xref: /linux/mm/page_alloc.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 #include "internal.h"
44 
45 /*
46  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47  * initializer cleaner
48  */
49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map);
51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52 EXPORT_SYMBOL(node_possible_map);
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 unsigned long totalreserve_pages __read_mostly;
56 long nr_swap_pages;
57 int percpu_pagelist_fraction;
58 
59 static void __free_pages_ok(struct page *page, unsigned int order);
60 
61 /*
62  * results with 256, 32 in the lowmem_reserve sysctl:
63  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64  *	1G machine -> (16M dma, 784M normal, 224M high)
65  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68  *
69  * TBD: should special case ZONE_DMA32 machines here - in those we normally
70  * don't need any ZONE_NORMAL reservation
71  */
72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73 
74 EXPORT_SYMBOL(totalram_pages);
75 
76 /*
77  * Used by page_zone() to look up the address of the struct zone whose
78  * id is encoded in the upper bits of page->flags
79  */
80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
81 EXPORT_SYMBOL(zone_table);
82 
83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes = 1024;
85 
86 unsigned long __meminitdata nr_kernel_pages;
87 unsigned long __meminitdata nr_all_pages;
88 
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 {
92 	int ret = 0;
93 	unsigned seq;
94 	unsigned long pfn = page_to_pfn(page);
95 
96 	do {
97 		seq = zone_span_seqbegin(zone);
98 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
99 			ret = 1;
100 		else if (pfn < zone->zone_start_pfn)
101 			ret = 1;
102 	} while (zone_span_seqretry(zone, seq));
103 
104 	return ret;
105 }
106 
107 static int page_is_consistent(struct zone *zone, struct page *page)
108 {
109 #ifdef CONFIG_HOLES_IN_ZONE
110 	if (!pfn_valid(page_to_pfn(page)))
111 		return 0;
112 #endif
113 	if (zone != page_zone(page))
114 		return 0;
115 
116 	return 1;
117 }
118 /*
119  * Temporary debugging check for pages not lying within a given zone.
120  */
121 static int bad_range(struct zone *zone, struct page *page)
122 {
123 	if (page_outside_zone_boundaries(zone, page))
124 		return 1;
125 	if (!page_is_consistent(zone, page))
126 		return 1;
127 
128 	return 0;
129 }
130 
131 #else
132 static inline int bad_range(struct zone *zone, struct page *page)
133 {
134 	return 0;
135 }
136 #endif
137 
138 static void bad_page(struct page *page)
139 {
140 	printk(KERN_EMERG "Bad page state in process '%s'\n"
141 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
143 		KERN_EMERG "Backtrace:\n",
144 		current->comm, page, (int)(2*sizeof(unsigned long)),
145 		(unsigned long)page->flags, page->mapping,
146 		page_mapcount(page), page_count(page));
147 	dump_stack();
148 	page->flags &= ~(1 << PG_lru	|
149 			1 << PG_private |
150 			1 << PG_locked	|
151 			1 << PG_active	|
152 			1 << PG_dirty	|
153 			1 << PG_reclaim |
154 			1 << PG_slab    |
155 			1 << PG_swapcache |
156 			1 << PG_writeback |
157 			1 << PG_buddy );
158 	set_page_count(page, 0);
159 	reset_page_mapcount(page);
160 	page->mapping = NULL;
161 	add_taint(TAINT_BAD_PAGE);
162 }
163 
164 /*
165  * Higher-order pages are called "compound pages".  They are structured thusly:
166  *
167  * The first PAGE_SIZE page is called the "head page".
168  *
169  * The remaining PAGE_SIZE pages are called "tail pages".
170  *
171  * All pages have PG_compound set.  All pages have their ->private pointing at
172  * the head page (even the head page has this).
173  *
174  * The first tail page's ->lru.next holds the address of the compound page's
175  * put_page() function.  Its ->lru.prev holds the order of allocation.
176  * This usage means that zero-order pages may not be compound.
177  */
178 
179 static void free_compound_page(struct page *page)
180 {
181 	__free_pages_ok(page, (unsigned long)page[1].lru.prev);
182 }
183 
184 static void prep_compound_page(struct page *page, unsigned long order)
185 {
186 	int i;
187 	int nr_pages = 1 << order;
188 
189 	page[1].lru.next = (void *)free_compound_page;	/* set dtor */
190 	page[1].lru.prev = (void *)order;
191 	for (i = 0; i < nr_pages; i++) {
192 		struct page *p = page + i;
193 
194 		__SetPageCompound(p);
195 		set_page_private(p, (unsigned long)page);
196 	}
197 }
198 
199 static void destroy_compound_page(struct page *page, unsigned long order)
200 {
201 	int i;
202 	int nr_pages = 1 << order;
203 
204 	if (unlikely((unsigned long)page[1].lru.prev != order))
205 		bad_page(page);
206 
207 	for (i = 0; i < nr_pages; i++) {
208 		struct page *p = page + i;
209 
210 		if (unlikely(!PageCompound(p) |
211 				(page_private(p) != (unsigned long)page)))
212 			bad_page(page);
213 		__ClearPageCompound(p);
214 	}
215 }
216 
217 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
218 {
219 	int i;
220 
221 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
222 	/*
223 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
224 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
225 	 */
226 	BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
227 	for (i = 0; i < (1 << order); i++)
228 		clear_highpage(page + i);
229 }
230 
231 /*
232  * function for dealing with page's order in buddy system.
233  * zone->lock is already acquired when we use these.
234  * So, we don't need atomic page->flags operations here.
235  */
236 static inline unsigned long page_order(struct page *page)
237 {
238 	return page_private(page);
239 }
240 
241 static inline void set_page_order(struct page *page, int order)
242 {
243 	set_page_private(page, order);
244 	__SetPageBuddy(page);
245 }
246 
247 static inline void rmv_page_order(struct page *page)
248 {
249 	__ClearPageBuddy(page);
250 	set_page_private(page, 0);
251 }
252 
253 /*
254  * Locate the struct page for both the matching buddy in our
255  * pair (buddy1) and the combined O(n+1) page they form (page).
256  *
257  * 1) Any buddy B1 will have an order O twin B2 which satisfies
258  * the following equation:
259  *     B2 = B1 ^ (1 << O)
260  * For example, if the starting buddy (buddy2) is #8 its order
261  * 1 buddy is #10:
262  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
263  *
264  * 2) Any buddy B will have an order O+1 parent P which
265  * satisfies the following equation:
266  *     P = B & ~(1 << O)
267  *
268  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
269  */
270 static inline struct page *
271 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
272 {
273 	unsigned long buddy_idx = page_idx ^ (1 << order);
274 
275 	return page + (buddy_idx - page_idx);
276 }
277 
278 static inline unsigned long
279 __find_combined_index(unsigned long page_idx, unsigned int order)
280 {
281 	return (page_idx & ~(1 << order));
282 }
283 
284 /*
285  * This function checks whether a page is free && is the buddy
286  * we can do coalesce a page and its buddy if
287  * (a) the buddy is not in a hole &&
288  * (b) the buddy is in the buddy system &&
289  * (c) a page and its buddy have the same order &&
290  * (d) a page and its buddy are in the same zone.
291  *
292  * For recording whether a page is in the buddy system, we use PG_buddy.
293  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
294  *
295  * For recording page's order, we use page_private(page).
296  */
297 static inline int page_is_buddy(struct page *page, struct page *buddy,
298 								int order)
299 {
300 #ifdef CONFIG_HOLES_IN_ZONE
301 	if (!pfn_valid(page_to_pfn(buddy)))
302 		return 0;
303 #endif
304 
305 	if (page_zone_id(page) != page_zone_id(buddy))
306 		return 0;
307 
308 	if (PageBuddy(buddy) && page_order(buddy) == order) {
309 		BUG_ON(page_count(buddy) != 0);
310 		return 1;
311 	}
312 	return 0;
313 }
314 
315 /*
316  * Freeing function for a buddy system allocator.
317  *
318  * The concept of a buddy system is to maintain direct-mapped table
319  * (containing bit values) for memory blocks of various "orders".
320  * The bottom level table contains the map for the smallest allocatable
321  * units of memory (here, pages), and each level above it describes
322  * pairs of units from the levels below, hence, "buddies".
323  * At a high level, all that happens here is marking the table entry
324  * at the bottom level available, and propagating the changes upward
325  * as necessary, plus some accounting needed to play nicely with other
326  * parts of the VM system.
327  * At each level, we keep a list of pages, which are heads of continuous
328  * free pages of length of (1 << order) and marked with PG_buddy. Page's
329  * order is recorded in page_private(page) field.
330  * So when we are allocating or freeing one, we can derive the state of the
331  * other.  That is, if we allocate a small block, and both were
332  * free, the remainder of the region must be split into blocks.
333  * If a block is freed, and its buddy is also free, then this
334  * triggers coalescing into a block of larger size.
335  *
336  * -- wli
337  */
338 
339 static inline void __free_one_page(struct page *page,
340 		struct zone *zone, unsigned int order)
341 {
342 	unsigned long page_idx;
343 	int order_size = 1 << order;
344 
345 	if (unlikely(PageCompound(page)))
346 		destroy_compound_page(page, order);
347 
348 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
349 
350 	BUG_ON(page_idx & (order_size - 1));
351 	BUG_ON(bad_range(zone, page));
352 
353 	zone->free_pages += order_size;
354 	while (order < MAX_ORDER-1) {
355 		unsigned long combined_idx;
356 		struct free_area *area;
357 		struct page *buddy;
358 
359 		buddy = __page_find_buddy(page, page_idx, order);
360 		if (!page_is_buddy(page, buddy, order))
361 			break;		/* Move the buddy up one level. */
362 
363 		list_del(&buddy->lru);
364 		area = zone->free_area + order;
365 		area->nr_free--;
366 		rmv_page_order(buddy);
367 		combined_idx = __find_combined_index(page_idx, order);
368 		page = page + (combined_idx - page_idx);
369 		page_idx = combined_idx;
370 		order++;
371 	}
372 	set_page_order(page, order);
373 	list_add(&page->lru, &zone->free_area[order].free_list);
374 	zone->free_area[order].nr_free++;
375 }
376 
377 static inline int free_pages_check(struct page *page)
378 {
379 	if (unlikely(page_mapcount(page) |
380 		(page->mapping != NULL)  |
381 		(page_count(page) != 0)  |
382 		(page->flags & (
383 			1 << PG_lru	|
384 			1 << PG_private |
385 			1 << PG_locked	|
386 			1 << PG_active	|
387 			1 << PG_reclaim	|
388 			1 << PG_slab	|
389 			1 << PG_swapcache |
390 			1 << PG_writeback |
391 			1 << PG_reserved |
392 			1 << PG_buddy ))))
393 		bad_page(page);
394 	if (PageDirty(page))
395 		__ClearPageDirty(page);
396 	/*
397 	 * For now, we report if PG_reserved was found set, but do not
398 	 * clear it, and do not free the page.  But we shall soon need
399 	 * to do more, for when the ZERO_PAGE count wraps negative.
400 	 */
401 	return PageReserved(page);
402 }
403 
404 /*
405  * Frees a list of pages.
406  * Assumes all pages on list are in same zone, and of same order.
407  * count is the number of pages to free.
408  *
409  * If the zone was previously in an "all pages pinned" state then look to
410  * see if this freeing clears that state.
411  *
412  * And clear the zone's pages_scanned counter, to hold off the "all pages are
413  * pinned" detection logic.
414  */
415 static void free_pages_bulk(struct zone *zone, int count,
416 					struct list_head *list, int order)
417 {
418 	spin_lock(&zone->lock);
419 	zone->all_unreclaimable = 0;
420 	zone->pages_scanned = 0;
421 	while (count--) {
422 		struct page *page;
423 
424 		BUG_ON(list_empty(list));
425 		page = list_entry(list->prev, struct page, lru);
426 		/* have to delete it as __free_one_page list manipulates */
427 		list_del(&page->lru);
428 		__free_one_page(page, zone, order);
429 	}
430 	spin_unlock(&zone->lock);
431 }
432 
433 static void free_one_page(struct zone *zone, struct page *page, int order)
434 {
435 	LIST_HEAD(list);
436 	list_add(&page->lru, &list);
437 	free_pages_bulk(zone, 1, &list, order);
438 }
439 
440 static void __free_pages_ok(struct page *page, unsigned int order)
441 {
442 	unsigned long flags;
443 	int i;
444 	int reserved = 0;
445 
446 	arch_free_page(page, order);
447 	if (!PageHighMem(page))
448 		debug_check_no_locks_freed(page_address(page),
449 					   PAGE_SIZE<<order);
450 
451 	for (i = 0 ; i < (1 << order) ; ++i)
452 		reserved += free_pages_check(page + i);
453 	if (reserved)
454 		return;
455 
456 	kernel_map_pages(page, 1 << order, 0);
457 	local_irq_save(flags);
458 	__count_vm_events(PGFREE, 1 << order);
459 	free_one_page(page_zone(page), page, order);
460 	local_irq_restore(flags);
461 }
462 
463 /*
464  * permit the bootmem allocator to evade page validation on high-order frees
465  */
466 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
467 {
468 	if (order == 0) {
469 		__ClearPageReserved(page);
470 		set_page_count(page, 0);
471 		set_page_refcounted(page);
472 		__free_page(page);
473 	} else {
474 		int loop;
475 
476 		prefetchw(page);
477 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
478 			struct page *p = &page[loop];
479 
480 			if (loop + 1 < BITS_PER_LONG)
481 				prefetchw(p + 1);
482 			__ClearPageReserved(p);
483 			set_page_count(p, 0);
484 		}
485 
486 		set_page_refcounted(page);
487 		__free_pages(page, order);
488 	}
489 }
490 
491 
492 /*
493  * The order of subdivision here is critical for the IO subsystem.
494  * Please do not alter this order without good reasons and regression
495  * testing. Specifically, as large blocks of memory are subdivided,
496  * the order in which smaller blocks are delivered depends on the order
497  * they're subdivided in this function. This is the primary factor
498  * influencing the order in which pages are delivered to the IO
499  * subsystem according to empirical testing, and this is also justified
500  * by considering the behavior of a buddy system containing a single
501  * large block of memory acted on by a series of small allocations.
502  * This behavior is a critical factor in sglist merging's success.
503  *
504  * -- wli
505  */
506 static inline void expand(struct zone *zone, struct page *page,
507  	int low, int high, struct free_area *area)
508 {
509 	unsigned long size = 1 << high;
510 
511 	while (high > low) {
512 		area--;
513 		high--;
514 		size >>= 1;
515 		BUG_ON(bad_range(zone, &page[size]));
516 		list_add(&page[size].lru, &area->free_list);
517 		area->nr_free++;
518 		set_page_order(&page[size], high);
519 	}
520 }
521 
522 /*
523  * This page is about to be returned from the page allocator
524  */
525 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
526 {
527 	if (unlikely(page_mapcount(page) |
528 		(page->mapping != NULL)  |
529 		(page_count(page) != 0)  |
530 		(page->flags & (
531 			1 << PG_lru	|
532 			1 << PG_private	|
533 			1 << PG_locked	|
534 			1 << PG_active	|
535 			1 << PG_dirty	|
536 			1 << PG_reclaim	|
537 			1 << PG_slab    |
538 			1 << PG_swapcache |
539 			1 << PG_writeback |
540 			1 << PG_reserved |
541 			1 << PG_buddy ))))
542 		bad_page(page);
543 
544 	/*
545 	 * For now, we report if PG_reserved was found set, but do not
546 	 * clear it, and do not allocate the page: as a safety net.
547 	 */
548 	if (PageReserved(page))
549 		return 1;
550 
551 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
552 			1 << PG_referenced | 1 << PG_arch_1 |
553 			1 << PG_checked | 1 << PG_mappedtodisk);
554 	set_page_private(page, 0);
555 	set_page_refcounted(page);
556 	kernel_map_pages(page, 1 << order, 1);
557 
558 	if (gfp_flags & __GFP_ZERO)
559 		prep_zero_page(page, order, gfp_flags);
560 
561 	if (order && (gfp_flags & __GFP_COMP))
562 		prep_compound_page(page, order);
563 
564 	return 0;
565 }
566 
567 /*
568  * Do the hard work of removing an element from the buddy allocator.
569  * Call me with the zone->lock already held.
570  */
571 static struct page *__rmqueue(struct zone *zone, unsigned int order)
572 {
573 	struct free_area * area;
574 	unsigned int current_order;
575 	struct page *page;
576 
577 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
578 		area = zone->free_area + current_order;
579 		if (list_empty(&area->free_list))
580 			continue;
581 
582 		page = list_entry(area->free_list.next, struct page, lru);
583 		list_del(&page->lru);
584 		rmv_page_order(page);
585 		area->nr_free--;
586 		zone->free_pages -= 1UL << order;
587 		expand(zone, page, order, current_order, area);
588 		return page;
589 	}
590 
591 	return NULL;
592 }
593 
594 /*
595  * Obtain a specified number of elements from the buddy allocator, all under
596  * a single hold of the lock, for efficiency.  Add them to the supplied list.
597  * Returns the number of new pages which were placed at *list.
598  */
599 static int rmqueue_bulk(struct zone *zone, unsigned int order,
600 			unsigned long count, struct list_head *list)
601 {
602 	int i;
603 
604 	spin_lock(&zone->lock);
605 	for (i = 0; i < count; ++i) {
606 		struct page *page = __rmqueue(zone, order);
607 		if (unlikely(page == NULL))
608 			break;
609 		list_add_tail(&page->lru, list);
610 	}
611 	spin_unlock(&zone->lock);
612 	return i;
613 }
614 
615 #ifdef CONFIG_NUMA
616 /*
617  * Called from the slab reaper to drain pagesets on a particular node that
618  * belong to the currently executing processor.
619  * Note that this function must be called with the thread pinned to
620  * a single processor.
621  */
622 void drain_node_pages(int nodeid)
623 {
624 	int i, z;
625 	unsigned long flags;
626 
627 	for (z = 0; z < MAX_NR_ZONES; z++) {
628 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
629 		struct per_cpu_pageset *pset;
630 
631 		pset = zone_pcp(zone, smp_processor_id());
632 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
633 			struct per_cpu_pages *pcp;
634 
635 			pcp = &pset->pcp[i];
636 			if (pcp->count) {
637 				local_irq_save(flags);
638 				free_pages_bulk(zone, pcp->count, &pcp->list, 0);
639 				pcp->count = 0;
640 				local_irq_restore(flags);
641 			}
642 		}
643 	}
644 }
645 #endif
646 
647 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
648 static void __drain_pages(unsigned int cpu)
649 {
650 	unsigned long flags;
651 	struct zone *zone;
652 	int i;
653 
654 	for_each_zone(zone) {
655 		struct per_cpu_pageset *pset;
656 
657 		pset = zone_pcp(zone, cpu);
658 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
659 			struct per_cpu_pages *pcp;
660 
661 			pcp = &pset->pcp[i];
662 			local_irq_save(flags);
663 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
664 			pcp->count = 0;
665 			local_irq_restore(flags);
666 		}
667 	}
668 }
669 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
670 
671 #ifdef CONFIG_PM
672 
673 void mark_free_pages(struct zone *zone)
674 {
675 	unsigned long zone_pfn, flags;
676 	int order;
677 	struct list_head *curr;
678 
679 	if (!zone->spanned_pages)
680 		return;
681 
682 	spin_lock_irqsave(&zone->lock, flags);
683 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
684 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
685 
686 	for (order = MAX_ORDER - 1; order >= 0; --order)
687 		list_for_each(curr, &zone->free_area[order].free_list) {
688 			unsigned long start_pfn, i;
689 
690 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
691 
692 			for (i=0; i < (1<<order); i++)
693 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
694 	}
695 	spin_unlock_irqrestore(&zone->lock, flags);
696 }
697 
698 /*
699  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
700  */
701 void drain_local_pages(void)
702 {
703 	unsigned long flags;
704 
705 	local_irq_save(flags);
706 	__drain_pages(smp_processor_id());
707 	local_irq_restore(flags);
708 }
709 #endif /* CONFIG_PM */
710 
711 /*
712  * Free a 0-order page
713  */
714 static void fastcall free_hot_cold_page(struct page *page, int cold)
715 {
716 	struct zone *zone = page_zone(page);
717 	struct per_cpu_pages *pcp;
718 	unsigned long flags;
719 
720 	arch_free_page(page, 0);
721 
722 	if (PageAnon(page))
723 		page->mapping = NULL;
724 	if (free_pages_check(page))
725 		return;
726 
727 	kernel_map_pages(page, 1, 0);
728 
729 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
730 	local_irq_save(flags);
731 	__count_vm_event(PGFREE);
732 	list_add(&page->lru, &pcp->list);
733 	pcp->count++;
734 	if (pcp->count >= pcp->high) {
735 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
736 		pcp->count -= pcp->batch;
737 	}
738 	local_irq_restore(flags);
739 	put_cpu();
740 }
741 
742 void fastcall free_hot_page(struct page *page)
743 {
744 	free_hot_cold_page(page, 0);
745 }
746 
747 void fastcall free_cold_page(struct page *page)
748 {
749 	free_hot_cold_page(page, 1);
750 }
751 
752 /*
753  * split_page takes a non-compound higher-order page, and splits it into
754  * n (1<<order) sub-pages: page[0..n]
755  * Each sub-page must be freed individually.
756  *
757  * Note: this is probably too low level an operation for use in drivers.
758  * Please consult with lkml before using this in your driver.
759  */
760 void split_page(struct page *page, unsigned int order)
761 {
762 	int i;
763 
764 	BUG_ON(PageCompound(page));
765 	BUG_ON(!page_count(page));
766 	for (i = 1; i < (1 << order); i++)
767 		set_page_refcounted(page + i);
768 }
769 
770 /*
771  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
772  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
773  * or two.
774  */
775 static struct page *buffered_rmqueue(struct zonelist *zonelist,
776 			struct zone *zone, int order, gfp_t gfp_flags)
777 {
778 	unsigned long flags;
779 	struct page *page;
780 	int cold = !!(gfp_flags & __GFP_COLD);
781 	int cpu;
782 
783 again:
784 	cpu  = get_cpu();
785 	if (likely(order == 0)) {
786 		struct per_cpu_pages *pcp;
787 
788 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
789 		local_irq_save(flags);
790 		if (!pcp->count) {
791 			pcp->count += rmqueue_bulk(zone, 0,
792 						pcp->batch, &pcp->list);
793 			if (unlikely(!pcp->count))
794 				goto failed;
795 		}
796 		page = list_entry(pcp->list.next, struct page, lru);
797 		list_del(&page->lru);
798 		pcp->count--;
799 	} else {
800 		spin_lock_irqsave(&zone->lock, flags);
801 		page = __rmqueue(zone, order);
802 		spin_unlock(&zone->lock);
803 		if (!page)
804 			goto failed;
805 	}
806 
807 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
808 	zone_statistics(zonelist, zone);
809 	local_irq_restore(flags);
810 	put_cpu();
811 
812 	BUG_ON(bad_range(zone, page));
813 	if (prep_new_page(page, order, gfp_flags))
814 		goto again;
815 	return page;
816 
817 failed:
818 	local_irq_restore(flags);
819 	put_cpu();
820 	return NULL;
821 }
822 
823 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
824 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
825 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
826 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
827 #define ALLOC_HARDER		0x10 /* try to alloc harder */
828 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
829 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
830 
831 /*
832  * Return 1 if free pages are above 'mark'. This takes into account the order
833  * of the allocation.
834  */
835 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
836 		      int classzone_idx, int alloc_flags)
837 {
838 	/* free_pages my go negative - that's OK */
839 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
840 	int o;
841 
842 	if (alloc_flags & ALLOC_HIGH)
843 		min -= min / 2;
844 	if (alloc_flags & ALLOC_HARDER)
845 		min -= min / 4;
846 
847 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
848 		return 0;
849 	for (o = 0; o < order; o++) {
850 		/* At the next order, this order's pages become unavailable */
851 		free_pages -= z->free_area[o].nr_free << o;
852 
853 		/* Require fewer higher order pages to be free */
854 		min >>= 1;
855 
856 		if (free_pages <= min)
857 			return 0;
858 	}
859 	return 1;
860 }
861 
862 /*
863  * get_page_from_freeliest goes through the zonelist trying to allocate
864  * a page.
865  */
866 static struct page *
867 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
868 		struct zonelist *zonelist, int alloc_flags)
869 {
870 	struct zone **z = zonelist->zones;
871 	struct page *page = NULL;
872 	int classzone_idx = zone_idx(*z);
873 
874 	/*
875 	 * Go through the zonelist once, looking for a zone with enough free.
876 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
877 	 */
878 	do {
879 		if ((alloc_flags & ALLOC_CPUSET) &&
880 				!cpuset_zone_allowed(*z, gfp_mask))
881 			continue;
882 
883 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
884 			unsigned long mark;
885 			if (alloc_flags & ALLOC_WMARK_MIN)
886 				mark = (*z)->pages_min;
887 			else if (alloc_flags & ALLOC_WMARK_LOW)
888 				mark = (*z)->pages_low;
889 			else
890 				mark = (*z)->pages_high;
891 			if (!zone_watermark_ok(*z, order, mark,
892 				    classzone_idx, alloc_flags))
893 				if (!zone_reclaim_mode ||
894 				    !zone_reclaim(*z, gfp_mask, order))
895 					continue;
896 		}
897 
898 		page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
899 		if (page) {
900 			break;
901 		}
902 	} while (*(++z) != NULL);
903 	return page;
904 }
905 
906 /*
907  * This is the 'heart' of the zoned buddy allocator.
908  */
909 struct page * fastcall
910 __alloc_pages(gfp_t gfp_mask, unsigned int order,
911 		struct zonelist *zonelist)
912 {
913 	const gfp_t wait = gfp_mask & __GFP_WAIT;
914 	struct zone **z;
915 	struct page *page;
916 	struct reclaim_state reclaim_state;
917 	struct task_struct *p = current;
918 	int do_retry;
919 	int alloc_flags;
920 	int did_some_progress;
921 
922 	might_sleep_if(wait);
923 
924 restart:
925 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
926 
927 	if (unlikely(*z == NULL)) {
928 		/* Should this ever happen?? */
929 		return NULL;
930 	}
931 
932 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
933 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
934 	if (page)
935 		goto got_pg;
936 
937 	do {
938 		wakeup_kswapd(*z, order);
939 	} while (*(++z));
940 
941 	/*
942 	 * OK, we're below the kswapd watermark and have kicked background
943 	 * reclaim. Now things get more complex, so set up alloc_flags according
944 	 * to how we want to proceed.
945 	 *
946 	 * The caller may dip into page reserves a bit more if the caller
947 	 * cannot run direct reclaim, or if the caller has realtime scheduling
948 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
949 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
950 	 */
951 	alloc_flags = ALLOC_WMARK_MIN;
952 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
953 		alloc_flags |= ALLOC_HARDER;
954 	if (gfp_mask & __GFP_HIGH)
955 		alloc_flags |= ALLOC_HIGH;
956 	if (wait)
957 		alloc_flags |= ALLOC_CPUSET;
958 
959 	/*
960 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
961 	 * coming from realtime tasks go deeper into reserves.
962 	 *
963 	 * This is the last chance, in general, before the goto nopage.
964 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
965 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
966 	 */
967 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
968 	if (page)
969 		goto got_pg;
970 
971 	/* This allocation should allow future memory freeing. */
972 
973 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
974 			&& !in_interrupt()) {
975 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
976 nofail_alloc:
977 			/* go through the zonelist yet again, ignoring mins */
978 			page = get_page_from_freelist(gfp_mask, order,
979 				zonelist, ALLOC_NO_WATERMARKS);
980 			if (page)
981 				goto got_pg;
982 			if (gfp_mask & __GFP_NOFAIL) {
983 				blk_congestion_wait(WRITE, HZ/50);
984 				goto nofail_alloc;
985 			}
986 		}
987 		goto nopage;
988 	}
989 
990 	/* Atomic allocations - we can't balance anything */
991 	if (!wait)
992 		goto nopage;
993 
994 rebalance:
995 	cond_resched();
996 
997 	/* We now go into synchronous reclaim */
998 	cpuset_memory_pressure_bump();
999 	p->flags |= PF_MEMALLOC;
1000 	reclaim_state.reclaimed_slab = 0;
1001 	p->reclaim_state = &reclaim_state;
1002 
1003 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1004 
1005 	p->reclaim_state = NULL;
1006 	p->flags &= ~PF_MEMALLOC;
1007 
1008 	cond_resched();
1009 
1010 	if (likely(did_some_progress)) {
1011 		page = get_page_from_freelist(gfp_mask, order,
1012 						zonelist, alloc_flags);
1013 		if (page)
1014 			goto got_pg;
1015 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1016 		/*
1017 		 * Go through the zonelist yet one more time, keep
1018 		 * very high watermark here, this is only to catch
1019 		 * a parallel oom killing, we must fail if we're still
1020 		 * under heavy pressure.
1021 		 */
1022 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1023 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1024 		if (page)
1025 			goto got_pg;
1026 
1027 		out_of_memory(zonelist, gfp_mask, order);
1028 		goto restart;
1029 	}
1030 
1031 	/*
1032 	 * Don't let big-order allocations loop unless the caller explicitly
1033 	 * requests that.  Wait for some write requests to complete then retry.
1034 	 *
1035 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1036 	 * <= 3, but that may not be true in other implementations.
1037 	 */
1038 	do_retry = 0;
1039 	if (!(gfp_mask & __GFP_NORETRY)) {
1040 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1041 			do_retry = 1;
1042 		if (gfp_mask & __GFP_NOFAIL)
1043 			do_retry = 1;
1044 	}
1045 	if (do_retry) {
1046 		blk_congestion_wait(WRITE, HZ/50);
1047 		goto rebalance;
1048 	}
1049 
1050 nopage:
1051 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1052 		printk(KERN_WARNING "%s: page allocation failure."
1053 			" order:%d, mode:0x%x\n",
1054 			p->comm, order, gfp_mask);
1055 		dump_stack();
1056 		show_mem();
1057 	}
1058 got_pg:
1059 	return page;
1060 }
1061 
1062 EXPORT_SYMBOL(__alloc_pages);
1063 
1064 /*
1065  * Common helper functions.
1066  */
1067 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1068 {
1069 	struct page * page;
1070 	page = alloc_pages(gfp_mask, order);
1071 	if (!page)
1072 		return 0;
1073 	return (unsigned long) page_address(page);
1074 }
1075 
1076 EXPORT_SYMBOL(__get_free_pages);
1077 
1078 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1079 {
1080 	struct page * page;
1081 
1082 	/*
1083 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1084 	 * a highmem page
1085 	 */
1086 	BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1087 
1088 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1089 	if (page)
1090 		return (unsigned long) page_address(page);
1091 	return 0;
1092 }
1093 
1094 EXPORT_SYMBOL(get_zeroed_page);
1095 
1096 void __pagevec_free(struct pagevec *pvec)
1097 {
1098 	int i = pagevec_count(pvec);
1099 
1100 	while (--i >= 0)
1101 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1102 }
1103 
1104 fastcall void __free_pages(struct page *page, unsigned int order)
1105 {
1106 	if (put_page_testzero(page)) {
1107 		if (order == 0)
1108 			free_hot_page(page);
1109 		else
1110 			__free_pages_ok(page, order);
1111 	}
1112 }
1113 
1114 EXPORT_SYMBOL(__free_pages);
1115 
1116 fastcall void free_pages(unsigned long addr, unsigned int order)
1117 {
1118 	if (addr != 0) {
1119 		BUG_ON(!virt_addr_valid((void *)addr));
1120 		__free_pages(virt_to_page((void *)addr), order);
1121 	}
1122 }
1123 
1124 EXPORT_SYMBOL(free_pages);
1125 
1126 /*
1127  * Total amount of free (allocatable) RAM:
1128  */
1129 unsigned int nr_free_pages(void)
1130 {
1131 	unsigned int sum = 0;
1132 	struct zone *zone;
1133 
1134 	for_each_zone(zone)
1135 		sum += zone->free_pages;
1136 
1137 	return sum;
1138 }
1139 
1140 EXPORT_SYMBOL(nr_free_pages);
1141 
1142 #ifdef CONFIG_NUMA
1143 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1144 {
1145 	unsigned int i, sum = 0;
1146 
1147 	for (i = 0; i < MAX_NR_ZONES; i++)
1148 		sum += pgdat->node_zones[i].free_pages;
1149 
1150 	return sum;
1151 }
1152 #endif
1153 
1154 static unsigned int nr_free_zone_pages(int offset)
1155 {
1156 	/* Just pick one node, since fallback list is circular */
1157 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1158 	unsigned int sum = 0;
1159 
1160 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1161 	struct zone **zonep = zonelist->zones;
1162 	struct zone *zone;
1163 
1164 	for (zone = *zonep++; zone; zone = *zonep++) {
1165 		unsigned long size = zone->present_pages;
1166 		unsigned long high = zone->pages_high;
1167 		if (size > high)
1168 			sum += size - high;
1169 	}
1170 
1171 	return sum;
1172 }
1173 
1174 /*
1175  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1176  */
1177 unsigned int nr_free_buffer_pages(void)
1178 {
1179 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1180 }
1181 
1182 /*
1183  * Amount of free RAM allocatable within all zones
1184  */
1185 unsigned int nr_free_pagecache_pages(void)
1186 {
1187 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1188 }
1189 
1190 #ifdef CONFIG_HIGHMEM
1191 unsigned int nr_free_highpages (void)
1192 {
1193 	pg_data_t *pgdat;
1194 	unsigned int pages = 0;
1195 
1196 	for_each_online_pgdat(pgdat)
1197 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1198 
1199 	return pages;
1200 }
1201 #endif
1202 
1203 #ifdef CONFIG_NUMA
1204 static void show_node(struct zone *zone)
1205 {
1206 	printk("Node %d ", zone->zone_pgdat->node_id);
1207 }
1208 #else
1209 #define show_node(zone)	do { } while (0)
1210 #endif
1211 
1212 void si_meminfo(struct sysinfo *val)
1213 {
1214 	val->totalram = totalram_pages;
1215 	val->sharedram = 0;
1216 	val->freeram = nr_free_pages();
1217 	val->bufferram = nr_blockdev_pages();
1218 #ifdef CONFIG_HIGHMEM
1219 	val->totalhigh = totalhigh_pages;
1220 	val->freehigh = nr_free_highpages();
1221 #else
1222 	val->totalhigh = 0;
1223 	val->freehigh = 0;
1224 #endif
1225 	val->mem_unit = PAGE_SIZE;
1226 }
1227 
1228 EXPORT_SYMBOL(si_meminfo);
1229 
1230 #ifdef CONFIG_NUMA
1231 void si_meminfo_node(struct sysinfo *val, int nid)
1232 {
1233 	pg_data_t *pgdat = NODE_DATA(nid);
1234 
1235 	val->totalram = pgdat->node_present_pages;
1236 	val->freeram = nr_free_pages_pgdat(pgdat);
1237 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1238 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1239 	val->mem_unit = PAGE_SIZE;
1240 }
1241 #endif
1242 
1243 #define K(x) ((x) << (PAGE_SHIFT-10))
1244 
1245 /*
1246  * Show free area list (used inside shift_scroll-lock stuff)
1247  * We also calculate the percentage fragmentation. We do this by counting the
1248  * memory on each free list with the exception of the first item on the list.
1249  */
1250 void show_free_areas(void)
1251 {
1252 	int cpu, temperature;
1253 	unsigned long active;
1254 	unsigned long inactive;
1255 	unsigned long free;
1256 	struct zone *zone;
1257 
1258 	for_each_zone(zone) {
1259 		show_node(zone);
1260 		printk("%s per-cpu:", zone->name);
1261 
1262 		if (!populated_zone(zone)) {
1263 			printk(" empty\n");
1264 			continue;
1265 		} else
1266 			printk("\n");
1267 
1268 		for_each_online_cpu(cpu) {
1269 			struct per_cpu_pageset *pageset;
1270 
1271 			pageset = zone_pcp(zone, cpu);
1272 
1273 			for (temperature = 0; temperature < 2; temperature++)
1274 				printk("cpu %d %s: high %d, batch %d used:%d\n",
1275 					cpu,
1276 					temperature ? "cold" : "hot",
1277 					pageset->pcp[temperature].high,
1278 					pageset->pcp[temperature].batch,
1279 					pageset->pcp[temperature].count);
1280 		}
1281 	}
1282 
1283 	get_zone_counts(&active, &inactive, &free);
1284 
1285 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1286 		K(nr_free_pages()),
1287 		K(nr_free_highpages()));
1288 
1289 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1290 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1291 		active,
1292 		inactive,
1293 		global_page_state(NR_FILE_DIRTY),
1294 		global_page_state(NR_WRITEBACK),
1295 		global_page_state(NR_UNSTABLE_NFS),
1296 		nr_free_pages(),
1297 		global_page_state(NR_SLAB),
1298 		global_page_state(NR_FILE_MAPPED),
1299 		global_page_state(NR_PAGETABLE));
1300 
1301 	for_each_zone(zone) {
1302 		int i;
1303 
1304 		show_node(zone);
1305 		printk("%s"
1306 			" free:%lukB"
1307 			" min:%lukB"
1308 			" low:%lukB"
1309 			" high:%lukB"
1310 			" active:%lukB"
1311 			" inactive:%lukB"
1312 			" present:%lukB"
1313 			" pages_scanned:%lu"
1314 			" all_unreclaimable? %s"
1315 			"\n",
1316 			zone->name,
1317 			K(zone->free_pages),
1318 			K(zone->pages_min),
1319 			K(zone->pages_low),
1320 			K(zone->pages_high),
1321 			K(zone->nr_active),
1322 			K(zone->nr_inactive),
1323 			K(zone->present_pages),
1324 			zone->pages_scanned,
1325 			(zone->all_unreclaimable ? "yes" : "no")
1326 			);
1327 		printk("lowmem_reserve[]:");
1328 		for (i = 0; i < MAX_NR_ZONES; i++)
1329 			printk(" %lu", zone->lowmem_reserve[i]);
1330 		printk("\n");
1331 	}
1332 
1333 	for_each_zone(zone) {
1334  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1335 
1336 		show_node(zone);
1337 		printk("%s: ", zone->name);
1338 		if (!populated_zone(zone)) {
1339 			printk("empty\n");
1340 			continue;
1341 		}
1342 
1343 		spin_lock_irqsave(&zone->lock, flags);
1344 		for (order = 0; order < MAX_ORDER; order++) {
1345 			nr[order] = zone->free_area[order].nr_free;
1346 			total += nr[order] << order;
1347 		}
1348 		spin_unlock_irqrestore(&zone->lock, flags);
1349 		for (order = 0; order < MAX_ORDER; order++)
1350 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1351 		printk("= %lukB\n", K(total));
1352 	}
1353 
1354 	show_swap_cache_info();
1355 }
1356 
1357 /*
1358  * Builds allocation fallback zone lists.
1359  *
1360  * Add all populated zones of a node to the zonelist.
1361  */
1362 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1363 			struct zonelist *zonelist, int nr_zones, int zone_type)
1364 {
1365 	struct zone *zone;
1366 
1367 	BUG_ON(zone_type > ZONE_HIGHMEM);
1368 
1369 	do {
1370 		zone = pgdat->node_zones + zone_type;
1371 		if (populated_zone(zone)) {
1372 #ifndef CONFIG_HIGHMEM
1373 			BUG_ON(zone_type > ZONE_NORMAL);
1374 #endif
1375 			zonelist->zones[nr_zones++] = zone;
1376 			check_highest_zone(zone_type);
1377 		}
1378 		zone_type--;
1379 
1380 	} while (zone_type >= 0);
1381 	return nr_zones;
1382 }
1383 
1384 static inline int highest_zone(int zone_bits)
1385 {
1386 	int res = ZONE_NORMAL;
1387 	if (zone_bits & (__force int)__GFP_HIGHMEM)
1388 		res = ZONE_HIGHMEM;
1389 	if (zone_bits & (__force int)__GFP_DMA32)
1390 		res = ZONE_DMA32;
1391 	if (zone_bits & (__force int)__GFP_DMA)
1392 		res = ZONE_DMA;
1393 	return res;
1394 }
1395 
1396 #ifdef CONFIG_NUMA
1397 #define MAX_NODE_LOAD (num_online_nodes())
1398 static int __meminitdata node_load[MAX_NUMNODES];
1399 /**
1400  * find_next_best_node - find the next node that should appear in a given node's fallback list
1401  * @node: node whose fallback list we're appending
1402  * @used_node_mask: nodemask_t of already used nodes
1403  *
1404  * We use a number of factors to determine which is the next node that should
1405  * appear on a given node's fallback list.  The node should not have appeared
1406  * already in @node's fallback list, and it should be the next closest node
1407  * according to the distance array (which contains arbitrary distance values
1408  * from each node to each node in the system), and should also prefer nodes
1409  * with no CPUs, since presumably they'll have very little allocation pressure
1410  * on them otherwise.
1411  * It returns -1 if no node is found.
1412  */
1413 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1414 {
1415 	int n, val;
1416 	int min_val = INT_MAX;
1417 	int best_node = -1;
1418 
1419 	/* Use the local node if we haven't already */
1420 	if (!node_isset(node, *used_node_mask)) {
1421 		node_set(node, *used_node_mask);
1422 		return node;
1423 	}
1424 
1425 	for_each_online_node(n) {
1426 		cpumask_t tmp;
1427 
1428 		/* Don't want a node to appear more than once */
1429 		if (node_isset(n, *used_node_mask))
1430 			continue;
1431 
1432 		/* Use the distance array to find the distance */
1433 		val = node_distance(node, n);
1434 
1435 		/* Penalize nodes under us ("prefer the next node") */
1436 		val += (n < node);
1437 
1438 		/* Give preference to headless and unused nodes */
1439 		tmp = node_to_cpumask(n);
1440 		if (!cpus_empty(tmp))
1441 			val += PENALTY_FOR_NODE_WITH_CPUS;
1442 
1443 		/* Slight preference for less loaded node */
1444 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1445 		val += node_load[n];
1446 
1447 		if (val < min_val) {
1448 			min_val = val;
1449 			best_node = n;
1450 		}
1451 	}
1452 
1453 	if (best_node >= 0)
1454 		node_set(best_node, *used_node_mask);
1455 
1456 	return best_node;
1457 }
1458 
1459 static void __meminit build_zonelists(pg_data_t *pgdat)
1460 {
1461 	int i, j, k, node, local_node;
1462 	int prev_node, load;
1463 	struct zonelist *zonelist;
1464 	nodemask_t used_mask;
1465 
1466 	/* initialize zonelists */
1467 	for (i = 0; i < GFP_ZONETYPES; i++) {
1468 		zonelist = pgdat->node_zonelists + i;
1469 		zonelist->zones[0] = NULL;
1470 	}
1471 
1472 	/* NUMA-aware ordering of nodes */
1473 	local_node = pgdat->node_id;
1474 	load = num_online_nodes();
1475 	prev_node = local_node;
1476 	nodes_clear(used_mask);
1477 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1478 		int distance = node_distance(local_node, node);
1479 
1480 		/*
1481 		 * If another node is sufficiently far away then it is better
1482 		 * to reclaim pages in a zone before going off node.
1483 		 */
1484 		if (distance > RECLAIM_DISTANCE)
1485 			zone_reclaim_mode = 1;
1486 
1487 		/*
1488 		 * We don't want to pressure a particular node.
1489 		 * So adding penalty to the first node in same
1490 		 * distance group to make it round-robin.
1491 		 */
1492 
1493 		if (distance != node_distance(local_node, prev_node))
1494 			node_load[node] += load;
1495 		prev_node = node;
1496 		load--;
1497 		for (i = 0; i < GFP_ZONETYPES; i++) {
1498 			zonelist = pgdat->node_zonelists + i;
1499 			for (j = 0; zonelist->zones[j] != NULL; j++);
1500 
1501 			k = highest_zone(i);
1502 
1503 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1504 			zonelist->zones[j] = NULL;
1505 		}
1506 	}
1507 }
1508 
1509 #else	/* CONFIG_NUMA */
1510 
1511 static void __meminit build_zonelists(pg_data_t *pgdat)
1512 {
1513 	int i, j, k, node, local_node;
1514 
1515 	local_node = pgdat->node_id;
1516 	for (i = 0; i < GFP_ZONETYPES; i++) {
1517 		struct zonelist *zonelist;
1518 
1519 		zonelist = pgdat->node_zonelists + i;
1520 
1521 		j = 0;
1522 		k = highest_zone(i);
1523  		j = build_zonelists_node(pgdat, zonelist, j, k);
1524  		/*
1525  		 * Now we build the zonelist so that it contains the zones
1526  		 * of all the other nodes.
1527  		 * We don't want to pressure a particular node, so when
1528  		 * building the zones for node N, we make sure that the
1529  		 * zones coming right after the local ones are those from
1530  		 * node N+1 (modulo N)
1531  		 */
1532 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1533 			if (!node_online(node))
1534 				continue;
1535 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1536 		}
1537 		for (node = 0; node < local_node; node++) {
1538 			if (!node_online(node))
1539 				continue;
1540 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1541 		}
1542 
1543 		zonelist->zones[j] = NULL;
1544 	}
1545 }
1546 
1547 #endif	/* CONFIG_NUMA */
1548 
1549 /* return values int ....just for stop_machine_run() */
1550 static int __meminit __build_all_zonelists(void *dummy)
1551 {
1552 	int nid;
1553 	for_each_online_node(nid)
1554 		build_zonelists(NODE_DATA(nid));
1555 	return 0;
1556 }
1557 
1558 void __meminit build_all_zonelists(void)
1559 {
1560 	if (system_state == SYSTEM_BOOTING) {
1561 		__build_all_zonelists(0);
1562 		cpuset_init_current_mems_allowed();
1563 	} else {
1564 		/* we have to stop all cpus to guaranntee there is no user
1565 		   of zonelist */
1566 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1567 		/* cpuset refresh routine should be here */
1568 	}
1569 	vm_total_pages = nr_free_pagecache_pages();
1570 	printk("Built %i zonelists.  Total pages: %ld\n",
1571 			num_online_nodes(), vm_total_pages);
1572 }
1573 
1574 /*
1575  * Helper functions to size the waitqueue hash table.
1576  * Essentially these want to choose hash table sizes sufficiently
1577  * large so that collisions trying to wait on pages are rare.
1578  * But in fact, the number of active page waitqueues on typical
1579  * systems is ridiculously low, less than 200. So this is even
1580  * conservative, even though it seems large.
1581  *
1582  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1583  * waitqueues, i.e. the size of the waitq table given the number of pages.
1584  */
1585 #define PAGES_PER_WAITQUEUE	256
1586 
1587 #ifndef CONFIG_MEMORY_HOTPLUG
1588 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1589 {
1590 	unsigned long size = 1;
1591 
1592 	pages /= PAGES_PER_WAITQUEUE;
1593 
1594 	while (size < pages)
1595 		size <<= 1;
1596 
1597 	/*
1598 	 * Once we have dozens or even hundreds of threads sleeping
1599 	 * on IO we've got bigger problems than wait queue collision.
1600 	 * Limit the size of the wait table to a reasonable size.
1601 	 */
1602 	size = min(size, 4096UL);
1603 
1604 	return max(size, 4UL);
1605 }
1606 #else
1607 /*
1608  * A zone's size might be changed by hot-add, so it is not possible to determine
1609  * a suitable size for its wait_table.  So we use the maximum size now.
1610  *
1611  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1612  *
1613  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1614  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1615  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1616  *
1617  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1618  * or more by the traditional way. (See above).  It equals:
1619  *
1620  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1621  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1622  *    powerpc (64K page size)             : =  (32G +16M)byte.
1623  */
1624 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1625 {
1626 	return 4096UL;
1627 }
1628 #endif
1629 
1630 /*
1631  * This is an integer logarithm so that shifts can be used later
1632  * to extract the more random high bits from the multiplicative
1633  * hash function before the remainder is taken.
1634  */
1635 static inline unsigned long wait_table_bits(unsigned long size)
1636 {
1637 	return ffz(~size);
1638 }
1639 
1640 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1641 
1642 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1643 		unsigned long *zones_size, unsigned long *zholes_size)
1644 {
1645 	unsigned long realtotalpages, totalpages = 0;
1646 	int i;
1647 
1648 	for (i = 0; i < MAX_NR_ZONES; i++)
1649 		totalpages += zones_size[i];
1650 	pgdat->node_spanned_pages = totalpages;
1651 
1652 	realtotalpages = totalpages;
1653 	if (zholes_size)
1654 		for (i = 0; i < MAX_NR_ZONES; i++)
1655 			realtotalpages -= zholes_size[i];
1656 	pgdat->node_present_pages = realtotalpages;
1657 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1658 }
1659 
1660 
1661 /*
1662  * Initially all pages are reserved - free ones are freed
1663  * up by free_all_bootmem() once the early boot process is
1664  * done. Non-atomic initialization, single-pass.
1665  */
1666 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1667 		unsigned long start_pfn)
1668 {
1669 	struct page *page;
1670 	unsigned long end_pfn = start_pfn + size;
1671 	unsigned long pfn;
1672 
1673 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1674 		if (!early_pfn_valid(pfn))
1675 			continue;
1676 		page = pfn_to_page(pfn);
1677 		set_page_links(page, zone, nid, pfn);
1678 		init_page_count(page);
1679 		reset_page_mapcount(page);
1680 		SetPageReserved(page);
1681 		INIT_LIST_HEAD(&page->lru);
1682 #ifdef WANT_PAGE_VIRTUAL
1683 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1684 		if (!is_highmem_idx(zone))
1685 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1686 #endif
1687 	}
1688 }
1689 
1690 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1691 				unsigned long size)
1692 {
1693 	int order;
1694 	for (order = 0; order < MAX_ORDER ; order++) {
1695 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1696 		zone->free_area[order].nr_free = 0;
1697 	}
1698 }
1699 
1700 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1701 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1702 		unsigned long size)
1703 {
1704 	unsigned long snum = pfn_to_section_nr(pfn);
1705 	unsigned long end = pfn_to_section_nr(pfn + size);
1706 
1707 	if (FLAGS_HAS_NODE)
1708 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1709 	else
1710 		for (; snum <= end; snum++)
1711 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1712 }
1713 
1714 #ifndef __HAVE_ARCH_MEMMAP_INIT
1715 #define memmap_init(size, nid, zone, start_pfn) \
1716 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1717 #endif
1718 
1719 static int __cpuinit zone_batchsize(struct zone *zone)
1720 {
1721 	int batch;
1722 
1723 	/*
1724 	 * The per-cpu-pages pools are set to around 1000th of the
1725 	 * size of the zone.  But no more than 1/2 of a meg.
1726 	 *
1727 	 * OK, so we don't know how big the cache is.  So guess.
1728 	 */
1729 	batch = zone->present_pages / 1024;
1730 	if (batch * PAGE_SIZE > 512 * 1024)
1731 		batch = (512 * 1024) / PAGE_SIZE;
1732 	batch /= 4;		/* We effectively *= 4 below */
1733 	if (batch < 1)
1734 		batch = 1;
1735 
1736 	/*
1737 	 * Clamp the batch to a 2^n - 1 value. Having a power
1738 	 * of 2 value was found to be more likely to have
1739 	 * suboptimal cache aliasing properties in some cases.
1740 	 *
1741 	 * For example if 2 tasks are alternately allocating
1742 	 * batches of pages, one task can end up with a lot
1743 	 * of pages of one half of the possible page colors
1744 	 * and the other with pages of the other colors.
1745 	 */
1746 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
1747 
1748 	return batch;
1749 }
1750 
1751 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1752 {
1753 	struct per_cpu_pages *pcp;
1754 
1755 	memset(p, 0, sizeof(*p));
1756 
1757 	pcp = &p->pcp[0];		/* hot */
1758 	pcp->count = 0;
1759 	pcp->high = 6 * batch;
1760 	pcp->batch = max(1UL, 1 * batch);
1761 	INIT_LIST_HEAD(&pcp->list);
1762 
1763 	pcp = &p->pcp[1];		/* cold*/
1764 	pcp->count = 0;
1765 	pcp->high = 2 * batch;
1766 	pcp->batch = max(1UL, batch/2);
1767 	INIT_LIST_HEAD(&pcp->list);
1768 }
1769 
1770 /*
1771  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1772  * to the value high for the pageset p.
1773  */
1774 
1775 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1776 				unsigned long high)
1777 {
1778 	struct per_cpu_pages *pcp;
1779 
1780 	pcp = &p->pcp[0]; /* hot list */
1781 	pcp->high = high;
1782 	pcp->batch = max(1UL, high/4);
1783 	if ((high/4) > (PAGE_SHIFT * 8))
1784 		pcp->batch = PAGE_SHIFT * 8;
1785 }
1786 
1787 
1788 #ifdef CONFIG_NUMA
1789 /*
1790  * Boot pageset table. One per cpu which is going to be used for all
1791  * zones and all nodes. The parameters will be set in such a way
1792  * that an item put on a list will immediately be handed over to
1793  * the buddy list. This is safe since pageset manipulation is done
1794  * with interrupts disabled.
1795  *
1796  * Some NUMA counter updates may also be caught by the boot pagesets.
1797  *
1798  * The boot_pagesets must be kept even after bootup is complete for
1799  * unused processors and/or zones. They do play a role for bootstrapping
1800  * hotplugged processors.
1801  *
1802  * zoneinfo_show() and maybe other functions do
1803  * not check if the processor is online before following the pageset pointer.
1804  * Other parts of the kernel may not check if the zone is available.
1805  */
1806 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1807 
1808 /*
1809  * Dynamically allocate memory for the
1810  * per cpu pageset array in struct zone.
1811  */
1812 static int __cpuinit process_zones(int cpu)
1813 {
1814 	struct zone *zone, *dzone;
1815 
1816 	for_each_zone(zone) {
1817 
1818 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1819 					 GFP_KERNEL, cpu_to_node(cpu));
1820 		if (!zone_pcp(zone, cpu))
1821 			goto bad;
1822 
1823 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1824 
1825 		if (percpu_pagelist_fraction)
1826 			setup_pagelist_highmark(zone_pcp(zone, cpu),
1827 			 	(zone->present_pages / percpu_pagelist_fraction));
1828 	}
1829 
1830 	return 0;
1831 bad:
1832 	for_each_zone(dzone) {
1833 		if (dzone == zone)
1834 			break;
1835 		kfree(zone_pcp(dzone, cpu));
1836 		zone_pcp(dzone, cpu) = NULL;
1837 	}
1838 	return -ENOMEM;
1839 }
1840 
1841 static inline void free_zone_pagesets(int cpu)
1842 {
1843 	struct zone *zone;
1844 
1845 	for_each_zone(zone) {
1846 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1847 
1848 		zone_pcp(zone, cpu) = NULL;
1849 		kfree(pset);
1850 	}
1851 }
1852 
1853 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1854 		unsigned long action,
1855 		void *hcpu)
1856 {
1857 	int cpu = (long)hcpu;
1858 	int ret = NOTIFY_OK;
1859 
1860 	switch (action) {
1861 		case CPU_UP_PREPARE:
1862 			if (process_zones(cpu))
1863 				ret = NOTIFY_BAD;
1864 			break;
1865 		case CPU_UP_CANCELED:
1866 		case CPU_DEAD:
1867 			free_zone_pagesets(cpu);
1868 			break;
1869 		default:
1870 			break;
1871 	}
1872 	return ret;
1873 }
1874 
1875 static struct notifier_block __cpuinitdata pageset_notifier =
1876 	{ &pageset_cpuup_callback, NULL, 0 };
1877 
1878 void __init setup_per_cpu_pageset(void)
1879 {
1880 	int err;
1881 
1882 	/* Initialize per_cpu_pageset for cpu 0.
1883 	 * A cpuup callback will do this for every cpu
1884 	 * as it comes online
1885 	 */
1886 	err = process_zones(smp_processor_id());
1887 	BUG_ON(err);
1888 	register_cpu_notifier(&pageset_notifier);
1889 }
1890 
1891 #endif
1892 
1893 static __meminit
1894 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1895 {
1896 	int i;
1897 	struct pglist_data *pgdat = zone->zone_pgdat;
1898 	size_t alloc_size;
1899 
1900 	/*
1901 	 * The per-page waitqueue mechanism uses hashed waitqueues
1902 	 * per zone.
1903 	 */
1904 	zone->wait_table_hash_nr_entries =
1905 		 wait_table_hash_nr_entries(zone_size_pages);
1906 	zone->wait_table_bits =
1907 		wait_table_bits(zone->wait_table_hash_nr_entries);
1908 	alloc_size = zone->wait_table_hash_nr_entries
1909 					* sizeof(wait_queue_head_t);
1910 
1911  	if (system_state == SYSTEM_BOOTING) {
1912 		zone->wait_table = (wait_queue_head_t *)
1913 			alloc_bootmem_node(pgdat, alloc_size);
1914 	} else {
1915 		/*
1916 		 * This case means that a zone whose size was 0 gets new memory
1917 		 * via memory hot-add.
1918 		 * But it may be the case that a new node was hot-added.  In
1919 		 * this case vmalloc() will not be able to use this new node's
1920 		 * memory - this wait_table must be initialized to use this new
1921 		 * node itself as well.
1922 		 * To use this new node's memory, further consideration will be
1923 		 * necessary.
1924 		 */
1925 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1926 	}
1927 	if (!zone->wait_table)
1928 		return -ENOMEM;
1929 
1930 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1931 		init_waitqueue_head(zone->wait_table + i);
1932 
1933 	return 0;
1934 }
1935 
1936 static __meminit void zone_pcp_init(struct zone *zone)
1937 {
1938 	int cpu;
1939 	unsigned long batch = zone_batchsize(zone);
1940 
1941 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
1942 #ifdef CONFIG_NUMA
1943 		/* Early boot. Slab allocator not functional yet */
1944 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
1945 		setup_pageset(&boot_pageset[cpu],0);
1946 #else
1947 		setup_pageset(zone_pcp(zone,cpu), batch);
1948 #endif
1949 	}
1950 	if (zone->present_pages)
1951 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1952 			zone->name, zone->present_pages, batch);
1953 }
1954 
1955 __meminit int init_currently_empty_zone(struct zone *zone,
1956 					unsigned long zone_start_pfn,
1957 					unsigned long size)
1958 {
1959 	struct pglist_data *pgdat = zone->zone_pgdat;
1960 	int ret;
1961 	ret = zone_wait_table_init(zone, size);
1962 	if (ret)
1963 		return ret;
1964 	pgdat->nr_zones = zone_idx(zone) + 1;
1965 
1966 	zone->zone_start_pfn = zone_start_pfn;
1967 
1968 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1969 
1970 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1971 
1972 	return 0;
1973 }
1974 
1975 /*
1976  * Set up the zone data structures:
1977  *   - mark all pages reserved
1978  *   - mark all memory queues empty
1979  *   - clear the memory bitmaps
1980  */
1981 static void __meminit free_area_init_core(struct pglist_data *pgdat,
1982 		unsigned long *zones_size, unsigned long *zholes_size)
1983 {
1984 	unsigned long j;
1985 	int nid = pgdat->node_id;
1986 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1987 	int ret;
1988 
1989 	pgdat_resize_init(pgdat);
1990 	pgdat->nr_zones = 0;
1991 	init_waitqueue_head(&pgdat->kswapd_wait);
1992 	pgdat->kswapd_max_order = 0;
1993 
1994 	for (j = 0; j < MAX_NR_ZONES; j++) {
1995 		struct zone *zone = pgdat->node_zones + j;
1996 		unsigned long size, realsize;
1997 
1998 		realsize = size = zones_size[j];
1999 		if (zholes_size)
2000 			realsize -= zholes_size[j];
2001 
2002 		if (j < ZONE_HIGHMEM)
2003 			nr_kernel_pages += realsize;
2004 		nr_all_pages += realsize;
2005 
2006 		zone->spanned_pages = size;
2007 		zone->present_pages = realsize;
2008 #ifdef CONFIG_NUMA
2009 		zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
2010 						/ 100;
2011 #endif
2012 		zone->name = zone_names[j];
2013 		spin_lock_init(&zone->lock);
2014 		spin_lock_init(&zone->lru_lock);
2015 		zone_seqlock_init(zone);
2016 		zone->zone_pgdat = pgdat;
2017 		zone->free_pages = 0;
2018 
2019 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2020 
2021 		zone_pcp_init(zone);
2022 		INIT_LIST_HEAD(&zone->active_list);
2023 		INIT_LIST_HEAD(&zone->inactive_list);
2024 		zone->nr_scan_active = 0;
2025 		zone->nr_scan_inactive = 0;
2026 		zone->nr_active = 0;
2027 		zone->nr_inactive = 0;
2028 		zap_zone_vm_stats(zone);
2029 		atomic_set(&zone->reclaim_in_progress, 0);
2030 		if (!size)
2031 			continue;
2032 
2033 		zonetable_add(zone, nid, j, zone_start_pfn, size);
2034 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2035 		BUG_ON(ret);
2036 		zone_start_pfn += size;
2037 	}
2038 }
2039 
2040 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2041 {
2042 	/* Skip empty nodes */
2043 	if (!pgdat->node_spanned_pages)
2044 		return;
2045 
2046 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2047 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2048 	if (!pgdat->node_mem_map) {
2049 		unsigned long size, start, end;
2050 		struct page *map;
2051 
2052 		/*
2053 		 * The zone's endpoints aren't required to be MAX_ORDER
2054 		 * aligned but the node_mem_map endpoints must be in order
2055 		 * for the buddy allocator to function correctly.
2056 		 */
2057 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2058 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2059 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2060 		size =  (end - start) * sizeof(struct page);
2061 		map = alloc_remap(pgdat->node_id, size);
2062 		if (!map)
2063 			map = alloc_bootmem_node(pgdat, size);
2064 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2065 	}
2066 #ifdef CONFIG_FLATMEM
2067 	/*
2068 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2069 	 */
2070 	if (pgdat == NODE_DATA(0))
2071 		mem_map = NODE_DATA(0)->node_mem_map;
2072 #endif
2073 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2074 }
2075 
2076 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2077 		unsigned long *zones_size, unsigned long node_start_pfn,
2078 		unsigned long *zholes_size)
2079 {
2080 	pgdat->node_id = nid;
2081 	pgdat->node_start_pfn = node_start_pfn;
2082 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2083 
2084 	alloc_node_mem_map(pgdat);
2085 
2086 	free_area_init_core(pgdat, zones_size, zholes_size);
2087 }
2088 
2089 #ifndef CONFIG_NEED_MULTIPLE_NODES
2090 static bootmem_data_t contig_bootmem_data;
2091 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2092 
2093 EXPORT_SYMBOL(contig_page_data);
2094 #endif
2095 
2096 void __init free_area_init(unsigned long *zones_size)
2097 {
2098 	free_area_init_node(0, NODE_DATA(0), zones_size,
2099 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2100 }
2101 
2102 #ifdef CONFIG_HOTPLUG_CPU
2103 static int page_alloc_cpu_notify(struct notifier_block *self,
2104 				 unsigned long action, void *hcpu)
2105 {
2106 	int cpu = (unsigned long)hcpu;
2107 
2108 	if (action == CPU_DEAD) {
2109 		local_irq_disable();
2110 		__drain_pages(cpu);
2111 		vm_events_fold_cpu(cpu);
2112 		local_irq_enable();
2113 		refresh_cpu_vm_stats(cpu);
2114 	}
2115 	return NOTIFY_OK;
2116 }
2117 #endif /* CONFIG_HOTPLUG_CPU */
2118 
2119 void __init page_alloc_init(void)
2120 {
2121 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2122 }
2123 
2124 /*
2125  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2126  *	or min_free_kbytes changes.
2127  */
2128 static void calculate_totalreserve_pages(void)
2129 {
2130 	struct pglist_data *pgdat;
2131 	unsigned long reserve_pages = 0;
2132 	int i, j;
2133 
2134 	for_each_online_pgdat(pgdat) {
2135 		for (i = 0; i < MAX_NR_ZONES; i++) {
2136 			struct zone *zone = pgdat->node_zones + i;
2137 			unsigned long max = 0;
2138 
2139 			/* Find valid and maximum lowmem_reserve in the zone */
2140 			for (j = i; j < MAX_NR_ZONES; j++) {
2141 				if (zone->lowmem_reserve[j] > max)
2142 					max = zone->lowmem_reserve[j];
2143 			}
2144 
2145 			/* we treat pages_high as reserved pages. */
2146 			max += zone->pages_high;
2147 
2148 			if (max > zone->present_pages)
2149 				max = zone->present_pages;
2150 			reserve_pages += max;
2151 		}
2152 	}
2153 	totalreserve_pages = reserve_pages;
2154 }
2155 
2156 /*
2157  * setup_per_zone_lowmem_reserve - called whenever
2158  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2159  *	has a correct pages reserved value, so an adequate number of
2160  *	pages are left in the zone after a successful __alloc_pages().
2161  */
2162 static void setup_per_zone_lowmem_reserve(void)
2163 {
2164 	struct pglist_data *pgdat;
2165 	int j, idx;
2166 
2167 	for_each_online_pgdat(pgdat) {
2168 		for (j = 0; j < MAX_NR_ZONES; j++) {
2169 			struct zone *zone = pgdat->node_zones + j;
2170 			unsigned long present_pages = zone->present_pages;
2171 
2172 			zone->lowmem_reserve[j] = 0;
2173 
2174 			for (idx = j-1; idx >= 0; idx--) {
2175 				struct zone *lower_zone;
2176 
2177 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2178 					sysctl_lowmem_reserve_ratio[idx] = 1;
2179 
2180 				lower_zone = pgdat->node_zones + idx;
2181 				lower_zone->lowmem_reserve[j] = present_pages /
2182 					sysctl_lowmem_reserve_ratio[idx];
2183 				present_pages += lower_zone->present_pages;
2184 			}
2185 		}
2186 	}
2187 
2188 	/* update totalreserve_pages */
2189 	calculate_totalreserve_pages();
2190 }
2191 
2192 /*
2193  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2194  *	that the pages_{min,low,high} values for each zone are set correctly
2195  *	with respect to min_free_kbytes.
2196  */
2197 void setup_per_zone_pages_min(void)
2198 {
2199 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2200 	unsigned long lowmem_pages = 0;
2201 	struct zone *zone;
2202 	unsigned long flags;
2203 
2204 	/* Calculate total number of !ZONE_HIGHMEM pages */
2205 	for_each_zone(zone) {
2206 		if (!is_highmem(zone))
2207 			lowmem_pages += zone->present_pages;
2208 	}
2209 
2210 	for_each_zone(zone) {
2211 		u64 tmp;
2212 
2213 		spin_lock_irqsave(&zone->lru_lock, flags);
2214 		tmp = (u64)pages_min * zone->present_pages;
2215 		do_div(tmp, lowmem_pages);
2216 		if (is_highmem(zone)) {
2217 			/*
2218 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2219 			 * need highmem pages, so cap pages_min to a small
2220 			 * value here.
2221 			 *
2222 			 * The (pages_high-pages_low) and (pages_low-pages_min)
2223 			 * deltas controls asynch page reclaim, and so should
2224 			 * not be capped for highmem.
2225 			 */
2226 			int min_pages;
2227 
2228 			min_pages = zone->present_pages / 1024;
2229 			if (min_pages < SWAP_CLUSTER_MAX)
2230 				min_pages = SWAP_CLUSTER_MAX;
2231 			if (min_pages > 128)
2232 				min_pages = 128;
2233 			zone->pages_min = min_pages;
2234 		} else {
2235 			/*
2236 			 * If it's a lowmem zone, reserve a number of pages
2237 			 * proportionate to the zone's size.
2238 			 */
2239 			zone->pages_min = tmp;
2240 		}
2241 
2242 		zone->pages_low   = zone->pages_min + (tmp >> 2);
2243 		zone->pages_high  = zone->pages_min + (tmp >> 1);
2244 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2245 	}
2246 
2247 	/* update totalreserve_pages */
2248 	calculate_totalreserve_pages();
2249 }
2250 
2251 /*
2252  * Initialise min_free_kbytes.
2253  *
2254  * For small machines we want it small (128k min).  For large machines
2255  * we want it large (64MB max).  But it is not linear, because network
2256  * bandwidth does not increase linearly with machine size.  We use
2257  *
2258  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2259  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2260  *
2261  * which yields
2262  *
2263  * 16MB:	512k
2264  * 32MB:	724k
2265  * 64MB:	1024k
2266  * 128MB:	1448k
2267  * 256MB:	2048k
2268  * 512MB:	2896k
2269  * 1024MB:	4096k
2270  * 2048MB:	5792k
2271  * 4096MB:	8192k
2272  * 8192MB:	11584k
2273  * 16384MB:	16384k
2274  */
2275 static int __init init_per_zone_pages_min(void)
2276 {
2277 	unsigned long lowmem_kbytes;
2278 
2279 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2280 
2281 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2282 	if (min_free_kbytes < 128)
2283 		min_free_kbytes = 128;
2284 	if (min_free_kbytes > 65536)
2285 		min_free_kbytes = 65536;
2286 	setup_per_zone_pages_min();
2287 	setup_per_zone_lowmem_reserve();
2288 	return 0;
2289 }
2290 module_init(init_per_zone_pages_min)
2291 
2292 /*
2293  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2294  *	that we can call two helper functions whenever min_free_kbytes
2295  *	changes.
2296  */
2297 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2298 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2299 {
2300 	proc_dointvec(table, write, file, buffer, length, ppos);
2301 	setup_per_zone_pages_min();
2302 	return 0;
2303 }
2304 
2305 #ifdef CONFIG_NUMA
2306 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2307 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2308 {
2309 	struct zone *zone;
2310 	int rc;
2311 
2312 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2313 	if (rc)
2314 		return rc;
2315 
2316 	for_each_zone(zone)
2317 		zone->min_unmapped_ratio = (zone->present_pages *
2318 				sysctl_min_unmapped_ratio) / 100;
2319 	return 0;
2320 }
2321 #endif
2322 
2323 /*
2324  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2325  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2326  *	whenever sysctl_lowmem_reserve_ratio changes.
2327  *
2328  * The reserve ratio obviously has absolutely no relation with the
2329  * pages_min watermarks. The lowmem reserve ratio can only make sense
2330  * if in function of the boot time zone sizes.
2331  */
2332 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2333 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2334 {
2335 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2336 	setup_per_zone_lowmem_reserve();
2337 	return 0;
2338 }
2339 
2340 /*
2341  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2342  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
2343  * can have before it gets flushed back to buddy allocator.
2344  */
2345 
2346 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2347 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2348 {
2349 	struct zone *zone;
2350 	unsigned int cpu;
2351 	int ret;
2352 
2353 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2354 	if (!write || (ret == -EINVAL))
2355 		return ret;
2356 	for_each_zone(zone) {
2357 		for_each_online_cpu(cpu) {
2358 			unsigned long  high;
2359 			high = zone->present_pages / percpu_pagelist_fraction;
2360 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2361 		}
2362 	}
2363 	return 0;
2364 }
2365 
2366 __initdata int hashdist = HASHDIST_DEFAULT;
2367 
2368 #ifdef CONFIG_NUMA
2369 static int __init set_hashdist(char *str)
2370 {
2371 	if (!str)
2372 		return 0;
2373 	hashdist = simple_strtoul(str, &str, 0);
2374 	return 1;
2375 }
2376 __setup("hashdist=", set_hashdist);
2377 #endif
2378 
2379 /*
2380  * allocate a large system hash table from bootmem
2381  * - it is assumed that the hash table must contain an exact power-of-2
2382  *   quantity of entries
2383  * - limit is the number of hash buckets, not the total allocation size
2384  */
2385 void *__init alloc_large_system_hash(const char *tablename,
2386 				     unsigned long bucketsize,
2387 				     unsigned long numentries,
2388 				     int scale,
2389 				     int flags,
2390 				     unsigned int *_hash_shift,
2391 				     unsigned int *_hash_mask,
2392 				     unsigned long limit)
2393 {
2394 	unsigned long long max = limit;
2395 	unsigned long log2qty, size;
2396 	void *table = NULL;
2397 
2398 	/* allow the kernel cmdline to have a say */
2399 	if (!numentries) {
2400 		/* round applicable memory size up to nearest megabyte */
2401 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2402 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2403 		numentries >>= 20 - PAGE_SHIFT;
2404 		numentries <<= 20 - PAGE_SHIFT;
2405 
2406 		/* limit to 1 bucket per 2^scale bytes of low memory */
2407 		if (scale > PAGE_SHIFT)
2408 			numentries >>= (scale - PAGE_SHIFT);
2409 		else
2410 			numentries <<= (PAGE_SHIFT - scale);
2411 	}
2412 	numentries = roundup_pow_of_two(numentries);
2413 
2414 	/* limit allocation size to 1/16 total memory by default */
2415 	if (max == 0) {
2416 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2417 		do_div(max, bucketsize);
2418 	}
2419 
2420 	if (numentries > max)
2421 		numentries = max;
2422 
2423 	log2qty = long_log2(numentries);
2424 
2425 	do {
2426 		size = bucketsize << log2qty;
2427 		if (flags & HASH_EARLY)
2428 			table = alloc_bootmem(size);
2429 		else if (hashdist)
2430 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2431 		else {
2432 			unsigned long order;
2433 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2434 				;
2435 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2436 		}
2437 	} while (!table && size > PAGE_SIZE && --log2qty);
2438 
2439 	if (!table)
2440 		panic("Failed to allocate %s hash table\n", tablename);
2441 
2442 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2443 	       tablename,
2444 	       (1U << log2qty),
2445 	       long_log2(size) - PAGE_SHIFT,
2446 	       size);
2447 
2448 	if (_hash_shift)
2449 		*_hash_shift = log2qty;
2450 	if (_hash_mask)
2451 		*_hash_mask = (1 << log2qty) - 1;
2452 
2453 	return table;
2454 }
2455 
2456 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2457 struct page *pfn_to_page(unsigned long pfn)
2458 {
2459 	return __pfn_to_page(pfn);
2460 }
2461 unsigned long page_to_pfn(struct page *page)
2462 {
2463 	return __page_to_pfn(page);
2464 }
2465 EXPORT_SYMBOL(pfn_to_page);
2466 EXPORT_SYMBOL(page_to_pfn);
2467 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
2468