xref: /linux/mm/page_alloc.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/nodemask.h>
36 #include <linux/vmalloc.h>
37 
38 #include <asm/tlbflush.h>
39 #include "internal.h"
40 
41 /*
42  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
43  * initializer cleaner
44  */
45 nodemask_t node_online_map = { { [0] = 1UL } };
46 EXPORT_SYMBOL(node_online_map);
47 nodemask_t node_possible_map = NODE_MASK_ALL;
48 EXPORT_SYMBOL(node_possible_map);
49 struct pglist_data *pgdat_list;
50 unsigned long totalram_pages;
51 unsigned long totalhigh_pages;
52 long nr_swap_pages;
53 
54 /*
55  * results with 256, 32 in the lowmem_reserve sysctl:
56  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
57  *	1G machine -> (16M dma, 784M normal, 224M high)
58  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
59  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
60  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
61  */
62 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
63 
64 EXPORT_SYMBOL(totalram_pages);
65 EXPORT_SYMBOL(nr_swap_pages);
66 
67 /*
68  * Used by page_zone() to look up the address of the struct zone whose
69  * id is encoded in the upper bits of page->flags
70  */
71 struct zone *zone_table[1 << ZONETABLE_SHIFT];
72 EXPORT_SYMBOL(zone_table);
73 
74 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
75 int min_free_kbytes = 1024;
76 
77 unsigned long __initdata nr_kernel_pages;
78 unsigned long __initdata nr_all_pages;
79 
80 /*
81  * Temporary debugging check for pages not lying within a given zone.
82  */
83 static int bad_range(struct zone *zone, struct page *page)
84 {
85 	if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages)
86 		return 1;
87 	if (page_to_pfn(page) < zone->zone_start_pfn)
88 		return 1;
89 #ifdef CONFIG_HOLES_IN_ZONE
90 	if (!pfn_valid(page_to_pfn(page)))
91 		return 1;
92 #endif
93 	if (zone != page_zone(page))
94 		return 1;
95 	return 0;
96 }
97 
98 static void bad_page(const char *function, struct page *page)
99 {
100 	printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
101 		function, current->comm, page);
102 	printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
103 		(int)(2*sizeof(page_flags_t)), (unsigned long)page->flags,
104 		page->mapping, page_mapcount(page), page_count(page));
105 	printk(KERN_EMERG "Backtrace:\n");
106 	dump_stack();
107 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
108 	page->flags &= ~(1 << PG_lru	|
109 			1 << PG_private |
110 			1 << PG_locked	|
111 			1 << PG_active	|
112 			1 << PG_dirty	|
113 			1 << PG_reclaim |
114 			1 << PG_slab    |
115 			1 << PG_swapcache |
116 			1 << PG_writeback);
117 	set_page_count(page, 0);
118 	reset_page_mapcount(page);
119 	page->mapping = NULL;
120 	tainted |= TAINT_BAD_PAGE;
121 }
122 
123 #ifndef CONFIG_HUGETLB_PAGE
124 #define prep_compound_page(page, order) do { } while (0)
125 #define destroy_compound_page(page, order) do { } while (0)
126 #else
127 /*
128  * Higher-order pages are called "compound pages".  They are structured thusly:
129  *
130  * The first PAGE_SIZE page is called the "head page".
131  *
132  * The remaining PAGE_SIZE pages are called "tail pages".
133  *
134  * All pages have PG_compound set.  All pages have their ->private pointing at
135  * the head page (even the head page has this).
136  *
137  * The first tail page's ->mapping, if non-zero, holds the address of the
138  * compound page's put_page() function.
139  *
140  * The order of the allocation is stored in the first tail page's ->index
141  * This is only for debug at present.  This usage means that zero-order pages
142  * may not be compound.
143  */
144 static void prep_compound_page(struct page *page, unsigned long order)
145 {
146 	int i;
147 	int nr_pages = 1 << order;
148 
149 	page[1].mapping = NULL;
150 	page[1].index = order;
151 	for (i = 0; i < nr_pages; i++) {
152 		struct page *p = page + i;
153 
154 		SetPageCompound(p);
155 		p->private = (unsigned long)page;
156 	}
157 }
158 
159 static void destroy_compound_page(struct page *page, unsigned long order)
160 {
161 	int i;
162 	int nr_pages = 1 << order;
163 
164 	if (!PageCompound(page))
165 		return;
166 
167 	if (page[1].index != order)
168 		bad_page(__FUNCTION__, page);
169 
170 	for (i = 0; i < nr_pages; i++) {
171 		struct page *p = page + i;
172 
173 		if (!PageCompound(p))
174 			bad_page(__FUNCTION__, page);
175 		if (p->private != (unsigned long)page)
176 			bad_page(__FUNCTION__, page);
177 		ClearPageCompound(p);
178 	}
179 }
180 #endif		/* CONFIG_HUGETLB_PAGE */
181 
182 /*
183  * function for dealing with page's order in buddy system.
184  * zone->lock is already acquired when we use these.
185  * So, we don't need atomic page->flags operations here.
186  */
187 static inline unsigned long page_order(struct page *page) {
188 	return page->private;
189 }
190 
191 static inline void set_page_order(struct page *page, int order) {
192 	page->private = order;
193 	__SetPagePrivate(page);
194 }
195 
196 static inline void rmv_page_order(struct page *page)
197 {
198 	__ClearPagePrivate(page);
199 	page->private = 0;
200 }
201 
202 /*
203  * Locate the struct page for both the matching buddy in our
204  * pair (buddy1) and the combined O(n+1) page they form (page).
205  *
206  * 1) Any buddy B1 will have an order O twin B2 which satisfies
207  * the following equation:
208  *     B2 = B1 ^ (1 << O)
209  * For example, if the starting buddy (buddy2) is #8 its order
210  * 1 buddy is #10:
211  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
212  *
213  * 2) Any buddy B will have an order O+1 parent P which
214  * satisfies the following equation:
215  *     P = B & ~(1 << O)
216  *
217  * Assumption: *_mem_map is contigious at least up to MAX_ORDER
218  */
219 static inline struct page *
220 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
221 {
222 	unsigned long buddy_idx = page_idx ^ (1 << order);
223 
224 	return page + (buddy_idx - page_idx);
225 }
226 
227 static inline unsigned long
228 __find_combined_index(unsigned long page_idx, unsigned int order)
229 {
230 	return (page_idx & ~(1 << order));
231 }
232 
233 /*
234  * This function checks whether a page is free && is the buddy
235  * we can do coalesce a page and its buddy if
236  * (a) the buddy is free &&
237  * (b) the buddy is on the buddy system &&
238  * (c) a page and its buddy have the same order.
239  * for recording page's order, we use page->private and PG_private.
240  *
241  */
242 static inline int page_is_buddy(struct page *page, int order)
243 {
244        if (PagePrivate(page)           &&
245            (page_order(page) == order) &&
246            !PageReserved(page)         &&
247             page_count(page) == 0)
248                return 1;
249        return 0;
250 }
251 
252 /*
253  * Freeing function for a buddy system allocator.
254  *
255  * The concept of a buddy system is to maintain direct-mapped table
256  * (containing bit values) for memory blocks of various "orders".
257  * The bottom level table contains the map for the smallest allocatable
258  * units of memory (here, pages), and each level above it describes
259  * pairs of units from the levels below, hence, "buddies".
260  * At a high level, all that happens here is marking the table entry
261  * at the bottom level available, and propagating the changes upward
262  * as necessary, plus some accounting needed to play nicely with other
263  * parts of the VM system.
264  * At each level, we keep a list of pages, which are heads of continuous
265  * free pages of length of (1 << order) and marked with PG_Private.Page's
266  * order is recorded in page->private field.
267  * So when we are allocating or freeing one, we can derive the state of the
268  * other.  That is, if we allocate a small block, and both were
269  * free, the remainder of the region must be split into blocks.
270  * If a block is freed, and its buddy is also free, then this
271  * triggers coalescing into a block of larger size.
272  *
273  * -- wli
274  */
275 
276 static inline void __free_pages_bulk (struct page *page,
277 		struct zone *zone, unsigned int order)
278 {
279 	unsigned long page_idx;
280 	int order_size = 1 << order;
281 
282 	if (unlikely(order))
283 		destroy_compound_page(page, order);
284 
285 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
286 
287 	BUG_ON(page_idx & (order_size - 1));
288 	BUG_ON(bad_range(zone, page));
289 
290 	zone->free_pages += order_size;
291 	while (order < MAX_ORDER-1) {
292 		unsigned long combined_idx;
293 		struct free_area *area;
294 		struct page *buddy;
295 
296 		combined_idx = __find_combined_index(page_idx, order);
297 		buddy = __page_find_buddy(page, page_idx, order);
298 
299 		if (bad_range(zone, buddy))
300 			break;
301 		if (!page_is_buddy(buddy, order))
302 			break;		/* Move the buddy up one level. */
303 		list_del(&buddy->lru);
304 		area = zone->free_area + order;
305 		area->nr_free--;
306 		rmv_page_order(buddy);
307 		page = page + (combined_idx - page_idx);
308 		page_idx = combined_idx;
309 		order++;
310 	}
311 	set_page_order(page, order);
312 	list_add(&page->lru, &zone->free_area[order].free_list);
313 	zone->free_area[order].nr_free++;
314 }
315 
316 static inline void free_pages_check(const char *function, struct page *page)
317 {
318 	if (	page_mapcount(page) ||
319 		page->mapping != NULL ||
320 		page_count(page) != 0 ||
321 		(page->flags & (
322 			1 << PG_lru	|
323 			1 << PG_private |
324 			1 << PG_locked	|
325 			1 << PG_active	|
326 			1 << PG_reclaim	|
327 			1 << PG_slab	|
328 			1 << PG_swapcache |
329 			1 << PG_writeback )))
330 		bad_page(function, page);
331 	if (PageDirty(page))
332 		__ClearPageDirty(page);
333 }
334 
335 /*
336  * Frees a list of pages.
337  * Assumes all pages on list are in same zone, and of same order.
338  * count is the number of pages to free, or 0 for all on the list.
339  *
340  * If the zone was previously in an "all pages pinned" state then look to
341  * see if this freeing clears that state.
342  *
343  * And clear the zone's pages_scanned counter, to hold off the "all pages are
344  * pinned" detection logic.
345  */
346 static int
347 free_pages_bulk(struct zone *zone, int count,
348 		struct list_head *list, unsigned int order)
349 {
350 	unsigned long flags;
351 	struct page *page = NULL;
352 	int ret = 0;
353 
354 	spin_lock_irqsave(&zone->lock, flags);
355 	zone->all_unreclaimable = 0;
356 	zone->pages_scanned = 0;
357 	while (!list_empty(list) && count--) {
358 		page = list_entry(list->prev, struct page, lru);
359 		/* have to delete it as __free_pages_bulk list manipulates */
360 		list_del(&page->lru);
361 		__free_pages_bulk(page, zone, order);
362 		ret++;
363 	}
364 	spin_unlock_irqrestore(&zone->lock, flags);
365 	return ret;
366 }
367 
368 void __free_pages_ok(struct page *page, unsigned int order)
369 {
370 	LIST_HEAD(list);
371 	int i;
372 
373 	arch_free_page(page, order);
374 
375 	mod_page_state(pgfree, 1 << order);
376 
377 #ifndef CONFIG_MMU
378 	if (order > 0)
379 		for (i = 1 ; i < (1 << order) ; ++i)
380 			__put_page(page + i);
381 #endif
382 
383 	for (i = 0 ; i < (1 << order) ; ++i)
384 		free_pages_check(__FUNCTION__, page + i);
385 	list_add(&page->lru, &list);
386 	kernel_map_pages(page, 1<<order, 0);
387 	free_pages_bulk(page_zone(page), 1, &list, order);
388 }
389 
390 
391 /*
392  * The order of subdivision here is critical for the IO subsystem.
393  * Please do not alter this order without good reasons and regression
394  * testing. Specifically, as large blocks of memory are subdivided,
395  * the order in which smaller blocks are delivered depends on the order
396  * they're subdivided in this function. This is the primary factor
397  * influencing the order in which pages are delivered to the IO
398  * subsystem according to empirical testing, and this is also justified
399  * by considering the behavior of a buddy system containing a single
400  * large block of memory acted on by a series of small allocations.
401  * This behavior is a critical factor in sglist merging's success.
402  *
403  * -- wli
404  */
405 static inline struct page *
406 expand(struct zone *zone, struct page *page,
407  	int low, int high, struct free_area *area)
408 {
409 	unsigned long size = 1 << high;
410 
411 	while (high > low) {
412 		area--;
413 		high--;
414 		size >>= 1;
415 		BUG_ON(bad_range(zone, &page[size]));
416 		list_add(&page[size].lru, &area->free_list);
417 		area->nr_free++;
418 		set_page_order(&page[size], high);
419 	}
420 	return page;
421 }
422 
423 void set_page_refs(struct page *page, int order)
424 {
425 #ifdef CONFIG_MMU
426 	set_page_count(page, 1);
427 #else
428 	int i;
429 
430 	/*
431 	 * We need to reference all the pages for this order, otherwise if
432 	 * anyone accesses one of the pages with (get/put) it will be freed.
433 	 * - eg: access_process_vm()
434 	 */
435 	for (i = 0; i < (1 << order); i++)
436 		set_page_count(page + i, 1);
437 #endif /* CONFIG_MMU */
438 }
439 
440 /*
441  * This page is about to be returned from the page allocator
442  */
443 static void prep_new_page(struct page *page, int order)
444 {
445 	if (	page_mapcount(page) ||
446 		page->mapping != NULL ||
447 		page_count(page) != 0 ||
448 		(page->flags & (
449 			1 << PG_lru	|
450 			1 << PG_private	|
451 			1 << PG_locked	|
452 			1 << PG_active	|
453 			1 << PG_dirty	|
454 			1 << PG_reclaim	|
455 			1 << PG_slab    |
456 			1 << PG_swapcache |
457 			1 << PG_writeback )))
458 		bad_page(__FUNCTION__, page);
459 
460 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
461 			1 << PG_referenced | 1 << PG_arch_1 |
462 			1 << PG_checked | 1 << PG_mappedtodisk);
463 	page->private = 0;
464 	set_page_refs(page, order);
465 	kernel_map_pages(page, 1 << order, 1);
466 }
467 
468 /*
469  * Do the hard work of removing an element from the buddy allocator.
470  * Call me with the zone->lock already held.
471  */
472 static struct page *__rmqueue(struct zone *zone, unsigned int order)
473 {
474 	struct free_area * area;
475 	unsigned int current_order;
476 	struct page *page;
477 
478 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
479 		area = zone->free_area + current_order;
480 		if (list_empty(&area->free_list))
481 			continue;
482 
483 		page = list_entry(area->free_list.next, struct page, lru);
484 		list_del(&page->lru);
485 		rmv_page_order(page);
486 		area->nr_free--;
487 		zone->free_pages -= 1UL << order;
488 		return expand(zone, page, order, current_order, area);
489 	}
490 
491 	return NULL;
492 }
493 
494 /*
495  * Obtain a specified number of elements from the buddy allocator, all under
496  * a single hold of the lock, for efficiency.  Add them to the supplied list.
497  * Returns the number of new pages which were placed at *list.
498  */
499 static int rmqueue_bulk(struct zone *zone, unsigned int order,
500 			unsigned long count, struct list_head *list)
501 {
502 	unsigned long flags;
503 	int i;
504 	int allocated = 0;
505 	struct page *page;
506 
507 	spin_lock_irqsave(&zone->lock, flags);
508 	for (i = 0; i < count; ++i) {
509 		page = __rmqueue(zone, order);
510 		if (page == NULL)
511 			break;
512 		allocated++;
513 		list_add_tail(&page->lru, list);
514 	}
515 	spin_unlock_irqrestore(&zone->lock, flags);
516 	return allocated;
517 }
518 
519 #ifdef CONFIG_NUMA
520 /* Called from the slab reaper to drain remote pagesets */
521 void drain_remote_pages(void)
522 {
523 	struct zone *zone;
524 	int i;
525 	unsigned long flags;
526 
527 	local_irq_save(flags);
528 	for_each_zone(zone) {
529 		struct per_cpu_pageset *pset;
530 
531 		/* Do not drain local pagesets */
532 		if (zone->zone_pgdat->node_id == numa_node_id())
533 			continue;
534 
535 		pset = zone->pageset[smp_processor_id()];
536 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
537 			struct per_cpu_pages *pcp;
538 
539 			pcp = &pset->pcp[i];
540 			if (pcp->count)
541 				pcp->count -= free_pages_bulk(zone, pcp->count,
542 						&pcp->list, 0);
543 		}
544 	}
545 	local_irq_restore(flags);
546 }
547 #endif
548 
549 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
550 static void __drain_pages(unsigned int cpu)
551 {
552 	struct zone *zone;
553 	int i;
554 
555 	for_each_zone(zone) {
556 		struct per_cpu_pageset *pset;
557 
558 		pset = zone_pcp(zone, cpu);
559 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
560 			struct per_cpu_pages *pcp;
561 
562 			pcp = &pset->pcp[i];
563 			pcp->count -= free_pages_bulk(zone, pcp->count,
564 						&pcp->list, 0);
565 		}
566 	}
567 }
568 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
569 
570 #ifdef CONFIG_PM
571 
572 void mark_free_pages(struct zone *zone)
573 {
574 	unsigned long zone_pfn, flags;
575 	int order;
576 	struct list_head *curr;
577 
578 	if (!zone->spanned_pages)
579 		return;
580 
581 	spin_lock_irqsave(&zone->lock, flags);
582 	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
583 		ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
584 
585 	for (order = MAX_ORDER - 1; order >= 0; --order)
586 		list_for_each(curr, &zone->free_area[order].free_list) {
587 			unsigned long start_pfn, i;
588 
589 			start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
590 
591 			for (i=0; i < (1<<order); i++)
592 				SetPageNosaveFree(pfn_to_page(start_pfn+i));
593 	}
594 	spin_unlock_irqrestore(&zone->lock, flags);
595 }
596 
597 /*
598  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
599  */
600 void drain_local_pages(void)
601 {
602 	unsigned long flags;
603 
604 	local_irq_save(flags);
605 	__drain_pages(smp_processor_id());
606 	local_irq_restore(flags);
607 }
608 #endif /* CONFIG_PM */
609 
610 static void zone_statistics(struct zonelist *zonelist, struct zone *z)
611 {
612 #ifdef CONFIG_NUMA
613 	unsigned long flags;
614 	int cpu;
615 	pg_data_t *pg = z->zone_pgdat;
616 	pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
617 	struct per_cpu_pageset *p;
618 
619 	local_irq_save(flags);
620 	cpu = smp_processor_id();
621 	p = zone_pcp(z,cpu);
622 	if (pg == orig) {
623 		p->numa_hit++;
624 	} else {
625 		p->numa_miss++;
626 		zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
627 	}
628 	if (pg == NODE_DATA(numa_node_id()))
629 		p->local_node++;
630 	else
631 		p->other_node++;
632 	local_irq_restore(flags);
633 #endif
634 }
635 
636 /*
637  * Free a 0-order page
638  */
639 static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
640 static void fastcall free_hot_cold_page(struct page *page, int cold)
641 {
642 	struct zone *zone = page_zone(page);
643 	struct per_cpu_pages *pcp;
644 	unsigned long flags;
645 
646 	arch_free_page(page, 0);
647 
648 	kernel_map_pages(page, 1, 0);
649 	inc_page_state(pgfree);
650 	if (PageAnon(page))
651 		page->mapping = NULL;
652 	free_pages_check(__FUNCTION__, page);
653 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
654 	local_irq_save(flags);
655 	list_add(&page->lru, &pcp->list);
656 	pcp->count++;
657 	if (pcp->count >= pcp->high)
658 		pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
659 	local_irq_restore(flags);
660 	put_cpu();
661 }
662 
663 void fastcall free_hot_page(struct page *page)
664 {
665 	free_hot_cold_page(page, 0);
666 }
667 
668 void fastcall free_cold_page(struct page *page)
669 {
670 	free_hot_cold_page(page, 1);
671 }
672 
673 static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags)
674 {
675 	int i;
676 
677 	BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
678 	for(i = 0; i < (1 << order); i++)
679 		clear_highpage(page + i);
680 }
681 
682 /*
683  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
684  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
685  * or two.
686  */
687 static struct page *
688 buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags)
689 {
690 	unsigned long flags;
691 	struct page *page = NULL;
692 	int cold = !!(gfp_flags & __GFP_COLD);
693 
694 	if (order == 0) {
695 		struct per_cpu_pages *pcp;
696 
697 		pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
698 		local_irq_save(flags);
699 		if (pcp->count <= pcp->low)
700 			pcp->count += rmqueue_bulk(zone, 0,
701 						pcp->batch, &pcp->list);
702 		if (pcp->count) {
703 			page = list_entry(pcp->list.next, struct page, lru);
704 			list_del(&page->lru);
705 			pcp->count--;
706 		}
707 		local_irq_restore(flags);
708 		put_cpu();
709 	}
710 
711 	if (page == NULL) {
712 		spin_lock_irqsave(&zone->lock, flags);
713 		page = __rmqueue(zone, order);
714 		spin_unlock_irqrestore(&zone->lock, flags);
715 	}
716 
717 	if (page != NULL) {
718 		BUG_ON(bad_range(zone, page));
719 		mod_page_state_zone(zone, pgalloc, 1 << order);
720 		prep_new_page(page, order);
721 
722 		if (gfp_flags & __GFP_ZERO)
723 			prep_zero_page(page, order, gfp_flags);
724 
725 		if (order && (gfp_flags & __GFP_COMP))
726 			prep_compound_page(page, order);
727 	}
728 	return page;
729 }
730 
731 /*
732  * Return 1 if free pages are above 'mark'. This takes into account the order
733  * of the allocation.
734  */
735 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
736 		      int classzone_idx, int can_try_harder, int gfp_high)
737 {
738 	/* free_pages my go negative - that's OK */
739 	long min = mark, free_pages = z->free_pages - (1 << order) + 1;
740 	int o;
741 
742 	if (gfp_high)
743 		min -= min / 2;
744 	if (can_try_harder)
745 		min -= min / 4;
746 
747 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
748 		return 0;
749 	for (o = 0; o < order; o++) {
750 		/* At the next order, this order's pages become unavailable */
751 		free_pages -= z->free_area[o].nr_free << o;
752 
753 		/* Require fewer higher order pages to be free */
754 		min >>= 1;
755 
756 		if (free_pages <= min)
757 			return 0;
758 	}
759 	return 1;
760 }
761 
762 static inline int
763 should_reclaim_zone(struct zone *z, unsigned int gfp_mask)
764 {
765 	if (!z->reclaim_pages)
766 		return 0;
767 	if (gfp_mask & __GFP_NORECLAIM)
768 		return 0;
769 	return 1;
770 }
771 
772 /*
773  * This is the 'heart' of the zoned buddy allocator.
774  */
775 struct page * fastcall
776 __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order,
777 		struct zonelist *zonelist)
778 {
779 	const int wait = gfp_mask & __GFP_WAIT;
780 	struct zone **zones, *z;
781 	struct page *page;
782 	struct reclaim_state reclaim_state;
783 	struct task_struct *p = current;
784 	int i;
785 	int classzone_idx;
786 	int do_retry;
787 	int can_try_harder;
788 	int did_some_progress;
789 
790 	might_sleep_if(wait);
791 
792 	/*
793 	 * The caller may dip into page reserves a bit more if the caller
794 	 * cannot run direct reclaim, or is the caller has realtime scheduling
795 	 * policy
796 	 */
797 	can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait;
798 
799 	zones = zonelist->zones;  /* the list of zones suitable for gfp_mask */
800 
801 	if (unlikely(zones[0] == NULL)) {
802 		/* Should this ever happen?? */
803 		return NULL;
804 	}
805 
806 	classzone_idx = zone_idx(zones[0]);
807 
808 restart:
809 	/* Go through the zonelist once, looking for a zone with enough free */
810 	for (i = 0; (z = zones[i]) != NULL; i++) {
811 		int do_reclaim = should_reclaim_zone(z, gfp_mask);
812 
813 		if (!cpuset_zone_allowed(z))
814 			continue;
815 
816 		/*
817 		 * If the zone is to attempt early page reclaim then this loop
818 		 * will try to reclaim pages and check the watermark a second
819 		 * time before giving up and falling back to the next zone.
820 		 */
821 zone_reclaim_retry:
822 		if (!zone_watermark_ok(z, order, z->pages_low,
823 				       classzone_idx, 0, 0)) {
824 			if (!do_reclaim)
825 				continue;
826 			else {
827 				zone_reclaim(z, gfp_mask, order);
828 				/* Only try reclaim once */
829 				do_reclaim = 0;
830 				goto zone_reclaim_retry;
831 			}
832 		}
833 
834 		page = buffered_rmqueue(z, order, gfp_mask);
835 		if (page)
836 			goto got_pg;
837 	}
838 
839 	for (i = 0; (z = zones[i]) != NULL; i++)
840 		wakeup_kswapd(z, order);
841 
842 	/*
843 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
844 	 * coming from realtime tasks to go deeper into reserves
845 	 *
846 	 * This is the last chance, in general, before the goto nopage.
847 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
848 	 */
849 	for (i = 0; (z = zones[i]) != NULL; i++) {
850 		if (!zone_watermark_ok(z, order, z->pages_min,
851 				       classzone_idx, can_try_harder,
852 				       gfp_mask & __GFP_HIGH))
853 			continue;
854 
855 		if (wait && !cpuset_zone_allowed(z))
856 			continue;
857 
858 		page = buffered_rmqueue(z, order, gfp_mask);
859 		if (page)
860 			goto got_pg;
861 	}
862 
863 	/* This allocation should allow future memory freeing. */
864 
865 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
866 			&& !in_interrupt()) {
867 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
868 			/* go through the zonelist yet again, ignoring mins */
869 			for (i = 0; (z = zones[i]) != NULL; i++) {
870 				if (!cpuset_zone_allowed(z))
871 					continue;
872 				page = buffered_rmqueue(z, order, gfp_mask);
873 				if (page)
874 					goto got_pg;
875 			}
876 		}
877 		goto nopage;
878 	}
879 
880 	/* Atomic allocations - we can't balance anything */
881 	if (!wait)
882 		goto nopage;
883 
884 rebalance:
885 	cond_resched();
886 
887 	/* We now go into synchronous reclaim */
888 	p->flags |= PF_MEMALLOC;
889 	reclaim_state.reclaimed_slab = 0;
890 	p->reclaim_state = &reclaim_state;
891 
892 	did_some_progress = try_to_free_pages(zones, gfp_mask);
893 
894 	p->reclaim_state = NULL;
895 	p->flags &= ~PF_MEMALLOC;
896 
897 	cond_resched();
898 
899 	if (likely(did_some_progress)) {
900 		for (i = 0; (z = zones[i]) != NULL; i++) {
901 			if (!zone_watermark_ok(z, order, z->pages_min,
902 					       classzone_idx, can_try_harder,
903 					       gfp_mask & __GFP_HIGH))
904 				continue;
905 
906 			if (!cpuset_zone_allowed(z))
907 				continue;
908 
909 			page = buffered_rmqueue(z, order, gfp_mask);
910 			if (page)
911 				goto got_pg;
912 		}
913 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
914 		/*
915 		 * Go through the zonelist yet one more time, keep
916 		 * very high watermark here, this is only to catch
917 		 * a parallel oom killing, we must fail if we're still
918 		 * under heavy pressure.
919 		 */
920 		for (i = 0; (z = zones[i]) != NULL; i++) {
921 			if (!zone_watermark_ok(z, order, z->pages_high,
922 					       classzone_idx, 0, 0))
923 				continue;
924 
925 			if (!cpuset_zone_allowed(z))
926 				continue;
927 
928 			page = buffered_rmqueue(z, order, gfp_mask);
929 			if (page)
930 				goto got_pg;
931 		}
932 
933 		out_of_memory(gfp_mask, order);
934 		goto restart;
935 	}
936 
937 	/*
938 	 * Don't let big-order allocations loop unless the caller explicitly
939 	 * requests that.  Wait for some write requests to complete then retry.
940 	 *
941 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
942 	 * <= 3, but that may not be true in other implementations.
943 	 */
944 	do_retry = 0;
945 	if (!(gfp_mask & __GFP_NORETRY)) {
946 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
947 			do_retry = 1;
948 		if (gfp_mask & __GFP_NOFAIL)
949 			do_retry = 1;
950 	}
951 	if (do_retry) {
952 		blk_congestion_wait(WRITE, HZ/50);
953 		goto rebalance;
954 	}
955 
956 nopage:
957 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
958 		printk(KERN_WARNING "%s: page allocation failure."
959 			" order:%d, mode:0x%x\n",
960 			p->comm, order, gfp_mask);
961 		dump_stack();
962 		show_mem();
963 	}
964 	return NULL;
965 got_pg:
966 	zone_statistics(zonelist, z);
967 	return page;
968 }
969 
970 EXPORT_SYMBOL(__alloc_pages);
971 
972 /*
973  * Common helper functions.
974  */
975 fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order)
976 {
977 	struct page * page;
978 	page = alloc_pages(gfp_mask, order);
979 	if (!page)
980 		return 0;
981 	return (unsigned long) page_address(page);
982 }
983 
984 EXPORT_SYMBOL(__get_free_pages);
985 
986 fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask)
987 {
988 	struct page * page;
989 
990 	/*
991 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
992 	 * a highmem page
993 	 */
994 	BUG_ON(gfp_mask & __GFP_HIGHMEM);
995 
996 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
997 	if (page)
998 		return (unsigned long) page_address(page);
999 	return 0;
1000 }
1001 
1002 EXPORT_SYMBOL(get_zeroed_page);
1003 
1004 void __pagevec_free(struct pagevec *pvec)
1005 {
1006 	int i = pagevec_count(pvec);
1007 
1008 	while (--i >= 0)
1009 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1010 }
1011 
1012 fastcall void __free_pages(struct page *page, unsigned int order)
1013 {
1014 	if (!PageReserved(page) && put_page_testzero(page)) {
1015 		if (order == 0)
1016 			free_hot_page(page);
1017 		else
1018 			__free_pages_ok(page, order);
1019 	}
1020 }
1021 
1022 EXPORT_SYMBOL(__free_pages);
1023 
1024 fastcall void free_pages(unsigned long addr, unsigned int order)
1025 {
1026 	if (addr != 0) {
1027 		BUG_ON(!virt_addr_valid((void *)addr));
1028 		__free_pages(virt_to_page((void *)addr), order);
1029 	}
1030 }
1031 
1032 EXPORT_SYMBOL(free_pages);
1033 
1034 /*
1035  * Total amount of free (allocatable) RAM:
1036  */
1037 unsigned int nr_free_pages(void)
1038 {
1039 	unsigned int sum = 0;
1040 	struct zone *zone;
1041 
1042 	for_each_zone(zone)
1043 		sum += zone->free_pages;
1044 
1045 	return sum;
1046 }
1047 
1048 EXPORT_SYMBOL(nr_free_pages);
1049 
1050 #ifdef CONFIG_NUMA
1051 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1052 {
1053 	unsigned int i, sum = 0;
1054 
1055 	for (i = 0; i < MAX_NR_ZONES; i++)
1056 		sum += pgdat->node_zones[i].free_pages;
1057 
1058 	return sum;
1059 }
1060 #endif
1061 
1062 static unsigned int nr_free_zone_pages(int offset)
1063 {
1064 	/* Just pick one node, since fallback list is circular */
1065 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1066 	unsigned int sum = 0;
1067 
1068 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1069 	struct zone **zonep = zonelist->zones;
1070 	struct zone *zone;
1071 
1072 	for (zone = *zonep++; zone; zone = *zonep++) {
1073 		unsigned long size = zone->present_pages;
1074 		unsigned long high = zone->pages_high;
1075 		if (size > high)
1076 			sum += size - high;
1077 	}
1078 
1079 	return sum;
1080 }
1081 
1082 /*
1083  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1084  */
1085 unsigned int nr_free_buffer_pages(void)
1086 {
1087 	return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK);
1088 }
1089 
1090 /*
1091  * Amount of free RAM allocatable within all zones
1092  */
1093 unsigned int nr_free_pagecache_pages(void)
1094 {
1095 	return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK);
1096 }
1097 
1098 #ifdef CONFIG_HIGHMEM
1099 unsigned int nr_free_highpages (void)
1100 {
1101 	pg_data_t *pgdat;
1102 	unsigned int pages = 0;
1103 
1104 	for_each_pgdat(pgdat)
1105 		pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1106 
1107 	return pages;
1108 }
1109 #endif
1110 
1111 #ifdef CONFIG_NUMA
1112 static void show_node(struct zone *zone)
1113 {
1114 	printk("Node %d ", zone->zone_pgdat->node_id);
1115 }
1116 #else
1117 #define show_node(zone)	do { } while (0)
1118 #endif
1119 
1120 /*
1121  * Accumulate the page_state information across all CPUs.
1122  * The result is unavoidably approximate - it can change
1123  * during and after execution of this function.
1124  */
1125 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1126 
1127 atomic_t nr_pagecache = ATOMIC_INIT(0);
1128 EXPORT_SYMBOL(nr_pagecache);
1129 #ifdef CONFIG_SMP
1130 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1131 #endif
1132 
1133 void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1134 {
1135 	int cpu = 0;
1136 
1137 	memset(ret, 0, sizeof(*ret));
1138 	cpus_and(*cpumask, *cpumask, cpu_online_map);
1139 
1140 	cpu = first_cpu(*cpumask);
1141 	while (cpu < NR_CPUS) {
1142 		unsigned long *in, *out, off;
1143 
1144 		in = (unsigned long *)&per_cpu(page_states, cpu);
1145 
1146 		cpu = next_cpu(cpu, *cpumask);
1147 
1148 		if (cpu < NR_CPUS)
1149 			prefetch(&per_cpu(page_states, cpu));
1150 
1151 		out = (unsigned long *)ret;
1152 		for (off = 0; off < nr; off++)
1153 			*out++ += *in++;
1154 	}
1155 }
1156 
1157 void get_page_state_node(struct page_state *ret, int node)
1158 {
1159 	int nr;
1160 	cpumask_t mask = node_to_cpumask(node);
1161 
1162 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1163 	nr /= sizeof(unsigned long);
1164 
1165 	__get_page_state(ret, nr+1, &mask);
1166 }
1167 
1168 void get_page_state(struct page_state *ret)
1169 {
1170 	int nr;
1171 	cpumask_t mask = CPU_MASK_ALL;
1172 
1173 	nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1174 	nr /= sizeof(unsigned long);
1175 
1176 	__get_page_state(ret, nr + 1, &mask);
1177 }
1178 
1179 void get_full_page_state(struct page_state *ret)
1180 {
1181 	cpumask_t mask = CPU_MASK_ALL;
1182 
1183 	__get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1184 }
1185 
1186 unsigned long __read_page_state(unsigned long offset)
1187 {
1188 	unsigned long ret = 0;
1189 	int cpu;
1190 
1191 	for_each_online_cpu(cpu) {
1192 		unsigned long in;
1193 
1194 		in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1195 		ret += *((unsigned long *)in);
1196 	}
1197 	return ret;
1198 }
1199 
1200 void __mod_page_state(unsigned long offset, unsigned long delta)
1201 {
1202 	unsigned long flags;
1203 	void* ptr;
1204 
1205 	local_irq_save(flags);
1206 	ptr = &__get_cpu_var(page_states);
1207 	*(unsigned long*)(ptr + offset) += delta;
1208 	local_irq_restore(flags);
1209 }
1210 
1211 EXPORT_SYMBOL(__mod_page_state);
1212 
1213 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1214 			unsigned long *free, struct pglist_data *pgdat)
1215 {
1216 	struct zone *zones = pgdat->node_zones;
1217 	int i;
1218 
1219 	*active = 0;
1220 	*inactive = 0;
1221 	*free = 0;
1222 	for (i = 0; i < MAX_NR_ZONES; i++) {
1223 		*active += zones[i].nr_active;
1224 		*inactive += zones[i].nr_inactive;
1225 		*free += zones[i].free_pages;
1226 	}
1227 }
1228 
1229 void get_zone_counts(unsigned long *active,
1230 		unsigned long *inactive, unsigned long *free)
1231 {
1232 	struct pglist_data *pgdat;
1233 
1234 	*active = 0;
1235 	*inactive = 0;
1236 	*free = 0;
1237 	for_each_pgdat(pgdat) {
1238 		unsigned long l, m, n;
1239 		__get_zone_counts(&l, &m, &n, pgdat);
1240 		*active += l;
1241 		*inactive += m;
1242 		*free += n;
1243 	}
1244 }
1245 
1246 void si_meminfo(struct sysinfo *val)
1247 {
1248 	val->totalram = totalram_pages;
1249 	val->sharedram = 0;
1250 	val->freeram = nr_free_pages();
1251 	val->bufferram = nr_blockdev_pages();
1252 #ifdef CONFIG_HIGHMEM
1253 	val->totalhigh = totalhigh_pages;
1254 	val->freehigh = nr_free_highpages();
1255 #else
1256 	val->totalhigh = 0;
1257 	val->freehigh = 0;
1258 #endif
1259 	val->mem_unit = PAGE_SIZE;
1260 }
1261 
1262 EXPORT_SYMBOL(si_meminfo);
1263 
1264 #ifdef CONFIG_NUMA
1265 void si_meminfo_node(struct sysinfo *val, int nid)
1266 {
1267 	pg_data_t *pgdat = NODE_DATA(nid);
1268 
1269 	val->totalram = pgdat->node_present_pages;
1270 	val->freeram = nr_free_pages_pgdat(pgdat);
1271 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1272 	val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1273 	val->mem_unit = PAGE_SIZE;
1274 }
1275 #endif
1276 
1277 #define K(x) ((x) << (PAGE_SHIFT-10))
1278 
1279 /*
1280  * Show free area list (used inside shift_scroll-lock stuff)
1281  * We also calculate the percentage fragmentation. We do this by counting the
1282  * memory on each free list with the exception of the first item on the list.
1283  */
1284 void show_free_areas(void)
1285 {
1286 	struct page_state ps;
1287 	int cpu, temperature;
1288 	unsigned long active;
1289 	unsigned long inactive;
1290 	unsigned long free;
1291 	struct zone *zone;
1292 
1293 	for_each_zone(zone) {
1294 		show_node(zone);
1295 		printk("%s per-cpu:", zone->name);
1296 
1297 		if (!zone->present_pages) {
1298 			printk(" empty\n");
1299 			continue;
1300 		} else
1301 			printk("\n");
1302 
1303 		for (cpu = 0; cpu < NR_CPUS; ++cpu) {
1304 			struct per_cpu_pageset *pageset;
1305 
1306 			if (!cpu_possible(cpu))
1307 				continue;
1308 
1309 			pageset = zone_pcp(zone, cpu);
1310 
1311 			for (temperature = 0; temperature < 2; temperature++)
1312 				printk("cpu %d %s: low %d, high %d, batch %d used:%d\n",
1313 					cpu,
1314 					temperature ? "cold" : "hot",
1315 					pageset->pcp[temperature].low,
1316 					pageset->pcp[temperature].high,
1317 					pageset->pcp[temperature].batch,
1318 					pageset->pcp[temperature].count);
1319 		}
1320 	}
1321 
1322 	get_page_state(&ps);
1323 	get_zone_counts(&active, &inactive, &free);
1324 
1325 	printk("Free pages: %11ukB (%ukB HighMem)\n",
1326 		K(nr_free_pages()),
1327 		K(nr_free_highpages()));
1328 
1329 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1330 		"unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1331 		active,
1332 		inactive,
1333 		ps.nr_dirty,
1334 		ps.nr_writeback,
1335 		ps.nr_unstable,
1336 		nr_free_pages(),
1337 		ps.nr_slab,
1338 		ps.nr_mapped,
1339 		ps.nr_page_table_pages);
1340 
1341 	for_each_zone(zone) {
1342 		int i;
1343 
1344 		show_node(zone);
1345 		printk("%s"
1346 			" free:%lukB"
1347 			" min:%lukB"
1348 			" low:%lukB"
1349 			" high:%lukB"
1350 			" active:%lukB"
1351 			" inactive:%lukB"
1352 			" present:%lukB"
1353 			" pages_scanned:%lu"
1354 			" all_unreclaimable? %s"
1355 			"\n",
1356 			zone->name,
1357 			K(zone->free_pages),
1358 			K(zone->pages_min),
1359 			K(zone->pages_low),
1360 			K(zone->pages_high),
1361 			K(zone->nr_active),
1362 			K(zone->nr_inactive),
1363 			K(zone->present_pages),
1364 			zone->pages_scanned,
1365 			(zone->all_unreclaimable ? "yes" : "no")
1366 			);
1367 		printk("lowmem_reserve[]:");
1368 		for (i = 0; i < MAX_NR_ZONES; i++)
1369 			printk(" %lu", zone->lowmem_reserve[i]);
1370 		printk("\n");
1371 	}
1372 
1373 	for_each_zone(zone) {
1374  		unsigned long nr, flags, order, total = 0;
1375 
1376 		show_node(zone);
1377 		printk("%s: ", zone->name);
1378 		if (!zone->present_pages) {
1379 			printk("empty\n");
1380 			continue;
1381 		}
1382 
1383 		spin_lock_irqsave(&zone->lock, flags);
1384 		for (order = 0; order < MAX_ORDER; order++) {
1385 			nr = zone->free_area[order].nr_free;
1386 			total += nr << order;
1387 			printk("%lu*%lukB ", nr, K(1UL) << order);
1388 		}
1389 		spin_unlock_irqrestore(&zone->lock, flags);
1390 		printk("= %lukB\n", K(total));
1391 	}
1392 
1393 	show_swap_cache_info();
1394 }
1395 
1396 /*
1397  * Builds allocation fallback zone lists.
1398  */
1399 static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
1400 {
1401 	switch (k) {
1402 		struct zone *zone;
1403 	default:
1404 		BUG();
1405 	case ZONE_HIGHMEM:
1406 		zone = pgdat->node_zones + ZONE_HIGHMEM;
1407 		if (zone->present_pages) {
1408 #ifndef CONFIG_HIGHMEM
1409 			BUG();
1410 #endif
1411 			zonelist->zones[j++] = zone;
1412 		}
1413 	case ZONE_NORMAL:
1414 		zone = pgdat->node_zones + ZONE_NORMAL;
1415 		if (zone->present_pages)
1416 			zonelist->zones[j++] = zone;
1417 	case ZONE_DMA:
1418 		zone = pgdat->node_zones + ZONE_DMA;
1419 		if (zone->present_pages)
1420 			zonelist->zones[j++] = zone;
1421 	}
1422 
1423 	return j;
1424 }
1425 
1426 #ifdef CONFIG_NUMA
1427 #define MAX_NODE_LOAD (num_online_nodes())
1428 static int __initdata node_load[MAX_NUMNODES];
1429 /**
1430  * find_next_best_node - find the next node that should appear in a given node's fallback list
1431  * @node: node whose fallback list we're appending
1432  * @used_node_mask: nodemask_t of already used nodes
1433  *
1434  * We use a number of factors to determine which is the next node that should
1435  * appear on a given node's fallback list.  The node should not have appeared
1436  * already in @node's fallback list, and it should be the next closest node
1437  * according to the distance array (which contains arbitrary distance values
1438  * from each node to each node in the system), and should also prefer nodes
1439  * with no CPUs, since presumably they'll have very little allocation pressure
1440  * on them otherwise.
1441  * It returns -1 if no node is found.
1442  */
1443 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1444 {
1445 	int i, n, val;
1446 	int min_val = INT_MAX;
1447 	int best_node = -1;
1448 
1449 	for_each_online_node(i) {
1450 		cpumask_t tmp;
1451 
1452 		/* Start from local node */
1453 		n = (node+i) % num_online_nodes();
1454 
1455 		/* Don't want a node to appear more than once */
1456 		if (node_isset(n, *used_node_mask))
1457 			continue;
1458 
1459 		/* Use the local node if we haven't already */
1460 		if (!node_isset(node, *used_node_mask)) {
1461 			best_node = node;
1462 			break;
1463 		}
1464 
1465 		/* Use the distance array to find the distance */
1466 		val = node_distance(node, n);
1467 
1468 		/* Give preference to headless and unused nodes */
1469 		tmp = node_to_cpumask(n);
1470 		if (!cpus_empty(tmp))
1471 			val += PENALTY_FOR_NODE_WITH_CPUS;
1472 
1473 		/* Slight preference for less loaded node */
1474 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1475 		val += node_load[n];
1476 
1477 		if (val < min_val) {
1478 			min_val = val;
1479 			best_node = n;
1480 		}
1481 	}
1482 
1483 	if (best_node >= 0)
1484 		node_set(best_node, *used_node_mask);
1485 
1486 	return best_node;
1487 }
1488 
1489 static void __init build_zonelists(pg_data_t *pgdat)
1490 {
1491 	int i, j, k, node, local_node;
1492 	int prev_node, load;
1493 	struct zonelist *zonelist;
1494 	nodemask_t used_mask;
1495 
1496 	/* initialize zonelists */
1497 	for (i = 0; i < GFP_ZONETYPES; i++) {
1498 		zonelist = pgdat->node_zonelists + i;
1499 		zonelist->zones[0] = NULL;
1500 	}
1501 
1502 	/* NUMA-aware ordering of nodes */
1503 	local_node = pgdat->node_id;
1504 	load = num_online_nodes();
1505 	prev_node = local_node;
1506 	nodes_clear(used_mask);
1507 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1508 		/*
1509 		 * We don't want to pressure a particular node.
1510 		 * So adding penalty to the first node in same
1511 		 * distance group to make it round-robin.
1512 		 */
1513 		if (node_distance(local_node, node) !=
1514 				node_distance(local_node, prev_node))
1515 			node_load[node] += load;
1516 		prev_node = node;
1517 		load--;
1518 		for (i = 0; i < GFP_ZONETYPES; i++) {
1519 			zonelist = pgdat->node_zonelists + i;
1520 			for (j = 0; zonelist->zones[j] != NULL; j++);
1521 
1522 			k = ZONE_NORMAL;
1523 			if (i & __GFP_HIGHMEM)
1524 				k = ZONE_HIGHMEM;
1525 			if (i & __GFP_DMA)
1526 				k = ZONE_DMA;
1527 
1528 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1529 			zonelist->zones[j] = NULL;
1530 		}
1531 	}
1532 }
1533 
1534 #else	/* CONFIG_NUMA */
1535 
1536 static void __init build_zonelists(pg_data_t *pgdat)
1537 {
1538 	int i, j, k, node, local_node;
1539 
1540 	local_node = pgdat->node_id;
1541 	for (i = 0; i < GFP_ZONETYPES; i++) {
1542 		struct zonelist *zonelist;
1543 
1544 		zonelist = pgdat->node_zonelists + i;
1545 
1546 		j = 0;
1547 		k = ZONE_NORMAL;
1548 		if (i & __GFP_HIGHMEM)
1549 			k = ZONE_HIGHMEM;
1550 		if (i & __GFP_DMA)
1551 			k = ZONE_DMA;
1552 
1553  		j = build_zonelists_node(pgdat, zonelist, j, k);
1554  		/*
1555  		 * Now we build the zonelist so that it contains the zones
1556  		 * of all the other nodes.
1557  		 * We don't want to pressure a particular node, so when
1558  		 * building the zones for node N, we make sure that the
1559  		 * zones coming right after the local ones are those from
1560  		 * node N+1 (modulo N)
1561  		 */
1562 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1563 			if (!node_online(node))
1564 				continue;
1565 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1566 		}
1567 		for (node = 0; node < local_node; node++) {
1568 			if (!node_online(node))
1569 				continue;
1570 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1571 		}
1572 
1573 		zonelist->zones[j] = NULL;
1574 	}
1575 }
1576 
1577 #endif	/* CONFIG_NUMA */
1578 
1579 void __init build_all_zonelists(void)
1580 {
1581 	int i;
1582 
1583 	for_each_online_node(i)
1584 		build_zonelists(NODE_DATA(i));
1585 	printk("Built %i zonelists\n", num_online_nodes());
1586 	cpuset_init_current_mems_allowed();
1587 }
1588 
1589 /*
1590  * Helper functions to size the waitqueue hash table.
1591  * Essentially these want to choose hash table sizes sufficiently
1592  * large so that collisions trying to wait on pages are rare.
1593  * But in fact, the number of active page waitqueues on typical
1594  * systems is ridiculously low, less than 200. So this is even
1595  * conservative, even though it seems large.
1596  *
1597  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1598  * waitqueues, i.e. the size of the waitq table given the number of pages.
1599  */
1600 #define PAGES_PER_WAITQUEUE	256
1601 
1602 static inline unsigned long wait_table_size(unsigned long pages)
1603 {
1604 	unsigned long size = 1;
1605 
1606 	pages /= PAGES_PER_WAITQUEUE;
1607 
1608 	while (size < pages)
1609 		size <<= 1;
1610 
1611 	/*
1612 	 * Once we have dozens or even hundreds of threads sleeping
1613 	 * on IO we've got bigger problems than wait queue collision.
1614 	 * Limit the size of the wait table to a reasonable size.
1615 	 */
1616 	size = min(size, 4096UL);
1617 
1618 	return max(size, 4UL);
1619 }
1620 
1621 /*
1622  * This is an integer logarithm so that shifts can be used later
1623  * to extract the more random high bits from the multiplicative
1624  * hash function before the remainder is taken.
1625  */
1626 static inline unsigned long wait_table_bits(unsigned long size)
1627 {
1628 	return ffz(~size);
1629 }
1630 
1631 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1632 
1633 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1634 		unsigned long *zones_size, unsigned long *zholes_size)
1635 {
1636 	unsigned long realtotalpages, totalpages = 0;
1637 	int i;
1638 
1639 	for (i = 0; i < MAX_NR_ZONES; i++)
1640 		totalpages += zones_size[i];
1641 	pgdat->node_spanned_pages = totalpages;
1642 
1643 	realtotalpages = totalpages;
1644 	if (zholes_size)
1645 		for (i = 0; i < MAX_NR_ZONES; i++)
1646 			realtotalpages -= zholes_size[i];
1647 	pgdat->node_present_pages = realtotalpages;
1648 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1649 }
1650 
1651 
1652 /*
1653  * Initially all pages are reserved - free ones are freed
1654  * up by free_all_bootmem() once the early boot process is
1655  * done. Non-atomic initialization, single-pass.
1656  */
1657 void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1658 		unsigned long start_pfn)
1659 {
1660 	struct page *page;
1661 	unsigned long end_pfn = start_pfn + size;
1662 	unsigned long pfn;
1663 
1664 	for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1665 		if (!early_pfn_valid(pfn))
1666 			continue;
1667 		if (!early_pfn_in_nid(pfn, nid))
1668 			continue;
1669 		page = pfn_to_page(pfn);
1670 		set_page_links(page, zone, nid, pfn);
1671 		set_page_count(page, 0);
1672 		reset_page_mapcount(page);
1673 		SetPageReserved(page);
1674 		INIT_LIST_HEAD(&page->lru);
1675 #ifdef WANT_PAGE_VIRTUAL
1676 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1677 		if (!is_highmem_idx(zone))
1678 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1679 #endif
1680 	}
1681 }
1682 
1683 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1684 				unsigned long size)
1685 {
1686 	int order;
1687 	for (order = 0; order < MAX_ORDER ; order++) {
1688 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1689 		zone->free_area[order].nr_free = 0;
1690 	}
1691 }
1692 
1693 #define ZONETABLE_INDEX(x, zone_nr)	((x << ZONES_SHIFT) | zone_nr)
1694 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1695 		unsigned long size)
1696 {
1697 	unsigned long snum = pfn_to_section_nr(pfn);
1698 	unsigned long end = pfn_to_section_nr(pfn + size);
1699 
1700 	if (FLAGS_HAS_NODE)
1701 		zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1702 	else
1703 		for (; snum <= end; snum++)
1704 			zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1705 }
1706 
1707 #ifndef __HAVE_ARCH_MEMMAP_INIT
1708 #define memmap_init(size, nid, zone, start_pfn) \
1709 	memmap_init_zone((size), (nid), (zone), (start_pfn))
1710 #endif
1711 
1712 static int __devinit zone_batchsize(struct zone *zone)
1713 {
1714 	int batch;
1715 
1716 	/*
1717 	 * The per-cpu-pages pools are set to around 1000th of the
1718 	 * size of the zone.  But no more than 1/4 of a meg - there's
1719 	 * no point in going beyond the size of L2 cache.
1720 	 *
1721 	 * OK, so we don't know how big the cache is.  So guess.
1722 	 */
1723 	batch = zone->present_pages / 1024;
1724 	if (batch * PAGE_SIZE > 256 * 1024)
1725 		batch = (256 * 1024) / PAGE_SIZE;
1726 	batch /= 4;		/* We effectively *= 4 below */
1727 	if (batch < 1)
1728 		batch = 1;
1729 
1730 	/*
1731 	 * Clamp the batch to a 2^n - 1 value. Having a power
1732 	 * of 2 value was found to be more likely to have
1733 	 * suboptimal cache aliasing properties in some cases.
1734 	 *
1735 	 * For example if 2 tasks are alternately allocating
1736 	 * batches of pages, one task can end up with a lot
1737 	 * of pages of one half of the possible page colors
1738 	 * and the other with pages of the other colors.
1739 	 */
1740 	batch = (1 << fls(batch + batch/2)) - 1;
1741 	return batch;
1742 }
1743 
1744 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1745 {
1746 	struct per_cpu_pages *pcp;
1747 
1748 	pcp = &p->pcp[0];		/* hot */
1749 	pcp->count = 0;
1750 	pcp->low = 2 * batch;
1751 	pcp->high = 6 * batch;
1752 	pcp->batch = max(1UL, 1 * batch);
1753 	INIT_LIST_HEAD(&pcp->list);
1754 
1755 	pcp = &p->pcp[1];		/* cold*/
1756 	pcp->count = 0;
1757 	pcp->low = 0;
1758 	pcp->high = 2 * batch;
1759 	pcp->batch = max(1UL, 1 * batch);
1760 	INIT_LIST_HEAD(&pcp->list);
1761 }
1762 
1763 #ifdef CONFIG_NUMA
1764 /*
1765  * Boot pageset table. One per cpu which is going to be used for all
1766  * zones and all nodes. The parameters will be set in such a way
1767  * that an item put on a list will immediately be handed over to
1768  * the buddy list. This is safe since pageset manipulation is done
1769  * with interrupts disabled.
1770  *
1771  * Some NUMA counter updates may also be caught by the boot pagesets.
1772  *
1773  * The boot_pagesets must be kept even after bootup is complete for
1774  * unused processors and/or zones. They do play a role for bootstrapping
1775  * hotplugged processors.
1776  *
1777  * zoneinfo_show() and maybe other functions do
1778  * not check if the processor is online before following the pageset pointer.
1779  * Other parts of the kernel may not check if the zone is available.
1780  */
1781 static struct per_cpu_pageset
1782 	boot_pageset[NR_CPUS];
1783 
1784 /*
1785  * Dynamically allocate memory for the
1786  * per cpu pageset array in struct zone.
1787  */
1788 static int __devinit process_zones(int cpu)
1789 {
1790 	struct zone *zone, *dzone;
1791 
1792 	for_each_zone(zone) {
1793 
1794 		zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
1795 					 GFP_KERNEL, cpu_to_node(cpu));
1796 		if (!zone->pageset[cpu])
1797 			goto bad;
1798 
1799 		setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
1800 	}
1801 
1802 	return 0;
1803 bad:
1804 	for_each_zone(dzone) {
1805 		if (dzone == zone)
1806 			break;
1807 		kfree(dzone->pageset[cpu]);
1808 		dzone->pageset[cpu] = NULL;
1809 	}
1810 	return -ENOMEM;
1811 }
1812 
1813 static inline void free_zone_pagesets(int cpu)
1814 {
1815 #ifdef CONFIG_NUMA
1816 	struct zone *zone;
1817 
1818 	for_each_zone(zone) {
1819 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1820 
1821 		zone_pcp(zone, cpu) = NULL;
1822 		kfree(pset);
1823 	}
1824 #endif
1825 }
1826 
1827 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1828 		unsigned long action,
1829 		void *hcpu)
1830 {
1831 	int cpu = (long)hcpu;
1832 	int ret = NOTIFY_OK;
1833 
1834 	switch (action) {
1835 		case CPU_UP_PREPARE:
1836 			if (process_zones(cpu))
1837 				ret = NOTIFY_BAD;
1838 			break;
1839 #ifdef CONFIG_HOTPLUG_CPU
1840 		case CPU_DEAD:
1841 			free_zone_pagesets(cpu);
1842 			break;
1843 #endif
1844 		default:
1845 			break;
1846 	}
1847 	return ret;
1848 }
1849 
1850 static struct notifier_block pageset_notifier =
1851 	{ &pageset_cpuup_callback, NULL, 0 };
1852 
1853 void __init setup_per_cpu_pageset()
1854 {
1855 	int err;
1856 
1857 	/* Initialize per_cpu_pageset for cpu 0.
1858 	 * A cpuup callback will do this for every cpu
1859 	 * as it comes online
1860 	 */
1861 	err = process_zones(smp_processor_id());
1862 	BUG_ON(err);
1863 	register_cpu_notifier(&pageset_notifier);
1864 }
1865 
1866 #endif
1867 
1868 /*
1869  * Set up the zone data structures:
1870  *   - mark all pages reserved
1871  *   - mark all memory queues empty
1872  *   - clear the memory bitmaps
1873  */
1874 static void __init free_area_init_core(struct pglist_data *pgdat,
1875 		unsigned long *zones_size, unsigned long *zholes_size)
1876 {
1877 	unsigned long i, j;
1878 	int cpu, nid = pgdat->node_id;
1879 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
1880 
1881 	pgdat->nr_zones = 0;
1882 	init_waitqueue_head(&pgdat->kswapd_wait);
1883 	pgdat->kswapd_max_order = 0;
1884 
1885 	for (j = 0; j < MAX_NR_ZONES; j++) {
1886 		struct zone *zone = pgdat->node_zones + j;
1887 		unsigned long size, realsize;
1888 		unsigned long batch;
1889 
1890 		realsize = size = zones_size[j];
1891 		if (zholes_size)
1892 			realsize -= zholes_size[j];
1893 
1894 		if (j == ZONE_DMA || j == ZONE_NORMAL)
1895 			nr_kernel_pages += realsize;
1896 		nr_all_pages += realsize;
1897 
1898 		zone->spanned_pages = size;
1899 		zone->present_pages = realsize;
1900 		zone->name = zone_names[j];
1901 		spin_lock_init(&zone->lock);
1902 		spin_lock_init(&zone->lru_lock);
1903 		zone->zone_pgdat = pgdat;
1904 		zone->free_pages = 0;
1905 
1906 		zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
1907 
1908 		batch = zone_batchsize(zone);
1909 
1910 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
1911 #ifdef CONFIG_NUMA
1912 			/* Early boot. Slab allocator not functional yet */
1913 			zone->pageset[cpu] = &boot_pageset[cpu];
1914 			setup_pageset(&boot_pageset[cpu],0);
1915 #else
1916 			setup_pageset(zone_pcp(zone,cpu), batch);
1917 #endif
1918 		}
1919 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
1920 				zone_names[j], realsize, batch);
1921 		INIT_LIST_HEAD(&zone->active_list);
1922 		INIT_LIST_HEAD(&zone->inactive_list);
1923 		zone->nr_scan_active = 0;
1924 		zone->nr_scan_inactive = 0;
1925 		zone->nr_active = 0;
1926 		zone->nr_inactive = 0;
1927 		atomic_set(&zone->reclaim_in_progress, 0);
1928 		if (!size)
1929 			continue;
1930 
1931 		/*
1932 		 * The per-page waitqueue mechanism uses hashed waitqueues
1933 		 * per zone.
1934 		 */
1935 		zone->wait_table_size = wait_table_size(size);
1936 		zone->wait_table_bits =
1937 			wait_table_bits(zone->wait_table_size);
1938 		zone->wait_table = (wait_queue_head_t *)
1939 			alloc_bootmem_node(pgdat, zone->wait_table_size
1940 						* sizeof(wait_queue_head_t));
1941 
1942 		for(i = 0; i < zone->wait_table_size; ++i)
1943 			init_waitqueue_head(zone->wait_table + i);
1944 
1945 		pgdat->nr_zones = j+1;
1946 
1947 		zone->zone_mem_map = pfn_to_page(zone_start_pfn);
1948 		zone->zone_start_pfn = zone_start_pfn;
1949 
1950 		memmap_init(size, nid, j, zone_start_pfn);
1951 
1952 		zonetable_add(zone, nid, j, zone_start_pfn, size);
1953 
1954 		zone_start_pfn += size;
1955 
1956 		zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1957 	}
1958 }
1959 
1960 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1961 {
1962 	/* Skip empty nodes */
1963 	if (!pgdat->node_spanned_pages)
1964 		return;
1965 
1966 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1967 	/* ia64 gets its own node_mem_map, before this, without bootmem */
1968 	if (!pgdat->node_mem_map) {
1969 		unsigned long size;
1970 		struct page *map;
1971 
1972 		size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
1973 		map = alloc_remap(pgdat->node_id, size);
1974 		if (!map)
1975 			map = alloc_bootmem_node(pgdat, size);
1976 		pgdat->node_mem_map = map;
1977 	}
1978 #ifdef CONFIG_FLATMEM
1979 	/*
1980 	 * With no DISCONTIG, the global mem_map is just set as node 0's
1981 	 */
1982 	if (pgdat == NODE_DATA(0))
1983 		mem_map = NODE_DATA(0)->node_mem_map;
1984 #endif
1985 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
1986 }
1987 
1988 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
1989 		unsigned long *zones_size, unsigned long node_start_pfn,
1990 		unsigned long *zholes_size)
1991 {
1992 	pgdat->node_id = nid;
1993 	pgdat->node_start_pfn = node_start_pfn;
1994 	calculate_zone_totalpages(pgdat, zones_size, zholes_size);
1995 
1996 	alloc_node_mem_map(pgdat);
1997 
1998 	free_area_init_core(pgdat, zones_size, zholes_size);
1999 }
2000 
2001 #ifndef CONFIG_NEED_MULTIPLE_NODES
2002 static bootmem_data_t contig_bootmem_data;
2003 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2004 
2005 EXPORT_SYMBOL(contig_page_data);
2006 #endif
2007 
2008 void __init free_area_init(unsigned long *zones_size)
2009 {
2010 	free_area_init_node(0, NODE_DATA(0), zones_size,
2011 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2012 }
2013 
2014 #ifdef CONFIG_PROC_FS
2015 
2016 #include <linux/seq_file.h>
2017 
2018 static void *frag_start(struct seq_file *m, loff_t *pos)
2019 {
2020 	pg_data_t *pgdat;
2021 	loff_t node = *pos;
2022 
2023 	for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2024 		--node;
2025 
2026 	return pgdat;
2027 }
2028 
2029 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2030 {
2031 	pg_data_t *pgdat = (pg_data_t *)arg;
2032 
2033 	(*pos)++;
2034 	return pgdat->pgdat_next;
2035 }
2036 
2037 static void frag_stop(struct seq_file *m, void *arg)
2038 {
2039 }
2040 
2041 /*
2042  * This walks the free areas for each zone.
2043  */
2044 static int frag_show(struct seq_file *m, void *arg)
2045 {
2046 	pg_data_t *pgdat = (pg_data_t *)arg;
2047 	struct zone *zone;
2048 	struct zone *node_zones = pgdat->node_zones;
2049 	unsigned long flags;
2050 	int order;
2051 
2052 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2053 		if (!zone->present_pages)
2054 			continue;
2055 
2056 		spin_lock_irqsave(&zone->lock, flags);
2057 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2058 		for (order = 0; order < MAX_ORDER; ++order)
2059 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2060 		spin_unlock_irqrestore(&zone->lock, flags);
2061 		seq_putc(m, '\n');
2062 	}
2063 	return 0;
2064 }
2065 
2066 struct seq_operations fragmentation_op = {
2067 	.start	= frag_start,
2068 	.next	= frag_next,
2069 	.stop	= frag_stop,
2070 	.show	= frag_show,
2071 };
2072 
2073 /*
2074  * Output information about zones in @pgdat.
2075  */
2076 static int zoneinfo_show(struct seq_file *m, void *arg)
2077 {
2078 	pg_data_t *pgdat = arg;
2079 	struct zone *zone;
2080 	struct zone *node_zones = pgdat->node_zones;
2081 	unsigned long flags;
2082 
2083 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2084 		int i;
2085 
2086 		if (!zone->present_pages)
2087 			continue;
2088 
2089 		spin_lock_irqsave(&zone->lock, flags);
2090 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2091 		seq_printf(m,
2092 			   "\n  pages free     %lu"
2093 			   "\n        min      %lu"
2094 			   "\n        low      %lu"
2095 			   "\n        high     %lu"
2096 			   "\n        active   %lu"
2097 			   "\n        inactive %lu"
2098 			   "\n        scanned  %lu (a: %lu i: %lu)"
2099 			   "\n        spanned  %lu"
2100 			   "\n        present  %lu",
2101 			   zone->free_pages,
2102 			   zone->pages_min,
2103 			   zone->pages_low,
2104 			   zone->pages_high,
2105 			   zone->nr_active,
2106 			   zone->nr_inactive,
2107 			   zone->pages_scanned,
2108 			   zone->nr_scan_active, zone->nr_scan_inactive,
2109 			   zone->spanned_pages,
2110 			   zone->present_pages);
2111 		seq_printf(m,
2112 			   "\n        protection: (%lu",
2113 			   zone->lowmem_reserve[0]);
2114 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2115 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2116 		seq_printf(m,
2117 			   ")"
2118 			   "\n  pagesets");
2119 		for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
2120 			struct per_cpu_pageset *pageset;
2121 			int j;
2122 
2123 			pageset = zone_pcp(zone, i);
2124 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2125 				if (pageset->pcp[j].count)
2126 					break;
2127 			}
2128 			if (j == ARRAY_SIZE(pageset->pcp))
2129 				continue;
2130 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2131 				seq_printf(m,
2132 					   "\n    cpu: %i pcp: %i"
2133 					   "\n              count: %i"
2134 					   "\n              low:   %i"
2135 					   "\n              high:  %i"
2136 					   "\n              batch: %i",
2137 					   i, j,
2138 					   pageset->pcp[j].count,
2139 					   pageset->pcp[j].low,
2140 					   pageset->pcp[j].high,
2141 					   pageset->pcp[j].batch);
2142 			}
2143 #ifdef CONFIG_NUMA
2144 			seq_printf(m,
2145 				   "\n            numa_hit:       %lu"
2146 				   "\n            numa_miss:      %lu"
2147 				   "\n            numa_foreign:   %lu"
2148 				   "\n            interleave_hit: %lu"
2149 				   "\n            local_node:     %lu"
2150 				   "\n            other_node:     %lu",
2151 				   pageset->numa_hit,
2152 				   pageset->numa_miss,
2153 				   pageset->numa_foreign,
2154 				   pageset->interleave_hit,
2155 				   pageset->local_node,
2156 				   pageset->other_node);
2157 #endif
2158 		}
2159 		seq_printf(m,
2160 			   "\n  all_unreclaimable: %u"
2161 			   "\n  prev_priority:     %i"
2162 			   "\n  temp_priority:     %i"
2163 			   "\n  start_pfn:         %lu",
2164 			   zone->all_unreclaimable,
2165 			   zone->prev_priority,
2166 			   zone->temp_priority,
2167 			   zone->zone_start_pfn);
2168 		spin_unlock_irqrestore(&zone->lock, flags);
2169 		seq_putc(m, '\n');
2170 	}
2171 	return 0;
2172 }
2173 
2174 struct seq_operations zoneinfo_op = {
2175 	.start	= frag_start, /* iterate over all zones. The same as in
2176 			       * fragmentation. */
2177 	.next	= frag_next,
2178 	.stop	= frag_stop,
2179 	.show	= zoneinfo_show,
2180 };
2181 
2182 static char *vmstat_text[] = {
2183 	"nr_dirty",
2184 	"nr_writeback",
2185 	"nr_unstable",
2186 	"nr_page_table_pages",
2187 	"nr_mapped",
2188 	"nr_slab",
2189 
2190 	"pgpgin",
2191 	"pgpgout",
2192 	"pswpin",
2193 	"pswpout",
2194 	"pgalloc_high",
2195 
2196 	"pgalloc_normal",
2197 	"pgalloc_dma",
2198 	"pgfree",
2199 	"pgactivate",
2200 	"pgdeactivate",
2201 
2202 	"pgfault",
2203 	"pgmajfault",
2204 	"pgrefill_high",
2205 	"pgrefill_normal",
2206 	"pgrefill_dma",
2207 
2208 	"pgsteal_high",
2209 	"pgsteal_normal",
2210 	"pgsteal_dma",
2211 	"pgscan_kswapd_high",
2212 	"pgscan_kswapd_normal",
2213 
2214 	"pgscan_kswapd_dma",
2215 	"pgscan_direct_high",
2216 	"pgscan_direct_normal",
2217 	"pgscan_direct_dma",
2218 	"pginodesteal",
2219 
2220 	"slabs_scanned",
2221 	"kswapd_steal",
2222 	"kswapd_inodesteal",
2223 	"pageoutrun",
2224 	"allocstall",
2225 
2226 	"pgrotated",
2227 	"nr_bounce",
2228 };
2229 
2230 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2231 {
2232 	struct page_state *ps;
2233 
2234 	if (*pos >= ARRAY_SIZE(vmstat_text))
2235 		return NULL;
2236 
2237 	ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2238 	m->private = ps;
2239 	if (!ps)
2240 		return ERR_PTR(-ENOMEM);
2241 	get_full_page_state(ps);
2242 	ps->pgpgin /= 2;		/* sectors -> kbytes */
2243 	ps->pgpgout /= 2;
2244 	return (unsigned long *)ps + *pos;
2245 }
2246 
2247 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2248 {
2249 	(*pos)++;
2250 	if (*pos >= ARRAY_SIZE(vmstat_text))
2251 		return NULL;
2252 	return (unsigned long *)m->private + *pos;
2253 }
2254 
2255 static int vmstat_show(struct seq_file *m, void *arg)
2256 {
2257 	unsigned long *l = arg;
2258 	unsigned long off = l - (unsigned long *)m->private;
2259 
2260 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2261 	return 0;
2262 }
2263 
2264 static void vmstat_stop(struct seq_file *m, void *arg)
2265 {
2266 	kfree(m->private);
2267 	m->private = NULL;
2268 }
2269 
2270 struct seq_operations vmstat_op = {
2271 	.start	= vmstat_start,
2272 	.next	= vmstat_next,
2273 	.stop	= vmstat_stop,
2274 	.show	= vmstat_show,
2275 };
2276 
2277 #endif /* CONFIG_PROC_FS */
2278 
2279 #ifdef CONFIG_HOTPLUG_CPU
2280 static int page_alloc_cpu_notify(struct notifier_block *self,
2281 				 unsigned long action, void *hcpu)
2282 {
2283 	int cpu = (unsigned long)hcpu;
2284 	long *count;
2285 	unsigned long *src, *dest;
2286 
2287 	if (action == CPU_DEAD) {
2288 		int i;
2289 
2290 		/* Drain local pagecache count. */
2291 		count = &per_cpu(nr_pagecache_local, cpu);
2292 		atomic_add(*count, &nr_pagecache);
2293 		*count = 0;
2294 		local_irq_disable();
2295 		__drain_pages(cpu);
2296 
2297 		/* Add dead cpu's page_states to our own. */
2298 		dest = (unsigned long *)&__get_cpu_var(page_states);
2299 		src = (unsigned long *)&per_cpu(page_states, cpu);
2300 
2301 		for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2302 				i++) {
2303 			dest[i] += src[i];
2304 			src[i] = 0;
2305 		}
2306 
2307 		local_irq_enable();
2308 	}
2309 	return NOTIFY_OK;
2310 }
2311 #endif /* CONFIG_HOTPLUG_CPU */
2312 
2313 void __init page_alloc_init(void)
2314 {
2315 	hotcpu_notifier(page_alloc_cpu_notify, 0);
2316 }
2317 
2318 /*
2319  * setup_per_zone_lowmem_reserve - called whenever
2320  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
2321  *	has a correct pages reserved value, so an adequate number of
2322  *	pages are left in the zone after a successful __alloc_pages().
2323  */
2324 static void setup_per_zone_lowmem_reserve(void)
2325 {
2326 	struct pglist_data *pgdat;
2327 	int j, idx;
2328 
2329 	for_each_pgdat(pgdat) {
2330 		for (j = 0; j < MAX_NR_ZONES; j++) {
2331 			struct zone *zone = pgdat->node_zones + j;
2332 			unsigned long present_pages = zone->present_pages;
2333 
2334 			zone->lowmem_reserve[j] = 0;
2335 
2336 			for (idx = j-1; idx >= 0; idx--) {
2337 				struct zone *lower_zone;
2338 
2339 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
2340 					sysctl_lowmem_reserve_ratio[idx] = 1;
2341 
2342 				lower_zone = pgdat->node_zones + idx;
2343 				lower_zone->lowmem_reserve[j] = present_pages /
2344 					sysctl_lowmem_reserve_ratio[idx];
2345 				present_pages += lower_zone->present_pages;
2346 			}
2347 		}
2348 	}
2349 }
2350 
2351 /*
2352  * setup_per_zone_pages_min - called when min_free_kbytes changes.  Ensures
2353  *	that the pages_{min,low,high} values for each zone are set correctly
2354  *	with respect to min_free_kbytes.
2355  */
2356 static void setup_per_zone_pages_min(void)
2357 {
2358 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2359 	unsigned long lowmem_pages = 0;
2360 	struct zone *zone;
2361 	unsigned long flags;
2362 
2363 	/* Calculate total number of !ZONE_HIGHMEM pages */
2364 	for_each_zone(zone) {
2365 		if (!is_highmem(zone))
2366 			lowmem_pages += zone->present_pages;
2367 	}
2368 
2369 	for_each_zone(zone) {
2370 		spin_lock_irqsave(&zone->lru_lock, flags);
2371 		if (is_highmem(zone)) {
2372 			/*
2373 			 * Often, highmem doesn't need to reserve any pages.
2374 			 * But the pages_min/low/high values are also used for
2375 			 * batching up page reclaim activity so we need a
2376 			 * decent value here.
2377 			 */
2378 			int min_pages;
2379 
2380 			min_pages = zone->present_pages / 1024;
2381 			if (min_pages < SWAP_CLUSTER_MAX)
2382 				min_pages = SWAP_CLUSTER_MAX;
2383 			if (min_pages > 128)
2384 				min_pages = 128;
2385 			zone->pages_min = min_pages;
2386 		} else {
2387 			/* if it's a lowmem zone, reserve a number of pages
2388 			 * proportionate to the zone's size.
2389 			 */
2390 			zone->pages_min = (pages_min * zone->present_pages) /
2391 			                   lowmem_pages;
2392 		}
2393 
2394 		/*
2395 		 * When interpreting these watermarks, just keep in mind that:
2396 		 * zone->pages_min == (zone->pages_min * 4) / 4;
2397 		 */
2398 		zone->pages_low   = (zone->pages_min * 5) / 4;
2399 		zone->pages_high  = (zone->pages_min * 6) / 4;
2400 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2401 	}
2402 }
2403 
2404 /*
2405  * Initialise min_free_kbytes.
2406  *
2407  * For small machines we want it small (128k min).  For large machines
2408  * we want it large (64MB max).  But it is not linear, because network
2409  * bandwidth does not increase linearly with machine size.  We use
2410  *
2411  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2412  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
2413  *
2414  * which yields
2415  *
2416  * 16MB:	512k
2417  * 32MB:	724k
2418  * 64MB:	1024k
2419  * 128MB:	1448k
2420  * 256MB:	2048k
2421  * 512MB:	2896k
2422  * 1024MB:	4096k
2423  * 2048MB:	5792k
2424  * 4096MB:	8192k
2425  * 8192MB:	11584k
2426  * 16384MB:	16384k
2427  */
2428 static int __init init_per_zone_pages_min(void)
2429 {
2430 	unsigned long lowmem_kbytes;
2431 
2432 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2433 
2434 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2435 	if (min_free_kbytes < 128)
2436 		min_free_kbytes = 128;
2437 	if (min_free_kbytes > 65536)
2438 		min_free_kbytes = 65536;
2439 	setup_per_zone_pages_min();
2440 	setup_per_zone_lowmem_reserve();
2441 	return 0;
2442 }
2443 module_init(init_per_zone_pages_min)
2444 
2445 /*
2446  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2447  *	that we can call two helper functions whenever min_free_kbytes
2448  *	changes.
2449  */
2450 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2451 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2452 {
2453 	proc_dointvec(table, write, file, buffer, length, ppos);
2454 	setup_per_zone_pages_min();
2455 	return 0;
2456 }
2457 
2458 /*
2459  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2460  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2461  *	whenever sysctl_lowmem_reserve_ratio changes.
2462  *
2463  * The reserve ratio obviously has absolutely no relation with the
2464  * pages_min watermarks. The lowmem reserve ratio can only make sense
2465  * if in function of the boot time zone sizes.
2466  */
2467 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2468 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2469 {
2470 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2471 	setup_per_zone_lowmem_reserve();
2472 	return 0;
2473 }
2474 
2475 __initdata int hashdist = HASHDIST_DEFAULT;
2476 
2477 #ifdef CONFIG_NUMA
2478 static int __init set_hashdist(char *str)
2479 {
2480 	if (!str)
2481 		return 0;
2482 	hashdist = simple_strtoul(str, &str, 0);
2483 	return 1;
2484 }
2485 __setup("hashdist=", set_hashdist);
2486 #endif
2487 
2488 /*
2489  * allocate a large system hash table from bootmem
2490  * - it is assumed that the hash table must contain an exact power-of-2
2491  *   quantity of entries
2492  * - limit is the number of hash buckets, not the total allocation size
2493  */
2494 void *__init alloc_large_system_hash(const char *tablename,
2495 				     unsigned long bucketsize,
2496 				     unsigned long numentries,
2497 				     int scale,
2498 				     int flags,
2499 				     unsigned int *_hash_shift,
2500 				     unsigned int *_hash_mask,
2501 				     unsigned long limit)
2502 {
2503 	unsigned long long max = limit;
2504 	unsigned long log2qty, size;
2505 	void *table = NULL;
2506 
2507 	/* allow the kernel cmdline to have a say */
2508 	if (!numentries) {
2509 		/* round applicable memory size up to nearest megabyte */
2510 		numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2511 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2512 		numentries >>= 20 - PAGE_SHIFT;
2513 		numentries <<= 20 - PAGE_SHIFT;
2514 
2515 		/* limit to 1 bucket per 2^scale bytes of low memory */
2516 		if (scale > PAGE_SHIFT)
2517 			numentries >>= (scale - PAGE_SHIFT);
2518 		else
2519 			numentries <<= (PAGE_SHIFT - scale);
2520 	}
2521 	/* rounded up to nearest power of 2 in size */
2522 	numentries = 1UL << (long_log2(numentries) + 1);
2523 
2524 	/* limit allocation size to 1/16 total memory by default */
2525 	if (max == 0) {
2526 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2527 		do_div(max, bucketsize);
2528 	}
2529 
2530 	if (numentries > max)
2531 		numentries = max;
2532 
2533 	log2qty = long_log2(numentries);
2534 
2535 	do {
2536 		size = bucketsize << log2qty;
2537 		if (flags & HASH_EARLY)
2538 			table = alloc_bootmem(size);
2539 		else if (hashdist)
2540 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2541 		else {
2542 			unsigned long order;
2543 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2544 				;
2545 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
2546 		}
2547 	} while (!table && size > PAGE_SIZE && --log2qty);
2548 
2549 	if (!table)
2550 		panic("Failed to allocate %s hash table\n", tablename);
2551 
2552 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2553 	       tablename,
2554 	       (1U << log2qty),
2555 	       long_log2(size) - PAGE_SHIFT,
2556 	       size);
2557 
2558 	if (_hash_shift)
2559 		*_hash_shift = log2qty;
2560 	if (_hash_mask)
2561 		*_hash_mask = (1 << log2qty) - 1;
2562 
2563 	return table;
2564 }
2565