1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order, 294 int alloc_flags); 295 static bool __free_unaccepted(struct page *page); 296 297 int page_group_by_mobility_disabled __read_mostly; 298 299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 300 /* 301 * During boot we initialize deferred pages on-demand, as needed, but once 302 * page_alloc_init_late() has finished, the deferred pages are all initialized, 303 * and we can permanently disable that path. 304 */ 305 DEFINE_STATIC_KEY_TRUE(deferred_pages); 306 307 static inline bool deferred_pages_enabled(void) 308 { 309 return static_branch_unlikely(&deferred_pages); 310 } 311 312 /* 313 * deferred_grow_zone() is __init, but it is called from 314 * get_page_from_freelist() during early boot until deferred_pages permanently 315 * disables this call. This is why we have refdata wrapper to avoid warning, 316 * and to ensure that the function body gets unloaded. 317 */ 318 static bool __ref 319 _deferred_grow_zone(struct zone *zone, unsigned int order) 320 { 321 return deferred_grow_zone(zone, order); 322 } 323 #else 324 static inline bool deferred_pages_enabled(void) 325 { 326 return false; 327 } 328 329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 330 { 331 return false; 332 } 333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 334 335 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 336 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 337 unsigned long pfn) 338 { 339 #ifdef CONFIG_SPARSEMEM 340 return section_to_usemap(__pfn_to_section(pfn)); 341 #else 342 return page_zone(page)->pageblock_flags; 343 #endif /* CONFIG_SPARSEMEM */ 344 } 345 346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 347 { 348 #ifdef CONFIG_SPARSEMEM 349 pfn &= (PAGES_PER_SECTION-1); 350 #else 351 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 352 #endif /* CONFIG_SPARSEMEM */ 353 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 354 } 355 356 static __always_inline bool is_standalone_pb_bit(enum pageblock_bits pb_bit) 357 { 358 return pb_bit >= PB_compact_skip && pb_bit < __NR_PAGEBLOCK_BITS; 359 } 360 361 static __always_inline void 362 get_pfnblock_bitmap_bitidx(const struct page *page, unsigned long pfn, 363 unsigned long **bitmap_word, unsigned long *bitidx) 364 { 365 unsigned long *bitmap; 366 unsigned long word_bitidx; 367 368 #ifdef CONFIG_MEMORY_ISOLATION 369 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 8); 370 #else 371 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 372 #endif 373 BUILD_BUG_ON(__MIGRATE_TYPE_END > MIGRATETYPE_MASK); 374 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 375 376 bitmap = get_pageblock_bitmap(page, pfn); 377 *bitidx = pfn_to_bitidx(page, pfn); 378 word_bitidx = *bitidx / BITS_PER_LONG; 379 *bitidx &= (BITS_PER_LONG - 1); 380 *bitmap_word = &bitmap[word_bitidx]; 381 } 382 383 384 /** 385 * __get_pfnblock_flags_mask - Return the requested group of flags for 386 * a pageblock_nr_pages block of pages 387 * @page: The page within the block of interest 388 * @pfn: The target page frame number 389 * @mask: mask of bits that the caller is interested in 390 * 391 * Return: pageblock_bits flags 392 */ 393 static unsigned long __get_pfnblock_flags_mask(const struct page *page, 394 unsigned long pfn, 395 unsigned long mask) 396 { 397 unsigned long *bitmap_word; 398 unsigned long bitidx; 399 unsigned long word; 400 401 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 402 /* 403 * This races, without locks, with set_pfnblock_migratetype(). Ensure 404 * a consistent read of the memory array, so that results, even though 405 * racy, are not corrupted. 406 */ 407 word = READ_ONCE(*bitmap_word); 408 return (word >> bitidx) & mask; 409 } 410 411 /** 412 * get_pfnblock_bit - Check if a standalone bit of a pageblock is set 413 * @page: The page within the block of interest 414 * @pfn: The target page frame number 415 * @pb_bit: pageblock bit to check 416 * 417 * Return: true if the bit is set, otherwise false 418 */ 419 bool get_pfnblock_bit(const struct page *page, unsigned long pfn, 420 enum pageblock_bits pb_bit) 421 { 422 unsigned long *bitmap_word; 423 unsigned long bitidx; 424 425 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 426 return false; 427 428 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 429 430 return test_bit(bitidx + pb_bit, bitmap_word); 431 } 432 433 /** 434 * get_pfnblock_migratetype - Return the migratetype of a pageblock 435 * @page: The page within the block of interest 436 * @pfn: The target page frame number 437 * 438 * Return: The migratetype of the pageblock 439 * 440 * Use get_pfnblock_migratetype() if caller already has both @page and @pfn 441 * to save a call to page_to_pfn(). 442 */ 443 __always_inline enum migratetype 444 get_pfnblock_migratetype(const struct page *page, unsigned long pfn) 445 { 446 unsigned long mask = MIGRATETYPE_AND_ISO_MASK; 447 unsigned long flags; 448 449 flags = __get_pfnblock_flags_mask(page, pfn, mask); 450 451 #ifdef CONFIG_MEMORY_ISOLATION 452 if (flags & BIT(PB_migrate_isolate)) 453 return MIGRATE_ISOLATE; 454 #endif 455 return flags & MIGRATETYPE_MASK; 456 } 457 458 /** 459 * __set_pfnblock_flags_mask - Set the requested group of flags for 460 * a pageblock_nr_pages block of pages 461 * @page: The page within the block of interest 462 * @pfn: The target page frame number 463 * @flags: The flags to set 464 * @mask: mask of bits that the caller is interested in 465 */ 466 static void __set_pfnblock_flags_mask(struct page *page, unsigned long pfn, 467 unsigned long flags, unsigned long mask) 468 { 469 unsigned long *bitmap_word; 470 unsigned long bitidx; 471 unsigned long word; 472 473 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 474 475 mask <<= bitidx; 476 flags <<= bitidx; 477 478 word = READ_ONCE(*bitmap_word); 479 do { 480 } while (!try_cmpxchg(bitmap_word, &word, (word & ~mask) | flags)); 481 } 482 483 /** 484 * set_pfnblock_bit - Set a standalone bit of a pageblock 485 * @page: The page within the block of interest 486 * @pfn: The target page frame number 487 * @pb_bit: pageblock bit to set 488 */ 489 void set_pfnblock_bit(const struct page *page, unsigned long pfn, 490 enum pageblock_bits pb_bit) 491 { 492 unsigned long *bitmap_word; 493 unsigned long bitidx; 494 495 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 496 return; 497 498 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 499 500 set_bit(bitidx + pb_bit, bitmap_word); 501 } 502 503 /** 504 * clear_pfnblock_bit - Clear a standalone bit of a pageblock 505 * @page: The page within the block of interest 506 * @pfn: The target page frame number 507 * @pb_bit: pageblock bit to clear 508 */ 509 void clear_pfnblock_bit(const struct page *page, unsigned long pfn, 510 enum pageblock_bits pb_bit) 511 { 512 unsigned long *bitmap_word; 513 unsigned long bitidx; 514 515 if (WARN_ON_ONCE(!is_standalone_pb_bit(pb_bit))) 516 return; 517 518 get_pfnblock_bitmap_bitidx(page, pfn, &bitmap_word, &bitidx); 519 520 clear_bit(bitidx + pb_bit, bitmap_word); 521 } 522 523 /** 524 * set_pageblock_migratetype - Set the migratetype of a pageblock 525 * @page: The page within the block of interest 526 * @migratetype: migratetype to set 527 */ 528 static void set_pageblock_migratetype(struct page *page, 529 enum migratetype migratetype) 530 { 531 if (unlikely(page_group_by_mobility_disabled && 532 migratetype < MIGRATE_PCPTYPES)) 533 migratetype = MIGRATE_UNMOVABLE; 534 535 #ifdef CONFIG_MEMORY_ISOLATION 536 if (migratetype == MIGRATE_ISOLATE) { 537 VM_WARN_ONCE(1, 538 "Use set_pageblock_isolate() for pageblock isolation"); 539 return; 540 } 541 VM_WARN_ONCE(get_pageblock_isolate(page), 542 "Use clear_pageblock_isolate() to unisolate pageblock"); 543 /* MIGRATETYPE_AND_ISO_MASK clears PB_migrate_isolate if it is set */ 544 #endif 545 __set_pfnblock_flags_mask(page, page_to_pfn(page), 546 (unsigned long)migratetype, 547 MIGRATETYPE_AND_ISO_MASK); 548 } 549 550 void __meminit init_pageblock_migratetype(struct page *page, 551 enum migratetype migratetype, 552 bool isolate) 553 { 554 unsigned long flags; 555 556 if (unlikely(page_group_by_mobility_disabled && 557 migratetype < MIGRATE_PCPTYPES)) 558 migratetype = MIGRATE_UNMOVABLE; 559 560 flags = migratetype; 561 562 #ifdef CONFIG_MEMORY_ISOLATION 563 if (migratetype == MIGRATE_ISOLATE) { 564 VM_WARN_ONCE( 565 1, 566 "Set isolate=true to isolate pageblock with a migratetype"); 567 return; 568 } 569 if (isolate) 570 flags |= BIT(PB_migrate_isolate); 571 #endif 572 __set_pfnblock_flags_mask(page, page_to_pfn(page), flags, 573 MIGRATETYPE_AND_ISO_MASK); 574 } 575 576 #ifdef CONFIG_DEBUG_VM 577 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 578 { 579 int ret; 580 unsigned seq; 581 unsigned long pfn = page_to_pfn(page); 582 unsigned long sp, start_pfn; 583 584 do { 585 seq = zone_span_seqbegin(zone); 586 start_pfn = zone->zone_start_pfn; 587 sp = zone->spanned_pages; 588 ret = !zone_spans_pfn(zone, pfn); 589 } while (zone_span_seqretry(zone, seq)); 590 591 if (ret) 592 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 593 pfn, zone_to_nid(zone), zone->name, 594 start_pfn, start_pfn + sp); 595 596 return ret; 597 } 598 599 /* 600 * Temporary debugging check for pages not lying within a given zone. 601 */ 602 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 603 { 604 if (page_outside_zone_boundaries(zone, page)) 605 return true; 606 if (zone != page_zone(page)) 607 return true; 608 609 return false; 610 } 611 #else 612 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 613 { 614 return false; 615 } 616 #endif 617 618 static void bad_page(struct page *page, const char *reason) 619 { 620 static unsigned long resume; 621 static unsigned long nr_shown; 622 static unsigned long nr_unshown; 623 624 /* 625 * Allow a burst of 60 reports, then keep quiet for that minute; 626 * or allow a steady drip of one report per second. 627 */ 628 if (nr_shown == 60) { 629 if (time_before(jiffies, resume)) { 630 nr_unshown++; 631 goto out; 632 } 633 if (nr_unshown) { 634 pr_alert( 635 "BUG: Bad page state: %lu messages suppressed\n", 636 nr_unshown); 637 nr_unshown = 0; 638 } 639 nr_shown = 0; 640 } 641 if (nr_shown++ == 0) 642 resume = jiffies + 60 * HZ; 643 644 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 645 current->comm, page_to_pfn(page)); 646 dump_page(page, reason); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 if (PageBuddy(page)) 653 __ClearPageBuddy(page); 654 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 655 } 656 657 static inline unsigned int order_to_pindex(int migratetype, int order) 658 { 659 660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 661 bool movable; 662 if (order > PAGE_ALLOC_COSTLY_ORDER) { 663 VM_BUG_ON(order != HPAGE_PMD_ORDER); 664 665 movable = migratetype == MIGRATE_MOVABLE; 666 667 return NR_LOWORDER_PCP_LISTS + movable; 668 } 669 #else 670 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 671 #endif 672 673 return (MIGRATE_PCPTYPES * order) + migratetype; 674 } 675 676 static inline int pindex_to_order(unsigned int pindex) 677 { 678 int order = pindex / MIGRATE_PCPTYPES; 679 680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 681 if (pindex >= NR_LOWORDER_PCP_LISTS) 682 order = HPAGE_PMD_ORDER; 683 #else 684 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 685 #endif 686 687 return order; 688 } 689 690 static inline bool pcp_allowed_order(unsigned int order) 691 { 692 if (order <= PAGE_ALLOC_COSTLY_ORDER) 693 return true; 694 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 695 if (order == HPAGE_PMD_ORDER) 696 return true; 697 #endif 698 return false; 699 } 700 701 /* 702 * Higher-order pages are called "compound pages". They are structured thusly: 703 * 704 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 705 * 706 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 707 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 708 * 709 * The first tail page's ->compound_order holds the order of allocation. 710 * This usage means that zero-order pages may not be compound. 711 */ 712 713 void prep_compound_page(struct page *page, unsigned int order) 714 { 715 int i; 716 int nr_pages = 1 << order; 717 718 __SetPageHead(page); 719 for (i = 1; i < nr_pages; i++) 720 prep_compound_tail(page, i); 721 722 prep_compound_head(page, order); 723 } 724 725 static inline void set_buddy_order(struct page *page, unsigned int order) 726 { 727 set_page_private(page, order); 728 __SetPageBuddy(page); 729 } 730 731 #ifdef CONFIG_COMPACTION 732 static inline struct capture_control *task_capc(struct zone *zone) 733 { 734 struct capture_control *capc = current->capture_control; 735 736 return unlikely(capc) && 737 !(current->flags & PF_KTHREAD) && 738 !capc->page && 739 capc->cc->zone == zone ? capc : NULL; 740 } 741 742 static inline bool 743 compaction_capture(struct capture_control *capc, struct page *page, 744 int order, int migratetype) 745 { 746 if (!capc || order != capc->cc->order) 747 return false; 748 749 /* Do not accidentally pollute CMA or isolated regions*/ 750 if (is_migrate_cma(migratetype) || 751 is_migrate_isolate(migratetype)) 752 return false; 753 754 /* 755 * Do not let lower order allocations pollute a movable pageblock 756 * unless compaction is also requesting movable pages. 757 * This might let an unmovable request use a reclaimable pageblock 758 * and vice-versa but no more than normal fallback logic which can 759 * have trouble finding a high-order free page. 760 */ 761 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 762 capc->cc->migratetype != MIGRATE_MOVABLE) 763 return false; 764 765 if (migratetype != capc->cc->migratetype) 766 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 767 capc->cc->migratetype, migratetype); 768 769 capc->page = page; 770 return true; 771 } 772 773 #else 774 static inline struct capture_control *task_capc(struct zone *zone) 775 { 776 return NULL; 777 } 778 779 static inline bool 780 compaction_capture(struct capture_control *capc, struct page *page, 781 int order, int migratetype) 782 { 783 return false; 784 } 785 #endif /* CONFIG_COMPACTION */ 786 787 static inline void account_freepages(struct zone *zone, int nr_pages, 788 int migratetype) 789 { 790 lockdep_assert_held(&zone->lock); 791 792 if (is_migrate_isolate(migratetype)) 793 return; 794 795 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 796 797 if (is_migrate_cma(migratetype)) 798 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 799 else if (migratetype == MIGRATE_HIGHATOMIC) 800 WRITE_ONCE(zone->nr_free_highatomic, 801 zone->nr_free_highatomic + nr_pages); 802 } 803 804 /* Used for pages not on another list */ 805 static inline void __add_to_free_list(struct page *page, struct zone *zone, 806 unsigned int order, int migratetype, 807 bool tail) 808 { 809 struct free_area *area = &zone->free_area[order]; 810 int nr_pages = 1 << order; 811 812 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 813 "page type is %d, passed migratetype is %d (nr=%d)\n", 814 get_pageblock_migratetype(page), migratetype, nr_pages); 815 816 if (tail) 817 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 818 else 819 list_add(&page->buddy_list, &area->free_list[migratetype]); 820 area->nr_free++; 821 822 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 823 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 824 } 825 826 /* 827 * Used for pages which are on another list. Move the pages to the tail 828 * of the list - so the moved pages won't immediately be considered for 829 * allocation again (e.g., optimization for memory onlining). 830 */ 831 static inline void move_to_free_list(struct page *page, struct zone *zone, 832 unsigned int order, int old_mt, int new_mt) 833 { 834 struct free_area *area = &zone->free_area[order]; 835 int nr_pages = 1 << order; 836 837 /* Free page moving can fail, so it happens before the type update */ 838 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 839 "page type is %d, passed migratetype is %d (nr=%d)\n", 840 get_pageblock_migratetype(page), old_mt, nr_pages); 841 842 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 843 844 account_freepages(zone, -nr_pages, old_mt); 845 account_freepages(zone, nr_pages, new_mt); 846 847 if (order >= pageblock_order && 848 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 849 if (!is_migrate_isolate(old_mt)) 850 nr_pages = -nr_pages; 851 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 852 } 853 } 854 855 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 856 unsigned int order, int migratetype) 857 { 858 int nr_pages = 1 << order; 859 860 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 861 "page type is %d, passed migratetype is %d (nr=%d)\n", 862 get_pageblock_migratetype(page), migratetype, nr_pages); 863 864 /* clear reported state and update reported page count */ 865 if (page_reported(page)) 866 __ClearPageReported(page); 867 868 list_del(&page->buddy_list); 869 __ClearPageBuddy(page); 870 set_page_private(page, 0); 871 zone->free_area[order].nr_free--; 872 873 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 874 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 875 } 876 877 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 878 unsigned int order, int migratetype) 879 { 880 __del_page_from_free_list(page, zone, order, migratetype); 881 account_freepages(zone, -(1 << order), migratetype); 882 } 883 884 static inline struct page *get_page_from_free_area(struct free_area *area, 885 int migratetype) 886 { 887 return list_first_entry_or_null(&area->free_list[migratetype], 888 struct page, buddy_list); 889 } 890 891 /* 892 * If this is less than the 2nd largest possible page, check if the buddy 893 * of the next-higher order is free. If it is, it's possible 894 * that pages are being freed that will coalesce soon. In case, 895 * that is happening, add the free page to the tail of the list 896 * so it's less likely to be used soon and more likely to be merged 897 * as a 2-level higher order page 898 */ 899 static inline bool 900 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 901 struct page *page, unsigned int order) 902 { 903 unsigned long higher_page_pfn; 904 struct page *higher_page; 905 906 if (order >= MAX_PAGE_ORDER - 1) 907 return false; 908 909 higher_page_pfn = buddy_pfn & pfn; 910 higher_page = page + (higher_page_pfn - pfn); 911 912 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 913 NULL) != NULL; 914 } 915 916 /* 917 * Freeing function for a buddy system allocator. 918 * 919 * The concept of a buddy system is to maintain direct-mapped table 920 * (containing bit values) for memory blocks of various "orders". 921 * The bottom level table contains the map for the smallest allocatable 922 * units of memory (here, pages), and each level above it describes 923 * pairs of units from the levels below, hence, "buddies". 924 * At a high level, all that happens here is marking the table entry 925 * at the bottom level available, and propagating the changes upward 926 * as necessary, plus some accounting needed to play nicely with other 927 * parts of the VM system. 928 * At each level, we keep a list of pages, which are heads of continuous 929 * free pages of length of (1 << order) and marked with PageBuddy. 930 * Page's order is recorded in page_private(page) field. 931 * So when we are allocating or freeing one, we can derive the state of the 932 * other. That is, if we allocate a small block, and both were 933 * free, the remainder of the region must be split into blocks. 934 * If a block is freed, and its buddy is also free, then this 935 * triggers coalescing into a block of larger size. 936 * 937 * -- nyc 938 */ 939 940 static inline void __free_one_page(struct page *page, 941 unsigned long pfn, 942 struct zone *zone, unsigned int order, 943 int migratetype, fpi_t fpi_flags) 944 { 945 struct capture_control *capc = task_capc(zone); 946 unsigned long buddy_pfn = 0; 947 unsigned long combined_pfn; 948 struct page *buddy; 949 bool to_tail; 950 951 VM_BUG_ON(!zone_is_initialized(zone)); 952 VM_BUG_ON_PAGE(page->flags.f & PAGE_FLAGS_CHECK_AT_PREP, page); 953 954 VM_BUG_ON(migratetype == -1); 955 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 956 VM_BUG_ON_PAGE(bad_range(zone, page), page); 957 958 account_freepages(zone, 1 << order, migratetype); 959 960 while (order < MAX_PAGE_ORDER) { 961 int buddy_mt = migratetype; 962 963 if (compaction_capture(capc, page, order, migratetype)) { 964 account_freepages(zone, -(1 << order), migratetype); 965 return; 966 } 967 968 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 969 if (!buddy) 970 goto done_merging; 971 972 if (unlikely(order >= pageblock_order)) { 973 /* 974 * We want to prevent merge between freepages on pageblock 975 * without fallbacks and normal pageblock. Without this, 976 * pageblock isolation could cause incorrect freepage or CMA 977 * accounting or HIGHATOMIC accounting. 978 */ 979 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 980 981 if (migratetype != buddy_mt && 982 (!migratetype_is_mergeable(migratetype) || 983 !migratetype_is_mergeable(buddy_mt))) 984 goto done_merging; 985 } 986 987 /* 988 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 989 * merge with it and move up one order. 990 */ 991 if (page_is_guard(buddy)) 992 clear_page_guard(zone, buddy, order); 993 else 994 __del_page_from_free_list(buddy, zone, order, buddy_mt); 995 996 if (unlikely(buddy_mt != migratetype)) { 997 /* 998 * Match buddy type. This ensures that an 999 * expand() down the line puts the sub-blocks 1000 * on the right freelists. 1001 */ 1002 set_pageblock_migratetype(buddy, migratetype); 1003 } 1004 1005 combined_pfn = buddy_pfn & pfn; 1006 page = page + (combined_pfn - pfn); 1007 pfn = combined_pfn; 1008 order++; 1009 } 1010 1011 done_merging: 1012 set_buddy_order(page, order); 1013 1014 if (fpi_flags & FPI_TO_TAIL) 1015 to_tail = true; 1016 else if (is_shuffle_order(order)) 1017 to_tail = shuffle_pick_tail(); 1018 else 1019 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1020 1021 __add_to_free_list(page, zone, order, migratetype, to_tail); 1022 1023 /* Notify page reporting subsystem of freed page */ 1024 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1025 page_reporting_notify_free(order); 1026 } 1027 1028 /* 1029 * A bad page could be due to a number of fields. Instead of multiple branches, 1030 * try and check multiple fields with one check. The caller must do a detailed 1031 * check if necessary. 1032 */ 1033 static inline bool page_expected_state(struct page *page, 1034 unsigned long check_flags) 1035 { 1036 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1037 return false; 1038 1039 if (unlikely((unsigned long)page->mapping | 1040 page_ref_count(page) | 1041 #ifdef CONFIG_MEMCG 1042 page->memcg_data | 1043 #endif 1044 page_pool_page_is_pp(page) | 1045 (page->flags.f & check_flags))) 1046 return false; 1047 1048 return true; 1049 } 1050 1051 static const char *page_bad_reason(struct page *page, unsigned long flags) 1052 { 1053 const char *bad_reason = NULL; 1054 1055 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1056 bad_reason = "nonzero mapcount"; 1057 if (unlikely(page->mapping != NULL)) 1058 bad_reason = "non-NULL mapping"; 1059 if (unlikely(page_ref_count(page) != 0)) 1060 bad_reason = "nonzero _refcount"; 1061 if (unlikely(page->flags.f & flags)) { 1062 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1063 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1064 else 1065 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1066 } 1067 #ifdef CONFIG_MEMCG 1068 if (unlikely(page->memcg_data)) 1069 bad_reason = "page still charged to cgroup"; 1070 #endif 1071 if (unlikely(page_pool_page_is_pp(page))) 1072 bad_reason = "page_pool leak"; 1073 return bad_reason; 1074 } 1075 1076 static inline bool free_page_is_bad(struct page *page) 1077 { 1078 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1079 return false; 1080 1081 /* Something has gone sideways, find it */ 1082 bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1083 return true; 1084 } 1085 1086 static inline bool is_check_pages_enabled(void) 1087 { 1088 return static_branch_unlikely(&check_pages_enabled); 1089 } 1090 1091 static int free_tail_page_prepare(struct page *head_page, struct page *page) 1092 { 1093 struct folio *folio = (struct folio *)head_page; 1094 int ret = 1; 1095 1096 /* 1097 * We rely page->lru.next never has bit 0 set, unless the page 1098 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1099 */ 1100 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1101 1102 if (!is_check_pages_enabled()) { 1103 ret = 0; 1104 goto out; 1105 } 1106 switch (page - head_page) { 1107 case 1: 1108 /* the first tail page: these may be in place of ->mapping */ 1109 if (unlikely(folio_large_mapcount(folio))) { 1110 bad_page(page, "nonzero large_mapcount"); 1111 goto out; 1112 } 1113 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 1114 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1115 bad_page(page, "nonzero nr_pages_mapped"); 1116 goto out; 1117 } 1118 if (IS_ENABLED(CONFIG_MM_ID)) { 1119 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 1120 bad_page(page, "nonzero mm mapcount 0"); 1121 goto out; 1122 } 1123 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 1124 bad_page(page, "nonzero mm mapcount 1"); 1125 goto out; 1126 } 1127 } 1128 if (IS_ENABLED(CONFIG_64BIT)) { 1129 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1130 bad_page(page, "nonzero entire_mapcount"); 1131 goto out; 1132 } 1133 if (unlikely(atomic_read(&folio->_pincount))) { 1134 bad_page(page, "nonzero pincount"); 1135 goto out; 1136 } 1137 } 1138 break; 1139 case 2: 1140 /* the second tail page: deferred_list overlaps ->mapping */ 1141 if (unlikely(!list_empty(&folio->_deferred_list))) { 1142 bad_page(page, "on deferred list"); 1143 goto out; 1144 } 1145 if (!IS_ENABLED(CONFIG_64BIT)) { 1146 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1147 bad_page(page, "nonzero entire_mapcount"); 1148 goto out; 1149 } 1150 if (unlikely(atomic_read(&folio->_pincount))) { 1151 bad_page(page, "nonzero pincount"); 1152 goto out; 1153 } 1154 } 1155 break; 1156 case 3: 1157 /* the third tail page: hugetlb specifics overlap ->mappings */ 1158 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1159 break; 1160 fallthrough; 1161 default: 1162 if (page->mapping != TAIL_MAPPING) { 1163 bad_page(page, "corrupted mapping in tail page"); 1164 goto out; 1165 } 1166 break; 1167 } 1168 if (unlikely(!PageTail(page))) { 1169 bad_page(page, "PageTail not set"); 1170 goto out; 1171 } 1172 if (unlikely(compound_head(page) != head_page)) { 1173 bad_page(page, "compound_head not consistent"); 1174 goto out; 1175 } 1176 ret = 0; 1177 out: 1178 page->mapping = NULL; 1179 clear_compound_head(page); 1180 return ret; 1181 } 1182 1183 /* 1184 * Skip KASAN memory poisoning when either: 1185 * 1186 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1187 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1188 * using page tags instead (see below). 1189 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1190 * that error detection is disabled for accesses via the page address. 1191 * 1192 * Pages will have match-all tags in the following circumstances: 1193 * 1194 * 1. Pages are being initialized for the first time, including during deferred 1195 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1196 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1197 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1198 * 3. The allocation was excluded from being checked due to sampling, 1199 * see the call to kasan_unpoison_pages. 1200 * 1201 * Poisoning pages during deferred memory init will greatly lengthen the 1202 * process and cause problem in large memory systems as the deferred pages 1203 * initialization is done with interrupt disabled. 1204 * 1205 * Assuming that there will be no reference to those newly initialized 1206 * pages before they are ever allocated, this should have no effect on 1207 * KASAN memory tracking as the poison will be properly inserted at page 1208 * allocation time. The only corner case is when pages are allocated by 1209 * on-demand allocation and then freed again before the deferred pages 1210 * initialization is done, but this is not likely to happen. 1211 */ 1212 static inline bool should_skip_kasan_poison(struct page *page) 1213 { 1214 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1215 return deferred_pages_enabled(); 1216 1217 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1218 } 1219 1220 static void kernel_init_pages(struct page *page, int numpages) 1221 { 1222 int i; 1223 1224 /* s390's use of memset() could override KASAN redzones. */ 1225 kasan_disable_current(); 1226 for (i = 0; i < numpages; i++) 1227 clear_highpage_kasan_tagged(page + i); 1228 kasan_enable_current(); 1229 } 1230 1231 #ifdef CONFIG_MEM_ALLOC_PROFILING 1232 1233 /* Should be called only if mem_alloc_profiling_enabled() */ 1234 void __clear_page_tag_ref(struct page *page) 1235 { 1236 union pgtag_ref_handle handle; 1237 union codetag_ref ref; 1238 1239 if (get_page_tag_ref(page, &ref, &handle)) { 1240 set_codetag_empty(&ref); 1241 update_page_tag_ref(handle, &ref); 1242 put_page_tag_ref(handle); 1243 } 1244 } 1245 1246 /* Should be called only if mem_alloc_profiling_enabled() */ 1247 static noinline 1248 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1249 unsigned int nr) 1250 { 1251 union pgtag_ref_handle handle; 1252 union codetag_ref ref; 1253 1254 if (get_page_tag_ref(page, &ref, &handle)) { 1255 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1256 update_page_tag_ref(handle, &ref); 1257 put_page_tag_ref(handle); 1258 } 1259 } 1260 1261 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1262 unsigned int nr) 1263 { 1264 if (mem_alloc_profiling_enabled()) 1265 __pgalloc_tag_add(page, task, nr); 1266 } 1267 1268 /* Should be called only if mem_alloc_profiling_enabled() */ 1269 static noinline 1270 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1271 { 1272 union pgtag_ref_handle handle; 1273 union codetag_ref ref; 1274 1275 if (get_page_tag_ref(page, &ref, &handle)) { 1276 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1277 update_page_tag_ref(handle, &ref); 1278 put_page_tag_ref(handle); 1279 } 1280 } 1281 1282 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1283 { 1284 if (mem_alloc_profiling_enabled()) 1285 __pgalloc_tag_sub(page, nr); 1286 } 1287 1288 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */ 1289 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) 1290 { 1291 if (tag) 1292 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1293 } 1294 1295 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1296 1297 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1298 unsigned int nr) {} 1299 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1300 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} 1301 1302 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1303 1304 __always_inline bool free_pages_prepare(struct page *page, 1305 unsigned int order) 1306 { 1307 int bad = 0; 1308 bool skip_kasan_poison = should_skip_kasan_poison(page); 1309 bool init = want_init_on_free(); 1310 bool compound = PageCompound(page); 1311 struct folio *folio = page_folio(page); 1312 1313 VM_BUG_ON_PAGE(PageTail(page), page); 1314 1315 trace_mm_page_free(page, order); 1316 kmsan_free_page(page, order); 1317 1318 if (memcg_kmem_online() && PageMemcgKmem(page)) 1319 __memcg_kmem_uncharge_page(page, order); 1320 1321 /* 1322 * In rare cases, when truncation or holepunching raced with 1323 * munlock after VM_LOCKED was cleared, Mlocked may still be 1324 * found set here. This does not indicate a problem, unless 1325 * "unevictable_pgs_cleared" appears worryingly large. 1326 */ 1327 if (unlikely(folio_test_mlocked(folio))) { 1328 long nr_pages = folio_nr_pages(folio); 1329 1330 __folio_clear_mlocked(folio); 1331 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1332 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1333 } 1334 1335 if (unlikely(PageHWPoison(page)) && !order) { 1336 /* Do not let hwpoison pages hit pcplists/buddy */ 1337 reset_page_owner(page, order); 1338 page_table_check_free(page, order); 1339 pgalloc_tag_sub(page, 1 << order); 1340 1341 /* 1342 * The page is isolated and accounted for. 1343 * Mark the codetag as empty to avoid accounting error 1344 * when the page is freed by unpoison_memory(). 1345 */ 1346 clear_page_tag_ref(page); 1347 return false; 1348 } 1349 1350 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1351 1352 /* 1353 * Check tail pages before head page information is cleared to 1354 * avoid checking PageCompound for order-0 pages. 1355 */ 1356 if (unlikely(order)) { 1357 int i; 1358 1359 if (compound) { 1360 page[1].flags.f &= ~PAGE_FLAGS_SECOND; 1361 #ifdef NR_PAGES_IN_LARGE_FOLIO 1362 folio->_nr_pages = 0; 1363 #endif 1364 } 1365 for (i = 1; i < (1 << order); i++) { 1366 if (compound) 1367 bad += free_tail_page_prepare(page, page + i); 1368 if (is_check_pages_enabled()) { 1369 if (free_page_is_bad(page + i)) { 1370 bad++; 1371 continue; 1372 } 1373 } 1374 (page + i)->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1375 } 1376 } 1377 if (folio_test_anon(folio)) { 1378 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1379 folio->mapping = NULL; 1380 } 1381 if (unlikely(page_has_type(page))) 1382 /* Reset the page_type (which overlays _mapcount) */ 1383 page->page_type = UINT_MAX; 1384 1385 if (is_check_pages_enabled()) { 1386 if (free_page_is_bad(page)) 1387 bad++; 1388 if (bad) 1389 return false; 1390 } 1391 1392 page_cpupid_reset_last(page); 1393 page->flags.f &= ~PAGE_FLAGS_CHECK_AT_PREP; 1394 reset_page_owner(page, order); 1395 page_table_check_free(page, order); 1396 pgalloc_tag_sub(page, 1 << order); 1397 1398 if (!PageHighMem(page)) { 1399 debug_check_no_locks_freed(page_address(page), 1400 PAGE_SIZE << order); 1401 debug_check_no_obj_freed(page_address(page), 1402 PAGE_SIZE << order); 1403 } 1404 1405 kernel_poison_pages(page, 1 << order); 1406 1407 /* 1408 * As memory initialization might be integrated into KASAN, 1409 * KASAN poisoning and memory initialization code must be 1410 * kept together to avoid discrepancies in behavior. 1411 * 1412 * With hardware tag-based KASAN, memory tags must be set before the 1413 * page becomes unavailable via debug_pagealloc or arch_free_page. 1414 */ 1415 if (!skip_kasan_poison) { 1416 kasan_poison_pages(page, order, init); 1417 1418 /* Memory is already initialized if KASAN did it internally. */ 1419 if (kasan_has_integrated_init()) 1420 init = false; 1421 } 1422 if (init) 1423 kernel_init_pages(page, 1 << order); 1424 1425 /* 1426 * arch_free_page() can make the page's contents inaccessible. s390 1427 * does this. So nothing which can access the page's contents should 1428 * happen after this. 1429 */ 1430 arch_free_page(page, order); 1431 1432 debug_pagealloc_unmap_pages(page, 1 << order); 1433 1434 return true; 1435 } 1436 1437 /* 1438 * Frees a number of pages from the PCP lists 1439 * Assumes all pages on list are in same zone. 1440 * count is the number of pages to free. 1441 */ 1442 static void free_pcppages_bulk(struct zone *zone, int count, 1443 struct per_cpu_pages *pcp, 1444 int pindex) 1445 { 1446 unsigned long flags; 1447 unsigned int order; 1448 struct page *page; 1449 1450 /* 1451 * Ensure proper count is passed which otherwise would stuck in the 1452 * below while (list_empty(list)) loop. 1453 */ 1454 count = min(pcp->count, count); 1455 1456 /* Ensure requested pindex is drained first. */ 1457 pindex = pindex - 1; 1458 1459 spin_lock_irqsave(&zone->lock, flags); 1460 1461 while (count > 0) { 1462 struct list_head *list; 1463 int nr_pages; 1464 1465 /* Remove pages from lists in a round-robin fashion. */ 1466 do { 1467 if (++pindex > NR_PCP_LISTS - 1) 1468 pindex = 0; 1469 list = &pcp->lists[pindex]; 1470 } while (list_empty(list)); 1471 1472 order = pindex_to_order(pindex); 1473 nr_pages = 1 << order; 1474 do { 1475 unsigned long pfn; 1476 int mt; 1477 1478 page = list_last_entry(list, struct page, pcp_list); 1479 pfn = page_to_pfn(page); 1480 mt = get_pfnblock_migratetype(page, pfn); 1481 1482 /* must delete to avoid corrupting pcp list */ 1483 list_del(&page->pcp_list); 1484 count -= nr_pages; 1485 pcp->count -= nr_pages; 1486 1487 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1488 trace_mm_page_pcpu_drain(page, order, mt); 1489 } while (count > 0 && !list_empty(list)); 1490 } 1491 1492 spin_unlock_irqrestore(&zone->lock, flags); 1493 } 1494 1495 /* Split a multi-block free page into its individual pageblocks. */ 1496 static void split_large_buddy(struct zone *zone, struct page *page, 1497 unsigned long pfn, int order, fpi_t fpi) 1498 { 1499 unsigned long end = pfn + (1 << order); 1500 1501 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1502 /* Caller removed page from freelist, buddy info cleared! */ 1503 VM_WARN_ON_ONCE(PageBuddy(page)); 1504 1505 if (order > pageblock_order) 1506 order = pageblock_order; 1507 1508 do { 1509 int mt = get_pfnblock_migratetype(page, pfn); 1510 1511 __free_one_page(page, pfn, zone, order, mt, fpi); 1512 pfn += 1 << order; 1513 if (pfn == end) 1514 break; 1515 page = pfn_to_page(pfn); 1516 } while (1); 1517 } 1518 1519 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1520 unsigned int order) 1521 { 1522 /* Remember the order */ 1523 page->private = order; 1524 /* Add the page to the free list */ 1525 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1526 } 1527 1528 static void free_one_page(struct zone *zone, struct page *page, 1529 unsigned long pfn, unsigned int order, 1530 fpi_t fpi_flags) 1531 { 1532 struct llist_head *llhead; 1533 unsigned long flags; 1534 1535 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1536 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1537 add_page_to_zone_llist(zone, page, order); 1538 return; 1539 } 1540 } else { 1541 spin_lock_irqsave(&zone->lock, flags); 1542 } 1543 1544 /* The lock succeeded. Process deferred pages. */ 1545 llhead = &zone->trylock_free_pages; 1546 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1547 struct llist_node *llnode; 1548 struct page *p, *tmp; 1549 1550 llnode = llist_del_all(llhead); 1551 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1552 unsigned int p_order = p->private; 1553 1554 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1555 __count_vm_events(PGFREE, 1 << p_order); 1556 } 1557 } 1558 split_large_buddy(zone, page, pfn, order, fpi_flags); 1559 spin_unlock_irqrestore(&zone->lock, flags); 1560 1561 __count_vm_events(PGFREE, 1 << order); 1562 } 1563 1564 static void __free_pages_ok(struct page *page, unsigned int order, 1565 fpi_t fpi_flags) 1566 { 1567 unsigned long pfn = page_to_pfn(page); 1568 struct zone *zone = page_zone(page); 1569 1570 if (free_pages_prepare(page, order)) 1571 free_one_page(zone, page, pfn, order, fpi_flags); 1572 } 1573 1574 void __meminit __free_pages_core(struct page *page, unsigned int order, 1575 enum meminit_context context) 1576 { 1577 unsigned int nr_pages = 1 << order; 1578 struct page *p = page; 1579 unsigned int loop; 1580 1581 /* 1582 * When initializing the memmap, __init_single_page() sets the refcount 1583 * of all pages to 1 ("allocated"/"not free"). We have to set the 1584 * refcount of all involved pages to 0. 1585 * 1586 * Note that hotplugged memory pages are initialized to PageOffline(). 1587 * Pages freed from memblock might be marked as reserved. 1588 */ 1589 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1590 unlikely(context == MEMINIT_HOTPLUG)) { 1591 for (loop = 0; loop < nr_pages; loop++, p++) { 1592 VM_WARN_ON_ONCE(PageReserved(p)); 1593 __ClearPageOffline(p); 1594 set_page_count(p, 0); 1595 } 1596 1597 adjust_managed_page_count(page, nr_pages); 1598 } else { 1599 for (loop = 0; loop < nr_pages; loop++, p++) { 1600 __ClearPageReserved(p); 1601 set_page_count(p, 0); 1602 } 1603 1604 /* memblock adjusts totalram_pages() manually. */ 1605 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1606 } 1607 1608 if (page_contains_unaccepted(page, order)) { 1609 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1610 return; 1611 1612 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1613 } 1614 1615 /* 1616 * Bypass PCP and place fresh pages right to the tail, primarily 1617 * relevant for memory onlining. 1618 */ 1619 __free_pages_ok(page, order, FPI_TO_TAIL); 1620 } 1621 1622 /* 1623 * Check that the whole (or subset of) a pageblock given by the interval of 1624 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1625 * with the migration of free compaction scanner. 1626 * 1627 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1628 * 1629 * It's possible on some configurations to have a setup like node0 node1 node0 1630 * i.e. it's possible that all pages within a zones range of pages do not 1631 * belong to a single zone. We assume that a border between node0 and node1 1632 * can occur within a single pageblock, but not a node0 node1 node0 1633 * interleaving within a single pageblock. It is therefore sufficient to check 1634 * the first and last page of a pageblock and avoid checking each individual 1635 * page in a pageblock. 1636 * 1637 * Note: the function may return non-NULL struct page even for a page block 1638 * which contains a memory hole (i.e. there is no physical memory for a subset 1639 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1640 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1641 * even though the start pfn is online and valid. This should be safe most of 1642 * the time because struct pages are still initialized via init_unavailable_range() 1643 * and pfn walkers shouldn't touch any physical memory range for which they do 1644 * not recognize any specific metadata in struct pages. 1645 */ 1646 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1647 unsigned long end_pfn, struct zone *zone) 1648 { 1649 struct page *start_page; 1650 struct page *end_page; 1651 1652 /* end_pfn is one past the range we are checking */ 1653 end_pfn--; 1654 1655 if (!pfn_valid(end_pfn)) 1656 return NULL; 1657 1658 start_page = pfn_to_online_page(start_pfn); 1659 if (!start_page) 1660 return NULL; 1661 1662 if (page_zone(start_page) != zone) 1663 return NULL; 1664 1665 end_page = pfn_to_page(end_pfn); 1666 1667 /* This gives a shorter code than deriving page_zone(end_page) */ 1668 if (page_zone_id(start_page) != page_zone_id(end_page)) 1669 return NULL; 1670 1671 return start_page; 1672 } 1673 1674 /* 1675 * The order of subdivision here is critical for the IO subsystem. 1676 * Please do not alter this order without good reasons and regression 1677 * testing. Specifically, as large blocks of memory are subdivided, 1678 * the order in which smaller blocks are delivered depends on the order 1679 * they're subdivided in this function. This is the primary factor 1680 * influencing the order in which pages are delivered to the IO 1681 * subsystem according to empirical testing, and this is also justified 1682 * by considering the behavior of a buddy system containing a single 1683 * large block of memory acted on by a series of small allocations. 1684 * This behavior is a critical factor in sglist merging's success. 1685 * 1686 * -- nyc 1687 */ 1688 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1689 int high, int migratetype) 1690 { 1691 unsigned int size = 1 << high; 1692 unsigned int nr_added = 0; 1693 1694 while (high > low) { 1695 high--; 1696 size >>= 1; 1697 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1698 1699 /* 1700 * Mark as guard pages (or page), that will allow to 1701 * merge back to allocator when buddy will be freed. 1702 * Corresponding page table entries will not be touched, 1703 * pages will stay not present in virtual address space 1704 */ 1705 if (set_page_guard(zone, &page[size], high)) 1706 continue; 1707 1708 __add_to_free_list(&page[size], zone, high, migratetype, false); 1709 set_buddy_order(&page[size], high); 1710 nr_added += size; 1711 } 1712 1713 return nr_added; 1714 } 1715 1716 static __always_inline void page_del_and_expand(struct zone *zone, 1717 struct page *page, int low, 1718 int high, int migratetype) 1719 { 1720 int nr_pages = 1 << high; 1721 1722 __del_page_from_free_list(page, zone, high, migratetype); 1723 nr_pages -= expand(zone, page, low, high, migratetype); 1724 account_freepages(zone, -nr_pages, migratetype); 1725 } 1726 1727 static void check_new_page_bad(struct page *page) 1728 { 1729 if (unlikely(PageHWPoison(page))) { 1730 /* Don't complain about hwpoisoned pages */ 1731 if (PageBuddy(page)) 1732 __ClearPageBuddy(page); 1733 return; 1734 } 1735 1736 bad_page(page, 1737 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1738 } 1739 1740 /* 1741 * This page is about to be returned from the page allocator 1742 */ 1743 static bool check_new_page(struct page *page) 1744 { 1745 if (likely(page_expected_state(page, 1746 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1747 return false; 1748 1749 check_new_page_bad(page); 1750 return true; 1751 } 1752 1753 static inline bool check_new_pages(struct page *page, unsigned int order) 1754 { 1755 if (is_check_pages_enabled()) { 1756 for (int i = 0; i < (1 << order); i++) { 1757 struct page *p = page + i; 1758 1759 if (check_new_page(p)) 1760 return true; 1761 } 1762 } 1763 1764 return false; 1765 } 1766 1767 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1768 { 1769 /* Don't skip if a software KASAN mode is enabled. */ 1770 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1771 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1772 return false; 1773 1774 /* Skip, if hardware tag-based KASAN is not enabled. */ 1775 if (!kasan_hw_tags_enabled()) 1776 return true; 1777 1778 /* 1779 * With hardware tag-based KASAN enabled, skip if this has been 1780 * requested via __GFP_SKIP_KASAN. 1781 */ 1782 return flags & __GFP_SKIP_KASAN; 1783 } 1784 1785 static inline bool should_skip_init(gfp_t flags) 1786 { 1787 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1788 if (!kasan_hw_tags_enabled()) 1789 return false; 1790 1791 /* For hardware tag-based KASAN, skip if requested. */ 1792 return (flags & __GFP_SKIP_ZERO); 1793 } 1794 1795 inline void post_alloc_hook(struct page *page, unsigned int order, 1796 gfp_t gfp_flags) 1797 { 1798 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1799 !should_skip_init(gfp_flags); 1800 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1801 int i; 1802 1803 set_page_private(page, 0); 1804 1805 arch_alloc_page(page, order); 1806 debug_pagealloc_map_pages(page, 1 << order); 1807 1808 /* 1809 * Page unpoisoning must happen before memory initialization. 1810 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1811 * allocations and the page unpoisoning code will complain. 1812 */ 1813 kernel_unpoison_pages(page, 1 << order); 1814 1815 /* 1816 * As memory initialization might be integrated into KASAN, 1817 * KASAN unpoisoning and memory initializion code must be 1818 * kept together to avoid discrepancies in behavior. 1819 */ 1820 1821 /* 1822 * If memory tags should be zeroed 1823 * (which happens only when memory should be initialized as well). 1824 */ 1825 if (zero_tags) 1826 init = !tag_clear_highpages(page, 1 << order); 1827 1828 if (!should_skip_kasan_unpoison(gfp_flags) && 1829 kasan_unpoison_pages(page, order, init)) { 1830 /* Take note that memory was initialized by KASAN. */ 1831 if (kasan_has_integrated_init()) 1832 init = false; 1833 } else { 1834 /* 1835 * If memory tags have not been set by KASAN, reset the page 1836 * tags to ensure page_address() dereferencing does not fault. 1837 */ 1838 for (i = 0; i != 1 << order; ++i) 1839 page_kasan_tag_reset(page + i); 1840 } 1841 /* If memory is still not initialized, initialize it now. */ 1842 if (init) 1843 kernel_init_pages(page, 1 << order); 1844 1845 set_page_owner(page, order, gfp_flags); 1846 page_table_check_alloc(page, order); 1847 pgalloc_tag_add(page, current, 1 << order); 1848 } 1849 1850 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1851 unsigned int alloc_flags) 1852 { 1853 post_alloc_hook(page, order, gfp_flags); 1854 1855 if (order && (gfp_flags & __GFP_COMP)) 1856 prep_compound_page(page, order); 1857 1858 /* 1859 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1860 * allocate the page. The expectation is that the caller is taking 1861 * steps that will free more memory. The caller should avoid the page 1862 * being used for !PFMEMALLOC purposes. 1863 */ 1864 if (alloc_flags & ALLOC_NO_WATERMARKS) 1865 set_page_pfmemalloc(page); 1866 else 1867 clear_page_pfmemalloc(page); 1868 } 1869 1870 /* 1871 * Go through the free lists for the given migratetype and remove 1872 * the smallest available page from the freelists 1873 */ 1874 static __always_inline 1875 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1876 int migratetype) 1877 { 1878 unsigned int current_order; 1879 struct free_area *area; 1880 struct page *page; 1881 1882 /* Find a page of the appropriate size in the preferred list */ 1883 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1884 area = &(zone->free_area[current_order]); 1885 page = get_page_from_free_area(area, migratetype); 1886 if (!page) 1887 continue; 1888 1889 page_del_and_expand(zone, page, order, current_order, 1890 migratetype); 1891 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1892 pcp_allowed_order(order) && 1893 migratetype < MIGRATE_PCPTYPES); 1894 return page; 1895 } 1896 1897 return NULL; 1898 } 1899 1900 1901 /* 1902 * This array describes the order lists are fallen back to when 1903 * the free lists for the desirable migrate type are depleted 1904 * 1905 * The other migratetypes do not have fallbacks. 1906 */ 1907 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1908 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1909 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1910 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1911 }; 1912 1913 #ifdef CONFIG_CMA 1914 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1915 unsigned int order) 1916 { 1917 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1918 } 1919 #else 1920 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1921 unsigned int order) { return NULL; } 1922 #endif 1923 1924 /* 1925 * Move all free pages of a block to new type's freelist. Caller needs to 1926 * change the block type. 1927 */ 1928 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1929 int old_mt, int new_mt) 1930 { 1931 struct page *page; 1932 unsigned long pfn, end_pfn; 1933 unsigned int order; 1934 int pages_moved = 0; 1935 1936 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1937 end_pfn = pageblock_end_pfn(start_pfn); 1938 1939 for (pfn = start_pfn; pfn < end_pfn;) { 1940 page = pfn_to_page(pfn); 1941 if (!PageBuddy(page)) { 1942 pfn++; 1943 continue; 1944 } 1945 1946 /* Make sure we are not inadvertently changing nodes */ 1947 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1948 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1949 1950 order = buddy_order(page); 1951 1952 move_to_free_list(page, zone, order, old_mt, new_mt); 1953 1954 pfn += 1 << order; 1955 pages_moved += 1 << order; 1956 } 1957 1958 return pages_moved; 1959 } 1960 1961 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1962 unsigned long *start_pfn, 1963 int *num_free, int *num_movable) 1964 { 1965 unsigned long pfn, start, end; 1966 1967 pfn = page_to_pfn(page); 1968 start = pageblock_start_pfn(pfn); 1969 end = pageblock_end_pfn(pfn); 1970 1971 /* 1972 * The caller only has the lock for @zone, don't touch ranges 1973 * that straddle into other zones. While we could move part of 1974 * the range that's inside the zone, this call is usually 1975 * accompanied by other operations such as migratetype updates 1976 * which also should be locked. 1977 */ 1978 if (!zone_spans_pfn(zone, start)) 1979 return false; 1980 if (!zone_spans_pfn(zone, end - 1)) 1981 return false; 1982 1983 *start_pfn = start; 1984 1985 if (num_free) { 1986 *num_free = 0; 1987 *num_movable = 0; 1988 for (pfn = start; pfn < end;) { 1989 page = pfn_to_page(pfn); 1990 if (PageBuddy(page)) { 1991 int nr = 1 << buddy_order(page); 1992 1993 *num_free += nr; 1994 pfn += nr; 1995 continue; 1996 } 1997 /* 1998 * We assume that pages that could be isolated for 1999 * migration are movable. But we don't actually try 2000 * isolating, as that would be expensive. 2001 */ 2002 if (PageLRU(page) || page_has_movable_ops(page)) 2003 (*num_movable)++; 2004 pfn++; 2005 } 2006 } 2007 2008 return true; 2009 } 2010 2011 static int move_freepages_block(struct zone *zone, struct page *page, 2012 int old_mt, int new_mt) 2013 { 2014 unsigned long start_pfn; 2015 int res; 2016 2017 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2018 return -1; 2019 2020 res = __move_freepages_block(zone, start_pfn, old_mt, new_mt); 2021 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 2022 2023 return res; 2024 2025 } 2026 2027 #ifdef CONFIG_MEMORY_ISOLATION 2028 /* Look for a buddy that straddles start_pfn */ 2029 static unsigned long find_large_buddy(unsigned long start_pfn) 2030 { 2031 /* 2032 * If start_pfn is not an order-0 PageBuddy, next PageBuddy containing 2033 * start_pfn has minimal order of __ffs(start_pfn) + 1. Start checking 2034 * the order with __ffs(start_pfn). If start_pfn is order-0 PageBuddy, 2035 * the starting order does not matter. 2036 */ 2037 int order = start_pfn ? __ffs(start_pfn) : MAX_PAGE_ORDER; 2038 struct page *page; 2039 unsigned long pfn = start_pfn; 2040 2041 while (!PageBuddy(page = pfn_to_page(pfn))) { 2042 /* Nothing found */ 2043 if (++order > MAX_PAGE_ORDER) 2044 return start_pfn; 2045 pfn &= ~0UL << order; 2046 } 2047 2048 /* 2049 * Found a preceding buddy, but does it straddle? 2050 */ 2051 if (pfn + (1 << buddy_order(page)) > start_pfn) 2052 return pfn; 2053 2054 /* Nothing found */ 2055 return start_pfn; 2056 } 2057 2058 static inline void toggle_pageblock_isolate(struct page *page, bool isolate) 2059 { 2060 if (isolate) 2061 set_pageblock_isolate(page); 2062 else 2063 clear_pageblock_isolate(page); 2064 } 2065 2066 /** 2067 * __move_freepages_block_isolate - move free pages in block for page isolation 2068 * @zone: the zone 2069 * @page: the pageblock page 2070 * @isolate: to isolate the given pageblock or unisolate it 2071 * 2072 * This is similar to move_freepages_block(), but handles the special 2073 * case encountered in page isolation, where the block of interest 2074 * might be part of a larger buddy spanning multiple pageblocks. 2075 * 2076 * Unlike the regular page allocator path, which moves pages while 2077 * stealing buddies off the freelist, page isolation is interested in 2078 * arbitrary pfn ranges that may have overlapping buddies on both ends. 2079 * 2080 * This function handles that. Straddling buddies are split into 2081 * individual pageblocks. Only the block of interest is moved. 2082 * 2083 * Returns %true if pages could be moved, %false otherwise. 2084 */ 2085 static bool __move_freepages_block_isolate(struct zone *zone, 2086 struct page *page, bool isolate) 2087 { 2088 unsigned long start_pfn, buddy_pfn; 2089 int from_mt; 2090 int to_mt; 2091 struct page *buddy; 2092 2093 if (isolate == get_pageblock_isolate(page)) { 2094 VM_WARN_ONCE(1, "%s a pageblock that is already in that state", 2095 isolate ? "Isolate" : "Unisolate"); 2096 return false; 2097 } 2098 2099 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 2100 return false; 2101 2102 /* No splits needed if buddies can't span multiple blocks */ 2103 if (pageblock_order == MAX_PAGE_ORDER) 2104 goto move; 2105 2106 buddy_pfn = find_large_buddy(start_pfn); 2107 buddy = pfn_to_page(buddy_pfn); 2108 /* We're a part of a larger buddy */ 2109 if (PageBuddy(buddy) && buddy_order(buddy) > pageblock_order) { 2110 int order = buddy_order(buddy); 2111 2112 del_page_from_free_list(buddy, zone, order, 2113 get_pfnblock_migratetype(buddy, buddy_pfn)); 2114 toggle_pageblock_isolate(page, isolate); 2115 split_large_buddy(zone, buddy, buddy_pfn, order, FPI_NONE); 2116 return true; 2117 } 2118 2119 move: 2120 /* Use MIGRATETYPE_MASK to get non-isolate migratetype */ 2121 if (isolate) { 2122 from_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2123 MIGRATETYPE_MASK); 2124 to_mt = MIGRATE_ISOLATE; 2125 } else { 2126 from_mt = MIGRATE_ISOLATE; 2127 to_mt = __get_pfnblock_flags_mask(page, page_to_pfn(page), 2128 MIGRATETYPE_MASK); 2129 } 2130 2131 __move_freepages_block(zone, start_pfn, from_mt, to_mt); 2132 toggle_pageblock_isolate(pfn_to_page(start_pfn), isolate); 2133 2134 return true; 2135 } 2136 2137 bool pageblock_isolate_and_move_free_pages(struct zone *zone, struct page *page) 2138 { 2139 return __move_freepages_block_isolate(zone, page, true); 2140 } 2141 2142 bool pageblock_unisolate_and_move_free_pages(struct zone *zone, struct page *page) 2143 { 2144 return __move_freepages_block_isolate(zone, page, false); 2145 } 2146 2147 #endif /* CONFIG_MEMORY_ISOLATION */ 2148 2149 static void change_pageblock_range(struct page *pageblock_page, 2150 int start_order, int migratetype) 2151 { 2152 int nr_pageblocks = 1 << (start_order - pageblock_order); 2153 2154 while (nr_pageblocks--) { 2155 set_pageblock_migratetype(pageblock_page, migratetype); 2156 pageblock_page += pageblock_nr_pages; 2157 } 2158 } 2159 2160 static inline bool boost_watermark(struct zone *zone) 2161 { 2162 unsigned long max_boost; 2163 2164 if (!watermark_boost_factor) 2165 return false; 2166 /* 2167 * Don't bother in zones that are unlikely to produce results. 2168 * On small machines, including kdump capture kernels running 2169 * in a small area, boosting the watermark can cause an out of 2170 * memory situation immediately. 2171 */ 2172 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2173 return false; 2174 2175 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2176 watermark_boost_factor, 10000); 2177 2178 /* 2179 * high watermark may be uninitialised if fragmentation occurs 2180 * very early in boot so do not boost. We do not fall 2181 * through and boost by pageblock_nr_pages as failing 2182 * allocations that early means that reclaim is not going 2183 * to help and it may even be impossible to reclaim the 2184 * boosted watermark resulting in a hang. 2185 */ 2186 if (!max_boost) 2187 return false; 2188 2189 max_boost = max(pageblock_nr_pages, max_boost); 2190 2191 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2192 max_boost); 2193 2194 return true; 2195 } 2196 2197 /* 2198 * When we are falling back to another migratetype during allocation, should we 2199 * try to claim an entire block to satisfy further allocations, instead of 2200 * polluting multiple pageblocks? 2201 */ 2202 static bool should_try_claim_block(unsigned int order, int start_mt) 2203 { 2204 /* 2205 * Leaving this order check is intended, although there is 2206 * relaxed order check in next check. The reason is that 2207 * we can actually claim the whole pageblock if this condition met, 2208 * but, below check doesn't guarantee it and that is just heuristic 2209 * so could be changed anytime. 2210 */ 2211 if (order >= pageblock_order) 2212 return true; 2213 2214 /* 2215 * Above a certain threshold, always try to claim, as it's likely there 2216 * will be more free pages in the pageblock. 2217 */ 2218 if (order >= pageblock_order / 2) 2219 return true; 2220 2221 /* 2222 * Unmovable/reclaimable allocations would cause permanent 2223 * fragmentations if they fell back to allocating from a movable block 2224 * (polluting it), so we try to claim the whole block regardless of the 2225 * allocation size. Later movable allocations can always steal from this 2226 * block, which is less problematic. 2227 */ 2228 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2229 return true; 2230 2231 if (page_group_by_mobility_disabled) 2232 return true; 2233 2234 /* 2235 * Movable pages won't cause permanent fragmentation, so when you alloc 2236 * small pages, we just need to temporarily steal unmovable or 2237 * reclaimable pages that are closest to the request size. After a 2238 * while, memory compaction may occur to form large contiguous pages, 2239 * and the next movable allocation may not need to steal. 2240 */ 2241 return false; 2242 } 2243 2244 /* 2245 * Check whether there is a suitable fallback freepage with requested order. 2246 * If claimable is true, this function returns fallback_mt only if 2247 * we would do this whole-block claiming. This would help to reduce 2248 * fragmentation due to mixed migratetype pages in one pageblock. 2249 */ 2250 int find_suitable_fallback(struct free_area *area, unsigned int order, 2251 int migratetype, bool claimable) 2252 { 2253 int i; 2254 2255 if (claimable && !should_try_claim_block(order, migratetype)) 2256 return -2; 2257 2258 if (area->nr_free == 0) 2259 return -1; 2260 2261 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2262 int fallback_mt = fallbacks[migratetype][i]; 2263 2264 if (!free_area_empty(area, fallback_mt)) 2265 return fallback_mt; 2266 } 2267 2268 return -1; 2269 } 2270 2271 /* 2272 * This function implements actual block claiming behaviour. If order is large 2273 * enough, we can claim the whole pageblock for the requested migratetype. If 2274 * not, we check the pageblock for constituent pages; if at least half of the 2275 * pages are free or compatible, we can still claim the whole block, so pages 2276 * freed in the future will be put on the correct free list. 2277 */ 2278 static struct page * 2279 try_to_claim_block(struct zone *zone, struct page *page, 2280 int current_order, int order, int start_type, 2281 int block_type, unsigned int alloc_flags) 2282 { 2283 int free_pages, movable_pages, alike_pages; 2284 unsigned long start_pfn; 2285 2286 /* Take ownership for orders >= pageblock_order */ 2287 if (current_order >= pageblock_order) { 2288 unsigned int nr_added; 2289 2290 del_page_from_free_list(page, zone, current_order, block_type); 2291 change_pageblock_range(page, current_order, start_type); 2292 nr_added = expand(zone, page, order, current_order, start_type); 2293 account_freepages(zone, nr_added, start_type); 2294 return page; 2295 } 2296 2297 /* 2298 * Boost watermarks to increase reclaim pressure to reduce the 2299 * likelihood of future fallbacks. Wake kswapd now as the node 2300 * may be balanced overall and kswapd will not wake naturally. 2301 */ 2302 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2303 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2304 2305 /* moving whole block can fail due to zone boundary conditions */ 2306 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2307 &movable_pages)) 2308 return NULL; 2309 2310 /* 2311 * Determine how many pages are compatible with our allocation. 2312 * For movable allocation, it's the number of movable pages which 2313 * we just obtained. For other types it's a bit more tricky. 2314 */ 2315 if (start_type == MIGRATE_MOVABLE) { 2316 alike_pages = movable_pages; 2317 } else { 2318 /* 2319 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2320 * to MOVABLE pageblock, consider all non-movable pages as 2321 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2322 * vice versa, be conservative since we can't distinguish the 2323 * exact migratetype of non-movable pages. 2324 */ 2325 if (block_type == MIGRATE_MOVABLE) 2326 alike_pages = pageblock_nr_pages 2327 - (free_pages + movable_pages); 2328 else 2329 alike_pages = 0; 2330 } 2331 /* 2332 * If a sufficient number of pages in the block are either free or of 2333 * compatible migratability as our allocation, claim the whole block. 2334 */ 2335 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2336 page_group_by_mobility_disabled) { 2337 __move_freepages_block(zone, start_pfn, block_type, start_type); 2338 set_pageblock_migratetype(pfn_to_page(start_pfn), start_type); 2339 return __rmqueue_smallest(zone, order, start_type); 2340 } 2341 2342 return NULL; 2343 } 2344 2345 /* 2346 * Try to allocate from some fallback migratetype by claiming the entire block, 2347 * i.e. converting it to the allocation's start migratetype. 2348 * 2349 * The use of signed ints for order and current_order is a deliberate 2350 * deviation from the rest of this file, to make the for loop 2351 * condition simpler. 2352 */ 2353 static __always_inline struct page * 2354 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2355 unsigned int alloc_flags) 2356 { 2357 struct free_area *area; 2358 int current_order; 2359 int min_order = order; 2360 struct page *page; 2361 int fallback_mt; 2362 2363 /* 2364 * Do not steal pages from freelists belonging to other pageblocks 2365 * i.e. orders < pageblock_order. If there are no local zones free, 2366 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2367 */ 2368 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2369 min_order = pageblock_order; 2370 2371 /* 2372 * Find the largest available free page in the other list. This roughly 2373 * approximates finding the pageblock with the most free pages, which 2374 * would be too costly to do exactly. 2375 */ 2376 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2377 --current_order) { 2378 area = &(zone->free_area[current_order]); 2379 fallback_mt = find_suitable_fallback(area, current_order, 2380 start_migratetype, true); 2381 2382 /* No block in that order */ 2383 if (fallback_mt == -1) 2384 continue; 2385 2386 /* Advanced into orders too low to claim, abort */ 2387 if (fallback_mt == -2) 2388 break; 2389 2390 page = get_page_from_free_area(area, fallback_mt); 2391 page = try_to_claim_block(zone, page, current_order, order, 2392 start_migratetype, fallback_mt, 2393 alloc_flags); 2394 if (page) { 2395 trace_mm_page_alloc_extfrag(page, order, current_order, 2396 start_migratetype, fallback_mt); 2397 return page; 2398 } 2399 } 2400 2401 return NULL; 2402 } 2403 2404 /* 2405 * Try to steal a single page from some fallback migratetype. Leave the rest of 2406 * the block as its current migratetype, potentially causing fragmentation. 2407 */ 2408 static __always_inline struct page * 2409 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2410 { 2411 struct free_area *area; 2412 int current_order; 2413 struct page *page; 2414 int fallback_mt; 2415 2416 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2417 area = &(zone->free_area[current_order]); 2418 fallback_mt = find_suitable_fallback(area, current_order, 2419 start_migratetype, false); 2420 if (fallback_mt == -1) 2421 continue; 2422 2423 page = get_page_from_free_area(area, fallback_mt); 2424 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2425 trace_mm_page_alloc_extfrag(page, order, current_order, 2426 start_migratetype, fallback_mt); 2427 return page; 2428 } 2429 2430 return NULL; 2431 } 2432 2433 enum rmqueue_mode { 2434 RMQUEUE_NORMAL, 2435 RMQUEUE_CMA, 2436 RMQUEUE_CLAIM, 2437 RMQUEUE_STEAL, 2438 }; 2439 2440 /* 2441 * Do the hard work of removing an element from the buddy allocator. 2442 * Call me with the zone->lock already held. 2443 */ 2444 static __always_inline struct page * 2445 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2446 unsigned int alloc_flags, enum rmqueue_mode *mode) 2447 { 2448 struct page *page; 2449 2450 if (IS_ENABLED(CONFIG_CMA)) { 2451 /* 2452 * Balance movable allocations between regular and CMA areas by 2453 * allocating from CMA when over half of the zone's free memory 2454 * is in the CMA area. 2455 */ 2456 if (alloc_flags & ALLOC_CMA && 2457 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2458 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2459 page = __rmqueue_cma_fallback(zone, order); 2460 if (page) 2461 return page; 2462 } 2463 } 2464 2465 /* 2466 * First try the freelists of the requested migratetype, then try 2467 * fallbacks modes with increasing levels of fragmentation risk. 2468 * 2469 * The fallback logic is expensive and rmqueue_bulk() calls in 2470 * a loop with the zone->lock held, meaning the freelists are 2471 * not subject to any outside changes. Remember in *mode where 2472 * we found pay dirt, to save us the search on the next call. 2473 */ 2474 switch (*mode) { 2475 case RMQUEUE_NORMAL: 2476 page = __rmqueue_smallest(zone, order, migratetype); 2477 if (page) 2478 return page; 2479 fallthrough; 2480 case RMQUEUE_CMA: 2481 if (alloc_flags & ALLOC_CMA) { 2482 page = __rmqueue_cma_fallback(zone, order); 2483 if (page) { 2484 *mode = RMQUEUE_CMA; 2485 return page; 2486 } 2487 } 2488 fallthrough; 2489 case RMQUEUE_CLAIM: 2490 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2491 if (page) { 2492 /* Replenished preferred freelist, back to normal mode. */ 2493 *mode = RMQUEUE_NORMAL; 2494 return page; 2495 } 2496 fallthrough; 2497 case RMQUEUE_STEAL: 2498 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2499 page = __rmqueue_steal(zone, order, migratetype); 2500 if (page) { 2501 *mode = RMQUEUE_STEAL; 2502 return page; 2503 } 2504 } 2505 } 2506 return NULL; 2507 } 2508 2509 /* 2510 * Obtain a specified number of elements from the buddy allocator, all under 2511 * a single hold of the lock, for efficiency. Add them to the supplied list. 2512 * Returns the number of new pages which were placed at *list. 2513 */ 2514 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2515 unsigned long count, struct list_head *list, 2516 int migratetype, unsigned int alloc_flags) 2517 { 2518 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2519 unsigned long flags; 2520 int i; 2521 2522 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2523 if (!spin_trylock_irqsave(&zone->lock, flags)) 2524 return 0; 2525 } else { 2526 spin_lock_irqsave(&zone->lock, flags); 2527 } 2528 for (i = 0; i < count; ++i) { 2529 struct page *page = __rmqueue(zone, order, migratetype, 2530 alloc_flags, &rmqm); 2531 if (unlikely(page == NULL)) 2532 break; 2533 2534 /* 2535 * Split buddy pages returned by expand() are received here in 2536 * physical page order. The page is added to the tail of 2537 * caller's list. From the callers perspective, the linked list 2538 * is ordered by page number under some conditions. This is 2539 * useful for IO devices that can forward direction from the 2540 * head, thus also in the physical page order. This is useful 2541 * for IO devices that can merge IO requests if the physical 2542 * pages are ordered properly. 2543 */ 2544 list_add_tail(&page->pcp_list, list); 2545 } 2546 spin_unlock_irqrestore(&zone->lock, flags); 2547 2548 return i; 2549 } 2550 2551 /* 2552 * Called from the vmstat counter updater to decay the PCP high. 2553 * Return whether there are addition works to do. 2554 */ 2555 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2556 { 2557 int high_min, to_drain, batch; 2558 int todo = 0; 2559 2560 high_min = READ_ONCE(pcp->high_min); 2561 batch = READ_ONCE(pcp->batch); 2562 /* 2563 * Decrease pcp->high periodically to try to free possible 2564 * idle PCP pages. And, avoid to free too many pages to 2565 * control latency. This caps pcp->high decrement too. 2566 */ 2567 if (pcp->high > high_min) { 2568 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2569 pcp->high - (pcp->high >> 3), high_min); 2570 if (pcp->high > high_min) 2571 todo++; 2572 } 2573 2574 to_drain = pcp->count - pcp->high; 2575 if (to_drain > 0) { 2576 spin_lock(&pcp->lock); 2577 free_pcppages_bulk(zone, to_drain, pcp, 0); 2578 spin_unlock(&pcp->lock); 2579 todo++; 2580 } 2581 2582 return todo; 2583 } 2584 2585 #ifdef CONFIG_NUMA 2586 /* 2587 * Called from the vmstat counter updater to drain pagesets of this 2588 * currently executing processor on remote nodes after they have 2589 * expired. 2590 */ 2591 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2592 { 2593 int to_drain, batch; 2594 2595 batch = READ_ONCE(pcp->batch); 2596 to_drain = min(pcp->count, batch); 2597 if (to_drain > 0) { 2598 spin_lock(&pcp->lock); 2599 free_pcppages_bulk(zone, to_drain, pcp, 0); 2600 spin_unlock(&pcp->lock); 2601 } 2602 } 2603 #endif 2604 2605 /* 2606 * Drain pcplists of the indicated processor and zone. 2607 */ 2608 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2609 { 2610 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2611 int count; 2612 2613 do { 2614 spin_lock(&pcp->lock); 2615 count = pcp->count; 2616 if (count) { 2617 int to_drain = min(count, 2618 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2619 2620 free_pcppages_bulk(zone, to_drain, pcp, 0); 2621 count -= to_drain; 2622 } 2623 spin_unlock(&pcp->lock); 2624 } while (count); 2625 } 2626 2627 /* 2628 * Drain pcplists of all zones on the indicated processor. 2629 */ 2630 static void drain_pages(unsigned int cpu) 2631 { 2632 struct zone *zone; 2633 2634 for_each_populated_zone(zone) { 2635 drain_pages_zone(cpu, zone); 2636 } 2637 } 2638 2639 /* 2640 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2641 */ 2642 void drain_local_pages(struct zone *zone) 2643 { 2644 int cpu = smp_processor_id(); 2645 2646 if (zone) 2647 drain_pages_zone(cpu, zone); 2648 else 2649 drain_pages(cpu); 2650 } 2651 2652 /* 2653 * The implementation of drain_all_pages(), exposing an extra parameter to 2654 * drain on all cpus. 2655 * 2656 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2657 * not empty. The check for non-emptiness can however race with a free to 2658 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2659 * that need the guarantee that every CPU has drained can disable the 2660 * optimizing racy check. 2661 */ 2662 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2663 { 2664 int cpu; 2665 2666 /* 2667 * Allocate in the BSS so we won't require allocation in 2668 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2669 */ 2670 static cpumask_t cpus_with_pcps; 2671 2672 /* 2673 * Do not drain if one is already in progress unless it's specific to 2674 * a zone. Such callers are primarily CMA and memory hotplug and need 2675 * the drain to be complete when the call returns. 2676 */ 2677 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2678 if (!zone) 2679 return; 2680 mutex_lock(&pcpu_drain_mutex); 2681 } 2682 2683 /* 2684 * We don't care about racing with CPU hotplug event 2685 * as offline notification will cause the notified 2686 * cpu to drain that CPU pcps and on_each_cpu_mask 2687 * disables preemption as part of its processing 2688 */ 2689 for_each_online_cpu(cpu) { 2690 struct per_cpu_pages *pcp; 2691 struct zone *z; 2692 bool has_pcps = false; 2693 2694 if (force_all_cpus) { 2695 /* 2696 * The pcp.count check is racy, some callers need a 2697 * guarantee that no cpu is missed. 2698 */ 2699 has_pcps = true; 2700 } else if (zone) { 2701 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2702 if (pcp->count) 2703 has_pcps = true; 2704 } else { 2705 for_each_populated_zone(z) { 2706 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2707 if (pcp->count) { 2708 has_pcps = true; 2709 break; 2710 } 2711 } 2712 } 2713 2714 if (has_pcps) 2715 cpumask_set_cpu(cpu, &cpus_with_pcps); 2716 else 2717 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2718 } 2719 2720 for_each_cpu(cpu, &cpus_with_pcps) { 2721 if (zone) 2722 drain_pages_zone(cpu, zone); 2723 else 2724 drain_pages(cpu); 2725 } 2726 2727 mutex_unlock(&pcpu_drain_mutex); 2728 } 2729 2730 /* 2731 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2732 * 2733 * When zone parameter is non-NULL, spill just the single zone's pages. 2734 */ 2735 void drain_all_pages(struct zone *zone) 2736 { 2737 __drain_all_pages(zone, false); 2738 } 2739 2740 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2741 { 2742 int min_nr_free, max_nr_free; 2743 2744 /* Free as much as possible if batch freeing high-order pages. */ 2745 if (unlikely(free_high)) 2746 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2747 2748 /* Check for PCP disabled or boot pageset */ 2749 if (unlikely(high < batch)) 2750 return 1; 2751 2752 /* Leave at least pcp->batch pages on the list */ 2753 min_nr_free = batch; 2754 max_nr_free = high - batch; 2755 2756 /* 2757 * Increase the batch number to the number of the consecutive 2758 * freed pages to reduce zone lock contention. 2759 */ 2760 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2761 2762 return batch; 2763 } 2764 2765 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2766 int batch, bool free_high) 2767 { 2768 int high, high_min, high_max; 2769 2770 high_min = READ_ONCE(pcp->high_min); 2771 high_max = READ_ONCE(pcp->high_max); 2772 high = pcp->high = clamp(pcp->high, high_min, high_max); 2773 2774 if (unlikely(!high)) 2775 return 0; 2776 2777 if (unlikely(free_high)) { 2778 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2779 high_min); 2780 return 0; 2781 } 2782 2783 /* 2784 * If reclaim is active, limit the number of pages that can be 2785 * stored on pcp lists 2786 */ 2787 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2788 int free_count = max_t(int, pcp->free_count, batch); 2789 2790 pcp->high = max(high - free_count, high_min); 2791 return min(batch << 2, pcp->high); 2792 } 2793 2794 if (high_min == high_max) 2795 return high; 2796 2797 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2798 int free_count = max_t(int, pcp->free_count, batch); 2799 2800 pcp->high = max(high - free_count, high_min); 2801 high = max(pcp->count, high_min); 2802 } else if (pcp->count >= high) { 2803 int need_high = pcp->free_count + batch; 2804 2805 /* pcp->high should be large enough to hold batch freed pages */ 2806 if (pcp->high < need_high) 2807 pcp->high = clamp(need_high, high_min, high_max); 2808 } 2809 2810 return high; 2811 } 2812 2813 static void free_frozen_page_commit(struct zone *zone, 2814 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2815 unsigned int order, fpi_t fpi_flags) 2816 { 2817 int high, batch; 2818 int pindex; 2819 bool free_high = false; 2820 2821 /* 2822 * On freeing, reduce the number of pages that are batch allocated. 2823 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2824 * allocations. 2825 */ 2826 pcp->alloc_factor >>= 1; 2827 __count_vm_events(PGFREE, 1 << order); 2828 pindex = order_to_pindex(migratetype, order); 2829 list_add(&page->pcp_list, &pcp->lists[pindex]); 2830 pcp->count += 1 << order; 2831 2832 batch = READ_ONCE(pcp->batch); 2833 /* 2834 * As high-order pages other than THP's stored on PCP can contribute 2835 * to fragmentation, limit the number stored when PCP is heavily 2836 * freeing without allocation. The remainder after bulk freeing 2837 * stops will be drained from vmstat refresh context. 2838 */ 2839 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2840 free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && 2841 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2842 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2843 pcp->count >= batch)); 2844 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2845 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2846 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2847 } 2848 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2849 pcp->free_count += (1 << order); 2850 2851 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2852 /* 2853 * Do not attempt to take a zone lock. Let pcp->count get 2854 * over high mark temporarily. 2855 */ 2856 return; 2857 } 2858 2859 high = nr_pcp_high(pcp, zone, batch, free_high); 2860 if (pcp->count < high) 2861 return; 2862 2863 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2864 pcp, pindex); 2865 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2866 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2867 ZONE_MOVABLE, 0)) { 2868 struct pglist_data *pgdat = zone->zone_pgdat; 2869 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2870 2871 /* 2872 * Assume that memory pressure on this node is gone and may be 2873 * in a reclaimable state. If a memory fallback node exists, 2874 * direct reclaim may not have been triggered, causing a 2875 * 'hopeless node' to stay in that state for a while. Let 2876 * kswapd work again by resetting kswapd_failures. 2877 */ 2878 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES && 2879 next_memory_node(pgdat->node_id) < MAX_NUMNODES) 2880 atomic_set(&pgdat->kswapd_failures, 0); 2881 } 2882 } 2883 2884 /* 2885 * Free a pcp page 2886 */ 2887 static void __free_frozen_pages(struct page *page, unsigned int order, 2888 fpi_t fpi_flags) 2889 { 2890 unsigned long __maybe_unused UP_flags; 2891 struct per_cpu_pages *pcp; 2892 struct zone *zone; 2893 unsigned long pfn = page_to_pfn(page); 2894 int migratetype; 2895 2896 if (!pcp_allowed_order(order)) { 2897 __free_pages_ok(page, order, fpi_flags); 2898 return; 2899 } 2900 2901 if (!free_pages_prepare(page, order)) 2902 return; 2903 2904 /* 2905 * We only track unmovable, reclaimable and movable on pcp lists. 2906 * Place ISOLATE pages on the isolated list because they are being 2907 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2908 * get those areas back if necessary. Otherwise, we may have to free 2909 * excessively into the page allocator 2910 */ 2911 zone = page_zone(page); 2912 migratetype = get_pfnblock_migratetype(page, pfn); 2913 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2914 if (unlikely(is_migrate_isolate(migratetype))) { 2915 free_one_page(zone, page, pfn, order, fpi_flags); 2916 return; 2917 } 2918 migratetype = MIGRATE_MOVABLE; 2919 } 2920 2921 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2922 && (in_nmi() || in_hardirq()))) { 2923 add_page_to_zone_llist(zone, page, order); 2924 return; 2925 } 2926 pcp_trylock_prepare(UP_flags); 2927 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2928 if (pcp) { 2929 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2930 pcp_spin_unlock(pcp); 2931 } else { 2932 free_one_page(zone, page, pfn, order, fpi_flags); 2933 } 2934 pcp_trylock_finish(UP_flags); 2935 } 2936 2937 void free_frozen_pages(struct page *page, unsigned int order) 2938 { 2939 __free_frozen_pages(page, order, FPI_NONE); 2940 } 2941 2942 /* 2943 * Free a batch of folios 2944 */ 2945 void free_unref_folios(struct folio_batch *folios) 2946 { 2947 unsigned long __maybe_unused UP_flags; 2948 struct per_cpu_pages *pcp = NULL; 2949 struct zone *locked_zone = NULL; 2950 int i, j; 2951 2952 /* Prepare folios for freeing */ 2953 for (i = 0, j = 0; i < folios->nr; i++) { 2954 struct folio *folio = folios->folios[i]; 2955 unsigned long pfn = folio_pfn(folio); 2956 unsigned int order = folio_order(folio); 2957 2958 if (!free_pages_prepare(&folio->page, order)) 2959 continue; 2960 /* 2961 * Free orders not handled on the PCP directly to the 2962 * allocator. 2963 */ 2964 if (!pcp_allowed_order(order)) { 2965 free_one_page(folio_zone(folio), &folio->page, 2966 pfn, order, FPI_NONE); 2967 continue; 2968 } 2969 folio->private = (void *)(unsigned long)order; 2970 if (j != i) 2971 folios->folios[j] = folio; 2972 j++; 2973 } 2974 folios->nr = j; 2975 2976 for (i = 0; i < folios->nr; i++) { 2977 struct folio *folio = folios->folios[i]; 2978 struct zone *zone = folio_zone(folio); 2979 unsigned long pfn = folio_pfn(folio); 2980 unsigned int order = (unsigned long)folio->private; 2981 int migratetype; 2982 2983 folio->private = NULL; 2984 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2985 2986 /* Different zone requires a different pcp lock */ 2987 if (zone != locked_zone || 2988 is_migrate_isolate(migratetype)) { 2989 if (pcp) { 2990 pcp_spin_unlock(pcp); 2991 pcp_trylock_finish(UP_flags); 2992 locked_zone = NULL; 2993 pcp = NULL; 2994 } 2995 2996 /* 2997 * Free isolated pages directly to the 2998 * allocator, see comment in free_frozen_pages. 2999 */ 3000 if (is_migrate_isolate(migratetype)) { 3001 free_one_page(zone, &folio->page, pfn, 3002 order, FPI_NONE); 3003 continue; 3004 } 3005 3006 /* 3007 * trylock is necessary as folios may be getting freed 3008 * from IRQ or SoftIRQ context after an IO completion. 3009 */ 3010 pcp_trylock_prepare(UP_flags); 3011 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3012 if (unlikely(!pcp)) { 3013 pcp_trylock_finish(UP_flags); 3014 free_one_page(zone, &folio->page, pfn, 3015 order, FPI_NONE); 3016 continue; 3017 } 3018 locked_zone = zone; 3019 } 3020 3021 /* 3022 * Non-isolated types over MIGRATE_PCPTYPES get added 3023 * to the MIGRATE_MOVABLE pcp list. 3024 */ 3025 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 3026 migratetype = MIGRATE_MOVABLE; 3027 3028 trace_mm_page_free_batched(&folio->page); 3029 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 3030 order, FPI_NONE); 3031 } 3032 3033 if (pcp) { 3034 pcp_spin_unlock(pcp); 3035 pcp_trylock_finish(UP_flags); 3036 } 3037 folio_batch_reinit(folios); 3038 } 3039 3040 /* 3041 * split_page takes a non-compound higher-order page, and splits it into 3042 * n (1<<order) sub-pages: page[0..n] 3043 * Each sub-page must be freed individually. 3044 * 3045 * Note: this is probably too low level an operation for use in drivers. 3046 * Please consult with lkml before using this in your driver. 3047 */ 3048 void split_page(struct page *page, unsigned int order) 3049 { 3050 int i; 3051 3052 VM_BUG_ON_PAGE(PageCompound(page), page); 3053 VM_BUG_ON_PAGE(!page_count(page), page); 3054 3055 for (i = 1; i < (1 << order); i++) 3056 set_page_refcounted(page + i); 3057 split_page_owner(page, order, 0); 3058 pgalloc_tag_split(page_folio(page), order, 0); 3059 split_page_memcg(page, order); 3060 } 3061 EXPORT_SYMBOL_GPL(split_page); 3062 3063 int __isolate_free_page(struct page *page, unsigned int order) 3064 { 3065 struct zone *zone = page_zone(page); 3066 int mt = get_pageblock_migratetype(page); 3067 3068 if (!is_migrate_isolate(mt)) { 3069 unsigned long watermark; 3070 /* 3071 * Obey watermarks as if the page was being allocated. We can 3072 * emulate a high-order watermark check with a raised order-0 3073 * watermark, because we already know our high-order page 3074 * exists. 3075 */ 3076 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3077 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3078 return 0; 3079 } 3080 3081 del_page_from_free_list(page, zone, order, mt); 3082 3083 /* 3084 * Set the pageblock if the isolated page is at least half of a 3085 * pageblock 3086 */ 3087 if (order >= pageblock_order - 1) { 3088 struct page *endpage = page + (1 << order) - 1; 3089 for (; page < endpage; page += pageblock_nr_pages) { 3090 int mt = get_pageblock_migratetype(page); 3091 /* 3092 * Only change normal pageblocks (i.e., they can merge 3093 * with others) 3094 */ 3095 if (migratetype_is_mergeable(mt)) 3096 move_freepages_block(zone, page, mt, 3097 MIGRATE_MOVABLE); 3098 } 3099 } 3100 3101 return 1UL << order; 3102 } 3103 3104 /** 3105 * __putback_isolated_page - Return a now-isolated page back where we got it 3106 * @page: Page that was isolated 3107 * @order: Order of the isolated page 3108 * @mt: The page's pageblock's migratetype 3109 * 3110 * This function is meant to return a page pulled from the free lists via 3111 * __isolate_free_page back to the free lists they were pulled from. 3112 */ 3113 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3114 { 3115 struct zone *zone = page_zone(page); 3116 3117 /* zone lock should be held when this function is called */ 3118 lockdep_assert_held(&zone->lock); 3119 3120 /* Return isolated page to tail of freelist. */ 3121 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3122 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3123 } 3124 3125 /* 3126 * Update NUMA hit/miss statistics 3127 */ 3128 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3129 long nr_account) 3130 { 3131 #ifdef CONFIG_NUMA 3132 enum numa_stat_item local_stat = NUMA_LOCAL; 3133 3134 /* skip numa counters update if numa stats is disabled */ 3135 if (!static_branch_likely(&vm_numa_stat_key)) 3136 return; 3137 3138 if (zone_to_nid(z) != numa_node_id()) 3139 local_stat = NUMA_OTHER; 3140 3141 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3142 __count_numa_events(z, NUMA_HIT, nr_account); 3143 else { 3144 __count_numa_events(z, NUMA_MISS, nr_account); 3145 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3146 } 3147 __count_numa_events(z, local_stat, nr_account); 3148 #endif 3149 } 3150 3151 static __always_inline 3152 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 3153 unsigned int order, unsigned int alloc_flags, 3154 int migratetype) 3155 { 3156 struct page *page; 3157 unsigned long flags; 3158 3159 do { 3160 page = NULL; 3161 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 3162 if (!spin_trylock_irqsave(&zone->lock, flags)) 3163 return NULL; 3164 } else { 3165 spin_lock_irqsave(&zone->lock, flags); 3166 } 3167 if (alloc_flags & ALLOC_HIGHATOMIC) 3168 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3169 if (!page) { 3170 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 3171 3172 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 3173 3174 /* 3175 * If the allocation fails, allow OOM handling and 3176 * order-0 (atomic) allocs access to HIGHATOMIC 3177 * reserves as failing now is worse than failing a 3178 * high-order atomic allocation in the future. 3179 */ 3180 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 3181 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3182 3183 if (!page) { 3184 spin_unlock_irqrestore(&zone->lock, flags); 3185 return NULL; 3186 } 3187 } 3188 spin_unlock_irqrestore(&zone->lock, flags); 3189 } while (check_new_pages(page, order)); 3190 3191 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3192 zone_statistics(preferred_zone, zone, 1); 3193 3194 return page; 3195 } 3196 3197 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3198 { 3199 int high, base_batch, batch, max_nr_alloc; 3200 int high_max, high_min; 3201 3202 base_batch = READ_ONCE(pcp->batch); 3203 high_min = READ_ONCE(pcp->high_min); 3204 high_max = READ_ONCE(pcp->high_max); 3205 high = pcp->high = clamp(pcp->high, high_min, high_max); 3206 3207 /* Check for PCP disabled or boot pageset */ 3208 if (unlikely(high < base_batch)) 3209 return 1; 3210 3211 if (order) 3212 batch = base_batch; 3213 else 3214 batch = (base_batch << pcp->alloc_factor); 3215 3216 /* 3217 * If we had larger pcp->high, we could avoid to allocate from 3218 * zone. 3219 */ 3220 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3221 high = pcp->high = min(high + batch, high_max); 3222 3223 if (!order) { 3224 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3225 /* 3226 * Double the number of pages allocated each time there is 3227 * subsequent allocation of order-0 pages without any freeing. 3228 */ 3229 if (batch <= max_nr_alloc && 3230 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3231 pcp->alloc_factor++; 3232 batch = min(batch, max_nr_alloc); 3233 } 3234 3235 /* 3236 * Scale batch relative to order if batch implies free pages 3237 * can be stored on the PCP. Batch can be 1 for small zones or 3238 * for boot pagesets which should never store free pages as 3239 * the pages may belong to arbitrary zones. 3240 */ 3241 if (batch > 1) 3242 batch = max(batch >> order, 2); 3243 3244 return batch; 3245 } 3246 3247 /* Remove page from the per-cpu list, caller must protect the list */ 3248 static inline 3249 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3250 int migratetype, 3251 unsigned int alloc_flags, 3252 struct per_cpu_pages *pcp, 3253 struct list_head *list) 3254 { 3255 struct page *page; 3256 3257 do { 3258 if (list_empty(list)) { 3259 int batch = nr_pcp_alloc(pcp, zone, order); 3260 int alloced; 3261 3262 alloced = rmqueue_bulk(zone, order, 3263 batch, list, 3264 migratetype, alloc_flags); 3265 3266 pcp->count += alloced << order; 3267 if (unlikely(list_empty(list))) 3268 return NULL; 3269 } 3270 3271 page = list_first_entry(list, struct page, pcp_list); 3272 list_del(&page->pcp_list); 3273 pcp->count -= 1 << order; 3274 } while (check_new_pages(page, order)); 3275 3276 return page; 3277 } 3278 3279 /* Lock and remove page from the per-cpu list */ 3280 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3281 struct zone *zone, unsigned int order, 3282 int migratetype, unsigned int alloc_flags) 3283 { 3284 struct per_cpu_pages *pcp; 3285 struct list_head *list; 3286 struct page *page; 3287 unsigned long __maybe_unused UP_flags; 3288 3289 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3290 pcp_trylock_prepare(UP_flags); 3291 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3292 if (!pcp) { 3293 pcp_trylock_finish(UP_flags); 3294 return NULL; 3295 } 3296 3297 /* 3298 * On allocation, reduce the number of pages that are batch freed. 3299 * See nr_pcp_free() where free_factor is increased for subsequent 3300 * frees. 3301 */ 3302 pcp->free_count >>= 1; 3303 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3304 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3305 pcp_spin_unlock(pcp); 3306 pcp_trylock_finish(UP_flags); 3307 if (page) { 3308 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3309 zone_statistics(preferred_zone, zone, 1); 3310 } 3311 return page; 3312 } 3313 3314 /* 3315 * Allocate a page from the given zone. 3316 * Use pcplists for THP or "cheap" high-order allocations. 3317 */ 3318 3319 /* 3320 * Do not instrument rmqueue() with KMSAN. This function may call 3321 * __msan_poison_alloca() through a call to set_pfnblock_migratetype(). 3322 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3323 * may call rmqueue() again, which will result in a deadlock. 3324 */ 3325 __no_sanitize_memory 3326 static inline 3327 struct page *rmqueue(struct zone *preferred_zone, 3328 struct zone *zone, unsigned int order, 3329 gfp_t gfp_flags, unsigned int alloc_flags, 3330 int migratetype) 3331 { 3332 struct page *page; 3333 3334 if (likely(pcp_allowed_order(order))) { 3335 page = rmqueue_pcplist(preferred_zone, zone, order, 3336 migratetype, alloc_flags); 3337 if (likely(page)) 3338 goto out; 3339 } 3340 3341 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3342 migratetype); 3343 3344 out: 3345 /* Separate test+clear to avoid unnecessary atomics */ 3346 if ((alloc_flags & ALLOC_KSWAPD) && 3347 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3348 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3349 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3350 } 3351 3352 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3353 return page; 3354 } 3355 3356 /* 3357 * Reserve the pageblock(s) surrounding an allocation request for 3358 * exclusive use of high-order atomic allocations if there are no 3359 * empty page blocks that contain a page with a suitable order 3360 */ 3361 static void reserve_highatomic_pageblock(struct page *page, int order, 3362 struct zone *zone) 3363 { 3364 int mt; 3365 unsigned long max_managed, flags; 3366 3367 /* 3368 * The number reserved as: minimum is 1 pageblock, maximum is 3369 * roughly 1% of a zone. But if 1% of a zone falls below a 3370 * pageblock size, then don't reserve any pageblocks. 3371 * Check is race-prone but harmless. 3372 */ 3373 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3374 return; 3375 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3376 if (zone->nr_reserved_highatomic >= max_managed) 3377 return; 3378 3379 spin_lock_irqsave(&zone->lock, flags); 3380 3381 /* Recheck the nr_reserved_highatomic limit under the lock */ 3382 if (zone->nr_reserved_highatomic >= max_managed) 3383 goto out_unlock; 3384 3385 /* Yoink! */ 3386 mt = get_pageblock_migratetype(page); 3387 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3388 if (!migratetype_is_mergeable(mt)) 3389 goto out_unlock; 3390 3391 if (order < pageblock_order) { 3392 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3393 goto out_unlock; 3394 zone->nr_reserved_highatomic += pageblock_nr_pages; 3395 } else { 3396 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3397 zone->nr_reserved_highatomic += 1 << order; 3398 } 3399 3400 out_unlock: 3401 spin_unlock_irqrestore(&zone->lock, flags); 3402 } 3403 3404 /* 3405 * Used when an allocation is about to fail under memory pressure. This 3406 * potentially hurts the reliability of high-order allocations when under 3407 * intense memory pressure but failed atomic allocations should be easier 3408 * to recover from than an OOM. 3409 * 3410 * If @force is true, try to unreserve pageblocks even though highatomic 3411 * pageblock is exhausted. 3412 */ 3413 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3414 bool force) 3415 { 3416 struct zonelist *zonelist = ac->zonelist; 3417 unsigned long flags; 3418 struct zoneref *z; 3419 struct zone *zone; 3420 struct page *page; 3421 int order; 3422 int ret; 3423 3424 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3425 ac->nodemask) { 3426 /* 3427 * Preserve at least one pageblock unless memory pressure 3428 * is really high. 3429 */ 3430 if (!force && zone->nr_reserved_highatomic <= 3431 pageblock_nr_pages) 3432 continue; 3433 3434 spin_lock_irqsave(&zone->lock, flags); 3435 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3436 struct free_area *area = &(zone->free_area[order]); 3437 unsigned long size; 3438 3439 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3440 if (!page) 3441 continue; 3442 3443 size = max(pageblock_nr_pages, 1UL << order); 3444 /* 3445 * It should never happen but changes to 3446 * locking could inadvertently allow a per-cpu 3447 * drain to add pages to MIGRATE_HIGHATOMIC 3448 * while unreserving so be safe and watch for 3449 * underflows. 3450 */ 3451 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3452 size = zone->nr_reserved_highatomic; 3453 zone->nr_reserved_highatomic -= size; 3454 3455 /* 3456 * Convert to ac->migratetype and avoid the normal 3457 * pageblock stealing heuristics. Minimally, the caller 3458 * is doing the work and needs the pages. More 3459 * importantly, if the block was always converted to 3460 * MIGRATE_UNMOVABLE or another type then the number 3461 * of pageblocks that cannot be completely freed 3462 * may increase. 3463 */ 3464 if (order < pageblock_order) 3465 ret = move_freepages_block(zone, page, 3466 MIGRATE_HIGHATOMIC, 3467 ac->migratetype); 3468 else { 3469 move_to_free_list(page, zone, order, 3470 MIGRATE_HIGHATOMIC, 3471 ac->migratetype); 3472 change_pageblock_range(page, order, 3473 ac->migratetype); 3474 ret = 1; 3475 } 3476 /* 3477 * Reserving the block(s) already succeeded, 3478 * so this should not fail on zone boundaries. 3479 */ 3480 WARN_ON_ONCE(ret == -1); 3481 if (ret > 0) { 3482 spin_unlock_irqrestore(&zone->lock, flags); 3483 return ret; 3484 } 3485 } 3486 spin_unlock_irqrestore(&zone->lock, flags); 3487 } 3488 3489 return false; 3490 } 3491 3492 static inline long __zone_watermark_unusable_free(struct zone *z, 3493 unsigned int order, unsigned int alloc_flags) 3494 { 3495 long unusable_free = (1 << order) - 1; 3496 3497 /* 3498 * If the caller does not have rights to reserves below the min 3499 * watermark then subtract the free pages reserved for highatomic. 3500 */ 3501 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3502 unusable_free += READ_ONCE(z->nr_free_highatomic); 3503 3504 #ifdef CONFIG_CMA 3505 /* If allocation can't use CMA areas don't use free CMA pages */ 3506 if (!(alloc_flags & ALLOC_CMA)) 3507 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3508 #endif 3509 3510 return unusable_free; 3511 } 3512 3513 /* 3514 * Return true if free base pages are above 'mark'. For high-order checks it 3515 * will return true of the order-0 watermark is reached and there is at least 3516 * one free page of a suitable size. Checking now avoids taking the zone lock 3517 * to check in the allocation paths if no pages are free. 3518 */ 3519 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3520 int highest_zoneidx, unsigned int alloc_flags, 3521 long free_pages) 3522 { 3523 long min = mark; 3524 int o; 3525 3526 /* free_pages may go negative - that's OK */ 3527 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3528 3529 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3530 /* 3531 * __GFP_HIGH allows access to 50% of the min reserve as well 3532 * as OOM. 3533 */ 3534 if (alloc_flags & ALLOC_MIN_RESERVE) { 3535 min -= min / 2; 3536 3537 /* 3538 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3539 * access more reserves than just __GFP_HIGH. Other 3540 * non-blocking allocations requests such as GFP_NOWAIT 3541 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3542 * access to the min reserve. 3543 */ 3544 if (alloc_flags & ALLOC_NON_BLOCK) 3545 min -= min / 4; 3546 } 3547 3548 /* 3549 * OOM victims can try even harder than the normal reserve 3550 * users on the grounds that it's definitely going to be in 3551 * the exit path shortly and free memory. Any allocation it 3552 * makes during the free path will be small and short-lived. 3553 */ 3554 if (alloc_flags & ALLOC_OOM) 3555 min -= min / 2; 3556 } 3557 3558 /* 3559 * Check watermarks for an order-0 allocation request. If these 3560 * are not met, then a high-order request also cannot go ahead 3561 * even if a suitable page happened to be free. 3562 */ 3563 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3564 return false; 3565 3566 /* If this is an order-0 request then the watermark is fine */ 3567 if (!order) 3568 return true; 3569 3570 /* For a high-order request, check at least one suitable page is free */ 3571 for (o = order; o < NR_PAGE_ORDERS; o++) { 3572 struct free_area *area = &z->free_area[o]; 3573 int mt; 3574 3575 if (!area->nr_free) 3576 continue; 3577 3578 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3579 if (!free_area_empty(area, mt)) 3580 return true; 3581 } 3582 3583 #ifdef CONFIG_CMA 3584 if ((alloc_flags & ALLOC_CMA) && 3585 !free_area_empty(area, MIGRATE_CMA)) { 3586 return true; 3587 } 3588 #endif 3589 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3590 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3591 return true; 3592 } 3593 } 3594 return false; 3595 } 3596 3597 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3598 int highest_zoneidx, unsigned int alloc_flags) 3599 { 3600 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3601 zone_page_state(z, NR_FREE_PAGES)); 3602 } 3603 3604 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3605 unsigned long mark, int highest_zoneidx, 3606 unsigned int alloc_flags, gfp_t gfp_mask) 3607 { 3608 long free_pages; 3609 3610 free_pages = zone_page_state(z, NR_FREE_PAGES); 3611 3612 /* 3613 * Fast check for order-0 only. If this fails then the reserves 3614 * need to be calculated. 3615 */ 3616 if (!order) { 3617 long usable_free; 3618 long reserved; 3619 3620 usable_free = free_pages; 3621 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3622 3623 /* reserved may over estimate high-atomic reserves. */ 3624 usable_free -= min(usable_free, reserved); 3625 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3626 return true; 3627 } 3628 3629 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3630 free_pages)) 3631 return true; 3632 3633 /* 3634 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3635 * when checking the min watermark. The min watermark is the 3636 * point where boosting is ignored so that kswapd is woken up 3637 * when below the low watermark. 3638 */ 3639 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3640 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3641 mark = z->_watermark[WMARK_MIN]; 3642 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3643 alloc_flags, free_pages); 3644 } 3645 3646 return false; 3647 } 3648 3649 #ifdef CONFIG_NUMA 3650 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3651 3652 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3653 { 3654 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3655 node_reclaim_distance; 3656 } 3657 #else /* CONFIG_NUMA */ 3658 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3659 { 3660 return true; 3661 } 3662 #endif /* CONFIG_NUMA */ 3663 3664 /* 3665 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3666 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3667 * premature use of a lower zone may cause lowmem pressure problems that 3668 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3669 * probably too small. It only makes sense to spread allocations to avoid 3670 * fragmentation between the Normal and DMA32 zones. 3671 */ 3672 static inline unsigned int 3673 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3674 { 3675 unsigned int alloc_flags; 3676 3677 /* 3678 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3679 * to save a branch. 3680 */ 3681 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3682 3683 if (defrag_mode) { 3684 alloc_flags |= ALLOC_NOFRAGMENT; 3685 return alloc_flags; 3686 } 3687 3688 #ifdef CONFIG_ZONE_DMA32 3689 if (!zone) 3690 return alloc_flags; 3691 3692 if (zone_idx(zone) != ZONE_NORMAL) 3693 return alloc_flags; 3694 3695 /* 3696 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3697 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3698 * on UMA that if Normal is populated then so is DMA32. 3699 */ 3700 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3701 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3702 return alloc_flags; 3703 3704 alloc_flags |= ALLOC_NOFRAGMENT; 3705 #endif /* CONFIG_ZONE_DMA32 */ 3706 return alloc_flags; 3707 } 3708 3709 /* Must be called after current_gfp_context() which can change gfp_mask */ 3710 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3711 unsigned int alloc_flags) 3712 { 3713 #ifdef CONFIG_CMA 3714 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3715 alloc_flags |= ALLOC_CMA; 3716 #endif 3717 return alloc_flags; 3718 } 3719 3720 /* 3721 * get_page_from_freelist goes through the zonelist trying to allocate 3722 * a page. 3723 */ 3724 static struct page * 3725 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3726 const struct alloc_context *ac) 3727 { 3728 struct zoneref *z; 3729 struct zone *zone; 3730 struct pglist_data *last_pgdat = NULL; 3731 bool last_pgdat_dirty_ok = false; 3732 bool no_fallback; 3733 bool skip_kswapd_nodes = nr_online_nodes > 1; 3734 bool skipped_kswapd_nodes = false; 3735 3736 retry: 3737 /* 3738 * Scan zonelist, looking for a zone with enough free. 3739 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. 3740 */ 3741 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3742 z = ac->preferred_zoneref; 3743 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3744 ac->nodemask) { 3745 struct page *page; 3746 unsigned long mark; 3747 3748 if (cpusets_enabled() && 3749 (alloc_flags & ALLOC_CPUSET) && 3750 !__cpuset_zone_allowed(zone, gfp_mask)) 3751 continue; 3752 /* 3753 * When allocating a page cache page for writing, we 3754 * want to get it from a node that is within its dirty 3755 * limit, such that no single node holds more than its 3756 * proportional share of globally allowed dirty pages. 3757 * The dirty limits take into account the node's 3758 * lowmem reserves and high watermark so that kswapd 3759 * should be able to balance it without having to 3760 * write pages from its LRU list. 3761 * 3762 * XXX: For now, allow allocations to potentially 3763 * exceed the per-node dirty limit in the slowpath 3764 * (spread_dirty_pages unset) before going into reclaim, 3765 * which is important when on a NUMA setup the allowed 3766 * nodes are together not big enough to reach the 3767 * global limit. The proper fix for these situations 3768 * will require awareness of nodes in the 3769 * dirty-throttling and the flusher threads. 3770 */ 3771 if (ac->spread_dirty_pages) { 3772 if (last_pgdat != zone->zone_pgdat) { 3773 last_pgdat = zone->zone_pgdat; 3774 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3775 } 3776 3777 if (!last_pgdat_dirty_ok) 3778 continue; 3779 } 3780 3781 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3782 zone != zonelist_zone(ac->preferred_zoneref)) { 3783 int local_nid; 3784 3785 /* 3786 * If moving to a remote node, retry but allow 3787 * fragmenting fallbacks. Locality is more important 3788 * than fragmentation avoidance. 3789 */ 3790 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3791 if (zone_to_nid(zone) != local_nid) { 3792 alloc_flags &= ~ALLOC_NOFRAGMENT; 3793 goto retry; 3794 } 3795 } 3796 3797 /* 3798 * If kswapd is already active on a node, keep looking 3799 * for other nodes that might be idle. This can happen 3800 * if another process has NUMA bindings and is causing 3801 * kswapd wakeups on only some nodes. Avoid accidental 3802 * "node_reclaim_mode"-like behavior in this case. 3803 */ 3804 if (skip_kswapd_nodes && 3805 !waitqueue_active(&zone->zone_pgdat->kswapd_wait)) { 3806 skipped_kswapd_nodes = true; 3807 continue; 3808 } 3809 3810 cond_accept_memory(zone, order, alloc_flags); 3811 3812 /* 3813 * Detect whether the number of free pages is below high 3814 * watermark. If so, we will decrease pcp->high and free 3815 * PCP pages in free path to reduce the possibility of 3816 * premature page reclaiming. Detection is done here to 3817 * avoid to do that in hotter free path. 3818 */ 3819 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3820 goto check_alloc_wmark; 3821 3822 mark = high_wmark_pages(zone); 3823 if (zone_watermark_fast(zone, order, mark, 3824 ac->highest_zoneidx, alloc_flags, 3825 gfp_mask)) 3826 goto try_this_zone; 3827 else 3828 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3829 3830 check_alloc_wmark: 3831 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3832 if (!zone_watermark_fast(zone, order, mark, 3833 ac->highest_zoneidx, alloc_flags, 3834 gfp_mask)) { 3835 int ret; 3836 3837 if (cond_accept_memory(zone, order, alloc_flags)) 3838 goto try_this_zone; 3839 3840 /* 3841 * Watermark failed for this zone, but see if we can 3842 * grow this zone if it contains deferred pages. 3843 */ 3844 if (deferred_pages_enabled()) { 3845 if (_deferred_grow_zone(zone, order)) 3846 goto try_this_zone; 3847 } 3848 /* Checked here to keep the fast path fast */ 3849 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3850 if (alloc_flags & ALLOC_NO_WATERMARKS) 3851 goto try_this_zone; 3852 3853 if (!node_reclaim_enabled() || 3854 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3855 continue; 3856 3857 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3858 switch (ret) { 3859 case NODE_RECLAIM_NOSCAN: 3860 /* did not scan */ 3861 continue; 3862 case NODE_RECLAIM_FULL: 3863 /* scanned but unreclaimable */ 3864 continue; 3865 default: 3866 /* did we reclaim enough */ 3867 if (zone_watermark_ok(zone, order, mark, 3868 ac->highest_zoneidx, alloc_flags)) 3869 goto try_this_zone; 3870 3871 continue; 3872 } 3873 } 3874 3875 try_this_zone: 3876 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3877 gfp_mask, alloc_flags, ac->migratetype); 3878 if (page) { 3879 prep_new_page(page, order, gfp_mask, alloc_flags); 3880 3881 /* 3882 * If this is a high-order atomic allocation then check 3883 * if the pageblock should be reserved for the future 3884 */ 3885 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3886 reserve_highatomic_pageblock(page, order, zone); 3887 3888 return page; 3889 } else { 3890 if (cond_accept_memory(zone, order, alloc_flags)) 3891 goto try_this_zone; 3892 3893 /* Try again if zone has deferred pages */ 3894 if (deferred_pages_enabled()) { 3895 if (_deferred_grow_zone(zone, order)) 3896 goto try_this_zone; 3897 } 3898 } 3899 } 3900 3901 /* 3902 * If we skipped over nodes with active kswapds and found no 3903 * idle nodes, retry and place anywhere the watermarks permit. 3904 */ 3905 if (skip_kswapd_nodes && skipped_kswapd_nodes) { 3906 skip_kswapd_nodes = false; 3907 goto retry; 3908 } 3909 3910 /* 3911 * It's possible on a UMA machine to get through all zones that are 3912 * fragmented. If avoiding fragmentation, reset and try again. 3913 */ 3914 if (no_fallback && !defrag_mode) { 3915 alloc_flags &= ~ALLOC_NOFRAGMENT; 3916 goto retry; 3917 } 3918 3919 return NULL; 3920 } 3921 3922 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3923 { 3924 unsigned int filter = SHOW_MEM_FILTER_NODES; 3925 3926 /* 3927 * This documents exceptions given to allocations in certain 3928 * contexts that are allowed to allocate outside current's set 3929 * of allowed nodes. 3930 */ 3931 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3932 if (tsk_is_oom_victim(current) || 3933 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3934 filter &= ~SHOW_MEM_FILTER_NODES; 3935 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3936 filter &= ~SHOW_MEM_FILTER_NODES; 3937 3938 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3939 } 3940 3941 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3942 { 3943 struct va_format vaf; 3944 va_list args; 3945 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3946 3947 if ((gfp_mask & __GFP_NOWARN) || 3948 !__ratelimit(&nopage_rs) || 3949 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3950 return; 3951 3952 va_start(args, fmt); 3953 vaf.fmt = fmt; 3954 vaf.va = &args; 3955 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3956 current->comm, &vaf, gfp_mask, &gfp_mask, 3957 nodemask_pr_args(nodemask)); 3958 va_end(args); 3959 3960 cpuset_print_current_mems_allowed(); 3961 pr_cont("\n"); 3962 dump_stack(); 3963 warn_alloc_show_mem(gfp_mask, nodemask); 3964 } 3965 3966 static inline struct page * 3967 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3968 unsigned int alloc_flags, 3969 const struct alloc_context *ac) 3970 { 3971 struct page *page; 3972 3973 page = get_page_from_freelist(gfp_mask, order, 3974 alloc_flags|ALLOC_CPUSET, ac); 3975 /* 3976 * fallback to ignore cpuset restriction if our nodes 3977 * are depleted 3978 */ 3979 if (!page) 3980 page = get_page_from_freelist(gfp_mask, order, 3981 alloc_flags, ac); 3982 return page; 3983 } 3984 3985 static inline struct page * 3986 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3987 const struct alloc_context *ac, unsigned long *did_some_progress) 3988 { 3989 struct oom_control oc = { 3990 .zonelist = ac->zonelist, 3991 .nodemask = ac->nodemask, 3992 .memcg = NULL, 3993 .gfp_mask = gfp_mask, 3994 .order = order, 3995 }; 3996 struct page *page; 3997 3998 *did_some_progress = 0; 3999 4000 /* 4001 * Acquire the oom lock. If that fails, somebody else is 4002 * making progress for us. 4003 */ 4004 if (!mutex_trylock(&oom_lock)) { 4005 *did_some_progress = 1; 4006 schedule_timeout_uninterruptible(1); 4007 return NULL; 4008 } 4009 4010 /* 4011 * Go through the zonelist yet one more time, keep very high watermark 4012 * here, this is only to catch a parallel oom killing, we must fail if 4013 * we're still under heavy pressure. But make sure that this reclaim 4014 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4015 * allocation which will never fail due to oom_lock already held. 4016 */ 4017 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4018 ~__GFP_DIRECT_RECLAIM, order, 4019 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4020 if (page) 4021 goto out; 4022 4023 /* Coredumps can quickly deplete all memory reserves */ 4024 if (current->flags & PF_DUMPCORE) 4025 goto out; 4026 /* The OOM killer will not help higher order allocs */ 4027 if (order > PAGE_ALLOC_COSTLY_ORDER) 4028 goto out; 4029 /* 4030 * We have already exhausted all our reclaim opportunities without any 4031 * success so it is time to admit defeat. We will skip the OOM killer 4032 * because it is very likely that the caller has a more reasonable 4033 * fallback than shooting a random task. 4034 * 4035 * The OOM killer may not free memory on a specific node. 4036 */ 4037 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4038 goto out; 4039 /* The OOM killer does not needlessly kill tasks for lowmem */ 4040 if (ac->highest_zoneidx < ZONE_NORMAL) 4041 goto out; 4042 if (pm_suspended_storage()) 4043 goto out; 4044 /* 4045 * XXX: GFP_NOFS allocations should rather fail than rely on 4046 * other request to make a forward progress. 4047 * We are in an unfortunate situation where out_of_memory cannot 4048 * do much for this context but let's try it to at least get 4049 * access to memory reserved if the current task is killed (see 4050 * out_of_memory). Once filesystems are ready to handle allocation 4051 * failures more gracefully we should just bail out here. 4052 */ 4053 4054 /* Exhausted what can be done so it's blame time */ 4055 if (out_of_memory(&oc) || 4056 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 4057 *did_some_progress = 1; 4058 4059 /* 4060 * Help non-failing allocations by giving them access to memory 4061 * reserves 4062 */ 4063 if (gfp_mask & __GFP_NOFAIL) 4064 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4065 ALLOC_NO_WATERMARKS, ac); 4066 } 4067 out: 4068 mutex_unlock(&oom_lock); 4069 return page; 4070 } 4071 4072 /* 4073 * Maximum number of compaction retries with a progress before OOM 4074 * killer is consider as the only way to move forward. 4075 */ 4076 #define MAX_COMPACT_RETRIES 16 4077 4078 #ifdef CONFIG_COMPACTION 4079 /* Try memory compaction for high-order allocations before reclaim */ 4080 static struct page * 4081 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4082 unsigned int alloc_flags, const struct alloc_context *ac, 4083 enum compact_priority prio, enum compact_result *compact_result) 4084 { 4085 struct page *page = NULL; 4086 unsigned long pflags; 4087 unsigned int noreclaim_flag; 4088 4089 if (!order) 4090 return NULL; 4091 4092 psi_memstall_enter(&pflags); 4093 delayacct_compact_start(); 4094 noreclaim_flag = memalloc_noreclaim_save(); 4095 4096 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4097 prio, &page); 4098 4099 memalloc_noreclaim_restore(noreclaim_flag); 4100 psi_memstall_leave(&pflags); 4101 delayacct_compact_end(); 4102 4103 if (*compact_result == COMPACT_SKIPPED) 4104 return NULL; 4105 /* 4106 * At least in one zone compaction wasn't deferred or skipped, so let's 4107 * count a compaction stall 4108 */ 4109 count_vm_event(COMPACTSTALL); 4110 4111 /* Prep a captured page if available */ 4112 if (page) 4113 prep_new_page(page, order, gfp_mask, alloc_flags); 4114 4115 /* Try get a page from the freelist if available */ 4116 if (!page) 4117 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4118 4119 if (page) { 4120 struct zone *zone = page_zone(page); 4121 4122 zone->compact_blockskip_flush = false; 4123 compaction_defer_reset(zone, order, true); 4124 count_vm_event(COMPACTSUCCESS); 4125 return page; 4126 } 4127 4128 /* 4129 * It's bad if compaction run occurs and fails. The most likely reason 4130 * is that pages exist, but not enough to satisfy watermarks. 4131 */ 4132 count_vm_event(COMPACTFAIL); 4133 4134 cond_resched(); 4135 4136 return NULL; 4137 } 4138 4139 static inline bool 4140 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4141 enum compact_result compact_result, 4142 enum compact_priority *compact_priority, 4143 int *compaction_retries) 4144 { 4145 int max_retries = MAX_COMPACT_RETRIES; 4146 int min_priority; 4147 bool ret = false; 4148 int retries = *compaction_retries; 4149 enum compact_priority priority = *compact_priority; 4150 4151 if (!order) 4152 return false; 4153 4154 if (fatal_signal_pending(current)) 4155 return false; 4156 4157 /* 4158 * Compaction was skipped due to a lack of free order-0 4159 * migration targets. Continue if reclaim can help. 4160 */ 4161 if (compact_result == COMPACT_SKIPPED) { 4162 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4163 goto out; 4164 } 4165 4166 /* 4167 * Compaction managed to coalesce some page blocks, but the 4168 * allocation failed presumably due to a race. Retry some. 4169 */ 4170 if (compact_result == COMPACT_SUCCESS) { 4171 /* 4172 * !costly requests are much more important than 4173 * __GFP_RETRY_MAYFAIL costly ones because they are de 4174 * facto nofail and invoke OOM killer to move on while 4175 * costly can fail and users are ready to cope with 4176 * that. 1/4 retries is rather arbitrary but we would 4177 * need much more detailed feedback from compaction to 4178 * make a better decision. 4179 */ 4180 if (order > PAGE_ALLOC_COSTLY_ORDER) 4181 max_retries /= 4; 4182 4183 if (++(*compaction_retries) <= max_retries) { 4184 ret = true; 4185 goto out; 4186 } 4187 } 4188 4189 /* 4190 * Compaction failed. Retry with increasing priority. 4191 */ 4192 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4193 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4194 4195 if (*compact_priority > min_priority) { 4196 (*compact_priority)--; 4197 *compaction_retries = 0; 4198 ret = true; 4199 } 4200 out: 4201 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4202 return ret; 4203 } 4204 #else 4205 static inline struct page * 4206 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4207 unsigned int alloc_flags, const struct alloc_context *ac, 4208 enum compact_priority prio, enum compact_result *compact_result) 4209 { 4210 *compact_result = COMPACT_SKIPPED; 4211 return NULL; 4212 } 4213 4214 static inline bool 4215 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4216 enum compact_result compact_result, 4217 enum compact_priority *compact_priority, 4218 int *compaction_retries) 4219 { 4220 struct zone *zone; 4221 struct zoneref *z; 4222 4223 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4224 return false; 4225 4226 /* 4227 * There are setups with compaction disabled which would prefer to loop 4228 * inside the allocator rather than hit the oom killer prematurely. 4229 * Let's give them a good hope and keep retrying while the order-0 4230 * watermarks are OK. 4231 */ 4232 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4233 ac->highest_zoneidx, ac->nodemask) { 4234 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4235 ac->highest_zoneidx, alloc_flags)) 4236 return true; 4237 } 4238 return false; 4239 } 4240 #endif /* CONFIG_COMPACTION */ 4241 4242 #ifdef CONFIG_LOCKDEP 4243 static struct lockdep_map __fs_reclaim_map = 4244 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4245 4246 static bool __need_reclaim(gfp_t gfp_mask) 4247 { 4248 /* no reclaim without waiting on it */ 4249 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4250 return false; 4251 4252 /* this guy won't enter reclaim */ 4253 if (current->flags & PF_MEMALLOC) 4254 return false; 4255 4256 if (gfp_mask & __GFP_NOLOCKDEP) 4257 return false; 4258 4259 return true; 4260 } 4261 4262 void __fs_reclaim_acquire(unsigned long ip) 4263 { 4264 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4265 } 4266 4267 void __fs_reclaim_release(unsigned long ip) 4268 { 4269 lock_release(&__fs_reclaim_map, ip); 4270 } 4271 4272 void fs_reclaim_acquire(gfp_t gfp_mask) 4273 { 4274 gfp_mask = current_gfp_context(gfp_mask); 4275 4276 if (__need_reclaim(gfp_mask)) { 4277 if (gfp_mask & __GFP_FS) 4278 __fs_reclaim_acquire(_RET_IP_); 4279 4280 #ifdef CONFIG_MMU_NOTIFIER 4281 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4282 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4283 #endif 4284 4285 } 4286 } 4287 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4288 4289 void fs_reclaim_release(gfp_t gfp_mask) 4290 { 4291 gfp_mask = current_gfp_context(gfp_mask); 4292 4293 if (__need_reclaim(gfp_mask)) { 4294 if (gfp_mask & __GFP_FS) 4295 __fs_reclaim_release(_RET_IP_); 4296 } 4297 } 4298 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4299 #endif 4300 4301 /* 4302 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4303 * have been rebuilt so allocation retries. Reader side does not lock and 4304 * retries the allocation if zonelist changes. Writer side is protected by the 4305 * embedded spin_lock. 4306 */ 4307 static DEFINE_SEQLOCK(zonelist_update_seq); 4308 4309 static unsigned int zonelist_iter_begin(void) 4310 { 4311 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4312 return read_seqbegin(&zonelist_update_seq); 4313 4314 return 0; 4315 } 4316 4317 static unsigned int check_retry_zonelist(unsigned int seq) 4318 { 4319 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4320 return read_seqretry(&zonelist_update_seq, seq); 4321 4322 return seq; 4323 } 4324 4325 /* Perform direct synchronous page reclaim */ 4326 static unsigned long 4327 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4328 const struct alloc_context *ac) 4329 { 4330 unsigned int noreclaim_flag; 4331 unsigned long progress; 4332 4333 cond_resched(); 4334 4335 /* We now go into synchronous reclaim */ 4336 cpuset_memory_pressure_bump(); 4337 fs_reclaim_acquire(gfp_mask); 4338 noreclaim_flag = memalloc_noreclaim_save(); 4339 4340 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4341 ac->nodemask); 4342 4343 memalloc_noreclaim_restore(noreclaim_flag); 4344 fs_reclaim_release(gfp_mask); 4345 4346 cond_resched(); 4347 4348 return progress; 4349 } 4350 4351 /* The really slow allocator path where we enter direct reclaim */ 4352 static inline struct page * 4353 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4354 unsigned int alloc_flags, const struct alloc_context *ac, 4355 unsigned long *did_some_progress) 4356 { 4357 struct page *page = NULL; 4358 unsigned long pflags; 4359 bool drained = false; 4360 4361 psi_memstall_enter(&pflags); 4362 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4363 if (unlikely(!(*did_some_progress))) 4364 goto out; 4365 4366 retry: 4367 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4368 4369 /* 4370 * If an allocation failed after direct reclaim, it could be because 4371 * pages are pinned on the per-cpu lists or in high alloc reserves. 4372 * Shrink them and try again 4373 */ 4374 if (!page && !drained) { 4375 unreserve_highatomic_pageblock(ac, false); 4376 drain_all_pages(NULL); 4377 drained = true; 4378 goto retry; 4379 } 4380 out: 4381 psi_memstall_leave(&pflags); 4382 4383 return page; 4384 } 4385 4386 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4387 const struct alloc_context *ac) 4388 { 4389 struct zoneref *z; 4390 struct zone *zone; 4391 pg_data_t *last_pgdat = NULL; 4392 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4393 unsigned int reclaim_order; 4394 4395 if (defrag_mode) 4396 reclaim_order = max(order, pageblock_order); 4397 else 4398 reclaim_order = order; 4399 4400 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4401 ac->nodemask) { 4402 if (!managed_zone(zone)) 4403 continue; 4404 if (last_pgdat == zone->zone_pgdat) 4405 continue; 4406 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4407 last_pgdat = zone->zone_pgdat; 4408 } 4409 } 4410 4411 static inline unsigned int 4412 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4413 { 4414 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4415 4416 /* 4417 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4418 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4419 * to save two branches. 4420 */ 4421 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4422 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4423 4424 /* 4425 * The caller may dip into page reserves a bit more if the caller 4426 * cannot run direct reclaim, or if the caller has realtime scheduling 4427 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4428 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4429 */ 4430 alloc_flags |= (__force int) 4431 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4432 4433 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4434 /* 4435 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4436 * if it can't schedule. 4437 */ 4438 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4439 alloc_flags |= ALLOC_NON_BLOCK; 4440 4441 if (order > 0 && (alloc_flags & ALLOC_MIN_RESERVE)) 4442 alloc_flags |= ALLOC_HIGHATOMIC; 4443 } 4444 4445 /* 4446 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4447 * GFP_ATOMIC) rather than fail, see the comment for 4448 * cpuset_current_node_allowed(). 4449 */ 4450 if (alloc_flags & ALLOC_MIN_RESERVE) 4451 alloc_flags &= ~ALLOC_CPUSET; 4452 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4453 alloc_flags |= ALLOC_MIN_RESERVE; 4454 4455 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4456 4457 if (defrag_mode) 4458 alloc_flags |= ALLOC_NOFRAGMENT; 4459 4460 return alloc_flags; 4461 } 4462 4463 static bool oom_reserves_allowed(struct task_struct *tsk) 4464 { 4465 if (!tsk_is_oom_victim(tsk)) 4466 return false; 4467 4468 /* 4469 * !MMU doesn't have oom reaper so give access to memory reserves 4470 * only to the thread with TIF_MEMDIE set 4471 */ 4472 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4473 return false; 4474 4475 return true; 4476 } 4477 4478 /* 4479 * Distinguish requests which really need access to full memory 4480 * reserves from oom victims which can live with a portion of it 4481 */ 4482 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4483 { 4484 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4485 return 0; 4486 if (gfp_mask & __GFP_MEMALLOC) 4487 return ALLOC_NO_WATERMARKS; 4488 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4489 return ALLOC_NO_WATERMARKS; 4490 if (!in_interrupt()) { 4491 if (current->flags & PF_MEMALLOC) 4492 return ALLOC_NO_WATERMARKS; 4493 else if (oom_reserves_allowed(current)) 4494 return ALLOC_OOM; 4495 } 4496 4497 return 0; 4498 } 4499 4500 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4501 { 4502 return !!__gfp_pfmemalloc_flags(gfp_mask); 4503 } 4504 4505 /* 4506 * Checks whether it makes sense to retry the reclaim to make a forward progress 4507 * for the given allocation request. 4508 * 4509 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4510 * without success, or when we couldn't even meet the watermark if we 4511 * reclaimed all remaining pages on the LRU lists. 4512 * 4513 * Returns true if a retry is viable or false to enter the oom path. 4514 */ 4515 static inline bool 4516 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4517 struct alloc_context *ac, int alloc_flags, 4518 bool did_some_progress, int *no_progress_loops) 4519 { 4520 struct zone *zone; 4521 struct zoneref *z; 4522 bool ret = false; 4523 4524 /* 4525 * Costly allocations might have made a progress but this doesn't mean 4526 * their order will become available due to high fragmentation so 4527 * always increment the no progress counter for them 4528 */ 4529 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4530 *no_progress_loops = 0; 4531 else 4532 (*no_progress_loops)++; 4533 4534 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4535 goto out; 4536 4537 4538 /* 4539 * Keep reclaiming pages while there is a chance this will lead 4540 * somewhere. If none of the target zones can satisfy our allocation 4541 * request even if all reclaimable pages are considered then we are 4542 * screwed and have to go OOM. 4543 */ 4544 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4545 ac->highest_zoneidx, ac->nodemask) { 4546 unsigned long available; 4547 unsigned long reclaimable; 4548 unsigned long min_wmark = min_wmark_pages(zone); 4549 bool wmark; 4550 4551 if (cpusets_enabled() && 4552 (alloc_flags & ALLOC_CPUSET) && 4553 !__cpuset_zone_allowed(zone, gfp_mask)) 4554 continue; 4555 4556 available = reclaimable = zone_reclaimable_pages(zone); 4557 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4558 4559 /* 4560 * Would the allocation succeed if we reclaimed all 4561 * reclaimable pages? 4562 */ 4563 wmark = __zone_watermark_ok(zone, order, min_wmark, 4564 ac->highest_zoneidx, alloc_flags, available); 4565 trace_reclaim_retry_zone(z, order, reclaimable, 4566 available, min_wmark, *no_progress_loops, wmark); 4567 if (wmark) { 4568 ret = true; 4569 break; 4570 } 4571 } 4572 4573 /* 4574 * Memory allocation/reclaim might be called from a WQ context and the 4575 * current implementation of the WQ concurrency control doesn't 4576 * recognize that a particular WQ is congested if the worker thread is 4577 * looping without ever sleeping. Therefore we have to do a short sleep 4578 * here rather than calling cond_resched(). 4579 */ 4580 if (current->flags & PF_WQ_WORKER) 4581 schedule_timeout_uninterruptible(1); 4582 else 4583 cond_resched(); 4584 out: 4585 /* Before OOM, exhaust highatomic_reserve */ 4586 if (!ret) 4587 return unreserve_highatomic_pageblock(ac, true); 4588 4589 return ret; 4590 } 4591 4592 static inline bool 4593 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4594 { 4595 /* 4596 * It's possible that cpuset's mems_allowed and the nodemask from 4597 * mempolicy don't intersect. This should be normally dealt with by 4598 * policy_nodemask(), but it's possible to race with cpuset update in 4599 * such a way the check therein was true, and then it became false 4600 * before we got our cpuset_mems_cookie here. 4601 * This assumes that for all allocations, ac->nodemask can come only 4602 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4603 * when it does not intersect with the cpuset restrictions) or the 4604 * caller can deal with a violated nodemask. 4605 */ 4606 if (cpusets_enabled() && ac->nodemask && 4607 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4608 ac->nodemask = NULL; 4609 return true; 4610 } 4611 4612 /* 4613 * When updating a task's mems_allowed or mempolicy nodemask, it is 4614 * possible to race with parallel threads in such a way that our 4615 * allocation can fail while the mask is being updated. If we are about 4616 * to fail, check if the cpuset changed during allocation and if so, 4617 * retry. 4618 */ 4619 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4620 return true; 4621 4622 return false; 4623 } 4624 4625 static inline struct page * 4626 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4627 struct alloc_context *ac) 4628 { 4629 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4630 bool can_compact = gfp_compaction_allowed(gfp_mask); 4631 bool nofail = gfp_mask & __GFP_NOFAIL; 4632 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4633 struct page *page = NULL; 4634 unsigned int alloc_flags; 4635 unsigned long did_some_progress; 4636 enum compact_priority compact_priority; 4637 enum compact_result compact_result; 4638 int compaction_retries; 4639 int no_progress_loops; 4640 unsigned int cpuset_mems_cookie; 4641 unsigned int zonelist_iter_cookie; 4642 int reserve_flags; 4643 4644 if (unlikely(nofail)) { 4645 /* 4646 * We most definitely don't want callers attempting to 4647 * allocate greater than order-1 page units with __GFP_NOFAIL. 4648 */ 4649 WARN_ON_ONCE(order > 1); 4650 /* 4651 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4652 * otherwise, we may result in lockup. 4653 */ 4654 WARN_ON_ONCE(!can_direct_reclaim); 4655 /* 4656 * PF_MEMALLOC request from this context is rather bizarre 4657 * because we cannot reclaim anything and only can loop waiting 4658 * for somebody to do a work for us. 4659 */ 4660 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4661 } 4662 4663 restart: 4664 compaction_retries = 0; 4665 no_progress_loops = 0; 4666 compact_result = COMPACT_SKIPPED; 4667 compact_priority = DEF_COMPACT_PRIORITY; 4668 cpuset_mems_cookie = read_mems_allowed_begin(); 4669 zonelist_iter_cookie = zonelist_iter_begin(); 4670 4671 /* 4672 * The fast path uses conservative alloc_flags to succeed only until 4673 * kswapd needs to be woken up, and to avoid the cost of setting up 4674 * alloc_flags precisely. So we do that now. 4675 */ 4676 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4677 4678 /* 4679 * We need to recalculate the starting point for the zonelist iterator 4680 * because we might have used different nodemask in the fast path, or 4681 * there was a cpuset modification and we are retrying - otherwise we 4682 * could end up iterating over non-eligible zones endlessly. 4683 */ 4684 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4685 ac->highest_zoneidx, ac->nodemask); 4686 if (!zonelist_zone(ac->preferred_zoneref)) 4687 goto nopage; 4688 4689 /* 4690 * Check for insane configurations where the cpuset doesn't contain 4691 * any suitable zone to satisfy the request - e.g. non-movable 4692 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4693 */ 4694 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4695 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4696 ac->highest_zoneidx, 4697 &cpuset_current_mems_allowed); 4698 if (!zonelist_zone(z)) 4699 goto nopage; 4700 } 4701 4702 if (alloc_flags & ALLOC_KSWAPD) 4703 wake_all_kswapds(order, gfp_mask, ac); 4704 4705 /* 4706 * The adjusted alloc_flags might result in immediate success, so try 4707 * that first 4708 */ 4709 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4710 if (page) 4711 goto got_pg; 4712 4713 /* 4714 * For costly allocations, try direct compaction first, as it's likely 4715 * that we have enough base pages and don't need to reclaim. For non- 4716 * movable high-order allocations, do that as well, as compaction will 4717 * try prevent permanent fragmentation by migrating from blocks of the 4718 * same migratetype. 4719 * Don't try this for allocations that are allowed to ignore 4720 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4721 */ 4722 if (can_direct_reclaim && can_compact && 4723 (costly_order || 4724 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4725 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4726 page = __alloc_pages_direct_compact(gfp_mask, order, 4727 alloc_flags, ac, 4728 INIT_COMPACT_PRIORITY, 4729 &compact_result); 4730 if (page) 4731 goto got_pg; 4732 4733 /* 4734 * Checks for costly allocations with __GFP_NORETRY, which 4735 * includes some THP page fault allocations 4736 */ 4737 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4738 /* 4739 * If allocating entire pageblock(s) and compaction 4740 * failed because all zones are below low watermarks 4741 * or is prohibited because it recently failed at this 4742 * order, fail immediately unless the allocator has 4743 * requested compaction and reclaim retry. 4744 * 4745 * Reclaim is 4746 * - potentially very expensive because zones are far 4747 * below their low watermarks or this is part of very 4748 * bursty high order allocations, 4749 * - not guaranteed to help because isolate_freepages() 4750 * may not iterate over freed pages as part of its 4751 * linear scan, and 4752 * - unlikely to make entire pageblocks free on its 4753 * own. 4754 */ 4755 if (compact_result == COMPACT_SKIPPED || 4756 compact_result == COMPACT_DEFERRED) 4757 goto nopage; 4758 4759 /* 4760 * Looks like reclaim/compaction is worth trying, but 4761 * sync compaction could be very expensive, so keep 4762 * using async compaction. 4763 */ 4764 compact_priority = INIT_COMPACT_PRIORITY; 4765 } 4766 } 4767 4768 retry: 4769 /* 4770 * Deal with possible cpuset update races or zonelist updates to avoid 4771 * infinite retries. 4772 */ 4773 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4774 check_retry_zonelist(zonelist_iter_cookie)) 4775 goto restart; 4776 4777 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4778 if (alloc_flags & ALLOC_KSWAPD) 4779 wake_all_kswapds(order, gfp_mask, ac); 4780 4781 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4782 if (reserve_flags) 4783 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4784 (alloc_flags & ALLOC_KSWAPD); 4785 4786 /* 4787 * Reset the nodemask and zonelist iterators if memory policies can be 4788 * ignored. These allocations are high priority and system rather than 4789 * user oriented. 4790 */ 4791 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4792 ac->nodemask = NULL; 4793 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4794 ac->highest_zoneidx, ac->nodemask); 4795 } 4796 4797 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4798 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4799 if (page) 4800 goto got_pg; 4801 4802 /* Caller is not willing to reclaim, we can't balance anything */ 4803 if (!can_direct_reclaim) 4804 goto nopage; 4805 4806 /* Avoid recursion of direct reclaim */ 4807 if (current->flags & PF_MEMALLOC) 4808 goto nopage; 4809 4810 /* Try direct reclaim and then allocating */ 4811 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4812 &did_some_progress); 4813 if (page) 4814 goto got_pg; 4815 4816 /* Try direct compaction and then allocating */ 4817 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4818 compact_priority, &compact_result); 4819 if (page) 4820 goto got_pg; 4821 4822 /* Do not loop if specifically requested */ 4823 if (gfp_mask & __GFP_NORETRY) 4824 goto nopage; 4825 4826 /* 4827 * Do not retry costly high order allocations unless they are 4828 * __GFP_RETRY_MAYFAIL and we can compact 4829 */ 4830 if (costly_order && (!can_compact || 4831 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4832 goto nopage; 4833 4834 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4835 did_some_progress > 0, &no_progress_loops)) 4836 goto retry; 4837 4838 /* 4839 * It doesn't make any sense to retry for the compaction if the order-0 4840 * reclaim is not able to make any progress because the current 4841 * implementation of the compaction depends on the sufficient amount 4842 * of free memory (see __compaction_suitable) 4843 */ 4844 if (did_some_progress > 0 && can_compact && 4845 should_compact_retry(ac, order, alloc_flags, 4846 compact_result, &compact_priority, 4847 &compaction_retries)) 4848 goto retry; 4849 4850 /* Reclaim/compaction failed to prevent the fallback */ 4851 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4852 alloc_flags &= ~ALLOC_NOFRAGMENT; 4853 goto retry; 4854 } 4855 4856 /* 4857 * Deal with possible cpuset update races or zonelist updates to avoid 4858 * a unnecessary OOM kill. 4859 */ 4860 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4861 check_retry_zonelist(zonelist_iter_cookie)) 4862 goto restart; 4863 4864 /* Reclaim has failed us, start killing things */ 4865 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4866 if (page) 4867 goto got_pg; 4868 4869 /* Avoid allocations with no watermarks from looping endlessly */ 4870 if (tsk_is_oom_victim(current) && 4871 (alloc_flags & ALLOC_OOM || 4872 (gfp_mask & __GFP_NOMEMALLOC))) 4873 goto nopage; 4874 4875 /* Retry as long as the OOM killer is making progress */ 4876 if (did_some_progress) { 4877 no_progress_loops = 0; 4878 goto retry; 4879 } 4880 4881 nopage: 4882 /* 4883 * Deal with possible cpuset update races or zonelist updates to avoid 4884 * a unnecessary OOM kill. 4885 */ 4886 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4887 check_retry_zonelist(zonelist_iter_cookie)) 4888 goto restart; 4889 4890 /* 4891 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4892 * we always retry 4893 */ 4894 if (unlikely(nofail)) { 4895 /* 4896 * Lacking direct_reclaim we can't do anything to reclaim memory, 4897 * we disregard these unreasonable nofail requests and still 4898 * return NULL 4899 */ 4900 if (!can_direct_reclaim) 4901 goto fail; 4902 4903 /* 4904 * Help non-failing allocations by giving some access to memory 4905 * reserves normally used for high priority non-blocking 4906 * allocations but do not use ALLOC_NO_WATERMARKS because this 4907 * could deplete whole memory reserves which would just make 4908 * the situation worse. 4909 */ 4910 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4911 if (page) 4912 goto got_pg; 4913 4914 cond_resched(); 4915 goto retry; 4916 } 4917 fail: 4918 warn_alloc(gfp_mask, ac->nodemask, 4919 "page allocation failure: order:%u", order); 4920 got_pg: 4921 return page; 4922 } 4923 4924 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4925 int preferred_nid, nodemask_t *nodemask, 4926 struct alloc_context *ac, gfp_t *alloc_gfp, 4927 unsigned int *alloc_flags) 4928 { 4929 ac->highest_zoneidx = gfp_zone(gfp_mask); 4930 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4931 ac->nodemask = nodemask; 4932 ac->migratetype = gfp_migratetype(gfp_mask); 4933 4934 if (cpusets_enabled()) { 4935 *alloc_gfp |= __GFP_HARDWALL; 4936 /* 4937 * When we are in the interrupt context, it is irrelevant 4938 * to the current task context. It means that any node ok. 4939 */ 4940 if (in_task() && !ac->nodemask) 4941 ac->nodemask = &cpuset_current_mems_allowed; 4942 else 4943 *alloc_flags |= ALLOC_CPUSET; 4944 } 4945 4946 might_alloc(gfp_mask); 4947 4948 /* 4949 * Don't invoke should_fail logic, since it may call 4950 * get_random_u32() and printk() which need to spin_lock. 4951 */ 4952 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4953 should_fail_alloc_page(gfp_mask, order)) 4954 return false; 4955 4956 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4957 4958 /* Dirty zone balancing only done in the fast path */ 4959 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4960 4961 /* 4962 * The preferred zone is used for statistics but crucially it is 4963 * also used as the starting point for the zonelist iterator. It 4964 * may get reset for allocations that ignore memory policies. 4965 */ 4966 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4967 ac->highest_zoneidx, ac->nodemask); 4968 4969 return true; 4970 } 4971 4972 /* 4973 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4974 * @gfp: GFP flags for the allocation 4975 * @preferred_nid: The preferred NUMA node ID to allocate from 4976 * @nodemask: Set of nodes to allocate from, may be NULL 4977 * @nr_pages: The number of pages desired in the array 4978 * @page_array: Array to store the pages 4979 * 4980 * This is a batched version of the page allocator that attempts to 4981 * allocate nr_pages quickly. Pages are added to the page_array. 4982 * 4983 * Note that only NULL elements are populated with pages and nr_pages 4984 * is the maximum number of pages that will be stored in the array. 4985 * 4986 * Returns the number of pages in the array. 4987 */ 4988 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4989 nodemask_t *nodemask, int nr_pages, 4990 struct page **page_array) 4991 { 4992 struct page *page; 4993 unsigned long __maybe_unused UP_flags; 4994 struct zone *zone; 4995 struct zoneref *z; 4996 struct per_cpu_pages *pcp; 4997 struct list_head *pcp_list; 4998 struct alloc_context ac; 4999 gfp_t alloc_gfp; 5000 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5001 int nr_populated = 0, nr_account = 0; 5002 5003 /* 5004 * Skip populated array elements to determine if any pages need 5005 * to be allocated before disabling IRQs. 5006 */ 5007 while (nr_populated < nr_pages && page_array[nr_populated]) 5008 nr_populated++; 5009 5010 /* No pages requested? */ 5011 if (unlikely(nr_pages <= 0)) 5012 goto out; 5013 5014 /* Already populated array? */ 5015 if (unlikely(nr_pages - nr_populated == 0)) 5016 goto out; 5017 5018 /* Bulk allocator does not support memcg accounting. */ 5019 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 5020 goto failed; 5021 5022 /* Use the single page allocator for one page. */ 5023 if (nr_pages - nr_populated == 1) 5024 goto failed; 5025 5026 #ifdef CONFIG_PAGE_OWNER 5027 /* 5028 * PAGE_OWNER may recurse into the allocator to allocate space to 5029 * save the stack with pagesets.lock held. Releasing/reacquiring 5030 * removes much of the performance benefit of bulk allocation so 5031 * force the caller to allocate one page at a time as it'll have 5032 * similar performance to added complexity to the bulk allocator. 5033 */ 5034 if (static_branch_unlikely(&page_owner_inited)) 5035 goto failed; 5036 #endif 5037 5038 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5039 gfp &= gfp_allowed_mask; 5040 alloc_gfp = gfp; 5041 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5042 goto out; 5043 gfp = alloc_gfp; 5044 5045 /* Find an allowed local zone that meets the low watermark. */ 5046 z = ac.preferred_zoneref; 5047 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 5048 unsigned long mark; 5049 5050 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5051 !__cpuset_zone_allowed(zone, gfp)) { 5052 continue; 5053 } 5054 5055 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 5056 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 5057 goto failed; 5058 } 5059 5060 cond_accept_memory(zone, 0, alloc_flags); 5061 retry_this_zone: 5062 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5063 if (zone_watermark_fast(zone, 0, mark, 5064 zonelist_zone_idx(ac.preferred_zoneref), 5065 alloc_flags, gfp)) { 5066 break; 5067 } 5068 5069 if (cond_accept_memory(zone, 0, alloc_flags)) 5070 goto retry_this_zone; 5071 5072 /* Try again if zone has deferred pages */ 5073 if (deferred_pages_enabled()) { 5074 if (_deferred_grow_zone(zone, 0)) 5075 goto retry_this_zone; 5076 } 5077 } 5078 5079 /* 5080 * If there are no allowed local zones that meets the watermarks then 5081 * try to allocate a single page and reclaim if necessary. 5082 */ 5083 if (unlikely(!zone)) 5084 goto failed; 5085 5086 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 5087 pcp_trylock_prepare(UP_flags); 5088 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 5089 if (!pcp) 5090 goto failed_irq; 5091 5092 /* Attempt the batch allocation */ 5093 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5094 while (nr_populated < nr_pages) { 5095 5096 /* Skip existing pages */ 5097 if (page_array[nr_populated]) { 5098 nr_populated++; 5099 continue; 5100 } 5101 5102 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5103 pcp, pcp_list); 5104 if (unlikely(!page)) { 5105 /* Try and allocate at least one page */ 5106 if (!nr_account) { 5107 pcp_spin_unlock(pcp); 5108 goto failed_irq; 5109 } 5110 break; 5111 } 5112 nr_account++; 5113 5114 prep_new_page(page, 0, gfp, 0); 5115 set_page_refcounted(page); 5116 page_array[nr_populated++] = page; 5117 } 5118 5119 pcp_spin_unlock(pcp); 5120 pcp_trylock_finish(UP_flags); 5121 5122 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5123 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 5124 5125 out: 5126 return nr_populated; 5127 5128 failed_irq: 5129 pcp_trylock_finish(UP_flags); 5130 5131 failed: 5132 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 5133 if (page) 5134 page_array[nr_populated++] = page; 5135 goto out; 5136 } 5137 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 5138 5139 /* 5140 * This is the 'heart' of the zoned buddy allocator. 5141 */ 5142 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 5143 int preferred_nid, nodemask_t *nodemask) 5144 { 5145 struct page *page; 5146 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5147 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5148 struct alloc_context ac = { }; 5149 5150 /* 5151 * There are several places where we assume that the order value is sane 5152 * so bail out early if the request is out of bound. 5153 */ 5154 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 5155 return NULL; 5156 5157 gfp &= gfp_allowed_mask; 5158 /* 5159 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5160 * resp. GFP_NOIO which has to be inherited for all allocation requests 5161 * from a particular context which has been marked by 5162 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5163 * movable zones are not used during allocation. 5164 */ 5165 gfp = current_gfp_context(gfp); 5166 alloc_gfp = gfp; 5167 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5168 &alloc_gfp, &alloc_flags)) 5169 return NULL; 5170 5171 /* 5172 * Forbid the first pass from falling back to types that fragment 5173 * memory until all local zones are considered. 5174 */ 5175 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 5176 5177 /* First allocation attempt */ 5178 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5179 if (likely(page)) 5180 goto out; 5181 5182 alloc_gfp = gfp; 5183 ac.spread_dirty_pages = false; 5184 5185 /* 5186 * Restore the original nodemask if it was potentially replaced with 5187 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5188 */ 5189 ac.nodemask = nodemask; 5190 5191 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5192 5193 out: 5194 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 5195 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5196 free_frozen_pages(page, order); 5197 page = NULL; 5198 } 5199 5200 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5201 kmsan_alloc_page(page, order, alloc_gfp); 5202 5203 return page; 5204 } 5205 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 5206 5207 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 5208 int preferred_nid, nodemask_t *nodemask) 5209 { 5210 struct page *page; 5211 5212 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 5213 if (page) 5214 set_page_refcounted(page); 5215 return page; 5216 } 5217 EXPORT_SYMBOL(__alloc_pages_noprof); 5218 5219 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5220 nodemask_t *nodemask) 5221 { 5222 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5223 preferred_nid, nodemask); 5224 return page_rmappable_folio(page); 5225 } 5226 EXPORT_SYMBOL(__folio_alloc_noprof); 5227 5228 /* 5229 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5230 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5231 * you need to access high mem. 5232 */ 5233 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5234 { 5235 struct page *page; 5236 5237 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5238 if (!page) 5239 return 0; 5240 return (unsigned long) page_address(page); 5241 } 5242 EXPORT_SYMBOL(get_free_pages_noprof); 5243 5244 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5245 { 5246 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5247 } 5248 EXPORT_SYMBOL(get_zeroed_page_noprof); 5249 5250 static void ___free_pages(struct page *page, unsigned int order, 5251 fpi_t fpi_flags) 5252 { 5253 /* get PageHead before we drop reference */ 5254 int head = PageHead(page); 5255 /* get alloc tag in case the page is released by others */ 5256 struct alloc_tag *tag = pgalloc_tag_get(page); 5257 5258 if (put_page_testzero(page)) 5259 __free_frozen_pages(page, order, fpi_flags); 5260 else if (!head) { 5261 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 5262 while (order-- > 0) { 5263 /* 5264 * The "tail" pages of this non-compound high-order 5265 * page will have no code tags, so to avoid warnings 5266 * mark them as empty. 5267 */ 5268 clear_page_tag_ref(page + (1 << order)); 5269 __free_frozen_pages(page + (1 << order), order, 5270 fpi_flags); 5271 } 5272 } 5273 } 5274 5275 /** 5276 * __free_pages - Free pages allocated with alloc_pages(). 5277 * @page: The page pointer returned from alloc_pages(). 5278 * @order: The order of the allocation. 5279 * 5280 * This function can free multi-page allocations that are not compound 5281 * pages. It does not check that the @order passed in matches that of 5282 * the allocation, so it is easy to leak memory. Freeing more memory 5283 * than was allocated will probably emit a warning. 5284 * 5285 * If the last reference to this page is speculative, it will be released 5286 * by put_page() which only frees the first page of a non-compound 5287 * allocation. To prevent the remaining pages from being leaked, we free 5288 * the subsequent pages here. If you want to use the page's reference 5289 * count to decide when to free the allocation, you should allocate a 5290 * compound page, and use put_page() instead of __free_pages(). 5291 * 5292 * Context: May be called in interrupt context or while holding a normal 5293 * spinlock, but not in NMI context or while holding a raw spinlock. 5294 */ 5295 void __free_pages(struct page *page, unsigned int order) 5296 { 5297 ___free_pages(page, order, FPI_NONE); 5298 } 5299 EXPORT_SYMBOL(__free_pages); 5300 5301 /* 5302 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5303 * page type (not only those that came from alloc_pages_nolock) 5304 */ 5305 void free_pages_nolock(struct page *page, unsigned int order) 5306 { 5307 ___free_pages(page, order, FPI_TRYLOCK); 5308 } 5309 5310 /** 5311 * free_pages - Free pages allocated with __get_free_pages(). 5312 * @addr: The virtual address tied to a page returned from __get_free_pages(). 5313 * @order: The order of the allocation. 5314 * 5315 * This function behaves the same as __free_pages(). Use this function 5316 * to free pages when you only have a valid virtual address. If you have 5317 * the page, call __free_pages() instead. 5318 */ 5319 void free_pages(unsigned long addr, unsigned int order) 5320 { 5321 if (addr != 0) { 5322 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5323 __free_pages(virt_to_page((void *)addr), order); 5324 } 5325 } 5326 5327 EXPORT_SYMBOL(free_pages); 5328 5329 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5330 size_t size) 5331 { 5332 if (addr) { 5333 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5334 struct page *page = virt_to_page((void *)addr); 5335 struct page *last = page + nr; 5336 5337 split_page_owner(page, order, 0); 5338 pgalloc_tag_split(page_folio(page), order, 0); 5339 split_page_memcg(page, order); 5340 while (page < --last) 5341 set_page_refcounted(last); 5342 5343 last = page + (1UL << order); 5344 for (page += nr; page < last; page++) 5345 __free_pages_ok(page, 0, FPI_TO_TAIL); 5346 } 5347 return (void *)addr; 5348 } 5349 5350 /** 5351 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5352 * @size: the number of bytes to allocate 5353 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5354 * 5355 * This function is similar to alloc_pages(), except that it allocates the 5356 * minimum number of pages to satisfy the request. alloc_pages() can only 5357 * allocate memory in power-of-two pages. 5358 * 5359 * This function is also limited by MAX_PAGE_ORDER. 5360 * 5361 * Memory allocated by this function must be released by free_pages_exact(). 5362 * 5363 * Return: pointer to the allocated area or %NULL in case of error. 5364 */ 5365 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5366 { 5367 unsigned int order = get_order(size); 5368 unsigned long addr; 5369 5370 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5371 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5372 5373 addr = get_free_pages_noprof(gfp_mask, order); 5374 return make_alloc_exact(addr, order, size); 5375 } 5376 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5377 5378 /** 5379 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5380 * pages on a node. 5381 * @nid: the preferred node ID where memory should be allocated 5382 * @size: the number of bytes to allocate 5383 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5384 * 5385 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5386 * back. 5387 * 5388 * Return: pointer to the allocated area or %NULL in case of error. 5389 */ 5390 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5391 { 5392 unsigned int order = get_order(size); 5393 struct page *p; 5394 5395 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5396 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5397 5398 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5399 if (!p) 5400 return NULL; 5401 return make_alloc_exact((unsigned long)page_address(p), order, size); 5402 } 5403 5404 /** 5405 * free_pages_exact - release memory allocated via alloc_pages_exact() 5406 * @virt: the value returned by alloc_pages_exact. 5407 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5408 * 5409 * Release the memory allocated by a previous call to alloc_pages_exact. 5410 */ 5411 void free_pages_exact(void *virt, size_t size) 5412 { 5413 unsigned long addr = (unsigned long)virt; 5414 unsigned long end = addr + PAGE_ALIGN(size); 5415 5416 while (addr < end) { 5417 free_page(addr); 5418 addr += PAGE_SIZE; 5419 } 5420 } 5421 EXPORT_SYMBOL(free_pages_exact); 5422 5423 /** 5424 * nr_free_zone_pages - count number of pages beyond high watermark 5425 * @offset: The zone index of the highest zone 5426 * 5427 * nr_free_zone_pages() counts the number of pages which are beyond the 5428 * high watermark within all zones at or below a given zone index. For each 5429 * zone, the number of pages is calculated as: 5430 * 5431 * nr_free_zone_pages = managed_pages - high_pages 5432 * 5433 * Return: number of pages beyond high watermark. 5434 */ 5435 static unsigned long nr_free_zone_pages(int offset) 5436 { 5437 struct zoneref *z; 5438 struct zone *zone; 5439 5440 /* Just pick one node, since fallback list is circular */ 5441 unsigned long sum = 0; 5442 5443 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5444 5445 for_each_zone_zonelist(zone, z, zonelist, offset) { 5446 unsigned long size = zone_managed_pages(zone); 5447 unsigned long high = high_wmark_pages(zone); 5448 if (size > high) 5449 sum += size - high; 5450 } 5451 5452 return sum; 5453 } 5454 5455 /** 5456 * nr_free_buffer_pages - count number of pages beyond high watermark 5457 * 5458 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5459 * watermark within ZONE_DMA and ZONE_NORMAL. 5460 * 5461 * Return: number of pages beyond high watermark within ZONE_DMA and 5462 * ZONE_NORMAL. 5463 */ 5464 unsigned long nr_free_buffer_pages(void) 5465 { 5466 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5467 } 5468 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5469 5470 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5471 { 5472 zoneref->zone = zone; 5473 zoneref->zone_idx = zone_idx(zone); 5474 } 5475 5476 /* 5477 * Builds allocation fallback zone lists. 5478 * 5479 * Add all populated zones of a node to the zonelist. 5480 */ 5481 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5482 { 5483 struct zone *zone; 5484 enum zone_type zone_type = MAX_NR_ZONES; 5485 int nr_zones = 0; 5486 5487 do { 5488 zone_type--; 5489 zone = pgdat->node_zones + zone_type; 5490 if (populated_zone(zone)) { 5491 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5492 check_highest_zone(zone_type); 5493 } 5494 } while (zone_type); 5495 5496 return nr_zones; 5497 } 5498 5499 #ifdef CONFIG_NUMA 5500 5501 static int __parse_numa_zonelist_order(char *s) 5502 { 5503 /* 5504 * We used to support different zonelists modes but they turned 5505 * out to be just not useful. Let's keep the warning in place 5506 * if somebody still use the cmd line parameter so that we do 5507 * not fail it silently 5508 */ 5509 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5510 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5511 return -EINVAL; 5512 } 5513 return 0; 5514 } 5515 5516 static char numa_zonelist_order[] = "Node"; 5517 #define NUMA_ZONELIST_ORDER_LEN 16 5518 /* 5519 * sysctl handler for numa_zonelist_order 5520 */ 5521 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5522 void *buffer, size_t *length, loff_t *ppos) 5523 { 5524 if (write) 5525 return __parse_numa_zonelist_order(buffer); 5526 return proc_dostring(table, write, buffer, length, ppos); 5527 } 5528 5529 static int node_load[MAX_NUMNODES]; 5530 5531 /** 5532 * find_next_best_node - find the next node that should appear in a given node's fallback list 5533 * @node: node whose fallback list we're appending 5534 * @used_node_mask: nodemask_t of already used nodes 5535 * 5536 * We use a number of factors to determine which is the next node that should 5537 * appear on a given node's fallback list. The node should not have appeared 5538 * already in @node's fallback list, and it should be the next closest node 5539 * according to the distance array (which contains arbitrary distance values 5540 * from each node to each node in the system), and should also prefer nodes 5541 * with no CPUs, since presumably they'll have very little allocation pressure 5542 * on them otherwise. 5543 * 5544 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5545 */ 5546 int find_next_best_node(int node, nodemask_t *used_node_mask) 5547 { 5548 int n, val; 5549 int min_val = INT_MAX; 5550 int best_node = NUMA_NO_NODE; 5551 5552 /* 5553 * Use the local node if we haven't already, but for memoryless local 5554 * node, we should skip it and fall back to other nodes. 5555 */ 5556 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5557 node_set(node, *used_node_mask); 5558 return node; 5559 } 5560 5561 for_each_node_state(n, N_MEMORY) { 5562 5563 /* Don't want a node to appear more than once */ 5564 if (node_isset(n, *used_node_mask)) 5565 continue; 5566 5567 /* Use the distance array to find the distance */ 5568 val = node_distance(node, n); 5569 5570 /* Penalize nodes under us ("prefer the next node") */ 5571 val += (n < node); 5572 5573 /* Give preference to headless and unused nodes */ 5574 if (!cpumask_empty(cpumask_of_node(n))) 5575 val += PENALTY_FOR_NODE_WITH_CPUS; 5576 5577 /* Slight preference for less loaded node */ 5578 val *= MAX_NUMNODES; 5579 val += node_load[n]; 5580 5581 if (val < min_val) { 5582 min_val = val; 5583 best_node = n; 5584 } 5585 } 5586 5587 if (best_node >= 0) 5588 node_set(best_node, *used_node_mask); 5589 5590 return best_node; 5591 } 5592 5593 5594 /* 5595 * Build zonelists ordered by node and zones within node. 5596 * This results in maximum locality--normal zone overflows into local 5597 * DMA zone, if any--but risks exhausting DMA zone. 5598 */ 5599 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5600 unsigned nr_nodes) 5601 { 5602 struct zoneref *zonerefs; 5603 int i; 5604 5605 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5606 5607 for (i = 0; i < nr_nodes; i++) { 5608 int nr_zones; 5609 5610 pg_data_t *node = NODE_DATA(node_order[i]); 5611 5612 nr_zones = build_zonerefs_node(node, zonerefs); 5613 zonerefs += nr_zones; 5614 } 5615 zonerefs->zone = NULL; 5616 zonerefs->zone_idx = 0; 5617 } 5618 5619 /* 5620 * Build __GFP_THISNODE zonelists 5621 */ 5622 static void build_thisnode_zonelists(pg_data_t *pgdat) 5623 { 5624 struct zoneref *zonerefs; 5625 int nr_zones; 5626 5627 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5628 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5629 zonerefs += nr_zones; 5630 zonerefs->zone = NULL; 5631 zonerefs->zone_idx = 0; 5632 } 5633 5634 static void build_zonelists(pg_data_t *pgdat) 5635 { 5636 static int node_order[MAX_NUMNODES]; 5637 int node, nr_nodes = 0; 5638 nodemask_t used_mask = NODE_MASK_NONE; 5639 int local_node, prev_node; 5640 5641 /* NUMA-aware ordering of nodes */ 5642 local_node = pgdat->node_id; 5643 prev_node = local_node; 5644 5645 memset(node_order, 0, sizeof(node_order)); 5646 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5647 /* 5648 * We don't want to pressure a particular node. 5649 * So adding penalty to the first node in same 5650 * distance group to make it round-robin. 5651 */ 5652 if (node_distance(local_node, node) != 5653 node_distance(local_node, prev_node)) 5654 node_load[node] += 1; 5655 5656 node_order[nr_nodes++] = node; 5657 prev_node = node; 5658 } 5659 5660 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5661 build_thisnode_zonelists(pgdat); 5662 pr_info("Fallback order for Node %d: ", local_node); 5663 for (node = 0; node < nr_nodes; node++) 5664 pr_cont("%d ", node_order[node]); 5665 pr_cont("\n"); 5666 } 5667 5668 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5669 /* 5670 * Return node id of node used for "local" allocations. 5671 * I.e., first node id of first zone in arg node's generic zonelist. 5672 * Used for initializing percpu 'numa_mem', which is used primarily 5673 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5674 */ 5675 int local_memory_node(int node) 5676 { 5677 struct zoneref *z; 5678 5679 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5680 gfp_zone(GFP_KERNEL), 5681 NULL); 5682 return zonelist_node_idx(z); 5683 } 5684 #endif 5685 5686 static void setup_min_unmapped_ratio(void); 5687 static void setup_min_slab_ratio(void); 5688 #else /* CONFIG_NUMA */ 5689 5690 static void build_zonelists(pg_data_t *pgdat) 5691 { 5692 struct zoneref *zonerefs; 5693 int nr_zones; 5694 5695 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5696 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5697 zonerefs += nr_zones; 5698 5699 zonerefs->zone = NULL; 5700 zonerefs->zone_idx = 0; 5701 } 5702 5703 #endif /* CONFIG_NUMA */ 5704 5705 /* 5706 * Boot pageset table. One per cpu which is going to be used for all 5707 * zones and all nodes. The parameters will be set in such a way 5708 * that an item put on a list will immediately be handed over to 5709 * the buddy list. This is safe since pageset manipulation is done 5710 * with interrupts disabled. 5711 * 5712 * The boot_pagesets must be kept even after bootup is complete for 5713 * unused processors and/or zones. They do play a role for bootstrapping 5714 * hotplugged processors. 5715 * 5716 * zoneinfo_show() and maybe other functions do 5717 * not check if the processor is online before following the pageset pointer. 5718 * Other parts of the kernel may not check if the zone is available. 5719 */ 5720 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5721 /* These effectively disable the pcplists in the boot pageset completely */ 5722 #define BOOT_PAGESET_HIGH 0 5723 #define BOOT_PAGESET_BATCH 1 5724 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5725 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5726 5727 static void __build_all_zonelists(void *data) 5728 { 5729 int nid; 5730 int __maybe_unused cpu; 5731 pg_data_t *self = data; 5732 unsigned long flags; 5733 5734 /* 5735 * The zonelist_update_seq must be acquired with irqsave because the 5736 * reader can be invoked from IRQ with GFP_ATOMIC. 5737 */ 5738 write_seqlock_irqsave(&zonelist_update_seq, flags); 5739 /* 5740 * Also disable synchronous printk() to prevent any printk() from 5741 * trying to hold port->lock, for 5742 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5743 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5744 */ 5745 printk_deferred_enter(); 5746 5747 #ifdef CONFIG_NUMA 5748 memset(node_load, 0, sizeof(node_load)); 5749 #endif 5750 5751 /* 5752 * This node is hotadded and no memory is yet present. So just 5753 * building zonelists is fine - no need to touch other nodes. 5754 */ 5755 if (self && !node_online(self->node_id)) { 5756 build_zonelists(self); 5757 } else { 5758 /* 5759 * All possible nodes have pgdat preallocated 5760 * in free_area_init 5761 */ 5762 for_each_node(nid) { 5763 pg_data_t *pgdat = NODE_DATA(nid); 5764 5765 build_zonelists(pgdat); 5766 } 5767 5768 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5769 /* 5770 * We now know the "local memory node" for each node-- 5771 * i.e., the node of the first zone in the generic zonelist. 5772 * Set up numa_mem percpu variable for on-line cpus. During 5773 * boot, only the boot cpu should be on-line; we'll init the 5774 * secondary cpus' numa_mem as they come on-line. During 5775 * node/memory hotplug, we'll fixup all on-line cpus. 5776 */ 5777 for_each_online_cpu(cpu) 5778 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5779 #endif 5780 } 5781 5782 printk_deferred_exit(); 5783 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5784 } 5785 5786 static noinline void __init 5787 build_all_zonelists_init(void) 5788 { 5789 int cpu; 5790 5791 __build_all_zonelists(NULL); 5792 5793 /* 5794 * Initialize the boot_pagesets that are going to be used 5795 * for bootstrapping processors. The real pagesets for 5796 * each zone will be allocated later when the per cpu 5797 * allocator is available. 5798 * 5799 * boot_pagesets are used also for bootstrapping offline 5800 * cpus if the system is already booted because the pagesets 5801 * are needed to initialize allocators on a specific cpu too. 5802 * F.e. the percpu allocator needs the page allocator which 5803 * needs the percpu allocator in order to allocate its pagesets 5804 * (a chicken-egg dilemma). 5805 */ 5806 for_each_possible_cpu(cpu) 5807 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5808 5809 mminit_verify_zonelist(); 5810 cpuset_init_current_mems_allowed(); 5811 } 5812 5813 /* 5814 * unless system_state == SYSTEM_BOOTING. 5815 * 5816 * __ref due to call of __init annotated helper build_all_zonelists_init 5817 * [protected by SYSTEM_BOOTING]. 5818 */ 5819 void __ref build_all_zonelists(pg_data_t *pgdat) 5820 { 5821 unsigned long vm_total_pages; 5822 5823 if (system_state == SYSTEM_BOOTING) { 5824 build_all_zonelists_init(); 5825 } else { 5826 __build_all_zonelists(pgdat); 5827 /* cpuset refresh routine should be here */ 5828 } 5829 /* Get the number of free pages beyond high watermark in all zones. */ 5830 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5831 /* 5832 * Disable grouping by mobility if the number of pages in the 5833 * system is too low to allow the mechanism to work. It would be 5834 * more accurate, but expensive to check per-zone. This check is 5835 * made on memory-hotadd so a system can start with mobility 5836 * disabled and enable it later 5837 */ 5838 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5839 page_group_by_mobility_disabled = 1; 5840 else 5841 page_group_by_mobility_disabled = 0; 5842 5843 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5844 nr_online_nodes, 5845 str_off_on(page_group_by_mobility_disabled), 5846 vm_total_pages); 5847 #ifdef CONFIG_NUMA 5848 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5849 #endif 5850 } 5851 5852 static int zone_batchsize(struct zone *zone) 5853 { 5854 #ifdef CONFIG_MMU 5855 int batch; 5856 5857 /* 5858 * The number of pages to batch allocate is either ~0.1% 5859 * of the zone or 1MB, whichever is smaller. The batch 5860 * size is striking a balance between allocation latency 5861 * and zone lock contention. 5862 */ 5863 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5864 batch /= 4; /* We effectively *= 4 below */ 5865 if (batch < 1) 5866 batch = 1; 5867 5868 /* 5869 * Clamp the batch to a 2^n - 1 value. Having a power 5870 * of 2 value was found to be more likely to have 5871 * suboptimal cache aliasing properties in some cases. 5872 * 5873 * For example if 2 tasks are alternately allocating 5874 * batches of pages, one task can end up with a lot 5875 * of pages of one half of the possible page colors 5876 * and the other with pages of the other colors. 5877 */ 5878 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5879 5880 return batch; 5881 5882 #else 5883 /* The deferral and batching of frees should be suppressed under NOMMU 5884 * conditions. 5885 * 5886 * The problem is that NOMMU needs to be able to allocate large chunks 5887 * of contiguous memory as there's no hardware page translation to 5888 * assemble apparent contiguous memory from discontiguous pages. 5889 * 5890 * Queueing large contiguous runs of pages for batching, however, 5891 * causes the pages to actually be freed in smaller chunks. As there 5892 * can be a significant delay between the individual batches being 5893 * recycled, this leads to the once large chunks of space being 5894 * fragmented and becoming unavailable for high-order allocations. 5895 */ 5896 return 0; 5897 #endif 5898 } 5899 5900 static int percpu_pagelist_high_fraction; 5901 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5902 int high_fraction) 5903 { 5904 #ifdef CONFIG_MMU 5905 int high; 5906 int nr_split_cpus; 5907 unsigned long total_pages; 5908 5909 if (!high_fraction) { 5910 /* 5911 * By default, the high value of the pcp is based on the zone 5912 * low watermark so that if they are full then background 5913 * reclaim will not be started prematurely. 5914 */ 5915 total_pages = low_wmark_pages(zone); 5916 } else { 5917 /* 5918 * If percpu_pagelist_high_fraction is configured, the high 5919 * value is based on a fraction of the managed pages in the 5920 * zone. 5921 */ 5922 total_pages = zone_managed_pages(zone) / high_fraction; 5923 } 5924 5925 /* 5926 * Split the high value across all online CPUs local to the zone. Note 5927 * that early in boot that CPUs may not be online yet and that during 5928 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5929 * onlined. For memory nodes that have no CPUs, split the high value 5930 * across all online CPUs to mitigate the risk that reclaim is triggered 5931 * prematurely due to pages stored on pcp lists. 5932 */ 5933 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5934 if (!nr_split_cpus) 5935 nr_split_cpus = num_online_cpus(); 5936 high = total_pages / nr_split_cpus; 5937 5938 /* 5939 * Ensure high is at least batch*4. The multiple is based on the 5940 * historical relationship between high and batch. 5941 */ 5942 high = max(high, batch << 2); 5943 5944 return high; 5945 #else 5946 return 0; 5947 #endif 5948 } 5949 5950 /* 5951 * pcp->high and pcp->batch values are related and generally batch is lower 5952 * than high. They are also related to pcp->count such that count is lower 5953 * than high, and as soon as it reaches high, the pcplist is flushed. 5954 * 5955 * However, guaranteeing these relations at all times would require e.g. write 5956 * barriers here but also careful usage of read barriers at the read side, and 5957 * thus be prone to error and bad for performance. Thus the update only prevents 5958 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5959 * should ensure they can cope with those fields changing asynchronously, and 5960 * fully trust only the pcp->count field on the local CPU with interrupts 5961 * disabled. 5962 * 5963 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5964 * outside of boot time (or some other assurance that no concurrent updaters 5965 * exist). 5966 */ 5967 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5968 unsigned long high_max, unsigned long batch) 5969 { 5970 WRITE_ONCE(pcp->batch, batch); 5971 WRITE_ONCE(pcp->high_min, high_min); 5972 WRITE_ONCE(pcp->high_max, high_max); 5973 } 5974 5975 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5976 { 5977 int pindex; 5978 5979 memset(pcp, 0, sizeof(*pcp)); 5980 memset(pzstats, 0, sizeof(*pzstats)); 5981 5982 spin_lock_init(&pcp->lock); 5983 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5984 INIT_LIST_HEAD(&pcp->lists[pindex]); 5985 5986 /* 5987 * Set batch and high values safe for a boot pageset. A true percpu 5988 * pageset's initialization will update them subsequently. Here we don't 5989 * need to be as careful as pageset_update() as nobody can access the 5990 * pageset yet. 5991 */ 5992 pcp->high_min = BOOT_PAGESET_HIGH; 5993 pcp->high_max = BOOT_PAGESET_HIGH; 5994 pcp->batch = BOOT_PAGESET_BATCH; 5995 } 5996 5997 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5998 unsigned long high_max, unsigned long batch) 5999 { 6000 struct per_cpu_pages *pcp; 6001 int cpu; 6002 6003 for_each_possible_cpu(cpu) { 6004 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6005 pageset_update(pcp, high_min, high_max, batch); 6006 } 6007 } 6008 6009 /* 6010 * Calculate and set new high and batch values for all per-cpu pagesets of a 6011 * zone based on the zone's size. 6012 */ 6013 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6014 { 6015 int new_high_min, new_high_max, new_batch; 6016 6017 new_batch = max(1, zone_batchsize(zone)); 6018 if (percpu_pagelist_high_fraction) { 6019 new_high_min = zone_highsize(zone, new_batch, cpu_online, 6020 percpu_pagelist_high_fraction); 6021 /* 6022 * PCP high is tuned manually, disable auto-tuning via 6023 * setting high_min and high_max to the manual value. 6024 */ 6025 new_high_max = new_high_min; 6026 } else { 6027 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 6028 new_high_max = zone_highsize(zone, new_batch, cpu_online, 6029 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 6030 } 6031 6032 if (zone->pageset_high_min == new_high_min && 6033 zone->pageset_high_max == new_high_max && 6034 zone->pageset_batch == new_batch) 6035 return; 6036 6037 zone->pageset_high_min = new_high_min; 6038 zone->pageset_high_max = new_high_max; 6039 zone->pageset_batch = new_batch; 6040 6041 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 6042 new_batch); 6043 } 6044 6045 void __meminit setup_zone_pageset(struct zone *zone) 6046 { 6047 int cpu; 6048 6049 /* Size may be 0 on !SMP && !NUMA */ 6050 if (sizeof(struct per_cpu_zonestat) > 0) 6051 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6052 6053 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6054 for_each_possible_cpu(cpu) { 6055 struct per_cpu_pages *pcp; 6056 struct per_cpu_zonestat *pzstats; 6057 6058 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6059 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6060 per_cpu_pages_init(pcp, pzstats); 6061 } 6062 6063 zone_set_pageset_high_and_batch(zone, 0); 6064 } 6065 6066 /* 6067 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6068 * page high values need to be recalculated. 6069 */ 6070 static void zone_pcp_update(struct zone *zone, int cpu_online) 6071 { 6072 mutex_lock(&pcp_batch_high_lock); 6073 zone_set_pageset_high_and_batch(zone, cpu_online); 6074 mutex_unlock(&pcp_batch_high_lock); 6075 } 6076 6077 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 6078 { 6079 struct per_cpu_pages *pcp; 6080 struct cpu_cacheinfo *cci; 6081 6082 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6083 cci = get_cpu_cacheinfo(cpu); 6084 /* 6085 * If data cache slice of CPU is large enough, "pcp->batch" 6086 * pages can be preserved in PCP before draining PCP for 6087 * consecutive high-order pages freeing without allocation. 6088 * This can reduce zone lock contention without hurting 6089 * cache-hot pages sharing. 6090 */ 6091 spin_lock(&pcp->lock); 6092 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 6093 pcp->flags |= PCPF_FREE_HIGH_BATCH; 6094 else 6095 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 6096 spin_unlock(&pcp->lock); 6097 } 6098 6099 void setup_pcp_cacheinfo(unsigned int cpu) 6100 { 6101 struct zone *zone; 6102 6103 for_each_populated_zone(zone) 6104 zone_pcp_update_cacheinfo(zone, cpu); 6105 } 6106 6107 /* 6108 * Allocate per cpu pagesets and initialize them. 6109 * Before this call only boot pagesets were available. 6110 */ 6111 void __init setup_per_cpu_pageset(void) 6112 { 6113 struct pglist_data *pgdat; 6114 struct zone *zone; 6115 int __maybe_unused cpu; 6116 6117 for_each_populated_zone(zone) 6118 setup_zone_pageset(zone); 6119 6120 #ifdef CONFIG_NUMA 6121 /* 6122 * Unpopulated zones continue using the boot pagesets. 6123 * The numa stats for these pagesets need to be reset. 6124 * Otherwise, they will end up skewing the stats of 6125 * the nodes these zones are associated with. 6126 */ 6127 for_each_possible_cpu(cpu) { 6128 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6129 memset(pzstats->vm_numa_event, 0, 6130 sizeof(pzstats->vm_numa_event)); 6131 } 6132 #endif 6133 6134 for_each_online_pgdat(pgdat) 6135 pgdat->per_cpu_nodestats = 6136 alloc_percpu(struct per_cpu_nodestat); 6137 } 6138 6139 __meminit void zone_pcp_init(struct zone *zone) 6140 { 6141 /* 6142 * per cpu subsystem is not up at this point. The following code 6143 * relies on the ability of the linker to provide the 6144 * offset of a (static) per cpu variable into the per cpu area. 6145 */ 6146 zone->per_cpu_pageset = &boot_pageset; 6147 zone->per_cpu_zonestats = &boot_zonestats; 6148 zone->pageset_high_min = BOOT_PAGESET_HIGH; 6149 zone->pageset_high_max = BOOT_PAGESET_HIGH; 6150 zone->pageset_batch = BOOT_PAGESET_BATCH; 6151 6152 if (populated_zone(zone)) 6153 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6154 zone->present_pages, zone_batchsize(zone)); 6155 } 6156 6157 static void setup_per_zone_lowmem_reserve(void); 6158 6159 void adjust_managed_page_count(struct page *page, long count) 6160 { 6161 atomic_long_add(count, &page_zone(page)->managed_pages); 6162 totalram_pages_add(count); 6163 setup_per_zone_lowmem_reserve(); 6164 } 6165 EXPORT_SYMBOL(adjust_managed_page_count); 6166 6167 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 6168 { 6169 void *pos; 6170 unsigned long pages = 0; 6171 6172 start = (void *)PAGE_ALIGN((unsigned long)start); 6173 end = (void *)((unsigned long)end & PAGE_MASK); 6174 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6175 struct page *page = virt_to_page(pos); 6176 void *direct_map_addr; 6177 6178 /* 6179 * 'direct_map_addr' might be different from 'pos' 6180 * because some architectures' virt_to_page() 6181 * work with aliases. Getting the direct map 6182 * address ensures that we get a _writeable_ 6183 * alias for the memset(). 6184 */ 6185 direct_map_addr = page_address(page); 6186 /* 6187 * Perform a kasan-unchecked memset() since this memory 6188 * has not been initialized. 6189 */ 6190 direct_map_addr = kasan_reset_tag(direct_map_addr); 6191 if ((unsigned int)poison <= 0xFF) 6192 memset(direct_map_addr, poison, PAGE_SIZE); 6193 6194 free_reserved_page(page); 6195 } 6196 6197 if (pages && s) 6198 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 6199 6200 return pages; 6201 } 6202 6203 void free_reserved_page(struct page *page) 6204 { 6205 clear_page_tag_ref(page); 6206 ClearPageReserved(page); 6207 init_page_count(page); 6208 __free_page(page); 6209 adjust_managed_page_count(page, 1); 6210 } 6211 EXPORT_SYMBOL(free_reserved_page); 6212 6213 static int page_alloc_cpu_dead(unsigned int cpu) 6214 { 6215 struct zone *zone; 6216 6217 lru_add_drain_cpu(cpu); 6218 mlock_drain_remote(cpu); 6219 drain_pages(cpu); 6220 6221 /* 6222 * Spill the event counters of the dead processor 6223 * into the current processors event counters. 6224 * This artificially elevates the count of the current 6225 * processor. 6226 */ 6227 vm_events_fold_cpu(cpu); 6228 6229 /* 6230 * Zero the differential counters of the dead processor 6231 * so that the vm statistics are consistent. 6232 * 6233 * This is only okay since the processor is dead and cannot 6234 * race with what we are doing. 6235 */ 6236 cpu_vm_stats_fold(cpu); 6237 6238 for_each_populated_zone(zone) 6239 zone_pcp_update(zone, 0); 6240 6241 return 0; 6242 } 6243 6244 static int page_alloc_cpu_online(unsigned int cpu) 6245 { 6246 struct zone *zone; 6247 6248 for_each_populated_zone(zone) 6249 zone_pcp_update(zone, 1); 6250 return 0; 6251 } 6252 6253 void __init page_alloc_init_cpuhp(void) 6254 { 6255 int ret; 6256 6257 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6258 "mm/page_alloc:pcp", 6259 page_alloc_cpu_online, 6260 page_alloc_cpu_dead); 6261 WARN_ON(ret < 0); 6262 } 6263 6264 /* 6265 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6266 * or min_free_kbytes changes. 6267 */ 6268 static void calculate_totalreserve_pages(void) 6269 { 6270 struct pglist_data *pgdat; 6271 unsigned long reserve_pages = 0; 6272 enum zone_type i, j; 6273 6274 for_each_online_pgdat(pgdat) { 6275 6276 pgdat->totalreserve_pages = 0; 6277 6278 for (i = 0; i < MAX_NR_ZONES; i++) { 6279 struct zone *zone = pgdat->node_zones + i; 6280 long max = 0; 6281 unsigned long managed_pages = zone_managed_pages(zone); 6282 6283 /* Find valid and maximum lowmem_reserve in the zone */ 6284 for (j = i; j < MAX_NR_ZONES; j++) 6285 max = max(max, zone->lowmem_reserve[j]); 6286 6287 /* we treat the high watermark as reserved pages. */ 6288 max += high_wmark_pages(zone); 6289 6290 max = min_t(unsigned long, max, managed_pages); 6291 6292 pgdat->totalreserve_pages += max; 6293 6294 reserve_pages += max; 6295 } 6296 } 6297 totalreserve_pages = reserve_pages; 6298 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6299 } 6300 6301 /* 6302 * setup_per_zone_lowmem_reserve - called whenever 6303 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6304 * has a correct pages reserved value, so an adequate number of 6305 * pages are left in the zone after a successful __alloc_pages(). 6306 */ 6307 static void setup_per_zone_lowmem_reserve(void) 6308 { 6309 struct pglist_data *pgdat; 6310 enum zone_type i, j; 6311 6312 for_each_online_pgdat(pgdat) { 6313 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6314 struct zone *zone = &pgdat->node_zones[i]; 6315 int ratio = sysctl_lowmem_reserve_ratio[i]; 6316 bool clear = !ratio || !zone_managed_pages(zone); 6317 unsigned long managed_pages = 0; 6318 6319 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6320 struct zone *upper_zone = &pgdat->node_zones[j]; 6321 6322 managed_pages += zone_managed_pages(upper_zone); 6323 6324 if (clear) 6325 zone->lowmem_reserve[j] = 0; 6326 else 6327 zone->lowmem_reserve[j] = managed_pages / ratio; 6328 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6329 zone->lowmem_reserve[j]); 6330 } 6331 } 6332 } 6333 6334 /* update totalreserve_pages */ 6335 calculate_totalreserve_pages(); 6336 } 6337 6338 static void __setup_per_zone_wmarks(void) 6339 { 6340 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6341 unsigned long lowmem_pages = 0; 6342 struct zone *zone; 6343 unsigned long flags; 6344 6345 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6346 for_each_zone(zone) { 6347 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6348 lowmem_pages += zone_managed_pages(zone); 6349 } 6350 6351 for_each_zone(zone) { 6352 u64 tmp; 6353 6354 spin_lock_irqsave(&zone->lock, flags); 6355 tmp = (u64)pages_min * zone_managed_pages(zone); 6356 tmp = div64_ul(tmp, lowmem_pages); 6357 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6358 /* 6359 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6360 * need highmem and movable zones pages, so cap pages_min 6361 * to a small value here. 6362 * 6363 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6364 * deltas control async page reclaim, and so should 6365 * not be capped for highmem and movable zones. 6366 */ 6367 unsigned long min_pages; 6368 6369 min_pages = zone_managed_pages(zone) / 1024; 6370 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6371 zone->_watermark[WMARK_MIN] = min_pages; 6372 } else { 6373 /* 6374 * If it's a lowmem zone, reserve a number of pages 6375 * proportionate to the zone's size. 6376 */ 6377 zone->_watermark[WMARK_MIN] = tmp; 6378 } 6379 6380 /* 6381 * Set the kswapd watermarks distance according to the 6382 * scale factor in proportion to available memory, but 6383 * ensure a minimum size on small systems. 6384 */ 6385 tmp = max_t(u64, tmp >> 2, 6386 mult_frac(zone_managed_pages(zone), 6387 watermark_scale_factor, 10000)); 6388 6389 zone->watermark_boost = 0; 6390 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6391 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6392 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6393 trace_mm_setup_per_zone_wmarks(zone); 6394 6395 spin_unlock_irqrestore(&zone->lock, flags); 6396 } 6397 6398 /* update totalreserve_pages */ 6399 calculate_totalreserve_pages(); 6400 } 6401 6402 /** 6403 * setup_per_zone_wmarks - called when min_free_kbytes changes 6404 * or when memory is hot-{added|removed} 6405 * 6406 * Ensures that the watermark[min,low,high] values for each zone are set 6407 * correctly with respect to min_free_kbytes. 6408 */ 6409 void setup_per_zone_wmarks(void) 6410 { 6411 struct zone *zone; 6412 static DEFINE_SPINLOCK(lock); 6413 6414 spin_lock(&lock); 6415 __setup_per_zone_wmarks(); 6416 spin_unlock(&lock); 6417 6418 /* 6419 * The watermark size have changed so update the pcpu batch 6420 * and high limits or the limits may be inappropriate. 6421 */ 6422 for_each_zone(zone) 6423 zone_pcp_update(zone, 0); 6424 } 6425 6426 /* 6427 * Initialise min_free_kbytes. 6428 * 6429 * For small machines we want it small (128k min). For large machines 6430 * we want it large (256MB max). But it is not linear, because network 6431 * bandwidth does not increase linearly with machine size. We use 6432 * 6433 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6434 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6435 * 6436 * which yields 6437 * 6438 * 16MB: 512k 6439 * 32MB: 724k 6440 * 64MB: 1024k 6441 * 128MB: 1448k 6442 * 256MB: 2048k 6443 * 512MB: 2896k 6444 * 1024MB: 4096k 6445 * 2048MB: 5792k 6446 * 4096MB: 8192k 6447 * 8192MB: 11584k 6448 * 16384MB: 16384k 6449 */ 6450 void calculate_min_free_kbytes(void) 6451 { 6452 unsigned long lowmem_kbytes; 6453 int new_min_free_kbytes; 6454 6455 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6456 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6457 6458 if (new_min_free_kbytes > user_min_free_kbytes) 6459 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6460 else 6461 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6462 new_min_free_kbytes, user_min_free_kbytes); 6463 6464 } 6465 6466 int __meminit init_per_zone_wmark_min(void) 6467 { 6468 calculate_min_free_kbytes(); 6469 setup_per_zone_wmarks(); 6470 refresh_zone_stat_thresholds(); 6471 setup_per_zone_lowmem_reserve(); 6472 6473 #ifdef CONFIG_NUMA 6474 setup_min_unmapped_ratio(); 6475 setup_min_slab_ratio(); 6476 #endif 6477 6478 khugepaged_min_free_kbytes_update(); 6479 6480 return 0; 6481 } 6482 postcore_initcall(init_per_zone_wmark_min) 6483 6484 /* 6485 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6486 * that we can call two helper functions whenever min_free_kbytes 6487 * changes. 6488 */ 6489 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6490 void *buffer, size_t *length, loff_t *ppos) 6491 { 6492 int rc; 6493 6494 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6495 if (rc) 6496 return rc; 6497 6498 if (write) { 6499 user_min_free_kbytes = min_free_kbytes; 6500 setup_per_zone_wmarks(); 6501 } 6502 return 0; 6503 } 6504 6505 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6506 void *buffer, size_t *length, loff_t *ppos) 6507 { 6508 int rc; 6509 6510 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6511 if (rc) 6512 return rc; 6513 6514 if (write) 6515 setup_per_zone_wmarks(); 6516 6517 return 0; 6518 } 6519 6520 #ifdef CONFIG_NUMA 6521 static void setup_min_unmapped_ratio(void) 6522 { 6523 pg_data_t *pgdat; 6524 struct zone *zone; 6525 6526 for_each_online_pgdat(pgdat) 6527 pgdat->min_unmapped_pages = 0; 6528 6529 for_each_zone(zone) 6530 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6531 sysctl_min_unmapped_ratio) / 100; 6532 } 6533 6534 6535 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6536 void *buffer, size_t *length, loff_t *ppos) 6537 { 6538 int rc; 6539 6540 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6541 if (rc) 6542 return rc; 6543 6544 setup_min_unmapped_ratio(); 6545 6546 return 0; 6547 } 6548 6549 static void setup_min_slab_ratio(void) 6550 { 6551 pg_data_t *pgdat; 6552 struct zone *zone; 6553 6554 for_each_online_pgdat(pgdat) 6555 pgdat->min_slab_pages = 0; 6556 6557 for_each_zone(zone) 6558 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6559 sysctl_min_slab_ratio) / 100; 6560 } 6561 6562 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6563 void *buffer, size_t *length, loff_t *ppos) 6564 { 6565 int rc; 6566 6567 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6568 if (rc) 6569 return rc; 6570 6571 setup_min_slab_ratio(); 6572 6573 return 0; 6574 } 6575 #endif 6576 6577 /* 6578 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6579 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6580 * whenever sysctl_lowmem_reserve_ratio changes. 6581 * 6582 * The reserve ratio obviously has absolutely no relation with the 6583 * minimum watermarks. The lowmem reserve ratio can only make sense 6584 * if in function of the boot time zone sizes. 6585 */ 6586 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6587 int write, void *buffer, size_t *length, loff_t *ppos) 6588 { 6589 int i; 6590 6591 proc_dointvec_minmax(table, write, buffer, length, ppos); 6592 6593 for (i = 0; i < MAX_NR_ZONES; i++) { 6594 if (sysctl_lowmem_reserve_ratio[i] < 1) 6595 sysctl_lowmem_reserve_ratio[i] = 0; 6596 } 6597 6598 setup_per_zone_lowmem_reserve(); 6599 return 0; 6600 } 6601 6602 /* 6603 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6604 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6605 * pagelist can have before it gets flushed back to buddy allocator. 6606 */ 6607 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6608 int write, void *buffer, size_t *length, loff_t *ppos) 6609 { 6610 struct zone *zone; 6611 int old_percpu_pagelist_high_fraction; 6612 int ret; 6613 6614 mutex_lock(&pcp_batch_high_lock); 6615 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6616 6617 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6618 if (!write || ret < 0) 6619 goto out; 6620 6621 /* Sanity checking to avoid pcp imbalance */ 6622 if (percpu_pagelist_high_fraction && 6623 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6624 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6625 ret = -EINVAL; 6626 goto out; 6627 } 6628 6629 /* No change? */ 6630 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6631 goto out; 6632 6633 for_each_populated_zone(zone) 6634 zone_set_pageset_high_and_batch(zone, 0); 6635 out: 6636 mutex_unlock(&pcp_batch_high_lock); 6637 return ret; 6638 } 6639 6640 static const struct ctl_table page_alloc_sysctl_table[] = { 6641 { 6642 .procname = "min_free_kbytes", 6643 .data = &min_free_kbytes, 6644 .maxlen = sizeof(min_free_kbytes), 6645 .mode = 0644, 6646 .proc_handler = min_free_kbytes_sysctl_handler, 6647 .extra1 = SYSCTL_ZERO, 6648 }, 6649 { 6650 .procname = "watermark_boost_factor", 6651 .data = &watermark_boost_factor, 6652 .maxlen = sizeof(watermark_boost_factor), 6653 .mode = 0644, 6654 .proc_handler = proc_dointvec_minmax, 6655 .extra1 = SYSCTL_ZERO, 6656 }, 6657 { 6658 .procname = "watermark_scale_factor", 6659 .data = &watermark_scale_factor, 6660 .maxlen = sizeof(watermark_scale_factor), 6661 .mode = 0644, 6662 .proc_handler = watermark_scale_factor_sysctl_handler, 6663 .extra1 = SYSCTL_ONE, 6664 .extra2 = SYSCTL_THREE_THOUSAND, 6665 }, 6666 { 6667 .procname = "defrag_mode", 6668 .data = &defrag_mode, 6669 .maxlen = sizeof(defrag_mode), 6670 .mode = 0644, 6671 .proc_handler = proc_dointvec_minmax, 6672 .extra1 = SYSCTL_ZERO, 6673 .extra2 = SYSCTL_ONE, 6674 }, 6675 { 6676 .procname = "percpu_pagelist_high_fraction", 6677 .data = &percpu_pagelist_high_fraction, 6678 .maxlen = sizeof(percpu_pagelist_high_fraction), 6679 .mode = 0644, 6680 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6681 .extra1 = SYSCTL_ZERO, 6682 }, 6683 { 6684 .procname = "lowmem_reserve_ratio", 6685 .data = &sysctl_lowmem_reserve_ratio, 6686 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6687 .mode = 0644, 6688 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6689 }, 6690 #ifdef CONFIG_NUMA 6691 { 6692 .procname = "numa_zonelist_order", 6693 .data = &numa_zonelist_order, 6694 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6695 .mode = 0644, 6696 .proc_handler = numa_zonelist_order_handler, 6697 }, 6698 { 6699 .procname = "min_unmapped_ratio", 6700 .data = &sysctl_min_unmapped_ratio, 6701 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6702 .mode = 0644, 6703 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6704 .extra1 = SYSCTL_ZERO, 6705 .extra2 = SYSCTL_ONE_HUNDRED, 6706 }, 6707 { 6708 .procname = "min_slab_ratio", 6709 .data = &sysctl_min_slab_ratio, 6710 .maxlen = sizeof(sysctl_min_slab_ratio), 6711 .mode = 0644, 6712 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6713 .extra1 = SYSCTL_ZERO, 6714 .extra2 = SYSCTL_ONE_HUNDRED, 6715 }, 6716 #endif 6717 }; 6718 6719 void __init page_alloc_sysctl_init(void) 6720 { 6721 register_sysctl_init("vm", page_alloc_sysctl_table); 6722 } 6723 6724 #ifdef CONFIG_CONTIG_ALLOC 6725 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6726 static void alloc_contig_dump_pages(struct list_head *page_list) 6727 { 6728 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6729 6730 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6731 struct page *page; 6732 6733 dump_stack(); 6734 list_for_each_entry(page, page_list, lru) 6735 dump_page(page, "migration failure"); 6736 } 6737 } 6738 6739 /* [start, end) must belong to a single zone. */ 6740 static int __alloc_contig_migrate_range(struct compact_control *cc, 6741 unsigned long start, unsigned long end) 6742 { 6743 /* This function is based on compact_zone() from compaction.c. */ 6744 unsigned int nr_reclaimed; 6745 unsigned long pfn = start; 6746 unsigned int tries = 0; 6747 int ret = 0; 6748 struct migration_target_control mtc = { 6749 .nid = zone_to_nid(cc->zone), 6750 .gfp_mask = cc->gfp_mask, 6751 .reason = MR_CONTIG_RANGE, 6752 }; 6753 6754 lru_cache_disable(); 6755 6756 while (pfn < end || !list_empty(&cc->migratepages)) { 6757 if (fatal_signal_pending(current)) { 6758 ret = -EINTR; 6759 break; 6760 } 6761 6762 if (list_empty(&cc->migratepages)) { 6763 cc->nr_migratepages = 0; 6764 ret = isolate_migratepages_range(cc, pfn, end); 6765 if (ret && ret != -EAGAIN) 6766 break; 6767 pfn = cc->migrate_pfn; 6768 tries = 0; 6769 } else if (++tries == 5) { 6770 ret = -EBUSY; 6771 break; 6772 } 6773 6774 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6775 &cc->migratepages); 6776 cc->nr_migratepages -= nr_reclaimed; 6777 6778 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6779 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6780 6781 /* 6782 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6783 * to retry again over this error, so do the same here. 6784 */ 6785 if (ret == -ENOMEM) 6786 break; 6787 } 6788 6789 lru_cache_enable(); 6790 if (ret < 0) { 6791 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6792 alloc_contig_dump_pages(&cc->migratepages); 6793 putback_movable_pages(&cc->migratepages); 6794 } 6795 6796 return (ret < 0) ? ret : 0; 6797 } 6798 6799 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6800 { 6801 int order; 6802 6803 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6804 struct page *page, *next; 6805 int nr_pages = 1 << order; 6806 6807 list_for_each_entry_safe(page, next, &list[order], lru) { 6808 int i; 6809 6810 post_alloc_hook(page, order, gfp_mask); 6811 set_page_refcounted(page); 6812 if (!order) 6813 continue; 6814 6815 split_page(page, order); 6816 6817 /* Add all subpages to the order-0 head, in sequence. */ 6818 list_del(&page->lru); 6819 for (i = 0; i < nr_pages; i++) 6820 list_add_tail(&page[i].lru, &list[0]); 6821 } 6822 } 6823 } 6824 6825 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6826 { 6827 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6828 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6829 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6830 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6831 6832 /* 6833 * We are given the range to allocate; node, mobility and placement 6834 * hints are irrelevant at this point. We'll simply ignore them. 6835 */ 6836 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6837 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6838 6839 /* 6840 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6841 * selected action flags. 6842 */ 6843 if (gfp_mask & ~(reclaim_mask | action_mask)) 6844 return -EINVAL; 6845 6846 /* 6847 * Flags to control page compaction/migration/reclaim, to free up our 6848 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6849 * for them. 6850 * 6851 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6852 * to not degrade callers. 6853 */ 6854 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6855 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6856 return 0; 6857 } 6858 6859 /** 6860 * alloc_contig_range() -- tries to allocate given range of pages 6861 * @start: start PFN to allocate 6862 * @end: one-past-the-last PFN to allocate 6863 * @alloc_flags: allocation information 6864 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6865 * action and reclaim modifiers are supported. Reclaim modifiers 6866 * control allocation behavior during compaction/migration/reclaim. 6867 * 6868 * The PFN range does not have to be pageblock aligned. The PFN range must 6869 * belong to a single zone. 6870 * 6871 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6872 * pageblocks in the range. Once isolated, the pageblocks should not 6873 * be modified by others. 6874 * 6875 * Return: zero on success or negative error code. On success all 6876 * pages which PFN is in [start, end) are allocated for the caller and 6877 * need to be freed with free_contig_range(). 6878 */ 6879 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6880 acr_flags_t alloc_flags, gfp_t gfp_mask) 6881 { 6882 const unsigned int order = ilog2(end - start); 6883 unsigned long outer_start, outer_end; 6884 int ret = 0; 6885 6886 struct compact_control cc = { 6887 .nr_migratepages = 0, 6888 .order = -1, 6889 .zone = page_zone(pfn_to_page(start)), 6890 .mode = MIGRATE_SYNC, 6891 .ignore_skip_hint = true, 6892 .no_set_skip_hint = true, 6893 .alloc_contig = true, 6894 }; 6895 INIT_LIST_HEAD(&cc.migratepages); 6896 enum pb_isolate_mode mode = (alloc_flags & ACR_FLAGS_CMA) ? 6897 PB_ISOLATE_MODE_CMA_ALLOC : 6898 PB_ISOLATE_MODE_OTHER; 6899 6900 /* 6901 * In contrast to the buddy, we allow for orders here that exceed 6902 * MAX_PAGE_ORDER, so we must manually make sure that we are not 6903 * exceeding the maximum folio order. 6904 */ 6905 if (WARN_ON_ONCE((gfp_mask & __GFP_COMP) && order > MAX_FOLIO_ORDER)) 6906 return -EINVAL; 6907 6908 gfp_mask = current_gfp_context(gfp_mask); 6909 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6910 return -EINVAL; 6911 6912 /* 6913 * What we do here is we mark all pageblocks in range as 6914 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6915 * have different sizes, and due to the way page allocator 6916 * work, start_isolate_page_range() has special handlings for this. 6917 * 6918 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6919 * migrate the pages from an unaligned range (ie. pages that 6920 * we are interested in). This will put all the pages in 6921 * range back to page allocator as MIGRATE_ISOLATE. 6922 * 6923 * When this is done, we take the pages in range from page 6924 * allocator removing them from the buddy system. This way 6925 * page allocator will never consider using them. 6926 * 6927 * This lets us mark the pageblocks back as 6928 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6929 * aligned range but not in the unaligned, original range are 6930 * put back to page allocator so that buddy can use them. 6931 */ 6932 6933 ret = start_isolate_page_range(start, end, mode); 6934 if (ret) 6935 goto done; 6936 6937 drain_all_pages(cc.zone); 6938 6939 /* 6940 * In case of -EBUSY, we'd like to know which page causes problem. 6941 * So, just fall through. test_pages_isolated() has a tracepoint 6942 * which will report the busy page. 6943 * 6944 * It is possible that busy pages could become available before 6945 * the call to test_pages_isolated, and the range will actually be 6946 * allocated. So, if we fall through be sure to clear ret so that 6947 * -EBUSY is not accidentally used or returned to caller. 6948 */ 6949 ret = __alloc_contig_migrate_range(&cc, start, end); 6950 if (ret && ret != -EBUSY) 6951 goto done; 6952 6953 /* 6954 * When in-use hugetlb pages are migrated, they may simply be released 6955 * back into the free hugepage pool instead of being returned to the 6956 * buddy system. After the migration of in-use huge pages is completed, 6957 * we will invoke replace_free_hugepage_folios() to ensure that these 6958 * hugepages are properly released to the buddy system. 6959 */ 6960 ret = replace_free_hugepage_folios(start, end); 6961 if (ret) 6962 goto done; 6963 6964 /* 6965 * Pages from [start, end) are within a pageblock_nr_pages 6966 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6967 * more, all pages in [start, end) are free in page allocator. 6968 * What we are going to do is to allocate all pages from 6969 * [start, end) (that is remove them from page allocator). 6970 * 6971 * The only problem is that pages at the beginning and at the 6972 * end of interesting range may be not aligned with pages that 6973 * page allocator holds, ie. they can be part of higher order 6974 * pages. Because of this, we reserve the bigger range and 6975 * once this is done free the pages we are not interested in. 6976 * 6977 * We don't have to hold zone->lock here because the pages are 6978 * isolated thus they won't get removed from buddy. 6979 */ 6980 outer_start = find_large_buddy(start); 6981 6982 /* Make sure the range is really isolated. */ 6983 if (test_pages_isolated(outer_start, end, mode)) { 6984 ret = -EBUSY; 6985 goto done; 6986 } 6987 6988 /* Grab isolated pages from freelists. */ 6989 outer_end = isolate_freepages_range(&cc, outer_start, end); 6990 if (!outer_end) { 6991 ret = -EBUSY; 6992 goto done; 6993 } 6994 6995 if (!(gfp_mask & __GFP_COMP)) { 6996 split_free_pages(cc.freepages, gfp_mask); 6997 6998 /* Free head and tail (if any) */ 6999 if (start != outer_start) 7000 free_contig_range(outer_start, start - outer_start); 7001 if (end != outer_end) 7002 free_contig_range(end, outer_end - end); 7003 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 7004 struct page *head = pfn_to_page(start); 7005 7006 check_new_pages(head, order); 7007 prep_new_page(head, order, gfp_mask, 0); 7008 set_page_refcounted(head); 7009 } else { 7010 ret = -EINVAL; 7011 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 7012 start, end, outer_start, outer_end); 7013 } 7014 done: 7015 undo_isolate_page_range(start, end); 7016 return ret; 7017 } 7018 EXPORT_SYMBOL(alloc_contig_range_noprof); 7019 7020 static int __alloc_contig_pages(unsigned long start_pfn, 7021 unsigned long nr_pages, gfp_t gfp_mask) 7022 { 7023 unsigned long end_pfn = start_pfn + nr_pages; 7024 7025 return alloc_contig_range_noprof(start_pfn, end_pfn, ACR_FLAGS_NONE, 7026 gfp_mask); 7027 } 7028 7029 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 7030 unsigned long nr_pages) 7031 { 7032 unsigned long i, end_pfn = start_pfn + nr_pages; 7033 struct page *page; 7034 7035 for (i = start_pfn; i < end_pfn; i++) { 7036 page = pfn_to_online_page(i); 7037 if (!page) 7038 return false; 7039 7040 if (page_zone(page) != z) 7041 return false; 7042 7043 if (PageReserved(page)) 7044 return false; 7045 7046 if (PageHuge(page)) 7047 return false; 7048 } 7049 return true; 7050 } 7051 7052 static bool zone_spans_last_pfn(const struct zone *zone, 7053 unsigned long start_pfn, unsigned long nr_pages) 7054 { 7055 unsigned long last_pfn = start_pfn + nr_pages - 1; 7056 7057 return zone_spans_pfn(zone, last_pfn); 7058 } 7059 7060 /** 7061 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 7062 * @nr_pages: Number of contiguous pages to allocate 7063 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 7064 * action and reclaim modifiers are supported. Reclaim modifiers 7065 * control allocation behavior during compaction/migration/reclaim. 7066 * @nid: Target node 7067 * @nodemask: Mask for other possible nodes 7068 * 7069 * This routine is a wrapper around alloc_contig_range(). It scans over zones 7070 * on an applicable zonelist to find a contiguous pfn range which can then be 7071 * tried for allocation with alloc_contig_range(). This routine is intended 7072 * for allocation requests which can not be fulfilled with the buddy allocator. 7073 * 7074 * The allocated memory is always aligned to a page boundary. If nr_pages is a 7075 * power of two, then allocated range is also guaranteed to be aligned to same 7076 * nr_pages (e.g. 1GB request would be aligned to 1GB). 7077 * 7078 * Allocated pages can be freed with free_contig_range() or by manually calling 7079 * __free_page() on each allocated page. 7080 * 7081 * Return: pointer to contiguous pages on success, or NULL if not successful. 7082 */ 7083 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 7084 int nid, nodemask_t *nodemask) 7085 { 7086 unsigned long ret, pfn, flags; 7087 struct zonelist *zonelist; 7088 struct zone *zone; 7089 struct zoneref *z; 7090 7091 zonelist = node_zonelist(nid, gfp_mask); 7092 for_each_zone_zonelist_nodemask(zone, z, zonelist, 7093 gfp_zone(gfp_mask), nodemask) { 7094 spin_lock_irqsave(&zone->lock, flags); 7095 7096 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 7097 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 7098 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 7099 /* 7100 * We release the zone lock here because 7101 * alloc_contig_range() will also lock the zone 7102 * at some point. If there's an allocation 7103 * spinning on this lock, it may win the race 7104 * and cause alloc_contig_range() to fail... 7105 */ 7106 spin_unlock_irqrestore(&zone->lock, flags); 7107 ret = __alloc_contig_pages(pfn, nr_pages, 7108 gfp_mask); 7109 if (!ret) 7110 return pfn_to_page(pfn); 7111 spin_lock_irqsave(&zone->lock, flags); 7112 } 7113 pfn += nr_pages; 7114 } 7115 spin_unlock_irqrestore(&zone->lock, flags); 7116 } 7117 return NULL; 7118 } 7119 #endif /* CONFIG_CONTIG_ALLOC */ 7120 7121 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 7122 { 7123 unsigned long count = 0; 7124 struct folio *folio = pfn_folio(pfn); 7125 7126 if (folio_test_large(folio)) { 7127 int expected = folio_nr_pages(folio); 7128 7129 if (nr_pages == expected) 7130 folio_put(folio); 7131 else 7132 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 7133 pfn, nr_pages, expected); 7134 return; 7135 } 7136 7137 for (; nr_pages--; pfn++) { 7138 struct page *page = pfn_to_page(pfn); 7139 7140 count += page_count(page) != 1; 7141 __free_page(page); 7142 } 7143 WARN(count != 0, "%lu pages are still in use!\n", count); 7144 } 7145 EXPORT_SYMBOL(free_contig_range); 7146 7147 /* 7148 * Effectively disable pcplists for the zone by setting the high limit to 0 7149 * and draining all cpus. A concurrent page freeing on another CPU that's about 7150 * to put the page on pcplist will either finish before the drain and the page 7151 * will be drained, or observe the new high limit and skip the pcplist. 7152 * 7153 * Must be paired with a call to zone_pcp_enable(). 7154 */ 7155 void zone_pcp_disable(struct zone *zone) 7156 { 7157 mutex_lock(&pcp_batch_high_lock); 7158 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 7159 __drain_all_pages(zone, true); 7160 } 7161 7162 void zone_pcp_enable(struct zone *zone) 7163 { 7164 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 7165 zone->pageset_high_max, zone->pageset_batch); 7166 mutex_unlock(&pcp_batch_high_lock); 7167 } 7168 7169 void zone_pcp_reset(struct zone *zone) 7170 { 7171 int cpu; 7172 struct per_cpu_zonestat *pzstats; 7173 7174 if (zone->per_cpu_pageset != &boot_pageset) { 7175 for_each_online_cpu(cpu) { 7176 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7177 drain_zonestat(zone, pzstats); 7178 } 7179 free_percpu(zone->per_cpu_pageset); 7180 zone->per_cpu_pageset = &boot_pageset; 7181 if (zone->per_cpu_zonestats != &boot_zonestats) { 7182 free_percpu(zone->per_cpu_zonestats); 7183 zone->per_cpu_zonestats = &boot_zonestats; 7184 } 7185 } 7186 } 7187 7188 #ifdef CONFIG_MEMORY_HOTREMOVE 7189 /* 7190 * All pages in the range must be in a single zone, must not contain holes, 7191 * must span full sections, and must be isolated before calling this function. 7192 * 7193 * Returns the number of managed (non-PageOffline()) pages in the range: the 7194 * number of pages for which memory offlining code must adjust managed page 7195 * counters using adjust_managed_page_count(). 7196 */ 7197 unsigned long __offline_isolated_pages(unsigned long start_pfn, 7198 unsigned long end_pfn) 7199 { 7200 unsigned long already_offline = 0, flags; 7201 unsigned long pfn = start_pfn; 7202 struct page *page; 7203 struct zone *zone; 7204 unsigned int order; 7205 7206 offline_mem_sections(pfn, end_pfn); 7207 zone = page_zone(pfn_to_page(pfn)); 7208 spin_lock_irqsave(&zone->lock, flags); 7209 while (pfn < end_pfn) { 7210 page = pfn_to_page(pfn); 7211 /* 7212 * The HWPoisoned page may be not in buddy system, and 7213 * page_count() is not 0. 7214 */ 7215 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7216 pfn++; 7217 continue; 7218 } 7219 /* 7220 * At this point all remaining PageOffline() pages have a 7221 * reference count of 0 and can simply be skipped. 7222 */ 7223 if (PageOffline(page)) { 7224 BUG_ON(page_count(page)); 7225 BUG_ON(PageBuddy(page)); 7226 already_offline++; 7227 pfn++; 7228 continue; 7229 } 7230 7231 BUG_ON(page_count(page)); 7232 BUG_ON(!PageBuddy(page)); 7233 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7234 order = buddy_order(page); 7235 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7236 pfn += (1 << order); 7237 } 7238 spin_unlock_irqrestore(&zone->lock, flags); 7239 7240 return end_pfn - start_pfn - already_offline; 7241 } 7242 #endif 7243 7244 /* 7245 * This function returns a stable result only if called under zone lock. 7246 */ 7247 bool is_free_buddy_page(const struct page *page) 7248 { 7249 unsigned long pfn = page_to_pfn(page); 7250 unsigned int order; 7251 7252 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7253 const struct page *head = page - (pfn & ((1 << order) - 1)); 7254 7255 if (PageBuddy(head) && 7256 buddy_order_unsafe(head) >= order) 7257 break; 7258 } 7259 7260 return order <= MAX_PAGE_ORDER; 7261 } 7262 EXPORT_SYMBOL(is_free_buddy_page); 7263 7264 #ifdef CONFIG_MEMORY_FAILURE 7265 static inline void add_to_free_list(struct page *page, struct zone *zone, 7266 unsigned int order, int migratetype, 7267 bool tail) 7268 { 7269 __add_to_free_list(page, zone, order, migratetype, tail); 7270 account_freepages(zone, 1 << order, migratetype); 7271 } 7272 7273 /* 7274 * Break down a higher-order page in sub-pages, and keep our target out of 7275 * buddy allocator. 7276 */ 7277 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7278 struct page *target, int low, int high, 7279 int migratetype) 7280 { 7281 unsigned long size = 1 << high; 7282 struct page *current_buddy; 7283 7284 while (high > low) { 7285 high--; 7286 size >>= 1; 7287 7288 if (target >= &page[size]) { 7289 current_buddy = page; 7290 page = page + size; 7291 } else { 7292 current_buddy = page + size; 7293 } 7294 7295 if (set_page_guard(zone, current_buddy, high)) 7296 continue; 7297 7298 add_to_free_list(current_buddy, zone, high, migratetype, false); 7299 set_buddy_order(current_buddy, high); 7300 } 7301 } 7302 7303 /* 7304 * Take a page that will be marked as poisoned off the buddy allocator. 7305 */ 7306 bool take_page_off_buddy(struct page *page) 7307 { 7308 struct zone *zone = page_zone(page); 7309 unsigned long pfn = page_to_pfn(page); 7310 unsigned long flags; 7311 unsigned int order; 7312 bool ret = false; 7313 7314 spin_lock_irqsave(&zone->lock, flags); 7315 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7316 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7317 int page_order = buddy_order(page_head); 7318 7319 if (PageBuddy(page_head) && page_order >= order) { 7320 unsigned long pfn_head = page_to_pfn(page_head); 7321 int migratetype = get_pfnblock_migratetype(page_head, 7322 pfn_head); 7323 7324 del_page_from_free_list(page_head, zone, page_order, 7325 migratetype); 7326 break_down_buddy_pages(zone, page_head, page, 0, 7327 page_order, migratetype); 7328 SetPageHWPoisonTakenOff(page); 7329 ret = true; 7330 break; 7331 } 7332 if (page_count(page_head) > 0) 7333 break; 7334 } 7335 spin_unlock_irqrestore(&zone->lock, flags); 7336 return ret; 7337 } 7338 7339 /* 7340 * Cancel takeoff done by take_page_off_buddy(). 7341 */ 7342 bool put_page_back_buddy(struct page *page) 7343 { 7344 struct zone *zone = page_zone(page); 7345 unsigned long flags; 7346 bool ret = false; 7347 7348 spin_lock_irqsave(&zone->lock, flags); 7349 if (put_page_testzero(page)) { 7350 unsigned long pfn = page_to_pfn(page); 7351 int migratetype = get_pfnblock_migratetype(page, pfn); 7352 7353 ClearPageHWPoisonTakenOff(page); 7354 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7355 if (TestClearPageHWPoison(page)) { 7356 ret = true; 7357 } 7358 } 7359 spin_unlock_irqrestore(&zone->lock, flags); 7360 7361 return ret; 7362 } 7363 #endif 7364 7365 #ifdef CONFIG_ZONE_DMA 7366 bool has_managed_dma(void) 7367 { 7368 struct pglist_data *pgdat; 7369 7370 for_each_online_pgdat(pgdat) { 7371 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7372 7373 if (managed_zone(zone)) 7374 return true; 7375 } 7376 return false; 7377 } 7378 #endif /* CONFIG_ZONE_DMA */ 7379 7380 #ifdef CONFIG_UNACCEPTED_MEMORY 7381 7382 static bool lazy_accept = true; 7383 7384 static int __init accept_memory_parse(char *p) 7385 { 7386 if (!strcmp(p, "lazy")) { 7387 lazy_accept = true; 7388 return 0; 7389 } else if (!strcmp(p, "eager")) { 7390 lazy_accept = false; 7391 return 0; 7392 } else { 7393 return -EINVAL; 7394 } 7395 } 7396 early_param("accept_memory", accept_memory_parse); 7397 7398 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7399 { 7400 phys_addr_t start = page_to_phys(page); 7401 7402 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7403 } 7404 7405 static void __accept_page(struct zone *zone, unsigned long *flags, 7406 struct page *page) 7407 { 7408 list_del(&page->lru); 7409 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7410 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7411 __ClearPageUnaccepted(page); 7412 spin_unlock_irqrestore(&zone->lock, *flags); 7413 7414 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7415 7416 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7417 } 7418 7419 void accept_page(struct page *page) 7420 { 7421 struct zone *zone = page_zone(page); 7422 unsigned long flags; 7423 7424 spin_lock_irqsave(&zone->lock, flags); 7425 if (!PageUnaccepted(page)) { 7426 spin_unlock_irqrestore(&zone->lock, flags); 7427 return; 7428 } 7429 7430 /* Unlocks zone->lock */ 7431 __accept_page(zone, &flags, page); 7432 } 7433 7434 static bool try_to_accept_memory_one(struct zone *zone) 7435 { 7436 unsigned long flags; 7437 struct page *page; 7438 7439 spin_lock_irqsave(&zone->lock, flags); 7440 page = list_first_entry_or_null(&zone->unaccepted_pages, 7441 struct page, lru); 7442 if (!page) { 7443 spin_unlock_irqrestore(&zone->lock, flags); 7444 return false; 7445 } 7446 7447 /* Unlocks zone->lock */ 7448 __accept_page(zone, &flags, page); 7449 7450 return true; 7451 } 7452 7453 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7454 int alloc_flags) 7455 { 7456 long to_accept, wmark; 7457 bool ret = false; 7458 7459 if (list_empty(&zone->unaccepted_pages)) 7460 return false; 7461 7462 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7463 if (alloc_flags & ALLOC_TRYLOCK) 7464 return false; 7465 7466 wmark = promo_wmark_pages(zone); 7467 7468 /* 7469 * Watermarks have not been initialized yet. 7470 * 7471 * Accepting one MAX_ORDER page to ensure progress. 7472 */ 7473 if (!wmark) 7474 return try_to_accept_memory_one(zone); 7475 7476 /* How much to accept to get to promo watermark? */ 7477 to_accept = wmark - 7478 (zone_page_state(zone, NR_FREE_PAGES) - 7479 __zone_watermark_unusable_free(zone, order, 0) - 7480 zone_page_state(zone, NR_UNACCEPTED)); 7481 7482 while (to_accept > 0) { 7483 if (!try_to_accept_memory_one(zone)) 7484 break; 7485 ret = true; 7486 to_accept -= MAX_ORDER_NR_PAGES; 7487 } 7488 7489 return ret; 7490 } 7491 7492 static bool __free_unaccepted(struct page *page) 7493 { 7494 struct zone *zone = page_zone(page); 7495 unsigned long flags; 7496 7497 if (!lazy_accept) 7498 return false; 7499 7500 spin_lock_irqsave(&zone->lock, flags); 7501 list_add_tail(&page->lru, &zone->unaccepted_pages); 7502 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7503 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7504 __SetPageUnaccepted(page); 7505 spin_unlock_irqrestore(&zone->lock, flags); 7506 7507 return true; 7508 } 7509 7510 #else 7511 7512 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7513 { 7514 return false; 7515 } 7516 7517 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7518 int alloc_flags) 7519 { 7520 return false; 7521 } 7522 7523 static bool __free_unaccepted(struct page *page) 7524 { 7525 BUILD_BUG(); 7526 return false; 7527 } 7528 7529 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7530 7531 struct page *alloc_frozen_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7532 { 7533 /* 7534 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7535 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7536 * is not safe in arbitrary context. 7537 * 7538 * These two are the conditions for gfpflags_allow_spinning() being true. 7539 * 7540 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason 7541 * to warn. Also warn would trigger printk() which is unsafe from 7542 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7543 * since the running context is unknown. 7544 * 7545 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7546 * is safe in any context. Also zeroing the page is mandatory for 7547 * BPF use cases. 7548 * 7549 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7550 * specify it here to highlight that alloc_pages_nolock() 7551 * doesn't want to deplete reserves. 7552 */ 7553 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC | __GFP_COMP 7554 | gfp_flags; 7555 unsigned int alloc_flags = ALLOC_TRYLOCK; 7556 struct alloc_context ac = { }; 7557 struct page *page; 7558 7559 VM_WARN_ON_ONCE(gfp_flags & ~__GFP_ACCOUNT); 7560 /* 7561 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7562 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7563 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7564 * mark the task as the owner of another rt_spin_lock which will 7565 * confuse PI logic, so return immediately if called form hard IRQ or 7566 * NMI. 7567 * 7568 * Note, irqs_disabled() case is ok. This function can be called 7569 * from raw_spin_lock_irqsave region. 7570 */ 7571 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7572 return NULL; 7573 if (!pcp_allowed_order(order)) 7574 return NULL; 7575 7576 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7577 if (deferred_pages_enabled()) 7578 return NULL; 7579 7580 if (nid == NUMA_NO_NODE) 7581 nid = numa_node_id(); 7582 7583 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7584 &alloc_gfp, &alloc_flags); 7585 7586 /* 7587 * Best effort allocation from percpu free list. 7588 * If it's empty attempt to spin_trylock zone->lock. 7589 */ 7590 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7591 7592 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7593 7594 if (memcg_kmem_online() && page && (gfp_flags & __GFP_ACCOUNT) && 7595 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7596 __free_frozen_pages(page, order, FPI_TRYLOCK); 7597 page = NULL; 7598 } 7599 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7600 kmsan_alloc_page(page, order, alloc_gfp); 7601 return page; 7602 } 7603 /** 7604 * alloc_pages_nolock - opportunistic reentrant allocation from any context 7605 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT allowed. 7606 * @nid: node to allocate from 7607 * @order: allocation order size 7608 * 7609 * Allocates pages of a given order from the given node. This is safe to 7610 * call from any context (from atomic, NMI, and also reentrant 7611 * allocator -> tracepoint -> alloc_pages_nolock_noprof). 7612 * Allocation is best effort and to be expected to fail easily so nobody should 7613 * rely on the success. Failures are not reported via warn_alloc(). 7614 * See always fail conditions below. 7615 * 7616 * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. 7617 * It means ENOMEM. There is no reason to call it again and expect !NULL. 7618 */ 7619 struct page *alloc_pages_nolock_noprof(gfp_t gfp_flags, int nid, unsigned int order) 7620 { 7621 struct page *page; 7622 7623 page = alloc_frozen_pages_nolock_noprof(gfp_flags, nid, order); 7624 if (page) 7625 set_page_refcounted(page); 7626 return page; 7627 } 7628 EXPORT_SYMBOL_GPL(alloc_pages_nolock_noprof); 7629