1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static bool cond_accept_memory(struct zone *zone, unsigned int order); 290 static bool __free_unaccepted(struct page *page); 291 292 int page_group_by_mobility_disabled __read_mostly; 293 294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 295 /* 296 * During boot we initialize deferred pages on-demand, as needed, but once 297 * page_alloc_init_late() has finished, the deferred pages are all initialized, 298 * and we can permanently disable that path. 299 */ 300 DEFINE_STATIC_KEY_TRUE(deferred_pages); 301 302 static inline bool deferred_pages_enabled(void) 303 { 304 return static_branch_unlikely(&deferred_pages); 305 } 306 307 /* 308 * deferred_grow_zone() is __init, but it is called from 309 * get_page_from_freelist() during early boot until deferred_pages permanently 310 * disables this call. This is why we have refdata wrapper to avoid warning, 311 * and to ensure that the function body gets unloaded. 312 */ 313 static bool __ref 314 _deferred_grow_zone(struct zone *zone, unsigned int order) 315 { 316 return deferred_grow_zone(zone, order); 317 } 318 #else 319 static inline bool deferred_pages_enabled(void) 320 { 321 return false; 322 } 323 324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 325 { 326 return false; 327 } 328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 329 330 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 331 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 332 unsigned long pfn) 333 { 334 #ifdef CONFIG_SPARSEMEM 335 return section_to_usemap(__pfn_to_section(pfn)); 336 #else 337 return page_zone(page)->pageblock_flags; 338 #endif /* CONFIG_SPARSEMEM */ 339 } 340 341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 342 { 343 #ifdef CONFIG_SPARSEMEM 344 pfn &= (PAGES_PER_SECTION-1); 345 #else 346 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 347 #endif /* CONFIG_SPARSEMEM */ 348 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 349 } 350 351 /** 352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 353 * @page: The page within the block of interest 354 * @pfn: The target page frame number 355 * @mask: mask of bits that the caller is interested in 356 * 357 * Return: pageblock_bits flags 358 */ 359 unsigned long get_pfnblock_flags_mask(const struct page *page, 360 unsigned long pfn, unsigned long mask) 361 { 362 unsigned long *bitmap; 363 unsigned long bitidx, word_bitidx; 364 unsigned long word; 365 366 bitmap = get_pageblock_bitmap(page, pfn); 367 bitidx = pfn_to_bitidx(page, pfn); 368 word_bitidx = bitidx / BITS_PER_LONG; 369 bitidx &= (BITS_PER_LONG-1); 370 /* 371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 372 * a consistent read of the memory array, so that results, even though 373 * racy, are not corrupted. 374 */ 375 word = READ_ONCE(bitmap[word_bitidx]); 376 return (word >> bitidx) & mask; 377 } 378 379 static __always_inline int get_pfnblock_migratetype(const struct page *page, 380 unsigned long pfn) 381 { 382 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 383 } 384 385 /** 386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @flags: The flags to set 389 * @pfn: The target page frame number 390 * @mask: mask of bits that the caller is interested in 391 */ 392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 393 unsigned long pfn, 394 unsigned long mask) 395 { 396 unsigned long *bitmap; 397 unsigned long bitidx, word_bitidx; 398 unsigned long word; 399 400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 401 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 402 403 bitmap = get_pageblock_bitmap(page, pfn); 404 bitidx = pfn_to_bitidx(page, pfn); 405 word_bitidx = bitidx / BITS_PER_LONG; 406 bitidx &= (BITS_PER_LONG-1); 407 408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 409 410 mask <<= bitidx; 411 flags <<= bitidx; 412 413 word = READ_ONCE(bitmap[word_bitidx]); 414 do { 415 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 416 } 417 418 void set_pageblock_migratetype(struct page *page, int migratetype) 419 { 420 if (unlikely(page_group_by_mobility_disabled && 421 migratetype < MIGRATE_PCPTYPES)) 422 migratetype = MIGRATE_UNMOVABLE; 423 424 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 425 page_to_pfn(page), MIGRATETYPE_MASK); 426 } 427 428 #ifdef CONFIG_DEBUG_VM 429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 430 { 431 int ret; 432 unsigned seq; 433 unsigned long pfn = page_to_pfn(page); 434 unsigned long sp, start_pfn; 435 436 do { 437 seq = zone_span_seqbegin(zone); 438 start_pfn = zone->zone_start_pfn; 439 sp = zone->spanned_pages; 440 ret = !zone_spans_pfn(zone, pfn); 441 } while (zone_span_seqretry(zone, seq)); 442 443 if (ret) 444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 445 pfn, zone_to_nid(zone), zone->name, 446 start_pfn, start_pfn + sp); 447 448 return ret; 449 } 450 451 /* 452 * Temporary debugging check for pages not lying within a given zone. 453 */ 454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 455 { 456 if (page_outside_zone_boundaries(zone, page)) 457 return true; 458 if (zone != page_zone(page)) 459 return true; 460 461 return false; 462 } 463 #else 464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 465 { 466 return false; 467 } 468 #endif 469 470 static void bad_page(struct page *page, const char *reason) 471 { 472 static unsigned long resume; 473 static unsigned long nr_shown; 474 static unsigned long nr_unshown; 475 476 /* 477 * Allow a burst of 60 reports, then keep quiet for that minute; 478 * or allow a steady drip of one report per second. 479 */ 480 if (nr_shown == 60) { 481 if (time_before(jiffies, resume)) { 482 nr_unshown++; 483 goto out; 484 } 485 if (nr_unshown) { 486 pr_alert( 487 "BUG: Bad page state: %lu messages suppressed\n", 488 nr_unshown); 489 nr_unshown = 0; 490 } 491 nr_shown = 0; 492 } 493 if (nr_shown++ == 0) 494 resume = jiffies + 60 * HZ; 495 496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 497 current->comm, page_to_pfn(page)); 498 dump_page(page, reason); 499 500 print_modules(); 501 dump_stack(); 502 out: 503 /* Leave bad fields for debug, except PageBuddy could make trouble */ 504 if (PageBuddy(page)) 505 __ClearPageBuddy(page); 506 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 507 } 508 509 static inline unsigned int order_to_pindex(int migratetype, int order) 510 { 511 bool __maybe_unused movable; 512 513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 514 if (order > PAGE_ALLOC_COSTLY_ORDER) { 515 VM_BUG_ON(order != HPAGE_PMD_ORDER); 516 517 movable = migratetype == MIGRATE_MOVABLE; 518 519 return NR_LOWORDER_PCP_LISTS + movable; 520 } 521 #else 522 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 523 #endif 524 525 return (MIGRATE_PCPTYPES * order) + migratetype; 526 } 527 528 static inline int pindex_to_order(unsigned int pindex) 529 { 530 int order = pindex / MIGRATE_PCPTYPES; 531 532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 533 if (pindex >= NR_LOWORDER_PCP_LISTS) 534 order = HPAGE_PMD_ORDER; 535 #else 536 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 537 #endif 538 539 return order; 540 } 541 542 static inline bool pcp_allowed_order(unsigned int order) 543 { 544 if (order <= PAGE_ALLOC_COSTLY_ORDER) 545 return true; 546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 547 if (order == HPAGE_PMD_ORDER) 548 return true; 549 #endif 550 return false; 551 } 552 553 /* 554 * Higher-order pages are called "compound pages". They are structured thusly: 555 * 556 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 557 * 558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 560 * 561 * The first tail page's ->compound_order holds the order of allocation. 562 * This usage means that zero-order pages may not be compound. 563 */ 564 565 void prep_compound_page(struct page *page, unsigned int order) 566 { 567 int i; 568 int nr_pages = 1 << order; 569 570 __SetPageHead(page); 571 for (i = 1; i < nr_pages; i++) 572 prep_compound_tail(page, i); 573 574 prep_compound_head(page, order); 575 } 576 577 static inline void set_buddy_order(struct page *page, unsigned int order) 578 { 579 set_page_private(page, order); 580 __SetPageBuddy(page); 581 } 582 583 #ifdef CONFIG_COMPACTION 584 static inline struct capture_control *task_capc(struct zone *zone) 585 { 586 struct capture_control *capc = current->capture_control; 587 588 return unlikely(capc) && 589 !(current->flags & PF_KTHREAD) && 590 !capc->page && 591 capc->cc->zone == zone ? capc : NULL; 592 } 593 594 static inline bool 595 compaction_capture(struct capture_control *capc, struct page *page, 596 int order, int migratetype) 597 { 598 if (!capc || order != capc->cc->order) 599 return false; 600 601 /* Do not accidentally pollute CMA or isolated regions*/ 602 if (is_migrate_cma(migratetype) || 603 is_migrate_isolate(migratetype)) 604 return false; 605 606 /* 607 * Do not let lower order allocations pollute a movable pageblock 608 * unless compaction is also requesting movable pages. 609 * This might let an unmovable request use a reclaimable pageblock 610 * and vice-versa but no more than normal fallback logic which can 611 * have trouble finding a high-order free page. 612 */ 613 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 614 capc->cc->migratetype != MIGRATE_MOVABLE) 615 return false; 616 617 capc->page = page; 618 return true; 619 } 620 621 #else 622 static inline struct capture_control *task_capc(struct zone *zone) 623 { 624 return NULL; 625 } 626 627 static inline bool 628 compaction_capture(struct capture_control *capc, struct page *page, 629 int order, int migratetype) 630 { 631 return false; 632 } 633 #endif /* CONFIG_COMPACTION */ 634 635 static inline void account_freepages(struct zone *zone, int nr_pages, 636 int migratetype) 637 { 638 if (is_migrate_isolate(migratetype)) 639 return; 640 641 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 642 643 if (is_migrate_cma(migratetype)) 644 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 645 } 646 647 /* Used for pages not on another list */ 648 static inline void __add_to_free_list(struct page *page, struct zone *zone, 649 unsigned int order, int migratetype, 650 bool tail) 651 { 652 struct free_area *area = &zone->free_area[order]; 653 654 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 655 "page type is %lu, passed migratetype is %d (nr=%d)\n", 656 get_pageblock_migratetype(page), migratetype, 1 << order); 657 658 if (tail) 659 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 660 else 661 list_add(&page->buddy_list, &area->free_list[migratetype]); 662 area->nr_free++; 663 } 664 665 /* 666 * Used for pages which are on another list. Move the pages to the tail 667 * of the list - so the moved pages won't immediately be considered for 668 * allocation again (e.g., optimization for memory onlining). 669 */ 670 static inline void move_to_free_list(struct page *page, struct zone *zone, 671 unsigned int order, int old_mt, int new_mt) 672 { 673 struct free_area *area = &zone->free_area[order]; 674 675 /* Free page moving can fail, so it happens before the type update */ 676 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 677 "page type is %lu, passed migratetype is %d (nr=%d)\n", 678 get_pageblock_migratetype(page), old_mt, 1 << order); 679 680 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 681 682 account_freepages(zone, -(1 << order), old_mt); 683 account_freepages(zone, 1 << order, new_mt); 684 } 685 686 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 687 unsigned int order, int migratetype) 688 { 689 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 690 "page type is %lu, passed migratetype is %d (nr=%d)\n", 691 get_pageblock_migratetype(page), migratetype, 1 << order); 692 693 /* clear reported state and update reported page count */ 694 if (page_reported(page)) 695 __ClearPageReported(page); 696 697 list_del(&page->buddy_list); 698 __ClearPageBuddy(page); 699 set_page_private(page, 0); 700 zone->free_area[order].nr_free--; 701 } 702 703 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 704 unsigned int order, int migratetype) 705 { 706 __del_page_from_free_list(page, zone, order, migratetype); 707 account_freepages(zone, -(1 << order), migratetype); 708 } 709 710 static inline struct page *get_page_from_free_area(struct free_area *area, 711 int migratetype) 712 { 713 return list_first_entry_or_null(&area->free_list[migratetype], 714 struct page, buddy_list); 715 } 716 717 /* 718 * If this is less than the 2nd largest possible page, check if the buddy 719 * of the next-higher order is free. If it is, it's possible 720 * that pages are being freed that will coalesce soon. In case, 721 * that is happening, add the free page to the tail of the list 722 * so it's less likely to be used soon and more likely to be merged 723 * as a 2-level higher order page 724 */ 725 static inline bool 726 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 727 struct page *page, unsigned int order) 728 { 729 unsigned long higher_page_pfn; 730 struct page *higher_page; 731 732 if (order >= MAX_PAGE_ORDER - 1) 733 return false; 734 735 higher_page_pfn = buddy_pfn & pfn; 736 higher_page = page + (higher_page_pfn - pfn); 737 738 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 739 NULL) != NULL; 740 } 741 742 /* 743 * Freeing function for a buddy system allocator. 744 * 745 * The concept of a buddy system is to maintain direct-mapped table 746 * (containing bit values) for memory blocks of various "orders". 747 * The bottom level table contains the map for the smallest allocatable 748 * units of memory (here, pages), and each level above it describes 749 * pairs of units from the levels below, hence, "buddies". 750 * At a high level, all that happens here is marking the table entry 751 * at the bottom level available, and propagating the changes upward 752 * as necessary, plus some accounting needed to play nicely with other 753 * parts of the VM system. 754 * At each level, we keep a list of pages, which are heads of continuous 755 * free pages of length of (1 << order) and marked with PageBuddy. 756 * Page's order is recorded in page_private(page) field. 757 * So when we are allocating or freeing one, we can derive the state of the 758 * other. That is, if we allocate a small block, and both were 759 * free, the remainder of the region must be split into blocks. 760 * If a block is freed, and its buddy is also free, then this 761 * triggers coalescing into a block of larger size. 762 * 763 * -- nyc 764 */ 765 766 static inline void __free_one_page(struct page *page, 767 unsigned long pfn, 768 struct zone *zone, unsigned int order, 769 int migratetype, fpi_t fpi_flags) 770 { 771 struct capture_control *capc = task_capc(zone); 772 unsigned long buddy_pfn = 0; 773 unsigned long combined_pfn; 774 struct page *buddy; 775 bool to_tail; 776 777 VM_BUG_ON(!zone_is_initialized(zone)); 778 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 779 780 VM_BUG_ON(migratetype == -1); 781 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 782 VM_BUG_ON_PAGE(bad_range(zone, page), page); 783 784 account_freepages(zone, 1 << order, migratetype); 785 786 while (order < MAX_PAGE_ORDER) { 787 int buddy_mt = migratetype; 788 789 if (compaction_capture(capc, page, order, migratetype)) { 790 account_freepages(zone, -(1 << order), migratetype); 791 return; 792 } 793 794 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 795 if (!buddy) 796 goto done_merging; 797 798 if (unlikely(order >= pageblock_order)) { 799 /* 800 * We want to prevent merge between freepages on pageblock 801 * without fallbacks and normal pageblock. Without this, 802 * pageblock isolation could cause incorrect freepage or CMA 803 * accounting or HIGHATOMIC accounting. 804 */ 805 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 806 807 if (migratetype != buddy_mt && 808 (!migratetype_is_mergeable(migratetype) || 809 !migratetype_is_mergeable(buddy_mt))) 810 goto done_merging; 811 } 812 813 /* 814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 815 * merge with it and move up one order. 816 */ 817 if (page_is_guard(buddy)) 818 clear_page_guard(zone, buddy, order); 819 else 820 __del_page_from_free_list(buddy, zone, order, buddy_mt); 821 822 if (unlikely(buddy_mt != migratetype)) { 823 /* 824 * Match buddy type. This ensures that an 825 * expand() down the line puts the sub-blocks 826 * on the right freelists. 827 */ 828 set_pageblock_migratetype(buddy, migratetype); 829 } 830 831 combined_pfn = buddy_pfn & pfn; 832 page = page + (combined_pfn - pfn); 833 pfn = combined_pfn; 834 order++; 835 } 836 837 done_merging: 838 set_buddy_order(page, order); 839 840 if (fpi_flags & FPI_TO_TAIL) 841 to_tail = true; 842 else if (is_shuffle_order(order)) 843 to_tail = shuffle_pick_tail(); 844 else 845 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 846 847 __add_to_free_list(page, zone, order, migratetype, to_tail); 848 849 /* Notify page reporting subsystem of freed page */ 850 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 851 page_reporting_notify_free(order); 852 } 853 854 /* 855 * A bad page could be due to a number of fields. Instead of multiple branches, 856 * try and check multiple fields with one check. The caller must do a detailed 857 * check if necessary. 858 */ 859 static inline bool page_expected_state(struct page *page, 860 unsigned long check_flags) 861 { 862 if (unlikely(atomic_read(&page->_mapcount) != -1)) 863 return false; 864 865 if (unlikely((unsigned long)page->mapping | 866 page_ref_count(page) | 867 #ifdef CONFIG_MEMCG 868 page->memcg_data | 869 #endif 870 #ifdef CONFIG_PAGE_POOL 871 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 872 #endif 873 (page->flags & check_flags))) 874 return false; 875 876 return true; 877 } 878 879 static const char *page_bad_reason(struct page *page, unsigned long flags) 880 { 881 const char *bad_reason = NULL; 882 883 if (unlikely(atomic_read(&page->_mapcount) != -1)) 884 bad_reason = "nonzero mapcount"; 885 if (unlikely(page->mapping != NULL)) 886 bad_reason = "non-NULL mapping"; 887 if (unlikely(page_ref_count(page) != 0)) 888 bad_reason = "nonzero _refcount"; 889 if (unlikely(page->flags & flags)) { 890 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 891 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 892 else 893 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 894 } 895 #ifdef CONFIG_MEMCG 896 if (unlikely(page->memcg_data)) 897 bad_reason = "page still charged to cgroup"; 898 #endif 899 #ifdef CONFIG_PAGE_POOL 900 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 901 bad_reason = "page_pool leak"; 902 #endif 903 return bad_reason; 904 } 905 906 static void free_page_is_bad_report(struct page *page) 907 { 908 bad_page(page, 909 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 910 } 911 912 static inline bool free_page_is_bad(struct page *page) 913 { 914 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 915 return false; 916 917 /* Something has gone sideways, find it */ 918 free_page_is_bad_report(page); 919 return true; 920 } 921 922 static inline bool is_check_pages_enabled(void) 923 { 924 return static_branch_unlikely(&check_pages_enabled); 925 } 926 927 static int free_tail_page_prepare(struct page *head_page, struct page *page) 928 { 929 struct folio *folio = (struct folio *)head_page; 930 int ret = 1; 931 932 /* 933 * We rely page->lru.next never has bit 0 set, unless the page 934 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 935 */ 936 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 937 938 if (!is_check_pages_enabled()) { 939 ret = 0; 940 goto out; 941 } 942 switch (page - head_page) { 943 case 1: 944 /* the first tail page: these may be in place of ->mapping */ 945 if (unlikely(folio_entire_mapcount(folio))) { 946 bad_page(page, "nonzero entire_mapcount"); 947 goto out; 948 } 949 if (unlikely(folio_large_mapcount(folio))) { 950 bad_page(page, "nonzero large_mapcount"); 951 goto out; 952 } 953 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 954 bad_page(page, "nonzero nr_pages_mapped"); 955 goto out; 956 } 957 if (unlikely(atomic_read(&folio->_pincount))) { 958 bad_page(page, "nonzero pincount"); 959 goto out; 960 } 961 break; 962 case 2: 963 /* the second tail page: deferred_list overlaps ->mapping */ 964 if (unlikely(!list_empty(&folio->_deferred_list) && 965 folio_test_partially_mapped(folio))) { 966 bad_page(page, "partially mapped folio on deferred list"); 967 goto out; 968 } 969 break; 970 default: 971 if (page->mapping != TAIL_MAPPING) { 972 bad_page(page, "corrupted mapping in tail page"); 973 goto out; 974 } 975 break; 976 } 977 if (unlikely(!PageTail(page))) { 978 bad_page(page, "PageTail not set"); 979 goto out; 980 } 981 if (unlikely(compound_head(page) != head_page)) { 982 bad_page(page, "compound_head not consistent"); 983 goto out; 984 } 985 ret = 0; 986 out: 987 page->mapping = NULL; 988 clear_compound_head(page); 989 return ret; 990 } 991 992 /* 993 * Skip KASAN memory poisoning when either: 994 * 995 * 1. For generic KASAN: deferred memory initialization has not yet completed. 996 * Tag-based KASAN modes skip pages freed via deferred memory initialization 997 * using page tags instead (see below). 998 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 999 * that error detection is disabled for accesses via the page address. 1000 * 1001 * Pages will have match-all tags in the following circumstances: 1002 * 1003 * 1. Pages are being initialized for the first time, including during deferred 1004 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1005 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1006 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1007 * 3. The allocation was excluded from being checked due to sampling, 1008 * see the call to kasan_unpoison_pages. 1009 * 1010 * Poisoning pages during deferred memory init will greatly lengthen the 1011 * process and cause problem in large memory systems as the deferred pages 1012 * initialization is done with interrupt disabled. 1013 * 1014 * Assuming that there will be no reference to those newly initialized 1015 * pages before they are ever allocated, this should have no effect on 1016 * KASAN memory tracking as the poison will be properly inserted at page 1017 * allocation time. The only corner case is when pages are allocated by 1018 * on-demand allocation and then freed again before the deferred pages 1019 * initialization is done, but this is not likely to happen. 1020 */ 1021 static inline bool should_skip_kasan_poison(struct page *page) 1022 { 1023 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1024 return deferred_pages_enabled(); 1025 1026 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1027 } 1028 1029 static void kernel_init_pages(struct page *page, int numpages) 1030 { 1031 int i; 1032 1033 /* s390's use of memset() could override KASAN redzones. */ 1034 kasan_disable_current(); 1035 for (i = 0; i < numpages; i++) 1036 clear_highpage_kasan_tagged(page + i); 1037 kasan_enable_current(); 1038 } 1039 1040 __always_inline bool free_pages_prepare(struct page *page, 1041 unsigned int order) 1042 { 1043 int bad = 0; 1044 bool skip_kasan_poison = should_skip_kasan_poison(page); 1045 bool init = want_init_on_free(); 1046 bool compound = PageCompound(page); 1047 1048 VM_BUG_ON_PAGE(PageTail(page), page); 1049 1050 trace_mm_page_free(page, order); 1051 kmsan_free_page(page, order); 1052 1053 if (memcg_kmem_online() && PageMemcgKmem(page)) 1054 __memcg_kmem_uncharge_page(page, order); 1055 1056 if (unlikely(PageHWPoison(page)) && !order) { 1057 /* Do not let hwpoison pages hit pcplists/buddy */ 1058 reset_page_owner(page, order); 1059 page_table_check_free(page, order); 1060 pgalloc_tag_sub(page, 1 << order); 1061 1062 /* 1063 * The page is isolated and accounted for. 1064 * Mark the codetag as empty to avoid accounting error 1065 * when the page is freed by unpoison_memory(). 1066 */ 1067 clear_page_tag_ref(page); 1068 return false; 1069 } 1070 1071 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1072 1073 /* 1074 * Check tail pages before head page information is cleared to 1075 * avoid checking PageCompound for order-0 pages. 1076 */ 1077 if (unlikely(order)) { 1078 int i; 1079 1080 if (compound) 1081 page[1].flags &= ~PAGE_FLAGS_SECOND; 1082 for (i = 1; i < (1 << order); i++) { 1083 if (compound) 1084 bad += free_tail_page_prepare(page, page + i); 1085 if (is_check_pages_enabled()) { 1086 if (free_page_is_bad(page + i)) { 1087 bad++; 1088 continue; 1089 } 1090 } 1091 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1092 } 1093 } 1094 if (PageMappingFlags(page)) { 1095 if (PageAnon(page)) 1096 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1097 page->mapping = NULL; 1098 } 1099 if (is_check_pages_enabled()) { 1100 if (free_page_is_bad(page)) 1101 bad++; 1102 if (bad) 1103 return false; 1104 } 1105 1106 page_cpupid_reset_last(page); 1107 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1108 reset_page_owner(page, order); 1109 page_table_check_free(page, order); 1110 pgalloc_tag_sub(page, 1 << order); 1111 1112 if (!PageHighMem(page)) { 1113 debug_check_no_locks_freed(page_address(page), 1114 PAGE_SIZE << order); 1115 debug_check_no_obj_freed(page_address(page), 1116 PAGE_SIZE << order); 1117 } 1118 1119 kernel_poison_pages(page, 1 << order); 1120 1121 /* 1122 * As memory initialization might be integrated into KASAN, 1123 * KASAN poisoning and memory initialization code must be 1124 * kept together to avoid discrepancies in behavior. 1125 * 1126 * With hardware tag-based KASAN, memory tags must be set before the 1127 * page becomes unavailable via debug_pagealloc or arch_free_page. 1128 */ 1129 if (!skip_kasan_poison) { 1130 kasan_poison_pages(page, order, init); 1131 1132 /* Memory is already initialized if KASAN did it internally. */ 1133 if (kasan_has_integrated_init()) 1134 init = false; 1135 } 1136 if (init) 1137 kernel_init_pages(page, 1 << order); 1138 1139 /* 1140 * arch_free_page() can make the page's contents inaccessible. s390 1141 * does this. So nothing which can access the page's contents should 1142 * happen after this. 1143 */ 1144 arch_free_page(page, order); 1145 1146 debug_pagealloc_unmap_pages(page, 1 << order); 1147 1148 return true; 1149 } 1150 1151 /* 1152 * Frees a number of pages from the PCP lists 1153 * Assumes all pages on list are in same zone. 1154 * count is the number of pages to free. 1155 */ 1156 static void free_pcppages_bulk(struct zone *zone, int count, 1157 struct per_cpu_pages *pcp, 1158 int pindex) 1159 { 1160 unsigned long flags; 1161 unsigned int order; 1162 struct page *page; 1163 1164 /* 1165 * Ensure proper count is passed which otherwise would stuck in the 1166 * below while (list_empty(list)) loop. 1167 */ 1168 count = min(pcp->count, count); 1169 1170 /* Ensure requested pindex is drained first. */ 1171 pindex = pindex - 1; 1172 1173 spin_lock_irqsave(&zone->lock, flags); 1174 1175 while (count > 0) { 1176 struct list_head *list; 1177 int nr_pages; 1178 1179 /* Remove pages from lists in a round-robin fashion. */ 1180 do { 1181 if (++pindex > NR_PCP_LISTS - 1) 1182 pindex = 0; 1183 list = &pcp->lists[pindex]; 1184 } while (list_empty(list)); 1185 1186 order = pindex_to_order(pindex); 1187 nr_pages = 1 << order; 1188 do { 1189 unsigned long pfn; 1190 int mt; 1191 1192 page = list_last_entry(list, struct page, pcp_list); 1193 pfn = page_to_pfn(page); 1194 mt = get_pfnblock_migratetype(page, pfn); 1195 1196 /* must delete to avoid corrupting pcp list */ 1197 list_del(&page->pcp_list); 1198 count -= nr_pages; 1199 pcp->count -= nr_pages; 1200 1201 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1202 trace_mm_page_pcpu_drain(page, order, mt); 1203 } while (count > 0 && !list_empty(list)); 1204 } 1205 1206 spin_unlock_irqrestore(&zone->lock, flags); 1207 } 1208 1209 /* Split a multi-block free page into its individual pageblocks. */ 1210 static void split_large_buddy(struct zone *zone, struct page *page, 1211 unsigned long pfn, int order, fpi_t fpi) 1212 { 1213 unsigned long end = pfn + (1 << order); 1214 1215 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1216 /* Caller removed page from freelist, buddy info cleared! */ 1217 VM_WARN_ON_ONCE(PageBuddy(page)); 1218 1219 if (order > pageblock_order) 1220 order = pageblock_order; 1221 1222 while (pfn != end) { 1223 int mt = get_pfnblock_migratetype(page, pfn); 1224 1225 __free_one_page(page, pfn, zone, order, mt, fpi); 1226 pfn += 1 << order; 1227 page = pfn_to_page(pfn); 1228 } 1229 } 1230 1231 static void free_one_page(struct zone *zone, struct page *page, 1232 unsigned long pfn, unsigned int order, 1233 fpi_t fpi_flags) 1234 { 1235 unsigned long flags; 1236 1237 spin_lock_irqsave(&zone->lock, flags); 1238 split_large_buddy(zone, page, pfn, order, fpi_flags); 1239 spin_unlock_irqrestore(&zone->lock, flags); 1240 1241 __count_vm_events(PGFREE, 1 << order); 1242 } 1243 1244 static void __free_pages_ok(struct page *page, unsigned int order, 1245 fpi_t fpi_flags) 1246 { 1247 unsigned long pfn = page_to_pfn(page); 1248 struct zone *zone = page_zone(page); 1249 1250 if (free_pages_prepare(page, order)) 1251 free_one_page(zone, page, pfn, order, fpi_flags); 1252 } 1253 1254 void __meminit __free_pages_core(struct page *page, unsigned int order, 1255 enum meminit_context context) 1256 { 1257 unsigned int nr_pages = 1 << order; 1258 struct page *p = page; 1259 unsigned int loop; 1260 1261 /* 1262 * When initializing the memmap, __init_single_page() sets the refcount 1263 * of all pages to 1 ("allocated"/"not free"). We have to set the 1264 * refcount of all involved pages to 0. 1265 * 1266 * Note that hotplugged memory pages are initialized to PageOffline(). 1267 * Pages freed from memblock might be marked as reserved. 1268 */ 1269 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1270 unlikely(context == MEMINIT_HOTPLUG)) { 1271 for (loop = 0; loop < nr_pages; loop++, p++) { 1272 VM_WARN_ON_ONCE(PageReserved(p)); 1273 __ClearPageOffline(p); 1274 set_page_count(p, 0); 1275 } 1276 1277 /* 1278 * Freeing the page with debug_pagealloc enabled will try to 1279 * unmap it; some archs don't like double-unmappings, so 1280 * map it first. 1281 */ 1282 debug_pagealloc_map_pages(page, nr_pages); 1283 adjust_managed_page_count(page, nr_pages); 1284 } else { 1285 for (loop = 0; loop < nr_pages; loop++, p++) { 1286 __ClearPageReserved(p); 1287 set_page_count(p, 0); 1288 } 1289 1290 /* memblock adjusts totalram_pages() manually. */ 1291 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1292 } 1293 1294 if (page_contains_unaccepted(page, order)) { 1295 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1296 return; 1297 1298 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1299 } 1300 1301 /* 1302 * Bypass PCP and place fresh pages right to the tail, primarily 1303 * relevant for memory onlining. 1304 */ 1305 __free_pages_ok(page, order, FPI_TO_TAIL); 1306 } 1307 1308 /* 1309 * Check that the whole (or subset of) a pageblock given by the interval of 1310 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1311 * with the migration of free compaction scanner. 1312 * 1313 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1314 * 1315 * It's possible on some configurations to have a setup like node0 node1 node0 1316 * i.e. it's possible that all pages within a zones range of pages do not 1317 * belong to a single zone. We assume that a border between node0 and node1 1318 * can occur within a single pageblock, but not a node0 node1 node0 1319 * interleaving within a single pageblock. It is therefore sufficient to check 1320 * the first and last page of a pageblock and avoid checking each individual 1321 * page in a pageblock. 1322 * 1323 * Note: the function may return non-NULL struct page even for a page block 1324 * which contains a memory hole (i.e. there is no physical memory for a subset 1325 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1326 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1327 * even though the start pfn is online and valid. This should be safe most of 1328 * the time because struct pages are still initialized via init_unavailable_range() 1329 * and pfn walkers shouldn't touch any physical memory range for which they do 1330 * not recognize any specific metadata in struct pages. 1331 */ 1332 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1333 unsigned long end_pfn, struct zone *zone) 1334 { 1335 struct page *start_page; 1336 struct page *end_page; 1337 1338 /* end_pfn is one past the range we are checking */ 1339 end_pfn--; 1340 1341 if (!pfn_valid(end_pfn)) 1342 return NULL; 1343 1344 start_page = pfn_to_online_page(start_pfn); 1345 if (!start_page) 1346 return NULL; 1347 1348 if (page_zone(start_page) != zone) 1349 return NULL; 1350 1351 end_page = pfn_to_page(end_pfn); 1352 1353 /* This gives a shorter code than deriving page_zone(end_page) */ 1354 if (page_zone_id(start_page) != page_zone_id(end_page)) 1355 return NULL; 1356 1357 return start_page; 1358 } 1359 1360 /* 1361 * The order of subdivision here is critical for the IO subsystem. 1362 * Please do not alter this order without good reasons and regression 1363 * testing. Specifically, as large blocks of memory are subdivided, 1364 * the order in which smaller blocks are delivered depends on the order 1365 * they're subdivided in this function. This is the primary factor 1366 * influencing the order in which pages are delivered to the IO 1367 * subsystem according to empirical testing, and this is also justified 1368 * by considering the behavior of a buddy system containing a single 1369 * large block of memory acted on by a series of small allocations. 1370 * This behavior is a critical factor in sglist merging's success. 1371 * 1372 * -- nyc 1373 */ 1374 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1375 int high, int migratetype) 1376 { 1377 unsigned int size = 1 << high; 1378 unsigned int nr_added = 0; 1379 1380 while (high > low) { 1381 high--; 1382 size >>= 1; 1383 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1384 1385 /* 1386 * Mark as guard pages (or page), that will allow to 1387 * merge back to allocator when buddy will be freed. 1388 * Corresponding page table entries will not be touched, 1389 * pages will stay not present in virtual address space 1390 */ 1391 if (set_page_guard(zone, &page[size], high)) 1392 continue; 1393 1394 __add_to_free_list(&page[size], zone, high, migratetype, false); 1395 set_buddy_order(&page[size], high); 1396 nr_added += size; 1397 } 1398 1399 return nr_added; 1400 } 1401 1402 static __always_inline void page_del_and_expand(struct zone *zone, 1403 struct page *page, int low, 1404 int high, int migratetype) 1405 { 1406 int nr_pages = 1 << high; 1407 1408 __del_page_from_free_list(page, zone, high, migratetype); 1409 nr_pages -= expand(zone, page, low, high, migratetype); 1410 account_freepages(zone, -nr_pages, migratetype); 1411 } 1412 1413 static void check_new_page_bad(struct page *page) 1414 { 1415 if (unlikely(page->flags & __PG_HWPOISON)) { 1416 /* Don't complain about hwpoisoned pages */ 1417 if (PageBuddy(page)) 1418 __ClearPageBuddy(page); 1419 return; 1420 } 1421 1422 bad_page(page, 1423 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1424 } 1425 1426 /* 1427 * This page is about to be returned from the page allocator 1428 */ 1429 static bool check_new_page(struct page *page) 1430 { 1431 if (likely(page_expected_state(page, 1432 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1433 return false; 1434 1435 check_new_page_bad(page); 1436 return true; 1437 } 1438 1439 static inline bool check_new_pages(struct page *page, unsigned int order) 1440 { 1441 if (is_check_pages_enabled()) { 1442 for (int i = 0; i < (1 << order); i++) { 1443 struct page *p = page + i; 1444 1445 if (check_new_page(p)) 1446 return true; 1447 } 1448 } 1449 1450 return false; 1451 } 1452 1453 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1454 { 1455 /* Don't skip if a software KASAN mode is enabled. */ 1456 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1457 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1458 return false; 1459 1460 /* Skip, if hardware tag-based KASAN is not enabled. */ 1461 if (!kasan_hw_tags_enabled()) 1462 return true; 1463 1464 /* 1465 * With hardware tag-based KASAN enabled, skip if this has been 1466 * requested via __GFP_SKIP_KASAN. 1467 */ 1468 return flags & __GFP_SKIP_KASAN; 1469 } 1470 1471 static inline bool should_skip_init(gfp_t flags) 1472 { 1473 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1474 if (!kasan_hw_tags_enabled()) 1475 return false; 1476 1477 /* For hardware tag-based KASAN, skip if requested. */ 1478 return (flags & __GFP_SKIP_ZERO); 1479 } 1480 1481 inline void post_alloc_hook(struct page *page, unsigned int order, 1482 gfp_t gfp_flags) 1483 { 1484 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1485 !should_skip_init(gfp_flags); 1486 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1487 int i; 1488 1489 set_page_private(page, 0); 1490 set_page_refcounted(page); 1491 1492 arch_alloc_page(page, order); 1493 debug_pagealloc_map_pages(page, 1 << order); 1494 1495 /* 1496 * Page unpoisoning must happen before memory initialization. 1497 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1498 * allocations and the page unpoisoning code will complain. 1499 */ 1500 kernel_unpoison_pages(page, 1 << order); 1501 1502 /* 1503 * As memory initialization might be integrated into KASAN, 1504 * KASAN unpoisoning and memory initializion code must be 1505 * kept together to avoid discrepancies in behavior. 1506 */ 1507 1508 /* 1509 * If memory tags should be zeroed 1510 * (which happens only when memory should be initialized as well). 1511 */ 1512 if (zero_tags) { 1513 /* Initialize both memory and memory tags. */ 1514 for (i = 0; i != 1 << order; ++i) 1515 tag_clear_highpage(page + i); 1516 1517 /* Take note that memory was initialized by the loop above. */ 1518 init = false; 1519 } 1520 if (!should_skip_kasan_unpoison(gfp_flags) && 1521 kasan_unpoison_pages(page, order, init)) { 1522 /* Take note that memory was initialized by KASAN. */ 1523 if (kasan_has_integrated_init()) 1524 init = false; 1525 } else { 1526 /* 1527 * If memory tags have not been set by KASAN, reset the page 1528 * tags to ensure page_address() dereferencing does not fault. 1529 */ 1530 for (i = 0; i != 1 << order; ++i) 1531 page_kasan_tag_reset(page + i); 1532 } 1533 /* If memory is still not initialized, initialize it now. */ 1534 if (init) 1535 kernel_init_pages(page, 1 << order); 1536 1537 set_page_owner(page, order, gfp_flags); 1538 page_table_check_alloc(page, order); 1539 pgalloc_tag_add(page, current, 1 << order); 1540 } 1541 1542 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1543 unsigned int alloc_flags) 1544 { 1545 post_alloc_hook(page, order, gfp_flags); 1546 1547 if (order && (gfp_flags & __GFP_COMP)) 1548 prep_compound_page(page, order); 1549 1550 /* 1551 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1552 * allocate the page. The expectation is that the caller is taking 1553 * steps that will free more memory. The caller should avoid the page 1554 * being used for !PFMEMALLOC purposes. 1555 */ 1556 if (alloc_flags & ALLOC_NO_WATERMARKS) 1557 set_page_pfmemalloc(page); 1558 else 1559 clear_page_pfmemalloc(page); 1560 } 1561 1562 /* 1563 * Go through the free lists for the given migratetype and remove 1564 * the smallest available page from the freelists 1565 */ 1566 static __always_inline 1567 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1568 int migratetype) 1569 { 1570 unsigned int current_order; 1571 struct free_area *area; 1572 struct page *page; 1573 1574 /* Find a page of the appropriate size in the preferred list */ 1575 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1576 area = &(zone->free_area[current_order]); 1577 page = get_page_from_free_area(area, migratetype); 1578 if (!page) 1579 continue; 1580 1581 page_del_and_expand(zone, page, order, current_order, 1582 migratetype); 1583 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1584 pcp_allowed_order(order) && 1585 migratetype < MIGRATE_PCPTYPES); 1586 return page; 1587 } 1588 1589 return NULL; 1590 } 1591 1592 1593 /* 1594 * This array describes the order lists are fallen back to when 1595 * the free lists for the desirable migrate type are depleted 1596 * 1597 * The other migratetypes do not have fallbacks. 1598 */ 1599 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1600 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1601 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1602 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1603 }; 1604 1605 #ifdef CONFIG_CMA 1606 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1607 unsigned int order) 1608 { 1609 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1610 } 1611 #else 1612 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1613 unsigned int order) { return NULL; } 1614 #endif 1615 1616 /* 1617 * Change the type of a block and move all its free pages to that 1618 * type's freelist. 1619 */ 1620 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1621 int old_mt, int new_mt) 1622 { 1623 struct page *page; 1624 unsigned long pfn, end_pfn; 1625 unsigned int order; 1626 int pages_moved = 0; 1627 1628 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1629 end_pfn = pageblock_end_pfn(start_pfn); 1630 1631 for (pfn = start_pfn; pfn < end_pfn;) { 1632 page = pfn_to_page(pfn); 1633 if (!PageBuddy(page)) { 1634 pfn++; 1635 continue; 1636 } 1637 1638 /* Make sure we are not inadvertently changing nodes */ 1639 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1640 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1641 1642 order = buddy_order(page); 1643 1644 move_to_free_list(page, zone, order, old_mt, new_mt); 1645 1646 pfn += 1 << order; 1647 pages_moved += 1 << order; 1648 } 1649 1650 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1651 1652 return pages_moved; 1653 } 1654 1655 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1656 unsigned long *start_pfn, 1657 int *num_free, int *num_movable) 1658 { 1659 unsigned long pfn, start, end; 1660 1661 pfn = page_to_pfn(page); 1662 start = pageblock_start_pfn(pfn); 1663 end = pageblock_end_pfn(pfn); 1664 1665 /* 1666 * The caller only has the lock for @zone, don't touch ranges 1667 * that straddle into other zones. While we could move part of 1668 * the range that's inside the zone, this call is usually 1669 * accompanied by other operations such as migratetype updates 1670 * which also should be locked. 1671 */ 1672 if (!zone_spans_pfn(zone, start)) 1673 return false; 1674 if (!zone_spans_pfn(zone, end - 1)) 1675 return false; 1676 1677 *start_pfn = start; 1678 1679 if (num_free) { 1680 *num_free = 0; 1681 *num_movable = 0; 1682 for (pfn = start; pfn < end;) { 1683 page = pfn_to_page(pfn); 1684 if (PageBuddy(page)) { 1685 int nr = 1 << buddy_order(page); 1686 1687 *num_free += nr; 1688 pfn += nr; 1689 continue; 1690 } 1691 /* 1692 * We assume that pages that could be isolated for 1693 * migration are movable. But we don't actually try 1694 * isolating, as that would be expensive. 1695 */ 1696 if (PageLRU(page) || __PageMovable(page)) 1697 (*num_movable)++; 1698 pfn++; 1699 } 1700 } 1701 1702 return true; 1703 } 1704 1705 static int move_freepages_block(struct zone *zone, struct page *page, 1706 int old_mt, int new_mt) 1707 { 1708 unsigned long start_pfn; 1709 1710 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1711 return -1; 1712 1713 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1714 } 1715 1716 #ifdef CONFIG_MEMORY_ISOLATION 1717 /* Look for a buddy that straddles start_pfn */ 1718 static unsigned long find_large_buddy(unsigned long start_pfn) 1719 { 1720 int order = 0; 1721 struct page *page; 1722 unsigned long pfn = start_pfn; 1723 1724 while (!PageBuddy(page = pfn_to_page(pfn))) { 1725 /* Nothing found */ 1726 if (++order > MAX_PAGE_ORDER) 1727 return start_pfn; 1728 pfn &= ~0UL << order; 1729 } 1730 1731 /* 1732 * Found a preceding buddy, but does it straddle? 1733 */ 1734 if (pfn + (1 << buddy_order(page)) > start_pfn) 1735 return pfn; 1736 1737 /* Nothing found */ 1738 return start_pfn; 1739 } 1740 1741 /** 1742 * move_freepages_block_isolate - move free pages in block for page isolation 1743 * @zone: the zone 1744 * @page: the pageblock page 1745 * @migratetype: migratetype to set on the pageblock 1746 * 1747 * This is similar to move_freepages_block(), but handles the special 1748 * case encountered in page isolation, where the block of interest 1749 * might be part of a larger buddy spanning multiple pageblocks. 1750 * 1751 * Unlike the regular page allocator path, which moves pages while 1752 * stealing buddies off the freelist, page isolation is interested in 1753 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1754 * 1755 * This function handles that. Straddling buddies are split into 1756 * individual pageblocks. Only the block of interest is moved. 1757 * 1758 * Returns %true if pages could be moved, %false otherwise. 1759 */ 1760 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1761 int migratetype) 1762 { 1763 unsigned long start_pfn, pfn; 1764 1765 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1766 return false; 1767 1768 /* No splits needed if buddies can't span multiple blocks */ 1769 if (pageblock_order == MAX_PAGE_ORDER) 1770 goto move; 1771 1772 /* We're a tail block in a larger buddy */ 1773 pfn = find_large_buddy(start_pfn); 1774 if (pfn != start_pfn) { 1775 struct page *buddy = pfn_to_page(pfn); 1776 int order = buddy_order(buddy); 1777 1778 del_page_from_free_list(buddy, zone, order, 1779 get_pfnblock_migratetype(buddy, pfn)); 1780 set_pageblock_migratetype(page, migratetype); 1781 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1782 return true; 1783 } 1784 1785 /* We're the starting block of a larger buddy */ 1786 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1787 int order = buddy_order(page); 1788 1789 del_page_from_free_list(page, zone, order, 1790 get_pfnblock_migratetype(page, pfn)); 1791 set_pageblock_migratetype(page, migratetype); 1792 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1793 return true; 1794 } 1795 move: 1796 __move_freepages_block(zone, start_pfn, 1797 get_pfnblock_migratetype(page, start_pfn), 1798 migratetype); 1799 return true; 1800 } 1801 #endif /* CONFIG_MEMORY_ISOLATION */ 1802 1803 static void change_pageblock_range(struct page *pageblock_page, 1804 int start_order, int migratetype) 1805 { 1806 int nr_pageblocks = 1 << (start_order - pageblock_order); 1807 1808 while (nr_pageblocks--) { 1809 set_pageblock_migratetype(pageblock_page, migratetype); 1810 pageblock_page += pageblock_nr_pages; 1811 } 1812 } 1813 1814 /* 1815 * When we are falling back to another migratetype during allocation, try to 1816 * steal extra free pages from the same pageblocks to satisfy further 1817 * allocations, instead of polluting multiple pageblocks. 1818 * 1819 * If we are stealing a relatively large buddy page, it is likely there will 1820 * be more free pages in the pageblock, so try to steal them all. For 1821 * reclaimable and unmovable allocations, we steal regardless of page size, 1822 * as fragmentation caused by those allocations polluting movable pageblocks 1823 * is worse than movable allocations stealing from unmovable and reclaimable 1824 * pageblocks. 1825 */ 1826 static bool can_steal_fallback(unsigned int order, int start_mt) 1827 { 1828 /* 1829 * Leaving this order check is intended, although there is 1830 * relaxed order check in next check. The reason is that 1831 * we can actually steal whole pageblock if this condition met, 1832 * but, below check doesn't guarantee it and that is just heuristic 1833 * so could be changed anytime. 1834 */ 1835 if (order >= pageblock_order) 1836 return true; 1837 1838 if (order >= pageblock_order / 2 || 1839 start_mt == MIGRATE_RECLAIMABLE || 1840 start_mt == MIGRATE_UNMOVABLE || 1841 page_group_by_mobility_disabled) 1842 return true; 1843 1844 return false; 1845 } 1846 1847 static inline bool boost_watermark(struct zone *zone) 1848 { 1849 unsigned long max_boost; 1850 1851 if (!watermark_boost_factor) 1852 return false; 1853 /* 1854 * Don't bother in zones that are unlikely to produce results. 1855 * On small machines, including kdump capture kernels running 1856 * in a small area, boosting the watermark can cause an out of 1857 * memory situation immediately. 1858 */ 1859 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1860 return false; 1861 1862 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1863 watermark_boost_factor, 10000); 1864 1865 /* 1866 * high watermark may be uninitialised if fragmentation occurs 1867 * very early in boot so do not boost. We do not fall 1868 * through and boost by pageblock_nr_pages as failing 1869 * allocations that early means that reclaim is not going 1870 * to help and it may even be impossible to reclaim the 1871 * boosted watermark resulting in a hang. 1872 */ 1873 if (!max_boost) 1874 return false; 1875 1876 max_boost = max(pageblock_nr_pages, max_boost); 1877 1878 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1879 max_boost); 1880 1881 return true; 1882 } 1883 1884 /* 1885 * This function implements actual steal behaviour. If order is large enough, we 1886 * can claim the whole pageblock for the requested migratetype. If not, we check 1887 * the pageblock for constituent pages; if at least half of the pages are free 1888 * or compatible, we can still claim the whole block, so pages freed in the 1889 * future will be put on the correct free list. Otherwise, we isolate exactly 1890 * the order we need from the fallback block and leave its migratetype alone. 1891 */ 1892 static struct page * 1893 steal_suitable_fallback(struct zone *zone, struct page *page, 1894 int current_order, int order, int start_type, 1895 unsigned int alloc_flags, bool whole_block) 1896 { 1897 int free_pages, movable_pages, alike_pages; 1898 unsigned long start_pfn; 1899 int block_type; 1900 1901 block_type = get_pageblock_migratetype(page); 1902 1903 /* 1904 * This can happen due to races and we want to prevent broken 1905 * highatomic accounting. 1906 */ 1907 if (is_migrate_highatomic(block_type)) 1908 goto single_page; 1909 1910 /* Take ownership for orders >= pageblock_order */ 1911 if (current_order >= pageblock_order) { 1912 unsigned int nr_added; 1913 1914 del_page_from_free_list(page, zone, current_order, block_type); 1915 change_pageblock_range(page, current_order, start_type); 1916 nr_added = expand(zone, page, order, current_order, start_type); 1917 account_freepages(zone, nr_added, start_type); 1918 return page; 1919 } 1920 1921 /* 1922 * Boost watermarks to increase reclaim pressure to reduce the 1923 * likelihood of future fallbacks. Wake kswapd now as the node 1924 * may be balanced overall and kswapd will not wake naturally. 1925 */ 1926 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1927 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1928 1929 /* We are not allowed to try stealing from the whole block */ 1930 if (!whole_block) 1931 goto single_page; 1932 1933 /* moving whole block can fail due to zone boundary conditions */ 1934 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1935 &movable_pages)) 1936 goto single_page; 1937 1938 /* 1939 * Determine how many pages are compatible with our allocation. 1940 * For movable allocation, it's the number of movable pages which 1941 * we just obtained. For other types it's a bit more tricky. 1942 */ 1943 if (start_type == MIGRATE_MOVABLE) { 1944 alike_pages = movable_pages; 1945 } else { 1946 /* 1947 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1948 * to MOVABLE pageblock, consider all non-movable pages as 1949 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1950 * vice versa, be conservative since we can't distinguish the 1951 * exact migratetype of non-movable pages. 1952 */ 1953 if (block_type == MIGRATE_MOVABLE) 1954 alike_pages = pageblock_nr_pages 1955 - (free_pages + movable_pages); 1956 else 1957 alike_pages = 0; 1958 } 1959 /* 1960 * If a sufficient number of pages in the block are either free or of 1961 * compatible migratability as our allocation, claim the whole block. 1962 */ 1963 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1964 page_group_by_mobility_disabled) { 1965 __move_freepages_block(zone, start_pfn, block_type, start_type); 1966 return __rmqueue_smallest(zone, order, start_type); 1967 } 1968 1969 single_page: 1970 page_del_and_expand(zone, page, order, current_order, block_type); 1971 return page; 1972 } 1973 1974 /* 1975 * Check whether there is a suitable fallback freepage with requested order. 1976 * If only_stealable is true, this function returns fallback_mt only if 1977 * we can steal other freepages all together. This would help to reduce 1978 * fragmentation due to mixed migratetype pages in one pageblock. 1979 */ 1980 int find_suitable_fallback(struct free_area *area, unsigned int order, 1981 int migratetype, bool only_stealable, bool *can_steal) 1982 { 1983 int i; 1984 int fallback_mt; 1985 1986 if (area->nr_free == 0) 1987 return -1; 1988 1989 *can_steal = false; 1990 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1991 fallback_mt = fallbacks[migratetype][i]; 1992 if (free_area_empty(area, fallback_mt)) 1993 continue; 1994 1995 if (can_steal_fallback(order, migratetype)) 1996 *can_steal = true; 1997 1998 if (!only_stealable) 1999 return fallback_mt; 2000 2001 if (*can_steal) 2002 return fallback_mt; 2003 } 2004 2005 return -1; 2006 } 2007 2008 /* 2009 * Reserve the pageblock(s) surrounding an allocation request for 2010 * exclusive use of high-order atomic allocations if there are no 2011 * empty page blocks that contain a page with a suitable order 2012 */ 2013 static void reserve_highatomic_pageblock(struct page *page, int order, 2014 struct zone *zone) 2015 { 2016 int mt; 2017 unsigned long max_managed, flags; 2018 2019 /* 2020 * The number reserved as: minimum is 1 pageblock, maximum is 2021 * roughly 1% of a zone. But if 1% of a zone falls below a 2022 * pageblock size, then don't reserve any pageblocks. 2023 * Check is race-prone but harmless. 2024 */ 2025 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 2026 return; 2027 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 2028 if (zone->nr_reserved_highatomic >= max_managed) 2029 return; 2030 2031 spin_lock_irqsave(&zone->lock, flags); 2032 2033 /* Recheck the nr_reserved_highatomic limit under the lock */ 2034 if (zone->nr_reserved_highatomic >= max_managed) 2035 goto out_unlock; 2036 2037 /* Yoink! */ 2038 mt = get_pageblock_migratetype(page); 2039 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2040 if (!migratetype_is_mergeable(mt)) 2041 goto out_unlock; 2042 2043 if (order < pageblock_order) { 2044 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 2045 goto out_unlock; 2046 zone->nr_reserved_highatomic += pageblock_nr_pages; 2047 } else { 2048 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 2049 zone->nr_reserved_highatomic += 1 << order; 2050 } 2051 2052 out_unlock: 2053 spin_unlock_irqrestore(&zone->lock, flags); 2054 } 2055 2056 /* 2057 * Used when an allocation is about to fail under memory pressure. This 2058 * potentially hurts the reliability of high-order allocations when under 2059 * intense memory pressure but failed atomic allocations should be easier 2060 * to recover from than an OOM. 2061 * 2062 * If @force is true, try to unreserve pageblocks even though highatomic 2063 * pageblock is exhausted. 2064 */ 2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2066 bool force) 2067 { 2068 struct zonelist *zonelist = ac->zonelist; 2069 unsigned long flags; 2070 struct zoneref *z; 2071 struct zone *zone; 2072 struct page *page; 2073 int order; 2074 int ret; 2075 2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2077 ac->nodemask) { 2078 /* 2079 * Preserve at least one pageblock unless memory pressure 2080 * is really high. 2081 */ 2082 if (!force && zone->nr_reserved_highatomic <= 2083 pageblock_nr_pages) 2084 continue; 2085 2086 spin_lock_irqsave(&zone->lock, flags); 2087 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2088 struct free_area *area = &(zone->free_area[order]); 2089 int mt; 2090 2091 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2092 if (!page) 2093 continue; 2094 2095 mt = get_pageblock_migratetype(page); 2096 /* 2097 * In page freeing path, migratetype change is racy so 2098 * we can counter several free pages in a pageblock 2099 * in this loop although we changed the pageblock type 2100 * from highatomic to ac->migratetype. So we should 2101 * adjust the count once. 2102 */ 2103 if (is_migrate_highatomic(mt)) { 2104 unsigned long size; 2105 /* 2106 * It should never happen but changes to 2107 * locking could inadvertently allow a per-cpu 2108 * drain to add pages to MIGRATE_HIGHATOMIC 2109 * while unreserving so be safe and watch for 2110 * underflows. 2111 */ 2112 size = max(pageblock_nr_pages, 1UL << order); 2113 size = min(size, zone->nr_reserved_highatomic); 2114 zone->nr_reserved_highatomic -= size; 2115 } 2116 2117 /* 2118 * Convert to ac->migratetype and avoid the normal 2119 * pageblock stealing heuristics. Minimally, the caller 2120 * is doing the work and needs the pages. More 2121 * importantly, if the block was always converted to 2122 * MIGRATE_UNMOVABLE or another type then the number 2123 * of pageblocks that cannot be completely freed 2124 * may increase. 2125 */ 2126 if (order < pageblock_order) 2127 ret = move_freepages_block(zone, page, mt, 2128 ac->migratetype); 2129 else { 2130 move_to_free_list(page, zone, order, mt, 2131 ac->migratetype); 2132 change_pageblock_range(page, order, 2133 ac->migratetype); 2134 ret = 1; 2135 } 2136 /* 2137 * Reserving the block(s) already succeeded, 2138 * so this should not fail on zone boundaries. 2139 */ 2140 WARN_ON_ONCE(ret == -1); 2141 if (ret > 0) { 2142 spin_unlock_irqrestore(&zone->lock, flags); 2143 return ret; 2144 } 2145 } 2146 spin_unlock_irqrestore(&zone->lock, flags); 2147 } 2148 2149 return false; 2150 } 2151 2152 /* 2153 * Try finding a free buddy page on the fallback list and put it on the free 2154 * list of requested migratetype, possibly along with other pages from the same 2155 * block, depending on fragmentation avoidance heuristics. Returns true if 2156 * fallback was found so that __rmqueue_smallest() can grab it. 2157 * 2158 * The use of signed ints for order and current_order is a deliberate 2159 * deviation from the rest of this file, to make the for loop 2160 * condition simpler. 2161 */ 2162 static __always_inline struct page * 2163 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2164 unsigned int alloc_flags) 2165 { 2166 struct free_area *area; 2167 int current_order; 2168 int min_order = order; 2169 struct page *page; 2170 int fallback_mt; 2171 bool can_steal; 2172 2173 /* 2174 * Do not steal pages from freelists belonging to other pageblocks 2175 * i.e. orders < pageblock_order. If there are no local zones free, 2176 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2177 */ 2178 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2179 min_order = pageblock_order; 2180 2181 /* 2182 * Find the largest available free page in the other list. This roughly 2183 * approximates finding the pageblock with the most free pages, which 2184 * would be too costly to do exactly. 2185 */ 2186 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2187 --current_order) { 2188 area = &(zone->free_area[current_order]); 2189 fallback_mt = find_suitable_fallback(area, current_order, 2190 start_migratetype, false, &can_steal); 2191 if (fallback_mt == -1) 2192 continue; 2193 2194 /* 2195 * We cannot steal all free pages from the pageblock and the 2196 * requested migratetype is movable. In that case it's better to 2197 * steal and split the smallest available page instead of the 2198 * largest available page, because even if the next movable 2199 * allocation falls back into a different pageblock than this 2200 * one, it won't cause permanent fragmentation. 2201 */ 2202 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2203 && current_order > order) 2204 goto find_smallest; 2205 2206 goto do_steal; 2207 } 2208 2209 return NULL; 2210 2211 find_smallest: 2212 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2213 area = &(zone->free_area[current_order]); 2214 fallback_mt = find_suitable_fallback(area, current_order, 2215 start_migratetype, false, &can_steal); 2216 if (fallback_mt != -1) 2217 break; 2218 } 2219 2220 /* 2221 * This should not happen - we already found a suitable fallback 2222 * when looking for the largest page. 2223 */ 2224 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2225 2226 do_steal: 2227 page = get_page_from_free_area(area, fallback_mt); 2228 2229 /* take off list, maybe claim block, expand remainder */ 2230 page = steal_suitable_fallback(zone, page, current_order, order, 2231 start_migratetype, alloc_flags, can_steal); 2232 2233 trace_mm_page_alloc_extfrag(page, order, current_order, 2234 start_migratetype, fallback_mt); 2235 2236 return page; 2237 } 2238 2239 /* 2240 * Do the hard work of removing an element from the buddy allocator. 2241 * Call me with the zone->lock already held. 2242 */ 2243 static __always_inline struct page * 2244 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2245 unsigned int alloc_flags) 2246 { 2247 struct page *page; 2248 2249 if (IS_ENABLED(CONFIG_CMA)) { 2250 /* 2251 * Balance movable allocations between regular and CMA areas by 2252 * allocating from CMA when over half of the zone's free memory 2253 * is in the CMA area. 2254 */ 2255 if (alloc_flags & ALLOC_CMA && 2256 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2257 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2258 page = __rmqueue_cma_fallback(zone, order); 2259 if (page) 2260 return page; 2261 } 2262 } 2263 2264 page = __rmqueue_smallest(zone, order, migratetype); 2265 if (unlikely(!page)) { 2266 if (alloc_flags & ALLOC_CMA) 2267 page = __rmqueue_cma_fallback(zone, order); 2268 2269 if (!page) 2270 page = __rmqueue_fallback(zone, order, migratetype, 2271 alloc_flags); 2272 } 2273 return page; 2274 } 2275 2276 /* 2277 * Obtain a specified number of elements from the buddy allocator, all under 2278 * a single hold of the lock, for efficiency. Add them to the supplied list. 2279 * Returns the number of new pages which were placed at *list. 2280 */ 2281 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2282 unsigned long count, struct list_head *list, 2283 int migratetype, unsigned int alloc_flags) 2284 { 2285 unsigned long flags; 2286 int i; 2287 2288 spin_lock_irqsave(&zone->lock, flags); 2289 for (i = 0; i < count; ++i) { 2290 struct page *page = __rmqueue(zone, order, migratetype, 2291 alloc_flags); 2292 if (unlikely(page == NULL)) 2293 break; 2294 2295 /* 2296 * Split buddy pages returned by expand() are received here in 2297 * physical page order. The page is added to the tail of 2298 * caller's list. From the callers perspective, the linked list 2299 * is ordered by page number under some conditions. This is 2300 * useful for IO devices that can forward direction from the 2301 * head, thus also in the physical page order. This is useful 2302 * for IO devices that can merge IO requests if the physical 2303 * pages are ordered properly. 2304 */ 2305 list_add_tail(&page->pcp_list, list); 2306 } 2307 spin_unlock_irqrestore(&zone->lock, flags); 2308 2309 return i; 2310 } 2311 2312 /* 2313 * Called from the vmstat counter updater to decay the PCP high. 2314 * Return whether there are addition works to do. 2315 */ 2316 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2317 { 2318 int high_min, to_drain, batch; 2319 int todo = 0; 2320 2321 high_min = READ_ONCE(pcp->high_min); 2322 batch = READ_ONCE(pcp->batch); 2323 /* 2324 * Decrease pcp->high periodically to try to free possible 2325 * idle PCP pages. And, avoid to free too many pages to 2326 * control latency. This caps pcp->high decrement too. 2327 */ 2328 if (pcp->high > high_min) { 2329 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2330 pcp->high - (pcp->high >> 3), high_min); 2331 if (pcp->high > high_min) 2332 todo++; 2333 } 2334 2335 to_drain = pcp->count - pcp->high; 2336 if (to_drain > 0) { 2337 spin_lock(&pcp->lock); 2338 free_pcppages_bulk(zone, to_drain, pcp, 0); 2339 spin_unlock(&pcp->lock); 2340 todo++; 2341 } 2342 2343 return todo; 2344 } 2345 2346 #ifdef CONFIG_NUMA 2347 /* 2348 * Called from the vmstat counter updater to drain pagesets of this 2349 * currently executing processor on remote nodes after they have 2350 * expired. 2351 */ 2352 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2353 { 2354 int to_drain, batch; 2355 2356 batch = READ_ONCE(pcp->batch); 2357 to_drain = min(pcp->count, batch); 2358 if (to_drain > 0) { 2359 spin_lock(&pcp->lock); 2360 free_pcppages_bulk(zone, to_drain, pcp, 0); 2361 spin_unlock(&pcp->lock); 2362 } 2363 } 2364 #endif 2365 2366 /* 2367 * Drain pcplists of the indicated processor and zone. 2368 */ 2369 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2370 { 2371 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2372 int count; 2373 2374 do { 2375 spin_lock(&pcp->lock); 2376 count = pcp->count; 2377 if (count) { 2378 int to_drain = min(count, 2379 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2380 2381 free_pcppages_bulk(zone, to_drain, pcp, 0); 2382 count -= to_drain; 2383 } 2384 spin_unlock(&pcp->lock); 2385 } while (count); 2386 } 2387 2388 /* 2389 * Drain pcplists of all zones on the indicated processor. 2390 */ 2391 static void drain_pages(unsigned int cpu) 2392 { 2393 struct zone *zone; 2394 2395 for_each_populated_zone(zone) { 2396 drain_pages_zone(cpu, zone); 2397 } 2398 } 2399 2400 /* 2401 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2402 */ 2403 void drain_local_pages(struct zone *zone) 2404 { 2405 int cpu = smp_processor_id(); 2406 2407 if (zone) 2408 drain_pages_zone(cpu, zone); 2409 else 2410 drain_pages(cpu); 2411 } 2412 2413 /* 2414 * The implementation of drain_all_pages(), exposing an extra parameter to 2415 * drain on all cpus. 2416 * 2417 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2418 * not empty. The check for non-emptiness can however race with a free to 2419 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2420 * that need the guarantee that every CPU has drained can disable the 2421 * optimizing racy check. 2422 */ 2423 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2424 { 2425 int cpu; 2426 2427 /* 2428 * Allocate in the BSS so we won't require allocation in 2429 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2430 */ 2431 static cpumask_t cpus_with_pcps; 2432 2433 /* 2434 * Do not drain if one is already in progress unless it's specific to 2435 * a zone. Such callers are primarily CMA and memory hotplug and need 2436 * the drain to be complete when the call returns. 2437 */ 2438 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2439 if (!zone) 2440 return; 2441 mutex_lock(&pcpu_drain_mutex); 2442 } 2443 2444 /* 2445 * We don't care about racing with CPU hotplug event 2446 * as offline notification will cause the notified 2447 * cpu to drain that CPU pcps and on_each_cpu_mask 2448 * disables preemption as part of its processing 2449 */ 2450 for_each_online_cpu(cpu) { 2451 struct per_cpu_pages *pcp; 2452 struct zone *z; 2453 bool has_pcps = false; 2454 2455 if (force_all_cpus) { 2456 /* 2457 * The pcp.count check is racy, some callers need a 2458 * guarantee that no cpu is missed. 2459 */ 2460 has_pcps = true; 2461 } else if (zone) { 2462 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2463 if (pcp->count) 2464 has_pcps = true; 2465 } else { 2466 for_each_populated_zone(z) { 2467 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2468 if (pcp->count) { 2469 has_pcps = true; 2470 break; 2471 } 2472 } 2473 } 2474 2475 if (has_pcps) 2476 cpumask_set_cpu(cpu, &cpus_with_pcps); 2477 else 2478 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2479 } 2480 2481 for_each_cpu(cpu, &cpus_with_pcps) { 2482 if (zone) 2483 drain_pages_zone(cpu, zone); 2484 else 2485 drain_pages(cpu); 2486 } 2487 2488 mutex_unlock(&pcpu_drain_mutex); 2489 } 2490 2491 /* 2492 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2493 * 2494 * When zone parameter is non-NULL, spill just the single zone's pages. 2495 */ 2496 void drain_all_pages(struct zone *zone) 2497 { 2498 __drain_all_pages(zone, false); 2499 } 2500 2501 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2502 { 2503 int min_nr_free, max_nr_free; 2504 2505 /* Free as much as possible if batch freeing high-order pages. */ 2506 if (unlikely(free_high)) 2507 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2508 2509 /* Check for PCP disabled or boot pageset */ 2510 if (unlikely(high < batch)) 2511 return 1; 2512 2513 /* Leave at least pcp->batch pages on the list */ 2514 min_nr_free = batch; 2515 max_nr_free = high - batch; 2516 2517 /* 2518 * Increase the batch number to the number of the consecutive 2519 * freed pages to reduce zone lock contention. 2520 */ 2521 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2522 2523 return batch; 2524 } 2525 2526 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2527 int batch, bool free_high) 2528 { 2529 int high, high_min, high_max; 2530 2531 high_min = READ_ONCE(pcp->high_min); 2532 high_max = READ_ONCE(pcp->high_max); 2533 high = pcp->high = clamp(pcp->high, high_min, high_max); 2534 2535 if (unlikely(!high)) 2536 return 0; 2537 2538 if (unlikely(free_high)) { 2539 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2540 high_min); 2541 return 0; 2542 } 2543 2544 /* 2545 * If reclaim is active, limit the number of pages that can be 2546 * stored on pcp lists 2547 */ 2548 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2549 int free_count = max_t(int, pcp->free_count, batch); 2550 2551 pcp->high = max(high - free_count, high_min); 2552 return min(batch << 2, pcp->high); 2553 } 2554 2555 if (high_min == high_max) 2556 return high; 2557 2558 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2559 int free_count = max_t(int, pcp->free_count, batch); 2560 2561 pcp->high = max(high - free_count, high_min); 2562 high = max(pcp->count, high_min); 2563 } else if (pcp->count >= high) { 2564 int need_high = pcp->free_count + batch; 2565 2566 /* pcp->high should be large enough to hold batch freed pages */ 2567 if (pcp->high < need_high) 2568 pcp->high = clamp(need_high, high_min, high_max); 2569 } 2570 2571 return high; 2572 } 2573 2574 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2575 struct page *page, int migratetype, 2576 unsigned int order) 2577 { 2578 int high, batch; 2579 int pindex; 2580 bool free_high = false; 2581 2582 /* 2583 * On freeing, reduce the number of pages that are batch allocated. 2584 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2585 * allocations. 2586 */ 2587 pcp->alloc_factor >>= 1; 2588 __count_vm_events(PGFREE, 1 << order); 2589 pindex = order_to_pindex(migratetype, order); 2590 list_add(&page->pcp_list, &pcp->lists[pindex]); 2591 pcp->count += 1 << order; 2592 2593 batch = READ_ONCE(pcp->batch); 2594 /* 2595 * As high-order pages other than THP's stored on PCP can contribute 2596 * to fragmentation, limit the number stored when PCP is heavily 2597 * freeing without allocation. The remainder after bulk freeing 2598 * stops will be drained from vmstat refresh context. 2599 */ 2600 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2601 free_high = (pcp->free_count >= batch && 2602 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2603 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2604 pcp->count >= READ_ONCE(batch))); 2605 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2606 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2607 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2608 } 2609 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2610 pcp->free_count += (1 << order); 2611 high = nr_pcp_high(pcp, zone, batch, free_high); 2612 if (pcp->count >= high) { 2613 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2614 pcp, pindex); 2615 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2616 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2617 ZONE_MOVABLE, 0)) 2618 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2619 } 2620 } 2621 2622 /* 2623 * Free a pcp page 2624 */ 2625 void free_unref_page(struct page *page, unsigned int order) 2626 { 2627 unsigned long __maybe_unused UP_flags; 2628 struct per_cpu_pages *pcp; 2629 struct zone *zone; 2630 unsigned long pfn = page_to_pfn(page); 2631 int migratetype; 2632 2633 if (!pcp_allowed_order(order)) { 2634 __free_pages_ok(page, order, FPI_NONE); 2635 return; 2636 } 2637 2638 if (!free_pages_prepare(page, order)) 2639 return; 2640 2641 /* 2642 * We only track unmovable, reclaimable and movable on pcp lists. 2643 * Place ISOLATE pages on the isolated list because they are being 2644 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2645 * get those areas back if necessary. Otherwise, we may have to free 2646 * excessively into the page allocator 2647 */ 2648 migratetype = get_pfnblock_migratetype(page, pfn); 2649 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2650 if (unlikely(is_migrate_isolate(migratetype))) { 2651 free_one_page(page_zone(page), page, pfn, order, FPI_NONE); 2652 return; 2653 } 2654 migratetype = MIGRATE_MOVABLE; 2655 } 2656 2657 zone = page_zone(page); 2658 pcp_trylock_prepare(UP_flags); 2659 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2660 if (pcp) { 2661 free_unref_page_commit(zone, pcp, page, migratetype, order); 2662 pcp_spin_unlock(pcp); 2663 } else { 2664 free_one_page(zone, page, pfn, order, FPI_NONE); 2665 } 2666 pcp_trylock_finish(UP_flags); 2667 } 2668 2669 /* 2670 * Free a batch of folios 2671 */ 2672 void free_unref_folios(struct folio_batch *folios) 2673 { 2674 unsigned long __maybe_unused UP_flags; 2675 struct per_cpu_pages *pcp = NULL; 2676 struct zone *locked_zone = NULL; 2677 int i, j; 2678 2679 /* Prepare folios for freeing */ 2680 for (i = 0, j = 0; i < folios->nr; i++) { 2681 struct folio *folio = folios->folios[i]; 2682 unsigned long pfn = folio_pfn(folio); 2683 unsigned int order = folio_order(folio); 2684 2685 folio_undo_large_rmappable(folio); 2686 if (!free_pages_prepare(&folio->page, order)) 2687 continue; 2688 /* 2689 * Free orders not handled on the PCP directly to the 2690 * allocator. 2691 */ 2692 if (!pcp_allowed_order(order)) { 2693 free_one_page(folio_zone(folio), &folio->page, 2694 pfn, order, FPI_NONE); 2695 continue; 2696 } 2697 folio->private = (void *)(unsigned long)order; 2698 if (j != i) 2699 folios->folios[j] = folio; 2700 j++; 2701 } 2702 folios->nr = j; 2703 2704 for (i = 0; i < folios->nr; i++) { 2705 struct folio *folio = folios->folios[i]; 2706 struct zone *zone = folio_zone(folio); 2707 unsigned long pfn = folio_pfn(folio); 2708 unsigned int order = (unsigned long)folio->private; 2709 int migratetype; 2710 2711 folio->private = NULL; 2712 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2713 2714 /* Different zone requires a different pcp lock */ 2715 if (zone != locked_zone || 2716 is_migrate_isolate(migratetype)) { 2717 if (pcp) { 2718 pcp_spin_unlock(pcp); 2719 pcp_trylock_finish(UP_flags); 2720 locked_zone = NULL; 2721 pcp = NULL; 2722 } 2723 2724 /* 2725 * Free isolated pages directly to the 2726 * allocator, see comment in free_unref_page. 2727 */ 2728 if (is_migrate_isolate(migratetype)) { 2729 free_one_page(zone, &folio->page, pfn, 2730 order, FPI_NONE); 2731 continue; 2732 } 2733 2734 /* 2735 * trylock is necessary as folios may be getting freed 2736 * from IRQ or SoftIRQ context after an IO completion. 2737 */ 2738 pcp_trylock_prepare(UP_flags); 2739 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2740 if (unlikely(!pcp)) { 2741 pcp_trylock_finish(UP_flags); 2742 free_one_page(zone, &folio->page, pfn, 2743 order, FPI_NONE); 2744 continue; 2745 } 2746 locked_zone = zone; 2747 } 2748 2749 /* 2750 * Non-isolated types over MIGRATE_PCPTYPES get added 2751 * to the MIGRATE_MOVABLE pcp list. 2752 */ 2753 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2754 migratetype = MIGRATE_MOVABLE; 2755 2756 trace_mm_page_free_batched(&folio->page); 2757 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2758 order); 2759 } 2760 2761 if (pcp) { 2762 pcp_spin_unlock(pcp); 2763 pcp_trylock_finish(UP_flags); 2764 } 2765 folio_batch_reinit(folios); 2766 } 2767 2768 /* 2769 * split_page takes a non-compound higher-order page, and splits it into 2770 * n (1<<order) sub-pages: page[0..n] 2771 * Each sub-page must be freed individually. 2772 * 2773 * Note: this is probably too low level an operation for use in drivers. 2774 * Please consult with lkml before using this in your driver. 2775 */ 2776 void split_page(struct page *page, unsigned int order) 2777 { 2778 int i; 2779 2780 VM_BUG_ON_PAGE(PageCompound(page), page); 2781 VM_BUG_ON_PAGE(!page_count(page), page); 2782 2783 for (i = 1; i < (1 << order); i++) 2784 set_page_refcounted(page + i); 2785 split_page_owner(page, order, 0); 2786 pgalloc_tag_split(page_folio(page), order, 0); 2787 split_page_memcg(page, order, 0); 2788 } 2789 EXPORT_SYMBOL_GPL(split_page); 2790 2791 int __isolate_free_page(struct page *page, unsigned int order) 2792 { 2793 struct zone *zone = page_zone(page); 2794 int mt = get_pageblock_migratetype(page); 2795 2796 if (!is_migrate_isolate(mt)) { 2797 unsigned long watermark; 2798 /* 2799 * Obey watermarks as if the page was being allocated. We can 2800 * emulate a high-order watermark check with a raised order-0 2801 * watermark, because we already know our high-order page 2802 * exists. 2803 */ 2804 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2805 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2806 return 0; 2807 } 2808 2809 del_page_from_free_list(page, zone, order, mt); 2810 2811 /* 2812 * Set the pageblock if the isolated page is at least half of a 2813 * pageblock 2814 */ 2815 if (order >= pageblock_order - 1) { 2816 struct page *endpage = page + (1 << order) - 1; 2817 for (; page < endpage; page += pageblock_nr_pages) { 2818 int mt = get_pageblock_migratetype(page); 2819 /* 2820 * Only change normal pageblocks (i.e., they can merge 2821 * with others) 2822 */ 2823 if (migratetype_is_mergeable(mt)) 2824 move_freepages_block(zone, page, mt, 2825 MIGRATE_MOVABLE); 2826 } 2827 } 2828 2829 return 1UL << order; 2830 } 2831 2832 /** 2833 * __putback_isolated_page - Return a now-isolated page back where we got it 2834 * @page: Page that was isolated 2835 * @order: Order of the isolated page 2836 * @mt: The page's pageblock's migratetype 2837 * 2838 * This function is meant to return a page pulled from the free lists via 2839 * __isolate_free_page back to the free lists they were pulled from. 2840 */ 2841 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2842 { 2843 struct zone *zone = page_zone(page); 2844 2845 /* zone lock should be held when this function is called */ 2846 lockdep_assert_held(&zone->lock); 2847 2848 /* Return isolated page to tail of freelist. */ 2849 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2850 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2851 } 2852 2853 /* 2854 * Update NUMA hit/miss statistics 2855 */ 2856 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2857 long nr_account) 2858 { 2859 #ifdef CONFIG_NUMA 2860 enum numa_stat_item local_stat = NUMA_LOCAL; 2861 2862 /* skip numa counters update if numa stats is disabled */ 2863 if (!static_branch_likely(&vm_numa_stat_key)) 2864 return; 2865 2866 if (zone_to_nid(z) != numa_node_id()) 2867 local_stat = NUMA_OTHER; 2868 2869 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2870 __count_numa_events(z, NUMA_HIT, nr_account); 2871 else { 2872 __count_numa_events(z, NUMA_MISS, nr_account); 2873 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2874 } 2875 __count_numa_events(z, local_stat, nr_account); 2876 #endif 2877 } 2878 2879 static __always_inline 2880 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2881 unsigned int order, unsigned int alloc_flags, 2882 int migratetype) 2883 { 2884 struct page *page; 2885 unsigned long flags; 2886 2887 do { 2888 page = NULL; 2889 spin_lock_irqsave(&zone->lock, flags); 2890 if (alloc_flags & ALLOC_HIGHATOMIC) 2891 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2892 if (!page) { 2893 page = __rmqueue(zone, order, migratetype, alloc_flags); 2894 2895 /* 2896 * If the allocation fails, allow OOM handling and 2897 * order-0 (atomic) allocs access to HIGHATOMIC 2898 * reserves as failing now is worse than failing a 2899 * high-order atomic allocation in the future. 2900 */ 2901 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 2902 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2903 2904 if (!page) { 2905 spin_unlock_irqrestore(&zone->lock, flags); 2906 return NULL; 2907 } 2908 } 2909 spin_unlock_irqrestore(&zone->lock, flags); 2910 } while (check_new_pages(page, order)); 2911 2912 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2913 zone_statistics(preferred_zone, zone, 1); 2914 2915 return page; 2916 } 2917 2918 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2919 { 2920 int high, base_batch, batch, max_nr_alloc; 2921 int high_max, high_min; 2922 2923 base_batch = READ_ONCE(pcp->batch); 2924 high_min = READ_ONCE(pcp->high_min); 2925 high_max = READ_ONCE(pcp->high_max); 2926 high = pcp->high = clamp(pcp->high, high_min, high_max); 2927 2928 /* Check for PCP disabled or boot pageset */ 2929 if (unlikely(high < base_batch)) 2930 return 1; 2931 2932 if (order) 2933 batch = base_batch; 2934 else 2935 batch = (base_batch << pcp->alloc_factor); 2936 2937 /* 2938 * If we had larger pcp->high, we could avoid to allocate from 2939 * zone. 2940 */ 2941 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2942 high = pcp->high = min(high + batch, high_max); 2943 2944 if (!order) { 2945 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2946 /* 2947 * Double the number of pages allocated each time there is 2948 * subsequent allocation of order-0 pages without any freeing. 2949 */ 2950 if (batch <= max_nr_alloc && 2951 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2952 pcp->alloc_factor++; 2953 batch = min(batch, max_nr_alloc); 2954 } 2955 2956 /* 2957 * Scale batch relative to order if batch implies free pages 2958 * can be stored on the PCP. Batch can be 1 for small zones or 2959 * for boot pagesets which should never store free pages as 2960 * the pages may belong to arbitrary zones. 2961 */ 2962 if (batch > 1) 2963 batch = max(batch >> order, 2); 2964 2965 return batch; 2966 } 2967 2968 /* Remove page from the per-cpu list, caller must protect the list */ 2969 static inline 2970 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2971 int migratetype, 2972 unsigned int alloc_flags, 2973 struct per_cpu_pages *pcp, 2974 struct list_head *list) 2975 { 2976 struct page *page; 2977 2978 do { 2979 if (list_empty(list)) { 2980 int batch = nr_pcp_alloc(pcp, zone, order); 2981 int alloced; 2982 2983 alloced = rmqueue_bulk(zone, order, 2984 batch, list, 2985 migratetype, alloc_flags); 2986 2987 pcp->count += alloced << order; 2988 if (unlikely(list_empty(list))) 2989 return NULL; 2990 } 2991 2992 page = list_first_entry(list, struct page, pcp_list); 2993 list_del(&page->pcp_list); 2994 pcp->count -= 1 << order; 2995 } while (check_new_pages(page, order)); 2996 2997 return page; 2998 } 2999 3000 /* Lock and remove page from the per-cpu list */ 3001 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3002 struct zone *zone, unsigned int order, 3003 int migratetype, unsigned int alloc_flags) 3004 { 3005 struct per_cpu_pages *pcp; 3006 struct list_head *list; 3007 struct page *page; 3008 unsigned long __maybe_unused UP_flags; 3009 3010 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3011 pcp_trylock_prepare(UP_flags); 3012 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3013 if (!pcp) { 3014 pcp_trylock_finish(UP_flags); 3015 return NULL; 3016 } 3017 3018 /* 3019 * On allocation, reduce the number of pages that are batch freed. 3020 * See nr_pcp_free() where free_factor is increased for subsequent 3021 * frees. 3022 */ 3023 pcp->free_count >>= 1; 3024 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3025 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3026 pcp_spin_unlock(pcp); 3027 pcp_trylock_finish(UP_flags); 3028 if (page) { 3029 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3030 zone_statistics(preferred_zone, zone, 1); 3031 } 3032 return page; 3033 } 3034 3035 /* 3036 * Allocate a page from the given zone. 3037 * Use pcplists for THP or "cheap" high-order allocations. 3038 */ 3039 3040 /* 3041 * Do not instrument rmqueue() with KMSAN. This function may call 3042 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3043 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3044 * may call rmqueue() again, which will result in a deadlock. 3045 */ 3046 __no_sanitize_memory 3047 static inline 3048 struct page *rmqueue(struct zone *preferred_zone, 3049 struct zone *zone, unsigned int order, 3050 gfp_t gfp_flags, unsigned int alloc_flags, 3051 int migratetype) 3052 { 3053 struct page *page; 3054 3055 if (likely(pcp_allowed_order(order))) { 3056 page = rmqueue_pcplist(preferred_zone, zone, order, 3057 migratetype, alloc_flags); 3058 if (likely(page)) 3059 goto out; 3060 } 3061 3062 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3063 migratetype); 3064 3065 out: 3066 /* Separate test+clear to avoid unnecessary atomics */ 3067 if ((alloc_flags & ALLOC_KSWAPD) && 3068 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3069 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3070 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3071 } 3072 3073 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3074 return page; 3075 } 3076 3077 static inline long __zone_watermark_unusable_free(struct zone *z, 3078 unsigned int order, unsigned int alloc_flags) 3079 { 3080 long unusable_free = (1 << order) - 1; 3081 3082 /* 3083 * If the caller does not have rights to reserves below the min 3084 * watermark then subtract the high-atomic reserves. This will 3085 * over-estimate the size of the atomic reserve but it avoids a search. 3086 */ 3087 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3088 unusable_free += z->nr_reserved_highatomic; 3089 3090 #ifdef CONFIG_CMA 3091 /* If allocation can't use CMA areas don't use free CMA pages */ 3092 if (!(alloc_flags & ALLOC_CMA)) 3093 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3094 #endif 3095 3096 return unusable_free; 3097 } 3098 3099 /* 3100 * Return true if free base pages are above 'mark'. For high-order checks it 3101 * will return true of the order-0 watermark is reached and there is at least 3102 * one free page of a suitable size. Checking now avoids taking the zone lock 3103 * to check in the allocation paths if no pages are free. 3104 */ 3105 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3106 int highest_zoneidx, unsigned int alloc_flags, 3107 long free_pages) 3108 { 3109 long min = mark; 3110 int o; 3111 3112 /* free_pages may go negative - that's OK */ 3113 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3114 3115 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3116 /* 3117 * __GFP_HIGH allows access to 50% of the min reserve as well 3118 * as OOM. 3119 */ 3120 if (alloc_flags & ALLOC_MIN_RESERVE) { 3121 min -= min / 2; 3122 3123 /* 3124 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3125 * access more reserves than just __GFP_HIGH. Other 3126 * non-blocking allocations requests such as GFP_NOWAIT 3127 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3128 * access to the min reserve. 3129 */ 3130 if (alloc_flags & ALLOC_NON_BLOCK) 3131 min -= min / 4; 3132 } 3133 3134 /* 3135 * OOM victims can try even harder than the normal reserve 3136 * users on the grounds that it's definitely going to be in 3137 * the exit path shortly and free memory. Any allocation it 3138 * makes during the free path will be small and short-lived. 3139 */ 3140 if (alloc_flags & ALLOC_OOM) 3141 min -= min / 2; 3142 } 3143 3144 /* 3145 * Check watermarks for an order-0 allocation request. If these 3146 * are not met, then a high-order request also cannot go ahead 3147 * even if a suitable page happened to be free. 3148 */ 3149 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3150 return false; 3151 3152 /* If this is an order-0 request then the watermark is fine */ 3153 if (!order) 3154 return true; 3155 3156 /* For a high-order request, check at least one suitable page is free */ 3157 for (o = order; o < NR_PAGE_ORDERS; o++) { 3158 struct free_area *area = &z->free_area[o]; 3159 int mt; 3160 3161 if (!area->nr_free) 3162 continue; 3163 3164 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3165 if (!free_area_empty(area, mt)) 3166 return true; 3167 } 3168 3169 #ifdef CONFIG_CMA 3170 if ((alloc_flags & ALLOC_CMA) && 3171 !free_area_empty(area, MIGRATE_CMA)) { 3172 return true; 3173 } 3174 #endif 3175 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3176 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3177 return true; 3178 } 3179 } 3180 return false; 3181 } 3182 3183 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3184 int highest_zoneidx, unsigned int alloc_flags) 3185 { 3186 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3187 zone_page_state(z, NR_FREE_PAGES)); 3188 } 3189 3190 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3191 unsigned long mark, int highest_zoneidx, 3192 unsigned int alloc_flags, gfp_t gfp_mask) 3193 { 3194 long free_pages; 3195 3196 free_pages = zone_page_state(z, NR_FREE_PAGES); 3197 3198 /* 3199 * Fast check for order-0 only. If this fails then the reserves 3200 * need to be calculated. 3201 */ 3202 if (!order) { 3203 long usable_free; 3204 long reserved; 3205 3206 usable_free = free_pages; 3207 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3208 3209 /* reserved may over estimate high-atomic reserves. */ 3210 usable_free -= min(usable_free, reserved); 3211 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3212 return true; 3213 } 3214 3215 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3216 free_pages)) 3217 return true; 3218 3219 /* 3220 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3221 * when checking the min watermark. The min watermark is the 3222 * point where boosting is ignored so that kswapd is woken up 3223 * when below the low watermark. 3224 */ 3225 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3226 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3227 mark = z->_watermark[WMARK_MIN]; 3228 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3229 alloc_flags, free_pages); 3230 } 3231 3232 return false; 3233 } 3234 3235 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3236 unsigned long mark, int highest_zoneidx) 3237 { 3238 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3239 3240 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3241 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3242 3243 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3244 free_pages); 3245 } 3246 3247 #ifdef CONFIG_NUMA 3248 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3249 3250 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3251 { 3252 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3253 node_reclaim_distance; 3254 } 3255 #else /* CONFIG_NUMA */ 3256 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3257 { 3258 return true; 3259 } 3260 #endif /* CONFIG_NUMA */ 3261 3262 /* 3263 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3264 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3265 * premature use of a lower zone may cause lowmem pressure problems that 3266 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3267 * probably too small. It only makes sense to spread allocations to avoid 3268 * fragmentation between the Normal and DMA32 zones. 3269 */ 3270 static inline unsigned int 3271 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3272 { 3273 unsigned int alloc_flags; 3274 3275 /* 3276 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3277 * to save a branch. 3278 */ 3279 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3280 3281 #ifdef CONFIG_ZONE_DMA32 3282 if (!zone) 3283 return alloc_flags; 3284 3285 if (zone_idx(zone) != ZONE_NORMAL) 3286 return alloc_flags; 3287 3288 /* 3289 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3290 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3291 * on UMA that if Normal is populated then so is DMA32. 3292 */ 3293 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3294 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3295 return alloc_flags; 3296 3297 alloc_flags |= ALLOC_NOFRAGMENT; 3298 #endif /* CONFIG_ZONE_DMA32 */ 3299 return alloc_flags; 3300 } 3301 3302 /* Must be called after current_gfp_context() which can change gfp_mask */ 3303 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3304 unsigned int alloc_flags) 3305 { 3306 #ifdef CONFIG_CMA 3307 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3308 alloc_flags |= ALLOC_CMA; 3309 #endif 3310 return alloc_flags; 3311 } 3312 3313 /* 3314 * get_page_from_freelist goes through the zonelist trying to allocate 3315 * a page. 3316 */ 3317 static struct page * 3318 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3319 const struct alloc_context *ac) 3320 { 3321 struct zoneref *z; 3322 struct zone *zone; 3323 struct pglist_data *last_pgdat = NULL; 3324 bool last_pgdat_dirty_ok = false; 3325 bool no_fallback; 3326 3327 retry: 3328 /* 3329 * Scan zonelist, looking for a zone with enough free. 3330 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3331 */ 3332 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3333 z = ac->preferred_zoneref; 3334 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3335 ac->nodemask) { 3336 struct page *page; 3337 unsigned long mark; 3338 3339 if (cpusets_enabled() && 3340 (alloc_flags & ALLOC_CPUSET) && 3341 !__cpuset_zone_allowed(zone, gfp_mask)) 3342 continue; 3343 /* 3344 * When allocating a page cache page for writing, we 3345 * want to get it from a node that is within its dirty 3346 * limit, such that no single node holds more than its 3347 * proportional share of globally allowed dirty pages. 3348 * The dirty limits take into account the node's 3349 * lowmem reserves and high watermark so that kswapd 3350 * should be able to balance it without having to 3351 * write pages from its LRU list. 3352 * 3353 * XXX: For now, allow allocations to potentially 3354 * exceed the per-node dirty limit in the slowpath 3355 * (spread_dirty_pages unset) before going into reclaim, 3356 * which is important when on a NUMA setup the allowed 3357 * nodes are together not big enough to reach the 3358 * global limit. The proper fix for these situations 3359 * will require awareness of nodes in the 3360 * dirty-throttling and the flusher threads. 3361 */ 3362 if (ac->spread_dirty_pages) { 3363 if (last_pgdat != zone->zone_pgdat) { 3364 last_pgdat = zone->zone_pgdat; 3365 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3366 } 3367 3368 if (!last_pgdat_dirty_ok) 3369 continue; 3370 } 3371 3372 if (no_fallback && nr_online_nodes > 1 && 3373 zone != zonelist_zone(ac->preferred_zoneref)) { 3374 int local_nid; 3375 3376 /* 3377 * If moving to a remote node, retry but allow 3378 * fragmenting fallbacks. Locality is more important 3379 * than fragmentation avoidance. 3380 */ 3381 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3382 if (zone_to_nid(zone) != local_nid) { 3383 alloc_flags &= ~ALLOC_NOFRAGMENT; 3384 goto retry; 3385 } 3386 } 3387 3388 cond_accept_memory(zone, order); 3389 3390 /* 3391 * Detect whether the number of free pages is below high 3392 * watermark. If so, we will decrease pcp->high and free 3393 * PCP pages in free path to reduce the possibility of 3394 * premature page reclaiming. Detection is done here to 3395 * avoid to do that in hotter free path. 3396 */ 3397 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3398 goto check_alloc_wmark; 3399 3400 mark = high_wmark_pages(zone); 3401 if (zone_watermark_fast(zone, order, mark, 3402 ac->highest_zoneidx, alloc_flags, 3403 gfp_mask)) 3404 goto try_this_zone; 3405 else 3406 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3407 3408 check_alloc_wmark: 3409 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3410 if (!zone_watermark_fast(zone, order, mark, 3411 ac->highest_zoneidx, alloc_flags, 3412 gfp_mask)) { 3413 int ret; 3414 3415 if (cond_accept_memory(zone, order)) 3416 goto try_this_zone; 3417 3418 /* 3419 * Watermark failed for this zone, but see if we can 3420 * grow this zone if it contains deferred pages. 3421 */ 3422 if (deferred_pages_enabled()) { 3423 if (_deferred_grow_zone(zone, order)) 3424 goto try_this_zone; 3425 } 3426 /* Checked here to keep the fast path fast */ 3427 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3428 if (alloc_flags & ALLOC_NO_WATERMARKS) 3429 goto try_this_zone; 3430 3431 if (!node_reclaim_enabled() || 3432 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3433 continue; 3434 3435 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3436 switch (ret) { 3437 case NODE_RECLAIM_NOSCAN: 3438 /* did not scan */ 3439 continue; 3440 case NODE_RECLAIM_FULL: 3441 /* scanned but unreclaimable */ 3442 continue; 3443 default: 3444 /* did we reclaim enough */ 3445 if (zone_watermark_ok(zone, order, mark, 3446 ac->highest_zoneidx, alloc_flags)) 3447 goto try_this_zone; 3448 3449 continue; 3450 } 3451 } 3452 3453 try_this_zone: 3454 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3455 gfp_mask, alloc_flags, ac->migratetype); 3456 if (page) { 3457 prep_new_page(page, order, gfp_mask, alloc_flags); 3458 3459 /* 3460 * If this is a high-order atomic allocation then check 3461 * if the pageblock should be reserved for the future 3462 */ 3463 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3464 reserve_highatomic_pageblock(page, order, zone); 3465 3466 return page; 3467 } else { 3468 if (cond_accept_memory(zone, order)) 3469 goto try_this_zone; 3470 3471 /* Try again if zone has deferred pages */ 3472 if (deferred_pages_enabled()) { 3473 if (_deferred_grow_zone(zone, order)) 3474 goto try_this_zone; 3475 } 3476 } 3477 } 3478 3479 /* 3480 * It's possible on a UMA machine to get through all zones that are 3481 * fragmented. If avoiding fragmentation, reset and try again. 3482 */ 3483 if (no_fallback) { 3484 alloc_flags &= ~ALLOC_NOFRAGMENT; 3485 goto retry; 3486 } 3487 3488 return NULL; 3489 } 3490 3491 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3492 { 3493 unsigned int filter = SHOW_MEM_FILTER_NODES; 3494 3495 /* 3496 * This documents exceptions given to allocations in certain 3497 * contexts that are allowed to allocate outside current's set 3498 * of allowed nodes. 3499 */ 3500 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3501 if (tsk_is_oom_victim(current) || 3502 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3503 filter &= ~SHOW_MEM_FILTER_NODES; 3504 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3505 filter &= ~SHOW_MEM_FILTER_NODES; 3506 3507 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3508 } 3509 3510 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3511 { 3512 struct va_format vaf; 3513 va_list args; 3514 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3515 3516 if ((gfp_mask & __GFP_NOWARN) || 3517 !__ratelimit(&nopage_rs) || 3518 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3519 return; 3520 3521 va_start(args, fmt); 3522 vaf.fmt = fmt; 3523 vaf.va = &args; 3524 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3525 current->comm, &vaf, gfp_mask, &gfp_mask, 3526 nodemask_pr_args(nodemask)); 3527 va_end(args); 3528 3529 cpuset_print_current_mems_allowed(); 3530 pr_cont("\n"); 3531 dump_stack(); 3532 warn_alloc_show_mem(gfp_mask, nodemask); 3533 } 3534 3535 static inline struct page * 3536 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3537 unsigned int alloc_flags, 3538 const struct alloc_context *ac) 3539 { 3540 struct page *page; 3541 3542 page = get_page_from_freelist(gfp_mask, order, 3543 alloc_flags|ALLOC_CPUSET, ac); 3544 /* 3545 * fallback to ignore cpuset restriction if our nodes 3546 * are depleted 3547 */ 3548 if (!page) 3549 page = get_page_from_freelist(gfp_mask, order, 3550 alloc_flags, ac); 3551 3552 return page; 3553 } 3554 3555 static inline struct page * 3556 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3557 const struct alloc_context *ac, unsigned long *did_some_progress) 3558 { 3559 struct oom_control oc = { 3560 .zonelist = ac->zonelist, 3561 .nodemask = ac->nodemask, 3562 .memcg = NULL, 3563 .gfp_mask = gfp_mask, 3564 .order = order, 3565 }; 3566 struct page *page; 3567 3568 *did_some_progress = 0; 3569 3570 /* 3571 * Acquire the oom lock. If that fails, somebody else is 3572 * making progress for us. 3573 */ 3574 if (!mutex_trylock(&oom_lock)) { 3575 *did_some_progress = 1; 3576 schedule_timeout_uninterruptible(1); 3577 return NULL; 3578 } 3579 3580 /* 3581 * Go through the zonelist yet one more time, keep very high watermark 3582 * here, this is only to catch a parallel oom killing, we must fail if 3583 * we're still under heavy pressure. But make sure that this reclaim 3584 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3585 * allocation which will never fail due to oom_lock already held. 3586 */ 3587 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3588 ~__GFP_DIRECT_RECLAIM, order, 3589 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3590 if (page) 3591 goto out; 3592 3593 /* Coredumps can quickly deplete all memory reserves */ 3594 if (current->flags & PF_DUMPCORE) 3595 goto out; 3596 /* The OOM killer will not help higher order allocs */ 3597 if (order > PAGE_ALLOC_COSTLY_ORDER) 3598 goto out; 3599 /* 3600 * We have already exhausted all our reclaim opportunities without any 3601 * success so it is time to admit defeat. We will skip the OOM killer 3602 * because it is very likely that the caller has a more reasonable 3603 * fallback than shooting a random task. 3604 * 3605 * The OOM killer may not free memory on a specific node. 3606 */ 3607 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3608 goto out; 3609 /* The OOM killer does not needlessly kill tasks for lowmem */ 3610 if (ac->highest_zoneidx < ZONE_NORMAL) 3611 goto out; 3612 if (pm_suspended_storage()) 3613 goto out; 3614 /* 3615 * XXX: GFP_NOFS allocations should rather fail than rely on 3616 * other request to make a forward progress. 3617 * We are in an unfortunate situation where out_of_memory cannot 3618 * do much for this context but let's try it to at least get 3619 * access to memory reserved if the current task is killed (see 3620 * out_of_memory). Once filesystems are ready to handle allocation 3621 * failures more gracefully we should just bail out here. 3622 */ 3623 3624 /* Exhausted what can be done so it's blame time */ 3625 if (out_of_memory(&oc) || 3626 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3627 *did_some_progress = 1; 3628 3629 /* 3630 * Help non-failing allocations by giving them access to memory 3631 * reserves 3632 */ 3633 if (gfp_mask & __GFP_NOFAIL) 3634 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3635 ALLOC_NO_WATERMARKS, ac); 3636 } 3637 out: 3638 mutex_unlock(&oom_lock); 3639 return page; 3640 } 3641 3642 /* 3643 * Maximum number of compaction retries with a progress before OOM 3644 * killer is consider as the only way to move forward. 3645 */ 3646 #define MAX_COMPACT_RETRIES 16 3647 3648 #ifdef CONFIG_COMPACTION 3649 /* Try memory compaction for high-order allocations before reclaim */ 3650 static struct page * 3651 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3652 unsigned int alloc_flags, const struct alloc_context *ac, 3653 enum compact_priority prio, enum compact_result *compact_result) 3654 { 3655 struct page *page = NULL; 3656 unsigned long pflags; 3657 unsigned int noreclaim_flag; 3658 3659 if (!order) 3660 return NULL; 3661 3662 psi_memstall_enter(&pflags); 3663 delayacct_compact_start(); 3664 noreclaim_flag = memalloc_noreclaim_save(); 3665 3666 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3667 prio, &page); 3668 3669 memalloc_noreclaim_restore(noreclaim_flag); 3670 psi_memstall_leave(&pflags); 3671 delayacct_compact_end(); 3672 3673 if (*compact_result == COMPACT_SKIPPED) 3674 return NULL; 3675 /* 3676 * At least in one zone compaction wasn't deferred or skipped, so let's 3677 * count a compaction stall 3678 */ 3679 count_vm_event(COMPACTSTALL); 3680 3681 /* Prep a captured page if available */ 3682 if (page) 3683 prep_new_page(page, order, gfp_mask, alloc_flags); 3684 3685 /* Try get a page from the freelist if available */ 3686 if (!page) 3687 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3688 3689 if (page) { 3690 struct zone *zone = page_zone(page); 3691 3692 zone->compact_blockskip_flush = false; 3693 compaction_defer_reset(zone, order, true); 3694 count_vm_event(COMPACTSUCCESS); 3695 return page; 3696 } 3697 3698 /* 3699 * It's bad if compaction run occurs and fails. The most likely reason 3700 * is that pages exist, but not enough to satisfy watermarks. 3701 */ 3702 count_vm_event(COMPACTFAIL); 3703 3704 cond_resched(); 3705 3706 return NULL; 3707 } 3708 3709 static inline bool 3710 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3711 enum compact_result compact_result, 3712 enum compact_priority *compact_priority, 3713 int *compaction_retries) 3714 { 3715 int max_retries = MAX_COMPACT_RETRIES; 3716 int min_priority; 3717 bool ret = false; 3718 int retries = *compaction_retries; 3719 enum compact_priority priority = *compact_priority; 3720 3721 if (!order) 3722 return false; 3723 3724 if (fatal_signal_pending(current)) 3725 return false; 3726 3727 /* 3728 * Compaction was skipped due to a lack of free order-0 3729 * migration targets. Continue if reclaim can help. 3730 */ 3731 if (compact_result == COMPACT_SKIPPED) { 3732 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3733 goto out; 3734 } 3735 3736 /* 3737 * Compaction managed to coalesce some page blocks, but the 3738 * allocation failed presumably due to a race. Retry some. 3739 */ 3740 if (compact_result == COMPACT_SUCCESS) { 3741 /* 3742 * !costly requests are much more important than 3743 * __GFP_RETRY_MAYFAIL costly ones because they are de 3744 * facto nofail and invoke OOM killer to move on while 3745 * costly can fail and users are ready to cope with 3746 * that. 1/4 retries is rather arbitrary but we would 3747 * need much more detailed feedback from compaction to 3748 * make a better decision. 3749 */ 3750 if (order > PAGE_ALLOC_COSTLY_ORDER) 3751 max_retries /= 4; 3752 3753 if (++(*compaction_retries) <= max_retries) { 3754 ret = true; 3755 goto out; 3756 } 3757 } 3758 3759 /* 3760 * Compaction failed. Retry with increasing priority. 3761 */ 3762 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3763 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3764 3765 if (*compact_priority > min_priority) { 3766 (*compact_priority)--; 3767 *compaction_retries = 0; 3768 ret = true; 3769 } 3770 out: 3771 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3772 return ret; 3773 } 3774 #else 3775 static inline struct page * 3776 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3777 unsigned int alloc_flags, const struct alloc_context *ac, 3778 enum compact_priority prio, enum compact_result *compact_result) 3779 { 3780 *compact_result = COMPACT_SKIPPED; 3781 return NULL; 3782 } 3783 3784 static inline bool 3785 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3786 enum compact_result compact_result, 3787 enum compact_priority *compact_priority, 3788 int *compaction_retries) 3789 { 3790 struct zone *zone; 3791 struct zoneref *z; 3792 3793 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3794 return false; 3795 3796 /* 3797 * There are setups with compaction disabled which would prefer to loop 3798 * inside the allocator rather than hit the oom killer prematurely. 3799 * Let's give them a good hope and keep retrying while the order-0 3800 * watermarks are OK. 3801 */ 3802 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3803 ac->highest_zoneidx, ac->nodemask) { 3804 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3805 ac->highest_zoneidx, alloc_flags)) 3806 return true; 3807 } 3808 return false; 3809 } 3810 #endif /* CONFIG_COMPACTION */ 3811 3812 #ifdef CONFIG_LOCKDEP 3813 static struct lockdep_map __fs_reclaim_map = 3814 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3815 3816 static bool __need_reclaim(gfp_t gfp_mask) 3817 { 3818 /* no reclaim without waiting on it */ 3819 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3820 return false; 3821 3822 /* this guy won't enter reclaim */ 3823 if (current->flags & PF_MEMALLOC) 3824 return false; 3825 3826 if (gfp_mask & __GFP_NOLOCKDEP) 3827 return false; 3828 3829 return true; 3830 } 3831 3832 void __fs_reclaim_acquire(unsigned long ip) 3833 { 3834 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3835 } 3836 3837 void __fs_reclaim_release(unsigned long ip) 3838 { 3839 lock_release(&__fs_reclaim_map, ip); 3840 } 3841 3842 void fs_reclaim_acquire(gfp_t gfp_mask) 3843 { 3844 gfp_mask = current_gfp_context(gfp_mask); 3845 3846 if (__need_reclaim(gfp_mask)) { 3847 if (gfp_mask & __GFP_FS) 3848 __fs_reclaim_acquire(_RET_IP_); 3849 3850 #ifdef CONFIG_MMU_NOTIFIER 3851 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3852 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3853 #endif 3854 3855 } 3856 } 3857 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3858 3859 void fs_reclaim_release(gfp_t gfp_mask) 3860 { 3861 gfp_mask = current_gfp_context(gfp_mask); 3862 3863 if (__need_reclaim(gfp_mask)) { 3864 if (gfp_mask & __GFP_FS) 3865 __fs_reclaim_release(_RET_IP_); 3866 } 3867 } 3868 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3869 #endif 3870 3871 /* 3872 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3873 * have been rebuilt so allocation retries. Reader side does not lock and 3874 * retries the allocation if zonelist changes. Writer side is protected by the 3875 * embedded spin_lock. 3876 */ 3877 static DEFINE_SEQLOCK(zonelist_update_seq); 3878 3879 static unsigned int zonelist_iter_begin(void) 3880 { 3881 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3882 return read_seqbegin(&zonelist_update_seq); 3883 3884 return 0; 3885 } 3886 3887 static unsigned int check_retry_zonelist(unsigned int seq) 3888 { 3889 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3890 return read_seqretry(&zonelist_update_seq, seq); 3891 3892 return seq; 3893 } 3894 3895 /* Perform direct synchronous page reclaim */ 3896 static unsigned long 3897 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3898 const struct alloc_context *ac) 3899 { 3900 unsigned int noreclaim_flag; 3901 unsigned long progress; 3902 3903 cond_resched(); 3904 3905 /* We now go into synchronous reclaim */ 3906 cpuset_memory_pressure_bump(); 3907 fs_reclaim_acquire(gfp_mask); 3908 noreclaim_flag = memalloc_noreclaim_save(); 3909 3910 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3911 ac->nodemask); 3912 3913 memalloc_noreclaim_restore(noreclaim_flag); 3914 fs_reclaim_release(gfp_mask); 3915 3916 cond_resched(); 3917 3918 return progress; 3919 } 3920 3921 /* The really slow allocator path where we enter direct reclaim */ 3922 static inline struct page * 3923 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3924 unsigned int alloc_flags, const struct alloc_context *ac, 3925 unsigned long *did_some_progress) 3926 { 3927 struct page *page = NULL; 3928 unsigned long pflags; 3929 bool drained = false; 3930 3931 psi_memstall_enter(&pflags); 3932 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3933 if (unlikely(!(*did_some_progress))) 3934 goto out; 3935 3936 retry: 3937 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3938 3939 /* 3940 * If an allocation failed after direct reclaim, it could be because 3941 * pages are pinned on the per-cpu lists or in high alloc reserves. 3942 * Shrink them and try again 3943 */ 3944 if (!page && !drained) { 3945 unreserve_highatomic_pageblock(ac, false); 3946 drain_all_pages(NULL); 3947 drained = true; 3948 goto retry; 3949 } 3950 out: 3951 psi_memstall_leave(&pflags); 3952 3953 return page; 3954 } 3955 3956 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3957 const struct alloc_context *ac) 3958 { 3959 struct zoneref *z; 3960 struct zone *zone; 3961 pg_data_t *last_pgdat = NULL; 3962 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3963 3964 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3965 ac->nodemask) { 3966 if (!managed_zone(zone)) 3967 continue; 3968 if (last_pgdat != zone->zone_pgdat) { 3969 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3970 last_pgdat = zone->zone_pgdat; 3971 } 3972 } 3973 } 3974 3975 static inline unsigned int 3976 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3977 { 3978 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3979 3980 /* 3981 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3982 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3983 * to save two branches. 3984 */ 3985 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3986 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3987 3988 /* 3989 * The caller may dip into page reserves a bit more if the caller 3990 * cannot run direct reclaim, or if the caller has realtime scheduling 3991 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3992 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3993 */ 3994 alloc_flags |= (__force int) 3995 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3996 3997 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3998 /* 3999 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4000 * if it can't schedule. 4001 */ 4002 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4003 alloc_flags |= ALLOC_NON_BLOCK; 4004 4005 if (order > 0) 4006 alloc_flags |= ALLOC_HIGHATOMIC; 4007 } 4008 4009 /* 4010 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4011 * GFP_ATOMIC) rather than fail, see the comment for 4012 * cpuset_node_allowed(). 4013 */ 4014 if (alloc_flags & ALLOC_MIN_RESERVE) 4015 alloc_flags &= ~ALLOC_CPUSET; 4016 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4017 alloc_flags |= ALLOC_MIN_RESERVE; 4018 4019 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4020 4021 return alloc_flags; 4022 } 4023 4024 static bool oom_reserves_allowed(struct task_struct *tsk) 4025 { 4026 if (!tsk_is_oom_victim(tsk)) 4027 return false; 4028 4029 /* 4030 * !MMU doesn't have oom reaper so give access to memory reserves 4031 * only to the thread with TIF_MEMDIE set 4032 */ 4033 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4034 return false; 4035 4036 return true; 4037 } 4038 4039 /* 4040 * Distinguish requests which really need access to full memory 4041 * reserves from oom victims which can live with a portion of it 4042 */ 4043 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4044 { 4045 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4046 return 0; 4047 if (gfp_mask & __GFP_MEMALLOC) 4048 return ALLOC_NO_WATERMARKS; 4049 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4050 return ALLOC_NO_WATERMARKS; 4051 if (!in_interrupt()) { 4052 if (current->flags & PF_MEMALLOC) 4053 return ALLOC_NO_WATERMARKS; 4054 else if (oom_reserves_allowed(current)) 4055 return ALLOC_OOM; 4056 } 4057 4058 return 0; 4059 } 4060 4061 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4062 { 4063 return !!__gfp_pfmemalloc_flags(gfp_mask); 4064 } 4065 4066 /* 4067 * Checks whether it makes sense to retry the reclaim to make a forward progress 4068 * for the given allocation request. 4069 * 4070 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4071 * without success, or when we couldn't even meet the watermark if we 4072 * reclaimed all remaining pages on the LRU lists. 4073 * 4074 * Returns true if a retry is viable or false to enter the oom path. 4075 */ 4076 static inline bool 4077 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4078 struct alloc_context *ac, int alloc_flags, 4079 bool did_some_progress, int *no_progress_loops) 4080 { 4081 struct zone *zone; 4082 struct zoneref *z; 4083 bool ret = false; 4084 4085 /* 4086 * Costly allocations might have made a progress but this doesn't mean 4087 * their order will become available due to high fragmentation so 4088 * always increment the no progress counter for them 4089 */ 4090 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4091 *no_progress_loops = 0; 4092 else 4093 (*no_progress_loops)++; 4094 4095 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4096 goto out; 4097 4098 4099 /* 4100 * Keep reclaiming pages while there is a chance this will lead 4101 * somewhere. If none of the target zones can satisfy our allocation 4102 * request even if all reclaimable pages are considered then we are 4103 * screwed and have to go OOM. 4104 */ 4105 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4106 ac->highest_zoneidx, ac->nodemask) { 4107 unsigned long available; 4108 unsigned long reclaimable; 4109 unsigned long min_wmark = min_wmark_pages(zone); 4110 bool wmark; 4111 4112 if (cpusets_enabled() && 4113 (alloc_flags & ALLOC_CPUSET) && 4114 !__cpuset_zone_allowed(zone, gfp_mask)) 4115 continue; 4116 4117 available = reclaimable = zone_reclaimable_pages(zone); 4118 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4119 4120 /* 4121 * Would the allocation succeed if we reclaimed all 4122 * reclaimable pages? 4123 */ 4124 wmark = __zone_watermark_ok(zone, order, min_wmark, 4125 ac->highest_zoneidx, alloc_flags, available); 4126 trace_reclaim_retry_zone(z, order, reclaimable, 4127 available, min_wmark, *no_progress_loops, wmark); 4128 if (wmark) { 4129 ret = true; 4130 break; 4131 } 4132 } 4133 4134 /* 4135 * Memory allocation/reclaim might be called from a WQ context and the 4136 * current implementation of the WQ concurrency control doesn't 4137 * recognize that a particular WQ is congested if the worker thread is 4138 * looping without ever sleeping. Therefore we have to do a short sleep 4139 * here rather than calling cond_resched(). 4140 */ 4141 if (current->flags & PF_WQ_WORKER) 4142 schedule_timeout_uninterruptible(1); 4143 else 4144 cond_resched(); 4145 out: 4146 /* Before OOM, exhaust highatomic_reserve */ 4147 if (!ret) 4148 return unreserve_highatomic_pageblock(ac, true); 4149 4150 return ret; 4151 } 4152 4153 static inline bool 4154 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4155 { 4156 /* 4157 * It's possible that cpuset's mems_allowed and the nodemask from 4158 * mempolicy don't intersect. This should be normally dealt with by 4159 * policy_nodemask(), but it's possible to race with cpuset update in 4160 * such a way the check therein was true, and then it became false 4161 * before we got our cpuset_mems_cookie here. 4162 * This assumes that for all allocations, ac->nodemask can come only 4163 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4164 * when it does not intersect with the cpuset restrictions) or the 4165 * caller can deal with a violated nodemask. 4166 */ 4167 if (cpusets_enabled() && ac->nodemask && 4168 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4169 ac->nodemask = NULL; 4170 return true; 4171 } 4172 4173 /* 4174 * When updating a task's mems_allowed or mempolicy nodemask, it is 4175 * possible to race with parallel threads in such a way that our 4176 * allocation can fail while the mask is being updated. If we are about 4177 * to fail, check if the cpuset changed during allocation and if so, 4178 * retry. 4179 */ 4180 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4181 return true; 4182 4183 return false; 4184 } 4185 4186 static inline struct page * 4187 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4188 struct alloc_context *ac) 4189 { 4190 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4191 bool can_compact = gfp_compaction_allowed(gfp_mask); 4192 bool nofail = gfp_mask & __GFP_NOFAIL; 4193 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4194 struct page *page = NULL; 4195 unsigned int alloc_flags; 4196 unsigned long did_some_progress; 4197 enum compact_priority compact_priority; 4198 enum compact_result compact_result; 4199 int compaction_retries; 4200 int no_progress_loops; 4201 unsigned int cpuset_mems_cookie; 4202 unsigned int zonelist_iter_cookie; 4203 int reserve_flags; 4204 4205 if (unlikely(nofail)) { 4206 /* 4207 * We most definitely don't want callers attempting to 4208 * allocate greater than order-1 page units with __GFP_NOFAIL. 4209 */ 4210 WARN_ON_ONCE(order > 1); 4211 /* 4212 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4213 * otherwise, we may result in lockup. 4214 */ 4215 WARN_ON_ONCE(!can_direct_reclaim); 4216 /* 4217 * PF_MEMALLOC request from this context is rather bizarre 4218 * because we cannot reclaim anything and only can loop waiting 4219 * for somebody to do a work for us. 4220 */ 4221 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4222 } 4223 4224 restart: 4225 compaction_retries = 0; 4226 no_progress_loops = 0; 4227 compact_priority = DEF_COMPACT_PRIORITY; 4228 cpuset_mems_cookie = read_mems_allowed_begin(); 4229 zonelist_iter_cookie = zonelist_iter_begin(); 4230 4231 /* 4232 * The fast path uses conservative alloc_flags to succeed only until 4233 * kswapd needs to be woken up, and to avoid the cost of setting up 4234 * alloc_flags precisely. So we do that now. 4235 */ 4236 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4237 4238 /* 4239 * We need to recalculate the starting point for the zonelist iterator 4240 * because we might have used different nodemask in the fast path, or 4241 * there was a cpuset modification and we are retrying - otherwise we 4242 * could end up iterating over non-eligible zones endlessly. 4243 */ 4244 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4245 ac->highest_zoneidx, ac->nodemask); 4246 if (!zonelist_zone(ac->preferred_zoneref)) 4247 goto nopage; 4248 4249 /* 4250 * Check for insane configurations where the cpuset doesn't contain 4251 * any suitable zone to satisfy the request - e.g. non-movable 4252 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4253 */ 4254 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4255 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4256 ac->highest_zoneidx, 4257 &cpuset_current_mems_allowed); 4258 if (!zonelist_zone(z)) 4259 goto nopage; 4260 } 4261 4262 if (alloc_flags & ALLOC_KSWAPD) 4263 wake_all_kswapds(order, gfp_mask, ac); 4264 4265 /* 4266 * The adjusted alloc_flags might result in immediate success, so try 4267 * that first 4268 */ 4269 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4270 if (page) 4271 goto got_pg; 4272 4273 /* 4274 * For costly allocations, try direct compaction first, as it's likely 4275 * that we have enough base pages and don't need to reclaim. For non- 4276 * movable high-order allocations, do that as well, as compaction will 4277 * try prevent permanent fragmentation by migrating from blocks of the 4278 * same migratetype. 4279 * Don't try this for allocations that are allowed to ignore 4280 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4281 */ 4282 if (can_direct_reclaim && can_compact && 4283 (costly_order || 4284 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4285 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4286 page = __alloc_pages_direct_compact(gfp_mask, order, 4287 alloc_flags, ac, 4288 INIT_COMPACT_PRIORITY, 4289 &compact_result); 4290 if (page) 4291 goto got_pg; 4292 4293 /* 4294 * Checks for costly allocations with __GFP_NORETRY, which 4295 * includes some THP page fault allocations 4296 */ 4297 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4298 /* 4299 * If allocating entire pageblock(s) and compaction 4300 * failed because all zones are below low watermarks 4301 * or is prohibited because it recently failed at this 4302 * order, fail immediately unless the allocator has 4303 * requested compaction and reclaim retry. 4304 * 4305 * Reclaim is 4306 * - potentially very expensive because zones are far 4307 * below their low watermarks or this is part of very 4308 * bursty high order allocations, 4309 * - not guaranteed to help because isolate_freepages() 4310 * may not iterate over freed pages as part of its 4311 * linear scan, and 4312 * - unlikely to make entire pageblocks free on its 4313 * own. 4314 */ 4315 if (compact_result == COMPACT_SKIPPED || 4316 compact_result == COMPACT_DEFERRED) 4317 goto nopage; 4318 4319 /* 4320 * Looks like reclaim/compaction is worth trying, but 4321 * sync compaction could be very expensive, so keep 4322 * using async compaction. 4323 */ 4324 compact_priority = INIT_COMPACT_PRIORITY; 4325 } 4326 } 4327 4328 retry: 4329 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4330 if (alloc_flags & ALLOC_KSWAPD) 4331 wake_all_kswapds(order, gfp_mask, ac); 4332 4333 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4334 if (reserve_flags) 4335 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4336 (alloc_flags & ALLOC_KSWAPD); 4337 4338 /* 4339 * Reset the nodemask and zonelist iterators if memory policies can be 4340 * ignored. These allocations are high priority and system rather than 4341 * user oriented. 4342 */ 4343 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4344 ac->nodemask = NULL; 4345 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4346 ac->highest_zoneidx, ac->nodemask); 4347 } 4348 4349 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4350 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4351 if (page) 4352 goto got_pg; 4353 4354 /* Caller is not willing to reclaim, we can't balance anything */ 4355 if (!can_direct_reclaim) 4356 goto nopage; 4357 4358 /* Avoid recursion of direct reclaim */ 4359 if (current->flags & PF_MEMALLOC) 4360 goto nopage; 4361 4362 /* Try direct reclaim and then allocating */ 4363 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4364 &did_some_progress); 4365 if (page) 4366 goto got_pg; 4367 4368 /* Try direct compaction and then allocating */ 4369 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4370 compact_priority, &compact_result); 4371 if (page) 4372 goto got_pg; 4373 4374 /* Do not loop if specifically requested */ 4375 if (gfp_mask & __GFP_NORETRY) 4376 goto nopage; 4377 4378 /* 4379 * Do not retry costly high order allocations unless they are 4380 * __GFP_RETRY_MAYFAIL and we can compact 4381 */ 4382 if (costly_order && (!can_compact || 4383 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4384 goto nopage; 4385 4386 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4387 did_some_progress > 0, &no_progress_loops)) 4388 goto retry; 4389 4390 /* 4391 * It doesn't make any sense to retry for the compaction if the order-0 4392 * reclaim is not able to make any progress because the current 4393 * implementation of the compaction depends on the sufficient amount 4394 * of free memory (see __compaction_suitable) 4395 */ 4396 if (did_some_progress > 0 && can_compact && 4397 should_compact_retry(ac, order, alloc_flags, 4398 compact_result, &compact_priority, 4399 &compaction_retries)) 4400 goto retry; 4401 4402 4403 /* 4404 * Deal with possible cpuset update races or zonelist updates to avoid 4405 * a unnecessary OOM kill. 4406 */ 4407 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4408 check_retry_zonelist(zonelist_iter_cookie)) 4409 goto restart; 4410 4411 /* Reclaim has failed us, start killing things */ 4412 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4413 if (page) 4414 goto got_pg; 4415 4416 /* Avoid allocations with no watermarks from looping endlessly */ 4417 if (tsk_is_oom_victim(current) && 4418 (alloc_flags & ALLOC_OOM || 4419 (gfp_mask & __GFP_NOMEMALLOC))) 4420 goto nopage; 4421 4422 /* Retry as long as the OOM killer is making progress */ 4423 if (did_some_progress) { 4424 no_progress_loops = 0; 4425 goto retry; 4426 } 4427 4428 nopage: 4429 /* 4430 * Deal with possible cpuset update races or zonelist updates to avoid 4431 * a unnecessary OOM kill. 4432 */ 4433 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4434 check_retry_zonelist(zonelist_iter_cookie)) 4435 goto restart; 4436 4437 /* 4438 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4439 * we always retry 4440 */ 4441 if (unlikely(nofail)) { 4442 /* 4443 * Lacking direct_reclaim we can't do anything to reclaim memory, 4444 * we disregard these unreasonable nofail requests and still 4445 * return NULL 4446 */ 4447 if (!can_direct_reclaim) 4448 goto fail; 4449 4450 /* 4451 * Help non-failing allocations by giving some access to memory 4452 * reserves normally used for high priority non-blocking 4453 * allocations but do not use ALLOC_NO_WATERMARKS because this 4454 * could deplete whole memory reserves which would just make 4455 * the situation worse. 4456 */ 4457 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4458 if (page) 4459 goto got_pg; 4460 4461 cond_resched(); 4462 goto retry; 4463 } 4464 fail: 4465 warn_alloc(gfp_mask, ac->nodemask, 4466 "page allocation failure: order:%u", order); 4467 got_pg: 4468 return page; 4469 } 4470 4471 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4472 int preferred_nid, nodemask_t *nodemask, 4473 struct alloc_context *ac, gfp_t *alloc_gfp, 4474 unsigned int *alloc_flags) 4475 { 4476 ac->highest_zoneidx = gfp_zone(gfp_mask); 4477 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4478 ac->nodemask = nodemask; 4479 ac->migratetype = gfp_migratetype(gfp_mask); 4480 4481 if (cpusets_enabled()) { 4482 *alloc_gfp |= __GFP_HARDWALL; 4483 /* 4484 * When we are in the interrupt context, it is irrelevant 4485 * to the current task context. It means that any node ok. 4486 */ 4487 if (in_task() && !ac->nodemask) 4488 ac->nodemask = &cpuset_current_mems_allowed; 4489 else 4490 *alloc_flags |= ALLOC_CPUSET; 4491 } 4492 4493 might_alloc(gfp_mask); 4494 4495 if (should_fail_alloc_page(gfp_mask, order)) 4496 return false; 4497 4498 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4499 4500 /* Dirty zone balancing only done in the fast path */ 4501 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4502 4503 /* 4504 * The preferred zone is used for statistics but crucially it is 4505 * also used as the starting point for the zonelist iterator. It 4506 * may get reset for allocations that ignore memory policies. 4507 */ 4508 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4509 ac->highest_zoneidx, ac->nodemask); 4510 4511 return true; 4512 } 4513 4514 /* 4515 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4516 * @gfp: GFP flags for the allocation 4517 * @preferred_nid: The preferred NUMA node ID to allocate from 4518 * @nodemask: Set of nodes to allocate from, may be NULL 4519 * @nr_pages: The number of pages desired on the list or array 4520 * @page_list: Optional list to store the allocated pages 4521 * @page_array: Optional array to store the pages 4522 * 4523 * This is a batched version of the page allocator that attempts to 4524 * allocate nr_pages quickly. Pages are added to page_list if page_list 4525 * is not NULL, otherwise it is assumed that the page_array is valid. 4526 * 4527 * For lists, nr_pages is the number of pages that should be allocated. 4528 * 4529 * For arrays, only NULL elements are populated with pages and nr_pages 4530 * is the maximum number of pages that will be stored in the array. 4531 * 4532 * Returns the number of pages on the list or array. 4533 */ 4534 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4535 nodemask_t *nodemask, int nr_pages, 4536 struct list_head *page_list, 4537 struct page **page_array) 4538 { 4539 struct page *page; 4540 unsigned long __maybe_unused UP_flags; 4541 struct zone *zone; 4542 struct zoneref *z; 4543 struct per_cpu_pages *pcp; 4544 struct list_head *pcp_list; 4545 struct alloc_context ac; 4546 gfp_t alloc_gfp; 4547 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4548 int nr_populated = 0, nr_account = 0; 4549 4550 /* 4551 * Skip populated array elements to determine if any pages need 4552 * to be allocated before disabling IRQs. 4553 */ 4554 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4555 nr_populated++; 4556 4557 /* No pages requested? */ 4558 if (unlikely(nr_pages <= 0)) 4559 goto out; 4560 4561 /* Already populated array? */ 4562 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4563 goto out; 4564 4565 /* Bulk allocator does not support memcg accounting. */ 4566 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4567 goto failed; 4568 4569 /* Use the single page allocator for one page. */ 4570 if (nr_pages - nr_populated == 1) 4571 goto failed; 4572 4573 #ifdef CONFIG_PAGE_OWNER 4574 /* 4575 * PAGE_OWNER may recurse into the allocator to allocate space to 4576 * save the stack with pagesets.lock held. Releasing/reacquiring 4577 * removes much of the performance benefit of bulk allocation so 4578 * force the caller to allocate one page at a time as it'll have 4579 * similar performance to added complexity to the bulk allocator. 4580 */ 4581 if (static_branch_unlikely(&page_owner_inited)) 4582 goto failed; 4583 #endif 4584 4585 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4586 gfp &= gfp_allowed_mask; 4587 alloc_gfp = gfp; 4588 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4589 goto out; 4590 gfp = alloc_gfp; 4591 4592 /* Find an allowed local zone that meets the low watermark. */ 4593 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4594 unsigned long mark; 4595 4596 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4597 !__cpuset_zone_allowed(zone, gfp)) { 4598 continue; 4599 } 4600 4601 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4602 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4603 goto failed; 4604 } 4605 4606 cond_accept_memory(zone, 0); 4607 retry_this_zone: 4608 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4609 if (zone_watermark_fast(zone, 0, mark, 4610 zonelist_zone_idx(ac.preferred_zoneref), 4611 alloc_flags, gfp)) { 4612 break; 4613 } 4614 4615 if (cond_accept_memory(zone, 0)) 4616 goto retry_this_zone; 4617 4618 /* Try again if zone has deferred pages */ 4619 if (deferred_pages_enabled()) { 4620 if (_deferred_grow_zone(zone, 0)) 4621 goto retry_this_zone; 4622 } 4623 } 4624 4625 /* 4626 * If there are no allowed local zones that meets the watermarks then 4627 * try to allocate a single page and reclaim if necessary. 4628 */ 4629 if (unlikely(!zone)) 4630 goto failed; 4631 4632 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4633 pcp_trylock_prepare(UP_flags); 4634 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4635 if (!pcp) 4636 goto failed_irq; 4637 4638 /* Attempt the batch allocation */ 4639 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4640 while (nr_populated < nr_pages) { 4641 4642 /* Skip existing pages */ 4643 if (page_array && page_array[nr_populated]) { 4644 nr_populated++; 4645 continue; 4646 } 4647 4648 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4649 pcp, pcp_list); 4650 if (unlikely(!page)) { 4651 /* Try and allocate at least one page */ 4652 if (!nr_account) { 4653 pcp_spin_unlock(pcp); 4654 goto failed_irq; 4655 } 4656 break; 4657 } 4658 nr_account++; 4659 4660 prep_new_page(page, 0, gfp, 0); 4661 if (page_list) 4662 list_add(&page->lru, page_list); 4663 else 4664 page_array[nr_populated] = page; 4665 nr_populated++; 4666 } 4667 4668 pcp_spin_unlock(pcp); 4669 pcp_trylock_finish(UP_flags); 4670 4671 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4672 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4673 4674 out: 4675 return nr_populated; 4676 4677 failed_irq: 4678 pcp_trylock_finish(UP_flags); 4679 4680 failed: 4681 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4682 if (page) { 4683 if (page_list) 4684 list_add(&page->lru, page_list); 4685 else 4686 page_array[nr_populated] = page; 4687 nr_populated++; 4688 } 4689 4690 goto out; 4691 } 4692 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4693 4694 /* 4695 * This is the 'heart' of the zoned buddy allocator. 4696 */ 4697 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4698 int preferred_nid, nodemask_t *nodemask) 4699 { 4700 struct page *page; 4701 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4702 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4703 struct alloc_context ac = { }; 4704 4705 /* 4706 * There are several places where we assume that the order value is sane 4707 * so bail out early if the request is out of bound. 4708 */ 4709 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4710 return NULL; 4711 4712 gfp &= gfp_allowed_mask; 4713 /* 4714 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4715 * resp. GFP_NOIO which has to be inherited for all allocation requests 4716 * from a particular context which has been marked by 4717 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4718 * movable zones are not used during allocation. 4719 */ 4720 gfp = current_gfp_context(gfp); 4721 alloc_gfp = gfp; 4722 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4723 &alloc_gfp, &alloc_flags)) 4724 return NULL; 4725 4726 /* 4727 * Forbid the first pass from falling back to types that fragment 4728 * memory until all local zones are considered. 4729 */ 4730 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4731 4732 /* First allocation attempt */ 4733 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4734 if (likely(page)) 4735 goto out; 4736 4737 alloc_gfp = gfp; 4738 ac.spread_dirty_pages = false; 4739 4740 /* 4741 * Restore the original nodemask if it was potentially replaced with 4742 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4743 */ 4744 ac.nodemask = nodemask; 4745 4746 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4747 4748 out: 4749 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4750 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4751 __free_pages(page, order); 4752 page = NULL; 4753 } 4754 4755 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4756 kmsan_alloc_page(page, order, alloc_gfp); 4757 4758 return page; 4759 } 4760 EXPORT_SYMBOL(__alloc_pages_noprof); 4761 4762 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4763 nodemask_t *nodemask) 4764 { 4765 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4766 preferred_nid, nodemask); 4767 return page_rmappable_folio(page); 4768 } 4769 EXPORT_SYMBOL(__folio_alloc_noprof); 4770 4771 /* 4772 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4773 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4774 * you need to access high mem. 4775 */ 4776 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4777 { 4778 struct page *page; 4779 4780 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4781 if (!page) 4782 return 0; 4783 return (unsigned long) page_address(page); 4784 } 4785 EXPORT_SYMBOL(get_free_pages_noprof); 4786 4787 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4788 { 4789 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4790 } 4791 EXPORT_SYMBOL(get_zeroed_page_noprof); 4792 4793 /** 4794 * __free_pages - Free pages allocated with alloc_pages(). 4795 * @page: The page pointer returned from alloc_pages(). 4796 * @order: The order of the allocation. 4797 * 4798 * This function can free multi-page allocations that are not compound 4799 * pages. It does not check that the @order passed in matches that of 4800 * the allocation, so it is easy to leak memory. Freeing more memory 4801 * than was allocated will probably emit a warning. 4802 * 4803 * If the last reference to this page is speculative, it will be released 4804 * by put_page() which only frees the first page of a non-compound 4805 * allocation. To prevent the remaining pages from being leaked, we free 4806 * the subsequent pages here. If you want to use the page's reference 4807 * count to decide when to free the allocation, you should allocate a 4808 * compound page, and use put_page() instead of __free_pages(). 4809 * 4810 * Context: May be called in interrupt context or while holding a normal 4811 * spinlock, but not in NMI context or while holding a raw spinlock. 4812 */ 4813 void __free_pages(struct page *page, unsigned int order) 4814 { 4815 /* get PageHead before we drop reference */ 4816 int head = PageHead(page); 4817 struct alloc_tag *tag = pgalloc_tag_get(page); 4818 4819 if (put_page_testzero(page)) 4820 free_unref_page(page, order); 4821 else if (!head) { 4822 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4823 while (order-- > 0) 4824 free_unref_page(page + (1 << order), order); 4825 } 4826 } 4827 EXPORT_SYMBOL(__free_pages); 4828 4829 void free_pages(unsigned long addr, unsigned int order) 4830 { 4831 if (addr != 0) { 4832 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4833 __free_pages(virt_to_page((void *)addr), order); 4834 } 4835 } 4836 4837 EXPORT_SYMBOL(free_pages); 4838 4839 /* 4840 * Page Fragment: 4841 * An arbitrary-length arbitrary-offset area of memory which resides 4842 * within a 0 or higher order page. Multiple fragments within that page 4843 * are individually refcounted, in the page's reference counter. 4844 * 4845 * The page_frag functions below provide a simple allocation framework for 4846 * page fragments. This is used by the network stack and network device 4847 * drivers to provide a backing region of memory for use as either an 4848 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4849 */ 4850 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4851 gfp_t gfp_mask) 4852 { 4853 struct page *page = NULL; 4854 gfp_t gfp = gfp_mask; 4855 4856 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4857 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | 4858 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; 4859 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4860 PAGE_FRAG_CACHE_MAX_ORDER); 4861 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4862 #endif 4863 if (unlikely(!page)) 4864 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4865 4866 nc->va = page ? page_address(page) : NULL; 4867 4868 return page; 4869 } 4870 4871 void page_frag_cache_drain(struct page_frag_cache *nc) 4872 { 4873 if (!nc->va) 4874 return; 4875 4876 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); 4877 nc->va = NULL; 4878 } 4879 EXPORT_SYMBOL(page_frag_cache_drain); 4880 4881 void __page_frag_cache_drain(struct page *page, unsigned int count) 4882 { 4883 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4884 4885 if (page_ref_sub_and_test(page, count)) 4886 free_unref_page(page, compound_order(page)); 4887 } 4888 EXPORT_SYMBOL(__page_frag_cache_drain); 4889 4890 void *__page_frag_alloc_align(struct page_frag_cache *nc, 4891 unsigned int fragsz, gfp_t gfp_mask, 4892 unsigned int align_mask) 4893 { 4894 unsigned int size = PAGE_SIZE; 4895 struct page *page; 4896 int offset; 4897 4898 if (unlikely(!nc->va)) { 4899 refill: 4900 page = __page_frag_cache_refill(nc, gfp_mask); 4901 if (!page) 4902 return NULL; 4903 4904 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4905 /* if size can vary use size else just use PAGE_SIZE */ 4906 size = nc->size; 4907 #endif 4908 /* Even if we own the page, we do not use atomic_set(). 4909 * This would break get_page_unless_zero() users. 4910 */ 4911 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4912 4913 /* reset page count bias and offset to start of new frag */ 4914 nc->pfmemalloc = page_is_pfmemalloc(page); 4915 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4916 nc->offset = size; 4917 } 4918 4919 offset = nc->offset - fragsz; 4920 if (unlikely(offset < 0)) { 4921 page = virt_to_page(nc->va); 4922 4923 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4924 goto refill; 4925 4926 if (unlikely(nc->pfmemalloc)) { 4927 free_unref_page(page, compound_order(page)); 4928 goto refill; 4929 } 4930 4931 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4932 /* if size can vary use size else just use PAGE_SIZE */ 4933 size = nc->size; 4934 #endif 4935 /* OK, page count is 0, we can safely set it */ 4936 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4937 4938 /* reset page count bias and offset to start of new frag */ 4939 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4940 offset = size - fragsz; 4941 if (unlikely(offset < 0)) { 4942 /* 4943 * The caller is trying to allocate a fragment 4944 * with fragsz > PAGE_SIZE but the cache isn't big 4945 * enough to satisfy the request, this may 4946 * happen in low memory conditions. 4947 * We don't release the cache page because 4948 * it could make memory pressure worse 4949 * so we simply return NULL here. 4950 */ 4951 return NULL; 4952 } 4953 } 4954 4955 nc->pagecnt_bias--; 4956 offset &= align_mask; 4957 nc->offset = offset; 4958 4959 return nc->va + offset; 4960 } 4961 EXPORT_SYMBOL(__page_frag_alloc_align); 4962 4963 /* 4964 * Frees a page fragment allocated out of either a compound or order 0 page. 4965 */ 4966 void page_frag_free(void *addr) 4967 { 4968 struct page *page = virt_to_head_page(addr); 4969 4970 if (unlikely(put_page_testzero(page))) 4971 free_unref_page(page, compound_order(page)); 4972 } 4973 EXPORT_SYMBOL(page_frag_free); 4974 4975 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4976 size_t size) 4977 { 4978 if (addr) { 4979 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4980 struct page *page = virt_to_page((void *)addr); 4981 struct page *last = page + nr; 4982 4983 split_page_owner(page, order, 0); 4984 pgalloc_tag_split(page_folio(page), order, 0); 4985 split_page_memcg(page, order, 0); 4986 while (page < --last) 4987 set_page_refcounted(last); 4988 4989 last = page + (1UL << order); 4990 for (page += nr; page < last; page++) 4991 __free_pages_ok(page, 0, FPI_TO_TAIL); 4992 } 4993 return (void *)addr; 4994 } 4995 4996 /** 4997 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4998 * @size: the number of bytes to allocate 4999 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5000 * 5001 * This function is similar to alloc_pages(), except that it allocates the 5002 * minimum number of pages to satisfy the request. alloc_pages() can only 5003 * allocate memory in power-of-two pages. 5004 * 5005 * This function is also limited by MAX_PAGE_ORDER. 5006 * 5007 * Memory allocated by this function must be released by free_pages_exact(). 5008 * 5009 * Return: pointer to the allocated area or %NULL in case of error. 5010 */ 5011 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5012 { 5013 unsigned int order = get_order(size); 5014 unsigned long addr; 5015 5016 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5017 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5018 5019 addr = get_free_pages_noprof(gfp_mask, order); 5020 return make_alloc_exact(addr, order, size); 5021 } 5022 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5023 5024 /** 5025 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5026 * pages on a node. 5027 * @nid: the preferred node ID where memory should be allocated 5028 * @size: the number of bytes to allocate 5029 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5030 * 5031 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5032 * back. 5033 * 5034 * Return: pointer to the allocated area or %NULL in case of error. 5035 */ 5036 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5037 { 5038 unsigned int order = get_order(size); 5039 struct page *p; 5040 5041 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5042 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5043 5044 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5045 if (!p) 5046 return NULL; 5047 return make_alloc_exact((unsigned long)page_address(p), order, size); 5048 } 5049 5050 /** 5051 * free_pages_exact - release memory allocated via alloc_pages_exact() 5052 * @virt: the value returned by alloc_pages_exact. 5053 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5054 * 5055 * Release the memory allocated by a previous call to alloc_pages_exact. 5056 */ 5057 void free_pages_exact(void *virt, size_t size) 5058 { 5059 unsigned long addr = (unsigned long)virt; 5060 unsigned long end = addr + PAGE_ALIGN(size); 5061 5062 while (addr < end) { 5063 free_page(addr); 5064 addr += PAGE_SIZE; 5065 } 5066 } 5067 EXPORT_SYMBOL(free_pages_exact); 5068 5069 /** 5070 * nr_free_zone_pages - count number of pages beyond high watermark 5071 * @offset: The zone index of the highest zone 5072 * 5073 * nr_free_zone_pages() counts the number of pages which are beyond the 5074 * high watermark within all zones at or below a given zone index. For each 5075 * zone, the number of pages is calculated as: 5076 * 5077 * nr_free_zone_pages = managed_pages - high_pages 5078 * 5079 * Return: number of pages beyond high watermark. 5080 */ 5081 static unsigned long nr_free_zone_pages(int offset) 5082 { 5083 struct zoneref *z; 5084 struct zone *zone; 5085 5086 /* Just pick one node, since fallback list is circular */ 5087 unsigned long sum = 0; 5088 5089 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5090 5091 for_each_zone_zonelist(zone, z, zonelist, offset) { 5092 unsigned long size = zone_managed_pages(zone); 5093 unsigned long high = high_wmark_pages(zone); 5094 if (size > high) 5095 sum += size - high; 5096 } 5097 5098 return sum; 5099 } 5100 5101 /** 5102 * nr_free_buffer_pages - count number of pages beyond high watermark 5103 * 5104 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5105 * watermark within ZONE_DMA and ZONE_NORMAL. 5106 * 5107 * Return: number of pages beyond high watermark within ZONE_DMA and 5108 * ZONE_NORMAL. 5109 */ 5110 unsigned long nr_free_buffer_pages(void) 5111 { 5112 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5113 } 5114 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5115 5116 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5117 { 5118 zoneref->zone = zone; 5119 zoneref->zone_idx = zone_idx(zone); 5120 } 5121 5122 /* 5123 * Builds allocation fallback zone lists. 5124 * 5125 * Add all populated zones of a node to the zonelist. 5126 */ 5127 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5128 { 5129 struct zone *zone; 5130 enum zone_type zone_type = MAX_NR_ZONES; 5131 int nr_zones = 0; 5132 5133 do { 5134 zone_type--; 5135 zone = pgdat->node_zones + zone_type; 5136 if (populated_zone(zone)) { 5137 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5138 check_highest_zone(zone_type); 5139 } 5140 } while (zone_type); 5141 5142 return nr_zones; 5143 } 5144 5145 #ifdef CONFIG_NUMA 5146 5147 static int __parse_numa_zonelist_order(char *s) 5148 { 5149 /* 5150 * We used to support different zonelists modes but they turned 5151 * out to be just not useful. Let's keep the warning in place 5152 * if somebody still use the cmd line parameter so that we do 5153 * not fail it silently 5154 */ 5155 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5156 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5157 return -EINVAL; 5158 } 5159 return 0; 5160 } 5161 5162 static char numa_zonelist_order[] = "Node"; 5163 #define NUMA_ZONELIST_ORDER_LEN 16 5164 /* 5165 * sysctl handler for numa_zonelist_order 5166 */ 5167 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5168 void *buffer, size_t *length, loff_t *ppos) 5169 { 5170 if (write) 5171 return __parse_numa_zonelist_order(buffer); 5172 return proc_dostring(table, write, buffer, length, ppos); 5173 } 5174 5175 static int node_load[MAX_NUMNODES]; 5176 5177 /** 5178 * find_next_best_node - find the next node that should appear in a given node's fallback list 5179 * @node: node whose fallback list we're appending 5180 * @used_node_mask: nodemask_t of already used nodes 5181 * 5182 * We use a number of factors to determine which is the next node that should 5183 * appear on a given node's fallback list. The node should not have appeared 5184 * already in @node's fallback list, and it should be the next closest node 5185 * according to the distance array (which contains arbitrary distance values 5186 * from each node to each node in the system), and should also prefer nodes 5187 * with no CPUs, since presumably they'll have very little allocation pressure 5188 * on them otherwise. 5189 * 5190 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5191 */ 5192 int find_next_best_node(int node, nodemask_t *used_node_mask) 5193 { 5194 int n, val; 5195 int min_val = INT_MAX; 5196 int best_node = NUMA_NO_NODE; 5197 5198 /* 5199 * Use the local node if we haven't already, but for memoryless local 5200 * node, we should skip it and fall back to other nodes. 5201 */ 5202 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5203 node_set(node, *used_node_mask); 5204 return node; 5205 } 5206 5207 for_each_node_state(n, N_MEMORY) { 5208 5209 /* Don't want a node to appear more than once */ 5210 if (node_isset(n, *used_node_mask)) 5211 continue; 5212 5213 /* Use the distance array to find the distance */ 5214 val = node_distance(node, n); 5215 5216 /* Penalize nodes under us ("prefer the next node") */ 5217 val += (n < node); 5218 5219 /* Give preference to headless and unused nodes */ 5220 if (!cpumask_empty(cpumask_of_node(n))) 5221 val += PENALTY_FOR_NODE_WITH_CPUS; 5222 5223 /* Slight preference for less loaded node */ 5224 val *= MAX_NUMNODES; 5225 val += node_load[n]; 5226 5227 if (val < min_val) { 5228 min_val = val; 5229 best_node = n; 5230 } 5231 } 5232 5233 if (best_node >= 0) 5234 node_set(best_node, *used_node_mask); 5235 5236 return best_node; 5237 } 5238 5239 5240 /* 5241 * Build zonelists ordered by node and zones within node. 5242 * This results in maximum locality--normal zone overflows into local 5243 * DMA zone, if any--but risks exhausting DMA zone. 5244 */ 5245 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5246 unsigned nr_nodes) 5247 { 5248 struct zoneref *zonerefs; 5249 int i; 5250 5251 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5252 5253 for (i = 0; i < nr_nodes; i++) { 5254 int nr_zones; 5255 5256 pg_data_t *node = NODE_DATA(node_order[i]); 5257 5258 nr_zones = build_zonerefs_node(node, zonerefs); 5259 zonerefs += nr_zones; 5260 } 5261 zonerefs->zone = NULL; 5262 zonerefs->zone_idx = 0; 5263 } 5264 5265 /* 5266 * Build __GFP_THISNODE zonelists 5267 */ 5268 static void build_thisnode_zonelists(pg_data_t *pgdat) 5269 { 5270 struct zoneref *zonerefs; 5271 int nr_zones; 5272 5273 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5274 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5275 zonerefs += nr_zones; 5276 zonerefs->zone = NULL; 5277 zonerefs->zone_idx = 0; 5278 } 5279 5280 /* 5281 * Build zonelists ordered by zone and nodes within zones. 5282 * This results in conserving DMA zone[s] until all Normal memory is 5283 * exhausted, but results in overflowing to remote node while memory 5284 * may still exist in local DMA zone. 5285 */ 5286 5287 static void build_zonelists(pg_data_t *pgdat) 5288 { 5289 static int node_order[MAX_NUMNODES]; 5290 int node, nr_nodes = 0; 5291 nodemask_t used_mask = NODE_MASK_NONE; 5292 int local_node, prev_node; 5293 5294 /* NUMA-aware ordering of nodes */ 5295 local_node = pgdat->node_id; 5296 prev_node = local_node; 5297 5298 memset(node_order, 0, sizeof(node_order)); 5299 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5300 /* 5301 * We don't want to pressure a particular node. 5302 * So adding penalty to the first node in same 5303 * distance group to make it round-robin. 5304 */ 5305 if (node_distance(local_node, node) != 5306 node_distance(local_node, prev_node)) 5307 node_load[node] += 1; 5308 5309 node_order[nr_nodes++] = node; 5310 prev_node = node; 5311 } 5312 5313 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5314 build_thisnode_zonelists(pgdat); 5315 pr_info("Fallback order for Node %d: ", local_node); 5316 for (node = 0; node < nr_nodes; node++) 5317 pr_cont("%d ", node_order[node]); 5318 pr_cont("\n"); 5319 } 5320 5321 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5322 /* 5323 * Return node id of node used for "local" allocations. 5324 * I.e., first node id of first zone in arg node's generic zonelist. 5325 * Used for initializing percpu 'numa_mem', which is used primarily 5326 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5327 */ 5328 int local_memory_node(int node) 5329 { 5330 struct zoneref *z; 5331 5332 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5333 gfp_zone(GFP_KERNEL), 5334 NULL); 5335 return zonelist_node_idx(z); 5336 } 5337 #endif 5338 5339 static void setup_min_unmapped_ratio(void); 5340 static void setup_min_slab_ratio(void); 5341 #else /* CONFIG_NUMA */ 5342 5343 static void build_zonelists(pg_data_t *pgdat) 5344 { 5345 struct zoneref *zonerefs; 5346 int nr_zones; 5347 5348 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5349 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5350 zonerefs += nr_zones; 5351 5352 zonerefs->zone = NULL; 5353 zonerefs->zone_idx = 0; 5354 } 5355 5356 #endif /* CONFIG_NUMA */ 5357 5358 /* 5359 * Boot pageset table. One per cpu which is going to be used for all 5360 * zones and all nodes. The parameters will be set in such a way 5361 * that an item put on a list will immediately be handed over to 5362 * the buddy list. This is safe since pageset manipulation is done 5363 * with interrupts disabled. 5364 * 5365 * The boot_pagesets must be kept even after bootup is complete for 5366 * unused processors and/or zones. They do play a role for bootstrapping 5367 * hotplugged processors. 5368 * 5369 * zoneinfo_show() and maybe other functions do 5370 * not check if the processor is online before following the pageset pointer. 5371 * Other parts of the kernel may not check if the zone is available. 5372 */ 5373 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5374 /* These effectively disable the pcplists in the boot pageset completely */ 5375 #define BOOT_PAGESET_HIGH 0 5376 #define BOOT_PAGESET_BATCH 1 5377 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5378 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5379 5380 static void __build_all_zonelists(void *data) 5381 { 5382 int nid; 5383 int __maybe_unused cpu; 5384 pg_data_t *self = data; 5385 unsigned long flags; 5386 5387 /* 5388 * The zonelist_update_seq must be acquired with irqsave because the 5389 * reader can be invoked from IRQ with GFP_ATOMIC. 5390 */ 5391 write_seqlock_irqsave(&zonelist_update_seq, flags); 5392 /* 5393 * Also disable synchronous printk() to prevent any printk() from 5394 * trying to hold port->lock, for 5395 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5396 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5397 */ 5398 printk_deferred_enter(); 5399 5400 #ifdef CONFIG_NUMA 5401 memset(node_load, 0, sizeof(node_load)); 5402 #endif 5403 5404 /* 5405 * This node is hotadded and no memory is yet present. So just 5406 * building zonelists is fine - no need to touch other nodes. 5407 */ 5408 if (self && !node_online(self->node_id)) { 5409 build_zonelists(self); 5410 } else { 5411 /* 5412 * All possible nodes have pgdat preallocated 5413 * in free_area_init 5414 */ 5415 for_each_node(nid) { 5416 pg_data_t *pgdat = NODE_DATA(nid); 5417 5418 build_zonelists(pgdat); 5419 } 5420 5421 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5422 /* 5423 * We now know the "local memory node" for each node-- 5424 * i.e., the node of the first zone in the generic zonelist. 5425 * Set up numa_mem percpu variable for on-line cpus. During 5426 * boot, only the boot cpu should be on-line; we'll init the 5427 * secondary cpus' numa_mem as they come on-line. During 5428 * node/memory hotplug, we'll fixup all on-line cpus. 5429 */ 5430 for_each_online_cpu(cpu) 5431 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5432 #endif 5433 } 5434 5435 printk_deferred_exit(); 5436 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5437 } 5438 5439 static noinline void __init 5440 build_all_zonelists_init(void) 5441 { 5442 int cpu; 5443 5444 __build_all_zonelists(NULL); 5445 5446 /* 5447 * Initialize the boot_pagesets that are going to be used 5448 * for bootstrapping processors. The real pagesets for 5449 * each zone will be allocated later when the per cpu 5450 * allocator is available. 5451 * 5452 * boot_pagesets are used also for bootstrapping offline 5453 * cpus if the system is already booted because the pagesets 5454 * are needed to initialize allocators on a specific cpu too. 5455 * F.e. the percpu allocator needs the page allocator which 5456 * needs the percpu allocator in order to allocate its pagesets 5457 * (a chicken-egg dilemma). 5458 */ 5459 for_each_possible_cpu(cpu) 5460 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5461 5462 mminit_verify_zonelist(); 5463 cpuset_init_current_mems_allowed(); 5464 } 5465 5466 /* 5467 * unless system_state == SYSTEM_BOOTING. 5468 * 5469 * __ref due to call of __init annotated helper build_all_zonelists_init 5470 * [protected by SYSTEM_BOOTING]. 5471 */ 5472 void __ref build_all_zonelists(pg_data_t *pgdat) 5473 { 5474 unsigned long vm_total_pages; 5475 5476 if (system_state == SYSTEM_BOOTING) { 5477 build_all_zonelists_init(); 5478 } else { 5479 __build_all_zonelists(pgdat); 5480 /* cpuset refresh routine should be here */ 5481 } 5482 /* Get the number of free pages beyond high watermark in all zones. */ 5483 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5484 /* 5485 * Disable grouping by mobility if the number of pages in the 5486 * system is too low to allow the mechanism to work. It would be 5487 * more accurate, but expensive to check per-zone. This check is 5488 * made on memory-hotadd so a system can start with mobility 5489 * disabled and enable it later 5490 */ 5491 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5492 page_group_by_mobility_disabled = 1; 5493 else 5494 page_group_by_mobility_disabled = 0; 5495 5496 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5497 nr_online_nodes, 5498 page_group_by_mobility_disabled ? "off" : "on", 5499 vm_total_pages); 5500 #ifdef CONFIG_NUMA 5501 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5502 #endif 5503 } 5504 5505 static int zone_batchsize(struct zone *zone) 5506 { 5507 #ifdef CONFIG_MMU 5508 int batch; 5509 5510 /* 5511 * The number of pages to batch allocate is either ~0.1% 5512 * of the zone or 1MB, whichever is smaller. The batch 5513 * size is striking a balance between allocation latency 5514 * and zone lock contention. 5515 */ 5516 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5517 batch /= 4; /* We effectively *= 4 below */ 5518 if (batch < 1) 5519 batch = 1; 5520 5521 /* 5522 * Clamp the batch to a 2^n - 1 value. Having a power 5523 * of 2 value was found to be more likely to have 5524 * suboptimal cache aliasing properties in some cases. 5525 * 5526 * For example if 2 tasks are alternately allocating 5527 * batches of pages, one task can end up with a lot 5528 * of pages of one half of the possible page colors 5529 * and the other with pages of the other colors. 5530 */ 5531 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5532 5533 return batch; 5534 5535 #else 5536 /* The deferral and batching of frees should be suppressed under NOMMU 5537 * conditions. 5538 * 5539 * The problem is that NOMMU needs to be able to allocate large chunks 5540 * of contiguous memory as there's no hardware page translation to 5541 * assemble apparent contiguous memory from discontiguous pages. 5542 * 5543 * Queueing large contiguous runs of pages for batching, however, 5544 * causes the pages to actually be freed in smaller chunks. As there 5545 * can be a significant delay between the individual batches being 5546 * recycled, this leads to the once large chunks of space being 5547 * fragmented and becoming unavailable for high-order allocations. 5548 */ 5549 return 0; 5550 #endif 5551 } 5552 5553 static int percpu_pagelist_high_fraction; 5554 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5555 int high_fraction) 5556 { 5557 #ifdef CONFIG_MMU 5558 int high; 5559 int nr_split_cpus; 5560 unsigned long total_pages; 5561 5562 if (!high_fraction) { 5563 /* 5564 * By default, the high value of the pcp is based on the zone 5565 * low watermark so that if they are full then background 5566 * reclaim will not be started prematurely. 5567 */ 5568 total_pages = low_wmark_pages(zone); 5569 } else { 5570 /* 5571 * If percpu_pagelist_high_fraction is configured, the high 5572 * value is based on a fraction of the managed pages in the 5573 * zone. 5574 */ 5575 total_pages = zone_managed_pages(zone) / high_fraction; 5576 } 5577 5578 /* 5579 * Split the high value across all online CPUs local to the zone. Note 5580 * that early in boot that CPUs may not be online yet and that during 5581 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5582 * onlined. For memory nodes that have no CPUs, split the high value 5583 * across all online CPUs to mitigate the risk that reclaim is triggered 5584 * prematurely due to pages stored on pcp lists. 5585 */ 5586 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5587 if (!nr_split_cpus) 5588 nr_split_cpus = num_online_cpus(); 5589 high = total_pages / nr_split_cpus; 5590 5591 /* 5592 * Ensure high is at least batch*4. The multiple is based on the 5593 * historical relationship between high and batch. 5594 */ 5595 high = max(high, batch << 2); 5596 5597 return high; 5598 #else 5599 return 0; 5600 #endif 5601 } 5602 5603 /* 5604 * pcp->high and pcp->batch values are related and generally batch is lower 5605 * than high. They are also related to pcp->count such that count is lower 5606 * than high, and as soon as it reaches high, the pcplist is flushed. 5607 * 5608 * However, guaranteeing these relations at all times would require e.g. write 5609 * barriers here but also careful usage of read barriers at the read side, and 5610 * thus be prone to error and bad for performance. Thus the update only prevents 5611 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5612 * should ensure they can cope with those fields changing asynchronously, and 5613 * fully trust only the pcp->count field on the local CPU with interrupts 5614 * disabled. 5615 * 5616 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5617 * outside of boot time (or some other assurance that no concurrent updaters 5618 * exist). 5619 */ 5620 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5621 unsigned long high_max, unsigned long batch) 5622 { 5623 WRITE_ONCE(pcp->batch, batch); 5624 WRITE_ONCE(pcp->high_min, high_min); 5625 WRITE_ONCE(pcp->high_max, high_max); 5626 } 5627 5628 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5629 { 5630 int pindex; 5631 5632 memset(pcp, 0, sizeof(*pcp)); 5633 memset(pzstats, 0, sizeof(*pzstats)); 5634 5635 spin_lock_init(&pcp->lock); 5636 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5637 INIT_LIST_HEAD(&pcp->lists[pindex]); 5638 5639 /* 5640 * Set batch and high values safe for a boot pageset. A true percpu 5641 * pageset's initialization will update them subsequently. Here we don't 5642 * need to be as careful as pageset_update() as nobody can access the 5643 * pageset yet. 5644 */ 5645 pcp->high_min = BOOT_PAGESET_HIGH; 5646 pcp->high_max = BOOT_PAGESET_HIGH; 5647 pcp->batch = BOOT_PAGESET_BATCH; 5648 pcp->free_count = 0; 5649 } 5650 5651 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5652 unsigned long high_max, unsigned long batch) 5653 { 5654 struct per_cpu_pages *pcp; 5655 int cpu; 5656 5657 for_each_possible_cpu(cpu) { 5658 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5659 pageset_update(pcp, high_min, high_max, batch); 5660 } 5661 } 5662 5663 /* 5664 * Calculate and set new high and batch values for all per-cpu pagesets of a 5665 * zone based on the zone's size. 5666 */ 5667 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5668 { 5669 int new_high_min, new_high_max, new_batch; 5670 5671 new_batch = max(1, zone_batchsize(zone)); 5672 if (percpu_pagelist_high_fraction) { 5673 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5674 percpu_pagelist_high_fraction); 5675 /* 5676 * PCP high is tuned manually, disable auto-tuning via 5677 * setting high_min and high_max to the manual value. 5678 */ 5679 new_high_max = new_high_min; 5680 } else { 5681 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5682 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5683 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5684 } 5685 5686 if (zone->pageset_high_min == new_high_min && 5687 zone->pageset_high_max == new_high_max && 5688 zone->pageset_batch == new_batch) 5689 return; 5690 5691 zone->pageset_high_min = new_high_min; 5692 zone->pageset_high_max = new_high_max; 5693 zone->pageset_batch = new_batch; 5694 5695 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5696 new_batch); 5697 } 5698 5699 void __meminit setup_zone_pageset(struct zone *zone) 5700 { 5701 int cpu; 5702 5703 /* Size may be 0 on !SMP && !NUMA */ 5704 if (sizeof(struct per_cpu_zonestat) > 0) 5705 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5706 5707 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5708 for_each_possible_cpu(cpu) { 5709 struct per_cpu_pages *pcp; 5710 struct per_cpu_zonestat *pzstats; 5711 5712 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5713 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5714 per_cpu_pages_init(pcp, pzstats); 5715 } 5716 5717 zone_set_pageset_high_and_batch(zone, 0); 5718 } 5719 5720 /* 5721 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5722 * page high values need to be recalculated. 5723 */ 5724 static void zone_pcp_update(struct zone *zone, int cpu_online) 5725 { 5726 mutex_lock(&pcp_batch_high_lock); 5727 zone_set_pageset_high_and_batch(zone, cpu_online); 5728 mutex_unlock(&pcp_batch_high_lock); 5729 } 5730 5731 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5732 { 5733 struct per_cpu_pages *pcp; 5734 struct cpu_cacheinfo *cci; 5735 5736 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5737 cci = get_cpu_cacheinfo(cpu); 5738 /* 5739 * If data cache slice of CPU is large enough, "pcp->batch" 5740 * pages can be preserved in PCP before draining PCP for 5741 * consecutive high-order pages freeing without allocation. 5742 * This can reduce zone lock contention without hurting 5743 * cache-hot pages sharing. 5744 */ 5745 spin_lock(&pcp->lock); 5746 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5747 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5748 else 5749 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5750 spin_unlock(&pcp->lock); 5751 } 5752 5753 void setup_pcp_cacheinfo(unsigned int cpu) 5754 { 5755 struct zone *zone; 5756 5757 for_each_populated_zone(zone) 5758 zone_pcp_update_cacheinfo(zone, cpu); 5759 } 5760 5761 /* 5762 * Allocate per cpu pagesets and initialize them. 5763 * Before this call only boot pagesets were available. 5764 */ 5765 void __init setup_per_cpu_pageset(void) 5766 { 5767 struct pglist_data *pgdat; 5768 struct zone *zone; 5769 int __maybe_unused cpu; 5770 5771 for_each_populated_zone(zone) 5772 setup_zone_pageset(zone); 5773 5774 #ifdef CONFIG_NUMA 5775 /* 5776 * Unpopulated zones continue using the boot pagesets. 5777 * The numa stats for these pagesets need to be reset. 5778 * Otherwise, they will end up skewing the stats of 5779 * the nodes these zones are associated with. 5780 */ 5781 for_each_possible_cpu(cpu) { 5782 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5783 memset(pzstats->vm_numa_event, 0, 5784 sizeof(pzstats->vm_numa_event)); 5785 } 5786 #endif 5787 5788 for_each_online_pgdat(pgdat) 5789 pgdat->per_cpu_nodestats = 5790 alloc_percpu(struct per_cpu_nodestat); 5791 } 5792 5793 __meminit void zone_pcp_init(struct zone *zone) 5794 { 5795 /* 5796 * per cpu subsystem is not up at this point. The following code 5797 * relies on the ability of the linker to provide the 5798 * offset of a (static) per cpu variable into the per cpu area. 5799 */ 5800 zone->per_cpu_pageset = &boot_pageset; 5801 zone->per_cpu_zonestats = &boot_zonestats; 5802 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5803 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5804 zone->pageset_batch = BOOT_PAGESET_BATCH; 5805 5806 if (populated_zone(zone)) 5807 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5808 zone->present_pages, zone_batchsize(zone)); 5809 } 5810 5811 void adjust_managed_page_count(struct page *page, long count) 5812 { 5813 atomic_long_add(count, &page_zone(page)->managed_pages); 5814 totalram_pages_add(count); 5815 } 5816 EXPORT_SYMBOL(adjust_managed_page_count); 5817 5818 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5819 { 5820 void *pos; 5821 unsigned long pages = 0; 5822 5823 start = (void *)PAGE_ALIGN((unsigned long)start); 5824 end = (void *)((unsigned long)end & PAGE_MASK); 5825 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5826 struct page *page = virt_to_page(pos); 5827 void *direct_map_addr; 5828 5829 /* 5830 * 'direct_map_addr' might be different from 'pos' 5831 * because some architectures' virt_to_page() 5832 * work with aliases. Getting the direct map 5833 * address ensures that we get a _writeable_ 5834 * alias for the memset(). 5835 */ 5836 direct_map_addr = page_address(page); 5837 /* 5838 * Perform a kasan-unchecked memset() since this memory 5839 * has not been initialized. 5840 */ 5841 direct_map_addr = kasan_reset_tag(direct_map_addr); 5842 if ((unsigned int)poison <= 0xFF) 5843 memset(direct_map_addr, poison, PAGE_SIZE); 5844 5845 free_reserved_page(page); 5846 } 5847 5848 if (pages && s) 5849 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5850 5851 return pages; 5852 } 5853 5854 void free_reserved_page(struct page *page) 5855 { 5856 clear_page_tag_ref(page); 5857 ClearPageReserved(page); 5858 init_page_count(page); 5859 __free_page(page); 5860 adjust_managed_page_count(page, 1); 5861 } 5862 EXPORT_SYMBOL(free_reserved_page); 5863 5864 static int page_alloc_cpu_dead(unsigned int cpu) 5865 { 5866 struct zone *zone; 5867 5868 lru_add_drain_cpu(cpu); 5869 mlock_drain_remote(cpu); 5870 drain_pages(cpu); 5871 5872 /* 5873 * Spill the event counters of the dead processor 5874 * into the current processors event counters. 5875 * This artificially elevates the count of the current 5876 * processor. 5877 */ 5878 vm_events_fold_cpu(cpu); 5879 5880 /* 5881 * Zero the differential counters of the dead processor 5882 * so that the vm statistics are consistent. 5883 * 5884 * This is only okay since the processor is dead and cannot 5885 * race with what we are doing. 5886 */ 5887 cpu_vm_stats_fold(cpu); 5888 5889 for_each_populated_zone(zone) 5890 zone_pcp_update(zone, 0); 5891 5892 return 0; 5893 } 5894 5895 static int page_alloc_cpu_online(unsigned int cpu) 5896 { 5897 struct zone *zone; 5898 5899 for_each_populated_zone(zone) 5900 zone_pcp_update(zone, 1); 5901 return 0; 5902 } 5903 5904 void __init page_alloc_init_cpuhp(void) 5905 { 5906 int ret; 5907 5908 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5909 "mm/page_alloc:pcp", 5910 page_alloc_cpu_online, 5911 page_alloc_cpu_dead); 5912 WARN_ON(ret < 0); 5913 } 5914 5915 /* 5916 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5917 * or min_free_kbytes changes. 5918 */ 5919 static void calculate_totalreserve_pages(void) 5920 { 5921 struct pglist_data *pgdat; 5922 unsigned long reserve_pages = 0; 5923 enum zone_type i, j; 5924 5925 for_each_online_pgdat(pgdat) { 5926 5927 pgdat->totalreserve_pages = 0; 5928 5929 for (i = 0; i < MAX_NR_ZONES; i++) { 5930 struct zone *zone = pgdat->node_zones + i; 5931 long max = 0; 5932 unsigned long managed_pages = zone_managed_pages(zone); 5933 5934 /* Find valid and maximum lowmem_reserve in the zone */ 5935 for (j = i; j < MAX_NR_ZONES; j++) { 5936 if (zone->lowmem_reserve[j] > max) 5937 max = zone->lowmem_reserve[j]; 5938 } 5939 5940 /* we treat the high watermark as reserved pages. */ 5941 max += high_wmark_pages(zone); 5942 5943 if (max > managed_pages) 5944 max = managed_pages; 5945 5946 pgdat->totalreserve_pages += max; 5947 5948 reserve_pages += max; 5949 } 5950 } 5951 totalreserve_pages = reserve_pages; 5952 } 5953 5954 /* 5955 * setup_per_zone_lowmem_reserve - called whenever 5956 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5957 * has a correct pages reserved value, so an adequate number of 5958 * pages are left in the zone after a successful __alloc_pages(). 5959 */ 5960 static void setup_per_zone_lowmem_reserve(void) 5961 { 5962 struct pglist_data *pgdat; 5963 enum zone_type i, j; 5964 5965 for_each_online_pgdat(pgdat) { 5966 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5967 struct zone *zone = &pgdat->node_zones[i]; 5968 int ratio = sysctl_lowmem_reserve_ratio[i]; 5969 bool clear = !ratio || !zone_managed_pages(zone); 5970 unsigned long managed_pages = 0; 5971 5972 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5973 struct zone *upper_zone = &pgdat->node_zones[j]; 5974 bool empty = !zone_managed_pages(upper_zone); 5975 5976 managed_pages += zone_managed_pages(upper_zone); 5977 5978 if (clear || empty) 5979 zone->lowmem_reserve[j] = 0; 5980 else 5981 zone->lowmem_reserve[j] = managed_pages / ratio; 5982 } 5983 } 5984 } 5985 5986 /* update totalreserve_pages */ 5987 calculate_totalreserve_pages(); 5988 } 5989 5990 static void __setup_per_zone_wmarks(void) 5991 { 5992 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5993 unsigned long lowmem_pages = 0; 5994 struct zone *zone; 5995 unsigned long flags; 5996 5997 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5998 for_each_zone(zone) { 5999 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6000 lowmem_pages += zone_managed_pages(zone); 6001 } 6002 6003 for_each_zone(zone) { 6004 u64 tmp; 6005 6006 spin_lock_irqsave(&zone->lock, flags); 6007 tmp = (u64)pages_min * zone_managed_pages(zone); 6008 tmp = div64_ul(tmp, lowmem_pages); 6009 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6010 /* 6011 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6012 * need highmem and movable zones pages, so cap pages_min 6013 * to a small value here. 6014 * 6015 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6016 * deltas control async page reclaim, and so should 6017 * not be capped for highmem and movable zones. 6018 */ 6019 unsigned long min_pages; 6020 6021 min_pages = zone_managed_pages(zone) / 1024; 6022 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6023 zone->_watermark[WMARK_MIN] = min_pages; 6024 } else { 6025 /* 6026 * If it's a lowmem zone, reserve a number of pages 6027 * proportionate to the zone's size. 6028 */ 6029 zone->_watermark[WMARK_MIN] = tmp; 6030 } 6031 6032 /* 6033 * Set the kswapd watermarks distance according to the 6034 * scale factor in proportion to available memory, but 6035 * ensure a minimum size on small systems. 6036 */ 6037 tmp = max_t(u64, tmp >> 2, 6038 mult_frac(zone_managed_pages(zone), 6039 watermark_scale_factor, 10000)); 6040 6041 zone->watermark_boost = 0; 6042 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6043 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6044 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6045 6046 spin_unlock_irqrestore(&zone->lock, flags); 6047 } 6048 6049 /* update totalreserve_pages */ 6050 calculate_totalreserve_pages(); 6051 } 6052 6053 /** 6054 * setup_per_zone_wmarks - called when min_free_kbytes changes 6055 * or when memory is hot-{added|removed} 6056 * 6057 * Ensures that the watermark[min,low,high] values for each zone are set 6058 * correctly with respect to min_free_kbytes. 6059 */ 6060 void setup_per_zone_wmarks(void) 6061 { 6062 struct zone *zone; 6063 static DEFINE_SPINLOCK(lock); 6064 6065 spin_lock(&lock); 6066 __setup_per_zone_wmarks(); 6067 spin_unlock(&lock); 6068 6069 /* 6070 * The watermark size have changed so update the pcpu batch 6071 * and high limits or the limits may be inappropriate. 6072 */ 6073 for_each_zone(zone) 6074 zone_pcp_update(zone, 0); 6075 } 6076 6077 /* 6078 * Initialise min_free_kbytes. 6079 * 6080 * For small machines we want it small (128k min). For large machines 6081 * we want it large (256MB max). But it is not linear, because network 6082 * bandwidth does not increase linearly with machine size. We use 6083 * 6084 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6085 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6086 * 6087 * which yields 6088 * 6089 * 16MB: 512k 6090 * 32MB: 724k 6091 * 64MB: 1024k 6092 * 128MB: 1448k 6093 * 256MB: 2048k 6094 * 512MB: 2896k 6095 * 1024MB: 4096k 6096 * 2048MB: 5792k 6097 * 4096MB: 8192k 6098 * 8192MB: 11584k 6099 * 16384MB: 16384k 6100 */ 6101 void calculate_min_free_kbytes(void) 6102 { 6103 unsigned long lowmem_kbytes; 6104 int new_min_free_kbytes; 6105 6106 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6107 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6108 6109 if (new_min_free_kbytes > user_min_free_kbytes) 6110 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6111 else 6112 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6113 new_min_free_kbytes, user_min_free_kbytes); 6114 6115 } 6116 6117 int __meminit init_per_zone_wmark_min(void) 6118 { 6119 calculate_min_free_kbytes(); 6120 setup_per_zone_wmarks(); 6121 refresh_zone_stat_thresholds(); 6122 setup_per_zone_lowmem_reserve(); 6123 6124 #ifdef CONFIG_NUMA 6125 setup_min_unmapped_ratio(); 6126 setup_min_slab_ratio(); 6127 #endif 6128 6129 khugepaged_min_free_kbytes_update(); 6130 6131 return 0; 6132 } 6133 postcore_initcall(init_per_zone_wmark_min) 6134 6135 /* 6136 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6137 * that we can call two helper functions whenever min_free_kbytes 6138 * changes. 6139 */ 6140 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6141 void *buffer, size_t *length, loff_t *ppos) 6142 { 6143 int rc; 6144 6145 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6146 if (rc) 6147 return rc; 6148 6149 if (write) { 6150 user_min_free_kbytes = min_free_kbytes; 6151 setup_per_zone_wmarks(); 6152 } 6153 return 0; 6154 } 6155 6156 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6157 void *buffer, size_t *length, loff_t *ppos) 6158 { 6159 int rc; 6160 6161 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6162 if (rc) 6163 return rc; 6164 6165 if (write) 6166 setup_per_zone_wmarks(); 6167 6168 return 0; 6169 } 6170 6171 #ifdef CONFIG_NUMA 6172 static void setup_min_unmapped_ratio(void) 6173 { 6174 pg_data_t *pgdat; 6175 struct zone *zone; 6176 6177 for_each_online_pgdat(pgdat) 6178 pgdat->min_unmapped_pages = 0; 6179 6180 for_each_zone(zone) 6181 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6182 sysctl_min_unmapped_ratio) / 100; 6183 } 6184 6185 6186 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6187 void *buffer, size_t *length, loff_t *ppos) 6188 { 6189 int rc; 6190 6191 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6192 if (rc) 6193 return rc; 6194 6195 setup_min_unmapped_ratio(); 6196 6197 return 0; 6198 } 6199 6200 static void setup_min_slab_ratio(void) 6201 { 6202 pg_data_t *pgdat; 6203 struct zone *zone; 6204 6205 for_each_online_pgdat(pgdat) 6206 pgdat->min_slab_pages = 0; 6207 6208 for_each_zone(zone) 6209 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6210 sysctl_min_slab_ratio) / 100; 6211 } 6212 6213 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6214 void *buffer, size_t *length, loff_t *ppos) 6215 { 6216 int rc; 6217 6218 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6219 if (rc) 6220 return rc; 6221 6222 setup_min_slab_ratio(); 6223 6224 return 0; 6225 } 6226 #endif 6227 6228 /* 6229 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6230 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6231 * whenever sysctl_lowmem_reserve_ratio changes. 6232 * 6233 * The reserve ratio obviously has absolutely no relation with the 6234 * minimum watermarks. The lowmem reserve ratio can only make sense 6235 * if in function of the boot time zone sizes. 6236 */ 6237 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6238 int write, void *buffer, size_t *length, loff_t *ppos) 6239 { 6240 int i; 6241 6242 proc_dointvec_minmax(table, write, buffer, length, ppos); 6243 6244 for (i = 0; i < MAX_NR_ZONES; i++) { 6245 if (sysctl_lowmem_reserve_ratio[i] < 1) 6246 sysctl_lowmem_reserve_ratio[i] = 0; 6247 } 6248 6249 setup_per_zone_lowmem_reserve(); 6250 return 0; 6251 } 6252 6253 /* 6254 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6255 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6256 * pagelist can have before it gets flushed back to buddy allocator. 6257 */ 6258 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6259 int write, void *buffer, size_t *length, loff_t *ppos) 6260 { 6261 struct zone *zone; 6262 int old_percpu_pagelist_high_fraction; 6263 int ret; 6264 6265 mutex_lock(&pcp_batch_high_lock); 6266 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6267 6268 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6269 if (!write || ret < 0) 6270 goto out; 6271 6272 /* Sanity checking to avoid pcp imbalance */ 6273 if (percpu_pagelist_high_fraction && 6274 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6275 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6276 ret = -EINVAL; 6277 goto out; 6278 } 6279 6280 /* No change? */ 6281 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6282 goto out; 6283 6284 for_each_populated_zone(zone) 6285 zone_set_pageset_high_and_batch(zone, 0); 6286 out: 6287 mutex_unlock(&pcp_batch_high_lock); 6288 return ret; 6289 } 6290 6291 static struct ctl_table page_alloc_sysctl_table[] = { 6292 { 6293 .procname = "min_free_kbytes", 6294 .data = &min_free_kbytes, 6295 .maxlen = sizeof(min_free_kbytes), 6296 .mode = 0644, 6297 .proc_handler = min_free_kbytes_sysctl_handler, 6298 .extra1 = SYSCTL_ZERO, 6299 }, 6300 { 6301 .procname = "watermark_boost_factor", 6302 .data = &watermark_boost_factor, 6303 .maxlen = sizeof(watermark_boost_factor), 6304 .mode = 0644, 6305 .proc_handler = proc_dointvec_minmax, 6306 .extra1 = SYSCTL_ZERO, 6307 }, 6308 { 6309 .procname = "watermark_scale_factor", 6310 .data = &watermark_scale_factor, 6311 .maxlen = sizeof(watermark_scale_factor), 6312 .mode = 0644, 6313 .proc_handler = watermark_scale_factor_sysctl_handler, 6314 .extra1 = SYSCTL_ONE, 6315 .extra2 = SYSCTL_THREE_THOUSAND, 6316 }, 6317 { 6318 .procname = "percpu_pagelist_high_fraction", 6319 .data = &percpu_pagelist_high_fraction, 6320 .maxlen = sizeof(percpu_pagelist_high_fraction), 6321 .mode = 0644, 6322 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6323 .extra1 = SYSCTL_ZERO, 6324 }, 6325 { 6326 .procname = "lowmem_reserve_ratio", 6327 .data = &sysctl_lowmem_reserve_ratio, 6328 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6329 .mode = 0644, 6330 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6331 }, 6332 #ifdef CONFIG_NUMA 6333 { 6334 .procname = "numa_zonelist_order", 6335 .data = &numa_zonelist_order, 6336 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6337 .mode = 0644, 6338 .proc_handler = numa_zonelist_order_handler, 6339 }, 6340 { 6341 .procname = "min_unmapped_ratio", 6342 .data = &sysctl_min_unmapped_ratio, 6343 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6344 .mode = 0644, 6345 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6346 .extra1 = SYSCTL_ZERO, 6347 .extra2 = SYSCTL_ONE_HUNDRED, 6348 }, 6349 { 6350 .procname = "min_slab_ratio", 6351 .data = &sysctl_min_slab_ratio, 6352 .maxlen = sizeof(sysctl_min_slab_ratio), 6353 .mode = 0644, 6354 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6355 .extra1 = SYSCTL_ZERO, 6356 .extra2 = SYSCTL_ONE_HUNDRED, 6357 }, 6358 #endif 6359 }; 6360 6361 void __init page_alloc_sysctl_init(void) 6362 { 6363 register_sysctl_init("vm", page_alloc_sysctl_table); 6364 } 6365 6366 #ifdef CONFIG_CONTIG_ALLOC 6367 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6368 static void alloc_contig_dump_pages(struct list_head *page_list) 6369 { 6370 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6371 6372 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6373 struct page *page; 6374 6375 dump_stack(); 6376 list_for_each_entry(page, page_list, lru) 6377 dump_page(page, "migration failure"); 6378 } 6379 } 6380 6381 /* 6382 * [start, end) must belong to a single zone. 6383 * @migratetype: using migratetype to filter the type of migration in 6384 * trace_mm_alloc_contig_migrate_range_info. 6385 */ 6386 int __alloc_contig_migrate_range(struct compact_control *cc, 6387 unsigned long start, unsigned long end, 6388 int migratetype) 6389 { 6390 /* This function is based on compact_zone() from compaction.c. */ 6391 unsigned int nr_reclaimed; 6392 unsigned long pfn = start; 6393 unsigned int tries = 0; 6394 int ret = 0; 6395 struct migration_target_control mtc = { 6396 .nid = zone_to_nid(cc->zone), 6397 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6398 .reason = MR_CONTIG_RANGE, 6399 }; 6400 struct page *page; 6401 unsigned long total_mapped = 0; 6402 unsigned long total_migrated = 0; 6403 unsigned long total_reclaimed = 0; 6404 6405 lru_cache_disable(); 6406 6407 while (pfn < end || !list_empty(&cc->migratepages)) { 6408 if (fatal_signal_pending(current)) { 6409 ret = -EINTR; 6410 break; 6411 } 6412 6413 if (list_empty(&cc->migratepages)) { 6414 cc->nr_migratepages = 0; 6415 ret = isolate_migratepages_range(cc, pfn, end); 6416 if (ret && ret != -EAGAIN) 6417 break; 6418 pfn = cc->migrate_pfn; 6419 tries = 0; 6420 } else if (++tries == 5) { 6421 ret = -EBUSY; 6422 break; 6423 } 6424 6425 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6426 &cc->migratepages); 6427 cc->nr_migratepages -= nr_reclaimed; 6428 6429 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6430 total_reclaimed += nr_reclaimed; 6431 list_for_each_entry(page, &cc->migratepages, lru) { 6432 struct folio *folio = page_folio(page); 6433 6434 total_mapped += folio_mapped(folio) * 6435 folio_nr_pages(folio); 6436 } 6437 } 6438 6439 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6440 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6441 6442 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6443 total_migrated += cc->nr_migratepages; 6444 6445 /* 6446 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6447 * to retry again over this error, so do the same here. 6448 */ 6449 if (ret == -ENOMEM) 6450 break; 6451 } 6452 6453 lru_cache_enable(); 6454 if (ret < 0) { 6455 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6456 alloc_contig_dump_pages(&cc->migratepages); 6457 putback_movable_pages(&cc->migratepages); 6458 } 6459 6460 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6461 total_migrated, 6462 total_reclaimed, 6463 total_mapped); 6464 return (ret < 0) ? ret : 0; 6465 } 6466 6467 static void split_free_pages(struct list_head *list) 6468 { 6469 int order; 6470 6471 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6472 struct page *page, *next; 6473 int nr_pages = 1 << order; 6474 6475 list_for_each_entry_safe(page, next, &list[order], lru) { 6476 int i; 6477 6478 post_alloc_hook(page, order, __GFP_MOVABLE); 6479 if (!order) 6480 continue; 6481 6482 split_page(page, order); 6483 6484 /* Add all subpages to the order-0 head, in sequence. */ 6485 list_del(&page->lru); 6486 for (i = 0; i < nr_pages; i++) 6487 list_add_tail(&page[i].lru, &list[0]); 6488 } 6489 } 6490 } 6491 6492 /** 6493 * alloc_contig_range() -- tries to allocate given range of pages 6494 * @start: start PFN to allocate 6495 * @end: one-past-the-last PFN to allocate 6496 * @migratetype: migratetype of the underlying pageblocks (either 6497 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6498 * in range must have the same migratetype and it must 6499 * be either of the two. 6500 * @gfp_mask: GFP mask to use during compaction 6501 * 6502 * The PFN range does not have to be pageblock aligned. The PFN range must 6503 * belong to a single zone. 6504 * 6505 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6506 * pageblocks in the range. Once isolated, the pageblocks should not 6507 * be modified by others. 6508 * 6509 * Return: zero on success or negative error code. On success all 6510 * pages which PFN is in [start, end) are allocated for the caller and 6511 * need to be freed with free_contig_range(). 6512 */ 6513 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6514 unsigned migratetype, gfp_t gfp_mask) 6515 { 6516 unsigned long outer_start, outer_end; 6517 int ret = 0; 6518 6519 struct compact_control cc = { 6520 .nr_migratepages = 0, 6521 .order = -1, 6522 .zone = page_zone(pfn_to_page(start)), 6523 .mode = MIGRATE_SYNC, 6524 .ignore_skip_hint = true, 6525 .no_set_skip_hint = true, 6526 .gfp_mask = current_gfp_context(gfp_mask), 6527 .alloc_contig = true, 6528 }; 6529 INIT_LIST_HEAD(&cc.migratepages); 6530 6531 /* 6532 * What we do here is we mark all pageblocks in range as 6533 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6534 * have different sizes, and due to the way page allocator 6535 * work, start_isolate_page_range() has special handlings for this. 6536 * 6537 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6538 * migrate the pages from an unaligned range (ie. pages that 6539 * we are interested in). This will put all the pages in 6540 * range back to page allocator as MIGRATE_ISOLATE. 6541 * 6542 * When this is done, we take the pages in range from page 6543 * allocator removing them from the buddy system. This way 6544 * page allocator will never consider using them. 6545 * 6546 * This lets us mark the pageblocks back as 6547 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6548 * aligned range but not in the unaligned, original range are 6549 * put back to page allocator so that buddy can use them. 6550 */ 6551 6552 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6553 if (ret) 6554 goto done; 6555 6556 drain_all_pages(cc.zone); 6557 6558 /* 6559 * In case of -EBUSY, we'd like to know which page causes problem. 6560 * So, just fall through. test_pages_isolated() has a tracepoint 6561 * which will report the busy page. 6562 * 6563 * It is possible that busy pages could become available before 6564 * the call to test_pages_isolated, and the range will actually be 6565 * allocated. So, if we fall through be sure to clear ret so that 6566 * -EBUSY is not accidentally used or returned to caller. 6567 */ 6568 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6569 if (ret && ret != -EBUSY) 6570 goto done; 6571 ret = 0; 6572 6573 /* 6574 * Pages from [start, end) are within a pageblock_nr_pages 6575 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6576 * more, all pages in [start, end) are free in page allocator. 6577 * What we are going to do is to allocate all pages from 6578 * [start, end) (that is remove them from page allocator). 6579 * 6580 * The only problem is that pages at the beginning and at the 6581 * end of interesting range may be not aligned with pages that 6582 * page allocator holds, ie. they can be part of higher order 6583 * pages. Because of this, we reserve the bigger range and 6584 * once this is done free the pages we are not interested in. 6585 * 6586 * We don't have to hold zone->lock here because the pages are 6587 * isolated thus they won't get removed from buddy. 6588 */ 6589 outer_start = find_large_buddy(start); 6590 6591 /* Make sure the range is really isolated. */ 6592 if (test_pages_isolated(outer_start, end, 0)) { 6593 ret = -EBUSY; 6594 goto done; 6595 } 6596 6597 /* Grab isolated pages from freelists. */ 6598 outer_end = isolate_freepages_range(&cc, outer_start, end); 6599 if (!outer_end) { 6600 ret = -EBUSY; 6601 goto done; 6602 } 6603 6604 if (!(gfp_mask & __GFP_COMP)) { 6605 split_free_pages(cc.freepages); 6606 6607 /* Free head and tail (if any) */ 6608 if (start != outer_start) 6609 free_contig_range(outer_start, start - outer_start); 6610 if (end != outer_end) 6611 free_contig_range(end, outer_end - end); 6612 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6613 struct page *head = pfn_to_page(start); 6614 int order = ilog2(end - start); 6615 6616 check_new_pages(head, order); 6617 prep_new_page(head, order, gfp_mask, 0); 6618 } else { 6619 ret = -EINVAL; 6620 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6621 start, end, outer_start, outer_end); 6622 } 6623 done: 6624 undo_isolate_page_range(start, end, migratetype); 6625 return ret; 6626 } 6627 EXPORT_SYMBOL(alloc_contig_range_noprof); 6628 6629 static int __alloc_contig_pages(unsigned long start_pfn, 6630 unsigned long nr_pages, gfp_t gfp_mask) 6631 { 6632 unsigned long end_pfn = start_pfn + nr_pages; 6633 6634 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6635 gfp_mask); 6636 } 6637 6638 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6639 unsigned long nr_pages) 6640 { 6641 unsigned long i, end_pfn = start_pfn + nr_pages; 6642 struct page *page; 6643 6644 for (i = start_pfn; i < end_pfn; i++) { 6645 page = pfn_to_online_page(i); 6646 if (!page) 6647 return false; 6648 6649 if (page_zone(page) != z) 6650 return false; 6651 6652 if (PageReserved(page)) 6653 return false; 6654 6655 if (PageHuge(page)) 6656 return false; 6657 } 6658 return true; 6659 } 6660 6661 static bool zone_spans_last_pfn(const struct zone *zone, 6662 unsigned long start_pfn, unsigned long nr_pages) 6663 { 6664 unsigned long last_pfn = start_pfn + nr_pages - 1; 6665 6666 return zone_spans_pfn(zone, last_pfn); 6667 } 6668 6669 /** 6670 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6671 * @nr_pages: Number of contiguous pages to allocate 6672 * @gfp_mask: GFP mask to limit search and used during compaction 6673 * @nid: Target node 6674 * @nodemask: Mask for other possible nodes 6675 * 6676 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6677 * on an applicable zonelist to find a contiguous pfn range which can then be 6678 * tried for allocation with alloc_contig_range(). This routine is intended 6679 * for allocation requests which can not be fulfilled with the buddy allocator. 6680 * 6681 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6682 * power of two, then allocated range is also guaranteed to be aligned to same 6683 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6684 * 6685 * Allocated pages can be freed with free_contig_range() or by manually calling 6686 * __free_page() on each allocated page. 6687 * 6688 * Return: pointer to contiguous pages on success, or NULL if not successful. 6689 */ 6690 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6691 int nid, nodemask_t *nodemask) 6692 { 6693 unsigned long ret, pfn, flags; 6694 struct zonelist *zonelist; 6695 struct zone *zone; 6696 struct zoneref *z; 6697 6698 zonelist = node_zonelist(nid, gfp_mask); 6699 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6700 gfp_zone(gfp_mask), nodemask) { 6701 spin_lock_irqsave(&zone->lock, flags); 6702 6703 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6704 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6705 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6706 /* 6707 * We release the zone lock here because 6708 * alloc_contig_range() will also lock the zone 6709 * at some point. If there's an allocation 6710 * spinning on this lock, it may win the race 6711 * and cause alloc_contig_range() to fail... 6712 */ 6713 spin_unlock_irqrestore(&zone->lock, flags); 6714 ret = __alloc_contig_pages(pfn, nr_pages, 6715 gfp_mask); 6716 if (!ret) 6717 return pfn_to_page(pfn); 6718 spin_lock_irqsave(&zone->lock, flags); 6719 } 6720 pfn += nr_pages; 6721 } 6722 spin_unlock_irqrestore(&zone->lock, flags); 6723 } 6724 return NULL; 6725 } 6726 #endif /* CONFIG_CONTIG_ALLOC */ 6727 6728 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6729 { 6730 unsigned long count = 0; 6731 struct folio *folio = pfn_folio(pfn); 6732 6733 if (folio_test_large(folio)) { 6734 int expected = folio_nr_pages(folio); 6735 6736 if (nr_pages == expected) 6737 folio_put(folio); 6738 else 6739 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6740 pfn, nr_pages, expected); 6741 return; 6742 } 6743 6744 for (; nr_pages--; pfn++) { 6745 struct page *page = pfn_to_page(pfn); 6746 6747 count += page_count(page) != 1; 6748 __free_page(page); 6749 } 6750 WARN(count != 0, "%lu pages are still in use!\n", count); 6751 } 6752 EXPORT_SYMBOL(free_contig_range); 6753 6754 /* 6755 * Effectively disable pcplists for the zone by setting the high limit to 0 6756 * and draining all cpus. A concurrent page freeing on another CPU that's about 6757 * to put the page on pcplist will either finish before the drain and the page 6758 * will be drained, or observe the new high limit and skip the pcplist. 6759 * 6760 * Must be paired with a call to zone_pcp_enable(). 6761 */ 6762 void zone_pcp_disable(struct zone *zone) 6763 { 6764 mutex_lock(&pcp_batch_high_lock); 6765 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6766 __drain_all_pages(zone, true); 6767 } 6768 6769 void zone_pcp_enable(struct zone *zone) 6770 { 6771 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6772 zone->pageset_high_max, zone->pageset_batch); 6773 mutex_unlock(&pcp_batch_high_lock); 6774 } 6775 6776 void zone_pcp_reset(struct zone *zone) 6777 { 6778 int cpu; 6779 struct per_cpu_zonestat *pzstats; 6780 6781 if (zone->per_cpu_pageset != &boot_pageset) { 6782 for_each_online_cpu(cpu) { 6783 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6784 drain_zonestat(zone, pzstats); 6785 } 6786 free_percpu(zone->per_cpu_pageset); 6787 zone->per_cpu_pageset = &boot_pageset; 6788 if (zone->per_cpu_zonestats != &boot_zonestats) { 6789 free_percpu(zone->per_cpu_zonestats); 6790 zone->per_cpu_zonestats = &boot_zonestats; 6791 } 6792 } 6793 } 6794 6795 #ifdef CONFIG_MEMORY_HOTREMOVE 6796 /* 6797 * All pages in the range must be in a single zone, must not contain holes, 6798 * must span full sections, and must be isolated before calling this function. 6799 * 6800 * Returns the number of managed (non-PageOffline()) pages in the range: the 6801 * number of pages for which memory offlining code must adjust managed page 6802 * counters using adjust_managed_page_count(). 6803 */ 6804 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6805 unsigned long end_pfn) 6806 { 6807 unsigned long already_offline = 0, flags; 6808 unsigned long pfn = start_pfn; 6809 struct page *page; 6810 struct zone *zone; 6811 unsigned int order; 6812 6813 offline_mem_sections(pfn, end_pfn); 6814 zone = page_zone(pfn_to_page(pfn)); 6815 spin_lock_irqsave(&zone->lock, flags); 6816 while (pfn < end_pfn) { 6817 page = pfn_to_page(pfn); 6818 /* 6819 * The HWPoisoned page may be not in buddy system, and 6820 * page_count() is not 0. 6821 */ 6822 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6823 pfn++; 6824 continue; 6825 } 6826 /* 6827 * At this point all remaining PageOffline() pages have a 6828 * reference count of 0 and can simply be skipped. 6829 */ 6830 if (PageOffline(page)) { 6831 BUG_ON(page_count(page)); 6832 BUG_ON(PageBuddy(page)); 6833 already_offline++; 6834 pfn++; 6835 continue; 6836 } 6837 6838 BUG_ON(page_count(page)); 6839 BUG_ON(!PageBuddy(page)); 6840 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6841 order = buddy_order(page); 6842 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6843 pfn += (1 << order); 6844 } 6845 spin_unlock_irqrestore(&zone->lock, flags); 6846 6847 return end_pfn - start_pfn - already_offline; 6848 } 6849 #endif 6850 6851 /* 6852 * This function returns a stable result only if called under zone lock. 6853 */ 6854 bool is_free_buddy_page(const struct page *page) 6855 { 6856 unsigned long pfn = page_to_pfn(page); 6857 unsigned int order; 6858 6859 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6860 const struct page *head = page - (pfn & ((1 << order) - 1)); 6861 6862 if (PageBuddy(head) && 6863 buddy_order_unsafe(head) >= order) 6864 break; 6865 } 6866 6867 return order <= MAX_PAGE_ORDER; 6868 } 6869 EXPORT_SYMBOL(is_free_buddy_page); 6870 6871 #ifdef CONFIG_MEMORY_FAILURE 6872 static inline void add_to_free_list(struct page *page, struct zone *zone, 6873 unsigned int order, int migratetype, 6874 bool tail) 6875 { 6876 __add_to_free_list(page, zone, order, migratetype, tail); 6877 account_freepages(zone, 1 << order, migratetype); 6878 } 6879 6880 /* 6881 * Break down a higher-order page in sub-pages, and keep our target out of 6882 * buddy allocator. 6883 */ 6884 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6885 struct page *target, int low, int high, 6886 int migratetype) 6887 { 6888 unsigned long size = 1 << high; 6889 struct page *current_buddy; 6890 6891 while (high > low) { 6892 high--; 6893 size >>= 1; 6894 6895 if (target >= &page[size]) { 6896 current_buddy = page; 6897 page = page + size; 6898 } else { 6899 current_buddy = page + size; 6900 } 6901 6902 if (set_page_guard(zone, current_buddy, high)) 6903 continue; 6904 6905 add_to_free_list(current_buddy, zone, high, migratetype, false); 6906 set_buddy_order(current_buddy, high); 6907 } 6908 } 6909 6910 /* 6911 * Take a page that will be marked as poisoned off the buddy allocator. 6912 */ 6913 bool take_page_off_buddy(struct page *page) 6914 { 6915 struct zone *zone = page_zone(page); 6916 unsigned long pfn = page_to_pfn(page); 6917 unsigned long flags; 6918 unsigned int order; 6919 bool ret = false; 6920 6921 spin_lock_irqsave(&zone->lock, flags); 6922 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6923 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6924 int page_order = buddy_order(page_head); 6925 6926 if (PageBuddy(page_head) && page_order >= order) { 6927 unsigned long pfn_head = page_to_pfn(page_head); 6928 int migratetype = get_pfnblock_migratetype(page_head, 6929 pfn_head); 6930 6931 del_page_from_free_list(page_head, zone, page_order, 6932 migratetype); 6933 break_down_buddy_pages(zone, page_head, page, 0, 6934 page_order, migratetype); 6935 SetPageHWPoisonTakenOff(page); 6936 ret = true; 6937 break; 6938 } 6939 if (page_count(page_head) > 0) 6940 break; 6941 } 6942 spin_unlock_irqrestore(&zone->lock, flags); 6943 return ret; 6944 } 6945 6946 /* 6947 * Cancel takeoff done by take_page_off_buddy(). 6948 */ 6949 bool put_page_back_buddy(struct page *page) 6950 { 6951 struct zone *zone = page_zone(page); 6952 unsigned long flags; 6953 bool ret = false; 6954 6955 spin_lock_irqsave(&zone->lock, flags); 6956 if (put_page_testzero(page)) { 6957 unsigned long pfn = page_to_pfn(page); 6958 int migratetype = get_pfnblock_migratetype(page, pfn); 6959 6960 ClearPageHWPoisonTakenOff(page); 6961 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6962 if (TestClearPageHWPoison(page)) { 6963 ret = true; 6964 } 6965 } 6966 spin_unlock_irqrestore(&zone->lock, flags); 6967 6968 return ret; 6969 } 6970 #endif 6971 6972 #ifdef CONFIG_ZONE_DMA 6973 bool has_managed_dma(void) 6974 { 6975 struct pglist_data *pgdat; 6976 6977 for_each_online_pgdat(pgdat) { 6978 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6979 6980 if (managed_zone(zone)) 6981 return true; 6982 } 6983 return false; 6984 } 6985 #endif /* CONFIG_ZONE_DMA */ 6986 6987 #ifdef CONFIG_UNACCEPTED_MEMORY 6988 6989 /* Counts number of zones with unaccepted pages. */ 6990 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6991 6992 static bool lazy_accept = true; 6993 6994 static int __init accept_memory_parse(char *p) 6995 { 6996 if (!strcmp(p, "lazy")) { 6997 lazy_accept = true; 6998 return 0; 6999 } else if (!strcmp(p, "eager")) { 7000 lazy_accept = false; 7001 return 0; 7002 } else { 7003 return -EINVAL; 7004 } 7005 } 7006 early_param("accept_memory", accept_memory_parse); 7007 7008 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7009 { 7010 phys_addr_t start = page_to_phys(page); 7011 7012 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7013 } 7014 7015 static void __accept_page(struct zone *zone, unsigned long *flags, 7016 struct page *page) 7017 { 7018 bool last; 7019 7020 list_del(&page->lru); 7021 last = list_empty(&zone->unaccepted_pages); 7022 7023 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7024 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7025 __ClearPageUnaccepted(page); 7026 spin_unlock_irqrestore(&zone->lock, *flags); 7027 7028 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7029 7030 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7031 7032 if (last) 7033 static_branch_dec(&zones_with_unaccepted_pages); 7034 } 7035 7036 void accept_page(struct page *page) 7037 { 7038 struct zone *zone = page_zone(page); 7039 unsigned long flags; 7040 7041 spin_lock_irqsave(&zone->lock, flags); 7042 if (!PageUnaccepted(page)) { 7043 spin_unlock_irqrestore(&zone->lock, flags); 7044 return; 7045 } 7046 7047 /* Unlocks zone->lock */ 7048 __accept_page(zone, &flags, page); 7049 } 7050 7051 static bool try_to_accept_memory_one(struct zone *zone) 7052 { 7053 unsigned long flags; 7054 struct page *page; 7055 7056 spin_lock_irqsave(&zone->lock, flags); 7057 page = list_first_entry_or_null(&zone->unaccepted_pages, 7058 struct page, lru); 7059 if (!page) { 7060 spin_unlock_irqrestore(&zone->lock, flags); 7061 return false; 7062 } 7063 7064 /* Unlocks zone->lock */ 7065 __accept_page(zone, &flags, page); 7066 7067 return true; 7068 } 7069 7070 static inline bool has_unaccepted_memory(void) 7071 { 7072 return static_branch_unlikely(&zones_with_unaccepted_pages); 7073 } 7074 7075 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7076 { 7077 long to_accept; 7078 bool ret = false; 7079 7080 if (!has_unaccepted_memory()) 7081 return false; 7082 7083 if (list_empty(&zone->unaccepted_pages)) 7084 return false; 7085 7086 /* How much to accept to get to promo watermark? */ 7087 to_accept = promo_wmark_pages(zone) - 7088 (zone_page_state(zone, NR_FREE_PAGES) - 7089 __zone_watermark_unusable_free(zone, order, 0) - 7090 zone_page_state(zone, NR_UNACCEPTED)); 7091 7092 while (to_accept > 0) { 7093 if (!try_to_accept_memory_one(zone)) 7094 break; 7095 ret = true; 7096 to_accept -= MAX_ORDER_NR_PAGES; 7097 } 7098 7099 return ret; 7100 } 7101 7102 static bool __free_unaccepted(struct page *page) 7103 { 7104 struct zone *zone = page_zone(page); 7105 unsigned long flags; 7106 bool first = false; 7107 7108 if (!lazy_accept) 7109 return false; 7110 7111 spin_lock_irqsave(&zone->lock, flags); 7112 first = list_empty(&zone->unaccepted_pages); 7113 list_add_tail(&page->lru, &zone->unaccepted_pages); 7114 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7115 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7116 __SetPageUnaccepted(page); 7117 spin_unlock_irqrestore(&zone->lock, flags); 7118 7119 if (first) 7120 static_branch_inc(&zones_with_unaccepted_pages); 7121 7122 return true; 7123 } 7124 7125 #else 7126 7127 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7128 { 7129 return false; 7130 } 7131 7132 static bool cond_accept_memory(struct zone *zone, unsigned int order) 7133 { 7134 return false; 7135 } 7136 7137 static bool __free_unaccepted(struct page *page) 7138 { 7139 BUILD_BUG(); 7140 return false; 7141 } 7142 7143 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7144