1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 64 #include <asm/sections.h> 65 #include <asm/tlbflush.h> 66 #include <asm/div64.h> 67 #include "internal.h" 68 69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 70 static DEFINE_MUTEX(pcp_batch_high_lock); 71 72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 73 DEFINE_PER_CPU(int, numa_node); 74 EXPORT_PER_CPU_SYMBOL(numa_node); 75 #endif 76 77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 78 /* 79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 82 * defined in <linux/topology.h>. 83 */ 84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 85 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 86 #endif 87 88 /* 89 * Array of node states. 90 */ 91 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 92 [N_POSSIBLE] = NODE_MASK_ALL, 93 [N_ONLINE] = { { [0] = 1UL } }, 94 #ifndef CONFIG_NUMA 95 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 96 #ifdef CONFIG_HIGHMEM 97 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 98 #endif 99 #ifdef CONFIG_MOVABLE_NODE 100 [N_MEMORY] = { { [0] = 1UL } }, 101 #endif 102 [N_CPU] = { { [0] = 1UL } }, 103 #endif /* NUMA */ 104 }; 105 EXPORT_SYMBOL(node_states); 106 107 /* Protect totalram_pages and zone->managed_pages */ 108 static DEFINE_SPINLOCK(managed_page_count_lock); 109 110 unsigned long totalram_pages __read_mostly; 111 unsigned long totalreserve_pages __read_mostly; 112 /* 113 * When calculating the number of globally allowed dirty pages, there 114 * is a certain number of per-zone reserves that should not be 115 * considered dirtyable memory. This is the sum of those reserves 116 * over all existing zones that contribute dirtyable memory. 117 */ 118 unsigned long dirty_balance_reserve __read_mostly; 119 120 int percpu_pagelist_fraction; 121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 122 123 #ifdef CONFIG_PM_SLEEP 124 /* 125 * The following functions are used by the suspend/hibernate code to temporarily 126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 127 * while devices are suspended. To avoid races with the suspend/hibernate code, 128 * they should always be called with pm_mutex held (gfp_allowed_mask also should 129 * only be modified with pm_mutex held, unless the suspend/hibernate code is 130 * guaranteed not to run in parallel with that modification). 131 */ 132 133 static gfp_t saved_gfp_mask; 134 135 void pm_restore_gfp_mask(void) 136 { 137 WARN_ON(!mutex_is_locked(&pm_mutex)); 138 if (saved_gfp_mask) { 139 gfp_allowed_mask = saved_gfp_mask; 140 saved_gfp_mask = 0; 141 } 142 } 143 144 void pm_restrict_gfp_mask(void) 145 { 146 WARN_ON(!mutex_is_locked(&pm_mutex)); 147 WARN_ON(saved_gfp_mask); 148 saved_gfp_mask = gfp_allowed_mask; 149 gfp_allowed_mask &= ~GFP_IOFS; 150 } 151 152 bool pm_suspended_storage(void) 153 { 154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 155 return false; 156 return true; 157 } 158 #endif /* CONFIG_PM_SLEEP */ 159 160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 161 int pageblock_order __read_mostly; 162 #endif 163 164 static void __free_pages_ok(struct page *page, unsigned int order); 165 166 /* 167 * results with 256, 32 in the lowmem_reserve sysctl: 168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 169 * 1G machine -> (16M dma, 784M normal, 224M high) 170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 173 * 174 * TBD: should special case ZONE_DMA32 machines here - in those we normally 175 * don't need any ZONE_NORMAL reservation 176 */ 177 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 178 #ifdef CONFIG_ZONE_DMA 179 256, 180 #endif 181 #ifdef CONFIG_ZONE_DMA32 182 256, 183 #endif 184 #ifdef CONFIG_HIGHMEM 185 32, 186 #endif 187 32, 188 }; 189 190 EXPORT_SYMBOL(totalram_pages); 191 192 static char * const zone_names[MAX_NR_ZONES] = { 193 #ifdef CONFIG_ZONE_DMA 194 "DMA", 195 #endif 196 #ifdef CONFIG_ZONE_DMA32 197 "DMA32", 198 #endif 199 "Normal", 200 #ifdef CONFIG_HIGHMEM 201 "HighMem", 202 #endif 203 "Movable", 204 }; 205 206 int min_free_kbytes = 1024; 207 int user_min_free_kbytes; 208 209 static unsigned long __meminitdata nr_kernel_pages; 210 static unsigned long __meminitdata nr_all_pages; 211 static unsigned long __meminitdata dma_reserve; 212 213 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 214 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 215 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 216 static unsigned long __initdata required_kernelcore; 217 static unsigned long __initdata required_movablecore; 218 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 219 220 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 221 int movable_zone; 222 EXPORT_SYMBOL(movable_zone); 223 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 224 225 #if MAX_NUMNODES > 1 226 int nr_node_ids __read_mostly = MAX_NUMNODES; 227 int nr_online_nodes __read_mostly = 1; 228 EXPORT_SYMBOL(nr_node_ids); 229 EXPORT_SYMBOL(nr_online_nodes); 230 #endif 231 232 int page_group_by_mobility_disabled __read_mostly; 233 234 void set_pageblock_migratetype(struct page *page, int migratetype) 235 { 236 237 if (unlikely(page_group_by_mobility_disabled)) 238 migratetype = MIGRATE_UNMOVABLE; 239 240 set_pageblock_flags_group(page, (unsigned long)migratetype, 241 PB_migrate, PB_migrate_end); 242 } 243 244 bool oom_killer_disabled __read_mostly; 245 246 #ifdef CONFIG_DEBUG_VM 247 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 248 { 249 int ret = 0; 250 unsigned seq; 251 unsigned long pfn = page_to_pfn(page); 252 unsigned long sp, start_pfn; 253 254 do { 255 seq = zone_span_seqbegin(zone); 256 start_pfn = zone->zone_start_pfn; 257 sp = zone->spanned_pages; 258 if (!zone_spans_pfn(zone, pfn)) 259 ret = 1; 260 } while (zone_span_seqretry(zone, seq)); 261 262 if (ret) 263 pr_err("page %lu outside zone [ %lu - %lu ]\n", 264 pfn, start_pfn, start_pfn + sp); 265 266 return ret; 267 } 268 269 static int page_is_consistent(struct zone *zone, struct page *page) 270 { 271 if (!pfn_valid_within(page_to_pfn(page))) 272 return 0; 273 if (zone != page_zone(page)) 274 return 0; 275 276 return 1; 277 } 278 /* 279 * Temporary debugging check for pages not lying within a given zone. 280 */ 281 static int bad_range(struct zone *zone, struct page *page) 282 { 283 if (page_outside_zone_boundaries(zone, page)) 284 return 1; 285 if (!page_is_consistent(zone, page)) 286 return 1; 287 288 return 0; 289 } 290 #else 291 static inline int bad_range(struct zone *zone, struct page *page) 292 { 293 return 0; 294 } 295 #endif 296 297 static void bad_page(struct page *page) 298 { 299 static unsigned long resume; 300 static unsigned long nr_shown; 301 static unsigned long nr_unshown; 302 303 /* Don't complain about poisoned pages */ 304 if (PageHWPoison(page)) { 305 page_mapcount_reset(page); /* remove PageBuddy */ 306 return; 307 } 308 309 /* 310 * Allow a burst of 60 reports, then keep quiet for that minute; 311 * or allow a steady drip of one report per second. 312 */ 313 if (nr_shown == 60) { 314 if (time_before(jiffies, resume)) { 315 nr_unshown++; 316 goto out; 317 } 318 if (nr_unshown) { 319 printk(KERN_ALERT 320 "BUG: Bad page state: %lu messages suppressed\n", 321 nr_unshown); 322 nr_unshown = 0; 323 } 324 nr_shown = 0; 325 } 326 if (nr_shown++ == 0) 327 resume = jiffies + 60 * HZ; 328 329 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 330 current->comm, page_to_pfn(page)); 331 dump_page(page); 332 333 print_modules(); 334 dump_stack(); 335 out: 336 /* Leave bad fields for debug, except PageBuddy could make trouble */ 337 page_mapcount_reset(page); /* remove PageBuddy */ 338 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 339 } 340 341 /* 342 * Higher-order pages are called "compound pages". They are structured thusly: 343 * 344 * The first PAGE_SIZE page is called the "head page". 345 * 346 * The remaining PAGE_SIZE pages are called "tail pages". 347 * 348 * All pages have PG_compound set. All tail pages have their ->first_page 349 * pointing at the head page. 350 * 351 * The first tail page's ->lru.next holds the address of the compound page's 352 * put_page() function. Its ->lru.prev holds the order of allocation. 353 * This usage means that zero-order pages may not be compound. 354 */ 355 356 static void free_compound_page(struct page *page) 357 { 358 __free_pages_ok(page, compound_order(page)); 359 } 360 361 void prep_compound_page(struct page *page, unsigned long order) 362 { 363 int i; 364 int nr_pages = 1 << order; 365 366 set_compound_page_dtor(page, free_compound_page); 367 set_compound_order(page, order); 368 __SetPageHead(page); 369 for (i = 1; i < nr_pages; i++) { 370 struct page *p = page + i; 371 __SetPageTail(p); 372 set_page_count(p, 0); 373 p->first_page = page; 374 } 375 } 376 377 /* update __split_huge_page_refcount if you change this function */ 378 static int destroy_compound_page(struct page *page, unsigned long order) 379 { 380 int i; 381 int nr_pages = 1 << order; 382 int bad = 0; 383 384 if (unlikely(compound_order(page) != order)) { 385 bad_page(page); 386 bad++; 387 } 388 389 __ClearPageHead(page); 390 391 for (i = 1; i < nr_pages; i++) { 392 struct page *p = page + i; 393 394 if (unlikely(!PageTail(p) || (p->first_page != page))) { 395 bad_page(page); 396 bad++; 397 } 398 __ClearPageTail(p); 399 } 400 401 return bad; 402 } 403 404 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 405 { 406 int i; 407 408 /* 409 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 410 * and __GFP_HIGHMEM from hard or soft interrupt context. 411 */ 412 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 413 for (i = 0; i < (1 << order); i++) 414 clear_highpage(page + i); 415 } 416 417 #ifdef CONFIG_DEBUG_PAGEALLOC 418 unsigned int _debug_guardpage_minorder; 419 420 static int __init debug_guardpage_minorder_setup(char *buf) 421 { 422 unsigned long res; 423 424 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 425 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 426 return 0; 427 } 428 _debug_guardpage_minorder = res; 429 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 430 return 0; 431 } 432 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 433 434 static inline void set_page_guard_flag(struct page *page) 435 { 436 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 437 } 438 439 static inline void clear_page_guard_flag(struct page *page) 440 { 441 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 442 } 443 #else 444 static inline void set_page_guard_flag(struct page *page) { } 445 static inline void clear_page_guard_flag(struct page *page) { } 446 #endif 447 448 static inline void set_page_order(struct page *page, int order) 449 { 450 set_page_private(page, order); 451 __SetPageBuddy(page); 452 } 453 454 static inline void rmv_page_order(struct page *page) 455 { 456 __ClearPageBuddy(page); 457 set_page_private(page, 0); 458 } 459 460 /* 461 * Locate the struct page for both the matching buddy in our 462 * pair (buddy1) and the combined O(n+1) page they form (page). 463 * 464 * 1) Any buddy B1 will have an order O twin B2 which satisfies 465 * the following equation: 466 * B2 = B1 ^ (1 << O) 467 * For example, if the starting buddy (buddy2) is #8 its order 468 * 1 buddy is #10: 469 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 470 * 471 * 2) Any buddy B will have an order O+1 parent P which 472 * satisfies the following equation: 473 * P = B & ~(1 << O) 474 * 475 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 476 */ 477 static inline unsigned long 478 __find_buddy_index(unsigned long page_idx, unsigned int order) 479 { 480 return page_idx ^ (1 << order); 481 } 482 483 /* 484 * This function checks whether a page is free && is the buddy 485 * we can do coalesce a page and its buddy if 486 * (a) the buddy is not in a hole && 487 * (b) the buddy is in the buddy system && 488 * (c) a page and its buddy have the same order && 489 * (d) a page and its buddy are in the same zone. 490 * 491 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 492 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 493 * 494 * For recording page's order, we use page_private(page). 495 */ 496 static inline int page_is_buddy(struct page *page, struct page *buddy, 497 int order) 498 { 499 if (!pfn_valid_within(page_to_pfn(buddy))) 500 return 0; 501 502 if (page_zone_id(page) != page_zone_id(buddy)) 503 return 0; 504 505 if (page_is_guard(buddy) && page_order(buddy) == order) { 506 VM_BUG_ON(page_count(buddy) != 0); 507 return 1; 508 } 509 510 if (PageBuddy(buddy) && page_order(buddy) == order) { 511 VM_BUG_ON(page_count(buddy) != 0); 512 return 1; 513 } 514 return 0; 515 } 516 517 /* 518 * Freeing function for a buddy system allocator. 519 * 520 * The concept of a buddy system is to maintain direct-mapped table 521 * (containing bit values) for memory blocks of various "orders". 522 * The bottom level table contains the map for the smallest allocatable 523 * units of memory (here, pages), and each level above it describes 524 * pairs of units from the levels below, hence, "buddies". 525 * At a high level, all that happens here is marking the table entry 526 * at the bottom level available, and propagating the changes upward 527 * as necessary, plus some accounting needed to play nicely with other 528 * parts of the VM system. 529 * At each level, we keep a list of pages, which are heads of continuous 530 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 531 * order is recorded in page_private(page) field. 532 * So when we are allocating or freeing one, we can derive the state of the 533 * other. That is, if we allocate a small block, and both were 534 * free, the remainder of the region must be split into blocks. 535 * If a block is freed, and its buddy is also free, then this 536 * triggers coalescing into a block of larger size. 537 * 538 * -- nyc 539 */ 540 541 static inline void __free_one_page(struct page *page, 542 struct zone *zone, unsigned int order, 543 int migratetype) 544 { 545 unsigned long page_idx; 546 unsigned long combined_idx; 547 unsigned long uninitialized_var(buddy_idx); 548 struct page *buddy; 549 550 VM_BUG_ON(!zone_is_initialized(zone)); 551 552 if (unlikely(PageCompound(page))) 553 if (unlikely(destroy_compound_page(page, order))) 554 return; 555 556 VM_BUG_ON(migratetype == -1); 557 558 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 559 560 VM_BUG_ON(page_idx & ((1 << order) - 1)); 561 VM_BUG_ON(bad_range(zone, page)); 562 563 while (order < MAX_ORDER-1) { 564 buddy_idx = __find_buddy_index(page_idx, order); 565 buddy = page + (buddy_idx - page_idx); 566 if (!page_is_buddy(page, buddy, order)) 567 break; 568 /* 569 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 570 * merge with it and move up one order. 571 */ 572 if (page_is_guard(buddy)) { 573 clear_page_guard_flag(buddy); 574 set_page_private(page, 0); 575 __mod_zone_freepage_state(zone, 1 << order, 576 migratetype); 577 } else { 578 list_del(&buddy->lru); 579 zone->free_area[order].nr_free--; 580 rmv_page_order(buddy); 581 } 582 combined_idx = buddy_idx & page_idx; 583 page = page + (combined_idx - page_idx); 584 page_idx = combined_idx; 585 order++; 586 } 587 set_page_order(page, order); 588 589 /* 590 * If this is not the largest possible page, check if the buddy 591 * of the next-highest order is free. If it is, it's possible 592 * that pages are being freed that will coalesce soon. In case, 593 * that is happening, add the free page to the tail of the list 594 * so it's less likely to be used soon and more likely to be merged 595 * as a higher order page 596 */ 597 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 598 struct page *higher_page, *higher_buddy; 599 combined_idx = buddy_idx & page_idx; 600 higher_page = page + (combined_idx - page_idx); 601 buddy_idx = __find_buddy_index(combined_idx, order + 1); 602 higher_buddy = higher_page + (buddy_idx - combined_idx); 603 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 604 list_add_tail(&page->lru, 605 &zone->free_area[order].free_list[migratetype]); 606 goto out; 607 } 608 } 609 610 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 611 out: 612 zone->free_area[order].nr_free++; 613 } 614 615 static inline int free_pages_check(struct page *page) 616 { 617 if (unlikely(page_mapcount(page) | 618 (page->mapping != NULL) | 619 (atomic_read(&page->_count) != 0) | 620 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 621 (mem_cgroup_bad_page_check(page)))) { 622 bad_page(page); 623 return 1; 624 } 625 page_nid_reset_last(page); 626 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 627 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 628 return 0; 629 } 630 631 /* 632 * Frees a number of pages from the PCP lists 633 * Assumes all pages on list are in same zone, and of same order. 634 * count is the number of pages to free. 635 * 636 * If the zone was previously in an "all pages pinned" state then look to 637 * see if this freeing clears that state. 638 * 639 * And clear the zone's pages_scanned counter, to hold off the "all pages are 640 * pinned" detection logic. 641 */ 642 static void free_pcppages_bulk(struct zone *zone, int count, 643 struct per_cpu_pages *pcp) 644 { 645 int migratetype = 0; 646 int batch_free = 0; 647 int to_free = count; 648 649 spin_lock(&zone->lock); 650 zone->all_unreclaimable = 0; 651 zone->pages_scanned = 0; 652 653 while (to_free) { 654 struct page *page; 655 struct list_head *list; 656 657 /* 658 * Remove pages from lists in a round-robin fashion. A 659 * batch_free count is maintained that is incremented when an 660 * empty list is encountered. This is so more pages are freed 661 * off fuller lists instead of spinning excessively around empty 662 * lists 663 */ 664 do { 665 batch_free++; 666 if (++migratetype == MIGRATE_PCPTYPES) 667 migratetype = 0; 668 list = &pcp->lists[migratetype]; 669 } while (list_empty(list)); 670 671 /* This is the only non-empty list. Free them all. */ 672 if (batch_free == MIGRATE_PCPTYPES) 673 batch_free = to_free; 674 675 do { 676 int mt; /* migratetype of the to-be-freed page */ 677 678 page = list_entry(list->prev, struct page, lru); 679 /* must delete as __free_one_page list manipulates */ 680 list_del(&page->lru); 681 mt = get_freepage_migratetype(page); 682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 683 __free_one_page(page, zone, 0, mt); 684 trace_mm_page_pcpu_drain(page, 0, mt); 685 if (likely(!is_migrate_isolate_page(page))) { 686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1); 687 if (is_migrate_cma(mt)) 688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 689 } 690 } while (--to_free && --batch_free && !list_empty(list)); 691 } 692 spin_unlock(&zone->lock); 693 } 694 695 static void free_one_page(struct zone *zone, struct page *page, int order, 696 int migratetype) 697 { 698 spin_lock(&zone->lock); 699 zone->all_unreclaimable = 0; 700 zone->pages_scanned = 0; 701 702 __free_one_page(page, zone, order, migratetype); 703 if (unlikely(!is_migrate_isolate(migratetype))) 704 __mod_zone_freepage_state(zone, 1 << order, migratetype); 705 spin_unlock(&zone->lock); 706 } 707 708 static bool free_pages_prepare(struct page *page, unsigned int order) 709 { 710 int i; 711 int bad = 0; 712 713 trace_mm_page_free(page, order); 714 kmemcheck_free_shadow(page, order); 715 716 if (PageAnon(page)) 717 page->mapping = NULL; 718 for (i = 0; i < (1 << order); i++) 719 bad += free_pages_check(page + i); 720 if (bad) 721 return false; 722 723 if (!PageHighMem(page)) { 724 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 725 debug_check_no_obj_freed(page_address(page), 726 PAGE_SIZE << order); 727 } 728 arch_free_page(page, order); 729 kernel_map_pages(page, 1 << order, 0); 730 731 return true; 732 } 733 734 static void __free_pages_ok(struct page *page, unsigned int order) 735 { 736 unsigned long flags; 737 int migratetype; 738 739 if (!free_pages_prepare(page, order)) 740 return; 741 742 local_irq_save(flags); 743 __count_vm_events(PGFREE, 1 << order); 744 migratetype = get_pageblock_migratetype(page); 745 set_freepage_migratetype(page, migratetype); 746 free_one_page(page_zone(page), page, order, migratetype); 747 local_irq_restore(flags); 748 } 749 750 void __init __free_pages_bootmem(struct page *page, unsigned int order) 751 { 752 unsigned int nr_pages = 1 << order; 753 unsigned int loop; 754 755 prefetchw(page); 756 for (loop = 0; loop < nr_pages; loop++) { 757 struct page *p = &page[loop]; 758 759 if (loop + 1 < nr_pages) 760 prefetchw(p + 1); 761 __ClearPageReserved(p); 762 set_page_count(p, 0); 763 } 764 765 page_zone(page)->managed_pages += 1 << order; 766 set_page_refcounted(page); 767 __free_pages(page, order); 768 } 769 770 #ifdef CONFIG_CMA 771 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 772 void __init init_cma_reserved_pageblock(struct page *page) 773 { 774 unsigned i = pageblock_nr_pages; 775 struct page *p = page; 776 777 do { 778 __ClearPageReserved(p); 779 set_page_count(p, 0); 780 } while (++p, --i); 781 782 set_page_refcounted(page); 783 set_pageblock_migratetype(page, MIGRATE_CMA); 784 __free_pages(page, pageblock_order); 785 adjust_managed_page_count(page, pageblock_nr_pages); 786 } 787 #endif 788 789 /* 790 * The order of subdivision here is critical for the IO subsystem. 791 * Please do not alter this order without good reasons and regression 792 * testing. Specifically, as large blocks of memory are subdivided, 793 * the order in which smaller blocks are delivered depends on the order 794 * they're subdivided in this function. This is the primary factor 795 * influencing the order in which pages are delivered to the IO 796 * subsystem according to empirical testing, and this is also justified 797 * by considering the behavior of a buddy system containing a single 798 * large block of memory acted on by a series of small allocations. 799 * This behavior is a critical factor in sglist merging's success. 800 * 801 * -- nyc 802 */ 803 static inline void expand(struct zone *zone, struct page *page, 804 int low, int high, struct free_area *area, 805 int migratetype) 806 { 807 unsigned long size = 1 << high; 808 809 while (high > low) { 810 area--; 811 high--; 812 size >>= 1; 813 VM_BUG_ON(bad_range(zone, &page[size])); 814 815 #ifdef CONFIG_DEBUG_PAGEALLOC 816 if (high < debug_guardpage_minorder()) { 817 /* 818 * Mark as guard pages (or page), that will allow to 819 * merge back to allocator when buddy will be freed. 820 * Corresponding page table entries will not be touched, 821 * pages will stay not present in virtual address space 822 */ 823 INIT_LIST_HEAD(&page[size].lru); 824 set_page_guard_flag(&page[size]); 825 set_page_private(&page[size], high); 826 /* Guard pages are not available for any usage */ 827 __mod_zone_freepage_state(zone, -(1 << high), 828 migratetype); 829 continue; 830 } 831 #endif 832 list_add(&page[size].lru, &area->free_list[migratetype]); 833 area->nr_free++; 834 set_page_order(&page[size], high); 835 } 836 } 837 838 /* 839 * This page is about to be returned from the page allocator 840 */ 841 static inline int check_new_page(struct page *page) 842 { 843 if (unlikely(page_mapcount(page) | 844 (page->mapping != NULL) | 845 (atomic_read(&page->_count) != 0) | 846 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 847 (mem_cgroup_bad_page_check(page)))) { 848 bad_page(page); 849 return 1; 850 } 851 return 0; 852 } 853 854 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 855 { 856 int i; 857 858 for (i = 0; i < (1 << order); i++) { 859 struct page *p = page + i; 860 if (unlikely(check_new_page(p))) 861 return 1; 862 } 863 864 set_page_private(page, 0); 865 set_page_refcounted(page); 866 867 arch_alloc_page(page, order); 868 kernel_map_pages(page, 1 << order, 1); 869 870 if (gfp_flags & __GFP_ZERO) 871 prep_zero_page(page, order, gfp_flags); 872 873 if (order && (gfp_flags & __GFP_COMP)) 874 prep_compound_page(page, order); 875 876 return 0; 877 } 878 879 /* 880 * Go through the free lists for the given migratetype and remove 881 * the smallest available page from the freelists 882 */ 883 static inline 884 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 885 int migratetype) 886 { 887 unsigned int current_order; 888 struct free_area * area; 889 struct page *page; 890 891 /* Find a page of the appropriate size in the preferred list */ 892 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 893 area = &(zone->free_area[current_order]); 894 if (list_empty(&area->free_list[migratetype])) 895 continue; 896 897 page = list_entry(area->free_list[migratetype].next, 898 struct page, lru); 899 list_del(&page->lru); 900 rmv_page_order(page); 901 area->nr_free--; 902 expand(zone, page, order, current_order, area, migratetype); 903 return page; 904 } 905 906 return NULL; 907 } 908 909 910 /* 911 * This array describes the order lists are fallen back to when 912 * the free lists for the desirable migrate type are depleted 913 */ 914 static int fallbacks[MIGRATE_TYPES][4] = { 915 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 916 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 917 #ifdef CONFIG_CMA 918 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 919 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 920 #else 921 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 922 #endif 923 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 924 #ifdef CONFIG_MEMORY_ISOLATION 925 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 926 #endif 927 }; 928 929 /* 930 * Move the free pages in a range to the free lists of the requested type. 931 * Note that start_page and end_pages are not aligned on a pageblock 932 * boundary. If alignment is required, use move_freepages_block() 933 */ 934 int move_freepages(struct zone *zone, 935 struct page *start_page, struct page *end_page, 936 int migratetype) 937 { 938 struct page *page; 939 unsigned long order; 940 int pages_moved = 0; 941 942 #ifndef CONFIG_HOLES_IN_ZONE 943 /* 944 * page_zone is not safe to call in this context when 945 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 946 * anyway as we check zone boundaries in move_freepages_block(). 947 * Remove at a later date when no bug reports exist related to 948 * grouping pages by mobility 949 */ 950 BUG_ON(page_zone(start_page) != page_zone(end_page)); 951 #endif 952 953 for (page = start_page; page <= end_page;) { 954 /* Make sure we are not inadvertently changing nodes */ 955 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 956 957 if (!pfn_valid_within(page_to_pfn(page))) { 958 page++; 959 continue; 960 } 961 962 if (!PageBuddy(page)) { 963 page++; 964 continue; 965 } 966 967 order = page_order(page); 968 list_move(&page->lru, 969 &zone->free_area[order].free_list[migratetype]); 970 set_freepage_migratetype(page, migratetype); 971 page += 1 << order; 972 pages_moved += 1 << order; 973 } 974 975 return pages_moved; 976 } 977 978 int move_freepages_block(struct zone *zone, struct page *page, 979 int migratetype) 980 { 981 unsigned long start_pfn, end_pfn; 982 struct page *start_page, *end_page; 983 984 start_pfn = page_to_pfn(page); 985 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 986 start_page = pfn_to_page(start_pfn); 987 end_page = start_page + pageblock_nr_pages - 1; 988 end_pfn = start_pfn + pageblock_nr_pages - 1; 989 990 /* Do not cross zone boundaries */ 991 if (!zone_spans_pfn(zone, start_pfn)) 992 start_page = page; 993 if (!zone_spans_pfn(zone, end_pfn)) 994 return 0; 995 996 return move_freepages(zone, start_page, end_page, migratetype); 997 } 998 999 static void change_pageblock_range(struct page *pageblock_page, 1000 int start_order, int migratetype) 1001 { 1002 int nr_pageblocks = 1 << (start_order - pageblock_order); 1003 1004 while (nr_pageblocks--) { 1005 set_pageblock_migratetype(pageblock_page, migratetype); 1006 pageblock_page += pageblock_nr_pages; 1007 } 1008 } 1009 1010 /* Remove an element from the buddy allocator from the fallback list */ 1011 static inline struct page * 1012 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 1013 { 1014 struct free_area * area; 1015 int current_order; 1016 struct page *page; 1017 int migratetype, i; 1018 1019 /* Find the largest possible block of pages in the other list */ 1020 for (current_order = MAX_ORDER-1; current_order >= order; 1021 --current_order) { 1022 for (i = 0;; i++) { 1023 migratetype = fallbacks[start_migratetype][i]; 1024 1025 /* MIGRATE_RESERVE handled later if necessary */ 1026 if (migratetype == MIGRATE_RESERVE) 1027 break; 1028 1029 area = &(zone->free_area[current_order]); 1030 if (list_empty(&area->free_list[migratetype])) 1031 continue; 1032 1033 page = list_entry(area->free_list[migratetype].next, 1034 struct page, lru); 1035 area->nr_free--; 1036 1037 /* 1038 * If breaking a large block of pages, move all free 1039 * pages to the preferred allocation list. If falling 1040 * back for a reclaimable kernel allocation, be more 1041 * aggressive about taking ownership of free pages 1042 * 1043 * On the other hand, never change migration 1044 * type of MIGRATE_CMA pageblocks nor move CMA 1045 * pages on different free lists. We don't 1046 * want unmovable pages to be allocated from 1047 * MIGRATE_CMA areas. 1048 */ 1049 if (!is_migrate_cma(migratetype) && 1050 (current_order >= pageblock_order / 2 || 1051 start_migratetype == MIGRATE_RECLAIMABLE || 1052 page_group_by_mobility_disabled)) { 1053 int pages; 1054 pages = move_freepages_block(zone, page, 1055 start_migratetype); 1056 1057 /* Claim the whole block if over half of it is free */ 1058 if (pages >= (1 << (pageblock_order-1)) || 1059 page_group_by_mobility_disabled) 1060 set_pageblock_migratetype(page, 1061 start_migratetype); 1062 1063 migratetype = start_migratetype; 1064 } 1065 1066 /* Remove the page from the freelists */ 1067 list_del(&page->lru); 1068 rmv_page_order(page); 1069 1070 /* Take ownership for orders >= pageblock_order */ 1071 if (current_order >= pageblock_order && 1072 !is_migrate_cma(migratetype)) 1073 change_pageblock_range(page, current_order, 1074 start_migratetype); 1075 1076 expand(zone, page, order, current_order, area, 1077 is_migrate_cma(migratetype) 1078 ? migratetype : start_migratetype); 1079 1080 trace_mm_page_alloc_extfrag(page, order, current_order, 1081 start_migratetype, migratetype); 1082 1083 return page; 1084 } 1085 } 1086 1087 return NULL; 1088 } 1089 1090 /* 1091 * Do the hard work of removing an element from the buddy allocator. 1092 * Call me with the zone->lock already held. 1093 */ 1094 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1095 int migratetype) 1096 { 1097 struct page *page; 1098 1099 retry_reserve: 1100 page = __rmqueue_smallest(zone, order, migratetype); 1101 1102 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1103 page = __rmqueue_fallback(zone, order, migratetype); 1104 1105 /* 1106 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1107 * is used because __rmqueue_smallest is an inline function 1108 * and we want just one call site 1109 */ 1110 if (!page) { 1111 migratetype = MIGRATE_RESERVE; 1112 goto retry_reserve; 1113 } 1114 } 1115 1116 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1117 return page; 1118 } 1119 1120 /* 1121 * Obtain a specified number of elements from the buddy allocator, all under 1122 * a single hold of the lock, for efficiency. Add them to the supplied list. 1123 * Returns the number of new pages which were placed at *list. 1124 */ 1125 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1126 unsigned long count, struct list_head *list, 1127 int migratetype, int cold) 1128 { 1129 int mt = migratetype, i; 1130 1131 spin_lock(&zone->lock); 1132 for (i = 0; i < count; ++i) { 1133 struct page *page = __rmqueue(zone, order, migratetype); 1134 if (unlikely(page == NULL)) 1135 break; 1136 1137 /* 1138 * Split buddy pages returned by expand() are received here 1139 * in physical page order. The page is added to the callers and 1140 * list and the list head then moves forward. From the callers 1141 * perspective, the linked list is ordered by page number in 1142 * some conditions. This is useful for IO devices that can 1143 * merge IO requests if the physical pages are ordered 1144 * properly. 1145 */ 1146 if (likely(cold == 0)) 1147 list_add(&page->lru, list); 1148 else 1149 list_add_tail(&page->lru, list); 1150 if (IS_ENABLED(CONFIG_CMA)) { 1151 mt = get_pageblock_migratetype(page); 1152 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt)) 1153 mt = migratetype; 1154 } 1155 set_freepage_migratetype(page, mt); 1156 list = &page->lru; 1157 if (is_migrate_cma(mt)) 1158 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1159 -(1 << order)); 1160 } 1161 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1162 spin_unlock(&zone->lock); 1163 return i; 1164 } 1165 1166 #ifdef CONFIG_NUMA 1167 /* 1168 * Called from the vmstat counter updater to drain pagesets of this 1169 * currently executing processor on remote nodes after they have 1170 * expired. 1171 * 1172 * Note that this function must be called with the thread pinned to 1173 * a single processor. 1174 */ 1175 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1176 { 1177 unsigned long flags; 1178 int to_drain; 1179 unsigned long batch; 1180 1181 local_irq_save(flags); 1182 batch = ACCESS_ONCE(pcp->batch); 1183 if (pcp->count >= batch) 1184 to_drain = batch; 1185 else 1186 to_drain = pcp->count; 1187 if (to_drain > 0) { 1188 free_pcppages_bulk(zone, to_drain, pcp); 1189 pcp->count -= to_drain; 1190 } 1191 local_irq_restore(flags); 1192 } 1193 #endif 1194 1195 /* 1196 * Drain pages of the indicated processor. 1197 * 1198 * The processor must either be the current processor and the 1199 * thread pinned to the current processor or a processor that 1200 * is not online. 1201 */ 1202 static void drain_pages(unsigned int cpu) 1203 { 1204 unsigned long flags; 1205 struct zone *zone; 1206 1207 for_each_populated_zone(zone) { 1208 struct per_cpu_pageset *pset; 1209 struct per_cpu_pages *pcp; 1210 1211 local_irq_save(flags); 1212 pset = per_cpu_ptr(zone->pageset, cpu); 1213 1214 pcp = &pset->pcp; 1215 if (pcp->count) { 1216 free_pcppages_bulk(zone, pcp->count, pcp); 1217 pcp->count = 0; 1218 } 1219 local_irq_restore(flags); 1220 } 1221 } 1222 1223 /* 1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1225 */ 1226 void drain_local_pages(void *arg) 1227 { 1228 drain_pages(smp_processor_id()); 1229 } 1230 1231 /* 1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1233 * 1234 * Note that this code is protected against sending an IPI to an offline 1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1237 * nothing keeps CPUs from showing up after we populated the cpumask and 1238 * before the call to on_each_cpu_mask(). 1239 */ 1240 void drain_all_pages(void) 1241 { 1242 int cpu; 1243 struct per_cpu_pageset *pcp; 1244 struct zone *zone; 1245 1246 /* 1247 * Allocate in the BSS so we wont require allocation in 1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1249 */ 1250 static cpumask_t cpus_with_pcps; 1251 1252 /* 1253 * We don't care about racing with CPU hotplug event 1254 * as offline notification will cause the notified 1255 * cpu to drain that CPU pcps and on_each_cpu_mask 1256 * disables preemption as part of its processing 1257 */ 1258 for_each_online_cpu(cpu) { 1259 bool has_pcps = false; 1260 for_each_populated_zone(zone) { 1261 pcp = per_cpu_ptr(zone->pageset, cpu); 1262 if (pcp->pcp.count) { 1263 has_pcps = true; 1264 break; 1265 } 1266 } 1267 if (has_pcps) 1268 cpumask_set_cpu(cpu, &cpus_with_pcps); 1269 else 1270 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1271 } 1272 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1273 } 1274 1275 #ifdef CONFIG_HIBERNATION 1276 1277 void mark_free_pages(struct zone *zone) 1278 { 1279 unsigned long pfn, max_zone_pfn; 1280 unsigned long flags; 1281 int order, t; 1282 struct list_head *curr; 1283 1284 if (!zone->spanned_pages) 1285 return; 1286 1287 spin_lock_irqsave(&zone->lock, flags); 1288 1289 max_zone_pfn = zone_end_pfn(zone); 1290 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1291 if (pfn_valid(pfn)) { 1292 struct page *page = pfn_to_page(pfn); 1293 1294 if (!swsusp_page_is_forbidden(page)) 1295 swsusp_unset_page_free(page); 1296 } 1297 1298 for_each_migratetype_order(order, t) { 1299 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1300 unsigned long i; 1301 1302 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1303 for (i = 0; i < (1UL << order); i++) 1304 swsusp_set_page_free(pfn_to_page(pfn + i)); 1305 } 1306 } 1307 spin_unlock_irqrestore(&zone->lock, flags); 1308 } 1309 #endif /* CONFIG_PM */ 1310 1311 /* 1312 * Free a 0-order page 1313 * cold == 1 ? free a cold page : free a hot page 1314 */ 1315 void free_hot_cold_page(struct page *page, int cold) 1316 { 1317 struct zone *zone = page_zone(page); 1318 struct per_cpu_pages *pcp; 1319 unsigned long flags; 1320 int migratetype; 1321 1322 if (!free_pages_prepare(page, 0)) 1323 return; 1324 1325 migratetype = get_pageblock_migratetype(page); 1326 set_freepage_migratetype(page, migratetype); 1327 local_irq_save(flags); 1328 __count_vm_event(PGFREE); 1329 1330 /* 1331 * We only track unmovable, reclaimable and movable on pcp lists. 1332 * Free ISOLATE pages back to the allocator because they are being 1333 * offlined but treat RESERVE as movable pages so we can get those 1334 * areas back if necessary. Otherwise, we may have to free 1335 * excessively into the page allocator 1336 */ 1337 if (migratetype >= MIGRATE_PCPTYPES) { 1338 if (unlikely(is_migrate_isolate(migratetype))) { 1339 free_one_page(zone, page, 0, migratetype); 1340 goto out; 1341 } 1342 migratetype = MIGRATE_MOVABLE; 1343 } 1344 1345 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1346 if (cold) 1347 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1348 else 1349 list_add(&page->lru, &pcp->lists[migratetype]); 1350 pcp->count++; 1351 if (pcp->count >= pcp->high) { 1352 unsigned long batch = ACCESS_ONCE(pcp->batch); 1353 free_pcppages_bulk(zone, batch, pcp); 1354 pcp->count -= batch; 1355 } 1356 1357 out: 1358 local_irq_restore(flags); 1359 } 1360 1361 /* 1362 * Free a list of 0-order pages 1363 */ 1364 void free_hot_cold_page_list(struct list_head *list, int cold) 1365 { 1366 struct page *page, *next; 1367 1368 list_for_each_entry_safe(page, next, list, lru) { 1369 trace_mm_page_free_batched(page, cold); 1370 free_hot_cold_page(page, cold); 1371 } 1372 } 1373 1374 /* 1375 * split_page takes a non-compound higher-order page, and splits it into 1376 * n (1<<order) sub-pages: page[0..n] 1377 * Each sub-page must be freed individually. 1378 * 1379 * Note: this is probably too low level an operation for use in drivers. 1380 * Please consult with lkml before using this in your driver. 1381 */ 1382 void split_page(struct page *page, unsigned int order) 1383 { 1384 int i; 1385 1386 VM_BUG_ON(PageCompound(page)); 1387 VM_BUG_ON(!page_count(page)); 1388 1389 #ifdef CONFIG_KMEMCHECK 1390 /* 1391 * Split shadow pages too, because free(page[0]) would 1392 * otherwise free the whole shadow. 1393 */ 1394 if (kmemcheck_page_is_tracked(page)) 1395 split_page(virt_to_page(page[0].shadow), order); 1396 #endif 1397 1398 for (i = 1; i < (1 << order); i++) 1399 set_page_refcounted(page + i); 1400 } 1401 EXPORT_SYMBOL_GPL(split_page); 1402 1403 static int __isolate_free_page(struct page *page, unsigned int order) 1404 { 1405 unsigned long watermark; 1406 struct zone *zone; 1407 int mt; 1408 1409 BUG_ON(!PageBuddy(page)); 1410 1411 zone = page_zone(page); 1412 mt = get_pageblock_migratetype(page); 1413 1414 if (!is_migrate_isolate(mt)) { 1415 /* Obey watermarks as if the page was being allocated */ 1416 watermark = low_wmark_pages(zone) + (1 << order); 1417 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1418 return 0; 1419 1420 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1421 } 1422 1423 /* Remove page from free list */ 1424 list_del(&page->lru); 1425 zone->free_area[order].nr_free--; 1426 rmv_page_order(page); 1427 1428 /* Set the pageblock if the isolated page is at least a pageblock */ 1429 if (order >= pageblock_order - 1) { 1430 struct page *endpage = page + (1 << order) - 1; 1431 for (; page < endpage; page += pageblock_nr_pages) { 1432 int mt = get_pageblock_migratetype(page); 1433 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 1434 set_pageblock_migratetype(page, 1435 MIGRATE_MOVABLE); 1436 } 1437 } 1438 1439 return 1UL << order; 1440 } 1441 1442 /* 1443 * Similar to split_page except the page is already free. As this is only 1444 * being used for migration, the migratetype of the block also changes. 1445 * As this is called with interrupts disabled, the caller is responsible 1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1447 * are enabled. 1448 * 1449 * Note: this is probably too low level an operation for use in drivers. 1450 * Please consult with lkml before using this in your driver. 1451 */ 1452 int split_free_page(struct page *page) 1453 { 1454 unsigned int order; 1455 int nr_pages; 1456 1457 order = page_order(page); 1458 1459 nr_pages = __isolate_free_page(page, order); 1460 if (!nr_pages) 1461 return 0; 1462 1463 /* Split into individual pages */ 1464 set_page_refcounted(page); 1465 split_page(page, order); 1466 return nr_pages; 1467 } 1468 1469 /* 1470 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1471 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1472 * or two. 1473 */ 1474 static inline 1475 struct page *buffered_rmqueue(struct zone *preferred_zone, 1476 struct zone *zone, int order, gfp_t gfp_flags, 1477 int migratetype) 1478 { 1479 unsigned long flags; 1480 struct page *page; 1481 int cold = !!(gfp_flags & __GFP_COLD); 1482 1483 again: 1484 if (likely(order == 0)) { 1485 struct per_cpu_pages *pcp; 1486 struct list_head *list; 1487 1488 local_irq_save(flags); 1489 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1490 list = &pcp->lists[migratetype]; 1491 if (list_empty(list)) { 1492 pcp->count += rmqueue_bulk(zone, 0, 1493 pcp->batch, list, 1494 migratetype, cold); 1495 if (unlikely(list_empty(list))) 1496 goto failed; 1497 } 1498 1499 if (cold) 1500 page = list_entry(list->prev, struct page, lru); 1501 else 1502 page = list_entry(list->next, struct page, lru); 1503 1504 list_del(&page->lru); 1505 pcp->count--; 1506 } else { 1507 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1508 /* 1509 * __GFP_NOFAIL is not to be used in new code. 1510 * 1511 * All __GFP_NOFAIL callers should be fixed so that they 1512 * properly detect and handle allocation failures. 1513 * 1514 * We most definitely don't want callers attempting to 1515 * allocate greater than order-1 page units with 1516 * __GFP_NOFAIL. 1517 */ 1518 WARN_ON_ONCE(order > 1); 1519 } 1520 spin_lock_irqsave(&zone->lock, flags); 1521 page = __rmqueue(zone, order, migratetype); 1522 spin_unlock(&zone->lock); 1523 if (!page) 1524 goto failed; 1525 __mod_zone_freepage_state(zone, -(1 << order), 1526 get_pageblock_migratetype(page)); 1527 } 1528 1529 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1530 zone_statistics(preferred_zone, zone, gfp_flags); 1531 local_irq_restore(flags); 1532 1533 VM_BUG_ON(bad_range(zone, page)); 1534 if (prep_new_page(page, order, gfp_flags)) 1535 goto again; 1536 return page; 1537 1538 failed: 1539 local_irq_restore(flags); 1540 return NULL; 1541 } 1542 1543 #ifdef CONFIG_FAIL_PAGE_ALLOC 1544 1545 static struct { 1546 struct fault_attr attr; 1547 1548 u32 ignore_gfp_highmem; 1549 u32 ignore_gfp_wait; 1550 u32 min_order; 1551 } fail_page_alloc = { 1552 .attr = FAULT_ATTR_INITIALIZER, 1553 .ignore_gfp_wait = 1, 1554 .ignore_gfp_highmem = 1, 1555 .min_order = 1, 1556 }; 1557 1558 static int __init setup_fail_page_alloc(char *str) 1559 { 1560 return setup_fault_attr(&fail_page_alloc.attr, str); 1561 } 1562 __setup("fail_page_alloc=", setup_fail_page_alloc); 1563 1564 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1565 { 1566 if (order < fail_page_alloc.min_order) 1567 return false; 1568 if (gfp_mask & __GFP_NOFAIL) 1569 return false; 1570 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1571 return false; 1572 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1573 return false; 1574 1575 return should_fail(&fail_page_alloc.attr, 1 << order); 1576 } 1577 1578 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1579 1580 static int __init fail_page_alloc_debugfs(void) 1581 { 1582 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1583 struct dentry *dir; 1584 1585 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1586 &fail_page_alloc.attr); 1587 if (IS_ERR(dir)) 1588 return PTR_ERR(dir); 1589 1590 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1591 &fail_page_alloc.ignore_gfp_wait)) 1592 goto fail; 1593 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1594 &fail_page_alloc.ignore_gfp_highmem)) 1595 goto fail; 1596 if (!debugfs_create_u32("min-order", mode, dir, 1597 &fail_page_alloc.min_order)) 1598 goto fail; 1599 1600 return 0; 1601 fail: 1602 debugfs_remove_recursive(dir); 1603 1604 return -ENOMEM; 1605 } 1606 1607 late_initcall(fail_page_alloc_debugfs); 1608 1609 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1610 1611 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1612 1613 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1614 { 1615 return false; 1616 } 1617 1618 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1619 1620 /* 1621 * Return true if free pages are above 'mark'. This takes into account the order 1622 * of the allocation. 1623 */ 1624 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1625 int classzone_idx, int alloc_flags, long free_pages) 1626 { 1627 /* free_pages my go negative - that's OK */ 1628 long min = mark; 1629 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1630 int o; 1631 long free_cma = 0; 1632 1633 free_pages -= (1 << order) - 1; 1634 if (alloc_flags & ALLOC_HIGH) 1635 min -= min / 2; 1636 if (alloc_flags & ALLOC_HARDER) 1637 min -= min / 4; 1638 #ifdef CONFIG_CMA 1639 /* If allocation can't use CMA areas don't use free CMA pages */ 1640 if (!(alloc_flags & ALLOC_CMA)) 1641 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 1642 #endif 1643 1644 if (free_pages - free_cma <= min + lowmem_reserve) 1645 return false; 1646 for (o = 0; o < order; o++) { 1647 /* At the next order, this order's pages become unavailable */ 1648 free_pages -= z->free_area[o].nr_free << o; 1649 1650 /* Require fewer higher order pages to be free */ 1651 min >>= 1; 1652 1653 if (free_pages <= min) 1654 return false; 1655 } 1656 return true; 1657 } 1658 1659 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1660 int classzone_idx, int alloc_flags) 1661 { 1662 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1663 zone_page_state(z, NR_FREE_PAGES)); 1664 } 1665 1666 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1667 int classzone_idx, int alloc_flags) 1668 { 1669 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1670 1671 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1672 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1673 1674 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1675 free_pages); 1676 } 1677 1678 #ifdef CONFIG_NUMA 1679 /* 1680 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1681 * skip over zones that are not allowed by the cpuset, or that have 1682 * been recently (in last second) found to be nearly full. See further 1683 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1684 * that have to skip over a lot of full or unallowed zones. 1685 * 1686 * If the zonelist cache is present in the passed in zonelist, then 1687 * returns a pointer to the allowed node mask (either the current 1688 * tasks mems_allowed, or node_states[N_MEMORY].) 1689 * 1690 * If the zonelist cache is not available for this zonelist, does 1691 * nothing and returns NULL. 1692 * 1693 * If the fullzones BITMAP in the zonelist cache is stale (more than 1694 * a second since last zap'd) then we zap it out (clear its bits.) 1695 * 1696 * We hold off even calling zlc_setup, until after we've checked the 1697 * first zone in the zonelist, on the theory that most allocations will 1698 * be satisfied from that first zone, so best to examine that zone as 1699 * quickly as we can. 1700 */ 1701 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1702 { 1703 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1704 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1705 1706 zlc = zonelist->zlcache_ptr; 1707 if (!zlc) 1708 return NULL; 1709 1710 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1711 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1712 zlc->last_full_zap = jiffies; 1713 } 1714 1715 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1716 &cpuset_current_mems_allowed : 1717 &node_states[N_MEMORY]; 1718 return allowednodes; 1719 } 1720 1721 /* 1722 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1723 * if it is worth looking at further for free memory: 1724 * 1) Check that the zone isn't thought to be full (doesn't have its 1725 * bit set in the zonelist_cache fullzones BITMAP). 1726 * 2) Check that the zones node (obtained from the zonelist_cache 1727 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1728 * Return true (non-zero) if zone is worth looking at further, or 1729 * else return false (zero) if it is not. 1730 * 1731 * This check -ignores- the distinction between various watermarks, 1732 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1733 * found to be full for any variation of these watermarks, it will 1734 * be considered full for up to one second by all requests, unless 1735 * we are so low on memory on all allowed nodes that we are forced 1736 * into the second scan of the zonelist. 1737 * 1738 * In the second scan we ignore this zonelist cache and exactly 1739 * apply the watermarks to all zones, even it is slower to do so. 1740 * We are low on memory in the second scan, and should leave no stone 1741 * unturned looking for a free page. 1742 */ 1743 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1744 nodemask_t *allowednodes) 1745 { 1746 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1747 int i; /* index of *z in zonelist zones */ 1748 int n; /* node that zone *z is on */ 1749 1750 zlc = zonelist->zlcache_ptr; 1751 if (!zlc) 1752 return 1; 1753 1754 i = z - zonelist->_zonerefs; 1755 n = zlc->z_to_n[i]; 1756 1757 /* This zone is worth trying if it is allowed but not full */ 1758 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1759 } 1760 1761 /* 1762 * Given 'z' scanning a zonelist, set the corresponding bit in 1763 * zlc->fullzones, so that subsequent attempts to allocate a page 1764 * from that zone don't waste time re-examining it. 1765 */ 1766 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1767 { 1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1769 int i; /* index of *z in zonelist zones */ 1770 1771 zlc = zonelist->zlcache_ptr; 1772 if (!zlc) 1773 return; 1774 1775 i = z - zonelist->_zonerefs; 1776 1777 set_bit(i, zlc->fullzones); 1778 } 1779 1780 /* 1781 * clear all zones full, called after direct reclaim makes progress so that 1782 * a zone that was recently full is not skipped over for up to a second 1783 */ 1784 static void zlc_clear_zones_full(struct zonelist *zonelist) 1785 { 1786 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1787 1788 zlc = zonelist->zlcache_ptr; 1789 if (!zlc) 1790 return; 1791 1792 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1793 } 1794 1795 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1796 { 1797 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1798 } 1799 1800 static void __paginginit init_zone_allows_reclaim(int nid) 1801 { 1802 int i; 1803 1804 for_each_online_node(i) 1805 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1806 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1807 else 1808 zone_reclaim_mode = 1; 1809 } 1810 1811 #else /* CONFIG_NUMA */ 1812 1813 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1814 { 1815 return NULL; 1816 } 1817 1818 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1819 nodemask_t *allowednodes) 1820 { 1821 return 1; 1822 } 1823 1824 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1825 { 1826 } 1827 1828 static void zlc_clear_zones_full(struct zonelist *zonelist) 1829 { 1830 } 1831 1832 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1833 { 1834 return true; 1835 } 1836 1837 static inline void init_zone_allows_reclaim(int nid) 1838 { 1839 } 1840 #endif /* CONFIG_NUMA */ 1841 1842 /* 1843 * get_page_from_freelist goes through the zonelist trying to allocate 1844 * a page. 1845 */ 1846 static struct page * 1847 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1848 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1849 struct zone *preferred_zone, int migratetype) 1850 { 1851 struct zoneref *z; 1852 struct page *page = NULL; 1853 int classzone_idx; 1854 struct zone *zone; 1855 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1856 int zlc_active = 0; /* set if using zonelist_cache */ 1857 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1858 1859 classzone_idx = zone_idx(preferred_zone); 1860 zonelist_scan: 1861 /* 1862 * Scan zonelist, looking for a zone with enough free. 1863 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1864 */ 1865 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1866 high_zoneidx, nodemask) { 1867 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1868 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1869 continue; 1870 if ((alloc_flags & ALLOC_CPUSET) && 1871 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1872 continue; 1873 /* 1874 * When allocating a page cache page for writing, we 1875 * want to get it from a zone that is within its dirty 1876 * limit, such that no single zone holds more than its 1877 * proportional share of globally allowed dirty pages. 1878 * The dirty limits take into account the zone's 1879 * lowmem reserves and high watermark so that kswapd 1880 * should be able to balance it without having to 1881 * write pages from its LRU list. 1882 * 1883 * This may look like it could increase pressure on 1884 * lower zones by failing allocations in higher zones 1885 * before they are full. But the pages that do spill 1886 * over are limited as the lower zones are protected 1887 * by this very same mechanism. It should not become 1888 * a practical burden to them. 1889 * 1890 * XXX: For now, allow allocations to potentially 1891 * exceed the per-zone dirty limit in the slowpath 1892 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1893 * which is important when on a NUMA setup the allowed 1894 * zones are together not big enough to reach the 1895 * global limit. The proper fix for these situations 1896 * will require awareness of zones in the 1897 * dirty-throttling and the flusher threads. 1898 */ 1899 if ((alloc_flags & ALLOC_WMARK_LOW) && 1900 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1901 goto this_zone_full; 1902 1903 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1904 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1905 unsigned long mark; 1906 int ret; 1907 1908 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1909 if (zone_watermark_ok(zone, order, mark, 1910 classzone_idx, alloc_flags)) 1911 goto try_this_zone; 1912 1913 if (IS_ENABLED(CONFIG_NUMA) && 1914 !did_zlc_setup && nr_online_nodes > 1) { 1915 /* 1916 * we do zlc_setup if there are multiple nodes 1917 * and before considering the first zone allowed 1918 * by the cpuset. 1919 */ 1920 allowednodes = zlc_setup(zonelist, alloc_flags); 1921 zlc_active = 1; 1922 did_zlc_setup = 1; 1923 } 1924 1925 if (zone_reclaim_mode == 0 || 1926 !zone_allows_reclaim(preferred_zone, zone)) 1927 goto this_zone_full; 1928 1929 /* 1930 * As we may have just activated ZLC, check if the first 1931 * eligible zone has failed zone_reclaim recently. 1932 */ 1933 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 1934 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1935 continue; 1936 1937 ret = zone_reclaim(zone, gfp_mask, order); 1938 switch (ret) { 1939 case ZONE_RECLAIM_NOSCAN: 1940 /* did not scan */ 1941 continue; 1942 case ZONE_RECLAIM_FULL: 1943 /* scanned but unreclaimable */ 1944 continue; 1945 default: 1946 /* did we reclaim enough */ 1947 if (zone_watermark_ok(zone, order, mark, 1948 classzone_idx, alloc_flags)) 1949 goto try_this_zone; 1950 1951 /* 1952 * Failed to reclaim enough to meet watermark. 1953 * Only mark the zone full if checking the min 1954 * watermark or if we failed to reclaim just 1955 * 1<<order pages or else the page allocator 1956 * fastpath will prematurely mark zones full 1957 * when the watermark is between the low and 1958 * min watermarks. 1959 */ 1960 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 1961 ret == ZONE_RECLAIM_SOME) 1962 goto this_zone_full; 1963 1964 continue; 1965 } 1966 } 1967 1968 try_this_zone: 1969 page = buffered_rmqueue(preferred_zone, zone, order, 1970 gfp_mask, migratetype); 1971 if (page) 1972 break; 1973 this_zone_full: 1974 if (IS_ENABLED(CONFIG_NUMA)) 1975 zlc_mark_zone_full(zonelist, z); 1976 } 1977 1978 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) { 1979 /* Disable zlc cache for second zonelist scan */ 1980 zlc_active = 0; 1981 goto zonelist_scan; 1982 } 1983 1984 if (page) 1985 /* 1986 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1987 * necessary to allocate the page. The expectation is 1988 * that the caller is taking steps that will free more 1989 * memory. The caller should avoid the page being used 1990 * for !PFMEMALLOC purposes. 1991 */ 1992 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1993 1994 return page; 1995 } 1996 1997 /* 1998 * Large machines with many possible nodes should not always dump per-node 1999 * meminfo in irq context. 2000 */ 2001 static inline bool should_suppress_show_mem(void) 2002 { 2003 bool ret = false; 2004 2005 #if NODES_SHIFT > 8 2006 ret = in_interrupt(); 2007 #endif 2008 return ret; 2009 } 2010 2011 static DEFINE_RATELIMIT_STATE(nopage_rs, 2012 DEFAULT_RATELIMIT_INTERVAL, 2013 DEFAULT_RATELIMIT_BURST); 2014 2015 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2016 { 2017 unsigned int filter = SHOW_MEM_FILTER_NODES; 2018 2019 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2020 debug_guardpage_minorder() > 0) 2021 return; 2022 2023 /* 2024 * Walking all memory to count page types is very expensive and should 2025 * be inhibited in non-blockable contexts. 2026 */ 2027 if (!(gfp_mask & __GFP_WAIT)) 2028 filter |= SHOW_MEM_FILTER_PAGE_COUNT; 2029 2030 /* 2031 * This documents exceptions given to allocations in certain 2032 * contexts that are allowed to allocate outside current's set 2033 * of allowed nodes. 2034 */ 2035 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2036 if (test_thread_flag(TIF_MEMDIE) || 2037 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2038 filter &= ~SHOW_MEM_FILTER_NODES; 2039 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2040 filter &= ~SHOW_MEM_FILTER_NODES; 2041 2042 if (fmt) { 2043 struct va_format vaf; 2044 va_list args; 2045 2046 va_start(args, fmt); 2047 2048 vaf.fmt = fmt; 2049 vaf.va = &args; 2050 2051 pr_warn("%pV", &vaf); 2052 2053 va_end(args); 2054 } 2055 2056 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2057 current->comm, order, gfp_mask); 2058 2059 dump_stack(); 2060 if (!should_suppress_show_mem()) 2061 show_mem(filter); 2062 } 2063 2064 static inline int 2065 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2066 unsigned long did_some_progress, 2067 unsigned long pages_reclaimed) 2068 { 2069 /* Do not loop if specifically requested */ 2070 if (gfp_mask & __GFP_NORETRY) 2071 return 0; 2072 2073 /* Always retry if specifically requested */ 2074 if (gfp_mask & __GFP_NOFAIL) 2075 return 1; 2076 2077 /* 2078 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2079 * making forward progress without invoking OOM. Suspend also disables 2080 * storage devices so kswapd will not help. Bail if we are suspending. 2081 */ 2082 if (!did_some_progress && pm_suspended_storage()) 2083 return 0; 2084 2085 /* 2086 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2087 * means __GFP_NOFAIL, but that may not be true in other 2088 * implementations. 2089 */ 2090 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2091 return 1; 2092 2093 /* 2094 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2095 * specified, then we retry until we no longer reclaim any pages 2096 * (above), or we've reclaimed an order of pages at least as 2097 * large as the allocation's order. In both cases, if the 2098 * allocation still fails, we stop retrying. 2099 */ 2100 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2101 return 1; 2102 2103 return 0; 2104 } 2105 2106 static inline struct page * 2107 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2108 struct zonelist *zonelist, enum zone_type high_zoneidx, 2109 nodemask_t *nodemask, struct zone *preferred_zone, 2110 int migratetype) 2111 { 2112 struct page *page; 2113 2114 /* Acquire the OOM killer lock for the zones in zonelist */ 2115 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2116 schedule_timeout_uninterruptible(1); 2117 return NULL; 2118 } 2119 2120 /* 2121 * Go through the zonelist yet one more time, keep very high watermark 2122 * here, this is only to catch a parallel oom killing, we must fail if 2123 * we're still under heavy pressure. 2124 */ 2125 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2126 order, zonelist, high_zoneidx, 2127 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2128 preferred_zone, migratetype); 2129 if (page) 2130 goto out; 2131 2132 if (!(gfp_mask & __GFP_NOFAIL)) { 2133 /* The OOM killer will not help higher order allocs */ 2134 if (order > PAGE_ALLOC_COSTLY_ORDER) 2135 goto out; 2136 /* The OOM killer does not needlessly kill tasks for lowmem */ 2137 if (high_zoneidx < ZONE_NORMAL) 2138 goto out; 2139 /* 2140 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2141 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2142 * The caller should handle page allocation failure by itself if 2143 * it specifies __GFP_THISNODE. 2144 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2145 */ 2146 if (gfp_mask & __GFP_THISNODE) 2147 goto out; 2148 } 2149 /* Exhausted what can be done so it's blamo time */ 2150 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2151 2152 out: 2153 clear_zonelist_oom(zonelist, gfp_mask); 2154 return page; 2155 } 2156 2157 #ifdef CONFIG_COMPACTION 2158 /* Try memory compaction for high-order allocations before reclaim */ 2159 static struct page * 2160 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2161 struct zonelist *zonelist, enum zone_type high_zoneidx, 2162 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2163 int migratetype, bool sync_migration, 2164 bool *contended_compaction, bool *deferred_compaction, 2165 unsigned long *did_some_progress) 2166 { 2167 if (!order) 2168 return NULL; 2169 2170 if (compaction_deferred(preferred_zone, order)) { 2171 *deferred_compaction = true; 2172 return NULL; 2173 } 2174 2175 current->flags |= PF_MEMALLOC; 2176 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2177 nodemask, sync_migration, 2178 contended_compaction); 2179 current->flags &= ~PF_MEMALLOC; 2180 2181 if (*did_some_progress != COMPACT_SKIPPED) { 2182 struct page *page; 2183 2184 /* Page migration frees to the PCP lists but we want merging */ 2185 drain_pages(get_cpu()); 2186 put_cpu(); 2187 2188 page = get_page_from_freelist(gfp_mask, nodemask, 2189 order, zonelist, high_zoneidx, 2190 alloc_flags & ~ALLOC_NO_WATERMARKS, 2191 preferred_zone, migratetype); 2192 if (page) { 2193 preferred_zone->compact_blockskip_flush = false; 2194 preferred_zone->compact_considered = 0; 2195 preferred_zone->compact_defer_shift = 0; 2196 if (order >= preferred_zone->compact_order_failed) 2197 preferred_zone->compact_order_failed = order + 1; 2198 count_vm_event(COMPACTSUCCESS); 2199 return page; 2200 } 2201 2202 /* 2203 * It's bad if compaction run occurs and fails. 2204 * The most likely reason is that pages exist, 2205 * but not enough to satisfy watermarks. 2206 */ 2207 count_vm_event(COMPACTFAIL); 2208 2209 /* 2210 * As async compaction considers a subset of pageblocks, only 2211 * defer if the failure was a sync compaction failure. 2212 */ 2213 if (sync_migration) 2214 defer_compaction(preferred_zone, order); 2215 2216 cond_resched(); 2217 } 2218 2219 return NULL; 2220 } 2221 #else 2222 static inline struct page * 2223 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2224 struct zonelist *zonelist, enum zone_type high_zoneidx, 2225 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2226 int migratetype, bool sync_migration, 2227 bool *contended_compaction, bool *deferred_compaction, 2228 unsigned long *did_some_progress) 2229 { 2230 return NULL; 2231 } 2232 #endif /* CONFIG_COMPACTION */ 2233 2234 /* Perform direct synchronous page reclaim */ 2235 static int 2236 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2237 nodemask_t *nodemask) 2238 { 2239 struct reclaim_state reclaim_state; 2240 int progress; 2241 2242 cond_resched(); 2243 2244 /* We now go into synchronous reclaim */ 2245 cpuset_memory_pressure_bump(); 2246 current->flags |= PF_MEMALLOC; 2247 lockdep_set_current_reclaim_state(gfp_mask); 2248 reclaim_state.reclaimed_slab = 0; 2249 current->reclaim_state = &reclaim_state; 2250 2251 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2252 2253 current->reclaim_state = NULL; 2254 lockdep_clear_current_reclaim_state(); 2255 current->flags &= ~PF_MEMALLOC; 2256 2257 cond_resched(); 2258 2259 return progress; 2260 } 2261 2262 /* The really slow allocator path where we enter direct reclaim */ 2263 static inline struct page * 2264 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2265 struct zonelist *zonelist, enum zone_type high_zoneidx, 2266 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2267 int migratetype, unsigned long *did_some_progress) 2268 { 2269 struct page *page = NULL; 2270 bool drained = false; 2271 2272 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2273 nodemask); 2274 if (unlikely(!(*did_some_progress))) 2275 return NULL; 2276 2277 /* After successful reclaim, reconsider all zones for allocation */ 2278 if (IS_ENABLED(CONFIG_NUMA)) 2279 zlc_clear_zones_full(zonelist); 2280 2281 retry: 2282 page = get_page_from_freelist(gfp_mask, nodemask, order, 2283 zonelist, high_zoneidx, 2284 alloc_flags & ~ALLOC_NO_WATERMARKS, 2285 preferred_zone, migratetype); 2286 2287 /* 2288 * If an allocation failed after direct reclaim, it could be because 2289 * pages are pinned on the per-cpu lists. Drain them and try again 2290 */ 2291 if (!page && !drained) { 2292 drain_all_pages(); 2293 drained = true; 2294 goto retry; 2295 } 2296 2297 return page; 2298 } 2299 2300 /* 2301 * This is called in the allocator slow-path if the allocation request is of 2302 * sufficient urgency to ignore watermarks and take other desperate measures 2303 */ 2304 static inline struct page * 2305 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2306 struct zonelist *zonelist, enum zone_type high_zoneidx, 2307 nodemask_t *nodemask, struct zone *preferred_zone, 2308 int migratetype) 2309 { 2310 struct page *page; 2311 2312 do { 2313 page = get_page_from_freelist(gfp_mask, nodemask, order, 2314 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2315 preferred_zone, migratetype); 2316 2317 if (!page && gfp_mask & __GFP_NOFAIL) 2318 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2319 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2320 2321 return page; 2322 } 2323 2324 static inline 2325 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2326 enum zone_type high_zoneidx, 2327 enum zone_type classzone_idx) 2328 { 2329 struct zoneref *z; 2330 struct zone *zone; 2331 2332 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2333 wakeup_kswapd(zone, order, classzone_idx); 2334 } 2335 2336 static inline int 2337 gfp_to_alloc_flags(gfp_t gfp_mask) 2338 { 2339 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2340 const gfp_t wait = gfp_mask & __GFP_WAIT; 2341 2342 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2343 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2344 2345 /* 2346 * The caller may dip into page reserves a bit more if the caller 2347 * cannot run direct reclaim, or if the caller has realtime scheduling 2348 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2349 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2350 */ 2351 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2352 2353 if (!wait) { 2354 /* 2355 * Not worth trying to allocate harder for 2356 * __GFP_NOMEMALLOC even if it can't schedule. 2357 */ 2358 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2359 alloc_flags |= ALLOC_HARDER; 2360 /* 2361 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2362 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2363 */ 2364 alloc_flags &= ~ALLOC_CPUSET; 2365 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2366 alloc_flags |= ALLOC_HARDER; 2367 2368 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2369 if (gfp_mask & __GFP_MEMALLOC) 2370 alloc_flags |= ALLOC_NO_WATERMARKS; 2371 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2372 alloc_flags |= ALLOC_NO_WATERMARKS; 2373 else if (!in_interrupt() && 2374 ((current->flags & PF_MEMALLOC) || 2375 unlikely(test_thread_flag(TIF_MEMDIE)))) 2376 alloc_flags |= ALLOC_NO_WATERMARKS; 2377 } 2378 #ifdef CONFIG_CMA 2379 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2380 alloc_flags |= ALLOC_CMA; 2381 #endif 2382 return alloc_flags; 2383 } 2384 2385 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2386 { 2387 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2388 } 2389 2390 static inline struct page * 2391 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2392 struct zonelist *zonelist, enum zone_type high_zoneidx, 2393 nodemask_t *nodemask, struct zone *preferred_zone, 2394 int migratetype) 2395 { 2396 const gfp_t wait = gfp_mask & __GFP_WAIT; 2397 struct page *page = NULL; 2398 int alloc_flags; 2399 unsigned long pages_reclaimed = 0; 2400 unsigned long did_some_progress; 2401 bool sync_migration = false; 2402 bool deferred_compaction = false; 2403 bool contended_compaction = false; 2404 2405 /* 2406 * In the slowpath, we sanity check order to avoid ever trying to 2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2408 * be using allocators in order of preference for an area that is 2409 * too large. 2410 */ 2411 if (order >= MAX_ORDER) { 2412 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2413 return NULL; 2414 } 2415 2416 /* 2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2420 * using a larger set of nodes after it has established that the 2421 * allowed per node queues are empty and that nodes are 2422 * over allocated. 2423 */ 2424 if (IS_ENABLED(CONFIG_NUMA) && 2425 (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2426 goto nopage; 2427 2428 restart: 2429 if (!(gfp_mask & __GFP_NO_KSWAPD)) 2430 wake_all_kswapd(order, zonelist, high_zoneidx, 2431 zone_idx(preferred_zone)); 2432 2433 /* 2434 * OK, we're below the kswapd watermark and have kicked background 2435 * reclaim. Now things get more complex, so set up alloc_flags according 2436 * to how we want to proceed. 2437 */ 2438 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2439 2440 /* 2441 * Find the true preferred zone if the allocation is unconstrained by 2442 * cpusets. 2443 */ 2444 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2445 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2446 &preferred_zone); 2447 2448 rebalance: 2449 /* This is the last chance, in general, before the goto nopage. */ 2450 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2451 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2452 preferred_zone, migratetype); 2453 if (page) 2454 goto got_pg; 2455 2456 /* Allocate without watermarks if the context allows */ 2457 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2458 /* 2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2460 * the allocation is high priority and these type of 2461 * allocations are system rather than user orientated 2462 */ 2463 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2464 2465 page = __alloc_pages_high_priority(gfp_mask, order, 2466 zonelist, high_zoneidx, nodemask, 2467 preferred_zone, migratetype); 2468 if (page) { 2469 goto got_pg; 2470 } 2471 } 2472 2473 /* Atomic allocations - we can't balance anything */ 2474 if (!wait) 2475 goto nopage; 2476 2477 /* Avoid recursion of direct reclaim */ 2478 if (current->flags & PF_MEMALLOC) 2479 goto nopage; 2480 2481 /* Avoid allocations with no watermarks from looping endlessly */ 2482 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2483 goto nopage; 2484 2485 /* 2486 * Try direct compaction. The first pass is asynchronous. Subsequent 2487 * attempts after direct reclaim are synchronous 2488 */ 2489 page = __alloc_pages_direct_compact(gfp_mask, order, 2490 zonelist, high_zoneidx, 2491 nodemask, 2492 alloc_flags, preferred_zone, 2493 migratetype, sync_migration, 2494 &contended_compaction, 2495 &deferred_compaction, 2496 &did_some_progress); 2497 if (page) 2498 goto got_pg; 2499 sync_migration = true; 2500 2501 /* 2502 * If compaction is deferred for high-order allocations, it is because 2503 * sync compaction recently failed. In this is the case and the caller 2504 * requested a movable allocation that does not heavily disrupt the 2505 * system then fail the allocation instead of entering direct reclaim. 2506 */ 2507 if ((deferred_compaction || contended_compaction) && 2508 (gfp_mask & __GFP_NO_KSWAPD)) 2509 goto nopage; 2510 2511 /* Try direct reclaim and then allocating */ 2512 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2513 zonelist, high_zoneidx, 2514 nodemask, 2515 alloc_flags, preferred_zone, 2516 migratetype, &did_some_progress); 2517 if (page) 2518 goto got_pg; 2519 2520 /* 2521 * If we failed to make any progress reclaiming, then we are 2522 * running out of options and have to consider going OOM 2523 */ 2524 if (!did_some_progress) { 2525 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2526 if (oom_killer_disabled) 2527 goto nopage; 2528 /* Coredumps can quickly deplete all memory reserves */ 2529 if ((current->flags & PF_DUMPCORE) && 2530 !(gfp_mask & __GFP_NOFAIL)) 2531 goto nopage; 2532 page = __alloc_pages_may_oom(gfp_mask, order, 2533 zonelist, high_zoneidx, 2534 nodemask, preferred_zone, 2535 migratetype); 2536 if (page) 2537 goto got_pg; 2538 2539 if (!(gfp_mask & __GFP_NOFAIL)) { 2540 /* 2541 * The oom killer is not called for high-order 2542 * allocations that may fail, so if no progress 2543 * is being made, there are no other options and 2544 * retrying is unlikely to help. 2545 */ 2546 if (order > PAGE_ALLOC_COSTLY_ORDER) 2547 goto nopage; 2548 /* 2549 * The oom killer is not called for lowmem 2550 * allocations to prevent needlessly killing 2551 * innocent tasks. 2552 */ 2553 if (high_zoneidx < ZONE_NORMAL) 2554 goto nopage; 2555 } 2556 2557 goto restart; 2558 } 2559 } 2560 2561 /* Check if we should retry the allocation */ 2562 pages_reclaimed += did_some_progress; 2563 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2564 pages_reclaimed)) { 2565 /* Wait for some write requests to complete then retry */ 2566 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2567 goto rebalance; 2568 } else { 2569 /* 2570 * High-order allocations do not necessarily loop after 2571 * direct reclaim and reclaim/compaction depends on compaction 2572 * being called after reclaim so call directly if necessary 2573 */ 2574 page = __alloc_pages_direct_compact(gfp_mask, order, 2575 zonelist, high_zoneidx, 2576 nodemask, 2577 alloc_flags, preferred_zone, 2578 migratetype, sync_migration, 2579 &contended_compaction, 2580 &deferred_compaction, 2581 &did_some_progress); 2582 if (page) 2583 goto got_pg; 2584 } 2585 2586 nopage: 2587 warn_alloc_failed(gfp_mask, order, NULL); 2588 return page; 2589 got_pg: 2590 if (kmemcheck_enabled) 2591 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2592 2593 return page; 2594 } 2595 2596 /* 2597 * This is the 'heart' of the zoned buddy allocator. 2598 */ 2599 struct page * 2600 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2601 struct zonelist *zonelist, nodemask_t *nodemask) 2602 { 2603 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2604 struct zone *preferred_zone; 2605 struct page *page = NULL; 2606 int migratetype = allocflags_to_migratetype(gfp_mask); 2607 unsigned int cpuset_mems_cookie; 2608 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2609 struct mem_cgroup *memcg = NULL; 2610 2611 gfp_mask &= gfp_allowed_mask; 2612 2613 lockdep_trace_alloc(gfp_mask); 2614 2615 might_sleep_if(gfp_mask & __GFP_WAIT); 2616 2617 if (should_fail_alloc_page(gfp_mask, order)) 2618 return NULL; 2619 2620 /* 2621 * Check the zones suitable for the gfp_mask contain at least one 2622 * valid zone. It's possible to have an empty zonelist as a result 2623 * of GFP_THISNODE and a memoryless node 2624 */ 2625 if (unlikely(!zonelist->_zonerefs->zone)) 2626 return NULL; 2627 2628 /* 2629 * Will only have any effect when __GFP_KMEMCG is set. This is 2630 * verified in the (always inline) callee 2631 */ 2632 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 2633 return NULL; 2634 2635 retry_cpuset: 2636 cpuset_mems_cookie = get_mems_allowed(); 2637 2638 /* The preferred zone is used for statistics later */ 2639 first_zones_zonelist(zonelist, high_zoneidx, 2640 nodemask ? : &cpuset_current_mems_allowed, 2641 &preferred_zone); 2642 if (!preferred_zone) 2643 goto out; 2644 2645 #ifdef CONFIG_CMA 2646 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2647 alloc_flags |= ALLOC_CMA; 2648 #endif 2649 /* First allocation attempt */ 2650 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2651 zonelist, high_zoneidx, alloc_flags, 2652 preferred_zone, migratetype); 2653 if (unlikely(!page)) { 2654 /* 2655 * Runtime PM, block IO and its error handling path 2656 * can deadlock because I/O on the device might not 2657 * complete. 2658 */ 2659 gfp_mask = memalloc_noio_flags(gfp_mask); 2660 page = __alloc_pages_slowpath(gfp_mask, order, 2661 zonelist, high_zoneidx, nodemask, 2662 preferred_zone, migratetype); 2663 } 2664 2665 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2666 2667 out: 2668 /* 2669 * When updating a task's mems_allowed, it is possible to race with 2670 * parallel threads in such a way that an allocation can fail while 2671 * the mask is being updated. If a page allocation is about to fail, 2672 * check if the cpuset changed during allocation and if so, retry. 2673 */ 2674 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2675 goto retry_cpuset; 2676 2677 memcg_kmem_commit_charge(page, memcg, order); 2678 2679 return page; 2680 } 2681 EXPORT_SYMBOL(__alloc_pages_nodemask); 2682 2683 /* 2684 * Common helper functions. 2685 */ 2686 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2687 { 2688 struct page *page; 2689 2690 /* 2691 * __get_free_pages() returns a 32-bit address, which cannot represent 2692 * a highmem page 2693 */ 2694 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2695 2696 page = alloc_pages(gfp_mask, order); 2697 if (!page) 2698 return 0; 2699 return (unsigned long) page_address(page); 2700 } 2701 EXPORT_SYMBOL(__get_free_pages); 2702 2703 unsigned long get_zeroed_page(gfp_t gfp_mask) 2704 { 2705 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2706 } 2707 EXPORT_SYMBOL(get_zeroed_page); 2708 2709 void __free_pages(struct page *page, unsigned int order) 2710 { 2711 if (put_page_testzero(page)) { 2712 if (order == 0) 2713 free_hot_cold_page(page, 0); 2714 else 2715 __free_pages_ok(page, order); 2716 } 2717 } 2718 2719 EXPORT_SYMBOL(__free_pages); 2720 2721 void free_pages(unsigned long addr, unsigned int order) 2722 { 2723 if (addr != 0) { 2724 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2725 __free_pages(virt_to_page((void *)addr), order); 2726 } 2727 } 2728 2729 EXPORT_SYMBOL(free_pages); 2730 2731 /* 2732 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free 2733 * pages allocated with __GFP_KMEMCG. 2734 * 2735 * Those pages are accounted to a particular memcg, embedded in the 2736 * corresponding page_cgroup. To avoid adding a hit in the allocator to search 2737 * for that information only to find out that it is NULL for users who have no 2738 * interest in that whatsoever, we provide these functions. 2739 * 2740 * The caller knows better which flags it relies on. 2741 */ 2742 void __free_memcg_kmem_pages(struct page *page, unsigned int order) 2743 { 2744 memcg_kmem_uncharge_pages(page, order); 2745 __free_pages(page, order); 2746 } 2747 2748 void free_memcg_kmem_pages(unsigned long addr, unsigned int order) 2749 { 2750 if (addr != 0) { 2751 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2752 __free_memcg_kmem_pages(virt_to_page((void *)addr), order); 2753 } 2754 } 2755 2756 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2757 { 2758 if (addr) { 2759 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2760 unsigned long used = addr + PAGE_ALIGN(size); 2761 2762 split_page(virt_to_page((void *)addr), order); 2763 while (used < alloc_end) { 2764 free_page(used); 2765 used += PAGE_SIZE; 2766 } 2767 } 2768 return (void *)addr; 2769 } 2770 2771 /** 2772 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2773 * @size: the number of bytes to allocate 2774 * @gfp_mask: GFP flags for the allocation 2775 * 2776 * This function is similar to alloc_pages(), except that it allocates the 2777 * minimum number of pages to satisfy the request. alloc_pages() can only 2778 * allocate memory in power-of-two pages. 2779 * 2780 * This function is also limited by MAX_ORDER. 2781 * 2782 * Memory allocated by this function must be released by free_pages_exact(). 2783 */ 2784 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2785 { 2786 unsigned int order = get_order(size); 2787 unsigned long addr; 2788 2789 addr = __get_free_pages(gfp_mask, order); 2790 return make_alloc_exact(addr, order, size); 2791 } 2792 EXPORT_SYMBOL(alloc_pages_exact); 2793 2794 /** 2795 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2796 * pages on a node. 2797 * @nid: the preferred node ID where memory should be allocated 2798 * @size: the number of bytes to allocate 2799 * @gfp_mask: GFP flags for the allocation 2800 * 2801 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2802 * back. 2803 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2804 * but is not exact. 2805 */ 2806 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2807 { 2808 unsigned order = get_order(size); 2809 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2810 if (!p) 2811 return NULL; 2812 return make_alloc_exact((unsigned long)page_address(p), order, size); 2813 } 2814 EXPORT_SYMBOL(alloc_pages_exact_nid); 2815 2816 /** 2817 * free_pages_exact - release memory allocated via alloc_pages_exact() 2818 * @virt: the value returned by alloc_pages_exact. 2819 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2820 * 2821 * Release the memory allocated by a previous call to alloc_pages_exact. 2822 */ 2823 void free_pages_exact(void *virt, size_t size) 2824 { 2825 unsigned long addr = (unsigned long)virt; 2826 unsigned long end = addr + PAGE_ALIGN(size); 2827 2828 while (addr < end) { 2829 free_page(addr); 2830 addr += PAGE_SIZE; 2831 } 2832 } 2833 EXPORT_SYMBOL(free_pages_exact); 2834 2835 /** 2836 * nr_free_zone_pages - count number of pages beyond high watermark 2837 * @offset: The zone index of the highest zone 2838 * 2839 * nr_free_zone_pages() counts the number of counts pages which are beyond the 2840 * high watermark within all zones at or below a given zone index. For each 2841 * zone, the number of pages is calculated as: 2842 * managed_pages - high_pages 2843 */ 2844 static unsigned long nr_free_zone_pages(int offset) 2845 { 2846 struct zoneref *z; 2847 struct zone *zone; 2848 2849 /* Just pick one node, since fallback list is circular */ 2850 unsigned long sum = 0; 2851 2852 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2853 2854 for_each_zone_zonelist(zone, z, zonelist, offset) { 2855 unsigned long size = zone->managed_pages; 2856 unsigned long high = high_wmark_pages(zone); 2857 if (size > high) 2858 sum += size - high; 2859 } 2860 2861 return sum; 2862 } 2863 2864 /** 2865 * nr_free_buffer_pages - count number of pages beyond high watermark 2866 * 2867 * nr_free_buffer_pages() counts the number of pages which are beyond the high 2868 * watermark within ZONE_DMA and ZONE_NORMAL. 2869 */ 2870 unsigned long nr_free_buffer_pages(void) 2871 { 2872 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2873 } 2874 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2875 2876 /** 2877 * nr_free_pagecache_pages - count number of pages beyond high watermark 2878 * 2879 * nr_free_pagecache_pages() counts the number of pages which are beyond the 2880 * high watermark within all zones. 2881 */ 2882 unsigned long nr_free_pagecache_pages(void) 2883 { 2884 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2885 } 2886 2887 static inline void show_node(struct zone *zone) 2888 { 2889 if (IS_ENABLED(CONFIG_NUMA)) 2890 printk("Node %d ", zone_to_nid(zone)); 2891 } 2892 2893 void si_meminfo(struct sysinfo *val) 2894 { 2895 val->totalram = totalram_pages; 2896 val->sharedram = 0; 2897 val->freeram = global_page_state(NR_FREE_PAGES); 2898 val->bufferram = nr_blockdev_pages(); 2899 val->totalhigh = totalhigh_pages; 2900 val->freehigh = nr_free_highpages(); 2901 val->mem_unit = PAGE_SIZE; 2902 } 2903 2904 EXPORT_SYMBOL(si_meminfo); 2905 2906 #ifdef CONFIG_NUMA 2907 void si_meminfo_node(struct sysinfo *val, int nid) 2908 { 2909 int zone_type; /* needs to be signed */ 2910 unsigned long managed_pages = 0; 2911 pg_data_t *pgdat = NODE_DATA(nid); 2912 2913 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 2914 managed_pages += pgdat->node_zones[zone_type].managed_pages; 2915 val->totalram = managed_pages; 2916 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2917 #ifdef CONFIG_HIGHMEM 2918 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 2919 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2920 NR_FREE_PAGES); 2921 #else 2922 val->totalhigh = 0; 2923 val->freehigh = 0; 2924 #endif 2925 val->mem_unit = PAGE_SIZE; 2926 } 2927 #endif 2928 2929 /* 2930 * Determine whether the node should be displayed or not, depending on whether 2931 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2932 */ 2933 bool skip_free_areas_node(unsigned int flags, int nid) 2934 { 2935 bool ret = false; 2936 unsigned int cpuset_mems_cookie; 2937 2938 if (!(flags & SHOW_MEM_FILTER_NODES)) 2939 goto out; 2940 2941 do { 2942 cpuset_mems_cookie = get_mems_allowed(); 2943 ret = !node_isset(nid, cpuset_current_mems_allowed); 2944 } while (!put_mems_allowed(cpuset_mems_cookie)); 2945 out: 2946 return ret; 2947 } 2948 2949 #define K(x) ((x) << (PAGE_SHIFT-10)) 2950 2951 static void show_migration_types(unsigned char type) 2952 { 2953 static const char types[MIGRATE_TYPES] = { 2954 [MIGRATE_UNMOVABLE] = 'U', 2955 [MIGRATE_RECLAIMABLE] = 'E', 2956 [MIGRATE_MOVABLE] = 'M', 2957 [MIGRATE_RESERVE] = 'R', 2958 #ifdef CONFIG_CMA 2959 [MIGRATE_CMA] = 'C', 2960 #endif 2961 #ifdef CONFIG_MEMORY_ISOLATION 2962 [MIGRATE_ISOLATE] = 'I', 2963 #endif 2964 }; 2965 char tmp[MIGRATE_TYPES + 1]; 2966 char *p = tmp; 2967 int i; 2968 2969 for (i = 0; i < MIGRATE_TYPES; i++) { 2970 if (type & (1 << i)) 2971 *p++ = types[i]; 2972 } 2973 2974 *p = '\0'; 2975 printk("(%s) ", tmp); 2976 } 2977 2978 /* 2979 * Show free area list (used inside shift_scroll-lock stuff) 2980 * We also calculate the percentage fragmentation. We do this by counting the 2981 * memory on each free list with the exception of the first item on the list. 2982 * Suppresses nodes that are not allowed by current's cpuset if 2983 * SHOW_MEM_FILTER_NODES is passed. 2984 */ 2985 void show_free_areas(unsigned int filter) 2986 { 2987 int cpu; 2988 struct zone *zone; 2989 2990 for_each_populated_zone(zone) { 2991 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2992 continue; 2993 show_node(zone); 2994 printk("%s per-cpu:\n", zone->name); 2995 2996 for_each_online_cpu(cpu) { 2997 struct per_cpu_pageset *pageset; 2998 2999 pageset = per_cpu_ptr(zone->pageset, cpu); 3000 3001 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 3002 cpu, pageset->pcp.high, 3003 pageset->pcp.batch, pageset->pcp.count); 3004 } 3005 } 3006 3007 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3008 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3009 " unevictable:%lu" 3010 " dirty:%lu writeback:%lu unstable:%lu\n" 3011 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3012 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3013 " free_cma:%lu\n", 3014 global_page_state(NR_ACTIVE_ANON), 3015 global_page_state(NR_INACTIVE_ANON), 3016 global_page_state(NR_ISOLATED_ANON), 3017 global_page_state(NR_ACTIVE_FILE), 3018 global_page_state(NR_INACTIVE_FILE), 3019 global_page_state(NR_ISOLATED_FILE), 3020 global_page_state(NR_UNEVICTABLE), 3021 global_page_state(NR_FILE_DIRTY), 3022 global_page_state(NR_WRITEBACK), 3023 global_page_state(NR_UNSTABLE_NFS), 3024 global_page_state(NR_FREE_PAGES), 3025 global_page_state(NR_SLAB_RECLAIMABLE), 3026 global_page_state(NR_SLAB_UNRECLAIMABLE), 3027 global_page_state(NR_FILE_MAPPED), 3028 global_page_state(NR_SHMEM), 3029 global_page_state(NR_PAGETABLE), 3030 global_page_state(NR_BOUNCE), 3031 global_page_state(NR_FREE_CMA_PAGES)); 3032 3033 for_each_populated_zone(zone) { 3034 int i; 3035 3036 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3037 continue; 3038 show_node(zone); 3039 printk("%s" 3040 " free:%lukB" 3041 " min:%lukB" 3042 " low:%lukB" 3043 " high:%lukB" 3044 " active_anon:%lukB" 3045 " inactive_anon:%lukB" 3046 " active_file:%lukB" 3047 " inactive_file:%lukB" 3048 " unevictable:%lukB" 3049 " isolated(anon):%lukB" 3050 " isolated(file):%lukB" 3051 " present:%lukB" 3052 " managed:%lukB" 3053 " mlocked:%lukB" 3054 " dirty:%lukB" 3055 " writeback:%lukB" 3056 " mapped:%lukB" 3057 " shmem:%lukB" 3058 " slab_reclaimable:%lukB" 3059 " slab_unreclaimable:%lukB" 3060 " kernel_stack:%lukB" 3061 " pagetables:%lukB" 3062 " unstable:%lukB" 3063 " bounce:%lukB" 3064 " free_cma:%lukB" 3065 " writeback_tmp:%lukB" 3066 " pages_scanned:%lu" 3067 " all_unreclaimable? %s" 3068 "\n", 3069 zone->name, 3070 K(zone_page_state(zone, NR_FREE_PAGES)), 3071 K(min_wmark_pages(zone)), 3072 K(low_wmark_pages(zone)), 3073 K(high_wmark_pages(zone)), 3074 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3075 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3076 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3077 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3078 K(zone_page_state(zone, NR_UNEVICTABLE)), 3079 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3080 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3081 K(zone->present_pages), 3082 K(zone->managed_pages), 3083 K(zone_page_state(zone, NR_MLOCK)), 3084 K(zone_page_state(zone, NR_FILE_DIRTY)), 3085 K(zone_page_state(zone, NR_WRITEBACK)), 3086 K(zone_page_state(zone, NR_FILE_MAPPED)), 3087 K(zone_page_state(zone, NR_SHMEM)), 3088 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3089 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3090 zone_page_state(zone, NR_KERNEL_STACK) * 3091 THREAD_SIZE / 1024, 3092 K(zone_page_state(zone, NR_PAGETABLE)), 3093 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3094 K(zone_page_state(zone, NR_BOUNCE)), 3095 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3096 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3097 zone->pages_scanned, 3098 (zone->all_unreclaimable ? "yes" : "no") 3099 ); 3100 printk("lowmem_reserve[]:"); 3101 for (i = 0; i < MAX_NR_ZONES; i++) 3102 printk(" %lu", zone->lowmem_reserve[i]); 3103 printk("\n"); 3104 } 3105 3106 for_each_populated_zone(zone) { 3107 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3108 unsigned char types[MAX_ORDER]; 3109 3110 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3111 continue; 3112 show_node(zone); 3113 printk("%s: ", zone->name); 3114 3115 spin_lock_irqsave(&zone->lock, flags); 3116 for (order = 0; order < MAX_ORDER; order++) { 3117 struct free_area *area = &zone->free_area[order]; 3118 int type; 3119 3120 nr[order] = area->nr_free; 3121 total += nr[order] << order; 3122 3123 types[order] = 0; 3124 for (type = 0; type < MIGRATE_TYPES; type++) { 3125 if (!list_empty(&area->free_list[type])) 3126 types[order] |= 1 << type; 3127 } 3128 } 3129 spin_unlock_irqrestore(&zone->lock, flags); 3130 for (order = 0; order < MAX_ORDER; order++) { 3131 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3132 if (nr[order]) 3133 show_migration_types(types[order]); 3134 } 3135 printk("= %lukB\n", K(total)); 3136 } 3137 3138 hugetlb_show_meminfo(); 3139 3140 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3141 3142 show_swap_cache_info(); 3143 } 3144 3145 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3146 { 3147 zoneref->zone = zone; 3148 zoneref->zone_idx = zone_idx(zone); 3149 } 3150 3151 /* 3152 * Builds allocation fallback zone lists. 3153 * 3154 * Add all populated zones of a node to the zonelist. 3155 */ 3156 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3157 int nr_zones) 3158 { 3159 struct zone *zone; 3160 enum zone_type zone_type = MAX_NR_ZONES; 3161 3162 do { 3163 zone_type--; 3164 zone = pgdat->node_zones + zone_type; 3165 if (populated_zone(zone)) { 3166 zoneref_set_zone(zone, 3167 &zonelist->_zonerefs[nr_zones++]); 3168 check_highest_zone(zone_type); 3169 } 3170 } while (zone_type); 3171 3172 return nr_zones; 3173 } 3174 3175 3176 /* 3177 * zonelist_order: 3178 * 0 = automatic detection of better ordering. 3179 * 1 = order by ([node] distance, -zonetype) 3180 * 2 = order by (-zonetype, [node] distance) 3181 * 3182 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3183 * the same zonelist. So only NUMA can configure this param. 3184 */ 3185 #define ZONELIST_ORDER_DEFAULT 0 3186 #define ZONELIST_ORDER_NODE 1 3187 #define ZONELIST_ORDER_ZONE 2 3188 3189 /* zonelist order in the kernel. 3190 * set_zonelist_order() will set this to NODE or ZONE. 3191 */ 3192 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3193 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3194 3195 3196 #ifdef CONFIG_NUMA 3197 /* The value user specified ....changed by config */ 3198 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3199 /* string for sysctl */ 3200 #define NUMA_ZONELIST_ORDER_LEN 16 3201 char numa_zonelist_order[16] = "default"; 3202 3203 /* 3204 * interface for configure zonelist ordering. 3205 * command line option "numa_zonelist_order" 3206 * = "[dD]efault - default, automatic configuration. 3207 * = "[nN]ode - order by node locality, then by zone within node 3208 * = "[zZ]one - order by zone, then by locality within zone 3209 */ 3210 3211 static int __parse_numa_zonelist_order(char *s) 3212 { 3213 if (*s == 'd' || *s == 'D') { 3214 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3215 } else if (*s == 'n' || *s == 'N') { 3216 user_zonelist_order = ZONELIST_ORDER_NODE; 3217 } else if (*s == 'z' || *s == 'Z') { 3218 user_zonelist_order = ZONELIST_ORDER_ZONE; 3219 } else { 3220 printk(KERN_WARNING 3221 "Ignoring invalid numa_zonelist_order value: " 3222 "%s\n", s); 3223 return -EINVAL; 3224 } 3225 return 0; 3226 } 3227 3228 static __init int setup_numa_zonelist_order(char *s) 3229 { 3230 int ret; 3231 3232 if (!s) 3233 return 0; 3234 3235 ret = __parse_numa_zonelist_order(s); 3236 if (ret == 0) 3237 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3238 3239 return ret; 3240 } 3241 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3242 3243 /* 3244 * sysctl handler for numa_zonelist_order 3245 */ 3246 int numa_zonelist_order_handler(ctl_table *table, int write, 3247 void __user *buffer, size_t *length, 3248 loff_t *ppos) 3249 { 3250 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3251 int ret; 3252 static DEFINE_MUTEX(zl_order_mutex); 3253 3254 mutex_lock(&zl_order_mutex); 3255 if (write) { 3256 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3257 ret = -EINVAL; 3258 goto out; 3259 } 3260 strcpy(saved_string, (char *)table->data); 3261 } 3262 ret = proc_dostring(table, write, buffer, length, ppos); 3263 if (ret) 3264 goto out; 3265 if (write) { 3266 int oldval = user_zonelist_order; 3267 3268 ret = __parse_numa_zonelist_order((char *)table->data); 3269 if (ret) { 3270 /* 3271 * bogus value. restore saved string 3272 */ 3273 strncpy((char *)table->data, saved_string, 3274 NUMA_ZONELIST_ORDER_LEN); 3275 user_zonelist_order = oldval; 3276 } else if (oldval != user_zonelist_order) { 3277 mutex_lock(&zonelists_mutex); 3278 build_all_zonelists(NULL, NULL); 3279 mutex_unlock(&zonelists_mutex); 3280 } 3281 } 3282 out: 3283 mutex_unlock(&zl_order_mutex); 3284 return ret; 3285 } 3286 3287 3288 #define MAX_NODE_LOAD (nr_online_nodes) 3289 static int node_load[MAX_NUMNODES]; 3290 3291 /** 3292 * find_next_best_node - find the next node that should appear in a given node's fallback list 3293 * @node: node whose fallback list we're appending 3294 * @used_node_mask: nodemask_t of already used nodes 3295 * 3296 * We use a number of factors to determine which is the next node that should 3297 * appear on a given node's fallback list. The node should not have appeared 3298 * already in @node's fallback list, and it should be the next closest node 3299 * according to the distance array (which contains arbitrary distance values 3300 * from each node to each node in the system), and should also prefer nodes 3301 * with no CPUs, since presumably they'll have very little allocation pressure 3302 * on them otherwise. 3303 * It returns -1 if no node is found. 3304 */ 3305 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3306 { 3307 int n, val; 3308 int min_val = INT_MAX; 3309 int best_node = NUMA_NO_NODE; 3310 const struct cpumask *tmp = cpumask_of_node(0); 3311 3312 /* Use the local node if we haven't already */ 3313 if (!node_isset(node, *used_node_mask)) { 3314 node_set(node, *used_node_mask); 3315 return node; 3316 } 3317 3318 for_each_node_state(n, N_MEMORY) { 3319 3320 /* Don't want a node to appear more than once */ 3321 if (node_isset(n, *used_node_mask)) 3322 continue; 3323 3324 /* Use the distance array to find the distance */ 3325 val = node_distance(node, n); 3326 3327 /* Penalize nodes under us ("prefer the next node") */ 3328 val += (n < node); 3329 3330 /* Give preference to headless and unused nodes */ 3331 tmp = cpumask_of_node(n); 3332 if (!cpumask_empty(tmp)) 3333 val += PENALTY_FOR_NODE_WITH_CPUS; 3334 3335 /* Slight preference for less loaded node */ 3336 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3337 val += node_load[n]; 3338 3339 if (val < min_val) { 3340 min_val = val; 3341 best_node = n; 3342 } 3343 } 3344 3345 if (best_node >= 0) 3346 node_set(best_node, *used_node_mask); 3347 3348 return best_node; 3349 } 3350 3351 3352 /* 3353 * Build zonelists ordered by node and zones within node. 3354 * This results in maximum locality--normal zone overflows into local 3355 * DMA zone, if any--but risks exhausting DMA zone. 3356 */ 3357 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3358 { 3359 int j; 3360 struct zonelist *zonelist; 3361 3362 zonelist = &pgdat->node_zonelists[0]; 3363 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3364 ; 3365 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3366 zonelist->_zonerefs[j].zone = NULL; 3367 zonelist->_zonerefs[j].zone_idx = 0; 3368 } 3369 3370 /* 3371 * Build gfp_thisnode zonelists 3372 */ 3373 static void build_thisnode_zonelists(pg_data_t *pgdat) 3374 { 3375 int j; 3376 struct zonelist *zonelist; 3377 3378 zonelist = &pgdat->node_zonelists[1]; 3379 j = build_zonelists_node(pgdat, zonelist, 0); 3380 zonelist->_zonerefs[j].zone = NULL; 3381 zonelist->_zonerefs[j].zone_idx = 0; 3382 } 3383 3384 /* 3385 * Build zonelists ordered by zone and nodes within zones. 3386 * This results in conserving DMA zone[s] until all Normal memory is 3387 * exhausted, but results in overflowing to remote node while memory 3388 * may still exist in local DMA zone. 3389 */ 3390 static int node_order[MAX_NUMNODES]; 3391 3392 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3393 { 3394 int pos, j, node; 3395 int zone_type; /* needs to be signed */ 3396 struct zone *z; 3397 struct zonelist *zonelist; 3398 3399 zonelist = &pgdat->node_zonelists[0]; 3400 pos = 0; 3401 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3402 for (j = 0; j < nr_nodes; j++) { 3403 node = node_order[j]; 3404 z = &NODE_DATA(node)->node_zones[zone_type]; 3405 if (populated_zone(z)) { 3406 zoneref_set_zone(z, 3407 &zonelist->_zonerefs[pos++]); 3408 check_highest_zone(zone_type); 3409 } 3410 } 3411 } 3412 zonelist->_zonerefs[pos].zone = NULL; 3413 zonelist->_zonerefs[pos].zone_idx = 0; 3414 } 3415 3416 static int default_zonelist_order(void) 3417 { 3418 int nid, zone_type; 3419 unsigned long low_kmem_size,total_size; 3420 struct zone *z; 3421 int average_size; 3422 /* 3423 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3424 * If they are really small and used heavily, the system can fall 3425 * into OOM very easily. 3426 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3427 */ 3428 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3429 low_kmem_size = 0; 3430 total_size = 0; 3431 for_each_online_node(nid) { 3432 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3433 z = &NODE_DATA(nid)->node_zones[zone_type]; 3434 if (populated_zone(z)) { 3435 if (zone_type < ZONE_NORMAL) 3436 low_kmem_size += z->managed_pages; 3437 total_size += z->managed_pages; 3438 } else if (zone_type == ZONE_NORMAL) { 3439 /* 3440 * If any node has only lowmem, then node order 3441 * is preferred to allow kernel allocations 3442 * locally; otherwise, they can easily infringe 3443 * on other nodes when there is an abundance of 3444 * lowmem available to allocate from. 3445 */ 3446 return ZONELIST_ORDER_NODE; 3447 } 3448 } 3449 } 3450 if (!low_kmem_size || /* there are no DMA area. */ 3451 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3452 return ZONELIST_ORDER_NODE; 3453 /* 3454 * look into each node's config. 3455 * If there is a node whose DMA/DMA32 memory is very big area on 3456 * local memory, NODE_ORDER may be suitable. 3457 */ 3458 average_size = total_size / 3459 (nodes_weight(node_states[N_MEMORY]) + 1); 3460 for_each_online_node(nid) { 3461 low_kmem_size = 0; 3462 total_size = 0; 3463 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3464 z = &NODE_DATA(nid)->node_zones[zone_type]; 3465 if (populated_zone(z)) { 3466 if (zone_type < ZONE_NORMAL) 3467 low_kmem_size += z->present_pages; 3468 total_size += z->present_pages; 3469 } 3470 } 3471 if (low_kmem_size && 3472 total_size > average_size && /* ignore small node */ 3473 low_kmem_size > total_size * 70/100) 3474 return ZONELIST_ORDER_NODE; 3475 } 3476 return ZONELIST_ORDER_ZONE; 3477 } 3478 3479 static void set_zonelist_order(void) 3480 { 3481 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3482 current_zonelist_order = default_zonelist_order(); 3483 else 3484 current_zonelist_order = user_zonelist_order; 3485 } 3486 3487 static void build_zonelists(pg_data_t *pgdat) 3488 { 3489 int j, node, load; 3490 enum zone_type i; 3491 nodemask_t used_mask; 3492 int local_node, prev_node; 3493 struct zonelist *zonelist; 3494 int order = current_zonelist_order; 3495 3496 /* initialize zonelists */ 3497 for (i = 0; i < MAX_ZONELISTS; i++) { 3498 zonelist = pgdat->node_zonelists + i; 3499 zonelist->_zonerefs[0].zone = NULL; 3500 zonelist->_zonerefs[0].zone_idx = 0; 3501 } 3502 3503 /* NUMA-aware ordering of nodes */ 3504 local_node = pgdat->node_id; 3505 load = nr_online_nodes; 3506 prev_node = local_node; 3507 nodes_clear(used_mask); 3508 3509 memset(node_order, 0, sizeof(node_order)); 3510 j = 0; 3511 3512 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3513 /* 3514 * We don't want to pressure a particular node. 3515 * So adding penalty to the first node in same 3516 * distance group to make it round-robin. 3517 */ 3518 if (node_distance(local_node, node) != 3519 node_distance(local_node, prev_node)) 3520 node_load[node] = load; 3521 3522 prev_node = node; 3523 load--; 3524 if (order == ZONELIST_ORDER_NODE) 3525 build_zonelists_in_node_order(pgdat, node); 3526 else 3527 node_order[j++] = node; /* remember order */ 3528 } 3529 3530 if (order == ZONELIST_ORDER_ZONE) { 3531 /* calculate node order -- i.e., DMA last! */ 3532 build_zonelists_in_zone_order(pgdat, j); 3533 } 3534 3535 build_thisnode_zonelists(pgdat); 3536 } 3537 3538 /* Construct the zonelist performance cache - see further mmzone.h */ 3539 static void build_zonelist_cache(pg_data_t *pgdat) 3540 { 3541 struct zonelist *zonelist; 3542 struct zonelist_cache *zlc; 3543 struct zoneref *z; 3544 3545 zonelist = &pgdat->node_zonelists[0]; 3546 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3547 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3548 for (z = zonelist->_zonerefs; z->zone; z++) 3549 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3550 } 3551 3552 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3553 /* 3554 * Return node id of node used for "local" allocations. 3555 * I.e., first node id of first zone in arg node's generic zonelist. 3556 * Used for initializing percpu 'numa_mem', which is used primarily 3557 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3558 */ 3559 int local_memory_node(int node) 3560 { 3561 struct zone *zone; 3562 3563 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3564 gfp_zone(GFP_KERNEL), 3565 NULL, 3566 &zone); 3567 return zone->node; 3568 } 3569 #endif 3570 3571 #else /* CONFIG_NUMA */ 3572 3573 static void set_zonelist_order(void) 3574 { 3575 current_zonelist_order = ZONELIST_ORDER_ZONE; 3576 } 3577 3578 static void build_zonelists(pg_data_t *pgdat) 3579 { 3580 int node, local_node; 3581 enum zone_type j; 3582 struct zonelist *zonelist; 3583 3584 local_node = pgdat->node_id; 3585 3586 zonelist = &pgdat->node_zonelists[0]; 3587 j = build_zonelists_node(pgdat, zonelist, 0); 3588 3589 /* 3590 * Now we build the zonelist so that it contains the zones 3591 * of all the other nodes. 3592 * We don't want to pressure a particular node, so when 3593 * building the zones for node N, we make sure that the 3594 * zones coming right after the local ones are those from 3595 * node N+1 (modulo N) 3596 */ 3597 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3598 if (!node_online(node)) 3599 continue; 3600 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3601 } 3602 for (node = 0; node < local_node; node++) { 3603 if (!node_online(node)) 3604 continue; 3605 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 3606 } 3607 3608 zonelist->_zonerefs[j].zone = NULL; 3609 zonelist->_zonerefs[j].zone_idx = 0; 3610 } 3611 3612 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3613 static void build_zonelist_cache(pg_data_t *pgdat) 3614 { 3615 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3616 } 3617 3618 #endif /* CONFIG_NUMA */ 3619 3620 /* 3621 * Boot pageset table. One per cpu which is going to be used for all 3622 * zones and all nodes. The parameters will be set in such a way 3623 * that an item put on a list will immediately be handed over to 3624 * the buddy list. This is safe since pageset manipulation is done 3625 * with interrupts disabled. 3626 * 3627 * The boot_pagesets must be kept even after bootup is complete for 3628 * unused processors and/or zones. They do play a role for bootstrapping 3629 * hotplugged processors. 3630 * 3631 * zoneinfo_show() and maybe other functions do 3632 * not check if the processor is online before following the pageset pointer. 3633 * Other parts of the kernel may not check if the zone is available. 3634 */ 3635 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3636 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3637 static void setup_zone_pageset(struct zone *zone); 3638 3639 /* 3640 * Global mutex to protect against size modification of zonelists 3641 * as well as to serialize pageset setup for the new populated zone. 3642 */ 3643 DEFINE_MUTEX(zonelists_mutex); 3644 3645 /* return values int ....just for stop_machine() */ 3646 static int __build_all_zonelists(void *data) 3647 { 3648 int nid; 3649 int cpu; 3650 pg_data_t *self = data; 3651 3652 #ifdef CONFIG_NUMA 3653 memset(node_load, 0, sizeof(node_load)); 3654 #endif 3655 3656 if (self && !node_online(self->node_id)) { 3657 build_zonelists(self); 3658 build_zonelist_cache(self); 3659 } 3660 3661 for_each_online_node(nid) { 3662 pg_data_t *pgdat = NODE_DATA(nid); 3663 3664 build_zonelists(pgdat); 3665 build_zonelist_cache(pgdat); 3666 } 3667 3668 /* 3669 * Initialize the boot_pagesets that are going to be used 3670 * for bootstrapping processors. The real pagesets for 3671 * each zone will be allocated later when the per cpu 3672 * allocator is available. 3673 * 3674 * boot_pagesets are used also for bootstrapping offline 3675 * cpus if the system is already booted because the pagesets 3676 * are needed to initialize allocators on a specific cpu too. 3677 * F.e. the percpu allocator needs the page allocator which 3678 * needs the percpu allocator in order to allocate its pagesets 3679 * (a chicken-egg dilemma). 3680 */ 3681 for_each_possible_cpu(cpu) { 3682 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3683 3684 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3685 /* 3686 * We now know the "local memory node" for each node-- 3687 * i.e., the node of the first zone in the generic zonelist. 3688 * Set up numa_mem percpu variable for on-line cpus. During 3689 * boot, only the boot cpu should be on-line; we'll init the 3690 * secondary cpus' numa_mem as they come on-line. During 3691 * node/memory hotplug, we'll fixup all on-line cpus. 3692 */ 3693 if (cpu_online(cpu)) 3694 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3695 #endif 3696 } 3697 3698 return 0; 3699 } 3700 3701 /* 3702 * Called with zonelists_mutex held always 3703 * unless system_state == SYSTEM_BOOTING. 3704 */ 3705 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3706 { 3707 set_zonelist_order(); 3708 3709 if (system_state == SYSTEM_BOOTING) { 3710 __build_all_zonelists(NULL); 3711 mminit_verify_zonelist(); 3712 cpuset_init_current_mems_allowed(); 3713 } else { 3714 #ifdef CONFIG_MEMORY_HOTPLUG 3715 if (zone) 3716 setup_zone_pageset(zone); 3717 #endif 3718 /* we have to stop all cpus to guarantee there is no user 3719 of zonelist */ 3720 stop_machine(__build_all_zonelists, pgdat, NULL); 3721 /* cpuset refresh routine should be here */ 3722 } 3723 vm_total_pages = nr_free_pagecache_pages(); 3724 /* 3725 * Disable grouping by mobility if the number of pages in the 3726 * system is too low to allow the mechanism to work. It would be 3727 * more accurate, but expensive to check per-zone. This check is 3728 * made on memory-hotadd so a system can start with mobility 3729 * disabled and enable it later 3730 */ 3731 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3732 page_group_by_mobility_disabled = 1; 3733 else 3734 page_group_by_mobility_disabled = 0; 3735 3736 printk("Built %i zonelists in %s order, mobility grouping %s. " 3737 "Total pages: %ld\n", 3738 nr_online_nodes, 3739 zonelist_order_name[current_zonelist_order], 3740 page_group_by_mobility_disabled ? "off" : "on", 3741 vm_total_pages); 3742 #ifdef CONFIG_NUMA 3743 printk("Policy zone: %s\n", zone_names[policy_zone]); 3744 #endif 3745 } 3746 3747 /* 3748 * Helper functions to size the waitqueue hash table. 3749 * Essentially these want to choose hash table sizes sufficiently 3750 * large so that collisions trying to wait on pages are rare. 3751 * But in fact, the number of active page waitqueues on typical 3752 * systems is ridiculously low, less than 200. So this is even 3753 * conservative, even though it seems large. 3754 * 3755 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3756 * waitqueues, i.e. the size of the waitq table given the number of pages. 3757 */ 3758 #define PAGES_PER_WAITQUEUE 256 3759 3760 #ifndef CONFIG_MEMORY_HOTPLUG 3761 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3762 { 3763 unsigned long size = 1; 3764 3765 pages /= PAGES_PER_WAITQUEUE; 3766 3767 while (size < pages) 3768 size <<= 1; 3769 3770 /* 3771 * Once we have dozens or even hundreds of threads sleeping 3772 * on IO we've got bigger problems than wait queue collision. 3773 * Limit the size of the wait table to a reasonable size. 3774 */ 3775 size = min(size, 4096UL); 3776 3777 return max(size, 4UL); 3778 } 3779 #else 3780 /* 3781 * A zone's size might be changed by hot-add, so it is not possible to determine 3782 * a suitable size for its wait_table. So we use the maximum size now. 3783 * 3784 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3785 * 3786 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3787 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3788 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3789 * 3790 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3791 * or more by the traditional way. (See above). It equals: 3792 * 3793 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3794 * ia64(16K page size) : = ( 8G + 4M)byte. 3795 * powerpc (64K page size) : = (32G +16M)byte. 3796 */ 3797 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3798 { 3799 return 4096UL; 3800 } 3801 #endif 3802 3803 /* 3804 * This is an integer logarithm so that shifts can be used later 3805 * to extract the more random high bits from the multiplicative 3806 * hash function before the remainder is taken. 3807 */ 3808 static inline unsigned long wait_table_bits(unsigned long size) 3809 { 3810 return ffz(~size); 3811 } 3812 3813 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3814 3815 /* 3816 * Check if a pageblock contains reserved pages 3817 */ 3818 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3819 { 3820 unsigned long pfn; 3821 3822 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3823 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3824 return 1; 3825 } 3826 return 0; 3827 } 3828 3829 /* 3830 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3831 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3832 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3833 * higher will lead to a bigger reserve which will get freed as contiguous 3834 * blocks as reclaim kicks in 3835 */ 3836 static void setup_zone_migrate_reserve(struct zone *zone) 3837 { 3838 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3839 struct page *page; 3840 unsigned long block_migratetype; 3841 int reserve; 3842 3843 /* 3844 * Get the start pfn, end pfn and the number of blocks to reserve 3845 * We have to be careful to be aligned to pageblock_nr_pages to 3846 * make sure that we always check pfn_valid for the first page in 3847 * the block. 3848 */ 3849 start_pfn = zone->zone_start_pfn; 3850 end_pfn = zone_end_pfn(zone); 3851 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3852 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3853 pageblock_order; 3854 3855 /* 3856 * Reserve blocks are generally in place to help high-order atomic 3857 * allocations that are short-lived. A min_free_kbytes value that 3858 * would result in more than 2 reserve blocks for atomic allocations 3859 * is assumed to be in place to help anti-fragmentation for the 3860 * future allocation of hugepages at runtime. 3861 */ 3862 reserve = min(2, reserve); 3863 3864 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3865 if (!pfn_valid(pfn)) 3866 continue; 3867 page = pfn_to_page(pfn); 3868 3869 /* Watch out for overlapping nodes */ 3870 if (page_to_nid(page) != zone_to_nid(zone)) 3871 continue; 3872 3873 block_migratetype = get_pageblock_migratetype(page); 3874 3875 /* Only test what is necessary when the reserves are not met */ 3876 if (reserve > 0) { 3877 /* 3878 * Blocks with reserved pages will never free, skip 3879 * them. 3880 */ 3881 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3882 if (pageblock_is_reserved(pfn, block_end_pfn)) 3883 continue; 3884 3885 /* If this block is reserved, account for it */ 3886 if (block_migratetype == MIGRATE_RESERVE) { 3887 reserve--; 3888 continue; 3889 } 3890 3891 /* Suitable for reserving if this block is movable */ 3892 if (block_migratetype == MIGRATE_MOVABLE) { 3893 set_pageblock_migratetype(page, 3894 MIGRATE_RESERVE); 3895 move_freepages_block(zone, page, 3896 MIGRATE_RESERVE); 3897 reserve--; 3898 continue; 3899 } 3900 } 3901 3902 /* 3903 * If the reserve is met and this is a previous reserved block, 3904 * take it back 3905 */ 3906 if (block_migratetype == MIGRATE_RESERVE) { 3907 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3908 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3909 } 3910 } 3911 } 3912 3913 /* 3914 * Initially all pages are reserved - free ones are freed 3915 * up by free_all_bootmem() once the early boot process is 3916 * done. Non-atomic initialization, single-pass. 3917 */ 3918 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3919 unsigned long start_pfn, enum memmap_context context) 3920 { 3921 struct page *page; 3922 unsigned long end_pfn = start_pfn + size; 3923 unsigned long pfn; 3924 struct zone *z; 3925 3926 if (highest_memmap_pfn < end_pfn - 1) 3927 highest_memmap_pfn = end_pfn - 1; 3928 3929 z = &NODE_DATA(nid)->node_zones[zone]; 3930 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3931 /* 3932 * There can be holes in boot-time mem_map[]s 3933 * handed to this function. They do not 3934 * exist on hotplugged memory. 3935 */ 3936 if (context == MEMMAP_EARLY) { 3937 if (!early_pfn_valid(pfn)) 3938 continue; 3939 if (!early_pfn_in_nid(pfn, nid)) 3940 continue; 3941 } 3942 page = pfn_to_page(pfn); 3943 set_page_links(page, zone, nid, pfn); 3944 mminit_verify_page_links(page, zone, nid, pfn); 3945 init_page_count(page); 3946 page_mapcount_reset(page); 3947 page_nid_reset_last(page); 3948 SetPageReserved(page); 3949 /* 3950 * Mark the block movable so that blocks are reserved for 3951 * movable at startup. This will force kernel allocations 3952 * to reserve their blocks rather than leaking throughout 3953 * the address space during boot when many long-lived 3954 * kernel allocations are made. Later some blocks near 3955 * the start are marked MIGRATE_RESERVE by 3956 * setup_zone_migrate_reserve() 3957 * 3958 * bitmap is created for zone's valid pfn range. but memmap 3959 * can be created for invalid pages (for alignment) 3960 * check here not to call set_pageblock_migratetype() against 3961 * pfn out of zone. 3962 */ 3963 if ((z->zone_start_pfn <= pfn) 3964 && (pfn < zone_end_pfn(z)) 3965 && !(pfn & (pageblock_nr_pages - 1))) 3966 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3967 3968 INIT_LIST_HEAD(&page->lru); 3969 #ifdef WANT_PAGE_VIRTUAL 3970 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3971 if (!is_highmem_idx(zone)) 3972 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3973 #endif 3974 } 3975 } 3976 3977 static void __meminit zone_init_free_lists(struct zone *zone) 3978 { 3979 int order, t; 3980 for_each_migratetype_order(order, t) { 3981 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3982 zone->free_area[order].nr_free = 0; 3983 } 3984 } 3985 3986 #ifndef __HAVE_ARCH_MEMMAP_INIT 3987 #define memmap_init(size, nid, zone, start_pfn) \ 3988 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3989 #endif 3990 3991 static int __meminit zone_batchsize(struct zone *zone) 3992 { 3993 #ifdef CONFIG_MMU 3994 int batch; 3995 3996 /* 3997 * The per-cpu-pages pools are set to around 1000th of the 3998 * size of the zone. But no more than 1/2 of a meg. 3999 * 4000 * OK, so we don't know how big the cache is. So guess. 4001 */ 4002 batch = zone->managed_pages / 1024; 4003 if (batch * PAGE_SIZE > 512 * 1024) 4004 batch = (512 * 1024) / PAGE_SIZE; 4005 batch /= 4; /* We effectively *= 4 below */ 4006 if (batch < 1) 4007 batch = 1; 4008 4009 /* 4010 * Clamp the batch to a 2^n - 1 value. Having a power 4011 * of 2 value was found to be more likely to have 4012 * suboptimal cache aliasing properties in some cases. 4013 * 4014 * For example if 2 tasks are alternately allocating 4015 * batches of pages, one task can end up with a lot 4016 * of pages of one half of the possible page colors 4017 * and the other with pages of the other colors. 4018 */ 4019 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4020 4021 return batch; 4022 4023 #else 4024 /* The deferral and batching of frees should be suppressed under NOMMU 4025 * conditions. 4026 * 4027 * The problem is that NOMMU needs to be able to allocate large chunks 4028 * of contiguous memory as there's no hardware page translation to 4029 * assemble apparent contiguous memory from discontiguous pages. 4030 * 4031 * Queueing large contiguous runs of pages for batching, however, 4032 * causes the pages to actually be freed in smaller chunks. As there 4033 * can be a significant delay between the individual batches being 4034 * recycled, this leads to the once large chunks of space being 4035 * fragmented and becoming unavailable for high-order allocations. 4036 */ 4037 return 0; 4038 #endif 4039 } 4040 4041 /* 4042 * pcp->high and pcp->batch values are related and dependent on one another: 4043 * ->batch must never be higher then ->high. 4044 * The following function updates them in a safe manner without read side 4045 * locking. 4046 * 4047 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4048 * those fields changing asynchronously (acording the the above rule). 4049 * 4050 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4051 * outside of boot time (or some other assurance that no concurrent updaters 4052 * exist). 4053 */ 4054 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4055 unsigned long batch) 4056 { 4057 /* start with a fail safe value for batch */ 4058 pcp->batch = 1; 4059 smp_wmb(); 4060 4061 /* Update high, then batch, in order */ 4062 pcp->high = high; 4063 smp_wmb(); 4064 4065 pcp->batch = batch; 4066 } 4067 4068 /* a companion to pageset_set_high() */ 4069 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4070 { 4071 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4072 } 4073 4074 static void pageset_init(struct per_cpu_pageset *p) 4075 { 4076 struct per_cpu_pages *pcp; 4077 int migratetype; 4078 4079 memset(p, 0, sizeof(*p)); 4080 4081 pcp = &p->pcp; 4082 pcp->count = 0; 4083 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4084 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4085 } 4086 4087 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4088 { 4089 pageset_init(p); 4090 pageset_set_batch(p, batch); 4091 } 4092 4093 /* 4094 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4095 * to the value high for the pageset p. 4096 */ 4097 static void pageset_set_high(struct per_cpu_pageset *p, 4098 unsigned long high) 4099 { 4100 unsigned long batch = max(1UL, high / 4); 4101 if ((high / 4) > (PAGE_SHIFT * 8)) 4102 batch = PAGE_SHIFT * 8; 4103 4104 pageset_update(&p->pcp, high, batch); 4105 } 4106 4107 static void __meminit pageset_set_high_and_batch(struct zone *zone, 4108 struct per_cpu_pageset *pcp) 4109 { 4110 if (percpu_pagelist_fraction) 4111 pageset_set_high(pcp, 4112 (zone->managed_pages / 4113 percpu_pagelist_fraction)); 4114 else 4115 pageset_set_batch(pcp, zone_batchsize(zone)); 4116 } 4117 4118 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4119 { 4120 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4121 4122 pageset_init(pcp); 4123 pageset_set_high_and_batch(zone, pcp); 4124 } 4125 4126 static void __meminit setup_zone_pageset(struct zone *zone) 4127 { 4128 int cpu; 4129 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4130 for_each_possible_cpu(cpu) 4131 zone_pageset_init(zone, cpu); 4132 } 4133 4134 /* 4135 * Allocate per cpu pagesets and initialize them. 4136 * Before this call only boot pagesets were available. 4137 */ 4138 void __init setup_per_cpu_pageset(void) 4139 { 4140 struct zone *zone; 4141 4142 for_each_populated_zone(zone) 4143 setup_zone_pageset(zone); 4144 } 4145 4146 static noinline __init_refok 4147 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4148 { 4149 int i; 4150 struct pglist_data *pgdat = zone->zone_pgdat; 4151 size_t alloc_size; 4152 4153 /* 4154 * The per-page waitqueue mechanism uses hashed waitqueues 4155 * per zone. 4156 */ 4157 zone->wait_table_hash_nr_entries = 4158 wait_table_hash_nr_entries(zone_size_pages); 4159 zone->wait_table_bits = 4160 wait_table_bits(zone->wait_table_hash_nr_entries); 4161 alloc_size = zone->wait_table_hash_nr_entries 4162 * sizeof(wait_queue_head_t); 4163 4164 if (!slab_is_available()) { 4165 zone->wait_table = (wait_queue_head_t *) 4166 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4167 } else { 4168 /* 4169 * This case means that a zone whose size was 0 gets new memory 4170 * via memory hot-add. 4171 * But it may be the case that a new node was hot-added. In 4172 * this case vmalloc() will not be able to use this new node's 4173 * memory - this wait_table must be initialized to use this new 4174 * node itself as well. 4175 * To use this new node's memory, further consideration will be 4176 * necessary. 4177 */ 4178 zone->wait_table = vmalloc(alloc_size); 4179 } 4180 if (!zone->wait_table) 4181 return -ENOMEM; 4182 4183 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4184 init_waitqueue_head(zone->wait_table + i); 4185 4186 return 0; 4187 } 4188 4189 static __meminit void zone_pcp_init(struct zone *zone) 4190 { 4191 /* 4192 * per cpu subsystem is not up at this point. The following code 4193 * relies on the ability of the linker to provide the 4194 * offset of a (static) per cpu variable into the per cpu area. 4195 */ 4196 zone->pageset = &boot_pageset; 4197 4198 if (zone->present_pages) 4199 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4200 zone->name, zone->present_pages, 4201 zone_batchsize(zone)); 4202 } 4203 4204 int __meminit init_currently_empty_zone(struct zone *zone, 4205 unsigned long zone_start_pfn, 4206 unsigned long size, 4207 enum memmap_context context) 4208 { 4209 struct pglist_data *pgdat = zone->zone_pgdat; 4210 int ret; 4211 ret = zone_wait_table_init(zone, size); 4212 if (ret) 4213 return ret; 4214 pgdat->nr_zones = zone_idx(zone) + 1; 4215 4216 zone->zone_start_pfn = zone_start_pfn; 4217 4218 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4219 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4220 pgdat->node_id, 4221 (unsigned long)zone_idx(zone), 4222 zone_start_pfn, (zone_start_pfn + size)); 4223 4224 zone_init_free_lists(zone); 4225 4226 return 0; 4227 } 4228 4229 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4230 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4231 /* 4232 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4233 * Architectures may implement their own version but if add_active_range() 4234 * was used and there are no special requirements, this is a convenient 4235 * alternative 4236 */ 4237 int __meminit __early_pfn_to_nid(unsigned long pfn) 4238 { 4239 unsigned long start_pfn, end_pfn; 4240 int i, nid; 4241 /* 4242 * NOTE: The following SMP-unsafe globals are only used early in boot 4243 * when the kernel is running single-threaded. 4244 */ 4245 static unsigned long __meminitdata last_start_pfn, last_end_pfn; 4246 static int __meminitdata last_nid; 4247 4248 if (last_start_pfn <= pfn && pfn < last_end_pfn) 4249 return last_nid; 4250 4251 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4252 if (start_pfn <= pfn && pfn < end_pfn) { 4253 last_start_pfn = start_pfn; 4254 last_end_pfn = end_pfn; 4255 last_nid = nid; 4256 return nid; 4257 } 4258 /* This is a memory hole */ 4259 return -1; 4260 } 4261 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4262 4263 int __meminit early_pfn_to_nid(unsigned long pfn) 4264 { 4265 int nid; 4266 4267 nid = __early_pfn_to_nid(pfn); 4268 if (nid >= 0) 4269 return nid; 4270 /* just returns 0 */ 4271 return 0; 4272 } 4273 4274 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4275 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4276 { 4277 int nid; 4278 4279 nid = __early_pfn_to_nid(pfn); 4280 if (nid >= 0 && nid != node) 4281 return false; 4282 return true; 4283 } 4284 #endif 4285 4286 /** 4287 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4288 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4289 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4290 * 4291 * If an architecture guarantees that all ranges registered with 4292 * add_active_ranges() contain no holes and may be freed, this 4293 * this function may be used instead of calling free_bootmem() manually. 4294 */ 4295 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4296 { 4297 unsigned long start_pfn, end_pfn; 4298 int i, this_nid; 4299 4300 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4301 start_pfn = min(start_pfn, max_low_pfn); 4302 end_pfn = min(end_pfn, max_low_pfn); 4303 4304 if (start_pfn < end_pfn) 4305 free_bootmem_node(NODE_DATA(this_nid), 4306 PFN_PHYS(start_pfn), 4307 (end_pfn - start_pfn) << PAGE_SHIFT); 4308 } 4309 } 4310 4311 /** 4312 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4313 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4314 * 4315 * If an architecture guarantees that all ranges registered with 4316 * add_active_ranges() contain no holes and may be freed, this 4317 * function may be used instead of calling memory_present() manually. 4318 */ 4319 void __init sparse_memory_present_with_active_regions(int nid) 4320 { 4321 unsigned long start_pfn, end_pfn; 4322 int i, this_nid; 4323 4324 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4325 memory_present(this_nid, start_pfn, end_pfn); 4326 } 4327 4328 /** 4329 * get_pfn_range_for_nid - Return the start and end page frames for a node 4330 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4331 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4332 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4333 * 4334 * It returns the start and end page frame of a node based on information 4335 * provided by an arch calling add_active_range(). If called for a node 4336 * with no available memory, a warning is printed and the start and end 4337 * PFNs will be 0. 4338 */ 4339 void __meminit get_pfn_range_for_nid(unsigned int nid, 4340 unsigned long *start_pfn, unsigned long *end_pfn) 4341 { 4342 unsigned long this_start_pfn, this_end_pfn; 4343 int i; 4344 4345 *start_pfn = -1UL; 4346 *end_pfn = 0; 4347 4348 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4349 *start_pfn = min(*start_pfn, this_start_pfn); 4350 *end_pfn = max(*end_pfn, this_end_pfn); 4351 } 4352 4353 if (*start_pfn == -1UL) 4354 *start_pfn = 0; 4355 } 4356 4357 /* 4358 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4359 * assumption is made that zones within a node are ordered in monotonic 4360 * increasing memory addresses so that the "highest" populated zone is used 4361 */ 4362 static void __init find_usable_zone_for_movable(void) 4363 { 4364 int zone_index; 4365 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4366 if (zone_index == ZONE_MOVABLE) 4367 continue; 4368 4369 if (arch_zone_highest_possible_pfn[zone_index] > 4370 arch_zone_lowest_possible_pfn[zone_index]) 4371 break; 4372 } 4373 4374 VM_BUG_ON(zone_index == -1); 4375 movable_zone = zone_index; 4376 } 4377 4378 /* 4379 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4380 * because it is sized independent of architecture. Unlike the other zones, 4381 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4382 * in each node depending on the size of each node and how evenly kernelcore 4383 * is distributed. This helper function adjusts the zone ranges 4384 * provided by the architecture for a given node by using the end of the 4385 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4386 * zones within a node are in order of monotonic increases memory addresses 4387 */ 4388 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4389 unsigned long zone_type, 4390 unsigned long node_start_pfn, 4391 unsigned long node_end_pfn, 4392 unsigned long *zone_start_pfn, 4393 unsigned long *zone_end_pfn) 4394 { 4395 /* Only adjust if ZONE_MOVABLE is on this node */ 4396 if (zone_movable_pfn[nid]) { 4397 /* Size ZONE_MOVABLE */ 4398 if (zone_type == ZONE_MOVABLE) { 4399 *zone_start_pfn = zone_movable_pfn[nid]; 4400 *zone_end_pfn = min(node_end_pfn, 4401 arch_zone_highest_possible_pfn[movable_zone]); 4402 4403 /* Adjust for ZONE_MOVABLE starting within this range */ 4404 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4405 *zone_end_pfn > zone_movable_pfn[nid]) { 4406 *zone_end_pfn = zone_movable_pfn[nid]; 4407 4408 /* Check if this whole range is within ZONE_MOVABLE */ 4409 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4410 *zone_start_pfn = *zone_end_pfn; 4411 } 4412 } 4413 4414 /* 4415 * Return the number of pages a zone spans in a node, including holes 4416 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4417 */ 4418 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4419 unsigned long zone_type, 4420 unsigned long node_start_pfn, 4421 unsigned long node_end_pfn, 4422 unsigned long *ignored) 4423 { 4424 unsigned long zone_start_pfn, zone_end_pfn; 4425 4426 /* Get the start and end of the zone */ 4427 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4428 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4429 adjust_zone_range_for_zone_movable(nid, zone_type, 4430 node_start_pfn, node_end_pfn, 4431 &zone_start_pfn, &zone_end_pfn); 4432 4433 /* Check that this node has pages within the zone's required range */ 4434 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4435 return 0; 4436 4437 /* Move the zone boundaries inside the node if necessary */ 4438 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4439 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4440 4441 /* Return the spanned pages */ 4442 return zone_end_pfn - zone_start_pfn; 4443 } 4444 4445 /* 4446 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4447 * then all holes in the requested range will be accounted for. 4448 */ 4449 unsigned long __meminit __absent_pages_in_range(int nid, 4450 unsigned long range_start_pfn, 4451 unsigned long range_end_pfn) 4452 { 4453 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4454 unsigned long start_pfn, end_pfn; 4455 int i; 4456 4457 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4458 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4459 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4460 nr_absent -= end_pfn - start_pfn; 4461 } 4462 return nr_absent; 4463 } 4464 4465 /** 4466 * absent_pages_in_range - Return number of page frames in holes within a range 4467 * @start_pfn: The start PFN to start searching for holes 4468 * @end_pfn: The end PFN to stop searching for holes 4469 * 4470 * It returns the number of pages frames in memory holes within a range. 4471 */ 4472 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4473 unsigned long end_pfn) 4474 { 4475 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4476 } 4477 4478 /* Return the number of page frames in holes in a zone on a node */ 4479 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4480 unsigned long zone_type, 4481 unsigned long node_start_pfn, 4482 unsigned long node_end_pfn, 4483 unsigned long *ignored) 4484 { 4485 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4486 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4487 unsigned long zone_start_pfn, zone_end_pfn; 4488 4489 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4490 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4491 4492 adjust_zone_range_for_zone_movable(nid, zone_type, 4493 node_start_pfn, node_end_pfn, 4494 &zone_start_pfn, &zone_end_pfn); 4495 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4496 } 4497 4498 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4499 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4500 unsigned long zone_type, 4501 unsigned long node_start_pfn, 4502 unsigned long node_end_pfn, 4503 unsigned long *zones_size) 4504 { 4505 return zones_size[zone_type]; 4506 } 4507 4508 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4509 unsigned long zone_type, 4510 unsigned long node_start_pfn, 4511 unsigned long node_end_pfn, 4512 unsigned long *zholes_size) 4513 { 4514 if (!zholes_size) 4515 return 0; 4516 4517 return zholes_size[zone_type]; 4518 } 4519 4520 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4521 4522 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4523 unsigned long node_start_pfn, 4524 unsigned long node_end_pfn, 4525 unsigned long *zones_size, 4526 unsigned long *zholes_size) 4527 { 4528 unsigned long realtotalpages, totalpages = 0; 4529 enum zone_type i; 4530 4531 for (i = 0; i < MAX_NR_ZONES; i++) 4532 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4533 node_start_pfn, 4534 node_end_pfn, 4535 zones_size); 4536 pgdat->node_spanned_pages = totalpages; 4537 4538 realtotalpages = totalpages; 4539 for (i = 0; i < MAX_NR_ZONES; i++) 4540 realtotalpages -= 4541 zone_absent_pages_in_node(pgdat->node_id, i, 4542 node_start_pfn, node_end_pfn, 4543 zholes_size); 4544 pgdat->node_present_pages = realtotalpages; 4545 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4546 realtotalpages); 4547 } 4548 4549 #ifndef CONFIG_SPARSEMEM 4550 /* 4551 * Calculate the size of the zone->blockflags rounded to an unsigned long 4552 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4553 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4554 * round what is now in bits to nearest long in bits, then return it in 4555 * bytes. 4556 */ 4557 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 4558 { 4559 unsigned long usemapsize; 4560 4561 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 4562 usemapsize = roundup(zonesize, pageblock_nr_pages); 4563 usemapsize = usemapsize >> pageblock_order; 4564 usemapsize *= NR_PAGEBLOCK_BITS; 4565 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4566 4567 return usemapsize / 8; 4568 } 4569 4570 static void __init setup_usemap(struct pglist_data *pgdat, 4571 struct zone *zone, 4572 unsigned long zone_start_pfn, 4573 unsigned long zonesize) 4574 { 4575 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 4576 zone->pageblock_flags = NULL; 4577 if (usemapsize) 4578 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4579 usemapsize); 4580 } 4581 #else 4582 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 4583 unsigned long zone_start_pfn, unsigned long zonesize) {} 4584 #endif /* CONFIG_SPARSEMEM */ 4585 4586 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4587 4588 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4589 void __init set_pageblock_order(void) 4590 { 4591 unsigned int order; 4592 4593 /* Check that pageblock_nr_pages has not already been setup */ 4594 if (pageblock_order) 4595 return; 4596 4597 if (HPAGE_SHIFT > PAGE_SHIFT) 4598 order = HUGETLB_PAGE_ORDER; 4599 else 4600 order = MAX_ORDER - 1; 4601 4602 /* 4603 * Assume the largest contiguous order of interest is a huge page. 4604 * This value may be variable depending on boot parameters on IA64 and 4605 * powerpc. 4606 */ 4607 pageblock_order = order; 4608 } 4609 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4610 4611 /* 4612 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4613 * is unused as pageblock_order is set at compile-time. See 4614 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4615 * the kernel config 4616 */ 4617 void __init set_pageblock_order(void) 4618 { 4619 } 4620 4621 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4622 4623 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 4624 unsigned long present_pages) 4625 { 4626 unsigned long pages = spanned_pages; 4627 4628 /* 4629 * Provide a more accurate estimation if there are holes within 4630 * the zone and SPARSEMEM is in use. If there are holes within the 4631 * zone, each populated memory region may cost us one or two extra 4632 * memmap pages due to alignment because memmap pages for each 4633 * populated regions may not naturally algined on page boundary. 4634 * So the (present_pages >> 4) heuristic is a tradeoff for that. 4635 */ 4636 if (spanned_pages > present_pages + (present_pages >> 4) && 4637 IS_ENABLED(CONFIG_SPARSEMEM)) 4638 pages = present_pages; 4639 4640 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 4641 } 4642 4643 /* 4644 * Set up the zone data structures: 4645 * - mark all pages reserved 4646 * - mark all memory queues empty 4647 * - clear the memory bitmaps 4648 * 4649 * NOTE: pgdat should get zeroed by caller. 4650 */ 4651 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4652 unsigned long node_start_pfn, unsigned long node_end_pfn, 4653 unsigned long *zones_size, unsigned long *zholes_size) 4654 { 4655 enum zone_type j; 4656 int nid = pgdat->node_id; 4657 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4658 int ret; 4659 4660 pgdat_resize_init(pgdat); 4661 #ifdef CONFIG_NUMA_BALANCING 4662 spin_lock_init(&pgdat->numabalancing_migrate_lock); 4663 pgdat->numabalancing_migrate_nr_pages = 0; 4664 pgdat->numabalancing_migrate_next_window = jiffies; 4665 #endif 4666 init_waitqueue_head(&pgdat->kswapd_wait); 4667 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4668 pgdat_page_cgroup_init(pgdat); 4669 4670 for (j = 0; j < MAX_NR_ZONES; j++) { 4671 struct zone *zone = pgdat->node_zones + j; 4672 unsigned long size, realsize, freesize, memmap_pages; 4673 4674 size = zone_spanned_pages_in_node(nid, j, node_start_pfn, 4675 node_end_pfn, zones_size); 4676 realsize = freesize = size - zone_absent_pages_in_node(nid, j, 4677 node_start_pfn, 4678 node_end_pfn, 4679 zholes_size); 4680 4681 /* 4682 * Adjust freesize so that it accounts for how much memory 4683 * is used by this zone for memmap. This affects the watermark 4684 * and per-cpu initialisations 4685 */ 4686 memmap_pages = calc_memmap_size(size, realsize); 4687 if (freesize >= memmap_pages) { 4688 freesize -= memmap_pages; 4689 if (memmap_pages) 4690 printk(KERN_DEBUG 4691 " %s zone: %lu pages used for memmap\n", 4692 zone_names[j], memmap_pages); 4693 } else 4694 printk(KERN_WARNING 4695 " %s zone: %lu pages exceeds freesize %lu\n", 4696 zone_names[j], memmap_pages, freesize); 4697 4698 /* Account for reserved pages */ 4699 if (j == 0 && freesize > dma_reserve) { 4700 freesize -= dma_reserve; 4701 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4702 zone_names[0], dma_reserve); 4703 } 4704 4705 if (!is_highmem_idx(j)) 4706 nr_kernel_pages += freesize; 4707 /* Charge for highmem memmap if there are enough kernel pages */ 4708 else if (nr_kernel_pages > memmap_pages * 2) 4709 nr_kernel_pages -= memmap_pages; 4710 nr_all_pages += freesize; 4711 4712 zone->spanned_pages = size; 4713 zone->present_pages = realsize; 4714 /* 4715 * Set an approximate value for lowmem here, it will be adjusted 4716 * when the bootmem allocator frees pages into the buddy system. 4717 * And all highmem pages will be managed by the buddy system. 4718 */ 4719 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 4720 #ifdef CONFIG_NUMA 4721 zone->node = nid; 4722 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 4723 / 100; 4724 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 4725 #endif 4726 zone->name = zone_names[j]; 4727 spin_lock_init(&zone->lock); 4728 spin_lock_init(&zone->lru_lock); 4729 zone_seqlock_init(zone); 4730 zone->zone_pgdat = pgdat; 4731 4732 zone_pcp_init(zone); 4733 lruvec_init(&zone->lruvec); 4734 if (!size) 4735 continue; 4736 4737 set_pageblock_order(); 4738 setup_usemap(pgdat, zone, zone_start_pfn, size); 4739 ret = init_currently_empty_zone(zone, zone_start_pfn, 4740 size, MEMMAP_EARLY); 4741 BUG_ON(ret); 4742 memmap_init(size, nid, j, zone_start_pfn); 4743 zone_start_pfn += size; 4744 } 4745 } 4746 4747 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4748 { 4749 /* Skip empty nodes */ 4750 if (!pgdat->node_spanned_pages) 4751 return; 4752 4753 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4754 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4755 if (!pgdat->node_mem_map) { 4756 unsigned long size, start, end; 4757 struct page *map; 4758 4759 /* 4760 * The zone's endpoints aren't required to be MAX_ORDER 4761 * aligned but the node_mem_map endpoints must be in order 4762 * for the buddy allocator to function correctly. 4763 */ 4764 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4765 end = pgdat_end_pfn(pgdat); 4766 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4767 size = (end - start) * sizeof(struct page); 4768 map = alloc_remap(pgdat->node_id, size); 4769 if (!map) 4770 map = alloc_bootmem_node_nopanic(pgdat, size); 4771 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4772 } 4773 #ifndef CONFIG_NEED_MULTIPLE_NODES 4774 /* 4775 * With no DISCONTIG, the global mem_map is just set as node 0's 4776 */ 4777 if (pgdat == NODE_DATA(0)) { 4778 mem_map = NODE_DATA(0)->node_mem_map; 4779 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4780 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4781 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4782 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4783 } 4784 #endif 4785 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4786 } 4787 4788 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4789 unsigned long node_start_pfn, unsigned long *zholes_size) 4790 { 4791 pg_data_t *pgdat = NODE_DATA(nid); 4792 unsigned long start_pfn = 0; 4793 unsigned long end_pfn = 0; 4794 4795 /* pg_data_t should be reset to zero when it's allocated */ 4796 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4797 4798 pgdat->node_id = nid; 4799 pgdat->node_start_pfn = node_start_pfn; 4800 init_zone_allows_reclaim(nid); 4801 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4802 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 4803 #endif 4804 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 4805 zones_size, zholes_size); 4806 4807 alloc_node_mem_map(pgdat); 4808 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4809 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4810 nid, (unsigned long)pgdat, 4811 (unsigned long)pgdat->node_mem_map); 4812 #endif 4813 4814 free_area_init_core(pgdat, start_pfn, end_pfn, 4815 zones_size, zholes_size); 4816 } 4817 4818 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4819 4820 #if MAX_NUMNODES > 1 4821 /* 4822 * Figure out the number of possible node ids. 4823 */ 4824 void __init setup_nr_node_ids(void) 4825 { 4826 unsigned int node; 4827 unsigned int highest = 0; 4828 4829 for_each_node_mask(node, node_possible_map) 4830 highest = node; 4831 nr_node_ids = highest + 1; 4832 } 4833 #endif 4834 4835 /** 4836 * node_map_pfn_alignment - determine the maximum internode alignment 4837 * 4838 * This function should be called after node map is populated and sorted. 4839 * It calculates the maximum power of two alignment which can distinguish 4840 * all the nodes. 4841 * 4842 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4843 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4844 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4845 * shifted, 1GiB is enough and this function will indicate so. 4846 * 4847 * This is used to test whether pfn -> nid mapping of the chosen memory 4848 * model has fine enough granularity to avoid incorrect mapping for the 4849 * populated node map. 4850 * 4851 * Returns the determined alignment in pfn's. 0 if there is no alignment 4852 * requirement (single node). 4853 */ 4854 unsigned long __init node_map_pfn_alignment(void) 4855 { 4856 unsigned long accl_mask = 0, last_end = 0; 4857 unsigned long start, end, mask; 4858 int last_nid = -1; 4859 int i, nid; 4860 4861 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4862 if (!start || last_nid < 0 || last_nid == nid) { 4863 last_nid = nid; 4864 last_end = end; 4865 continue; 4866 } 4867 4868 /* 4869 * Start with a mask granular enough to pin-point to the 4870 * start pfn and tick off bits one-by-one until it becomes 4871 * too coarse to separate the current node from the last. 4872 */ 4873 mask = ~((1 << __ffs(start)) - 1); 4874 while (mask && last_end <= (start & (mask << 1))) 4875 mask <<= 1; 4876 4877 /* accumulate all internode masks */ 4878 accl_mask |= mask; 4879 } 4880 4881 /* convert mask to number of pages */ 4882 return ~accl_mask + 1; 4883 } 4884 4885 /* Find the lowest pfn for a node */ 4886 static unsigned long __init find_min_pfn_for_node(int nid) 4887 { 4888 unsigned long min_pfn = ULONG_MAX; 4889 unsigned long start_pfn; 4890 int i; 4891 4892 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4893 min_pfn = min(min_pfn, start_pfn); 4894 4895 if (min_pfn == ULONG_MAX) { 4896 printk(KERN_WARNING 4897 "Could not find start_pfn for node %d\n", nid); 4898 return 0; 4899 } 4900 4901 return min_pfn; 4902 } 4903 4904 /** 4905 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4906 * 4907 * It returns the minimum PFN based on information provided via 4908 * add_active_range(). 4909 */ 4910 unsigned long __init find_min_pfn_with_active_regions(void) 4911 { 4912 return find_min_pfn_for_node(MAX_NUMNODES); 4913 } 4914 4915 /* 4916 * early_calculate_totalpages() 4917 * Sum pages in active regions for movable zone. 4918 * Populate N_MEMORY for calculating usable_nodes. 4919 */ 4920 static unsigned long __init early_calculate_totalpages(void) 4921 { 4922 unsigned long totalpages = 0; 4923 unsigned long start_pfn, end_pfn; 4924 int i, nid; 4925 4926 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4927 unsigned long pages = end_pfn - start_pfn; 4928 4929 totalpages += pages; 4930 if (pages) 4931 node_set_state(nid, N_MEMORY); 4932 } 4933 return totalpages; 4934 } 4935 4936 /* 4937 * Find the PFN the Movable zone begins in each node. Kernel memory 4938 * is spread evenly between nodes as long as the nodes have enough 4939 * memory. When they don't, some nodes will have more kernelcore than 4940 * others 4941 */ 4942 static void __init find_zone_movable_pfns_for_nodes(void) 4943 { 4944 int i, nid; 4945 unsigned long usable_startpfn; 4946 unsigned long kernelcore_node, kernelcore_remaining; 4947 /* save the state before borrow the nodemask */ 4948 nodemask_t saved_node_state = node_states[N_MEMORY]; 4949 unsigned long totalpages = early_calculate_totalpages(); 4950 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 4951 4952 /* 4953 * If movablecore was specified, calculate what size of 4954 * kernelcore that corresponds so that memory usable for 4955 * any allocation type is evenly spread. If both kernelcore 4956 * and movablecore are specified, then the value of kernelcore 4957 * will be used for required_kernelcore if it's greater than 4958 * what movablecore would have allowed. 4959 */ 4960 if (required_movablecore) { 4961 unsigned long corepages; 4962 4963 /* 4964 * Round-up so that ZONE_MOVABLE is at least as large as what 4965 * was requested by the user 4966 */ 4967 required_movablecore = 4968 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4969 corepages = totalpages - required_movablecore; 4970 4971 required_kernelcore = max(required_kernelcore, corepages); 4972 } 4973 4974 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4975 if (!required_kernelcore) 4976 goto out; 4977 4978 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4979 find_usable_zone_for_movable(); 4980 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4981 4982 restart: 4983 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4984 kernelcore_node = required_kernelcore / usable_nodes; 4985 for_each_node_state(nid, N_MEMORY) { 4986 unsigned long start_pfn, end_pfn; 4987 4988 /* 4989 * Recalculate kernelcore_node if the division per node 4990 * now exceeds what is necessary to satisfy the requested 4991 * amount of memory for the kernel 4992 */ 4993 if (required_kernelcore < kernelcore_node) 4994 kernelcore_node = required_kernelcore / usable_nodes; 4995 4996 /* 4997 * As the map is walked, we track how much memory is usable 4998 * by the kernel using kernelcore_remaining. When it is 4999 * 0, the rest of the node is usable by ZONE_MOVABLE 5000 */ 5001 kernelcore_remaining = kernelcore_node; 5002 5003 /* Go through each range of PFNs within this node */ 5004 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5005 unsigned long size_pages; 5006 5007 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5008 if (start_pfn >= end_pfn) 5009 continue; 5010 5011 /* Account for what is only usable for kernelcore */ 5012 if (start_pfn < usable_startpfn) { 5013 unsigned long kernel_pages; 5014 kernel_pages = min(end_pfn, usable_startpfn) 5015 - start_pfn; 5016 5017 kernelcore_remaining -= min(kernel_pages, 5018 kernelcore_remaining); 5019 required_kernelcore -= min(kernel_pages, 5020 required_kernelcore); 5021 5022 /* Continue if range is now fully accounted */ 5023 if (end_pfn <= usable_startpfn) { 5024 5025 /* 5026 * Push zone_movable_pfn to the end so 5027 * that if we have to rebalance 5028 * kernelcore across nodes, we will 5029 * not double account here 5030 */ 5031 zone_movable_pfn[nid] = end_pfn; 5032 continue; 5033 } 5034 start_pfn = usable_startpfn; 5035 } 5036 5037 /* 5038 * The usable PFN range for ZONE_MOVABLE is from 5039 * start_pfn->end_pfn. Calculate size_pages as the 5040 * number of pages used as kernelcore 5041 */ 5042 size_pages = end_pfn - start_pfn; 5043 if (size_pages > kernelcore_remaining) 5044 size_pages = kernelcore_remaining; 5045 zone_movable_pfn[nid] = start_pfn + size_pages; 5046 5047 /* 5048 * Some kernelcore has been met, update counts and 5049 * break if the kernelcore for this node has been 5050 * satisified 5051 */ 5052 required_kernelcore -= min(required_kernelcore, 5053 size_pages); 5054 kernelcore_remaining -= size_pages; 5055 if (!kernelcore_remaining) 5056 break; 5057 } 5058 } 5059 5060 /* 5061 * If there is still required_kernelcore, we do another pass with one 5062 * less node in the count. This will push zone_movable_pfn[nid] further 5063 * along on the nodes that still have memory until kernelcore is 5064 * satisified 5065 */ 5066 usable_nodes--; 5067 if (usable_nodes && required_kernelcore > usable_nodes) 5068 goto restart; 5069 5070 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5071 for (nid = 0; nid < MAX_NUMNODES; nid++) 5072 zone_movable_pfn[nid] = 5073 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5074 5075 out: 5076 /* restore the node_state */ 5077 node_states[N_MEMORY] = saved_node_state; 5078 } 5079 5080 /* Any regular or high memory on that node ? */ 5081 static void check_for_memory(pg_data_t *pgdat, int nid) 5082 { 5083 enum zone_type zone_type; 5084 5085 if (N_MEMORY == N_NORMAL_MEMORY) 5086 return; 5087 5088 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5089 struct zone *zone = &pgdat->node_zones[zone_type]; 5090 if (zone->present_pages) { 5091 node_set_state(nid, N_HIGH_MEMORY); 5092 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5093 zone_type <= ZONE_NORMAL) 5094 node_set_state(nid, N_NORMAL_MEMORY); 5095 break; 5096 } 5097 } 5098 } 5099 5100 /** 5101 * free_area_init_nodes - Initialise all pg_data_t and zone data 5102 * @max_zone_pfn: an array of max PFNs for each zone 5103 * 5104 * This will call free_area_init_node() for each active node in the system. 5105 * Using the page ranges provided by add_active_range(), the size of each 5106 * zone in each node and their holes is calculated. If the maximum PFN 5107 * between two adjacent zones match, it is assumed that the zone is empty. 5108 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5109 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5110 * starts where the previous one ended. For example, ZONE_DMA32 starts 5111 * at arch_max_dma_pfn. 5112 */ 5113 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5114 { 5115 unsigned long start_pfn, end_pfn; 5116 int i, nid; 5117 5118 /* Record where the zone boundaries are */ 5119 memset(arch_zone_lowest_possible_pfn, 0, 5120 sizeof(arch_zone_lowest_possible_pfn)); 5121 memset(arch_zone_highest_possible_pfn, 0, 5122 sizeof(arch_zone_highest_possible_pfn)); 5123 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5124 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5125 for (i = 1; i < MAX_NR_ZONES; i++) { 5126 if (i == ZONE_MOVABLE) 5127 continue; 5128 arch_zone_lowest_possible_pfn[i] = 5129 arch_zone_highest_possible_pfn[i-1]; 5130 arch_zone_highest_possible_pfn[i] = 5131 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5132 } 5133 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5134 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5135 5136 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5137 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5138 find_zone_movable_pfns_for_nodes(); 5139 5140 /* Print out the zone ranges */ 5141 printk("Zone ranges:\n"); 5142 for (i = 0; i < MAX_NR_ZONES; i++) { 5143 if (i == ZONE_MOVABLE) 5144 continue; 5145 printk(KERN_CONT " %-8s ", zone_names[i]); 5146 if (arch_zone_lowest_possible_pfn[i] == 5147 arch_zone_highest_possible_pfn[i]) 5148 printk(KERN_CONT "empty\n"); 5149 else 5150 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 5151 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 5152 (arch_zone_highest_possible_pfn[i] 5153 << PAGE_SHIFT) - 1); 5154 } 5155 5156 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5157 printk("Movable zone start for each node\n"); 5158 for (i = 0; i < MAX_NUMNODES; i++) { 5159 if (zone_movable_pfn[i]) 5160 printk(" Node %d: %#010lx\n", i, 5161 zone_movable_pfn[i] << PAGE_SHIFT); 5162 } 5163 5164 /* Print out the early node map */ 5165 printk("Early memory node ranges\n"); 5166 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5167 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 5168 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 5169 5170 /* Initialise every node */ 5171 mminit_verify_pageflags_layout(); 5172 setup_nr_node_ids(); 5173 for_each_online_node(nid) { 5174 pg_data_t *pgdat = NODE_DATA(nid); 5175 free_area_init_node(nid, NULL, 5176 find_min_pfn_for_node(nid), NULL); 5177 5178 /* Any memory on that node */ 5179 if (pgdat->node_present_pages) 5180 node_set_state(nid, N_MEMORY); 5181 check_for_memory(pgdat, nid); 5182 } 5183 } 5184 5185 static int __init cmdline_parse_core(char *p, unsigned long *core) 5186 { 5187 unsigned long long coremem; 5188 if (!p) 5189 return -EINVAL; 5190 5191 coremem = memparse(p, &p); 5192 *core = coremem >> PAGE_SHIFT; 5193 5194 /* Paranoid check that UL is enough for the coremem value */ 5195 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5196 5197 return 0; 5198 } 5199 5200 /* 5201 * kernelcore=size sets the amount of memory for use for allocations that 5202 * cannot be reclaimed or migrated. 5203 */ 5204 static int __init cmdline_parse_kernelcore(char *p) 5205 { 5206 return cmdline_parse_core(p, &required_kernelcore); 5207 } 5208 5209 /* 5210 * movablecore=size sets the amount of memory for use for allocations that 5211 * can be reclaimed or migrated. 5212 */ 5213 static int __init cmdline_parse_movablecore(char *p) 5214 { 5215 return cmdline_parse_core(p, &required_movablecore); 5216 } 5217 5218 early_param("kernelcore", cmdline_parse_kernelcore); 5219 early_param("movablecore", cmdline_parse_movablecore); 5220 5221 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5222 5223 void adjust_managed_page_count(struct page *page, long count) 5224 { 5225 spin_lock(&managed_page_count_lock); 5226 page_zone(page)->managed_pages += count; 5227 totalram_pages += count; 5228 #ifdef CONFIG_HIGHMEM 5229 if (PageHighMem(page)) 5230 totalhigh_pages += count; 5231 #endif 5232 spin_unlock(&managed_page_count_lock); 5233 } 5234 EXPORT_SYMBOL(adjust_managed_page_count); 5235 5236 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5237 { 5238 void *pos; 5239 unsigned long pages = 0; 5240 5241 start = (void *)PAGE_ALIGN((unsigned long)start); 5242 end = (void *)((unsigned long)end & PAGE_MASK); 5243 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5244 if ((unsigned int)poison <= 0xFF) 5245 memset(pos, poison, PAGE_SIZE); 5246 free_reserved_page(virt_to_page(pos)); 5247 } 5248 5249 if (pages && s) 5250 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5251 s, pages << (PAGE_SHIFT - 10), start, end); 5252 5253 return pages; 5254 } 5255 EXPORT_SYMBOL(free_reserved_area); 5256 5257 #ifdef CONFIG_HIGHMEM 5258 void free_highmem_page(struct page *page) 5259 { 5260 __free_reserved_page(page); 5261 totalram_pages++; 5262 page_zone(page)->managed_pages++; 5263 totalhigh_pages++; 5264 } 5265 #endif 5266 5267 5268 void __init mem_init_print_info(const char *str) 5269 { 5270 unsigned long physpages, codesize, datasize, rosize, bss_size; 5271 unsigned long init_code_size, init_data_size; 5272 5273 physpages = get_num_physpages(); 5274 codesize = _etext - _stext; 5275 datasize = _edata - _sdata; 5276 rosize = __end_rodata - __start_rodata; 5277 bss_size = __bss_stop - __bss_start; 5278 init_data_size = __init_end - __init_begin; 5279 init_code_size = _einittext - _sinittext; 5280 5281 /* 5282 * Detect special cases and adjust section sizes accordingly: 5283 * 1) .init.* may be embedded into .data sections 5284 * 2) .init.text.* may be out of [__init_begin, __init_end], 5285 * please refer to arch/tile/kernel/vmlinux.lds.S. 5286 * 3) .rodata.* may be embedded into .text or .data sections. 5287 */ 5288 #define adj_init_size(start, end, size, pos, adj) \ 5289 if (start <= pos && pos < end && size > adj) \ 5290 size -= adj; 5291 5292 adj_init_size(__init_begin, __init_end, init_data_size, 5293 _sinittext, init_code_size); 5294 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5295 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5296 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5297 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5298 5299 #undef adj_init_size 5300 5301 printk("Memory: %luK/%luK available " 5302 "(%luK kernel code, %luK rwdata, %luK rodata, " 5303 "%luK init, %luK bss, %luK reserved" 5304 #ifdef CONFIG_HIGHMEM 5305 ", %luK highmem" 5306 #endif 5307 "%s%s)\n", 5308 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5309 codesize >> 10, datasize >> 10, rosize >> 10, 5310 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5311 (physpages - totalram_pages) << (PAGE_SHIFT-10), 5312 #ifdef CONFIG_HIGHMEM 5313 totalhigh_pages << (PAGE_SHIFT-10), 5314 #endif 5315 str ? ", " : "", str ? str : ""); 5316 } 5317 5318 /** 5319 * set_dma_reserve - set the specified number of pages reserved in the first zone 5320 * @new_dma_reserve: The number of pages to mark reserved 5321 * 5322 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5323 * In the DMA zone, a significant percentage may be consumed by kernel image 5324 * and other unfreeable allocations which can skew the watermarks badly. This 5325 * function may optionally be used to account for unfreeable pages in the 5326 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5327 * smaller per-cpu batchsize. 5328 */ 5329 void __init set_dma_reserve(unsigned long new_dma_reserve) 5330 { 5331 dma_reserve = new_dma_reserve; 5332 } 5333 5334 void __init free_area_init(unsigned long *zones_size) 5335 { 5336 free_area_init_node(0, zones_size, 5337 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5338 } 5339 5340 static int page_alloc_cpu_notify(struct notifier_block *self, 5341 unsigned long action, void *hcpu) 5342 { 5343 int cpu = (unsigned long)hcpu; 5344 5345 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5346 lru_add_drain_cpu(cpu); 5347 drain_pages(cpu); 5348 5349 /* 5350 * Spill the event counters of the dead processor 5351 * into the current processors event counters. 5352 * This artificially elevates the count of the current 5353 * processor. 5354 */ 5355 vm_events_fold_cpu(cpu); 5356 5357 /* 5358 * Zero the differential counters of the dead processor 5359 * so that the vm statistics are consistent. 5360 * 5361 * This is only okay since the processor is dead and cannot 5362 * race with what we are doing. 5363 */ 5364 refresh_cpu_vm_stats(cpu); 5365 } 5366 return NOTIFY_OK; 5367 } 5368 5369 void __init page_alloc_init(void) 5370 { 5371 hotcpu_notifier(page_alloc_cpu_notify, 0); 5372 } 5373 5374 /* 5375 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5376 * or min_free_kbytes changes. 5377 */ 5378 static void calculate_totalreserve_pages(void) 5379 { 5380 struct pglist_data *pgdat; 5381 unsigned long reserve_pages = 0; 5382 enum zone_type i, j; 5383 5384 for_each_online_pgdat(pgdat) { 5385 for (i = 0; i < MAX_NR_ZONES; i++) { 5386 struct zone *zone = pgdat->node_zones + i; 5387 unsigned long max = 0; 5388 5389 /* Find valid and maximum lowmem_reserve in the zone */ 5390 for (j = i; j < MAX_NR_ZONES; j++) { 5391 if (zone->lowmem_reserve[j] > max) 5392 max = zone->lowmem_reserve[j]; 5393 } 5394 5395 /* we treat the high watermark as reserved pages. */ 5396 max += high_wmark_pages(zone); 5397 5398 if (max > zone->managed_pages) 5399 max = zone->managed_pages; 5400 reserve_pages += max; 5401 /* 5402 * Lowmem reserves are not available to 5403 * GFP_HIGHUSER page cache allocations and 5404 * kswapd tries to balance zones to their high 5405 * watermark. As a result, neither should be 5406 * regarded as dirtyable memory, to prevent a 5407 * situation where reclaim has to clean pages 5408 * in order to balance the zones. 5409 */ 5410 zone->dirty_balance_reserve = max; 5411 } 5412 } 5413 dirty_balance_reserve = reserve_pages; 5414 totalreserve_pages = reserve_pages; 5415 } 5416 5417 /* 5418 * setup_per_zone_lowmem_reserve - called whenever 5419 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5420 * has a correct pages reserved value, so an adequate number of 5421 * pages are left in the zone after a successful __alloc_pages(). 5422 */ 5423 static void setup_per_zone_lowmem_reserve(void) 5424 { 5425 struct pglist_data *pgdat; 5426 enum zone_type j, idx; 5427 5428 for_each_online_pgdat(pgdat) { 5429 for (j = 0; j < MAX_NR_ZONES; j++) { 5430 struct zone *zone = pgdat->node_zones + j; 5431 unsigned long managed_pages = zone->managed_pages; 5432 5433 zone->lowmem_reserve[j] = 0; 5434 5435 idx = j; 5436 while (idx) { 5437 struct zone *lower_zone; 5438 5439 idx--; 5440 5441 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5442 sysctl_lowmem_reserve_ratio[idx] = 1; 5443 5444 lower_zone = pgdat->node_zones + idx; 5445 lower_zone->lowmem_reserve[j] = managed_pages / 5446 sysctl_lowmem_reserve_ratio[idx]; 5447 managed_pages += lower_zone->managed_pages; 5448 } 5449 } 5450 } 5451 5452 /* update totalreserve_pages */ 5453 calculate_totalreserve_pages(); 5454 } 5455 5456 static void __setup_per_zone_wmarks(void) 5457 { 5458 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5459 unsigned long lowmem_pages = 0; 5460 struct zone *zone; 5461 unsigned long flags; 5462 5463 /* Calculate total number of !ZONE_HIGHMEM pages */ 5464 for_each_zone(zone) { 5465 if (!is_highmem(zone)) 5466 lowmem_pages += zone->managed_pages; 5467 } 5468 5469 for_each_zone(zone) { 5470 u64 tmp; 5471 5472 spin_lock_irqsave(&zone->lock, flags); 5473 tmp = (u64)pages_min * zone->managed_pages; 5474 do_div(tmp, lowmem_pages); 5475 if (is_highmem(zone)) { 5476 /* 5477 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5478 * need highmem pages, so cap pages_min to a small 5479 * value here. 5480 * 5481 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5482 * deltas controls asynch page reclaim, and so should 5483 * not be capped for highmem. 5484 */ 5485 unsigned long min_pages; 5486 5487 min_pages = zone->managed_pages / 1024; 5488 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5489 zone->watermark[WMARK_MIN] = min_pages; 5490 } else { 5491 /* 5492 * If it's a lowmem zone, reserve a number of pages 5493 * proportionate to the zone's size. 5494 */ 5495 zone->watermark[WMARK_MIN] = tmp; 5496 } 5497 5498 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5499 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5500 5501 setup_zone_migrate_reserve(zone); 5502 spin_unlock_irqrestore(&zone->lock, flags); 5503 } 5504 5505 /* update totalreserve_pages */ 5506 calculate_totalreserve_pages(); 5507 } 5508 5509 /** 5510 * setup_per_zone_wmarks - called when min_free_kbytes changes 5511 * or when memory is hot-{added|removed} 5512 * 5513 * Ensures that the watermark[min,low,high] values for each zone are set 5514 * correctly with respect to min_free_kbytes. 5515 */ 5516 void setup_per_zone_wmarks(void) 5517 { 5518 mutex_lock(&zonelists_mutex); 5519 __setup_per_zone_wmarks(); 5520 mutex_unlock(&zonelists_mutex); 5521 } 5522 5523 /* 5524 * The inactive anon list should be small enough that the VM never has to 5525 * do too much work, but large enough that each inactive page has a chance 5526 * to be referenced again before it is swapped out. 5527 * 5528 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5529 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5530 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5531 * the anonymous pages are kept on the inactive list. 5532 * 5533 * total target max 5534 * memory ratio inactive anon 5535 * ------------------------------------- 5536 * 10MB 1 5MB 5537 * 100MB 1 50MB 5538 * 1GB 3 250MB 5539 * 10GB 10 0.9GB 5540 * 100GB 31 3GB 5541 * 1TB 101 10GB 5542 * 10TB 320 32GB 5543 */ 5544 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5545 { 5546 unsigned int gb, ratio; 5547 5548 /* Zone size in gigabytes */ 5549 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 5550 if (gb) 5551 ratio = int_sqrt(10 * gb); 5552 else 5553 ratio = 1; 5554 5555 zone->inactive_ratio = ratio; 5556 } 5557 5558 static void __meminit setup_per_zone_inactive_ratio(void) 5559 { 5560 struct zone *zone; 5561 5562 for_each_zone(zone) 5563 calculate_zone_inactive_ratio(zone); 5564 } 5565 5566 /* 5567 * Initialise min_free_kbytes. 5568 * 5569 * For small machines we want it small (128k min). For large machines 5570 * we want it large (64MB max). But it is not linear, because network 5571 * bandwidth does not increase linearly with machine size. We use 5572 * 5573 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5574 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5575 * 5576 * which yields 5577 * 5578 * 16MB: 512k 5579 * 32MB: 724k 5580 * 64MB: 1024k 5581 * 128MB: 1448k 5582 * 256MB: 2048k 5583 * 512MB: 2896k 5584 * 1024MB: 4096k 5585 * 2048MB: 5792k 5586 * 4096MB: 8192k 5587 * 8192MB: 11584k 5588 * 16384MB: 16384k 5589 */ 5590 int __meminit init_per_zone_wmark_min(void) 5591 { 5592 unsigned long lowmem_kbytes; 5593 int new_min_free_kbytes; 5594 5595 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5596 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5597 5598 if (new_min_free_kbytes > user_min_free_kbytes) { 5599 min_free_kbytes = new_min_free_kbytes; 5600 if (min_free_kbytes < 128) 5601 min_free_kbytes = 128; 5602 if (min_free_kbytes > 65536) 5603 min_free_kbytes = 65536; 5604 } else { 5605 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 5606 new_min_free_kbytes, user_min_free_kbytes); 5607 } 5608 setup_per_zone_wmarks(); 5609 refresh_zone_stat_thresholds(); 5610 setup_per_zone_lowmem_reserve(); 5611 setup_per_zone_inactive_ratio(); 5612 return 0; 5613 } 5614 module_init(init_per_zone_wmark_min) 5615 5616 /* 5617 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5618 * that we can call two helper functions whenever min_free_kbytes 5619 * changes. 5620 */ 5621 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5622 void __user *buffer, size_t *length, loff_t *ppos) 5623 { 5624 proc_dointvec(table, write, buffer, length, ppos); 5625 if (write) { 5626 user_min_free_kbytes = min_free_kbytes; 5627 setup_per_zone_wmarks(); 5628 } 5629 return 0; 5630 } 5631 5632 #ifdef CONFIG_NUMA 5633 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5634 void __user *buffer, size_t *length, loff_t *ppos) 5635 { 5636 struct zone *zone; 5637 int rc; 5638 5639 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5640 if (rc) 5641 return rc; 5642 5643 for_each_zone(zone) 5644 zone->min_unmapped_pages = (zone->managed_pages * 5645 sysctl_min_unmapped_ratio) / 100; 5646 return 0; 5647 } 5648 5649 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5650 void __user *buffer, size_t *length, loff_t *ppos) 5651 { 5652 struct zone *zone; 5653 int rc; 5654 5655 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5656 if (rc) 5657 return rc; 5658 5659 for_each_zone(zone) 5660 zone->min_slab_pages = (zone->managed_pages * 5661 sysctl_min_slab_ratio) / 100; 5662 return 0; 5663 } 5664 #endif 5665 5666 /* 5667 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5668 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5669 * whenever sysctl_lowmem_reserve_ratio changes. 5670 * 5671 * The reserve ratio obviously has absolutely no relation with the 5672 * minimum watermarks. The lowmem reserve ratio can only make sense 5673 * if in function of the boot time zone sizes. 5674 */ 5675 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5676 void __user *buffer, size_t *length, loff_t *ppos) 5677 { 5678 proc_dointvec_minmax(table, write, buffer, length, ppos); 5679 setup_per_zone_lowmem_reserve(); 5680 return 0; 5681 } 5682 5683 /* 5684 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5685 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5686 * can have before it gets flushed back to buddy allocator. 5687 */ 5688 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5689 void __user *buffer, size_t *length, loff_t *ppos) 5690 { 5691 struct zone *zone; 5692 unsigned int cpu; 5693 int ret; 5694 5695 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5696 if (!write || (ret < 0)) 5697 return ret; 5698 5699 mutex_lock(&pcp_batch_high_lock); 5700 for_each_populated_zone(zone) { 5701 unsigned long high; 5702 high = zone->managed_pages / percpu_pagelist_fraction; 5703 for_each_possible_cpu(cpu) 5704 pageset_set_high(per_cpu_ptr(zone->pageset, cpu), 5705 high); 5706 } 5707 mutex_unlock(&pcp_batch_high_lock); 5708 return 0; 5709 } 5710 5711 int hashdist = HASHDIST_DEFAULT; 5712 5713 #ifdef CONFIG_NUMA 5714 static int __init set_hashdist(char *str) 5715 { 5716 if (!str) 5717 return 0; 5718 hashdist = simple_strtoul(str, &str, 0); 5719 return 1; 5720 } 5721 __setup("hashdist=", set_hashdist); 5722 #endif 5723 5724 /* 5725 * allocate a large system hash table from bootmem 5726 * - it is assumed that the hash table must contain an exact power-of-2 5727 * quantity of entries 5728 * - limit is the number of hash buckets, not the total allocation size 5729 */ 5730 void *__init alloc_large_system_hash(const char *tablename, 5731 unsigned long bucketsize, 5732 unsigned long numentries, 5733 int scale, 5734 int flags, 5735 unsigned int *_hash_shift, 5736 unsigned int *_hash_mask, 5737 unsigned long low_limit, 5738 unsigned long high_limit) 5739 { 5740 unsigned long long max = high_limit; 5741 unsigned long log2qty, size; 5742 void *table = NULL; 5743 5744 /* allow the kernel cmdline to have a say */ 5745 if (!numentries) { 5746 /* round applicable memory size up to nearest megabyte */ 5747 numentries = nr_kernel_pages; 5748 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5749 numentries >>= 20 - PAGE_SHIFT; 5750 numentries <<= 20 - PAGE_SHIFT; 5751 5752 /* limit to 1 bucket per 2^scale bytes of low memory */ 5753 if (scale > PAGE_SHIFT) 5754 numentries >>= (scale - PAGE_SHIFT); 5755 else 5756 numentries <<= (PAGE_SHIFT - scale); 5757 5758 /* Make sure we've got at least a 0-order allocation.. */ 5759 if (unlikely(flags & HASH_SMALL)) { 5760 /* Makes no sense without HASH_EARLY */ 5761 WARN_ON(!(flags & HASH_EARLY)); 5762 if (!(numentries >> *_hash_shift)) { 5763 numentries = 1UL << *_hash_shift; 5764 BUG_ON(!numentries); 5765 } 5766 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5767 numentries = PAGE_SIZE / bucketsize; 5768 } 5769 numentries = roundup_pow_of_two(numentries); 5770 5771 /* limit allocation size to 1/16 total memory by default */ 5772 if (max == 0) { 5773 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5774 do_div(max, bucketsize); 5775 } 5776 max = min(max, 0x80000000ULL); 5777 5778 if (numentries < low_limit) 5779 numentries = low_limit; 5780 if (numentries > max) 5781 numentries = max; 5782 5783 log2qty = ilog2(numentries); 5784 5785 do { 5786 size = bucketsize << log2qty; 5787 if (flags & HASH_EARLY) 5788 table = alloc_bootmem_nopanic(size); 5789 else if (hashdist) 5790 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5791 else { 5792 /* 5793 * If bucketsize is not a power-of-two, we may free 5794 * some pages at the end of hash table which 5795 * alloc_pages_exact() automatically does 5796 */ 5797 if (get_order(size) < MAX_ORDER) { 5798 table = alloc_pages_exact(size, GFP_ATOMIC); 5799 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5800 } 5801 } 5802 } while (!table && size > PAGE_SIZE && --log2qty); 5803 5804 if (!table) 5805 panic("Failed to allocate %s hash table\n", tablename); 5806 5807 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5808 tablename, 5809 (1UL << log2qty), 5810 ilog2(size) - PAGE_SHIFT, 5811 size); 5812 5813 if (_hash_shift) 5814 *_hash_shift = log2qty; 5815 if (_hash_mask) 5816 *_hash_mask = (1 << log2qty) - 1; 5817 5818 return table; 5819 } 5820 5821 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5822 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5823 unsigned long pfn) 5824 { 5825 #ifdef CONFIG_SPARSEMEM 5826 return __pfn_to_section(pfn)->pageblock_flags; 5827 #else 5828 return zone->pageblock_flags; 5829 #endif /* CONFIG_SPARSEMEM */ 5830 } 5831 5832 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5833 { 5834 #ifdef CONFIG_SPARSEMEM 5835 pfn &= (PAGES_PER_SECTION-1); 5836 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5837 #else 5838 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 5839 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5840 #endif /* CONFIG_SPARSEMEM */ 5841 } 5842 5843 /** 5844 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5845 * @page: The page within the block of interest 5846 * @start_bitidx: The first bit of interest to retrieve 5847 * @end_bitidx: The last bit of interest 5848 * returns pageblock_bits flags 5849 */ 5850 unsigned long get_pageblock_flags_group(struct page *page, 5851 int start_bitidx, int end_bitidx) 5852 { 5853 struct zone *zone; 5854 unsigned long *bitmap; 5855 unsigned long pfn, bitidx; 5856 unsigned long flags = 0; 5857 unsigned long value = 1; 5858 5859 zone = page_zone(page); 5860 pfn = page_to_pfn(page); 5861 bitmap = get_pageblock_bitmap(zone, pfn); 5862 bitidx = pfn_to_bitidx(zone, pfn); 5863 5864 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5865 if (test_bit(bitidx + start_bitidx, bitmap)) 5866 flags |= value; 5867 5868 return flags; 5869 } 5870 5871 /** 5872 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5873 * @page: The page within the block of interest 5874 * @start_bitidx: The first bit of interest 5875 * @end_bitidx: The last bit of interest 5876 * @flags: The flags to set 5877 */ 5878 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5879 int start_bitidx, int end_bitidx) 5880 { 5881 struct zone *zone; 5882 unsigned long *bitmap; 5883 unsigned long pfn, bitidx; 5884 unsigned long value = 1; 5885 5886 zone = page_zone(page); 5887 pfn = page_to_pfn(page); 5888 bitmap = get_pageblock_bitmap(zone, pfn); 5889 bitidx = pfn_to_bitidx(zone, pfn); 5890 VM_BUG_ON(!zone_spans_pfn(zone, pfn)); 5891 5892 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5893 if (flags & value) 5894 __set_bit(bitidx + start_bitidx, bitmap); 5895 else 5896 __clear_bit(bitidx + start_bitidx, bitmap); 5897 } 5898 5899 /* 5900 * This function checks whether pageblock includes unmovable pages or not. 5901 * If @count is not zero, it is okay to include less @count unmovable pages 5902 * 5903 * PageLRU check wihtout isolation or lru_lock could race so that 5904 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5905 * expect this function should be exact. 5906 */ 5907 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 5908 bool skip_hwpoisoned_pages) 5909 { 5910 unsigned long pfn, iter, found; 5911 int mt; 5912 5913 /* 5914 * For avoiding noise data, lru_add_drain_all() should be called 5915 * If ZONE_MOVABLE, the zone never contains unmovable pages 5916 */ 5917 if (zone_idx(zone) == ZONE_MOVABLE) 5918 return false; 5919 mt = get_pageblock_migratetype(page); 5920 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5921 return false; 5922 5923 pfn = page_to_pfn(page); 5924 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5925 unsigned long check = pfn + iter; 5926 5927 if (!pfn_valid_within(check)) 5928 continue; 5929 5930 page = pfn_to_page(check); 5931 /* 5932 * We can't use page_count without pin a page 5933 * because another CPU can free compound page. 5934 * This check already skips compound tails of THP 5935 * because their page->_count is zero at all time. 5936 */ 5937 if (!atomic_read(&page->_count)) { 5938 if (PageBuddy(page)) 5939 iter += (1 << page_order(page)) - 1; 5940 continue; 5941 } 5942 5943 /* 5944 * The HWPoisoned page may be not in buddy system, and 5945 * page_count() is not 0. 5946 */ 5947 if (skip_hwpoisoned_pages && PageHWPoison(page)) 5948 continue; 5949 5950 if (!PageLRU(page)) 5951 found++; 5952 /* 5953 * If there are RECLAIMABLE pages, we need to check it. 5954 * But now, memory offline itself doesn't call shrink_slab() 5955 * and it still to be fixed. 5956 */ 5957 /* 5958 * If the page is not RAM, page_count()should be 0. 5959 * we don't need more check. This is an _used_ not-movable page. 5960 * 5961 * The problematic thing here is PG_reserved pages. PG_reserved 5962 * is set to both of a memory hole page and a _used_ kernel 5963 * page at boot. 5964 */ 5965 if (found > count) 5966 return true; 5967 } 5968 return false; 5969 } 5970 5971 bool is_pageblock_removable_nolock(struct page *page) 5972 { 5973 struct zone *zone; 5974 unsigned long pfn; 5975 5976 /* 5977 * We have to be careful here because we are iterating over memory 5978 * sections which are not zone aware so we might end up outside of 5979 * the zone but still within the section. 5980 * We have to take care about the node as well. If the node is offline 5981 * its NODE_DATA will be NULL - see page_zone. 5982 */ 5983 if (!node_online(page_to_nid(page))) 5984 return false; 5985 5986 zone = page_zone(page); 5987 pfn = page_to_pfn(page); 5988 if (!zone_spans_pfn(zone, pfn)) 5989 return false; 5990 5991 return !has_unmovable_pages(zone, page, 0, true); 5992 } 5993 5994 #ifdef CONFIG_CMA 5995 5996 static unsigned long pfn_max_align_down(unsigned long pfn) 5997 { 5998 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5999 pageblock_nr_pages) - 1); 6000 } 6001 6002 static unsigned long pfn_max_align_up(unsigned long pfn) 6003 { 6004 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6005 pageblock_nr_pages)); 6006 } 6007 6008 /* [start, end) must belong to a single zone. */ 6009 static int __alloc_contig_migrate_range(struct compact_control *cc, 6010 unsigned long start, unsigned long end) 6011 { 6012 /* This function is based on compact_zone() from compaction.c. */ 6013 unsigned long nr_reclaimed; 6014 unsigned long pfn = start; 6015 unsigned int tries = 0; 6016 int ret = 0; 6017 6018 migrate_prep(); 6019 6020 while (pfn < end || !list_empty(&cc->migratepages)) { 6021 if (fatal_signal_pending(current)) { 6022 ret = -EINTR; 6023 break; 6024 } 6025 6026 if (list_empty(&cc->migratepages)) { 6027 cc->nr_migratepages = 0; 6028 pfn = isolate_migratepages_range(cc->zone, cc, 6029 pfn, end, true); 6030 if (!pfn) { 6031 ret = -EINTR; 6032 break; 6033 } 6034 tries = 0; 6035 } else if (++tries == 5) { 6036 ret = ret < 0 ? ret : -EBUSY; 6037 break; 6038 } 6039 6040 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6041 &cc->migratepages); 6042 cc->nr_migratepages -= nr_reclaimed; 6043 6044 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6045 0, MIGRATE_SYNC, MR_CMA); 6046 } 6047 if (ret < 0) { 6048 putback_movable_pages(&cc->migratepages); 6049 return ret; 6050 } 6051 return 0; 6052 } 6053 6054 /** 6055 * alloc_contig_range() -- tries to allocate given range of pages 6056 * @start: start PFN to allocate 6057 * @end: one-past-the-last PFN to allocate 6058 * @migratetype: migratetype of the underlaying pageblocks (either 6059 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6060 * in range must have the same migratetype and it must 6061 * be either of the two. 6062 * 6063 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6064 * aligned, however it's the caller's responsibility to guarantee that 6065 * we are the only thread that changes migrate type of pageblocks the 6066 * pages fall in. 6067 * 6068 * The PFN range must belong to a single zone. 6069 * 6070 * Returns zero on success or negative error code. On success all 6071 * pages which PFN is in [start, end) are allocated for the caller and 6072 * need to be freed with free_contig_range(). 6073 */ 6074 int alloc_contig_range(unsigned long start, unsigned long end, 6075 unsigned migratetype) 6076 { 6077 unsigned long outer_start, outer_end; 6078 int ret = 0, order; 6079 6080 struct compact_control cc = { 6081 .nr_migratepages = 0, 6082 .order = -1, 6083 .zone = page_zone(pfn_to_page(start)), 6084 .sync = true, 6085 .ignore_skip_hint = true, 6086 }; 6087 INIT_LIST_HEAD(&cc.migratepages); 6088 6089 /* 6090 * What we do here is we mark all pageblocks in range as 6091 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6092 * have different sizes, and due to the way page allocator 6093 * work, we align the range to biggest of the two pages so 6094 * that page allocator won't try to merge buddies from 6095 * different pageblocks and change MIGRATE_ISOLATE to some 6096 * other migration type. 6097 * 6098 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6099 * migrate the pages from an unaligned range (ie. pages that 6100 * we are interested in). This will put all the pages in 6101 * range back to page allocator as MIGRATE_ISOLATE. 6102 * 6103 * When this is done, we take the pages in range from page 6104 * allocator removing them from the buddy system. This way 6105 * page allocator will never consider using them. 6106 * 6107 * This lets us mark the pageblocks back as 6108 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6109 * aligned range but not in the unaligned, original range are 6110 * put back to page allocator so that buddy can use them. 6111 */ 6112 6113 ret = start_isolate_page_range(pfn_max_align_down(start), 6114 pfn_max_align_up(end), migratetype, 6115 false); 6116 if (ret) 6117 return ret; 6118 6119 ret = __alloc_contig_migrate_range(&cc, start, end); 6120 if (ret) 6121 goto done; 6122 6123 /* 6124 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6125 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6126 * more, all pages in [start, end) are free in page allocator. 6127 * What we are going to do is to allocate all pages from 6128 * [start, end) (that is remove them from page allocator). 6129 * 6130 * The only problem is that pages at the beginning and at the 6131 * end of interesting range may be not aligned with pages that 6132 * page allocator holds, ie. they can be part of higher order 6133 * pages. Because of this, we reserve the bigger range and 6134 * once this is done free the pages we are not interested in. 6135 * 6136 * We don't have to hold zone->lock here because the pages are 6137 * isolated thus they won't get removed from buddy. 6138 */ 6139 6140 lru_add_drain_all(); 6141 drain_all_pages(); 6142 6143 order = 0; 6144 outer_start = start; 6145 while (!PageBuddy(pfn_to_page(outer_start))) { 6146 if (++order >= MAX_ORDER) { 6147 ret = -EBUSY; 6148 goto done; 6149 } 6150 outer_start &= ~0UL << order; 6151 } 6152 6153 /* Make sure the range is really isolated. */ 6154 if (test_pages_isolated(outer_start, end, false)) { 6155 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 6156 outer_start, end); 6157 ret = -EBUSY; 6158 goto done; 6159 } 6160 6161 6162 /* Grab isolated pages from freelists. */ 6163 outer_end = isolate_freepages_range(&cc, outer_start, end); 6164 if (!outer_end) { 6165 ret = -EBUSY; 6166 goto done; 6167 } 6168 6169 /* Free head and tail (if any) */ 6170 if (start != outer_start) 6171 free_contig_range(outer_start, start - outer_start); 6172 if (end != outer_end) 6173 free_contig_range(end, outer_end - end); 6174 6175 done: 6176 undo_isolate_page_range(pfn_max_align_down(start), 6177 pfn_max_align_up(end), migratetype); 6178 return ret; 6179 } 6180 6181 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6182 { 6183 unsigned int count = 0; 6184 6185 for (; nr_pages--; pfn++) { 6186 struct page *page = pfn_to_page(pfn); 6187 6188 count += page_count(page) != 1; 6189 __free_page(page); 6190 } 6191 WARN(count != 0, "%d pages are still in use!\n", count); 6192 } 6193 #endif 6194 6195 #ifdef CONFIG_MEMORY_HOTPLUG 6196 /* 6197 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6198 * page high values need to be recalulated. 6199 */ 6200 void __meminit zone_pcp_update(struct zone *zone) 6201 { 6202 unsigned cpu; 6203 mutex_lock(&pcp_batch_high_lock); 6204 for_each_possible_cpu(cpu) 6205 pageset_set_high_and_batch(zone, 6206 per_cpu_ptr(zone->pageset, cpu)); 6207 mutex_unlock(&pcp_batch_high_lock); 6208 } 6209 #endif 6210 6211 void zone_pcp_reset(struct zone *zone) 6212 { 6213 unsigned long flags; 6214 int cpu; 6215 struct per_cpu_pageset *pset; 6216 6217 /* avoid races with drain_pages() */ 6218 local_irq_save(flags); 6219 if (zone->pageset != &boot_pageset) { 6220 for_each_online_cpu(cpu) { 6221 pset = per_cpu_ptr(zone->pageset, cpu); 6222 drain_zonestat(zone, pset); 6223 } 6224 free_percpu(zone->pageset); 6225 zone->pageset = &boot_pageset; 6226 } 6227 local_irq_restore(flags); 6228 } 6229 6230 #ifdef CONFIG_MEMORY_HOTREMOVE 6231 /* 6232 * All pages in the range must be isolated before calling this. 6233 */ 6234 void 6235 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6236 { 6237 struct page *page; 6238 struct zone *zone; 6239 int order, i; 6240 unsigned long pfn; 6241 unsigned long flags; 6242 /* find the first valid pfn */ 6243 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6244 if (pfn_valid(pfn)) 6245 break; 6246 if (pfn == end_pfn) 6247 return; 6248 zone = page_zone(pfn_to_page(pfn)); 6249 spin_lock_irqsave(&zone->lock, flags); 6250 pfn = start_pfn; 6251 while (pfn < end_pfn) { 6252 if (!pfn_valid(pfn)) { 6253 pfn++; 6254 continue; 6255 } 6256 page = pfn_to_page(pfn); 6257 /* 6258 * The HWPoisoned page may be not in buddy system, and 6259 * page_count() is not 0. 6260 */ 6261 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6262 pfn++; 6263 SetPageReserved(page); 6264 continue; 6265 } 6266 6267 BUG_ON(page_count(page)); 6268 BUG_ON(!PageBuddy(page)); 6269 order = page_order(page); 6270 #ifdef CONFIG_DEBUG_VM 6271 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6272 pfn, 1 << order, end_pfn); 6273 #endif 6274 list_del(&page->lru); 6275 rmv_page_order(page); 6276 zone->free_area[order].nr_free--; 6277 #ifdef CONFIG_HIGHMEM 6278 if (PageHighMem(page)) 6279 totalhigh_pages -= 1 << order; 6280 #endif 6281 for (i = 0; i < (1 << order); i++) 6282 SetPageReserved((page+i)); 6283 pfn += (1 << order); 6284 } 6285 spin_unlock_irqrestore(&zone->lock, flags); 6286 } 6287 #endif 6288 6289 #ifdef CONFIG_MEMORY_FAILURE 6290 bool is_free_buddy_page(struct page *page) 6291 { 6292 struct zone *zone = page_zone(page); 6293 unsigned long pfn = page_to_pfn(page); 6294 unsigned long flags; 6295 int order; 6296 6297 spin_lock_irqsave(&zone->lock, flags); 6298 for (order = 0; order < MAX_ORDER; order++) { 6299 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6300 6301 if (PageBuddy(page_head) && page_order(page_head) >= order) 6302 break; 6303 } 6304 spin_unlock_irqrestore(&zone->lock, flags); 6305 6306 return order < MAX_ORDER; 6307 } 6308 #endif 6309 6310 static const struct trace_print_flags pageflag_names[] = { 6311 {1UL << PG_locked, "locked" }, 6312 {1UL << PG_error, "error" }, 6313 {1UL << PG_referenced, "referenced" }, 6314 {1UL << PG_uptodate, "uptodate" }, 6315 {1UL << PG_dirty, "dirty" }, 6316 {1UL << PG_lru, "lru" }, 6317 {1UL << PG_active, "active" }, 6318 {1UL << PG_slab, "slab" }, 6319 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6320 {1UL << PG_arch_1, "arch_1" }, 6321 {1UL << PG_reserved, "reserved" }, 6322 {1UL << PG_private, "private" }, 6323 {1UL << PG_private_2, "private_2" }, 6324 {1UL << PG_writeback, "writeback" }, 6325 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6326 {1UL << PG_head, "head" }, 6327 {1UL << PG_tail, "tail" }, 6328 #else 6329 {1UL << PG_compound, "compound" }, 6330 #endif 6331 {1UL << PG_swapcache, "swapcache" }, 6332 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6333 {1UL << PG_reclaim, "reclaim" }, 6334 {1UL << PG_swapbacked, "swapbacked" }, 6335 {1UL << PG_unevictable, "unevictable" }, 6336 #ifdef CONFIG_MMU 6337 {1UL << PG_mlocked, "mlocked" }, 6338 #endif 6339 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6340 {1UL << PG_uncached, "uncached" }, 6341 #endif 6342 #ifdef CONFIG_MEMORY_FAILURE 6343 {1UL << PG_hwpoison, "hwpoison" }, 6344 #endif 6345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6346 {1UL << PG_compound_lock, "compound_lock" }, 6347 #endif 6348 }; 6349 6350 static void dump_page_flags(unsigned long flags) 6351 { 6352 const char *delim = ""; 6353 unsigned long mask; 6354 int i; 6355 6356 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6357 6358 printk(KERN_ALERT "page flags: %#lx(", flags); 6359 6360 /* remove zone id */ 6361 flags &= (1UL << NR_PAGEFLAGS) - 1; 6362 6363 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6364 6365 mask = pageflag_names[i].mask; 6366 if ((flags & mask) != mask) 6367 continue; 6368 6369 flags &= ~mask; 6370 printk("%s%s", delim, pageflag_names[i].name); 6371 delim = "|"; 6372 } 6373 6374 /* check for left over flags */ 6375 if (flags) 6376 printk("%s%#lx", delim, flags); 6377 6378 printk(")\n"); 6379 } 6380 6381 void dump_page(struct page *page) 6382 { 6383 printk(KERN_ALERT 6384 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6385 page, atomic_read(&page->_count), page_mapcount(page), 6386 page->mapping, page->index); 6387 dump_page_flags(page->flags); 6388 mem_cgroup_print_bad_page(page); 6389 } 6390