1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/module.h> 26 #include <linux/suspend.h> 27 #include <linux/pagevec.h> 28 #include <linux/blkdev.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/nodemask.h> 36 #include <linux/vmalloc.h> 37 38 #include <asm/tlbflush.h> 39 #include "internal.h" 40 41 /* 42 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 43 * initializer cleaner 44 */ 45 nodemask_t node_online_map = { { [0] = 1UL } }; 46 EXPORT_SYMBOL(node_online_map); 47 nodemask_t node_possible_map = NODE_MASK_ALL; 48 EXPORT_SYMBOL(node_possible_map); 49 struct pglist_data *pgdat_list; 50 unsigned long totalram_pages; 51 unsigned long totalhigh_pages; 52 long nr_swap_pages; 53 54 /* 55 * results with 256, 32 in the lowmem_reserve sysctl: 56 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 57 * 1G machine -> (16M dma, 784M normal, 224M high) 58 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 59 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 60 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 61 */ 62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 }; 63 64 EXPORT_SYMBOL(totalram_pages); 65 EXPORT_SYMBOL(nr_swap_pages); 66 67 /* 68 * Used by page_zone() to look up the address of the struct zone whose 69 * id is encoded in the upper bits of page->flags 70 */ 71 struct zone *zone_table[1 << ZONETABLE_SHIFT]; 72 EXPORT_SYMBOL(zone_table); 73 74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; 75 int min_free_kbytes = 1024; 76 77 unsigned long __initdata nr_kernel_pages; 78 unsigned long __initdata nr_all_pages; 79 80 /* 81 * Temporary debugging check for pages not lying within a given zone. 82 */ 83 static int bad_range(struct zone *zone, struct page *page) 84 { 85 if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages) 86 return 1; 87 if (page_to_pfn(page) < zone->zone_start_pfn) 88 return 1; 89 #ifdef CONFIG_HOLES_IN_ZONE 90 if (!pfn_valid(page_to_pfn(page))) 91 return 1; 92 #endif 93 if (zone != page_zone(page)) 94 return 1; 95 return 0; 96 } 97 98 static void bad_page(const char *function, struct page *page) 99 { 100 printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", 101 function, current->comm, page); 102 printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", 103 (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags, 104 page->mapping, page_mapcount(page), page_count(page)); 105 printk(KERN_EMERG "Backtrace:\n"); 106 dump_stack(); 107 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); 108 page->flags &= ~(1 << PG_lru | 109 1 << PG_private | 110 1 << PG_locked | 111 1 << PG_active | 112 1 << PG_dirty | 113 1 << PG_reclaim | 114 1 << PG_slab | 115 1 << PG_swapcache | 116 1 << PG_writeback); 117 set_page_count(page, 0); 118 reset_page_mapcount(page); 119 page->mapping = NULL; 120 tainted |= TAINT_BAD_PAGE; 121 } 122 123 #ifndef CONFIG_HUGETLB_PAGE 124 #define prep_compound_page(page, order) do { } while (0) 125 #define destroy_compound_page(page, order) do { } while (0) 126 #else 127 /* 128 * Higher-order pages are called "compound pages". They are structured thusly: 129 * 130 * The first PAGE_SIZE page is called the "head page". 131 * 132 * The remaining PAGE_SIZE pages are called "tail pages". 133 * 134 * All pages have PG_compound set. All pages have their ->private pointing at 135 * the head page (even the head page has this). 136 * 137 * The first tail page's ->mapping, if non-zero, holds the address of the 138 * compound page's put_page() function. 139 * 140 * The order of the allocation is stored in the first tail page's ->index 141 * This is only for debug at present. This usage means that zero-order pages 142 * may not be compound. 143 */ 144 static void prep_compound_page(struct page *page, unsigned long order) 145 { 146 int i; 147 int nr_pages = 1 << order; 148 149 page[1].mapping = NULL; 150 page[1].index = order; 151 for (i = 0; i < nr_pages; i++) { 152 struct page *p = page + i; 153 154 SetPageCompound(p); 155 p->private = (unsigned long)page; 156 } 157 } 158 159 static void destroy_compound_page(struct page *page, unsigned long order) 160 { 161 int i; 162 int nr_pages = 1 << order; 163 164 if (!PageCompound(page)) 165 return; 166 167 if (page[1].index != order) 168 bad_page(__FUNCTION__, page); 169 170 for (i = 0; i < nr_pages; i++) { 171 struct page *p = page + i; 172 173 if (!PageCompound(p)) 174 bad_page(__FUNCTION__, page); 175 if (p->private != (unsigned long)page) 176 bad_page(__FUNCTION__, page); 177 ClearPageCompound(p); 178 } 179 } 180 #endif /* CONFIG_HUGETLB_PAGE */ 181 182 /* 183 * function for dealing with page's order in buddy system. 184 * zone->lock is already acquired when we use these. 185 * So, we don't need atomic page->flags operations here. 186 */ 187 static inline unsigned long page_order(struct page *page) { 188 return page->private; 189 } 190 191 static inline void set_page_order(struct page *page, int order) { 192 page->private = order; 193 __SetPagePrivate(page); 194 } 195 196 static inline void rmv_page_order(struct page *page) 197 { 198 __ClearPagePrivate(page); 199 page->private = 0; 200 } 201 202 /* 203 * Locate the struct page for both the matching buddy in our 204 * pair (buddy1) and the combined O(n+1) page they form (page). 205 * 206 * 1) Any buddy B1 will have an order O twin B2 which satisfies 207 * the following equation: 208 * B2 = B1 ^ (1 << O) 209 * For example, if the starting buddy (buddy2) is #8 its order 210 * 1 buddy is #10: 211 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 212 * 213 * 2) Any buddy B will have an order O+1 parent P which 214 * satisfies the following equation: 215 * P = B & ~(1 << O) 216 * 217 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 218 */ 219 static inline struct page * 220 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 221 { 222 unsigned long buddy_idx = page_idx ^ (1 << order); 223 224 return page + (buddy_idx - page_idx); 225 } 226 227 static inline unsigned long 228 __find_combined_index(unsigned long page_idx, unsigned int order) 229 { 230 return (page_idx & ~(1 << order)); 231 } 232 233 /* 234 * This function checks whether a page is free && is the buddy 235 * we can do coalesce a page and its buddy if 236 * (a) the buddy is free && 237 * (b) the buddy is on the buddy system && 238 * (c) a page and its buddy have the same order. 239 * for recording page's order, we use page->private and PG_private. 240 * 241 */ 242 static inline int page_is_buddy(struct page *page, int order) 243 { 244 if (PagePrivate(page) && 245 (page_order(page) == order) && 246 !PageReserved(page) && 247 page_count(page) == 0) 248 return 1; 249 return 0; 250 } 251 252 /* 253 * Freeing function for a buddy system allocator. 254 * 255 * The concept of a buddy system is to maintain direct-mapped table 256 * (containing bit values) for memory blocks of various "orders". 257 * The bottom level table contains the map for the smallest allocatable 258 * units of memory (here, pages), and each level above it describes 259 * pairs of units from the levels below, hence, "buddies". 260 * At a high level, all that happens here is marking the table entry 261 * at the bottom level available, and propagating the changes upward 262 * as necessary, plus some accounting needed to play nicely with other 263 * parts of the VM system. 264 * At each level, we keep a list of pages, which are heads of continuous 265 * free pages of length of (1 << order) and marked with PG_Private.Page's 266 * order is recorded in page->private field. 267 * So when we are allocating or freeing one, we can derive the state of the 268 * other. That is, if we allocate a small block, and both were 269 * free, the remainder of the region must be split into blocks. 270 * If a block is freed, and its buddy is also free, then this 271 * triggers coalescing into a block of larger size. 272 * 273 * -- wli 274 */ 275 276 static inline void __free_pages_bulk (struct page *page, 277 struct zone *zone, unsigned int order) 278 { 279 unsigned long page_idx; 280 int order_size = 1 << order; 281 282 if (unlikely(order)) 283 destroy_compound_page(page, order); 284 285 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 286 287 BUG_ON(page_idx & (order_size - 1)); 288 BUG_ON(bad_range(zone, page)); 289 290 zone->free_pages += order_size; 291 while (order < MAX_ORDER-1) { 292 unsigned long combined_idx; 293 struct free_area *area; 294 struct page *buddy; 295 296 combined_idx = __find_combined_index(page_idx, order); 297 buddy = __page_find_buddy(page, page_idx, order); 298 299 if (bad_range(zone, buddy)) 300 break; 301 if (!page_is_buddy(buddy, order)) 302 break; /* Move the buddy up one level. */ 303 list_del(&buddy->lru); 304 area = zone->free_area + order; 305 area->nr_free--; 306 rmv_page_order(buddy); 307 page = page + (combined_idx - page_idx); 308 page_idx = combined_idx; 309 order++; 310 } 311 set_page_order(page, order); 312 list_add(&page->lru, &zone->free_area[order].free_list); 313 zone->free_area[order].nr_free++; 314 } 315 316 static inline void free_pages_check(const char *function, struct page *page) 317 { 318 if ( page_mapcount(page) || 319 page->mapping != NULL || 320 page_count(page) != 0 || 321 (page->flags & ( 322 1 << PG_lru | 323 1 << PG_private | 324 1 << PG_locked | 325 1 << PG_active | 326 1 << PG_reclaim | 327 1 << PG_slab | 328 1 << PG_swapcache | 329 1 << PG_writeback ))) 330 bad_page(function, page); 331 if (PageDirty(page)) 332 __ClearPageDirty(page); 333 } 334 335 /* 336 * Frees a list of pages. 337 * Assumes all pages on list are in same zone, and of same order. 338 * count is the number of pages to free, or 0 for all on the list. 339 * 340 * If the zone was previously in an "all pages pinned" state then look to 341 * see if this freeing clears that state. 342 * 343 * And clear the zone's pages_scanned counter, to hold off the "all pages are 344 * pinned" detection logic. 345 */ 346 static int 347 free_pages_bulk(struct zone *zone, int count, 348 struct list_head *list, unsigned int order) 349 { 350 unsigned long flags; 351 struct page *page = NULL; 352 int ret = 0; 353 354 spin_lock_irqsave(&zone->lock, flags); 355 zone->all_unreclaimable = 0; 356 zone->pages_scanned = 0; 357 while (!list_empty(list) && count--) { 358 page = list_entry(list->prev, struct page, lru); 359 /* have to delete it as __free_pages_bulk list manipulates */ 360 list_del(&page->lru); 361 __free_pages_bulk(page, zone, order); 362 ret++; 363 } 364 spin_unlock_irqrestore(&zone->lock, flags); 365 return ret; 366 } 367 368 void __free_pages_ok(struct page *page, unsigned int order) 369 { 370 LIST_HEAD(list); 371 int i; 372 373 arch_free_page(page, order); 374 375 mod_page_state(pgfree, 1 << order); 376 377 #ifndef CONFIG_MMU 378 if (order > 0) 379 for (i = 1 ; i < (1 << order) ; ++i) 380 __put_page(page + i); 381 #endif 382 383 for (i = 0 ; i < (1 << order) ; ++i) 384 free_pages_check(__FUNCTION__, page + i); 385 list_add(&page->lru, &list); 386 kernel_map_pages(page, 1<<order, 0); 387 free_pages_bulk(page_zone(page), 1, &list, order); 388 } 389 390 391 /* 392 * The order of subdivision here is critical for the IO subsystem. 393 * Please do not alter this order without good reasons and regression 394 * testing. Specifically, as large blocks of memory are subdivided, 395 * the order in which smaller blocks are delivered depends on the order 396 * they're subdivided in this function. This is the primary factor 397 * influencing the order in which pages are delivered to the IO 398 * subsystem according to empirical testing, and this is also justified 399 * by considering the behavior of a buddy system containing a single 400 * large block of memory acted on by a series of small allocations. 401 * This behavior is a critical factor in sglist merging's success. 402 * 403 * -- wli 404 */ 405 static inline struct page * 406 expand(struct zone *zone, struct page *page, 407 int low, int high, struct free_area *area) 408 { 409 unsigned long size = 1 << high; 410 411 while (high > low) { 412 area--; 413 high--; 414 size >>= 1; 415 BUG_ON(bad_range(zone, &page[size])); 416 list_add(&page[size].lru, &area->free_list); 417 area->nr_free++; 418 set_page_order(&page[size], high); 419 } 420 return page; 421 } 422 423 void set_page_refs(struct page *page, int order) 424 { 425 #ifdef CONFIG_MMU 426 set_page_count(page, 1); 427 #else 428 int i; 429 430 /* 431 * We need to reference all the pages for this order, otherwise if 432 * anyone accesses one of the pages with (get/put) it will be freed. 433 * - eg: access_process_vm() 434 */ 435 for (i = 0; i < (1 << order); i++) 436 set_page_count(page + i, 1); 437 #endif /* CONFIG_MMU */ 438 } 439 440 /* 441 * This page is about to be returned from the page allocator 442 */ 443 static void prep_new_page(struct page *page, int order) 444 { 445 if ( page_mapcount(page) || 446 page->mapping != NULL || 447 page_count(page) != 0 || 448 (page->flags & ( 449 1 << PG_lru | 450 1 << PG_private | 451 1 << PG_locked | 452 1 << PG_active | 453 1 << PG_dirty | 454 1 << PG_reclaim | 455 1 << PG_slab | 456 1 << PG_swapcache | 457 1 << PG_writeback ))) 458 bad_page(__FUNCTION__, page); 459 460 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 461 1 << PG_referenced | 1 << PG_arch_1 | 462 1 << PG_checked | 1 << PG_mappedtodisk); 463 page->private = 0; 464 set_page_refs(page, order); 465 kernel_map_pages(page, 1 << order, 1); 466 } 467 468 /* 469 * Do the hard work of removing an element from the buddy allocator. 470 * Call me with the zone->lock already held. 471 */ 472 static struct page *__rmqueue(struct zone *zone, unsigned int order) 473 { 474 struct free_area * area; 475 unsigned int current_order; 476 struct page *page; 477 478 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 479 area = zone->free_area + current_order; 480 if (list_empty(&area->free_list)) 481 continue; 482 483 page = list_entry(area->free_list.next, struct page, lru); 484 list_del(&page->lru); 485 rmv_page_order(page); 486 area->nr_free--; 487 zone->free_pages -= 1UL << order; 488 return expand(zone, page, order, current_order, area); 489 } 490 491 return NULL; 492 } 493 494 /* 495 * Obtain a specified number of elements from the buddy allocator, all under 496 * a single hold of the lock, for efficiency. Add them to the supplied list. 497 * Returns the number of new pages which were placed at *list. 498 */ 499 static int rmqueue_bulk(struct zone *zone, unsigned int order, 500 unsigned long count, struct list_head *list) 501 { 502 unsigned long flags; 503 int i; 504 int allocated = 0; 505 struct page *page; 506 507 spin_lock_irqsave(&zone->lock, flags); 508 for (i = 0; i < count; ++i) { 509 page = __rmqueue(zone, order); 510 if (page == NULL) 511 break; 512 allocated++; 513 list_add_tail(&page->lru, list); 514 } 515 spin_unlock_irqrestore(&zone->lock, flags); 516 return allocated; 517 } 518 519 #ifdef CONFIG_NUMA 520 /* Called from the slab reaper to drain remote pagesets */ 521 void drain_remote_pages(void) 522 { 523 struct zone *zone; 524 int i; 525 unsigned long flags; 526 527 local_irq_save(flags); 528 for_each_zone(zone) { 529 struct per_cpu_pageset *pset; 530 531 /* Do not drain local pagesets */ 532 if (zone->zone_pgdat->node_id == numa_node_id()) 533 continue; 534 535 pset = zone->pageset[smp_processor_id()]; 536 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 537 struct per_cpu_pages *pcp; 538 539 pcp = &pset->pcp[i]; 540 if (pcp->count) 541 pcp->count -= free_pages_bulk(zone, pcp->count, 542 &pcp->list, 0); 543 } 544 } 545 local_irq_restore(flags); 546 } 547 #endif 548 549 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 550 static void __drain_pages(unsigned int cpu) 551 { 552 struct zone *zone; 553 int i; 554 555 for_each_zone(zone) { 556 struct per_cpu_pageset *pset; 557 558 pset = zone_pcp(zone, cpu); 559 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 560 struct per_cpu_pages *pcp; 561 562 pcp = &pset->pcp[i]; 563 pcp->count -= free_pages_bulk(zone, pcp->count, 564 &pcp->list, 0); 565 } 566 } 567 } 568 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 569 570 #ifdef CONFIG_PM 571 572 void mark_free_pages(struct zone *zone) 573 { 574 unsigned long zone_pfn, flags; 575 int order; 576 struct list_head *curr; 577 578 if (!zone->spanned_pages) 579 return; 580 581 spin_lock_irqsave(&zone->lock, flags); 582 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 583 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 584 585 for (order = MAX_ORDER - 1; order >= 0; --order) 586 list_for_each(curr, &zone->free_area[order].free_list) { 587 unsigned long start_pfn, i; 588 589 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 590 591 for (i=0; i < (1<<order); i++) 592 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 593 } 594 spin_unlock_irqrestore(&zone->lock, flags); 595 } 596 597 /* 598 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 599 */ 600 void drain_local_pages(void) 601 { 602 unsigned long flags; 603 604 local_irq_save(flags); 605 __drain_pages(smp_processor_id()); 606 local_irq_restore(flags); 607 } 608 #endif /* CONFIG_PM */ 609 610 static void zone_statistics(struct zonelist *zonelist, struct zone *z) 611 { 612 #ifdef CONFIG_NUMA 613 unsigned long flags; 614 int cpu; 615 pg_data_t *pg = z->zone_pgdat; 616 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 617 struct per_cpu_pageset *p; 618 619 local_irq_save(flags); 620 cpu = smp_processor_id(); 621 p = zone_pcp(z,cpu); 622 if (pg == orig) { 623 p->numa_hit++; 624 } else { 625 p->numa_miss++; 626 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 627 } 628 if (pg == NODE_DATA(numa_node_id())) 629 p->local_node++; 630 else 631 p->other_node++; 632 local_irq_restore(flags); 633 #endif 634 } 635 636 /* 637 * Free a 0-order page 638 */ 639 static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); 640 static void fastcall free_hot_cold_page(struct page *page, int cold) 641 { 642 struct zone *zone = page_zone(page); 643 struct per_cpu_pages *pcp; 644 unsigned long flags; 645 646 arch_free_page(page, 0); 647 648 kernel_map_pages(page, 1, 0); 649 inc_page_state(pgfree); 650 if (PageAnon(page)) 651 page->mapping = NULL; 652 free_pages_check(__FUNCTION__, page); 653 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 654 local_irq_save(flags); 655 list_add(&page->lru, &pcp->list); 656 pcp->count++; 657 if (pcp->count >= pcp->high) 658 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 659 local_irq_restore(flags); 660 put_cpu(); 661 } 662 663 void fastcall free_hot_page(struct page *page) 664 { 665 free_hot_cold_page(page, 0); 666 } 667 668 void fastcall free_cold_page(struct page *page) 669 { 670 free_hot_cold_page(page, 1); 671 } 672 673 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags) 674 { 675 int i; 676 677 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 678 for(i = 0; i < (1 << order); i++) 679 clear_highpage(page + i); 680 } 681 682 /* 683 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 684 * we cheat by calling it from here, in the order > 0 path. Saves a branch 685 * or two. 686 */ 687 static struct page * 688 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags) 689 { 690 unsigned long flags; 691 struct page *page = NULL; 692 int cold = !!(gfp_flags & __GFP_COLD); 693 694 if (order == 0) { 695 struct per_cpu_pages *pcp; 696 697 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 698 local_irq_save(flags); 699 if (pcp->count <= pcp->low) 700 pcp->count += rmqueue_bulk(zone, 0, 701 pcp->batch, &pcp->list); 702 if (pcp->count) { 703 page = list_entry(pcp->list.next, struct page, lru); 704 list_del(&page->lru); 705 pcp->count--; 706 } 707 local_irq_restore(flags); 708 put_cpu(); 709 } 710 711 if (page == NULL) { 712 spin_lock_irqsave(&zone->lock, flags); 713 page = __rmqueue(zone, order); 714 spin_unlock_irqrestore(&zone->lock, flags); 715 } 716 717 if (page != NULL) { 718 BUG_ON(bad_range(zone, page)); 719 mod_page_state_zone(zone, pgalloc, 1 << order); 720 prep_new_page(page, order); 721 722 if (gfp_flags & __GFP_ZERO) 723 prep_zero_page(page, order, gfp_flags); 724 725 if (order && (gfp_flags & __GFP_COMP)) 726 prep_compound_page(page, order); 727 } 728 return page; 729 } 730 731 /* 732 * Return 1 if free pages are above 'mark'. This takes into account the order 733 * of the allocation. 734 */ 735 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 736 int classzone_idx, int can_try_harder, int gfp_high) 737 { 738 /* free_pages my go negative - that's OK */ 739 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 740 int o; 741 742 if (gfp_high) 743 min -= min / 2; 744 if (can_try_harder) 745 min -= min / 4; 746 747 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 748 return 0; 749 for (o = 0; o < order; o++) { 750 /* At the next order, this order's pages become unavailable */ 751 free_pages -= z->free_area[o].nr_free << o; 752 753 /* Require fewer higher order pages to be free */ 754 min >>= 1; 755 756 if (free_pages <= min) 757 return 0; 758 } 759 return 1; 760 } 761 762 static inline int 763 should_reclaim_zone(struct zone *z, unsigned int gfp_mask) 764 { 765 if (!z->reclaim_pages) 766 return 0; 767 if (gfp_mask & __GFP_NORECLAIM) 768 return 0; 769 return 1; 770 } 771 772 /* 773 * This is the 'heart' of the zoned buddy allocator. 774 */ 775 struct page * fastcall 776 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order, 777 struct zonelist *zonelist) 778 { 779 const int wait = gfp_mask & __GFP_WAIT; 780 struct zone **zones, *z; 781 struct page *page; 782 struct reclaim_state reclaim_state; 783 struct task_struct *p = current; 784 int i; 785 int classzone_idx; 786 int do_retry; 787 int can_try_harder; 788 int did_some_progress; 789 790 might_sleep_if(wait); 791 792 /* 793 * The caller may dip into page reserves a bit more if the caller 794 * cannot run direct reclaim, or is the caller has realtime scheduling 795 * policy 796 */ 797 can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait; 798 799 zones = zonelist->zones; /* the list of zones suitable for gfp_mask */ 800 801 if (unlikely(zones[0] == NULL)) { 802 /* Should this ever happen?? */ 803 return NULL; 804 } 805 806 classzone_idx = zone_idx(zones[0]); 807 808 restart: 809 /* Go through the zonelist once, looking for a zone with enough free */ 810 for (i = 0; (z = zones[i]) != NULL; i++) { 811 int do_reclaim = should_reclaim_zone(z, gfp_mask); 812 813 if (!cpuset_zone_allowed(z)) 814 continue; 815 816 /* 817 * If the zone is to attempt early page reclaim then this loop 818 * will try to reclaim pages and check the watermark a second 819 * time before giving up and falling back to the next zone. 820 */ 821 zone_reclaim_retry: 822 if (!zone_watermark_ok(z, order, z->pages_low, 823 classzone_idx, 0, 0)) { 824 if (!do_reclaim) 825 continue; 826 else { 827 zone_reclaim(z, gfp_mask, order); 828 /* Only try reclaim once */ 829 do_reclaim = 0; 830 goto zone_reclaim_retry; 831 } 832 } 833 834 page = buffered_rmqueue(z, order, gfp_mask); 835 if (page) 836 goto got_pg; 837 } 838 839 for (i = 0; (z = zones[i]) != NULL; i++) 840 wakeup_kswapd(z, order); 841 842 /* 843 * Go through the zonelist again. Let __GFP_HIGH and allocations 844 * coming from realtime tasks to go deeper into reserves 845 * 846 * This is the last chance, in general, before the goto nopage. 847 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 848 */ 849 for (i = 0; (z = zones[i]) != NULL; i++) { 850 if (!zone_watermark_ok(z, order, z->pages_min, 851 classzone_idx, can_try_harder, 852 gfp_mask & __GFP_HIGH)) 853 continue; 854 855 if (wait && !cpuset_zone_allowed(z)) 856 continue; 857 858 page = buffered_rmqueue(z, order, gfp_mask); 859 if (page) 860 goto got_pg; 861 } 862 863 /* This allocation should allow future memory freeing. */ 864 865 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 866 && !in_interrupt()) { 867 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 868 /* go through the zonelist yet again, ignoring mins */ 869 for (i = 0; (z = zones[i]) != NULL; i++) { 870 if (!cpuset_zone_allowed(z)) 871 continue; 872 page = buffered_rmqueue(z, order, gfp_mask); 873 if (page) 874 goto got_pg; 875 } 876 } 877 goto nopage; 878 } 879 880 /* Atomic allocations - we can't balance anything */ 881 if (!wait) 882 goto nopage; 883 884 rebalance: 885 cond_resched(); 886 887 /* We now go into synchronous reclaim */ 888 p->flags |= PF_MEMALLOC; 889 reclaim_state.reclaimed_slab = 0; 890 p->reclaim_state = &reclaim_state; 891 892 did_some_progress = try_to_free_pages(zones, gfp_mask); 893 894 p->reclaim_state = NULL; 895 p->flags &= ~PF_MEMALLOC; 896 897 cond_resched(); 898 899 if (likely(did_some_progress)) { 900 for (i = 0; (z = zones[i]) != NULL; i++) { 901 if (!zone_watermark_ok(z, order, z->pages_min, 902 classzone_idx, can_try_harder, 903 gfp_mask & __GFP_HIGH)) 904 continue; 905 906 if (!cpuset_zone_allowed(z)) 907 continue; 908 909 page = buffered_rmqueue(z, order, gfp_mask); 910 if (page) 911 goto got_pg; 912 } 913 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 914 /* 915 * Go through the zonelist yet one more time, keep 916 * very high watermark here, this is only to catch 917 * a parallel oom killing, we must fail if we're still 918 * under heavy pressure. 919 */ 920 for (i = 0; (z = zones[i]) != NULL; i++) { 921 if (!zone_watermark_ok(z, order, z->pages_high, 922 classzone_idx, 0, 0)) 923 continue; 924 925 if (!cpuset_zone_allowed(z)) 926 continue; 927 928 page = buffered_rmqueue(z, order, gfp_mask); 929 if (page) 930 goto got_pg; 931 } 932 933 out_of_memory(gfp_mask, order); 934 goto restart; 935 } 936 937 /* 938 * Don't let big-order allocations loop unless the caller explicitly 939 * requests that. Wait for some write requests to complete then retry. 940 * 941 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 942 * <= 3, but that may not be true in other implementations. 943 */ 944 do_retry = 0; 945 if (!(gfp_mask & __GFP_NORETRY)) { 946 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 947 do_retry = 1; 948 if (gfp_mask & __GFP_NOFAIL) 949 do_retry = 1; 950 } 951 if (do_retry) { 952 blk_congestion_wait(WRITE, HZ/50); 953 goto rebalance; 954 } 955 956 nopage: 957 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 958 printk(KERN_WARNING "%s: page allocation failure." 959 " order:%d, mode:0x%x\n", 960 p->comm, order, gfp_mask); 961 dump_stack(); 962 show_mem(); 963 } 964 return NULL; 965 got_pg: 966 zone_statistics(zonelist, z); 967 return page; 968 } 969 970 EXPORT_SYMBOL(__alloc_pages); 971 972 /* 973 * Common helper functions. 974 */ 975 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order) 976 { 977 struct page * page; 978 page = alloc_pages(gfp_mask, order); 979 if (!page) 980 return 0; 981 return (unsigned long) page_address(page); 982 } 983 984 EXPORT_SYMBOL(__get_free_pages); 985 986 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask) 987 { 988 struct page * page; 989 990 /* 991 * get_zeroed_page() returns a 32-bit address, which cannot represent 992 * a highmem page 993 */ 994 BUG_ON(gfp_mask & __GFP_HIGHMEM); 995 996 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 997 if (page) 998 return (unsigned long) page_address(page); 999 return 0; 1000 } 1001 1002 EXPORT_SYMBOL(get_zeroed_page); 1003 1004 void __pagevec_free(struct pagevec *pvec) 1005 { 1006 int i = pagevec_count(pvec); 1007 1008 while (--i >= 0) 1009 free_hot_cold_page(pvec->pages[i], pvec->cold); 1010 } 1011 1012 fastcall void __free_pages(struct page *page, unsigned int order) 1013 { 1014 if (!PageReserved(page) && put_page_testzero(page)) { 1015 if (order == 0) 1016 free_hot_page(page); 1017 else 1018 __free_pages_ok(page, order); 1019 } 1020 } 1021 1022 EXPORT_SYMBOL(__free_pages); 1023 1024 fastcall void free_pages(unsigned long addr, unsigned int order) 1025 { 1026 if (addr != 0) { 1027 BUG_ON(!virt_addr_valid((void *)addr)); 1028 __free_pages(virt_to_page((void *)addr), order); 1029 } 1030 } 1031 1032 EXPORT_SYMBOL(free_pages); 1033 1034 /* 1035 * Total amount of free (allocatable) RAM: 1036 */ 1037 unsigned int nr_free_pages(void) 1038 { 1039 unsigned int sum = 0; 1040 struct zone *zone; 1041 1042 for_each_zone(zone) 1043 sum += zone->free_pages; 1044 1045 return sum; 1046 } 1047 1048 EXPORT_SYMBOL(nr_free_pages); 1049 1050 #ifdef CONFIG_NUMA 1051 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1052 { 1053 unsigned int i, sum = 0; 1054 1055 for (i = 0; i < MAX_NR_ZONES; i++) 1056 sum += pgdat->node_zones[i].free_pages; 1057 1058 return sum; 1059 } 1060 #endif 1061 1062 static unsigned int nr_free_zone_pages(int offset) 1063 { 1064 /* Just pick one node, since fallback list is circular */ 1065 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1066 unsigned int sum = 0; 1067 1068 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1069 struct zone **zonep = zonelist->zones; 1070 struct zone *zone; 1071 1072 for (zone = *zonep++; zone; zone = *zonep++) { 1073 unsigned long size = zone->present_pages; 1074 unsigned long high = zone->pages_high; 1075 if (size > high) 1076 sum += size - high; 1077 } 1078 1079 return sum; 1080 } 1081 1082 /* 1083 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1084 */ 1085 unsigned int nr_free_buffer_pages(void) 1086 { 1087 return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK); 1088 } 1089 1090 /* 1091 * Amount of free RAM allocatable within all zones 1092 */ 1093 unsigned int nr_free_pagecache_pages(void) 1094 { 1095 return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK); 1096 } 1097 1098 #ifdef CONFIG_HIGHMEM 1099 unsigned int nr_free_highpages (void) 1100 { 1101 pg_data_t *pgdat; 1102 unsigned int pages = 0; 1103 1104 for_each_pgdat(pgdat) 1105 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1106 1107 return pages; 1108 } 1109 #endif 1110 1111 #ifdef CONFIG_NUMA 1112 static void show_node(struct zone *zone) 1113 { 1114 printk("Node %d ", zone->zone_pgdat->node_id); 1115 } 1116 #else 1117 #define show_node(zone) do { } while (0) 1118 #endif 1119 1120 /* 1121 * Accumulate the page_state information across all CPUs. 1122 * The result is unavoidably approximate - it can change 1123 * during and after execution of this function. 1124 */ 1125 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1126 1127 atomic_t nr_pagecache = ATOMIC_INIT(0); 1128 EXPORT_SYMBOL(nr_pagecache); 1129 #ifdef CONFIG_SMP 1130 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1131 #endif 1132 1133 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1134 { 1135 int cpu = 0; 1136 1137 memset(ret, 0, sizeof(*ret)); 1138 cpus_and(*cpumask, *cpumask, cpu_online_map); 1139 1140 cpu = first_cpu(*cpumask); 1141 while (cpu < NR_CPUS) { 1142 unsigned long *in, *out, off; 1143 1144 in = (unsigned long *)&per_cpu(page_states, cpu); 1145 1146 cpu = next_cpu(cpu, *cpumask); 1147 1148 if (cpu < NR_CPUS) 1149 prefetch(&per_cpu(page_states, cpu)); 1150 1151 out = (unsigned long *)ret; 1152 for (off = 0; off < nr; off++) 1153 *out++ += *in++; 1154 } 1155 } 1156 1157 void get_page_state_node(struct page_state *ret, int node) 1158 { 1159 int nr; 1160 cpumask_t mask = node_to_cpumask(node); 1161 1162 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1163 nr /= sizeof(unsigned long); 1164 1165 __get_page_state(ret, nr+1, &mask); 1166 } 1167 1168 void get_page_state(struct page_state *ret) 1169 { 1170 int nr; 1171 cpumask_t mask = CPU_MASK_ALL; 1172 1173 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1174 nr /= sizeof(unsigned long); 1175 1176 __get_page_state(ret, nr + 1, &mask); 1177 } 1178 1179 void get_full_page_state(struct page_state *ret) 1180 { 1181 cpumask_t mask = CPU_MASK_ALL; 1182 1183 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1184 } 1185 1186 unsigned long __read_page_state(unsigned long offset) 1187 { 1188 unsigned long ret = 0; 1189 int cpu; 1190 1191 for_each_online_cpu(cpu) { 1192 unsigned long in; 1193 1194 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1195 ret += *((unsigned long *)in); 1196 } 1197 return ret; 1198 } 1199 1200 void __mod_page_state(unsigned long offset, unsigned long delta) 1201 { 1202 unsigned long flags; 1203 void* ptr; 1204 1205 local_irq_save(flags); 1206 ptr = &__get_cpu_var(page_states); 1207 *(unsigned long*)(ptr + offset) += delta; 1208 local_irq_restore(flags); 1209 } 1210 1211 EXPORT_SYMBOL(__mod_page_state); 1212 1213 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1214 unsigned long *free, struct pglist_data *pgdat) 1215 { 1216 struct zone *zones = pgdat->node_zones; 1217 int i; 1218 1219 *active = 0; 1220 *inactive = 0; 1221 *free = 0; 1222 for (i = 0; i < MAX_NR_ZONES; i++) { 1223 *active += zones[i].nr_active; 1224 *inactive += zones[i].nr_inactive; 1225 *free += zones[i].free_pages; 1226 } 1227 } 1228 1229 void get_zone_counts(unsigned long *active, 1230 unsigned long *inactive, unsigned long *free) 1231 { 1232 struct pglist_data *pgdat; 1233 1234 *active = 0; 1235 *inactive = 0; 1236 *free = 0; 1237 for_each_pgdat(pgdat) { 1238 unsigned long l, m, n; 1239 __get_zone_counts(&l, &m, &n, pgdat); 1240 *active += l; 1241 *inactive += m; 1242 *free += n; 1243 } 1244 } 1245 1246 void si_meminfo(struct sysinfo *val) 1247 { 1248 val->totalram = totalram_pages; 1249 val->sharedram = 0; 1250 val->freeram = nr_free_pages(); 1251 val->bufferram = nr_blockdev_pages(); 1252 #ifdef CONFIG_HIGHMEM 1253 val->totalhigh = totalhigh_pages; 1254 val->freehigh = nr_free_highpages(); 1255 #else 1256 val->totalhigh = 0; 1257 val->freehigh = 0; 1258 #endif 1259 val->mem_unit = PAGE_SIZE; 1260 } 1261 1262 EXPORT_SYMBOL(si_meminfo); 1263 1264 #ifdef CONFIG_NUMA 1265 void si_meminfo_node(struct sysinfo *val, int nid) 1266 { 1267 pg_data_t *pgdat = NODE_DATA(nid); 1268 1269 val->totalram = pgdat->node_present_pages; 1270 val->freeram = nr_free_pages_pgdat(pgdat); 1271 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1272 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1273 val->mem_unit = PAGE_SIZE; 1274 } 1275 #endif 1276 1277 #define K(x) ((x) << (PAGE_SHIFT-10)) 1278 1279 /* 1280 * Show free area list (used inside shift_scroll-lock stuff) 1281 * We also calculate the percentage fragmentation. We do this by counting the 1282 * memory on each free list with the exception of the first item on the list. 1283 */ 1284 void show_free_areas(void) 1285 { 1286 struct page_state ps; 1287 int cpu, temperature; 1288 unsigned long active; 1289 unsigned long inactive; 1290 unsigned long free; 1291 struct zone *zone; 1292 1293 for_each_zone(zone) { 1294 show_node(zone); 1295 printk("%s per-cpu:", zone->name); 1296 1297 if (!zone->present_pages) { 1298 printk(" empty\n"); 1299 continue; 1300 } else 1301 printk("\n"); 1302 1303 for (cpu = 0; cpu < NR_CPUS; ++cpu) { 1304 struct per_cpu_pageset *pageset; 1305 1306 if (!cpu_possible(cpu)) 1307 continue; 1308 1309 pageset = zone_pcp(zone, cpu); 1310 1311 for (temperature = 0; temperature < 2; temperature++) 1312 printk("cpu %d %s: low %d, high %d, batch %d used:%d\n", 1313 cpu, 1314 temperature ? "cold" : "hot", 1315 pageset->pcp[temperature].low, 1316 pageset->pcp[temperature].high, 1317 pageset->pcp[temperature].batch, 1318 pageset->pcp[temperature].count); 1319 } 1320 } 1321 1322 get_page_state(&ps); 1323 get_zone_counts(&active, &inactive, &free); 1324 1325 printk("Free pages: %11ukB (%ukB HighMem)\n", 1326 K(nr_free_pages()), 1327 K(nr_free_highpages())); 1328 1329 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1330 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1331 active, 1332 inactive, 1333 ps.nr_dirty, 1334 ps.nr_writeback, 1335 ps.nr_unstable, 1336 nr_free_pages(), 1337 ps.nr_slab, 1338 ps.nr_mapped, 1339 ps.nr_page_table_pages); 1340 1341 for_each_zone(zone) { 1342 int i; 1343 1344 show_node(zone); 1345 printk("%s" 1346 " free:%lukB" 1347 " min:%lukB" 1348 " low:%lukB" 1349 " high:%lukB" 1350 " active:%lukB" 1351 " inactive:%lukB" 1352 " present:%lukB" 1353 " pages_scanned:%lu" 1354 " all_unreclaimable? %s" 1355 "\n", 1356 zone->name, 1357 K(zone->free_pages), 1358 K(zone->pages_min), 1359 K(zone->pages_low), 1360 K(zone->pages_high), 1361 K(zone->nr_active), 1362 K(zone->nr_inactive), 1363 K(zone->present_pages), 1364 zone->pages_scanned, 1365 (zone->all_unreclaimable ? "yes" : "no") 1366 ); 1367 printk("lowmem_reserve[]:"); 1368 for (i = 0; i < MAX_NR_ZONES; i++) 1369 printk(" %lu", zone->lowmem_reserve[i]); 1370 printk("\n"); 1371 } 1372 1373 for_each_zone(zone) { 1374 unsigned long nr, flags, order, total = 0; 1375 1376 show_node(zone); 1377 printk("%s: ", zone->name); 1378 if (!zone->present_pages) { 1379 printk("empty\n"); 1380 continue; 1381 } 1382 1383 spin_lock_irqsave(&zone->lock, flags); 1384 for (order = 0; order < MAX_ORDER; order++) { 1385 nr = zone->free_area[order].nr_free; 1386 total += nr << order; 1387 printk("%lu*%lukB ", nr, K(1UL) << order); 1388 } 1389 spin_unlock_irqrestore(&zone->lock, flags); 1390 printk("= %lukB\n", K(total)); 1391 } 1392 1393 show_swap_cache_info(); 1394 } 1395 1396 /* 1397 * Builds allocation fallback zone lists. 1398 */ 1399 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) 1400 { 1401 switch (k) { 1402 struct zone *zone; 1403 default: 1404 BUG(); 1405 case ZONE_HIGHMEM: 1406 zone = pgdat->node_zones + ZONE_HIGHMEM; 1407 if (zone->present_pages) { 1408 #ifndef CONFIG_HIGHMEM 1409 BUG(); 1410 #endif 1411 zonelist->zones[j++] = zone; 1412 } 1413 case ZONE_NORMAL: 1414 zone = pgdat->node_zones + ZONE_NORMAL; 1415 if (zone->present_pages) 1416 zonelist->zones[j++] = zone; 1417 case ZONE_DMA: 1418 zone = pgdat->node_zones + ZONE_DMA; 1419 if (zone->present_pages) 1420 zonelist->zones[j++] = zone; 1421 } 1422 1423 return j; 1424 } 1425 1426 #ifdef CONFIG_NUMA 1427 #define MAX_NODE_LOAD (num_online_nodes()) 1428 static int __initdata node_load[MAX_NUMNODES]; 1429 /** 1430 * find_next_best_node - find the next node that should appear in a given node's fallback list 1431 * @node: node whose fallback list we're appending 1432 * @used_node_mask: nodemask_t of already used nodes 1433 * 1434 * We use a number of factors to determine which is the next node that should 1435 * appear on a given node's fallback list. The node should not have appeared 1436 * already in @node's fallback list, and it should be the next closest node 1437 * according to the distance array (which contains arbitrary distance values 1438 * from each node to each node in the system), and should also prefer nodes 1439 * with no CPUs, since presumably they'll have very little allocation pressure 1440 * on them otherwise. 1441 * It returns -1 if no node is found. 1442 */ 1443 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1444 { 1445 int i, n, val; 1446 int min_val = INT_MAX; 1447 int best_node = -1; 1448 1449 for_each_online_node(i) { 1450 cpumask_t tmp; 1451 1452 /* Start from local node */ 1453 n = (node+i) % num_online_nodes(); 1454 1455 /* Don't want a node to appear more than once */ 1456 if (node_isset(n, *used_node_mask)) 1457 continue; 1458 1459 /* Use the local node if we haven't already */ 1460 if (!node_isset(node, *used_node_mask)) { 1461 best_node = node; 1462 break; 1463 } 1464 1465 /* Use the distance array to find the distance */ 1466 val = node_distance(node, n); 1467 1468 /* Give preference to headless and unused nodes */ 1469 tmp = node_to_cpumask(n); 1470 if (!cpus_empty(tmp)) 1471 val += PENALTY_FOR_NODE_WITH_CPUS; 1472 1473 /* Slight preference for less loaded node */ 1474 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1475 val += node_load[n]; 1476 1477 if (val < min_val) { 1478 min_val = val; 1479 best_node = n; 1480 } 1481 } 1482 1483 if (best_node >= 0) 1484 node_set(best_node, *used_node_mask); 1485 1486 return best_node; 1487 } 1488 1489 static void __init build_zonelists(pg_data_t *pgdat) 1490 { 1491 int i, j, k, node, local_node; 1492 int prev_node, load; 1493 struct zonelist *zonelist; 1494 nodemask_t used_mask; 1495 1496 /* initialize zonelists */ 1497 for (i = 0; i < GFP_ZONETYPES; i++) { 1498 zonelist = pgdat->node_zonelists + i; 1499 zonelist->zones[0] = NULL; 1500 } 1501 1502 /* NUMA-aware ordering of nodes */ 1503 local_node = pgdat->node_id; 1504 load = num_online_nodes(); 1505 prev_node = local_node; 1506 nodes_clear(used_mask); 1507 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1508 /* 1509 * We don't want to pressure a particular node. 1510 * So adding penalty to the first node in same 1511 * distance group to make it round-robin. 1512 */ 1513 if (node_distance(local_node, node) != 1514 node_distance(local_node, prev_node)) 1515 node_load[node] += load; 1516 prev_node = node; 1517 load--; 1518 for (i = 0; i < GFP_ZONETYPES; i++) { 1519 zonelist = pgdat->node_zonelists + i; 1520 for (j = 0; zonelist->zones[j] != NULL; j++); 1521 1522 k = ZONE_NORMAL; 1523 if (i & __GFP_HIGHMEM) 1524 k = ZONE_HIGHMEM; 1525 if (i & __GFP_DMA) 1526 k = ZONE_DMA; 1527 1528 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1529 zonelist->zones[j] = NULL; 1530 } 1531 } 1532 } 1533 1534 #else /* CONFIG_NUMA */ 1535 1536 static void __init build_zonelists(pg_data_t *pgdat) 1537 { 1538 int i, j, k, node, local_node; 1539 1540 local_node = pgdat->node_id; 1541 for (i = 0; i < GFP_ZONETYPES; i++) { 1542 struct zonelist *zonelist; 1543 1544 zonelist = pgdat->node_zonelists + i; 1545 1546 j = 0; 1547 k = ZONE_NORMAL; 1548 if (i & __GFP_HIGHMEM) 1549 k = ZONE_HIGHMEM; 1550 if (i & __GFP_DMA) 1551 k = ZONE_DMA; 1552 1553 j = build_zonelists_node(pgdat, zonelist, j, k); 1554 /* 1555 * Now we build the zonelist so that it contains the zones 1556 * of all the other nodes. 1557 * We don't want to pressure a particular node, so when 1558 * building the zones for node N, we make sure that the 1559 * zones coming right after the local ones are those from 1560 * node N+1 (modulo N) 1561 */ 1562 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1563 if (!node_online(node)) 1564 continue; 1565 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1566 } 1567 for (node = 0; node < local_node; node++) { 1568 if (!node_online(node)) 1569 continue; 1570 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1571 } 1572 1573 zonelist->zones[j] = NULL; 1574 } 1575 } 1576 1577 #endif /* CONFIG_NUMA */ 1578 1579 void __init build_all_zonelists(void) 1580 { 1581 int i; 1582 1583 for_each_online_node(i) 1584 build_zonelists(NODE_DATA(i)); 1585 printk("Built %i zonelists\n", num_online_nodes()); 1586 cpuset_init_current_mems_allowed(); 1587 } 1588 1589 /* 1590 * Helper functions to size the waitqueue hash table. 1591 * Essentially these want to choose hash table sizes sufficiently 1592 * large so that collisions trying to wait on pages are rare. 1593 * But in fact, the number of active page waitqueues on typical 1594 * systems is ridiculously low, less than 200. So this is even 1595 * conservative, even though it seems large. 1596 * 1597 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1598 * waitqueues, i.e. the size of the waitq table given the number of pages. 1599 */ 1600 #define PAGES_PER_WAITQUEUE 256 1601 1602 static inline unsigned long wait_table_size(unsigned long pages) 1603 { 1604 unsigned long size = 1; 1605 1606 pages /= PAGES_PER_WAITQUEUE; 1607 1608 while (size < pages) 1609 size <<= 1; 1610 1611 /* 1612 * Once we have dozens or even hundreds of threads sleeping 1613 * on IO we've got bigger problems than wait queue collision. 1614 * Limit the size of the wait table to a reasonable size. 1615 */ 1616 size = min(size, 4096UL); 1617 1618 return max(size, 4UL); 1619 } 1620 1621 /* 1622 * This is an integer logarithm so that shifts can be used later 1623 * to extract the more random high bits from the multiplicative 1624 * hash function before the remainder is taken. 1625 */ 1626 static inline unsigned long wait_table_bits(unsigned long size) 1627 { 1628 return ffz(~size); 1629 } 1630 1631 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1632 1633 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1634 unsigned long *zones_size, unsigned long *zholes_size) 1635 { 1636 unsigned long realtotalpages, totalpages = 0; 1637 int i; 1638 1639 for (i = 0; i < MAX_NR_ZONES; i++) 1640 totalpages += zones_size[i]; 1641 pgdat->node_spanned_pages = totalpages; 1642 1643 realtotalpages = totalpages; 1644 if (zholes_size) 1645 for (i = 0; i < MAX_NR_ZONES; i++) 1646 realtotalpages -= zholes_size[i]; 1647 pgdat->node_present_pages = realtotalpages; 1648 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1649 } 1650 1651 1652 /* 1653 * Initially all pages are reserved - free ones are freed 1654 * up by free_all_bootmem() once the early boot process is 1655 * done. Non-atomic initialization, single-pass. 1656 */ 1657 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1658 unsigned long start_pfn) 1659 { 1660 struct page *page; 1661 unsigned long end_pfn = start_pfn + size; 1662 unsigned long pfn; 1663 1664 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) { 1665 if (!early_pfn_valid(pfn)) 1666 continue; 1667 if (!early_pfn_in_nid(pfn, nid)) 1668 continue; 1669 page = pfn_to_page(pfn); 1670 set_page_links(page, zone, nid, pfn); 1671 set_page_count(page, 0); 1672 reset_page_mapcount(page); 1673 SetPageReserved(page); 1674 INIT_LIST_HEAD(&page->lru); 1675 #ifdef WANT_PAGE_VIRTUAL 1676 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1677 if (!is_highmem_idx(zone)) 1678 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1679 #endif 1680 } 1681 } 1682 1683 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1684 unsigned long size) 1685 { 1686 int order; 1687 for (order = 0; order < MAX_ORDER ; order++) { 1688 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1689 zone->free_area[order].nr_free = 0; 1690 } 1691 } 1692 1693 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1694 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1695 unsigned long size) 1696 { 1697 unsigned long snum = pfn_to_section_nr(pfn); 1698 unsigned long end = pfn_to_section_nr(pfn + size); 1699 1700 if (FLAGS_HAS_NODE) 1701 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1702 else 1703 for (; snum <= end; snum++) 1704 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1705 } 1706 1707 #ifndef __HAVE_ARCH_MEMMAP_INIT 1708 #define memmap_init(size, nid, zone, start_pfn) \ 1709 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1710 #endif 1711 1712 static int __devinit zone_batchsize(struct zone *zone) 1713 { 1714 int batch; 1715 1716 /* 1717 * The per-cpu-pages pools are set to around 1000th of the 1718 * size of the zone. But no more than 1/4 of a meg - there's 1719 * no point in going beyond the size of L2 cache. 1720 * 1721 * OK, so we don't know how big the cache is. So guess. 1722 */ 1723 batch = zone->present_pages / 1024; 1724 if (batch * PAGE_SIZE > 256 * 1024) 1725 batch = (256 * 1024) / PAGE_SIZE; 1726 batch /= 4; /* We effectively *= 4 below */ 1727 if (batch < 1) 1728 batch = 1; 1729 1730 /* 1731 * Clamp the batch to a 2^n - 1 value. Having a power 1732 * of 2 value was found to be more likely to have 1733 * suboptimal cache aliasing properties in some cases. 1734 * 1735 * For example if 2 tasks are alternately allocating 1736 * batches of pages, one task can end up with a lot 1737 * of pages of one half of the possible page colors 1738 * and the other with pages of the other colors. 1739 */ 1740 batch = (1 << fls(batch + batch/2)) - 1; 1741 return batch; 1742 } 1743 1744 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1745 { 1746 struct per_cpu_pages *pcp; 1747 1748 pcp = &p->pcp[0]; /* hot */ 1749 pcp->count = 0; 1750 pcp->low = 2 * batch; 1751 pcp->high = 6 * batch; 1752 pcp->batch = max(1UL, 1 * batch); 1753 INIT_LIST_HEAD(&pcp->list); 1754 1755 pcp = &p->pcp[1]; /* cold*/ 1756 pcp->count = 0; 1757 pcp->low = 0; 1758 pcp->high = 2 * batch; 1759 pcp->batch = max(1UL, 1 * batch); 1760 INIT_LIST_HEAD(&pcp->list); 1761 } 1762 1763 #ifdef CONFIG_NUMA 1764 /* 1765 * Boot pageset table. One per cpu which is going to be used for all 1766 * zones and all nodes. The parameters will be set in such a way 1767 * that an item put on a list will immediately be handed over to 1768 * the buddy list. This is safe since pageset manipulation is done 1769 * with interrupts disabled. 1770 * 1771 * Some NUMA counter updates may also be caught by the boot pagesets. 1772 * 1773 * The boot_pagesets must be kept even after bootup is complete for 1774 * unused processors and/or zones. They do play a role for bootstrapping 1775 * hotplugged processors. 1776 * 1777 * zoneinfo_show() and maybe other functions do 1778 * not check if the processor is online before following the pageset pointer. 1779 * Other parts of the kernel may not check if the zone is available. 1780 */ 1781 static struct per_cpu_pageset 1782 boot_pageset[NR_CPUS]; 1783 1784 /* 1785 * Dynamically allocate memory for the 1786 * per cpu pageset array in struct zone. 1787 */ 1788 static int __devinit process_zones(int cpu) 1789 { 1790 struct zone *zone, *dzone; 1791 1792 for_each_zone(zone) { 1793 1794 zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset), 1795 GFP_KERNEL, cpu_to_node(cpu)); 1796 if (!zone->pageset[cpu]) 1797 goto bad; 1798 1799 setup_pageset(zone->pageset[cpu], zone_batchsize(zone)); 1800 } 1801 1802 return 0; 1803 bad: 1804 for_each_zone(dzone) { 1805 if (dzone == zone) 1806 break; 1807 kfree(dzone->pageset[cpu]); 1808 dzone->pageset[cpu] = NULL; 1809 } 1810 return -ENOMEM; 1811 } 1812 1813 static inline void free_zone_pagesets(int cpu) 1814 { 1815 #ifdef CONFIG_NUMA 1816 struct zone *zone; 1817 1818 for_each_zone(zone) { 1819 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1820 1821 zone_pcp(zone, cpu) = NULL; 1822 kfree(pset); 1823 } 1824 #endif 1825 } 1826 1827 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb, 1828 unsigned long action, 1829 void *hcpu) 1830 { 1831 int cpu = (long)hcpu; 1832 int ret = NOTIFY_OK; 1833 1834 switch (action) { 1835 case CPU_UP_PREPARE: 1836 if (process_zones(cpu)) 1837 ret = NOTIFY_BAD; 1838 break; 1839 #ifdef CONFIG_HOTPLUG_CPU 1840 case CPU_DEAD: 1841 free_zone_pagesets(cpu); 1842 break; 1843 #endif 1844 default: 1845 break; 1846 } 1847 return ret; 1848 } 1849 1850 static struct notifier_block pageset_notifier = 1851 { &pageset_cpuup_callback, NULL, 0 }; 1852 1853 void __init setup_per_cpu_pageset() 1854 { 1855 int err; 1856 1857 /* Initialize per_cpu_pageset for cpu 0. 1858 * A cpuup callback will do this for every cpu 1859 * as it comes online 1860 */ 1861 err = process_zones(smp_processor_id()); 1862 BUG_ON(err); 1863 register_cpu_notifier(&pageset_notifier); 1864 } 1865 1866 #endif 1867 1868 /* 1869 * Set up the zone data structures: 1870 * - mark all pages reserved 1871 * - mark all memory queues empty 1872 * - clear the memory bitmaps 1873 */ 1874 static void __init free_area_init_core(struct pglist_data *pgdat, 1875 unsigned long *zones_size, unsigned long *zholes_size) 1876 { 1877 unsigned long i, j; 1878 int cpu, nid = pgdat->node_id; 1879 unsigned long zone_start_pfn = pgdat->node_start_pfn; 1880 1881 pgdat->nr_zones = 0; 1882 init_waitqueue_head(&pgdat->kswapd_wait); 1883 pgdat->kswapd_max_order = 0; 1884 1885 for (j = 0; j < MAX_NR_ZONES; j++) { 1886 struct zone *zone = pgdat->node_zones + j; 1887 unsigned long size, realsize; 1888 unsigned long batch; 1889 1890 realsize = size = zones_size[j]; 1891 if (zholes_size) 1892 realsize -= zholes_size[j]; 1893 1894 if (j == ZONE_DMA || j == ZONE_NORMAL) 1895 nr_kernel_pages += realsize; 1896 nr_all_pages += realsize; 1897 1898 zone->spanned_pages = size; 1899 zone->present_pages = realsize; 1900 zone->name = zone_names[j]; 1901 spin_lock_init(&zone->lock); 1902 spin_lock_init(&zone->lru_lock); 1903 zone->zone_pgdat = pgdat; 1904 zone->free_pages = 0; 1905 1906 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 1907 1908 batch = zone_batchsize(zone); 1909 1910 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1911 #ifdef CONFIG_NUMA 1912 /* Early boot. Slab allocator not functional yet */ 1913 zone->pageset[cpu] = &boot_pageset[cpu]; 1914 setup_pageset(&boot_pageset[cpu],0); 1915 #else 1916 setup_pageset(zone_pcp(zone,cpu), batch); 1917 #endif 1918 } 1919 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 1920 zone_names[j], realsize, batch); 1921 INIT_LIST_HEAD(&zone->active_list); 1922 INIT_LIST_HEAD(&zone->inactive_list); 1923 zone->nr_scan_active = 0; 1924 zone->nr_scan_inactive = 0; 1925 zone->nr_active = 0; 1926 zone->nr_inactive = 0; 1927 atomic_set(&zone->reclaim_in_progress, 0); 1928 if (!size) 1929 continue; 1930 1931 /* 1932 * The per-page waitqueue mechanism uses hashed waitqueues 1933 * per zone. 1934 */ 1935 zone->wait_table_size = wait_table_size(size); 1936 zone->wait_table_bits = 1937 wait_table_bits(zone->wait_table_size); 1938 zone->wait_table = (wait_queue_head_t *) 1939 alloc_bootmem_node(pgdat, zone->wait_table_size 1940 * sizeof(wait_queue_head_t)); 1941 1942 for(i = 0; i < zone->wait_table_size; ++i) 1943 init_waitqueue_head(zone->wait_table + i); 1944 1945 pgdat->nr_zones = j+1; 1946 1947 zone->zone_mem_map = pfn_to_page(zone_start_pfn); 1948 zone->zone_start_pfn = zone_start_pfn; 1949 1950 memmap_init(size, nid, j, zone_start_pfn); 1951 1952 zonetable_add(zone, nid, j, zone_start_pfn, size); 1953 1954 zone_start_pfn += size; 1955 1956 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 1957 } 1958 } 1959 1960 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 1961 { 1962 /* Skip empty nodes */ 1963 if (!pgdat->node_spanned_pages) 1964 return; 1965 1966 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1967 /* ia64 gets its own node_mem_map, before this, without bootmem */ 1968 if (!pgdat->node_mem_map) { 1969 unsigned long size; 1970 struct page *map; 1971 1972 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 1973 map = alloc_remap(pgdat->node_id, size); 1974 if (!map) 1975 map = alloc_bootmem_node(pgdat, size); 1976 pgdat->node_mem_map = map; 1977 } 1978 #ifdef CONFIG_FLATMEM 1979 /* 1980 * With no DISCONTIG, the global mem_map is just set as node 0's 1981 */ 1982 if (pgdat == NODE_DATA(0)) 1983 mem_map = NODE_DATA(0)->node_mem_map; 1984 #endif 1985 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 1986 } 1987 1988 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 1989 unsigned long *zones_size, unsigned long node_start_pfn, 1990 unsigned long *zholes_size) 1991 { 1992 pgdat->node_id = nid; 1993 pgdat->node_start_pfn = node_start_pfn; 1994 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 1995 1996 alloc_node_mem_map(pgdat); 1997 1998 free_area_init_core(pgdat, zones_size, zholes_size); 1999 } 2000 2001 #ifndef CONFIG_NEED_MULTIPLE_NODES 2002 static bootmem_data_t contig_bootmem_data; 2003 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2004 2005 EXPORT_SYMBOL(contig_page_data); 2006 #endif 2007 2008 void __init free_area_init(unsigned long *zones_size) 2009 { 2010 free_area_init_node(0, NODE_DATA(0), zones_size, 2011 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2012 } 2013 2014 #ifdef CONFIG_PROC_FS 2015 2016 #include <linux/seq_file.h> 2017 2018 static void *frag_start(struct seq_file *m, loff_t *pos) 2019 { 2020 pg_data_t *pgdat; 2021 loff_t node = *pos; 2022 2023 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) 2024 --node; 2025 2026 return pgdat; 2027 } 2028 2029 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2030 { 2031 pg_data_t *pgdat = (pg_data_t *)arg; 2032 2033 (*pos)++; 2034 return pgdat->pgdat_next; 2035 } 2036 2037 static void frag_stop(struct seq_file *m, void *arg) 2038 { 2039 } 2040 2041 /* 2042 * This walks the free areas for each zone. 2043 */ 2044 static int frag_show(struct seq_file *m, void *arg) 2045 { 2046 pg_data_t *pgdat = (pg_data_t *)arg; 2047 struct zone *zone; 2048 struct zone *node_zones = pgdat->node_zones; 2049 unsigned long flags; 2050 int order; 2051 2052 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2053 if (!zone->present_pages) 2054 continue; 2055 2056 spin_lock_irqsave(&zone->lock, flags); 2057 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2058 for (order = 0; order < MAX_ORDER; ++order) 2059 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2060 spin_unlock_irqrestore(&zone->lock, flags); 2061 seq_putc(m, '\n'); 2062 } 2063 return 0; 2064 } 2065 2066 struct seq_operations fragmentation_op = { 2067 .start = frag_start, 2068 .next = frag_next, 2069 .stop = frag_stop, 2070 .show = frag_show, 2071 }; 2072 2073 /* 2074 * Output information about zones in @pgdat. 2075 */ 2076 static int zoneinfo_show(struct seq_file *m, void *arg) 2077 { 2078 pg_data_t *pgdat = arg; 2079 struct zone *zone; 2080 struct zone *node_zones = pgdat->node_zones; 2081 unsigned long flags; 2082 2083 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2084 int i; 2085 2086 if (!zone->present_pages) 2087 continue; 2088 2089 spin_lock_irqsave(&zone->lock, flags); 2090 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2091 seq_printf(m, 2092 "\n pages free %lu" 2093 "\n min %lu" 2094 "\n low %lu" 2095 "\n high %lu" 2096 "\n active %lu" 2097 "\n inactive %lu" 2098 "\n scanned %lu (a: %lu i: %lu)" 2099 "\n spanned %lu" 2100 "\n present %lu", 2101 zone->free_pages, 2102 zone->pages_min, 2103 zone->pages_low, 2104 zone->pages_high, 2105 zone->nr_active, 2106 zone->nr_inactive, 2107 zone->pages_scanned, 2108 zone->nr_scan_active, zone->nr_scan_inactive, 2109 zone->spanned_pages, 2110 zone->present_pages); 2111 seq_printf(m, 2112 "\n protection: (%lu", 2113 zone->lowmem_reserve[0]); 2114 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2115 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2116 seq_printf(m, 2117 ")" 2118 "\n pagesets"); 2119 for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) { 2120 struct per_cpu_pageset *pageset; 2121 int j; 2122 2123 pageset = zone_pcp(zone, i); 2124 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2125 if (pageset->pcp[j].count) 2126 break; 2127 } 2128 if (j == ARRAY_SIZE(pageset->pcp)) 2129 continue; 2130 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2131 seq_printf(m, 2132 "\n cpu: %i pcp: %i" 2133 "\n count: %i" 2134 "\n low: %i" 2135 "\n high: %i" 2136 "\n batch: %i", 2137 i, j, 2138 pageset->pcp[j].count, 2139 pageset->pcp[j].low, 2140 pageset->pcp[j].high, 2141 pageset->pcp[j].batch); 2142 } 2143 #ifdef CONFIG_NUMA 2144 seq_printf(m, 2145 "\n numa_hit: %lu" 2146 "\n numa_miss: %lu" 2147 "\n numa_foreign: %lu" 2148 "\n interleave_hit: %lu" 2149 "\n local_node: %lu" 2150 "\n other_node: %lu", 2151 pageset->numa_hit, 2152 pageset->numa_miss, 2153 pageset->numa_foreign, 2154 pageset->interleave_hit, 2155 pageset->local_node, 2156 pageset->other_node); 2157 #endif 2158 } 2159 seq_printf(m, 2160 "\n all_unreclaimable: %u" 2161 "\n prev_priority: %i" 2162 "\n temp_priority: %i" 2163 "\n start_pfn: %lu", 2164 zone->all_unreclaimable, 2165 zone->prev_priority, 2166 zone->temp_priority, 2167 zone->zone_start_pfn); 2168 spin_unlock_irqrestore(&zone->lock, flags); 2169 seq_putc(m, '\n'); 2170 } 2171 return 0; 2172 } 2173 2174 struct seq_operations zoneinfo_op = { 2175 .start = frag_start, /* iterate over all zones. The same as in 2176 * fragmentation. */ 2177 .next = frag_next, 2178 .stop = frag_stop, 2179 .show = zoneinfo_show, 2180 }; 2181 2182 static char *vmstat_text[] = { 2183 "nr_dirty", 2184 "nr_writeback", 2185 "nr_unstable", 2186 "nr_page_table_pages", 2187 "nr_mapped", 2188 "nr_slab", 2189 2190 "pgpgin", 2191 "pgpgout", 2192 "pswpin", 2193 "pswpout", 2194 "pgalloc_high", 2195 2196 "pgalloc_normal", 2197 "pgalloc_dma", 2198 "pgfree", 2199 "pgactivate", 2200 "pgdeactivate", 2201 2202 "pgfault", 2203 "pgmajfault", 2204 "pgrefill_high", 2205 "pgrefill_normal", 2206 "pgrefill_dma", 2207 2208 "pgsteal_high", 2209 "pgsteal_normal", 2210 "pgsteal_dma", 2211 "pgscan_kswapd_high", 2212 "pgscan_kswapd_normal", 2213 2214 "pgscan_kswapd_dma", 2215 "pgscan_direct_high", 2216 "pgscan_direct_normal", 2217 "pgscan_direct_dma", 2218 "pginodesteal", 2219 2220 "slabs_scanned", 2221 "kswapd_steal", 2222 "kswapd_inodesteal", 2223 "pageoutrun", 2224 "allocstall", 2225 2226 "pgrotated", 2227 "nr_bounce", 2228 }; 2229 2230 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2231 { 2232 struct page_state *ps; 2233 2234 if (*pos >= ARRAY_SIZE(vmstat_text)) 2235 return NULL; 2236 2237 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2238 m->private = ps; 2239 if (!ps) 2240 return ERR_PTR(-ENOMEM); 2241 get_full_page_state(ps); 2242 ps->pgpgin /= 2; /* sectors -> kbytes */ 2243 ps->pgpgout /= 2; 2244 return (unsigned long *)ps + *pos; 2245 } 2246 2247 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2248 { 2249 (*pos)++; 2250 if (*pos >= ARRAY_SIZE(vmstat_text)) 2251 return NULL; 2252 return (unsigned long *)m->private + *pos; 2253 } 2254 2255 static int vmstat_show(struct seq_file *m, void *arg) 2256 { 2257 unsigned long *l = arg; 2258 unsigned long off = l - (unsigned long *)m->private; 2259 2260 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2261 return 0; 2262 } 2263 2264 static void vmstat_stop(struct seq_file *m, void *arg) 2265 { 2266 kfree(m->private); 2267 m->private = NULL; 2268 } 2269 2270 struct seq_operations vmstat_op = { 2271 .start = vmstat_start, 2272 .next = vmstat_next, 2273 .stop = vmstat_stop, 2274 .show = vmstat_show, 2275 }; 2276 2277 #endif /* CONFIG_PROC_FS */ 2278 2279 #ifdef CONFIG_HOTPLUG_CPU 2280 static int page_alloc_cpu_notify(struct notifier_block *self, 2281 unsigned long action, void *hcpu) 2282 { 2283 int cpu = (unsigned long)hcpu; 2284 long *count; 2285 unsigned long *src, *dest; 2286 2287 if (action == CPU_DEAD) { 2288 int i; 2289 2290 /* Drain local pagecache count. */ 2291 count = &per_cpu(nr_pagecache_local, cpu); 2292 atomic_add(*count, &nr_pagecache); 2293 *count = 0; 2294 local_irq_disable(); 2295 __drain_pages(cpu); 2296 2297 /* Add dead cpu's page_states to our own. */ 2298 dest = (unsigned long *)&__get_cpu_var(page_states); 2299 src = (unsigned long *)&per_cpu(page_states, cpu); 2300 2301 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2302 i++) { 2303 dest[i] += src[i]; 2304 src[i] = 0; 2305 } 2306 2307 local_irq_enable(); 2308 } 2309 return NOTIFY_OK; 2310 } 2311 #endif /* CONFIG_HOTPLUG_CPU */ 2312 2313 void __init page_alloc_init(void) 2314 { 2315 hotcpu_notifier(page_alloc_cpu_notify, 0); 2316 } 2317 2318 /* 2319 * setup_per_zone_lowmem_reserve - called whenever 2320 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2321 * has a correct pages reserved value, so an adequate number of 2322 * pages are left in the zone after a successful __alloc_pages(). 2323 */ 2324 static void setup_per_zone_lowmem_reserve(void) 2325 { 2326 struct pglist_data *pgdat; 2327 int j, idx; 2328 2329 for_each_pgdat(pgdat) { 2330 for (j = 0; j < MAX_NR_ZONES; j++) { 2331 struct zone *zone = pgdat->node_zones + j; 2332 unsigned long present_pages = zone->present_pages; 2333 2334 zone->lowmem_reserve[j] = 0; 2335 2336 for (idx = j-1; idx >= 0; idx--) { 2337 struct zone *lower_zone; 2338 2339 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2340 sysctl_lowmem_reserve_ratio[idx] = 1; 2341 2342 lower_zone = pgdat->node_zones + idx; 2343 lower_zone->lowmem_reserve[j] = present_pages / 2344 sysctl_lowmem_reserve_ratio[idx]; 2345 present_pages += lower_zone->present_pages; 2346 } 2347 } 2348 } 2349 } 2350 2351 /* 2352 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2353 * that the pages_{min,low,high} values for each zone are set correctly 2354 * with respect to min_free_kbytes. 2355 */ 2356 static void setup_per_zone_pages_min(void) 2357 { 2358 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2359 unsigned long lowmem_pages = 0; 2360 struct zone *zone; 2361 unsigned long flags; 2362 2363 /* Calculate total number of !ZONE_HIGHMEM pages */ 2364 for_each_zone(zone) { 2365 if (!is_highmem(zone)) 2366 lowmem_pages += zone->present_pages; 2367 } 2368 2369 for_each_zone(zone) { 2370 spin_lock_irqsave(&zone->lru_lock, flags); 2371 if (is_highmem(zone)) { 2372 /* 2373 * Often, highmem doesn't need to reserve any pages. 2374 * But the pages_min/low/high values are also used for 2375 * batching up page reclaim activity so we need a 2376 * decent value here. 2377 */ 2378 int min_pages; 2379 2380 min_pages = zone->present_pages / 1024; 2381 if (min_pages < SWAP_CLUSTER_MAX) 2382 min_pages = SWAP_CLUSTER_MAX; 2383 if (min_pages > 128) 2384 min_pages = 128; 2385 zone->pages_min = min_pages; 2386 } else { 2387 /* if it's a lowmem zone, reserve a number of pages 2388 * proportionate to the zone's size. 2389 */ 2390 zone->pages_min = (pages_min * zone->present_pages) / 2391 lowmem_pages; 2392 } 2393 2394 /* 2395 * When interpreting these watermarks, just keep in mind that: 2396 * zone->pages_min == (zone->pages_min * 4) / 4; 2397 */ 2398 zone->pages_low = (zone->pages_min * 5) / 4; 2399 zone->pages_high = (zone->pages_min * 6) / 4; 2400 spin_unlock_irqrestore(&zone->lru_lock, flags); 2401 } 2402 } 2403 2404 /* 2405 * Initialise min_free_kbytes. 2406 * 2407 * For small machines we want it small (128k min). For large machines 2408 * we want it large (64MB max). But it is not linear, because network 2409 * bandwidth does not increase linearly with machine size. We use 2410 * 2411 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2412 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2413 * 2414 * which yields 2415 * 2416 * 16MB: 512k 2417 * 32MB: 724k 2418 * 64MB: 1024k 2419 * 128MB: 1448k 2420 * 256MB: 2048k 2421 * 512MB: 2896k 2422 * 1024MB: 4096k 2423 * 2048MB: 5792k 2424 * 4096MB: 8192k 2425 * 8192MB: 11584k 2426 * 16384MB: 16384k 2427 */ 2428 static int __init init_per_zone_pages_min(void) 2429 { 2430 unsigned long lowmem_kbytes; 2431 2432 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2433 2434 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2435 if (min_free_kbytes < 128) 2436 min_free_kbytes = 128; 2437 if (min_free_kbytes > 65536) 2438 min_free_kbytes = 65536; 2439 setup_per_zone_pages_min(); 2440 setup_per_zone_lowmem_reserve(); 2441 return 0; 2442 } 2443 module_init(init_per_zone_pages_min) 2444 2445 /* 2446 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2447 * that we can call two helper functions whenever min_free_kbytes 2448 * changes. 2449 */ 2450 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2451 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2452 { 2453 proc_dointvec(table, write, file, buffer, length, ppos); 2454 setup_per_zone_pages_min(); 2455 return 0; 2456 } 2457 2458 /* 2459 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2460 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2461 * whenever sysctl_lowmem_reserve_ratio changes. 2462 * 2463 * The reserve ratio obviously has absolutely no relation with the 2464 * pages_min watermarks. The lowmem reserve ratio can only make sense 2465 * if in function of the boot time zone sizes. 2466 */ 2467 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2468 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2469 { 2470 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2471 setup_per_zone_lowmem_reserve(); 2472 return 0; 2473 } 2474 2475 __initdata int hashdist = HASHDIST_DEFAULT; 2476 2477 #ifdef CONFIG_NUMA 2478 static int __init set_hashdist(char *str) 2479 { 2480 if (!str) 2481 return 0; 2482 hashdist = simple_strtoul(str, &str, 0); 2483 return 1; 2484 } 2485 __setup("hashdist=", set_hashdist); 2486 #endif 2487 2488 /* 2489 * allocate a large system hash table from bootmem 2490 * - it is assumed that the hash table must contain an exact power-of-2 2491 * quantity of entries 2492 * - limit is the number of hash buckets, not the total allocation size 2493 */ 2494 void *__init alloc_large_system_hash(const char *tablename, 2495 unsigned long bucketsize, 2496 unsigned long numentries, 2497 int scale, 2498 int flags, 2499 unsigned int *_hash_shift, 2500 unsigned int *_hash_mask, 2501 unsigned long limit) 2502 { 2503 unsigned long long max = limit; 2504 unsigned long log2qty, size; 2505 void *table = NULL; 2506 2507 /* allow the kernel cmdline to have a say */ 2508 if (!numentries) { 2509 /* round applicable memory size up to nearest megabyte */ 2510 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2511 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2512 numentries >>= 20 - PAGE_SHIFT; 2513 numentries <<= 20 - PAGE_SHIFT; 2514 2515 /* limit to 1 bucket per 2^scale bytes of low memory */ 2516 if (scale > PAGE_SHIFT) 2517 numentries >>= (scale - PAGE_SHIFT); 2518 else 2519 numentries <<= (PAGE_SHIFT - scale); 2520 } 2521 /* rounded up to nearest power of 2 in size */ 2522 numentries = 1UL << (long_log2(numentries) + 1); 2523 2524 /* limit allocation size to 1/16 total memory by default */ 2525 if (max == 0) { 2526 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2527 do_div(max, bucketsize); 2528 } 2529 2530 if (numentries > max) 2531 numentries = max; 2532 2533 log2qty = long_log2(numentries); 2534 2535 do { 2536 size = bucketsize << log2qty; 2537 if (flags & HASH_EARLY) 2538 table = alloc_bootmem(size); 2539 else if (hashdist) 2540 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2541 else { 2542 unsigned long order; 2543 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2544 ; 2545 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2546 } 2547 } while (!table && size > PAGE_SIZE && --log2qty); 2548 2549 if (!table) 2550 panic("Failed to allocate %s hash table\n", tablename); 2551 2552 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2553 tablename, 2554 (1U << log2qty), 2555 long_log2(size) - PAGE_SHIFT, 2556 size); 2557 2558 if (_hash_shift) 2559 *_hash_shift = log2qty; 2560 if (_hash_mask) 2561 *_hash_mask = (1 << log2qty) - 1; 2562 2563 return table; 2564 } 2565