
6316  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6317  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6318  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6319  * shifted, 1GiB is enough and this function will indicate so.
6320  *
6321  * This is used to test whether pfn -> nid mapping of the chosen memory
6322  * model has fine enough granularity to avoid incorrect mapping for the
6323  * populated node map.
6324  *
6325  * Returns the determined alignment in pfn's.  0 if there is no alignment
6326  * requirement (single node).
6327  */
6328 unsigned long __init node_map_pfn_alignment(void)
6329 {
6330 	unsigned long accl_mask = 0, last_end = 0;
6331 	unsigned long start, end, mask;
6332 	int last_nid = -1;
6333 	int i, nid;
6334 
6335 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6336 		if (!start || last_nid < 0 || last_nid == nid) {
6337 			last_nid = nid;
6338 			last_end = end;
6339 			continue;
6340 		}
6341 
6342 		/*
6343 		 * Start with a mask granular enough to pin-point to the
6344 		 * start pfn and tick off bits one-by-one until it becomes
6345 		 * too coarse to separate the current node from the last.
6346 		 */
6347 		mask = ~((1 << __ffs(start)) - 1);
6348 		while (mask && last_end <= (start & (mask << 1)))
6349 			mask <<= 1;
6350 
6351 		/* accumulate all internode masks */
6352 		accl_mask |= mask;
6353 	}
6354 
6355 	/* convert mask to number of pages */
6356 	return ~accl_mask + 1;
6357 }
6358 
6359 /* Find the lowest pfn for a node */
6360 static unsigned long __init find_min_pfn_for_node(int nid)
6361 {
6362 	unsigned long min_pfn = ULONG_MAX;
6363 	unsigned long start_pfn;
6364 	int i;
6365 
6366 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6367 		min_pfn = min(min_pfn, start_pfn);
6368 
6369 	if (min_pfn == ULONG_MAX) {
6370 		pr_warn("Could not find start_pfn for node %d\n", nid);
6371 		return 0;
6372 	}
6373 
6374 	return min_pfn;
6375 }
6376 
6377 /**
6378  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6379  *
6380  * It returns the minimum PFN based on information provided via
6381  * memblock_set_node().
6382  */
6383 unsigned long __init find_min_pfn_with_active_regions(void)
6384 {
6385 	return find_min_pfn_for_node(MAX_NUMNODES);
6386 }
6387 
6388 /*
6389  * early_calculate_totalpages()
6390  * Sum pages in active regions for movable zone.
6391  * Populate N_MEMORY for calculating usable_nodes.
6392  */
6393 static unsigned long __init early_calculate_totalpages(void)
6394 {
6395 	unsigned long totalpages = 0;
6396 	unsigned long start_pfn, end_pfn;
6397 	int i, nid;
6398 
6399 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6400 		unsigned long pages = end_pfn - start_pfn;
6401 
6402 		totalpages += pages;
6403 		if (pages)
6404 			node_set_state(nid, N_MEMORY);
6405 	}
6406 	return totalpages;
6407 }
6408 
6409 /*
6410  * Find the PFN the Movable zone begins in each node. Kernel memory
6411  * is spread evenly between nodes as long as the nodes have enough
6412  * memory. When they don't, some nodes will have more kernelcore than
6413  * others
6414  */
6415 static void __init find_zone_movable_pfns_for_nodes(void)
6416 {
6417 	int i, nid;
6418 	unsigned long usable_startpfn;
6419 	unsigned long kernelcore_node, kernelcore_remaining;
6420 	/* save the state before borrow the nodemask */
6421 	nodemask_t saved_node_state = node_states[N_MEMORY];
6422 	unsigned long totalpages = early_calculate_totalpages();
6423 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6424 	struct memblock_region *r;
6425 
6426 	/* Need to find movable_zone earlier when movable_node is specified. */
6427 	find_usable_zone_for_movable();
6428 
6429 	/*
6430 	 * If movable_node is specified, ignore kernelcore and movablecore
6431 	 * options.
6432 	 */
6433 	if (movable_node_is_enabled()) {
6434 		for_each_memblock(memory, r) {
6435 			if (!memblock_is_hotpluggable(r))
6436 				continue;
6437 
6438 			nid = r->nid;
6439 
6440 			usable_startpfn = PFN_DOWN(r->base);
6441 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6442 				min(usable_startpfn, zone_movable_pfn[nid]) :
6443 				usable_startpfn;
6444 		}
6445 
6446 		goto out2;
6447 	}
6448 
6449 	/*
6450 	 * If kernelcore=mirror is specified, ignore movablecore option
6451 	 */
6452 	if (mirrored_kernelcore) {
6453 		bool mem_below_4gb_not_mirrored = false;
6454 
6455 		for_each_memblock(memory, r) {
6456 			if (memblock_is_mirror(r))
6457 				continue;
6458 
6459 			nid = r->nid;
6460 
6461 			usable_startpfn = memblock_region_memory_base_pfn(r);
6462 
6463 			if (usable_startpfn < 0x100000) {
6464 				mem_below_4gb_not_mirrored = true;
6465 				continue;
6466 			}
6467 
6468 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6469 				min(usable_startpfn, zone_movable_pfn[nid]) :
6470 				usable_startpfn;
6471 		}
6472 
6473 		if (mem_below_4gb_not_mirrored)
6474 			pr_warn("This configuration results in unmirrored kernel memory.");
6475 
6476 		goto out2;
6477 	}
6478 
6479 	/*
6480 	 * If movablecore=nn[KMG] was specified, calculate what size of
6481 	 * kernelcore that corresponds so that memory usable for
6482 	 * any allocation type is evenly spread. If both kernelcore
6483 	 * and movablecore are specified, then the value of kernelcore
6484 	 * will be used for required_kernelcore if it's greater than
6485 	 * what movablecore would have allowed.
6486 	 */
6487 	if (required_movablecore) {
6488 		unsigned long corepages;
6489 
6490 		/*
6491 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6492 		 * was requested by the user
6493 		 */
6494 		required_movablecore =
6495 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6496 		required_movablecore = min(totalpages, required_movablecore);
6497 		corepages = totalpages - required_movablecore;
6498 
6499 		required_kernelcore = max(required_kernelcore, corepages);
6500 	}
6501 
6502 	/*
6503 	 * If kernelcore was not specified or kernelcore size is larger
6504 	 * than totalpages, there is no ZONE_MOVABLE.
6505 	 */
6506 	if (!required_kernelcore || required_kernelcore >= totalpages)
6507 		goto out;
6508 
6509 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6510 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6511 
6512 restart:
6513 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6514 	kernelcore_node = required_kernelcore / usable_nodes;
6515 	for_each_node_state(nid, N_MEMORY) {
6516 		unsigned long start_pfn, end_pfn;
6517 
6518 		/*
6519 		 * Recalculate kernelcore_node if the division per node
6520 		 * now exceeds what is necessary to satisfy the requested
6521 		 * amount of memory for the kernel
6522 		 */
6523 		if (required_kernelcore < kernelcore_node)
6524 			kernelcore_node = required_kernelcore / usable_nodes;
6525 
6526 		/*
6527 		 * As the map is walked, we track how much memory is usable
6528 		 * by the kernel using kernelcore_remaining. When it is
6529 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6530 		 */
6531 		kernelcore_remaining = kernelcore_node;
6532 
6533 		/* Go through each range of PFNs within this node */
6534 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6535 			unsigned long size_pages;
6536 
6537 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6538 			if (start_pfn >= end_pfn)
6539 				continue;
6540 
6541 			/* Account for what is only usable for kernelcore */
6542 			if (start_pfn < usable_startpfn) {
6543 				unsigned long kernel_pages;
6544 				kernel_pages = min(end_pfn, usable_startpfn)
6545 								- start_pfn;
6546 
6547 				kernelcore_remaining -= min(kernel_pages,
6548 							kernelcore_remaining);
6549 				required_kernelcore -= min(kernel_pages,
6550 							required_kernelcore);
6551 
6552 				/* Continue if range is now fully accounted */
6553 				if (end_pfn <= usable_startpfn) {
6554 
6555 					/*
6556 					 * Push zone_movable_pfn to the end so
6557 					 * that if we have to rebalance
6558 					 * kernelcore across nodes, we will
6559 					 * not double account here
6560 					 */
6561 					zone_movable_pfn[nid] = end_pfn;
6562 					continue;
6563 				}
6564 				start_pfn = usable_startpfn;
6565 			}
6566 
6567 			/*
6568 			 * The usable PFN range for ZONE_MOVABLE is from
6569 			 * start_pfn->end_pfn. Calculate size_pages as the
6570 			 * number of pages used as kernelcore
6571 			 */
6572 			size_pages = end_pfn - start_pfn;
6573 			if (size_pages > kernelcore_remaining)
6574 				size_pages = kernelcore_remaining;
6575 			zone_movable_pfn[nid] = start_pfn + size_pages;
6576 
6577 			/*
6578 			 * Some kernelcore has been met, update counts and
6579 			 * break if the kernelcore for this node has been
6580 			 * satisfied
6581 			 */
6582 			required_kernelcore -= min(required_kernelcore,
6583 								size_pages);
6584 			kernelcore_remaining -= size_pages;
6585 			if (!kernelcore_remaining)
6586 				break;
6587 		}
6588 	}
6589 
6590 	/*
6591 	 * If there is still required_kernelcore, we do another pass with one
6592 	 * less node in the count. This will push zone_movable_pfn[nid] further
6593 	 * along on the nodes that still have memory until kernelcore is
6594 	 * satisfied
6595 	 */
6596 	usable_nodes--;
6597 	if (usable_nodes && required_kernelcore > usable_nodes)
6598 		goto restart;
6599 
6600 out2:
6601 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6602 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6603 		zone_movable_pfn[nid] =
6604 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6605 
6606 out:
6607 	/* restore the node_state */
6608 	node_states[N_MEMORY] = saved_node_state;
6609 }
6610 
6611 /* Any regular or high memory on that node ? */
6612 static void check_for_memory(pg_data_t *pgdat, int nid)
6613 {
6614 	enum zone_type zone_type;
6615 
6616 	if (N_MEMORY == N_NORMAL_MEMORY)
6617 		return;
6618 
6619 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6620 		struct zone *zone = &pgdat->node_zones[zone_type];
6621 		if (populated_zone(zone)) {
6622 			node_set_state(nid, N_HIGH_MEMORY);
6623 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6624 			    zone_type <= ZONE_NORMAL)
6625 				node_set_state(nid, N_NORMAL_MEMORY);
6626 			break;
6627 		}
6628 	}
6629 }
6630 
6631 /**
6632  * free_area_init_nodes - Initialise all pg_data_t and zone data
6633  * @max_zone_pfn: an array of max PFNs for each zone
6634  *
6635  * This will call free_area_init_node() for each active node in the system.
6636  * Using the page ranges provided by memblock_set_node(), the size of each
6637  * zone in each node and their holes is calculated. If the maximum PFN
6638  * between two adjacent zones match, it is assumed that the zone is empty.
6639  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6640  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6641  * starts where the previous one ended. For example, ZONE_DMA32 starts
6642  * at arch_max_dma_pfn.
6643  */
6644 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6645 {
6646 	unsigned long start_pfn, end_pfn;
6647 	int i, nid;
6648 
6649 	/* Record where the zone boundaries are */
6650 	memset(arch_zone_lowest_possible_pfn, 0,
6651 				sizeof(arch_zone_lowest_possible_pfn));
6652 	memset(arch_zone_highest_possible_pfn, 0,
6653 				sizeof(arch_zone_highest_possible_pfn));
6654 
6655 	start_pfn = find_min_pfn_with_active_regions();
6656 
6657 	for (i = 0; i < MAX_NR_ZONES; i++) {
6658 		if (i == ZONE_MOVABLE)
6659 			continue;
6660 
6661 		end_pfn = max(max_zone_pfn[i], start_pfn);
6662 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6663 		arch_zone_highest_possible_pfn[i] = end_pfn;
6664 
6665 		start_pfn = end_pfn;
6666 	}
6667 
6668 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6669 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6670 	find_zone_movable_pfns_for_nodes();
6671 
6672 	/* Print out the zone ranges */
6673 	pr_info("Zone ranges:\n");
6674 	for (i = 0; i < MAX_NR_ZONES; i++) {
6675 		if (i == ZONE_MOVABLE)
6676 			continue;
6677 		pr_info("  %-8s ", zone_names[i]);
6678 		if (arch_zone_lowest_possible_pfn[i] ==
6679 				arch_zone_highest_possible_pfn[i])
6680 			pr_cont("empty\n");
6681 		else
6682 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6683 				(u64)arch_zone_lowest_possible_pfn[i]
6684 					<< PAGE_SHIFT,
6685 				((u64)arch_zone_highest_possible_pfn[i]
6686 					<< PAGE_SHIFT) - 1);
6687 	}
6688 
6689 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6690 	pr_info("Movable zone start for each node\n");
6691 	for (i = 0; i < MAX_NUMNODES; i++) {
6692 		if (zone_movable_pfn[i])
6693 			pr_info("  Node %d: %#018Lx\n", i,
6694 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6695 	}
6696 
6697 	/* Print out the early node map */
6698 	pr_info("Early memory node ranges\n");
6699 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6700 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6701 			(u64)start_pfn << PAGE_SHIFT,
6702 			((u64)end_pfn << PAGE_SHIFT) - 1);
6703 
6704 	/* Initialise every node */
6705 	mminit_verify_pageflags_layout();
6706 	setup_nr_node_ids();
6707 	for_each_online_node(nid) {
6708 		pg_data_t *pgdat = NODE_DATA(nid);
6709 		free_area_init_node(nid, NULL,
6710 				find_min_pfn_for_node(nid), NULL);
6711 
6712 		/* Any memory on that node */
6713 		if (pgdat->node_present_pages)
6714 			node_set_state(nid, N_MEMORY);
6715 		check_for_memory(pgdat, nid);
6716 	}
6717 	zero_resv_unavail();
6718 }
6719 
6720 static int __init cmdline_parse_core(char *p, unsigned long *core)
6721 {
6722 	unsigned long long coremem;
6723 	if (!p)
6724 		return -EINVAL;
6725 
6726 	coremem = memparse(p, &p);
6727 	*core = coremem >> PAGE_SHIFT;
6728 
6729 	/* Paranoid check that UL is enough for the coremem value */
6730 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6731 
6732 	return 0;
6733 }
6734 
6735 /*
6736  * kernelcore=size sets the amount of memory for use for allocations that
6737  * cannot be reclaimed or migrated.
6738  */
6739 static int __init cmdline_parse_kernelcore(char *p)
6740 {
6741 	/* parse kernelcore=mirror */
6742 	if (parse_option_str(p, "mirror")) {
6743 		mirrored_kernelcore = true;
6744 		return 0;
6745 	}
6746 
6747 	return cmdline_parse_core(p, &required_kernelcore);
6748 }
6749 
6750 /*
6751  * movablecore=size sets the amount of memory for use for allocations that
6752  * can be reclaimed or migrated.
6753  */
6754 static int __init cmdline_parse_movablecore(char *p)
6755 {
6756 	return cmdline_parse_core(p, &required_movablecore);
6757 }
6758 
6759 early_param("kernelcore", cmdline_parse_kernelcore);
6760 early_param("movablecore", cmdline_parse_movablecore);
6761 
6762 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6763 
6764 void adjust_managed_page_count(struct page *page, long count)
6765 {
6766 	spin_lock(&managed_page_count_lock);
6767 	page_zone(page)->managed_pages += count;
6768 	totalram_pages += count;
6769 #ifdef CONFIG_HIGHMEM
6770 	if (PageHighMem(page))
6771 		totalhigh_pages += count;
6772 #endif
6773 	spin_unlock(&managed_page_count_lock);
6774 }
6775 EXPORT_SYMBOL(adjust_managed_page_count);
6776 
6777 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6778 {
6779 	void *pos;
6780 	unsigned long pages = 0;
6781 
6782 	start = (void *)PAGE_ALIGN((unsigned long)start);
6783 	end = (void *)((unsigned long)end & PAGE_MASK);
6784 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6785 		if ((unsigned int)poison <= 0xFF)
6786 			memset(pos, poison, PAGE_SIZE);
6787 		free_reserved_page(virt_to_page(pos));
6788 	}
6789 
6790 	if (pages && s)
6791 		pr_info("Freeing %s memory: %ldK\n",
6792 			s, pages << (PAGE_SHIFT - 10));
6793 
6794 	return pages;
6795 }
6796 EXPORT_SYMBOL(free_reserved_area);
6797 
6798 #ifdef	CONFIG_HIGHMEM
6799 void free_highmem_page(struct page *page)
6800 {
6801 	__free_reserved_page(page);
6802 	totalram_pages++;
6803 	page_zone(page)->managed_pages++;
6804 	totalhigh_pages++;
6805 }
6806 #endif
6807 
6808 
6809 void __init mem_init_print_info(const char *str)
6810 {
6811 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6812 	unsigned long init_code_size, init_data_size;
6813 
6814 	physpages = get_num_physpages();
6815 	codesize = _etext - _stext;
6816 	datasize = _edata - _sdata;
6817 	rosize = __end_rodata - __start_rodata;
6818 	bss_size = __bss_stop - __bss_start;
6819 	init_data_size = __init_end - __init_begin;
6820 	init_code_size = _einittext - _sinittext;
6821 
6822 	/*
6823 	 * Detect special cases and adjust section sizes accordingly:
6824 	 * 1) .init.* may be embedded into .data sections
6825 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6826 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6827 	 * 3) .rodata.* may be embedded into .text or .data sections.
6828 	 */
6829 #define adj_init_size(start, end, size, pos, adj) \
6830 	do { \
6831 		if (start <= pos && pos < end && size > adj) \
6832 			size -= adj; \
6833 	} while (0)
6834 
6835 	adj_init_size(__init_begin, __init_end, init_data_size,
6836 		     _sinittext, init_code_size);
6837 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6838 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6839 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6840 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6841 
6842 #undef	adj_init_size
6843 
6844 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6845 #ifdef	CONFIG_HIGHMEM
6846 		", %luK highmem"
6847 #endif
6848 		"%s%s)\n",
6849 		nr_free_pages() << (PAGE_SHIFT - 10),
6850 		physpages << (PAGE_SHIFT - 10),
6851 		codesize >> 10, datasize >> 10, rosize >> 10,
6852 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6853 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6854 		totalcma_pages << (PAGE_SHIFT - 10),
6855 #ifdef	CONFIG_HIGHMEM
6856 		totalhigh_pages << (PAGE_SHIFT - 10),
6857 #endif
6858 		str ? ", " : "", str ? str : "");
6859 }
6860 
6861 /**
6862  * set_dma_reserve - set the specified number of pages reserved in the first zone
6863  * @new_dma_reserve: The number of pages to mark reserved
6864  *
6865  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6866  * In the DMA zone, a significant percentage may be consumed by kernel image
6867  * and other unfreeable allocations which can skew the watermarks badly. This
6868  * function may optionally be used to account for unfreeable pages in the
6869  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6870  * smaller per-cpu batchsize.
6871  */
6872 void __init set_dma_reserve(unsigned long new_dma_reserve)
6873 {
6874 	dma_reserve = new_dma_reserve;
6875 }
6876 
6877 void __init free_area_init(unsigned long *zones_size)
6878 {
6879 	free_area_init_node(0, zones_size,
6880 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6881 	zero_resv_unavail();
6882 }
6883 
6884 static int page_alloc_cpu_dead(unsigned int cpu)
6885 {
6886 
6887 	lru_add_drain_cpu(cpu);
6888 	drain_pages(cpu);
6889 
6890 	/*
6891 	 * Spill the event counters of the dead processor
6892 	 * into the current processors event counters.
6893 	 * This artificially elevates the count of the current
6894 	 * processor.
6895 	 */
6896 	vm_events_fold_cpu(cpu);
6897 
6898 	/*
6899 	 * Zero the differential counters of the dead processor
6900 	 * so that the vm statistics are consistent.
6901 	 *
6902 	 * This is only okay since the processor is dead and cannot
6903 	 * race with what we are doing.
6904 	 */
6905 	cpu_vm_stats_fold(cpu);
6906 	return 0;
6907 }
6908 
6909 void __init page_alloc_init(void)
6910 {
6911 	int ret;
6912 
6913 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6914 					"mm/page_alloc:dead", NULL,
6915 					page_alloc_cpu_dead);
6916 	WARN_ON(ret < 0);
6917 }
6918 
6919 /*
6920  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6921  *	or min_free_kbytes changes.
6922  */
6923 static void calculate_totalreserve_pages(void)
6924 {
6925 	struct pglist_data *pgdat;
6926 	unsigned long reserve_pages = 0;
6927 	enum zone_type i, j;
6928 
6929 	for_each_online_pgdat(pgdat) {
6930 
6931 		pgdat->totalreserve_pages = 0;
6932 
6933 		for (i = 0; i < MAX_NR_ZONES; i++) {
6934 			struct zone *zone = pgdat->node_zones + i;
6935 			long max = 0;
6936 
6937 			/* Find valid and maximum lowmem_reserve in the zone */
6938 			for (j = i; j < MAX_NR_ZONES; j++) {
6939 				if (zone->lowmem_reserve[j] > max)
6940 					max = zone->lowmem_reserve[j];
6941 			}
6942 
6943 			/* we treat the high watermark as reserved pages. */
6944 			max += high_wmark_pages(zone);
6945 
6946 			if (max > zone->managed_pages)
6947 				max = zone->managed_pages;
6948 
6949 			pgdat->totalreserve_pages += max;
6950 
6951 			reserve_pages += max;
6952 		}
6953 	}
6954 	totalreserve_pages = reserve_pages;
6955 }
6956 
6957 /*
6958  * setup_per_zone_lowmem_reserve - called whenever
6959  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6960  *	has a correct pages reserved value, so an adequate number of
6961  *	pages are left in the zone after a successful __alloc_pages().
6962  */
6963 static void setup_per_zone_lowmem_reserve(void)
6964 {
6965 	struct pglist_data *pgdat;
6966 	enum zone_type j, idx;
6967 
6968 	for_each_online_pgdat(pgdat) {
6969 		for (j = 0; j < MAX_NR_ZONES; j++) {
6970 			struct zone *zone = pgdat->node_zones + j;
6971 			unsigned long managed_pages = zone->managed_pages;
6972 
6973 			zone->lowmem_reserve[j] = 0;
6974 
6975 			idx = j;
6976 			while (idx) {
6977 				struct zone *lower_zone;
6978 
6979 				idx--;
6980 
6981 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6982 					sysctl_lowmem_reserve_ratio[idx] = 1;
6983 
6984 				lower_zone = pgdat->node_zones + idx;
6985 				lower_zone->lowmem_reserve[j] = managed_pages /
6986 					sysctl_lowmem_reserve_ratio[idx];
6987 				managed_pages += lower_zone->managed_pages;
6988 			}
6989 		}
6990 	}
6991 
6992 	/* update totalreserve_pages */
6993 	calculate_totalreserve_pages();
6994 }
6995 
6996 static void __setup_per_zone_wmarks(void)
6997 {
6998 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6999 	unsigned long lowmem_pages = 0;
7000 	struct zone *zone;
7001 	unsigned long flags;
7002 
7003 	/* Calculate total number of !ZONE_HIGHMEM pages */
7004 	for_each_zone(zone) {
7005 		if (!is_highmem(zone))
7006 			lowmem_pages += zone->managed_pages;
7007 	}
7008 
7009 	for_each_zone(zone) {
7010 		u64 tmp;
7011 
7012 		spin_lock_irqsave(&zone->lock, flags);
7013 		tmp = (u64)pages_min * zone->managed_pages;
7014 		do_div(tmp, lowmem_pages);
7015 		if (is_highmem(zone)) {
7016 			/*
7017 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7018 			 * need highmem pages, so cap pages_min to a small
7019 			 * value here.
7020 			 *
7021 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7022 			 * deltas control asynch page reclaim, and so should
7023 			 * not be capped for highmem.
7024 			 */
7025 			unsigned long min_pages;
7026 
7027 			min_pages = zone->managed_pages / 1024;
7028 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7029 			zone->watermark[WMARK_MIN] = min_pages;
7030 		} else {
7031 			/*
7032 			 * If it's a lowmem zone, reserve a number of pages
7033 			 * proportionate to the zone's size.
7034 			 */
7035 			zone->watermark[WMARK_MIN] = tmp;
7036 		}
7037 
7038 		/*
7039 		 * Set the kswapd watermarks distance according to the
7040 		 * scale factor in proportion to available memory, but
7041 		 * ensure a minimum size on small systems.
7042 		 */
7043 		tmp = max_t(u64, tmp >> 2,
7044 			    mult_frac(zone->managed_pages,
7045 				      watermark_scale_factor, 10000));
7046 
7047 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7048 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7049 
7050 		spin_unlock_irqrestore(&zone->lock, flags);
7051 	}
7052 
7053 	/* update totalreserve_pages */
7054 	calculate_totalreserve_pages();
7055 }
7056 
7057 /**
7058  * setup_per_zone_wmarks - called when min_free_kbytes changes
7059  * or when memory is hot-{added|removed}
7060  *
7061  * Ensures that the watermark[min,low,high] values for each zone are set
7062  * correctly with respect to min_free_kbytes.
7063  */
7064 void setup_per_zone_wmarks(void)
7065 {
7066 	static DEFINE_SPINLOCK(lock);
7067 
7068 	spin_lock(&lock);
7069 	__setup_per_zone_wmarks();
7070 	spin_unlock(&lock);
7071 }
7072 
7073 /*
7074  * Initialise min_free_kbytes.
7075  *
7076  * For small machines we want it small (128k min).  For large machines
7077  * we want it large (64MB max).  But it is not linear, because network
7078  * bandwidth does not increase linearly with machine size.  We use
7079  *
7080  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7081  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7082  *
7083  * which yields
7084  *
7085  * 16MB:	512k
7086  * 32MB:	724k
7087  * 64MB:	1024k
7088  * 128MB:	1448k
7089  * 256MB:	2048k
7090  * 512MB:	2896k
7091  * 1024MB:	4096k
7092  * 2048MB:	5792k
7093  * 4096MB:	8192k
7094  * 8192MB:	11584k
7095  * 16384MB:	16384k
7096  */
7097 int __meminit init_per_zone_wmark_min(void)
7098 {
7099 	unsigned long lowmem_kbytes;
7100 	int new_min_free_kbytes;
7101 
7102 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7103 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7104 
7105 	if (new_min_free_kbytes > user_min_free_kbytes) {
7106 		min_free_kbytes = new_min_free_kbytes;
7107 		if (min_free_kbytes < 128)
7108 			min_free_kbytes = 128;
7109 		if (min_free_kbytes > 65536)
7110 			min_free_kbytes = 65536;
7111 	} else {
7112 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7113 				new_min_free_kbytes, user_min_free_kbytes);
7114 	}
7115 	setup_per_zone_wmarks();
7116 	refresh_zone_stat_thresholds();
7117 	setup_per_zone_lowmem_reserve();
7118 
7119 #ifdef CONFIG_NUMA
7120 	setup_min_unmapped_ratio();
7121 	setup_min_slab_ratio();
7122 #endif
7123 
7124 	return 0;
7125 }
7126 core_initcall(init_per_zone_wmark_min)
7127 
7128 /*
7129  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7130  *	that we can call two helper functions whenever min_free_kbytes
7131  *	changes.
7132  */
7133 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7134 	void __user *buffer, size_t *length, loff_t *ppos)
7135 {
7136 	int rc;
7137 
7138 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7139 	if (rc)
7140 		return rc;
7141 
7142 	if (write) {
7143 		user_min_free_kbytes = min_free_kbytes;
7144 		setup_per_zone_wmarks();
7145 	}
7146 	return 0;
7147 }
7148 
7149 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7150 	void __user *buffer, size_t *length, loff_t *ppos)
7151 {
7152 	int rc;
7153 
7154 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7155 	if (rc)
7156 		return rc;
7157 
7158 	if (write)
7159 		setup_per_zone_wmarks();
7160 
7161 	return 0;
7162 }
7163 
7164 #ifdef CONFIG_NUMA
7165 static void setup_min_unmapped_ratio(void)
7166 {
7167 	pg_data_t *pgdat;
7168 	struct zone *zone;
7169 
7170 	for_each_online_pgdat(pgdat)
7171 		pgdat->min_unmapped_pages = 0;
7172 
7173 	for_each_zone(zone)
7174 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7175 				sysctl_min_unmapped_ratio) / 100;
7176 }
7177 
7178 
7179 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7180 	void __user *buffer, size_t *length, loff_t *ppos)
7181 {
7182 	int rc;
7183 
7184 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7185 	if (rc)
7186 		return rc;
7187 
7188 	setup_min_unmapped_ratio();
7189 
7190 	return 0;
7191 }
7192 
7193 static void setup_min_slab_ratio(void)
7194 {
7195 	pg_data_t *pgdat;
7196 	struct zone *zone;
7197 
7198 	for_each_online_pgdat(pgdat)
7199 		pgdat->min_slab_pages = 0;
7200 
7201 	for_each_zone(zone)
7202 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7203 				sysctl_min_slab_ratio) / 100;
7204 }
7205 
7206 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7207 	void __user *buffer, size_t *length, loff_t *ppos)
7208 {
7209 	int rc;
7210 
7211 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7212 	if (rc)
7213 		return rc;
7214 
7215 	setup_min_slab_ratio();
7216 
7217 	return 0;
7218 }
7219 #endif
7220 
7221 /*
7222  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7223  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7224  *	whenever sysctl_lowmem_reserve_ratio changes.
7225  *
7226  * The reserve ratio obviously has absolutely no relation with the
7227  * minimum watermarks. The lowmem reserve ratio can only make sense
7228  * if in function of the boot time zone sizes.
7229  */
7230 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7231 	void __user *buffer, size_t *length, loff_t *ppos)
7232 {
7233 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7234 	setup_per_zone_lowmem_reserve();
7235 	return 0;
7236 }
7237 
7238 /*
7239  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7240  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7241  * pagelist can have before it gets flushed back to buddy allocator.
7242  */
7243 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7244 	void __user *buffer, size_t *length, loff_t *ppos)
7245 {
7246 	struct zone *zone;
7247 	int old_percpu_pagelist_fraction;
7248 	int ret;
7249 
7250 	mutex_lock(&pcp_batch_high_lock);
7251 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7252 
7253 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7254 	if (!write || ret < 0)
7255 		goto out;
7256 
7257 	/* Sanity checking to avoid pcp imbalance */
7258 	if (percpu_pagelist_fraction &&
7259 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7260 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7261 		ret = -EINVAL;
7262 		goto out;
7263 	}
7264 
7265 	/* No change? */
7266 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7267 		goto out;
7268 
7269 	for_each_populated_zone(zone) {
7270 		unsigned int cpu;
7271 
7272 		for_each_possible_cpu(cpu)
7273 			pageset_set_high_and_batch(zone,
7274 					per_cpu_ptr(zone->pageset, cpu));
7275 	}
7276 out:
7277 	mutex_unlock(&pcp_batch_high_lock);
7278 	return ret;
7279 }
7280 
7281 #ifdef CONFIG_NUMA
7282 int hashdist = HASHDIST_DEFAULT;
7283 
7284 static int __init set_hashdist(char *str)
7285 {
7286 	if (!str)
7287 		return 0;
7288 	hashdist = simple_strtoul(str, &str, 0);
7289 	return 1;
7290 }
7291 __setup("hashdist=", set_hashdist);
7292 #endif
7293 
7294 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7295 /*
7296  * Returns the number of pages that arch has reserved but
7297  * is not known to alloc_large_system_hash().
7298  */
7299 static unsigned long __init arch_reserved_kernel_pages(void)
7300 {
7301 	return 0;
7302 }
7303 #endif
7304 
7305 /*
7306  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7307  * machines. As memory size is increased the scale is also increased but at
7308  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7309  * quadruples the scale is increased by one, which means the size of hash table
7310  * only doubles, instead of quadrupling as well.
7311  * Because 32-bit systems cannot have large physical memory, where this scaling
7312  * makes sense, it is disabled on such platforms.
7313  */
7314 #if __BITS_PER_LONG > 32
7315 #define ADAPT_SCALE_BASE	(64ul << 30)
7316 #define ADAPT_SCALE_SHIFT	2
7317 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7318 #endif
7319 
7320 /*
7321  * allocate a large system hash table from bootmem
7322  * - it is assumed that the hash table must contain an exact power-of-2
7323  *   quantity of entries
7324  * - limit is the number of hash buckets, not the total allocation size
7325  */
7326 void *__init alloc_large_system_hash(const char *tablename,
7327 				     unsigned long bucketsize,
7328 				     unsigned long numentries,
7329 				     int scale,
7330 				     int flags,
7331 				     unsigned int *_hash_shift,
7332 				     unsigned int *_hash_mask,
7333 				     unsigned long low_limit,
7334 				     unsigned long high_limit)
7335 {
7336 	unsigned long long max = high_limit;
7337 	unsigned long log2qty, size;
7338 	void *table = NULL;
7339 	gfp_t gfp_flags;
7340 
7341 	/* allow the kernel cmdline to have a say */
7342 	if (!numentries) {
7343 		/* round applicable memory size up to nearest megabyte */
7344 		numentries = nr_kernel_pages;
7345 		numentries -= arch_reserved_kernel_pages();
7346 
7347 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7348 		if (PAGE_SHIFT < 20)
7349 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7350 
7351 #if __BITS_PER_LONG > 32
7352 		if (!high_limit) {
7353 			unsigned long adapt;
7354 
7355 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7356 			     adapt <<= ADAPT_SCALE_SHIFT)
7357 				scale++;
7358 		}
7359 #endif
7360 
7361 		/* limit to 1 bucket per 2^scale bytes of low memory */
7362 		if (scale > PAGE_SHIFT)
7363 			numentries >>= (scale - PAGE_SHIFT);
7364 		else
7365 			numentries <<= (PAGE_SHIFT - scale);
7366 
7367 		/* Make sure we've got at least a 0-order allocation.. */
7368 		if (unlikely(flags & HASH_SMALL)) {
7369 			/* Makes no sense without HASH_EARLY */
7370 			WARN_ON(!(flags & HASH_EARLY));
7371 			if (!(numentries >> *_hash_shift)) {
7372 				numentries = 1UL << *_hash_shift;
7373 				BUG_ON(!numentries);
7374 			}
7375 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7376 			numentries = PAGE_SIZE / bucketsize;
7377 	}
7378 	numentries = roundup_pow_of_two(numentries);
7379 
7380 	/* limit allocation size to 1/16 total memory by default */
7381 	if (max == 0) {
7382 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7383 		do_div(max, bucketsize);
7384 	}
7385 	max = min(max, 0x80000000ULL);
7386 
7387 	if (numentries < low_limit)
7388 		numentries = low_limit;
7389 	if (numentries > max)
7390 		numentries = max;
7391 
7392 	log2qty = ilog2(numentries);
7393 
7394 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7395 	do {
7396 		size = bucketsize << log2qty;
7397 		if (flags & HASH_EARLY) {
7398 			if (flags & HASH_ZERO)
7399 				table = memblock_virt_alloc_nopanic(size, 0);
7400 			else
7401 				table = memblock_virt_alloc_raw(size, 0);
7402 		} else if (hashdist) {
7403 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7404 		} else {
7405 			/*
7406 			 * If bucketsize is not a power-of-two, we may free
7407 			 * some pages at the end of hash table which
7408 			 * alloc_pages_exact() automatically does
7409 			 */
7410 			if (get_order(size) < MAX_ORDER) {
7411 				table = alloc_pages_exact(size, gfp_flags);
7412 				kmemleak_alloc(table, size, 1, gfp_flags);
7413 			}
7414 		}
7415 	} while (!table && size > PAGE_SIZE && --log2qty);
7416 
7417 	if (!table)
7418 		panic("Failed to allocate %s hash table\n", tablename);
7419 
7420 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7421 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7422 
7423 	if (_hash_shift)
7424 		*_hash_shift = log2qty;
7425 	if (_hash_mask)
7426 		*_hash_mask = (1 << log2qty) - 1;
7427 
7428 	return table;
7429 }
7430 
7431 /*
7432  * This function checks whether pageblock includes unmovable pages or not.
7433  * If @count is not zero, it is okay to include less @count unmovable pages
7434  *
7435  * PageLRU check without isolation or lru_lock could race so that
7436  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7437  * check without lock_page also may miss some movable non-lru pages at
7438  * race condition. So you can't expect this function should be exact.
7439  */
7440 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7441 			 int migratetype,
7442 			 bool skip_hwpoisoned_pages)
7443 {
7444 	unsigned long pfn, iter, found;
7445 
7446 	/*
7447 	 * For avoiding noise data, lru_add_drain_all() should be called
7448 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7449 	 */
7450 	if (zone_idx(zone) == ZONE_MOVABLE)
7451 		return false;
7452 
7453 	/*
7454 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7455 	 * CMA pageblocks even when they are not movable in fact so consider
7456 	 * them movable here.
7457 	 */
7458 	if (is_migrate_cma(migratetype) &&
7459 			is_migrate_cma(get_pageblock_migratetype(page)))
7460 		return false;
7461 
7462 	pfn = page_to_pfn(page);
7463 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7464 		unsigned long check = pfn + iter;
7465 
7466 		if (!pfn_valid_within(check))
7467 			continue;
7468 
7469 		page = pfn_to_page(check);
7470 
7471 		if (PageReserved(page))
7472 			return true;
7473 
7474 		/*
7475 		 * Hugepages are not in LRU lists, but they're movable.
7476 		 * We need not scan over tail pages bacause we don't
7477 		 * handle each tail page individually in migration.
7478 		 */
7479 		if (PageHuge(page)) {
7480 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7481 			continue;
7482 		}
7483 
7484 		/*
7485 		 * We can't use page_count without pin a page
7486 		 * because another CPU can free compound page.
7487 		 * This check already skips compound tails of THP
7488 		 * because their page->_refcount is zero at all time.
7489 		 */
7490 		if (!page_ref_count(page)) {
7491 			if (PageBuddy(page))
7492 				iter += (1 << page_order(page)) - 1;
7493 			continue;
7494 		}
7495 
7496 		/*
7497 		 * The HWPoisoned page may be not in buddy system, and
7498 		 * page_count() is not 0.
7499 		 */
7500 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7501 			continue;
7502 
7503 		if (__PageMovable(page))
7504 			continue;
7505 
7506 		if (!PageLRU(page))
7507 			found++;
7508 		/*
7509 		 * If there are RECLAIMABLE pages, we need to check
7510 		 * it.  But now, memory offline itself doesn't call
7511 		 * shrink_node_slabs() and it still to be fixed.
7512 		 */
7513 		/*
7514 		 * If the page is not RAM, page_count()should be 0.
7515 		 * we don't need more check. This is an _used_ not-movable page.
7516 		 *
7517 		 * The problematic thing here is PG_reserved pages. PG_reserved
7518 		 * is set to both of a memory hole page and a _used_ kernel
7519 		 * page at boot.
7520 		 */
7521 		if (found > count)
7522 			return true;
7523 	}
7524 	return false;
7525 }
7526 
7527 bool is_pageblock_removable_nolock(struct page *page)
7528 {
7529 	struct zone *zone;
7530 	unsigned long pfn;
7531 
7532 	/*
7533 	 * We have to be careful here because we are iterating over memory
7534 	 * sections which are not zone aware so we might end up outside of
7535 	 * the zone but still within the section.
7536 	 * We have to take care about the node as well. If the node is offline
7537 	 * its NODE_DATA will be NULL - see page_zone.
7538 	 */
7539 	if (!node_online(page_to_nid(page)))
7540 		return false;
7541 
7542 	zone = page_zone(page);
7543 	pfn = page_to_pfn(page);
7544 	if (!zone_spans_pfn(zone, pfn))
7545 		return false;
7546 
7547 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7548 }
7549 
7550 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7551 
7552 static unsigned long pfn_max_align_down(unsigned long pfn)
7553 {
7554 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7555 			     pageblock_nr_pages) - 1);
7556 }
7557 
7558 static unsigned long pfn_max_align_up(unsigned long pfn)
7559 {
7560 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7561 				pageblock_nr_pages));
7562 }
7563 
7564 /* [start, end) must belong to a single zone. */
7565 static int __alloc_contig_migrate_range(struct compact_control *cc,
7566 					unsigned long start, unsigned long end)
7567 {
7568 	/* This function is based on compact_zone() from compaction.c. */
7569 	unsigned long nr_reclaimed;
7570 	unsigned long pfn = start;
7571 	unsigned int tries = 0;
7572 	int ret = 0;
7573 
7574 	migrate_prep();
7575 
7576 	while (pfn < end || !list_empty(&cc->migratepages)) {
7577 		if (fatal_signal_pending(current)) {
7578 			ret = -EINTR;
7579 			break;
7580 		}
7581 
7582 		if (list_empty(&cc->migratepages)) {
7583 			cc->nr_migratepages = 0;
7584 			pfn = isolate_migratepages_range(cc, pfn, end);
7585 			if (!pfn) {
7586 				ret = -EINTR;
7587 				break;
7588 			}
7589 			tries = 0;
7590 		} else if (++tries == 5) {
7591 			ret = ret < 0 ? ret : -EBUSY;
7592 			break;
7593 		}
7594 
7595 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7596 							&cc->migratepages);
7597 		cc->nr_migratepages -= nr_reclaimed;
7598 
7599 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7600 				    NULL, 0, cc->mode, MR_CMA);
7601 	}
7602 	if (ret < 0) {
7603 		putback_movable_pages(&cc->migratepages);
7604 		return ret;
7605 	}
7606 	return 0;
7607 }
7608 
7609 /**
7610  * alloc_contig_range() -- tries to allocate given range of pages
7611  * @start:	start PFN to allocate
7612  * @end:	one-past-the-last PFN to allocate
7613  * @migratetype:	migratetype of the underlaying pageblocks (either
7614  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7615  *			in range must have the same migratetype and it must
7616  *			be either of the two.
7617  * @gfp_mask:	GFP mask to use during compaction
7618  *
7619  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7620  * aligned, however it's the caller's responsibility to guarantee that
7621  * we are the only thread that changes migrate type of pageblocks the
7622  * pages fall in.
7623  *
7624  * The PFN range must belong to a single zone.
7625  *
7626  * Returns zero on success or negative error code.  On success all
7627  * pages which PFN is in [start, end) are allocated for the caller and
7628  * need to be freed with free_contig_range().
7629  */
7630 int alloc_contig_range(unsigned long start, unsigned long end,
7631 		       unsigned migratetype, gfp_t gfp_mask)
7632 {
7633 	unsigned long outer_start, outer_end;
7634 	unsigned int order;
7635 	int ret = 0;
7636 
7637 	struct compact_control cc = {
7638 		.nr_migratepages = 0,
7639 		.order = -1,
7640 		.zone = page_zone(pfn_to_page(start)),
7641 		.mode = MIGRATE_SYNC,
7642 		.ignore_skip_hint = true,
7643 		.no_set_skip_hint = true,
7644 		.gfp_mask = current_gfp_context(gfp_mask),
7645 	};
7646 	INIT_LIST_HEAD(&cc.migratepages);
7647 
7648 	/*
7649 	 * What we do here is we mark all pageblocks in range as
7650 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7651 	 * have different sizes, and due to the way page allocator
7652 	 * work, we align the range to biggest of the two pages so
7653 	 * that page allocator won't try to merge buddies from
7654 	 * different pageblocks and change MIGRATE_ISOLATE to some
7655 	 * other migration type.
7656 	 *
7657 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7658 	 * migrate the pages from an unaligned range (ie. pages that
7659 	 * we are interested in).  This will put all the pages in
7660 	 * range back to page allocator as MIGRATE_ISOLATE.
7661 	 *
7662 	 * When this is done, we take the pages in range from page
7663 	 * allocator removing them from the buddy system.  This way
7664 	 * page allocator will never consider using them.
7665 	 *
7666 	 * This lets us mark the pageblocks back as
7667 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7668 	 * aligned range but not in the unaligned, original range are
7669 	 * put back to page allocator so that buddy can use them.
7670 	 */
7671 
7672 	ret = start_isolate_page_range(pfn_max_align_down(start),
7673 				       pfn_max_align_up(end), migratetype,
7674 				       false);
7675 	if (ret)
7676 		return ret;
7677 
7678 	/*
7679 	 * In case of -EBUSY, we'd like to know which page causes problem.
7680 	 * So, just fall through. test_pages_isolated() has a tracepoint
7681 	 * which will report the busy page.
7682 	 *
7683 	 * It is possible that busy pages could become available before
7684 	 * the call to test_pages_isolated, and the range will actually be
7685 	 * allocated.  So, if we fall through be sure to clear ret so that
7686 	 * -EBUSY is not accidentally used or returned to caller.
7687 	 */
7688 	ret = __alloc_contig_migrate_range(&cc, start, end);
7689 	if (ret && ret != -EBUSY)
7690 		goto done;
7691 	ret =0;
7692 
7693 	/*
7694 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7695 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7696 	 * more, all pages in [start, end) are free in page allocator.
7697 	 * What we are going to do is to allocate all pages from
7698 	 * [start, end) (that is remove them from page allocator).
7699 	 *
7700 	 * The only problem is that pages at the beginning and at the
7701 	 * end of interesting range may be not aligned with pages that
7702 	 * page allocator holds, ie. they can be part of higher order
7703 	 * pages.  Because of this, we reserve the bigger range and
7704 	 * once this is done free the pages we are not interested in.
7705 	 *
7706 	 * We don't have to hold zone->lock here because the pages are
7707 	 * isolated thus they won't get removed from buddy.
7708 	 */
7709 
7710 	lru_add_drain_all();
7711 	drain_all_pages(cc.zone);
7712 
7713 	order = 0;
7714 	outer_start = start;
7715 	while (!PageBuddy(pfn_to_page(outer_start))) {
7716 		if (++order >= MAX_ORDER) {
7717 			outer_start = start;
7718 			break;
7719 		}
7720 		outer_start &= ~0UL << order;
7721 	}
7722 
7723 	if (outer_start != start) {
7724 		order = page_order(pfn_to_page(outer_start));
7725 
7726 		/*
7727 		 * outer_start page could be small order buddy page and
7728 		 * it doesn't include start page. Adjust outer_start
7729 		 * in this case to report failed page properly
7730 		 * on tracepoint in test_pages_isolated()
7731 		 */
7732 		if (outer_start + (1UL << order) <= start)
7733 			outer_start = start;
7734 	}
7735 
7736 	/* Make sure the range is really isolated. */
7737 	if (test_pages_isolated(outer_start, end, false)) {
7738 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7739 			__func__, outer_start, end);
7740 		ret = -EBUSY;
7741 		goto done;
7742 	}
7743 
7744 	/* Grab isolated pages from freelists. */
7745 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7746 	if (!outer_end) {
7747 		ret = -EBUSY;
7748 		goto done;
7749 	}
7750 
7751 	/* Free head and tail (if any) */
7752 	if (start != outer_start)
7753 		free_contig_range(outer_start, start - outer_start);
7754 	if (end != outer_end)
7755 		free_contig_range(end, outer_end - end);
7756 
7757 done:
7758 	undo_isolate_page_range(pfn_max_align_down(start),
7759 				pfn_max_align_up(end), migratetype);
7760 	return ret;
7761 }
7762 
7763 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7764 {
7765 	unsigned int count = 0;
7766 
7767 	for (; nr_pages--; pfn++) {
7768 		struct page *page = pfn_to_page(pfn);
7769 
7770 		count += page_count(page) != 1;
7771 		__free_page(page);
7772 	}
7773 	WARN(count != 0, "%d pages are still in use!\n", count);
7774 }
7775 #endif
7776 
7777 #ifdef CONFIG_MEMORY_HOTPLUG
7778 /*
7779  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7780  * page high values need to be recalulated.
7781  */
7782 void __meminit zone_pcp_update(struct zone *zone)
7783 {
7784 	unsigned cpu;
7785 	mutex_lock(&pcp_batch_high_lock);
7786 	for_each_possible_cpu(cpu)
7787 		pageset_set_high_and_batch(zone,
7788 				per_cpu_ptr(zone->pageset, cpu));
7789 	mutex_unlock(&pcp_batch_high_lock);
7790 }
7791 #endif
7792 
7793 void zone_pcp_reset(struct zone *zone)
7794 {
7795 	unsigned long flags;
7796 	int cpu;
7797 	struct per_cpu_pageset *pset;
7798 
7799 	/* avoid races with drain_pages()  */
7800 	local_irq_save(flags);
7801 	if (zone->pageset != &boot_pageset) {
7802 		for_each_online_cpu(cpu) {
7803 			pset = per_cpu_ptr(zone->pageset, cpu);
7804 			drain_zonestat(zone, pset);
7805 		}
7806 		free_percpu(zone->pageset);
7807 		zone->pageset = &boot_pageset;
7808 	}
7809 	local_irq_restore(flags);
7810 }
7811 
7812 #ifdef CONFIG_MEMORY_HOTREMOVE
7813 /*
7814  * All pages in the range must be in a single zone and isolated
7815  * before calling this.
7816  */
7817 void
7818 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7819 {
7820 	struct page *page;
7821 	struct zone *zone;
7822 	unsigned int order, i;
7823 	unsigned long pfn;
7824 	unsigned long flags;
7825 	/* find the first valid pfn */
7826 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7827 		if (pfn_valid(pfn))
7828 			break;
7829 	if (pfn == end_pfn)
7830 		return;
7831 	offline_mem_sections(pfn, end_pfn);
7832 	zone = page_zone(pfn_to_page(pfn));
7833 	spin_lock_irqsave(&zone->lock, flags);
7834 	pfn = start_pfn;
7835 	while (pfn < end_pfn) {
7836 		if (!pfn_valid(pfn)) {
7837 			pfn++;
7838 			continue;
7839 		}
7840 		page = pfn_to_page(pfn);
7841 		/*
7842 		 * The HWPoisoned page may be not in buddy system, and
7843 		 * page_count() is not 0.
7844 		 */
7845 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7846 			pfn++;
7847 			SetPageReserved(page);
7848 			continue;
7849 		}
7850 
7851 		BUG_ON(page_count(page));
7852 		BUG_ON(!PageBuddy(page));
7853 		order = page_order(page);
7854 #ifdef CONFIG_DEBUG_VM
7855 		pr_info("remove from free list %lx %d %lx\n",
7856 			pfn, 1 << order, end_pfn);
7857 #endif
7858 		list_del(&page->lru);
7859 		rmv_page_order(page);
7860 		zone->free_area[order].nr_free--;
7861 		for (i = 0; i < (1 << order); i++)
7862 			SetPageReserved((page+i));
7863 		pfn += (1 << order);
7864 	}
7865 	spin_unlock_irqrestore(&zone->lock, flags);
7866 }
7867 #endif
7868 
7869 bool is_free_buddy_page(struct page *page)
7870 {
7871 	struct zone *zone = page_zone(page);
7872 	unsigned long pfn = page_to_pfn(page);
7873 	unsigned long flags;
7874 	unsigned int order;
7875 
7876 	spin_lock_irqsave(&zone->lock, flags);
7877 	for (order = 0; order < MAX_ORDER; order++) {
7878 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7879 
7880 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7881 			break;
7882 	}
7883 	spin_unlock_irqrestore(&zone->lock, flags);
7884 
7885 	return order < MAX_ORDER;
7886 }
7887