1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/bootmem.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/suspend.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/memory_hotplug.h> 36 #include <linux/nodemask.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mempolicy.h> 39 #include <linux/stop_machine.h> 40 41 #include <asm/tlbflush.h> 42 #include <asm/div64.h> 43 #include "internal.h" 44 45 /* 46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 47 * initializer cleaner 48 */ 49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 50 EXPORT_SYMBOL(node_online_map); 51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 52 EXPORT_SYMBOL(node_possible_map); 53 unsigned long totalram_pages __read_mostly; 54 unsigned long totalhigh_pages __read_mostly; 55 unsigned long totalreserve_pages __read_mostly; 56 long nr_swap_pages; 57 int percpu_pagelist_fraction; 58 59 static void __free_pages_ok(struct page *page, unsigned int order); 60 61 /* 62 * results with 256, 32 in the lowmem_reserve sysctl: 63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 64 * 1G machine -> (16M dma, 784M normal, 224M high) 65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 68 * 69 * TBD: should special case ZONE_DMA32 machines here - in those we normally 70 * don't need any ZONE_NORMAL reservation 71 */ 72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 73 74 EXPORT_SYMBOL(totalram_pages); 75 76 /* 77 * Used by page_zone() to look up the address of the struct zone whose 78 * id is encoded in the upper bits of page->flags 79 */ 80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 81 EXPORT_SYMBOL(zone_table); 82 83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 84 int min_free_kbytes = 1024; 85 86 unsigned long __meminitdata nr_kernel_pages; 87 unsigned long __meminitdata nr_all_pages; 88 89 #ifdef CONFIG_DEBUG_VM 90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 91 { 92 int ret = 0; 93 unsigned seq; 94 unsigned long pfn = page_to_pfn(page); 95 96 do { 97 seq = zone_span_seqbegin(zone); 98 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 99 ret = 1; 100 else if (pfn < zone->zone_start_pfn) 101 ret = 1; 102 } while (zone_span_seqretry(zone, seq)); 103 104 return ret; 105 } 106 107 static int page_is_consistent(struct zone *zone, struct page *page) 108 { 109 #ifdef CONFIG_HOLES_IN_ZONE 110 if (!pfn_valid(page_to_pfn(page))) 111 return 0; 112 #endif 113 if (zone != page_zone(page)) 114 return 0; 115 116 return 1; 117 } 118 /* 119 * Temporary debugging check for pages not lying within a given zone. 120 */ 121 static int bad_range(struct zone *zone, struct page *page) 122 { 123 if (page_outside_zone_boundaries(zone, page)) 124 return 1; 125 if (!page_is_consistent(zone, page)) 126 return 1; 127 128 return 0; 129 } 130 131 #else 132 static inline int bad_range(struct zone *zone, struct page *page) 133 { 134 return 0; 135 } 136 #endif 137 138 static void bad_page(struct page *page) 139 { 140 printk(KERN_EMERG "Bad page state in process '%s'\n" 141 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 142 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 143 KERN_EMERG "Backtrace:\n", 144 current->comm, page, (int)(2*sizeof(unsigned long)), 145 (unsigned long)page->flags, page->mapping, 146 page_mapcount(page), page_count(page)); 147 dump_stack(); 148 page->flags &= ~(1 << PG_lru | 149 1 << PG_private | 150 1 << PG_locked | 151 1 << PG_active | 152 1 << PG_dirty | 153 1 << PG_reclaim | 154 1 << PG_slab | 155 1 << PG_swapcache | 156 1 << PG_writeback | 157 1 << PG_buddy ); 158 set_page_count(page, 0); 159 reset_page_mapcount(page); 160 page->mapping = NULL; 161 add_taint(TAINT_BAD_PAGE); 162 } 163 164 /* 165 * Higher-order pages are called "compound pages". They are structured thusly: 166 * 167 * The first PAGE_SIZE page is called the "head page". 168 * 169 * The remaining PAGE_SIZE pages are called "tail pages". 170 * 171 * All pages have PG_compound set. All pages have their ->private pointing at 172 * the head page (even the head page has this). 173 * 174 * The first tail page's ->lru.next holds the address of the compound page's 175 * put_page() function. Its ->lru.prev holds the order of allocation. 176 * This usage means that zero-order pages may not be compound. 177 */ 178 179 static void free_compound_page(struct page *page) 180 { 181 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 182 } 183 184 static void prep_compound_page(struct page *page, unsigned long order) 185 { 186 int i; 187 int nr_pages = 1 << order; 188 189 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 190 page[1].lru.prev = (void *)order; 191 for (i = 0; i < nr_pages; i++) { 192 struct page *p = page + i; 193 194 __SetPageCompound(p); 195 set_page_private(p, (unsigned long)page); 196 } 197 } 198 199 static void destroy_compound_page(struct page *page, unsigned long order) 200 { 201 int i; 202 int nr_pages = 1 << order; 203 204 if (unlikely((unsigned long)page[1].lru.prev != order)) 205 bad_page(page); 206 207 for (i = 0; i < nr_pages; i++) { 208 struct page *p = page + i; 209 210 if (unlikely(!PageCompound(p) | 211 (page_private(p) != (unsigned long)page))) 212 bad_page(page); 213 __ClearPageCompound(p); 214 } 215 } 216 217 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 218 { 219 int i; 220 221 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 222 /* 223 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 224 * and __GFP_HIGHMEM from hard or soft interrupt context. 225 */ 226 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 227 for (i = 0; i < (1 << order); i++) 228 clear_highpage(page + i); 229 } 230 231 /* 232 * function for dealing with page's order in buddy system. 233 * zone->lock is already acquired when we use these. 234 * So, we don't need atomic page->flags operations here. 235 */ 236 static inline unsigned long page_order(struct page *page) 237 { 238 return page_private(page); 239 } 240 241 static inline void set_page_order(struct page *page, int order) 242 { 243 set_page_private(page, order); 244 __SetPageBuddy(page); 245 } 246 247 static inline void rmv_page_order(struct page *page) 248 { 249 __ClearPageBuddy(page); 250 set_page_private(page, 0); 251 } 252 253 /* 254 * Locate the struct page for both the matching buddy in our 255 * pair (buddy1) and the combined O(n+1) page they form (page). 256 * 257 * 1) Any buddy B1 will have an order O twin B2 which satisfies 258 * the following equation: 259 * B2 = B1 ^ (1 << O) 260 * For example, if the starting buddy (buddy2) is #8 its order 261 * 1 buddy is #10: 262 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 263 * 264 * 2) Any buddy B will have an order O+1 parent P which 265 * satisfies the following equation: 266 * P = B & ~(1 << O) 267 * 268 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 269 */ 270 static inline struct page * 271 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 272 { 273 unsigned long buddy_idx = page_idx ^ (1 << order); 274 275 return page + (buddy_idx - page_idx); 276 } 277 278 static inline unsigned long 279 __find_combined_index(unsigned long page_idx, unsigned int order) 280 { 281 return (page_idx & ~(1 << order)); 282 } 283 284 /* 285 * This function checks whether a page is free && is the buddy 286 * we can do coalesce a page and its buddy if 287 * (a) the buddy is not in a hole && 288 * (b) the buddy is in the buddy system && 289 * (c) a page and its buddy have the same order && 290 * (d) a page and its buddy are in the same zone. 291 * 292 * For recording whether a page is in the buddy system, we use PG_buddy. 293 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 294 * 295 * For recording page's order, we use page_private(page). 296 */ 297 static inline int page_is_buddy(struct page *page, struct page *buddy, 298 int order) 299 { 300 #ifdef CONFIG_HOLES_IN_ZONE 301 if (!pfn_valid(page_to_pfn(buddy))) 302 return 0; 303 #endif 304 305 if (page_zone_id(page) != page_zone_id(buddy)) 306 return 0; 307 308 if (PageBuddy(buddy) && page_order(buddy) == order) { 309 BUG_ON(page_count(buddy) != 0); 310 return 1; 311 } 312 return 0; 313 } 314 315 /* 316 * Freeing function for a buddy system allocator. 317 * 318 * The concept of a buddy system is to maintain direct-mapped table 319 * (containing bit values) for memory blocks of various "orders". 320 * The bottom level table contains the map for the smallest allocatable 321 * units of memory (here, pages), and each level above it describes 322 * pairs of units from the levels below, hence, "buddies". 323 * At a high level, all that happens here is marking the table entry 324 * at the bottom level available, and propagating the changes upward 325 * as necessary, plus some accounting needed to play nicely with other 326 * parts of the VM system. 327 * At each level, we keep a list of pages, which are heads of continuous 328 * free pages of length of (1 << order) and marked with PG_buddy. Page's 329 * order is recorded in page_private(page) field. 330 * So when we are allocating or freeing one, we can derive the state of the 331 * other. That is, if we allocate a small block, and both were 332 * free, the remainder of the region must be split into blocks. 333 * If a block is freed, and its buddy is also free, then this 334 * triggers coalescing into a block of larger size. 335 * 336 * -- wli 337 */ 338 339 static inline void __free_one_page(struct page *page, 340 struct zone *zone, unsigned int order) 341 { 342 unsigned long page_idx; 343 int order_size = 1 << order; 344 345 if (unlikely(PageCompound(page))) 346 destroy_compound_page(page, order); 347 348 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 349 350 BUG_ON(page_idx & (order_size - 1)); 351 BUG_ON(bad_range(zone, page)); 352 353 zone->free_pages += order_size; 354 while (order < MAX_ORDER-1) { 355 unsigned long combined_idx; 356 struct free_area *area; 357 struct page *buddy; 358 359 buddy = __page_find_buddy(page, page_idx, order); 360 if (!page_is_buddy(page, buddy, order)) 361 break; /* Move the buddy up one level. */ 362 363 list_del(&buddy->lru); 364 area = zone->free_area + order; 365 area->nr_free--; 366 rmv_page_order(buddy); 367 combined_idx = __find_combined_index(page_idx, order); 368 page = page + (combined_idx - page_idx); 369 page_idx = combined_idx; 370 order++; 371 } 372 set_page_order(page, order); 373 list_add(&page->lru, &zone->free_area[order].free_list); 374 zone->free_area[order].nr_free++; 375 } 376 377 static inline int free_pages_check(struct page *page) 378 { 379 if (unlikely(page_mapcount(page) | 380 (page->mapping != NULL) | 381 (page_count(page) != 0) | 382 (page->flags & ( 383 1 << PG_lru | 384 1 << PG_private | 385 1 << PG_locked | 386 1 << PG_active | 387 1 << PG_reclaim | 388 1 << PG_slab | 389 1 << PG_swapcache | 390 1 << PG_writeback | 391 1 << PG_reserved | 392 1 << PG_buddy )))) 393 bad_page(page); 394 if (PageDirty(page)) 395 __ClearPageDirty(page); 396 /* 397 * For now, we report if PG_reserved was found set, but do not 398 * clear it, and do not free the page. But we shall soon need 399 * to do more, for when the ZERO_PAGE count wraps negative. 400 */ 401 return PageReserved(page); 402 } 403 404 /* 405 * Frees a list of pages. 406 * Assumes all pages on list are in same zone, and of same order. 407 * count is the number of pages to free. 408 * 409 * If the zone was previously in an "all pages pinned" state then look to 410 * see if this freeing clears that state. 411 * 412 * And clear the zone's pages_scanned counter, to hold off the "all pages are 413 * pinned" detection logic. 414 */ 415 static void free_pages_bulk(struct zone *zone, int count, 416 struct list_head *list, int order) 417 { 418 spin_lock(&zone->lock); 419 zone->all_unreclaimable = 0; 420 zone->pages_scanned = 0; 421 while (count--) { 422 struct page *page; 423 424 BUG_ON(list_empty(list)); 425 page = list_entry(list->prev, struct page, lru); 426 /* have to delete it as __free_one_page list manipulates */ 427 list_del(&page->lru); 428 __free_one_page(page, zone, order); 429 } 430 spin_unlock(&zone->lock); 431 } 432 433 static void free_one_page(struct zone *zone, struct page *page, int order) 434 { 435 LIST_HEAD(list); 436 list_add(&page->lru, &list); 437 free_pages_bulk(zone, 1, &list, order); 438 } 439 440 static void __free_pages_ok(struct page *page, unsigned int order) 441 { 442 unsigned long flags; 443 int i; 444 int reserved = 0; 445 446 arch_free_page(page, order); 447 if (!PageHighMem(page)) 448 debug_check_no_locks_freed(page_address(page), 449 PAGE_SIZE<<order); 450 451 for (i = 0 ; i < (1 << order) ; ++i) 452 reserved += free_pages_check(page + i); 453 if (reserved) 454 return; 455 456 kernel_map_pages(page, 1 << order, 0); 457 local_irq_save(flags); 458 __count_vm_events(PGFREE, 1 << order); 459 free_one_page(page_zone(page), page, order); 460 local_irq_restore(flags); 461 } 462 463 /* 464 * permit the bootmem allocator to evade page validation on high-order frees 465 */ 466 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 467 { 468 if (order == 0) { 469 __ClearPageReserved(page); 470 set_page_count(page, 0); 471 set_page_refcounted(page); 472 __free_page(page); 473 } else { 474 int loop; 475 476 prefetchw(page); 477 for (loop = 0; loop < BITS_PER_LONG; loop++) { 478 struct page *p = &page[loop]; 479 480 if (loop + 1 < BITS_PER_LONG) 481 prefetchw(p + 1); 482 __ClearPageReserved(p); 483 set_page_count(p, 0); 484 } 485 486 set_page_refcounted(page); 487 __free_pages(page, order); 488 } 489 } 490 491 492 /* 493 * The order of subdivision here is critical for the IO subsystem. 494 * Please do not alter this order without good reasons and regression 495 * testing. Specifically, as large blocks of memory are subdivided, 496 * the order in which smaller blocks are delivered depends on the order 497 * they're subdivided in this function. This is the primary factor 498 * influencing the order in which pages are delivered to the IO 499 * subsystem according to empirical testing, and this is also justified 500 * by considering the behavior of a buddy system containing a single 501 * large block of memory acted on by a series of small allocations. 502 * This behavior is a critical factor in sglist merging's success. 503 * 504 * -- wli 505 */ 506 static inline void expand(struct zone *zone, struct page *page, 507 int low, int high, struct free_area *area) 508 { 509 unsigned long size = 1 << high; 510 511 while (high > low) { 512 area--; 513 high--; 514 size >>= 1; 515 BUG_ON(bad_range(zone, &page[size])); 516 list_add(&page[size].lru, &area->free_list); 517 area->nr_free++; 518 set_page_order(&page[size], high); 519 } 520 } 521 522 /* 523 * This page is about to be returned from the page allocator 524 */ 525 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 526 { 527 if (unlikely(page_mapcount(page) | 528 (page->mapping != NULL) | 529 (page_count(page) != 0) | 530 (page->flags & ( 531 1 << PG_lru | 532 1 << PG_private | 533 1 << PG_locked | 534 1 << PG_active | 535 1 << PG_dirty | 536 1 << PG_reclaim | 537 1 << PG_slab | 538 1 << PG_swapcache | 539 1 << PG_writeback | 540 1 << PG_reserved | 541 1 << PG_buddy )))) 542 bad_page(page); 543 544 /* 545 * For now, we report if PG_reserved was found set, but do not 546 * clear it, and do not allocate the page: as a safety net. 547 */ 548 if (PageReserved(page)) 549 return 1; 550 551 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 552 1 << PG_referenced | 1 << PG_arch_1 | 553 1 << PG_checked | 1 << PG_mappedtodisk); 554 set_page_private(page, 0); 555 set_page_refcounted(page); 556 kernel_map_pages(page, 1 << order, 1); 557 558 if (gfp_flags & __GFP_ZERO) 559 prep_zero_page(page, order, gfp_flags); 560 561 if (order && (gfp_flags & __GFP_COMP)) 562 prep_compound_page(page, order); 563 564 return 0; 565 } 566 567 /* 568 * Do the hard work of removing an element from the buddy allocator. 569 * Call me with the zone->lock already held. 570 */ 571 static struct page *__rmqueue(struct zone *zone, unsigned int order) 572 { 573 struct free_area * area; 574 unsigned int current_order; 575 struct page *page; 576 577 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 578 area = zone->free_area + current_order; 579 if (list_empty(&area->free_list)) 580 continue; 581 582 page = list_entry(area->free_list.next, struct page, lru); 583 list_del(&page->lru); 584 rmv_page_order(page); 585 area->nr_free--; 586 zone->free_pages -= 1UL << order; 587 expand(zone, page, order, current_order, area); 588 return page; 589 } 590 591 return NULL; 592 } 593 594 /* 595 * Obtain a specified number of elements from the buddy allocator, all under 596 * a single hold of the lock, for efficiency. Add them to the supplied list. 597 * Returns the number of new pages which were placed at *list. 598 */ 599 static int rmqueue_bulk(struct zone *zone, unsigned int order, 600 unsigned long count, struct list_head *list) 601 { 602 int i; 603 604 spin_lock(&zone->lock); 605 for (i = 0; i < count; ++i) { 606 struct page *page = __rmqueue(zone, order); 607 if (unlikely(page == NULL)) 608 break; 609 list_add_tail(&page->lru, list); 610 } 611 spin_unlock(&zone->lock); 612 return i; 613 } 614 615 #ifdef CONFIG_NUMA 616 /* 617 * Called from the slab reaper to drain pagesets on a particular node that 618 * belong to the currently executing processor. 619 * Note that this function must be called with the thread pinned to 620 * a single processor. 621 */ 622 void drain_node_pages(int nodeid) 623 { 624 int i, z; 625 unsigned long flags; 626 627 for (z = 0; z < MAX_NR_ZONES; z++) { 628 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 629 struct per_cpu_pageset *pset; 630 631 pset = zone_pcp(zone, smp_processor_id()); 632 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 633 struct per_cpu_pages *pcp; 634 635 pcp = &pset->pcp[i]; 636 if (pcp->count) { 637 local_irq_save(flags); 638 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 639 pcp->count = 0; 640 local_irq_restore(flags); 641 } 642 } 643 } 644 } 645 #endif 646 647 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 648 static void __drain_pages(unsigned int cpu) 649 { 650 unsigned long flags; 651 struct zone *zone; 652 int i; 653 654 for_each_zone(zone) { 655 struct per_cpu_pageset *pset; 656 657 pset = zone_pcp(zone, cpu); 658 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 659 struct per_cpu_pages *pcp; 660 661 pcp = &pset->pcp[i]; 662 local_irq_save(flags); 663 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 664 pcp->count = 0; 665 local_irq_restore(flags); 666 } 667 } 668 } 669 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 670 671 #ifdef CONFIG_PM 672 673 void mark_free_pages(struct zone *zone) 674 { 675 unsigned long zone_pfn, flags; 676 int order; 677 struct list_head *curr; 678 679 if (!zone->spanned_pages) 680 return; 681 682 spin_lock_irqsave(&zone->lock, flags); 683 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 684 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 685 686 for (order = MAX_ORDER - 1; order >= 0; --order) 687 list_for_each(curr, &zone->free_area[order].free_list) { 688 unsigned long start_pfn, i; 689 690 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 691 692 for (i=0; i < (1<<order); i++) 693 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 694 } 695 spin_unlock_irqrestore(&zone->lock, flags); 696 } 697 698 /* 699 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 700 */ 701 void drain_local_pages(void) 702 { 703 unsigned long flags; 704 705 local_irq_save(flags); 706 __drain_pages(smp_processor_id()); 707 local_irq_restore(flags); 708 } 709 #endif /* CONFIG_PM */ 710 711 /* 712 * Free a 0-order page 713 */ 714 static void fastcall free_hot_cold_page(struct page *page, int cold) 715 { 716 struct zone *zone = page_zone(page); 717 struct per_cpu_pages *pcp; 718 unsigned long flags; 719 720 arch_free_page(page, 0); 721 722 if (PageAnon(page)) 723 page->mapping = NULL; 724 if (free_pages_check(page)) 725 return; 726 727 kernel_map_pages(page, 1, 0); 728 729 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 730 local_irq_save(flags); 731 __count_vm_event(PGFREE); 732 list_add(&page->lru, &pcp->list); 733 pcp->count++; 734 if (pcp->count >= pcp->high) { 735 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 736 pcp->count -= pcp->batch; 737 } 738 local_irq_restore(flags); 739 put_cpu(); 740 } 741 742 void fastcall free_hot_page(struct page *page) 743 { 744 free_hot_cold_page(page, 0); 745 } 746 747 void fastcall free_cold_page(struct page *page) 748 { 749 free_hot_cold_page(page, 1); 750 } 751 752 /* 753 * split_page takes a non-compound higher-order page, and splits it into 754 * n (1<<order) sub-pages: page[0..n] 755 * Each sub-page must be freed individually. 756 * 757 * Note: this is probably too low level an operation for use in drivers. 758 * Please consult with lkml before using this in your driver. 759 */ 760 void split_page(struct page *page, unsigned int order) 761 { 762 int i; 763 764 BUG_ON(PageCompound(page)); 765 BUG_ON(!page_count(page)); 766 for (i = 1; i < (1 << order); i++) 767 set_page_refcounted(page + i); 768 } 769 770 /* 771 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 772 * we cheat by calling it from here, in the order > 0 path. Saves a branch 773 * or two. 774 */ 775 static struct page *buffered_rmqueue(struct zonelist *zonelist, 776 struct zone *zone, int order, gfp_t gfp_flags) 777 { 778 unsigned long flags; 779 struct page *page; 780 int cold = !!(gfp_flags & __GFP_COLD); 781 int cpu; 782 783 again: 784 cpu = get_cpu(); 785 if (likely(order == 0)) { 786 struct per_cpu_pages *pcp; 787 788 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 789 local_irq_save(flags); 790 if (!pcp->count) { 791 pcp->count += rmqueue_bulk(zone, 0, 792 pcp->batch, &pcp->list); 793 if (unlikely(!pcp->count)) 794 goto failed; 795 } 796 page = list_entry(pcp->list.next, struct page, lru); 797 list_del(&page->lru); 798 pcp->count--; 799 } else { 800 spin_lock_irqsave(&zone->lock, flags); 801 page = __rmqueue(zone, order); 802 spin_unlock(&zone->lock); 803 if (!page) 804 goto failed; 805 } 806 807 __count_zone_vm_events(PGALLOC, zone, 1 << order); 808 zone_statistics(zonelist, zone); 809 local_irq_restore(flags); 810 put_cpu(); 811 812 BUG_ON(bad_range(zone, page)); 813 if (prep_new_page(page, order, gfp_flags)) 814 goto again; 815 return page; 816 817 failed: 818 local_irq_restore(flags); 819 put_cpu(); 820 return NULL; 821 } 822 823 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 824 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 825 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 826 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 827 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 828 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 829 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 830 831 /* 832 * Return 1 if free pages are above 'mark'. This takes into account the order 833 * of the allocation. 834 */ 835 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 836 int classzone_idx, int alloc_flags) 837 { 838 /* free_pages my go negative - that's OK */ 839 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 840 int o; 841 842 if (alloc_flags & ALLOC_HIGH) 843 min -= min / 2; 844 if (alloc_flags & ALLOC_HARDER) 845 min -= min / 4; 846 847 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 848 return 0; 849 for (o = 0; o < order; o++) { 850 /* At the next order, this order's pages become unavailable */ 851 free_pages -= z->free_area[o].nr_free << o; 852 853 /* Require fewer higher order pages to be free */ 854 min >>= 1; 855 856 if (free_pages <= min) 857 return 0; 858 } 859 return 1; 860 } 861 862 /* 863 * get_page_from_freeliest goes through the zonelist trying to allocate 864 * a page. 865 */ 866 static struct page * 867 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 868 struct zonelist *zonelist, int alloc_flags) 869 { 870 struct zone **z = zonelist->zones; 871 struct page *page = NULL; 872 int classzone_idx = zone_idx(*z); 873 874 /* 875 * Go through the zonelist once, looking for a zone with enough free. 876 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 877 */ 878 do { 879 if ((alloc_flags & ALLOC_CPUSET) && 880 !cpuset_zone_allowed(*z, gfp_mask)) 881 continue; 882 883 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 884 unsigned long mark; 885 if (alloc_flags & ALLOC_WMARK_MIN) 886 mark = (*z)->pages_min; 887 else if (alloc_flags & ALLOC_WMARK_LOW) 888 mark = (*z)->pages_low; 889 else 890 mark = (*z)->pages_high; 891 if (!zone_watermark_ok(*z, order, mark, 892 classzone_idx, alloc_flags)) 893 if (!zone_reclaim_mode || 894 !zone_reclaim(*z, gfp_mask, order)) 895 continue; 896 } 897 898 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 899 if (page) { 900 break; 901 } 902 } while (*(++z) != NULL); 903 return page; 904 } 905 906 /* 907 * This is the 'heart' of the zoned buddy allocator. 908 */ 909 struct page * fastcall 910 __alloc_pages(gfp_t gfp_mask, unsigned int order, 911 struct zonelist *zonelist) 912 { 913 const gfp_t wait = gfp_mask & __GFP_WAIT; 914 struct zone **z; 915 struct page *page; 916 struct reclaim_state reclaim_state; 917 struct task_struct *p = current; 918 int do_retry; 919 int alloc_flags; 920 int did_some_progress; 921 922 might_sleep_if(wait); 923 924 restart: 925 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 926 927 if (unlikely(*z == NULL)) { 928 /* Should this ever happen?? */ 929 return NULL; 930 } 931 932 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 933 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 934 if (page) 935 goto got_pg; 936 937 do { 938 wakeup_kswapd(*z, order); 939 } while (*(++z)); 940 941 /* 942 * OK, we're below the kswapd watermark and have kicked background 943 * reclaim. Now things get more complex, so set up alloc_flags according 944 * to how we want to proceed. 945 * 946 * The caller may dip into page reserves a bit more if the caller 947 * cannot run direct reclaim, or if the caller has realtime scheduling 948 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 949 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 950 */ 951 alloc_flags = ALLOC_WMARK_MIN; 952 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 953 alloc_flags |= ALLOC_HARDER; 954 if (gfp_mask & __GFP_HIGH) 955 alloc_flags |= ALLOC_HIGH; 956 if (wait) 957 alloc_flags |= ALLOC_CPUSET; 958 959 /* 960 * Go through the zonelist again. Let __GFP_HIGH and allocations 961 * coming from realtime tasks go deeper into reserves. 962 * 963 * This is the last chance, in general, before the goto nopage. 964 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 965 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 966 */ 967 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 968 if (page) 969 goto got_pg; 970 971 /* This allocation should allow future memory freeing. */ 972 973 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 974 && !in_interrupt()) { 975 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 976 nofail_alloc: 977 /* go through the zonelist yet again, ignoring mins */ 978 page = get_page_from_freelist(gfp_mask, order, 979 zonelist, ALLOC_NO_WATERMARKS); 980 if (page) 981 goto got_pg; 982 if (gfp_mask & __GFP_NOFAIL) { 983 blk_congestion_wait(WRITE, HZ/50); 984 goto nofail_alloc; 985 } 986 } 987 goto nopage; 988 } 989 990 /* Atomic allocations - we can't balance anything */ 991 if (!wait) 992 goto nopage; 993 994 rebalance: 995 cond_resched(); 996 997 /* We now go into synchronous reclaim */ 998 cpuset_memory_pressure_bump(); 999 p->flags |= PF_MEMALLOC; 1000 reclaim_state.reclaimed_slab = 0; 1001 p->reclaim_state = &reclaim_state; 1002 1003 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1004 1005 p->reclaim_state = NULL; 1006 p->flags &= ~PF_MEMALLOC; 1007 1008 cond_resched(); 1009 1010 if (likely(did_some_progress)) { 1011 page = get_page_from_freelist(gfp_mask, order, 1012 zonelist, alloc_flags); 1013 if (page) 1014 goto got_pg; 1015 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1016 /* 1017 * Go through the zonelist yet one more time, keep 1018 * very high watermark here, this is only to catch 1019 * a parallel oom killing, we must fail if we're still 1020 * under heavy pressure. 1021 */ 1022 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1023 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1024 if (page) 1025 goto got_pg; 1026 1027 out_of_memory(zonelist, gfp_mask, order); 1028 goto restart; 1029 } 1030 1031 /* 1032 * Don't let big-order allocations loop unless the caller explicitly 1033 * requests that. Wait for some write requests to complete then retry. 1034 * 1035 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1036 * <= 3, but that may not be true in other implementations. 1037 */ 1038 do_retry = 0; 1039 if (!(gfp_mask & __GFP_NORETRY)) { 1040 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1041 do_retry = 1; 1042 if (gfp_mask & __GFP_NOFAIL) 1043 do_retry = 1; 1044 } 1045 if (do_retry) { 1046 blk_congestion_wait(WRITE, HZ/50); 1047 goto rebalance; 1048 } 1049 1050 nopage: 1051 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1052 printk(KERN_WARNING "%s: page allocation failure." 1053 " order:%d, mode:0x%x\n", 1054 p->comm, order, gfp_mask); 1055 dump_stack(); 1056 show_mem(); 1057 } 1058 got_pg: 1059 return page; 1060 } 1061 1062 EXPORT_SYMBOL(__alloc_pages); 1063 1064 /* 1065 * Common helper functions. 1066 */ 1067 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1068 { 1069 struct page * page; 1070 page = alloc_pages(gfp_mask, order); 1071 if (!page) 1072 return 0; 1073 return (unsigned long) page_address(page); 1074 } 1075 1076 EXPORT_SYMBOL(__get_free_pages); 1077 1078 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1079 { 1080 struct page * page; 1081 1082 /* 1083 * get_zeroed_page() returns a 32-bit address, which cannot represent 1084 * a highmem page 1085 */ 1086 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1087 1088 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1089 if (page) 1090 return (unsigned long) page_address(page); 1091 return 0; 1092 } 1093 1094 EXPORT_SYMBOL(get_zeroed_page); 1095 1096 void __pagevec_free(struct pagevec *pvec) 1097 { 1098 int i = pagevec_count(pvec); 1099 1100 while (--i >= 0) 1101 free_hot_cold_page(pvec->pages[i], pvec->cold); 1102 } 1103 1104 fastcall void __free_pages(struct page *page, unsigned int order) 1105 { 1106 if (put_page_testzero(page)) { 1107 if (order == 0) 1108 free_hot_page(page); 1109 else 1110 __free_pages_ok(page, order); 1111 } 1112 } 1113 1114 EXPORT_SYMBOL(__free_pages); 1115 1116 fastcall void free_pages(unsigned long addr, unsigned int order) 1117 { 1118 if (addr != 0) { 1119 BUG_ON(!virt_addr_valid((void *)addr)); 1120 __free_pages(virt_to_page((void *)addr), order); 1121 } 1122 } 1123 1124 EXPORT_SYMBOL(free_pages); 1125 1126 /* 1127 * Total amount of free (allocatable) RAM: 1128 */ 1129 unsigned int nr_free_pages(void) 1130 { 1131 unsigned int sum = 0; 1132 struct zone *zone; 1133 1134 for_each_zone(zone) 1135 sum += zone->free_pages; 1136 1137 return sum; 1138 } 1139 1140 EXPORT_SYMBOL(nr_free_pages); 1141 1142 #ifdef CONFIG_NUMA 1143 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1144 { 1145 unsigned int i, sum = 0; 1146 1147 for (i = 0; i < MAX_NR_ZONES; i++) 1148 sum += pgdat->node_zones[i].free_pages; 1149 1150 return sum; 1151 } 1152 #endif 1153 1154 static unsigned int nr_free_zone_pages(int offset) 1155 { 1156 /* Just pick one node, since fallback list is circular */ 1157 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1158 unsigned int sum = 0; 1159 1160 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1161 struct zone **zonep = zonelist->zones; 1162 struct zone *zone; 1163 1164 for (zone = *zonep++; zone; zone = *zonep++) { 1165 unsigned long size = zone->present_pages; 1166 unsigned long high = zone->pages_high; 1167 if (size > high) 1168 sum += size - high; 1169 } 1170 1171 return sum; 1172 } 1173 1174 /* 1175 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1176 */ 1177 unsigned int nr_free_buffer_pages(void) 1178 { 1179 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1180 } 1181 1182 /* 1183 * Amount of free RAM allocatable within all zones 1184 */ 1185 unsigned int nr_free_pagecache_pages(void) 1186 { 1187 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1188 } 1189 1190 #ifdef CONFIG_HIGHMEM 1191 unsigned int nr_free_highpages (void) 1192 { 1193 pg_data_t *pgdat; 1194 unsigned int pages = 0; 1195 1196 for_each_online_pgdat(pgdat) 1197 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1198 1199 return pages; 1200 } 1201 #endif 1202 1203 #ifdef CONFIG_NUMA 1204 static void show_node(struct zone *zone) 1205 { 1206 printk("Node %d ", zone->zone_pgdat->node_id); 1207 } 1208 #else 1209 #define show_node(zone) do { } while (0) 1210 #endif 1211 1212 void si_meminfo(struct sysinfo *val) 1213 { 1214 val->totalram = totalram_pages; 1215 val->sharedram = 0; 1216 val->freeram = nr_free_pages(); 1217 val->bufferram = nr_blockdev_pages(); 1218 #ifdef CONFIG_HIGHMEM 1219 val->totalhigh = totalhigh_pages; 1220 val->freehigh = nr_free_highpages(); 1221 #else 1222 val->totalhigh = 0; 1223 val->freehigh = 0; 1224 #endif 1225 val->mem_unit = PAGE_SIZE; 1226 } 1227 1228 EXPORT_SYMBOL(si_meminfo); 1229 1230 #ifdef CONFIG_NUMA 1231 void si_meminfo_node(struct sysinfo *val, int nid) 1232 { 1233 pg_data_t *pgdat = NODE_DATA(nid); 1234 1235 val->totalram = pgdat->node_present_pages; 1236 val->freeram = nr_free_pages_pgdat(pgdat); 1237 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1238 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1239 val->mem_unit = PAGE_SIZE; 1240 } 1241 #endif 1242 1243 #define K(x) ((x) << (PAGE_SHIFT-10)) 1244 1245 /* 1246 * Show free area list (used inside shift_scroll-lock stuff) 1247 * We also calculate the percentage fragmentation. We do this by counting the 1248 * memory on each free list with the exception of the first item on the list. 1249 */ 1250 void show_free_areas(void) 1251 { 1252 int cpu, temperature; 1253 unsigned long active; 1254 unsigned long inactive; 1255 unsigned long free; 1256 struct zone *zone; 1257 1258 for_each_zone(zone) { 1259 show_node(zone); 1260 printk("%s per-cpu:", zone->name); 1261 1262 if (!populated_zone(zone)) { 1263 printk(" empty\n"); 1264 continue; 1265 } else 1266 printk("\n"); 1267 1268 for_each_online_cpu(cpu) { 1269 struct per_cpu_pageset *pageset; 1270 1271 pageset = zone_pcp(zone, cpu); 1272 1273 for (temperature = 0; temperature < 2; temperature++) 1274 printk("cpu %d %s: high %d, batch %d used:%d\n", 1275 cpu, 1276 temperature ? "cold" : "hot", 1277 pageset->pcp[temperature].high, 1278 pageset->pcp[temperature].batch, 1279 pageset->pcp[temperature].count); 1280 } 1281 } 1282 1283 get_zone_counts(&active, &inactive, &free); 1284 1285 printk("Free pages: %11ukB (%ukB HighMem)\n", 1286 K(nr_free_pages()), 1287 K(nr_free_highpages())); 1288 1289 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1290 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1291 active, 1292 inactive, 1293 global_page_state(NR_FILE_DIRTY), 1294 global_page_state(NR_WRITEBACK), 1295 global_page_state(NR_UNSTABLE_NFS), 1296 nr_free_pages(), 1297 global_page_state(NR_SLAB), 1298 global_page_state(NR_FILE_MAPPED), 1299 global_page_state(NR_PAGETABLE)); 1300 1301 for_each_zone(zone) { 1302 int i; 1303 1304 show_node(zone); 1305 printk("%s" 1306 " free:%lukB" 1307 " min:%lukB" 1308 " low:%lukB" 1309 " high:%lukB" 1310 " active:%lukB" 1311 " inactive:%lukB" 1312 " present:%lukB" 1313 " pages_scanned:%lu" 1314 " all_unreclaimable? %s" 1315 "\n", 1316 zone->name, 1317 K(zone->free_pages), 1318 K(zone->pages_min), 1319 K(zone->pages_low), 1320 K(zone->pages_high), 1321 K(zone->nr_active), 1322 K(zone->nr_inactive), 1323 K(zone->present_pages), 1324 zone->pages_scanned, 1325 (zone->all_unreclaimable ? "yes" : "no") 1326 ); 1327 printk("lowmem_reserve[]:"); 1328 for (i = 0; i < MAX_NR_ZONES; i++) 1329 printk(" %lu", zone->lowmem_reserve[i]); 1330 printk("\n"); 1331 } 1332 1333 for_each_zone(zone) { 1334 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1335 1336 show_node(zone); 1337 printk("%s: ", zone->name); 1338 if (!populated_zone(zone)) { 1339 printk("empty\n"); 1340 continue; 1341 } 1342 1343 spin_lock_irqsave(&zone->lock, flags); 1344 for (order = 0; order < MAX_ORDER; order++) { 1345 nr[order] = zone->free_area[order].nr_free; 1346 total += nr[order] << order; 1347 } 1348 spin_unlock_irqrestore(&zone->lock, flags); 1349 for (order = 0; order < MAX_ORDER; order++) 1350 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1351 printk("= %lukB\n", K(total)); 1352 } 1353 1354 show_swap_cache_info(); 1355 } 1356 1357 /* 1358 * Builds allocation fallback zone lists. 1359 * 1360 * Add all populated zones of a node to the zonelist. 1361 */ 1362 static int __meminit build_zonelists_node(pg_data_t *pgdat, 1363 struct zonelist *zonelist, int nr_zones, int zone_type) 1364 { 1365 struct zone *zone; 1366 1367 BUG_ON(zone_type > ZONE_HIGHMEM); 1368 1369 do { 1370 zone = pgdat->node_zones + zone_type; 1371 if (populated_zone(zone)) { 1372 #ifndef CONFIG_HIGHMEM 1373 BUG_ON(zone_type > ZONE_NORMAL); 1374 #endif 1375 zonelist->zones[nr_zones++] = zone; 1376 check_highest_zone(zone_type); 1377 } 1378 zone_type--; 1379 1380 } while (zone_type >= 0); 1381 return nr_zones; 1382 } 1383 1384 static inline int highest_zone(int zone_bits) 1385 { 1386 int res = ZONE_NORMAL; 1387 if (zone_bits & (__force int)__GFP_HIGHMEM) 1388 res = ZONE_HIGHMEM; 1389 if (zone_bits & (__force int)__GFP_DMA32) 1390 res = ZONE_DMA32; 1391 if (zone_bits & (__force int)__GFP_DMA) 1392 res = ZONE_DMA; 1393 return res; 1394 } 1395 1396 #ifdef CONFIG_NUMA 1397 #define MAX_NODE_LOAD (num_online_nodes()) 1398 static int __meminitdata node_load[MAX_NUMNODES]; 1399 /** 1400 * find_next_best_node - find the next node that should appear in a given node's fallback list 1401 * @node: node whose fallback list we're appending 1402 * @used_node_mask: nodemask_t of already used nodes 1403 * 1404 * We use a number of factors to determine which is the next node that should 1405 * appear on a given node's fallback list. The node should not have appeared 1406 * already in @node's fallback list, and it should be the next closest node 1407 * according to the distance array (which contains arbitrary distance values 1408 * from each node to each node in the system), and should also prefer nodes 1409 * with no CPUs, since presumably they'll have very little allocation pressure 1410 * on them otherwise. 1411 * It returns -1 if no node is found. 1412 */ 1413 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask) 1414 { 1415 int n, val; 1416 int min_val = INT_MAX; 1417 int best_node = -1; 1418 1419 /* Use the local node if we haven't already */ 1420 if (!node_isset(node, *used_node_mask)) { 1421 node_set(node, *used_node_mask); 1422 return node; 1423 } 1424 1425 for_each_online_node(n) { 1426 cpumask_t tmp; 1427 1428 /* Don't want a node to appear more than once */ 1429 if (node_isset(n, *used_node_mask)) 1430 continue; 1431 1432 /* Use the distance array to find the distance */ 1433 val = node_distance(node, n); 1434 1435 /* Penalize nodes under us ("prefer the next node") */ 1436 val += (n < node); 1437 1438 /* Give preference to headless and unused nodes */ 1439 tmp = node_to_cpumask(n); 1440 if (!cpus_empty(tmp)) 1441 val += PENALTY_FOR_NODE_WITH_CPUS; 1442 1443 /* Slight preference for less loaded node */ 1444 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1445 val += node_load[n]; 1446 1447 if (val < min_val) { 1448 min_val = val; 1449 best_node = n; 1450 } 1451 } 1452 1453 if (best_node >= 0) 1454 node_set(best_node, *used_node_mask); 1455 1456 return best_node; 1457 } 1458 1459 static void __meminit build_zonelists(pg_data_t *pgdat) 1460 { 1461 int i, j, k, node, local_node; 1462 int prev_node, load; 1463 struct zonelist *zonelist; 1464 nodemask_t used_mask; 1465 1466 /* initialize zonelists */ 1467 for (i = 0; i < GFP_ZONETYPES; i++) { 1468 zonelist = pgdat->node_zonelists + i; 1469 zonelist->zones[0] = NULL; 1470 } 1471 1472 /* NUMA-aware ordering of nodes */ 1473 local_node = pgdat->node_id; 1474 load = num_online_nodes(); 1475 prev_node = local_node; 1476 nodes_clear(used_mask); 1477 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1478 int distance = node_distance(local_node, node); 1479 1480 /* 1481 * If another node is sufficiently far away then it is better 1482 * to reclaim pages in a zone before going off node. 1483 */ 1484 if (distance > RECLAIM_DISTANCE) 1485 zone_reclaim_mode = 1; 1486 1487 /* 1488 * We don't want to pressure a particular node. 1489 * So adding penalty to the first node in same 1490 * distance group to make it round-robin. 1491 */ 1492 1493 if (distance != node_distance(local_node, prev_node)) 1494 node_load[node] += load; 1495 prev_node = node; 1496 load--; 1497 for (i = 0; i < GFP_ZONETYPES; i++) { 1498 zonelist = pgdat->node_zonelists + i; 1499 for (j = 0; zonelist->zones[j] != NULL; j++); 1500 1501 k = highest_zone(i); 1502 1503 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1504 zonelist->zones[j] = NULL; 1505 } 1506 } 1507 } 1508 1509 #else /* CONFIG_NUMA */ 1510 1511 static void __meminit build_zonelists(pg_data_t *pgdat) 1512 { 1513 int i, j, k, node, local_node; 1514 1515 local_node = pgdat->node_id; 1516 for (i = 0; i < GFP_ZONETYPES; i++) { 1517 struct zonelist *zonelist; 1518 1519 zonelist = pgdat->node_zonelists + i; 1520 1521 j = 0; 1522 k = highest_zone(i); 1523 j = build_zonelists_node(pgdat, zonelist, j, k); 1524 /* 1525 * Now we build the zonelist so that it contains the zones 1526 * of all the other nodes. 1527 * We don't want to pressure a particular node, so when 1528 * building the zones for node N, we make sure that the 1529 * zones coming right after the local ones are those from 1530 * node N+1 (modulo N) 1531 */ 1532 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1533 if (!node_online(node)) 1534 continue; 1535 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1536 } 1537 for (node = 0; node < local_node; node++) { 1538 if (!node_online(node)) 1539 continue; 1540 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1541 } 1542 1543 zonelist->zones[j] = NULL; 1544 } 1545 } 1546 1547 #endif /* CONFIG_NUMA */ 1548 1549 /* return values int ....just for stop_machine_run() */ 1550 static int __meminit __build_all_zonelists(void *dummy) 1551 { 1552 int nid; 1553 for_each_online_node(nid) 1554 build_zonelists(NODE_DATA(nid)); 1555 return 0; 1556 } 1557 1558 void __meminit build_all_zonelists(void) 1559 { 1560 if (system_state == SYSTEM_BOOTING) { 1561 __build_all_zonelists(0); 1562 cpuset_init_current_mems_allowed(); 1563 } else { 1564 /* we have to stop all cpus to guaranntee there is no user 1565 of zonelist */ 1566 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS); 1567 /* cpuset refresh routine should be here */ 1568 } 1569 vm_total_pages = nr_free_pagecache_pages(); 1570 printk("Built %i zonelists. Total pages: %ld\n", 1571 num_online_nodes(), vm_total_pages); 1572 } 1573 1574 /* 1575 * Helper functions to size the waitqueue hash table. 1576 * Essentially these want to choose hash table sizes sufficiently 1577 * large so that collisions trying to wait on pages are rare. 1578 * But in fact, the number of active page waitqueues on typical 1579 * systems is ridiculously low, less than 200. So this is even 1580 * conservative, even though it seems large. 1581 * 1582 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1583 * waitqueues, i.e. the size of the waitq table given the number of pages. 1584 */ 1585 #define PAGES_PER_WAITQUEUE 256 1586 1587 #ifndef CONFIG_MEMORY_HOTPLUG 1588 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1589 { 1590 unsigned long size = 1; 1591 1592 pages /= PAGES_PER_WAITQUEUE; 1593 1594 while (size < pages) 1595 size <<= 1; 1596 1597 /* 1598 * Once we have dozens or even hundreds of threads sleeping 1599 * on IO we've got bigger problems than wait queue collision. 1600 * Limit the size of the wait table to a reasonable size. 1601 */ 1602 size = min(size, 4096UL); 1603 1604 return max(size, 4UL); 1605 } 1606 #else 1607 /* 1608 * A zone's size might be changed by hot-add, so it is not possible to determine 1609 * a suitable size for its wait_table. So we use the maximum size now. 1610 * 1611 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 1612 * 1613 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 1614 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 1615 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 1616 * 1617 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 1618 * or more by the traditional way. (See above). It equals: 1619 * 1620 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 1621 * ia64(16K page size) : = ( 8G + 4M)byte. 1622 * powerpc (64K page size) : = (32G +16M)byte. 1623 */ 1624 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 1625 { 1626 return 4096UL; 1627 } 1628 #endif 1629 1630 /* 1631 * This is an integer logarithm so that shifts can be used later 1632 * to extract the more random high bits from the multiplicative 1633 * hash function before the remainder is taken. 1634 */ 1635 static inline unsigned long wait_table_bits(unsigned long size) 1636 { 1637 return ffz(~size); 1638 } 1639 1640 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1641 1642 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1643 unsigned long *zones_size, unsigned long *zholes_size) 1644 { 1645 unsigned long realtotalpages, totalpages = 0; 1646 int i; 1647 1648 for (i = 0; i < MAX_NR_ZONES; i++) 1649 totalpages += zones_size[i]; 1650 pgdat->node_spanned_pages = totalpages; 1651 1652 realtotalpages = totalpages; 1653 if (zholes_size) 1654 for (i = 0; i < MAX_NR_ZONES; i++) 1655 realtotalpages -= zholes_size[i]; 1656 pgdat->node_present_pages = realtotalpages; 1657 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1658 } 1659 1660 1661 /* 1662 * Initially all pages are reserved - free ones are freed 1663 * up by free_all_bootmem() once the early boot process is 1664 * done. Non-atomic initialization, single-pass. 1665 */ 1666 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1667 unsigned long start_pfn) 1668 { 1669 struct page *page; 1670 unsigned long end_pfn = start_pfn + size; 1671 unsigned long pfn; 1672 1673 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1674 if (!early_pfn_valid(pfn)) 1675 continue; 1676 page = pfn_to_page(pfn); 1677 set_page_links(page, zone, nid, pfn); 1678 init_page_count(page); 1679 reset_page_mapcount(page); 1680 SetPageReserved(page); 1681 INIT_LIST_HEAD(&page->lru); 1682 #ifdef WANT_PAGE_VIRTUAL 1683 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1684 if (!is_highmem_idx(zone)) 1685 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1686 #endif 1687 } 1688 } 1689 1690 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1691 unsigned long size) 1692 { 1693 int order; 1694 for (order = 0; order < MAX_ORDER ; order++) { 1695 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1696 zone->free_area[order].nr_free = 0; 1697 } 1698 } 1699 1700 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1701 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1702 unsigned long size) 1703 { 1704 unsigned long snum = pfn_to_section_nr(pfn); 1705 unsigned long end = pfn_to_section_nr(pfn + size); 1706 1707 if (FLAGS_HAS_NODE) 1708 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1709 else 1710 for (; snum <= end; snum++) 1711 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1712 } 1713 1714 #ifndef __HAVE_ARCH_MEMMAP_INIT 1715 #define memmap_init(size, nid, zone, start_pfn) \ 1716 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1717 #endif 1718 1719 static int __cpuinit zone_batchsize(struct zone *zone) 1720 { 1721 int batch; 1722 1723 /* 1724 * The per-cpu-pages pools are set to around 1000th of the 1725 * size of the zone. But no more than 1/2 of a meg. 1726 * 1727 * OK, so we don't know how big the cache is. So guess. 1728 */ 1729 batch = zone->present_pages / 1024; 1730 if (batch * PAGE_SIZE > 512 * 1024) 1731 batch = (512 * 1024) / PAGE_SIZE; 1732 batch /= 4; /* We effectively *= 4 below */ 1733 if (batch < 1) 1734 batch = 1; 1735 1736 /* 1737 * Clamp the batch to a 2^n - 1 value. Having a power 1738 * of 2 value was found to be more likely to have 1739 * suboptimal cache aliasing properties in some cases. 1740 * 1741 * For example if 2 tasks are alternately allocating 1742 * batches of pages, one task can end up with a lot 1743 * of pages of one half of the possible page colors 1744 * and the other with pages of the other colors. 1745 */ 1746 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1747 1748 return batch; 1749 } 1750 1751 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1752 { 1753 struct per_cpu_pages *pcp; 1754 1755 memset(p, 0, sizeof(*p)); 1756 1757 pcp = &p->pcp[0]; /* hot */ 1758 pcp->count = 0; 1759 pcp->high = 6 * batch; 1760 pcp->batch = max(1UL, 1 * batch); 1761 INIT_LIST_HEAD(&pcp->list); 1762 1763 pcp = &p->pcp[1]; /* cold*/ 1764 pcp->count = 0; 1765 pcp->high = 2 * batch; 1766 pcp->batch = max(1UL, batch/2); 1767 INIT_LIST_HEAD(&pcp->list); 1768 } 1769 1770 /* 1771 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1772 * to the value high for the pageset p. 1773 */ 1774 1775 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1776 unsigned long high) 1777 { 1778 struct per_cpu_pages *pcp; 1779 1780 pcp = &p->pcp[0]; /* hot list */ 1781 pcp->high = high; 1782 pcp->batch = max(1UL, high/4); 1783 if ((high/4) > (PAGE_SHIFT * 8)) 1784 pcp->batch = PAGE_SHIFT * 8; 1785 } 1786 1787 1788 #ifdef CONFIG_NUMA 1789 /* 1790 * Boot pageset table. One per cpu which is going to be used for all 1791 * zones and all nodes. The parameters will be set in such a way 1792 * that an item put on a list will immediately be handed over to 1793 * the buddy list. This is safe since pageset manipulation is done 1794 * with interrupts disabled. 1795 * 1796 * Some NUMA counter updates may also be caught by the boot pagesets. 1797 * 1798 * The boot_pagesets must be kept even after bootup is complete for 1799 * unused processors and/or zones. They do play a role for bootstrapping 1800 * hotplugged processors. 1801 * 1802 * zoneinfo_show() and maybe other functions do 1803 * not check if the processor is online before following the pageset pointer. 1804 * Other parts of the kernel may not check if the zone is available. 1805 */ 1806 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1807 1808 /* 1809 * Dynamically allocate memory for the 1810 * per cpu pageset array in struct zone. 1811 */ 1812 static int __cpuinit process_zones(int cpu) 1813 { 1814 struct zone *zone, *dzone; 1815 1816 for_each_zone(zone) { 1817 1818 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1819 GFP_KERNEL, cpu_to_node(cpu)); 1820 if (!zone_pcp(zone, cpu)) 1821 goto bad; 1822 1823 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1824 1825 if (percpu_pagelist_fraction) 1826 setup_pagelist_highmark(zone_pcp(zone, cpu), 1827 (zone->present_pages / percpu_pagelist_fraction)); 1828 } 1829 1830 return 0; 1831 bad: 1832 for_each_zone(dzone) { 1833 if (dzone == zone) 1834 break; 1835 kfree(zone_pcp(dzone, cpu)); 1836 zone_pcp(dzone, cpu) = NULL; 1837 } 1838 return -ENOMEM; 1839 } 1840 1841 static inline void free_zone_pagesets(int cpu) 1842 { 1843 struct zone *zone; 1844 1845 for_each_zone(zone) { 1846 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1847 1848 zone_pcp(zone, cpu) = NULL; 1849 kfree(pset); 1850 } 1851 } 1852 1853 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 1854 unsigned long action, 1855 void *hcpu) 1856 { 1857 int cpu = (long)hcpu; 1858 int ret = NOTIFY_OK; 1859 1860 switch (action) { 1861 case CPU_UP_PREPARE: 1862 if (process_zones(cpu)) 1863 ret = NOTIFY_BAD; 1864 break; 1865 case CPU_UP_CANCELED: 1866 case CPU_DEAD: 1867 free_zone_pagesets(cpu); 1868 break; 1869 default: 1870 break; 1871 } 1872 return ret; 1873 } 1874 1875 static struct notifier_block __cpuinitdata pageset_notifier = 1876 { &pageset_cpuup_callback, NULL, 0 }; 1877 1878 void __init setup_per_cpu_pageset(void) 1879 { 1880 int err; 1881 1882 /* Initialize per_cpu_pageset for cpu 0. 1883 * A cpuup callback will do this for every cpu 1884 * as it comes online 1885 */ 1886 err = process_zones(smp_processor_id()); 1887 BUG_ON(err); 1888 register_cpu_notifier(&pageset_notifier); 1889 } 1890 1891 #endif 1892 1893 static __meminit 1894 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 1895 { 1896 int i; 1897 struct pglist_data *pgdat = zone->zone_pgdat; 1898 size_t alloc_size; 1899 1900 /* 1901 * The per-page waitqueue mechanism uses hashed waitqueues 1902 * per zone. 1903 */ 1904 zone->wait_table_hash_nr_entries = 1905 wait_table_hash_nr_entries(zone_size_pages); 1906 zone->wait_table_bits = 1907 wait_table_bits(zone->wait_table_hash_nr_entries); 1908 alloc_size = zone->wait_table_hash_nr_entries 1909 * sizeof(wait_queue_head_t); 1910 1911 if (system_state == SYSTEM_BOOTING) { 1912 zone->wait_table = (wait_queue_head_t *) 1913 alloc_bootmem_node(pgdat, alloc_size); 1914 } else { 1915 /* 1916 * This case means that a zone whose size was 0 gets new memory 1917 * via memory hot-add. 1918 * But it may be the case that a new node was hot-added. In 1919 * this case vmalloc() will not be able to use this new node's 1920 * memory - this wait_table must be initialized to use this new 1921 * node itself as well. 1922 * To use this new node's memory, further consideration will be 1923 * necessary. 1924 */ 1925 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size); 1926 } 1927 if (!zone->wait_table) 1928 return -ENOMEM; 1929 1930 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 1931 init_waitqueue_head(zone->wait_table + i); 1932 1933 return 0; 1934 } 1935 1936 static __meminit void zone_pcp_init(struct zone *zone) 1937 { 1938 int cpu; 1939 unsigned long batch = zone_batchsize(zone); 1940 1941 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1942 #ifdef CONFIG_NUMA 1943 /* Early boot. Slab allocator not functional yet */ 1944 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 1945 setup_pageset(&boot_pageset[cpu],0); 1946 #else 1947 setup_pageset(zone_pcp(zone,cpu), batch); 1948 #endif 1949 } 1950 if (zone->present_pages) 1951 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 1952 zone->name, zone->present_pages, batch); 1953 } 1954 1955 __meminit int init_currently_empty_zone(struct zone *zone, 1956 unsigned long zone_start_pfn, 1957 unsigned long size) 1958 { 1959 struct pglist_data *pgdat = zone->zone_pgdat; 1960 int ret; 1961 ret = zone_wait_table_init(zone, size); 1962 if (ret) 1963 return ret; 1964 pgdat->nr_zones = zone_idx(zone) + 1; 1965 1966 zone->zone_start_pfn = zone_start_pfn; 1967 1968 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 1969 1970 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 1971 1972 return 0; 1973 } 1974 1975 /* 1976 * Set up the zone data structures: 1977 * - mark all pages reserved 1978 * - mark all memory queues empty 1979 * - clear the memory bitmaps 1980 */ 1981 static void __meminit free_area_init_core(struct pglist_data *pgdat, 1982 unsigned long *zones_size, unsigned long *zholes_size) 1983 { 1984 unsigned long j; 1985 int nid = pgdat->node_id; 1986 unsigned long zone_start_pfn = pgdat->node_start_pfn; 1987 int ret; 1988 1989 pgdat_resize_init(pgdat); 1990 pgdat->nr_zones = 0; 1991 init_waitqueue_head(&pgdat->kswapd_wait); 1992 pgdat->kswapd_max_order = 0; 1993 1994 for (j = 0; j < MAX_NR_ZONES; j++) { 1995 struct zone *zone = pgdat->node_zones + j; 1996 unsigned long size, realsize; 1997 1998 realsize = size = zones_size[j]; 1999 if (zholes_size) 2000 realsize -= zholes_size[j]; 2001 2002 if (j < ZONE_HIGHMEM) 2003 nr_kernel_pages += realsize; 2004 nr_all_pages += realsize; 2005 2006 zone->spanned_pages = size; 2007 zone->present_pages = realsize; 2008 #ifdef CONFIG_NUMA 2009 zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio) 2010 / 100; 2011 #endif 2012 zone->name = zone_names[j]; 2013 spin_lock_init(&zone->lock); 2014 spin_lock_init(&zone->lru_lock); 2015 zone_seqlock_init(zone); 2016 zone->zone_pgdat = pgdat; 2017 zone->free_pages = 0; 2018 2019 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2020 2021 zone_pcp_init(zone); 2022 INIT_LIST_HEAD(&zone->active_list); 2023 INIT_LIST_HEAD(&zone->inactive_list); 2024 zone->nr_scan_active = 0; 2025 zone->nr_scan_inactive = 0; 2026 zone->nr_active = 0; 2027 zone->nr_inactive = 0; 2028 zap_zone_vm_stats(zone); 2029 atomic_set(&zone->reclaim_in_progress, 0); 2030 if (!size) 2031 continue; 2032 2033 zonetable_add(zone, nid, j, zone_start_pfn, size); 2034 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 2035 BUG_ON(ret); 2036 zone_start_pfn += size; 2037 } 2038 } 2039 2040 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2041 { 2042 /* Skip empty nodes */ 2043 if (!pgdat->node_spanned_pages) 2044 return; 2045 2046 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2047 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2048 if (!pgdat->node_mem_map) { 2049 unsigned long size, start, end; 2050 struct page *map; 2051 2052 /* 2053 * The zone's endpoints aren't required to be MAX_ORDER 2054 * aligned but the node_mem_map endpoints must be in order 2055 * for the buddy allocator to function correctly. 2056 */ 2057 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 2058 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 2059 end = ALIGN(end, MAX_ORDER_NR_PAGES); 2060 size = (end - start) * sizeof(struct page); 2061 map = alloc_remap(pgdat->node_id, size); 2062 if (!map) 2063 map = alloc_bootmem_node(pgdat, size); 2064 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 2065 } 2066 #ifdef CONFIG_FLATMEM 2067 /* 2068 * With no DISCONTIG, the global mem_map is just set as node 0's 2069 */ 2070 if (pgdat == NODE_DATA(0)) 2071 mem_map = NODE_DATA(0)->node_mem_map; 2072 #endif 2073 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2074 } 2075 2076 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat, 2077 unsigned long *zones_size, unsigned long node_start_pfn, 2078 unsigned long *zholes_size) 2079 { 2080 pgdat->node_id = nid; 2081 pgdat->node_start_pfn = node_start_pfn; 2082 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2083 2084 alloc_node_mem_map(pgdat); 2085 2086 free_area_init_core(pgdat, zones_size, zholes_size); 2087 } 2088 2089 #ifndef CONFIG_NEED_MULTIPLE_NODES 2090 static bootmem_data_t contig_bootmem_data; 2091 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2092 2093 EXPORT_SYMBOL(contig_page_data); 2094 #endif 2095 2096 void __init free_area_init(unsigned long *zones_size) 2097 { 2098 free_area_init_node(0, NODE_DATA(0), zones_size, 2099 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2100 } 2101 2102 #ifdef CONFIG_HOTPLUG_CPU 2103 static int page_alloc_cpu_notify(struct notifier_block *self, 2104 unsigned long action, void *hcpu) 2105 { 2106 int cpu = (unsigned long)hcpu; 2107 2108 if (action == CPU_DEAD) { 2109 local_irq_disable(); 2110 __drain_pages(cpu); 2111 vm_events_fold_cpu(cpu); 2112 local_irq_enable(); 2113 refresh_cpu_vm_stats(cpu); 2114 } 2115 return NOTIFY_OK; 2116 } 2117 #endif /* CONFIG_HOTPLUG_CPU */ 2118 2119 void __init page_alloc_init(void) 2120 { 2121 hotcpu_notifier(page_alloc_cpu_notify, 0); 2122 } 2123 2124 /* 2125 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 2126 * or min_free_kbytes changes. 2127 */ 2128 static void calculate_totalreserve_pages(void) 2129 { 2130 struct pglist_data *pgdat; 2131 unsigned long reserve_pages = 0; 2132 int i, j; 2133 2134 for_each_online_pgdat(pgdat) { 2135 for (i = 0; i < MAX_NR_ZONES; i++) { 2136 struct zone *zone = pgdat->node_zones + i; 2137 unsigned long max = 0; 2138 2139 /* Find valid and maximum lowmem_reserve in the zone */ 2140 for (j = i; j < MAX_NR_ZONES; j++) { 2141 if (zone->lowmem_reserve[j] > max) 2142 max = zone->lowmem_reserve[j]; 2143 } 2144 2145 /* we treat pages_high as reserved pages. */ 2146 max += zone->pages_high; 2147 2148 if (max > zone->present_pages) 2149 max = zone->present_pages; 2150 reserve_pages += max; 2151 } 2152 } 2153 totalreserve_pages = reserve_pages; 2154 } 2155 2156 /* 2157 * setup_per_zone_lowmem_reserve - called whenever 2158 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2159 * has a correct pages reserved value, so an adequate number of 2160 * pages are left in the zone after a successful __alloc_pages(). 2161 */ 2162 static void setup_per_zone_lowmem_reserve(void) 2163 { 2164 struct pglist_data *pgdat; 2165 int j, idx; 2166 2167 for_each_online_pgdat(pgdat) { 2168 for (j = 0; j < MAX_NR_ZONES; j++) { 2169 struct zone *zone = pgdat->node_zones + j; 2170 unsigned long present_pages = zone->present_pages; 2171 2172 zone->lowmem_reserve[j] = 0; 2173 2174 for (idx = j-1; idx >= 0; idx--) { 2175 struct zone *lower_zone; 2176 2177 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2178 sysctl_lowmem_reserve_ratio[idx] = 1; 2179 2180 lower_zone = pgdat->node_zones + idx; 2181 lower_zone->lowmem_reserve[j] = present_pages / 2182 sysctl_lowmem_reserve_ratio[idx]; 2183 present_pages += lower_zone->present_pages; 2184 } 2185 } 2186 } 2187 2188 /* update totalreserve_pages */ 2189 calculate_totalreserve_pages(); 2190 } 2191 2192 /* 2193 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2194 * that the pages_{min,low,high} values for each zone are set correctly 2195 * with respect to min_free_kbytes. 2196 */ 2197 void setup_per_zone_pages_min(void) 2198 { 2199 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2200 unsigned long lowmem_pages = 0; 2201 struct zone *zone; 2202 unsigned long flags; 2203 2204 /* Calculate total number of !ZONE_HIGHMEM pages */ 2205 for_each_zone(zone) { 2206 if (!is_highmem(zone)) 2207 lowmem_pages += zone->present_pages; 2208 } 2209 2210 for_each_zone(zone) { 2211 u64 tmp; 2212 2213 spin_lock_irqsave(&zone->lru_lock, flags); 2214 tmp = (u64)pages_min * zone->present_pages; 2215 do_div(tmp, lowmem_pages); 2216 if (is_highmem(zone)) { 2217 /* 2218 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2219 * need highmem pages, so cap pages_min to a small 2220 * value here. 2221 * 2222 * The (pages_high-pages_low) and (pages_low-pages_min) 2223 * deltas controls asynch page reclaim, and so should 2224 * not be capped for highmem. 2225 */ 2226 int min_pages; 2227 2228 min_pages = zone->present_pages / 1024; 2229 if (min_pages < SWAP_CLUSTER_MAX) 2230 min_pages = SWAP_CLUSTER_MAX; 2231 if (min_pages > 128) 2232 min_pages = 128; 2233 zone->pages_min = min_pages; 2234 } else { 2235 /* 2236 * If it's a lowmem zone, reserve a number of pages 2237 * proportionate to the zone's size. 2238 */ 2239 zone->pages_min = tmp; 2240 } 2241 2242 zone->pages_low = zone->pages_min + (tmp >> 2); 2243 zone->pages_high = zone->pages_min + (tmp >> 1); 2244 spin_unlock_irqrestore(&zone->lru_lock, flags); 2245 } 2246 2247 /* update totalreserve_pages */ 2248 calculate_totalreserve_pages(); 2249 } 2250 2251 /* 2252 * Initialise min_free_kbytes. 2253 * 2254 * For small machines we want it small (128k min). For large machines 2255 * we want it large (64MB max). But it is not linear, because network 2256 * bandwidth does not increase linearly with machine size. We use 2257 * 2258 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2259 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2260 * 2261 * which yields 2262 * 2263 * 16MB: 512k 2264 * 32MB: 724k 2265 * 64MB: 1024k 2266 * 128MB: 1448k 2267 * 256MB: 2048k 2268 * 512MB: 2896k 2269 * 1024MB: 4096k 2270 * 2048MB: 5792k 2271 * 4096MB: 8192k 2272 * 8192MB: 11584k 2273 * 16384MB: 16384k 2274 */ 2275 static int __init init_per_zone_pages_min(void) 2276 { 2277 unsigned long lowmem_kbytes; 2278 2279 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2280 2281 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2282 if (min_free_kbytes < 128) 2283 min_free_kbytes = 128; 2284 if (min_free_kbytes > 65536) 2285 min_free_kbytes = 65536; 2286 setup_per_zone_pages_min(); 2287 setup_per_zone_lowmem_reserve(); 2288 return 0; 2289 } 2290 module_init(init_per_zone_pages_min) 2291 2292 /* 2293 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2294 * that we can call two helper functions whenever min_free_kbytes 2295 * changes. 2296 */ 2297 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2298 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2299 { 2300 proc_dointvec(table, write, file, buffer, length, ppos); 2301 setup_per_zone_pages_min(); 2302 return 0; 2303 } 2304 2305 #ifdef CONFIG_NUMA 2306 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 2307 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2308 { 2309 struct zone *zone; 2310 int rc; 2311 2312 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2313 if (rc) 2314 return rc; 2315 2316 for_each_zone(zone) 2317 zone->min_unmapped_ratio = (zone->present_pages * 2318 sysctl_min_unmapped_ratio) / 100; 2319 return 0; 2320 } 2321 #endif 2322 2323 /* 2324 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2325 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2326 * whenever sysctl_lowmem_reserve_ratio changes. 2327 * 2328 * The reserve ratio obviously has absolutely no relation with the 2329 * pages_min watermarks. The lowmem reserve ratio can only make sense 2330 * if in function of the boot time zone sizes. 2331 */ 2332 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2333 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2334 { 2335 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2336 setup_per_zone_lowmem_reserve(); 2337 return 0; 2338 } 2339 2340 /* 2341 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2342 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2343 * can have before it gets flushed back to buddy allocator. 2344 */ 2345 2346 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2347 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2348 { 2349 struct zone *zone; 2350 unsigned int cpu; 2351 int ret; 2352 2353 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2354 if (!write || (ret == -EINVAL)) 2355 return ret; 2356 for_each_zone(zone) { 2357 for_each_online_cpu(cpu) { 2358 unsigned long high; 2359 high = zone->present_pages / percpu_pagelist_fraction; 2360 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2361 } 2362 } 2363 return 0; 2364 } 2365 2366 __initdata int hashdist = HASHDIST_DEFAULT; 2367 2368 #ifdef CONFIG_NUMA 2369 static int __init set_hashdist(char *str) 2370 { 2371 if (!str) 2372 return 0; 2373 hashdist = simple_strtoul(str, &str, 0); 2374 return 1; 2375 } 2376 __setup("hashdist=", set_hashdist); 2377 #endif 2378 2379 /* 2380 * allocate a large system hash table from bootmem 2381 * - it is assumed that the hash table must contain an exact power-of-2 2382 * quantity of entries 2383 * - limit is the number of hash buckets, not the total allocation size 2384 */ 2385 void *__init alloc_large_system_hash(const char *tablename, 2386 unsigned long bucketsize, 2387 unsigned long numentries, 2388 int scale, 2389 int flags, 2390 unsigned int *_hash_shift, 2391 unsigned int *_hash_mask, 2392 unsigned long limit) 2393 { 2394 unsigned long long max = limit; 2395 unsigned long log2qty, size; 2396 void *table = NULL; 2397 2398 /* allow the kernel cmdline to have a say */ 2399 if (!numentries) { 2400 /* round applicable memory size up to nearest megabyte */ 2401 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2402 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2403 numentries >>= 20 - PAGE_SHIFT; 2404 numentries <<= 20 - PAGE_SHIFT; 2405 2406 /* limit to 1 bucket per 2^scale bytes of low memory */ 2407 if (scale > PAGE_SHIFT) 2408 numentries >>= (scale - PAGE_SHIFT); 2409 else 2410 numentries <<= (PAGE_SHIFT - scale); 2411 } 2412 numentries = roundup_pow_of_two(numentries); 2413 2414 /* limit allocation size to 1/16 total memory by default */ 2415 if (max == 0) { 2416 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2417 do_div(max, bucketsize); 2418 } 2419 2420 if (numentries > max) 2421 numentries = max; 2422 2423 log2qty = long_log2(numentries); 2424 2425 do { 2426 size = bucketsize << log2qty; 2427 if (flags & HASH_EARLY) 2428 table = alloc_bootmem(size); 2429 else if (hashdist) 2430 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2431 else { 2432 unsigned long order; 2433 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2434 ; 2435 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2436 } 2437 } while (!table && size > PAGE_SIZE && --log2qty); 2438 2439 if (!table) 2440 panic("Failed to allocate %s hash table\n", tablename); 2441 2442 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2443 tablename, 2444 (1U << log2qty), 2445 long_log2(size) - PAGE_SHIFT, 2446 size); 2447 2448 if (_hash_shift) 2449 *_hash_shift = log2qty; 2450 if (_hash_mask) 2451 *_hash_mask = (1 << log2qty) - 1; 2452 2453 return table; 2454 } 2455 2456 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 2457 struct page *pfn_to_page(unsigned long pfn) 2458 { 2459 return __pfn_to_page(pfn); 2460 } 2461 unsigned long page_to_pfn(struct page *page) 2462 { 2463 return __page_to_pfn(page); 2464 } 2465 EXPORT_SYMBOL(pfn_to_page); 2466 EXPORT_SYMBOL(page_to_pfn); 2467 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 2468