1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/memremap.h> 47 #include <linux/stop_machine.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/page_ext.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 67 #include <asm/sections.h> 68 #include <asm/tlbflush.h> 69 #include <asm/div64.h> 70 #include "internal.h" 71 72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 73 static DEFINE_MUTEX(pcp_batch_high_lock); 74 #define MIN_PERCPU_PAGELIST_FRACTION (8) 75 76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 77 DEFINE_PER_CPU(int, numa_node); 78 EXPORT_PER_CPU_SYMBOL(numa_node); 79 #endif 80 81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 82 /* 83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 86 * defined in <linux/topology.h>. 87 */ 88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 89 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 90 int _node_numa_mem_[MAX_NUMNODES]; 91 #endif 92 93 /* 94 * Array of node states. 95 */ 96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 97 [N_POSSIBLE] = NODE_MASK_ALL, 98 [N_ONLINE] = { { [0] = 1UL } }, 99 #ifndef CONFIG_NUMA 100 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 101 #ifdef CONFIG_HIGHMEM 102 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 103 #endif 104 #ifdef CONFIG_MOVABLE_NODE 105 [N_MEMORY] = { { [0] = 1UL } }, 106 #endif 107 [N_CPU] = { { [0] = 1UL } }, 108 #endif /* NUMA */ 109 }; 110 EXPORT_SYMBOL(node_states); 111 112 /* Protect totalram_pages and zone->managed_pages */ 113 static DEFINE_SPINLOCK(managed_page_count_lock); 114 115 unsigned long totalram_pages __read_mostly; 116 unsigned long totalreserve_pages __read_mostly; 117 unsigned long totalcma_pages __read_mostly; 118 119 int percpu_pagelist_fraction; 120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 121 122 /* 123 * A cached value of the page's pageblock's migratetype, used when the page is 124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 125 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 126 * Also the migratetype set in the page does not necessarily match the pcplist 127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 128 * other index - this ensures that it will be put on the correct CMA freelist. 129 */ 130 static inline int get_pcppage_migratetype(struct page *page) 131 { 132 return page->index; 133 } 134 135 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 136 { 137 page->index = migratetype; 138 } 139 140 #ifdef CONFIG_PM_SLEEP 141 /* 142 * The following functions are used by the suspend/hibernate code to temporarily 143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 144 * while devices are suspended. To avoid races with the suspend/hibernate code, 145 * they should always be called with pm_mutex held (gfp_allowed_mask also should 146 * only be modified with pm_mutex held, unless the suspend/hibernate code is 147 * guaranteed not to run in parallel with that modification). 148 */ 149 150 static gfp_t saved_gfp_mask; 151 152 void pm_restore_gfp_mask(void) 153 { 154 WARN_ON(!mutex_is_locked(&pm_mutex)); 155 if (saved_gfp_mask) { 156 gfp_allowed_mask = saved_gfp_mask; 157 saved_gfp_mask = 0; 158 } 159 } 160 161 void pm_restrict_gfp_mask(void) 162 { 163 WARN_ON(!mutex_is_locked(&pm_mutex)); 164 WARN_ON(saved_gfp_mask); 165 saved_gfp_mask = gfp_allowed_mask; 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 167 } 168 169 bool pm_suspended_storage(void) 170 { 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 172 return false; 173 return true; 174 } 175 #endif /* CONFIG_PM_SLEEP */ 176 177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 178 unsigned int pageblock_order __read_mostly; 179 #endif 180 181 static void __free_pages_ok(struct page *page, unsigned int order); 182 183 /* 184 * results with 256, 32 in the lowmem_reserve sysctl: 185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 186 * 1G machine -> (16M dma, 784M normal, 224M high) 187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 190 * 191 * TBD: should special case ZONE_DMA32 machines here - in those we normally 192 * don't need any ZONE_NORMAL reservation 193 */ 194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 195 #ifdef CONFIG_ZONE_DMA 196 256, 197 #endif 198 #ifdef CONFIG_ZONE_DMA32 199 256, 200 #endif 201 #ifdef CONFIG_HIGHMEM 202 32, 203 #endif 204 32, 205 }; 206 207 EXPORT_SYMBOL(totalram_pages); 208 209 static char * const zone_names[MAX_NR_ZONES] = { 210 #ifdef CONFIG_ZONE_DMA 211 "DMA", 212 #endif 213 #ifdef CONFIG_ZONE_DMA32 214 "DMA32", 215 #endif 216 "Normal", 217 #ifdef CONFIG_HIGHMEM 218 "HighMem", 219 #endif 220 "Movable", 221 #ifdef CONFIG_ZONE_DEVICE 222 "Device", 223 #endif 224 }; 225 226 char * const migratetype_names[MIGRATE_TYPES] = { 227 "Unmovable", 228 "Movable", 229 "Reclaimable", 230 "HighAtomic", 231 #ifdef CONFIG_CMA 232 "CMA", 233 #endif 234 #ifdef CONFIG_MEMORY_ISOLATION 235 "Isolate", 236 #endif 237 }; 238 239 compound_page_dtor * const compound_page_dtors[] = { 240 NULL, 241 free_compound_page, 242 #ifdef CONFIG_HUGETLB_PAGE 243 free_huge_page, 244 #endif 245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 246 free_transhuge_page, 247 #endif 248 }; 249 250 int min_free_kbytes = 1024; 251 int user_min_free_kbytes = -1; 252 int watermark_scale_factor = 10; 253 254 static unsigned long __meminitdata nr_kernel_pages; 255 static unsigned long __meminitdata nr_all_pages; 256 static unsigned long __meminitdata dma_reserve; 257 258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 261 static unsigned long __initdata required_kernelcore; 262 static unsigned long __initdata required_movablecore; 263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 264 static bool mirrored_kernelcore; 265 266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 267 int movable_zone; 268 EXPORT_SYMBOL(movable_zone); 269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 270 271 #if MAX_NUMNODES > 1 272 int nr_node_ids __read_mostly = MAX_NUMNODES; 273 int nr_online_nodes __read_mostly = 1; 274 EXPORT_SYMBOL(nr_node_ids); 275 EXPORT_SYMBOL(nr_online_nodes); 276 #endif 277 278 int page_group_by_mobility_disabled __read_mostly; 279 280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 281 static inline void reset_deferred_meminit(pg_data_t *pgdat) 282 { 283 pgdat->first_deferred_pfn = ULONG_MAX; 284 } 285 286 /* Returns true if the struct page for the pfn is uninitialised */ 287 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 288 { 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn) 290 return true; 291 292 return false; 293 } 294 295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 296 { 297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn) 298 return true; 299 300 return false; 301 } 302 303 /* 304 * Returns false when the remaining initialisation should be deferred until 305 * later in the boot cycle when it can be parallelised. 306 */ 307 static inline bool update_defer_init(pg_data_t *pgdat, 308 unsigned long pfn, unsigned long zone_end, 309 unsigned long *nr_initialised) 310 { 311 unsigned long max_initialise; 312 313 /* Always populate low zones for address-contrained allocations */ 314 if (zone_end < pgdat_end_pfn(pgdat)) 315 return true; 316 /* 317 * Initialise at least 2G of a node but also take into account that 318 * two large system hashes that can take up 1GB for 0.25TB/node. 319 */ 320 max_initialise = max(2UL << (30 - PAGE_SHIFT), 321 (pgdat->node_spanned_pages >> 8)); 322 323 (*nr_initialised)++; 324 if ((*nr_initialised > max_initialise) && 325 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 326 pgdat->first_deferred_pfn = pfn; 327 return false; 328 } 329 330 return true; 331 } 332 #else 333 static inline void reset_deferred_meminit(pg_data_t *pgdat) 334 { 335 } 336 337 static inline bool early_page_uninitialised(unsigned long pfn) 338 { 339 return false; 340 } 341 342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 343 { 344 return false; 345 } 346 347 static inline bool update_defer_init(pg_data_t *pgdat, 348 unsigned long pfn, unsigned long zone_end, 349 unsigned long *nr_initialised) 350 { 351 return true; 352 } 353 #endif 354 355 356 void set_pageblock_migratetype(struct page *page, int migratetype) 357 { 358 if (unlikely(page_group_by_mobility_disabled && 359 migratetype < MIGRATE_PCPTYPES)) 360 migratetype = MIGRATE_UNMOVABLE; 361 362 set_pageblock_flags_group(page, (unsigned long)migratetype, 363 PB_migrate, PB_migrate_end); 364 } 365 366 #ifdef CONFIG_DEBUG_VM 367 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 368 { 369 int ret = 0; 370 unsigned seq; 371 unsigned long pfn = page_to_pfn(page); 372 unsigned long sp, start_pfn; 373 374 do { 375 seq = zone_span_seqbegin(zone); 376 start_pfn = zone->zone_start_pfn; 377 sp = zone->spanned_pages; 378 if (!zone_spans_pfn(zone, pfn)) 379 ret = 1; 380 } while (zone_span_seqretry(zone, seq)); 381 382 if (ret) 383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 384 pfn, zone_to_nid(zone), zone->name, 385 start_pfn, start_pfn + sp); 386 387 return ret; 388 } 389 390 static int page_is_consistent(struct zone *zone, struct page *page) 391 { 392 if (!pfn_valid_within(page_to_pfn(page))) 393 return 0; 394 if (zone != page_zone(page)) 395 return 0; 396 397 return 1; 398 } 399 /* 400 * Temporary debugging check for pages not lying within a given zone. 401 */ 402 static int bad_range(struct zone *zone, struct page *page) 403 { 404 if (page_outside_zone_boundaries(zone, page)) 405 return 1; 406 if (!page_is_consistent(zone, page)) 407 return 1; 408 409 return 0; 410 } 411 #else 412 static inline int bad_range(struct zone *zone, struct page *page) 413 { 414 return 0; 415 } 416 #endif 417 418 static void bad_page(struct page *page, const char *reason, 419 unsigned long bad_flags) 420 { 421 static unsigned long resume; 422 static unsigned long nr_shown; 423 static unsigned long nr_unshown; 424 425 /* Don't complain about poisoned pages */ 426 if (PageHWPoison(page)) { 427 page_mapcount_reset(page); /* remove PageBuddy */ 428 return; 429 } 430 431 /* 432 * Allow a burst of 60 reports, then keep quiet for that minute; 433 * or allow a steady drip of one report per second. 434 */ 435 if (nr_shown == 60) { 436 if (time_before(jiffies, resume)) { 437 nr_unshown++; 438 goto out; 439 } 440 if (nr_unshown) { 441 pr_alert( 442 "BUG: Bad page state: %lu messages suppressed\n", 443 nr_unshown); 444 nr_unshown = 0; 445 } 446 nr_shown = 0; 447 } 448 if (nr_shown++ == 0) 449 resume = jiffies + 60 * HZ; 450 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 452 current->comm, page_to_pfn(page)); 453 __dump_page(page, reason); 454 bad_flags &= page->flags; 455 if (bad_flags) 456 pr_alert("bad because of flags: %#lx(%pGp)\n", 457 bad_flags, &bad_flags); 458 dump_page_owner(page); 459 460 print_modules(); 461 dump_stack(); 462 out: 463 /* Leave bad fields for debug, except PageBuddy could make trouble */ 464 page_mapcount_reset(page); /* remove PageBuddy */ 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 466 } 467 468 /* 469 * Higher-order pages are called "compound pages". They are structured thusly: 470 * 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 472 * 473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 475 * 476 * The first tail page's ->compound_dtor holds the offset in array of compound 477 * page destructors. See compound_page_dtors. 478 * 479 * The first tail page's ->compound_order holds the order of allocation. 480 * This usage means that zero-order pages may not be compound. 481 */ 482 483 void free_compound_page(struct page *page) 484 { 485 __free_pages_ok(page, compound_order(page)); 486 } 487 488 void prep_compound_page(struct page *page, unsigned int order) 489 { 490 int i; 491 int nr_pages = 1 << order; 492 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 494 set_compound_order(page, order); 495 __SetPageHead(page); 496 for (i = 1; i < nr_pages; i++) { 497 struct page *p = page + i; 498 set_page_count(p, 0); 499 p->mapping = TAIL_MAPPING; 500 set_compound_head(p, page); 501 } 502 atomic_set(compound_mapcount_ptr(page), -1); 503 } 504 505 #ifdef CONFIG_DEBUG_PAGEALLOC 506 unsigned int _debug_guardpage_minorder; 507 bool _debug_pagealloc_enabled __read_mostly 508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 509 EXPORT_SYMBOL(_debug_pagealloc_enabled); 510 bool _debug_guardpage_enabled __read_mostly; 511 512 static int __init early_debug_pagealloc(char *buf) 513 { 514 if (!buf) 515 return -EINVAL; 516 517 if (strcmp(buf, "on") == 0) 518 _debug_pagealloc_enabled = true; 519 520 if (strcmp(buf, "off") == 0) 521 _debug_pagealloc_enabled = false; 522 523 return 0; 524 } 525 early_param("debug_pagealloc", early_debug_pagealloc); 526 527 static bool need_debug_guardpage(void) 528 { 529 /* If we don't use debug_pagealloc, we don't need guard page */ 530 if (!debug_pagealloc_enabled()) 531 return false; 532 533 return true; 534 } 535 536 static void init_debug_guardpage(void) 537 { 538 if (!debug_pagealloc_enabled()) 539 return; 540 541 _debug_guardpage_enabled = true; 542 } 543 544 struct page_ext_operations debug_guardpage_ops = { 545 .need = need_debug_guardpage, 546 .init = init_debug_guardpage, 547 }; 548 549 static int __init debug_guardpage_minorder_setup(char *buf) 550 { 551 unsigned long res; 552 553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 554 pr_err("Bad debug_guardpage_minorder value\n"); 555 return 0; 556 } 557 _debug_guardpage_minorder = res; 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 559 return 0; 560 } 561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 562 563 static inline void set_page_guard(struct zone *zone, struct page *page, 564 unsigned int order, int migratetype) 565 { 566 struct page_ext *page_ext; 567 568 if (!debug_guardpage_enabled()) 569 return; 570 571 page_ext = lookup_page_ext(page); 572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 573 574 INIT_LIST_HEAD(&page->lru); 575 set_page_private(page, order); 576 /* Guard pages are not available for any usage */ 577 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 578 } 579 580 static inline void clear_page_guard(struct zone *zone, struct page *page, 581 unsigned int order, int migratetype) 582 { 583 struct page_ext *page_ext; 584 585 if (!debug_guardpage_enabled()) 586 return; 587 588 page_ext = lookup_page_ext(page); 589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 590 591 set_page_private(page, 0); 592 if (!is_migrate_isolate(migratetype)) 593 __mod_zone_freepage_state(zone, (1 << order), migratetype); 594 } 595 #else 596 struct page_ext_operations debug_guardpage_ops = { NULL, }; 597 static inline void set_page_guard(struct zone *zone, struct page *page, 598 unsigned int order, int migratetype) {} 599 static inline void clear_page_guard(struct zone *zone, struct page *page, 600 unsigned int order, int migratetype) {} 601 #endif 602 603 static inline void set_page_order(struct page *page, unsigned int order) 604 { 605 set_page_private(page, order); 606 __SetPageBuddy(page); 607 } 608 609 static inline void rmv_page_order(struct page *page) 610 { 611 __ClearPageBuddy(page); 612 set_page_private(page, 0); 613 } 614 615 /* 616 * This function checks whether a page is free && is the buddy 617 * we can do coalesce a page and its buddy if 618 * (a) the buddy is not in a hole && 619 * (b) the buddy is in the buddy system && 620 * (c) a page and its buddy have the same order && 621 * (d) a page and its buddy are in the same zone. 622 * 623 * For recording whether a page is in the buddy system, we set ->_mapcount 624 * PAGE_BUDDY_MAPCOUNT_VALUE. 625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 626 * serialized by zone->lock. 627 * 628 * For recording page's order, we use page_private(page). 629 */ 630 static inline int page_is_buddy(struct page *page, struct page *buddy, 631 unsigned int order) 632 { 633 if (!pfn_valid_within(page_to_pfn(buddy))) 634 return 0; 635 636 if (page_is_guard(buddy) && page_order(buddy) == order) { 637 if (page_zone_id(page) != page_zone_id(buddy)) 638 return 0; 639 640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 641 642 return 1; 643 } 644 645 if (PageBuddy(buddy) && page_order(buddy) == order) { 646 /* 647 * zone check is done late to avoid uselessly 648 * calculating zone/node ids for pages that could 649 * never merge. 650 */ 651 if (page_zone_id(page) != page_zone_id(buddy)) 652 return 0; 653 654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 655 656 return 1; 657 } 658 return 0; 659 } 660 661 /* 662 * Freeing function for a buddy system allocator. 663 * 664 * The concept of a buddy system is to maintain direct-mapped table 665 * (containing bit values) for memory blocks of various "orders". 666 * The bottom level table contains the map for the smallest allocatable 667 * units of memory (here, pages), and each level above it describes 668 * pairs of units from the levels below, hence, "buddies". 669 * At a high level, all that happens here is marking the table entry 670 * at the bottom level available, and propagating the changes upward 671 * as necessary, plus some accounting needed to play nicely with other 672 * parts of the VM system. 673 * At each level, we keep a list of pages, which are heads of continuous 674 * free pages of length of (1 << order) and marked with _mapcount 675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 676 * field. 677 * So when we are allocating or freeing one, we can derive the state of the 678 * other. That is, if we allocate a small block, and both were 679 * free, the remainder of the region must be split into blocks. 680 * If a block is freed, and its buddy is also free, then this 681 * triggers coalescing into a block of larger size. 682 * 683 * -- nyc 684 */ 685 686 static inline void __free_one_page(struct page *page, 687 unsigned long pfn, 688 struct zone *zone, unsigned int order, 689 int migratetype) 690 { 691 unsigned long page_idx; 692 unsigned long combined_idx; 693 unsigned long uninitialized_var(buddy_idx); 694 struct page *buddy; 695 unsigned int max_order; 696 697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 698 699 VM_BUG_ON(!zone_is_initialized(zone)); 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 701 702 VM_BUG_ON(migratetype == -1); 703 if (likely(!is_migrate_isolate(migratetype))) 704 __mod_zone_freepage_state(zone, 1 << order, migratetype); 705 706 page_idx = pfn & ((1 << MAX_ORDER) - 1); 707 708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 709 VM_BUG_ON_PAGE(bad_range(zone, page), page); 710 711 continue_merging: 712 while (order < max_order - 1) { 713 buddy_idx = __find_buddy_index(page_idx, order); 714 buddy = page + (buddy_idx - page_idx); 715 if (!page_is_buddy(page, buddy, order)) 716 goto done_merging; 717 /* 718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 719 * merge with it and move up one order. 720 */ 721 if (page_is_guard(buddy)) { 722 clear_page_guard(zone, buddy, order, migratetype); 723 } else { 724 list_del(&buddy->lru); 725 zone->free_area[order].nr_free--; 726 rmv_page_order(buddy); 727 } 728 combined_idx = buddy_idx & page_idx; 729 page = page + (combined_idx - page_idx); 730 page_idx = combined_idx; 731 order++; 732 } 733 if (max_order < MAX_ORDER) { 734 /* If we are here, it means order is >= pageblock_order. 735 * We want to prevent merge between freepages on isolate 736 * pageblock and normal pageblock. Without this, pageblock 737 * isolation could cause incorrect freepage or CMA accounting. 738 * 739 * We don't want to hit this code for the more frequent 740 * low-order merging. 741 */ 742 if (unlikely(has_isolate_pageblock(zone))) { 743 int buddy_mt; 744 745 buddy_idx = __find_buddy_index(page_idx, order); 746 buddy = page + (buddy_idx - page_idx); 747 buddy_mt = get_pageblock_migratetype(buddy); 748 749 if (migratetype != buddy_mt 750 && (is_migrate_isolate(migratetype) || 751 is_migrate_isolate(buddy_mt))) 752 goto done_merging; 753 } 754 max_order++; 755 goto continue_merging; 756 } 757 758 done_merging: 759 set_page_order(page, order); 760 761 /* 762 * If this is not the largest possible page, check if the buddy 763 * of the next-highest order is free. If it is, it's possible 764 * that pages are being freed that will coalesce soon. In case, 765 * that is happening, add the free page to the tail of the list 766 * so it's less likely to be used soon and more likely to be merged 767 * as a higher order page 768 */ 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 770 struct page *higher_page, *higher_buddy; 771 combined_idx = buddy_idx & page_idx; 772 higher_page = page + (combined_idx - page_idx); 773 buddy_idx = __find_buddy_index(combined_idx, order + 1); 774 higher_buddy = higher_page + (buddy_idx - combined_idx); 775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 776 list_add_tail(&page->lru, 777 &zone->free_area[order].free_list[migratetype]); 778 goto out; 779 } 780 } 781 782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 783 out: 784 zone->free_area[order].nr_free++; 785 } 786 787 static inline int free_pages_check(struct page *page) 788 { 789 const char *bad_reason = NULL; 790 unsigned long bad_flags = 0; 791 792 if (unlikely(atomic_read(&page->_mapcount) != -1)) 793 bad_reason = "nonzero mapcount"; 794 if (unlikely(page->mapping != NULL)) 795 bad_reason = "non-NULL mapping"; 796 if (unlikely(page_ref_count(page) != 0)) 797 bad_reason = "nonzero _count"; 798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 801 } 802 #ifdef CONFIG_MEMCG 803 if (unlikely(page->mem_cgroup)) 804 bad_reason = "page still charged to cgroup"; 805 #endif 806 if (unlikely(bad_reason)) { 807 bad_page(page, bad_reason, bad_flags); 808 return 1; 809 } 810 page_cpupid_reset_last(page); 811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 813 return 0; 814 } 815 816 /* 817 * Frees a number of pages from the PCP lists 818 * Assumes all pages on list are in same zone, and of same order. 819 * count is the number of pages to free. 820 * 821 * If the zone was previously in an "all pages pinned" state then look to 822 * see if this freeing clears that state. 823 * 824 * And clear the zone's pages_scanned counter, to hold off the "all pages are 825 * pinned" detection logic. 826 */ 827 static void free_pcppages_bulk(struct zone *zone, int count, 828 struct per_cpu_pages *pcp) 829 { 830 int migratetype = 0; 831 int batch_free = 0; 832 int to_free = count; 833 unsigned long nr_scanned; 834 835 spin_lock(&zone->lock); 836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 837 if (nr_scanned) 838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 839 840 while (to_free) { 841 struct page *page; 842 struct list_head *list; 843 844 /* 845 * Remove pages from lists in a round-robin fashion. A 846 * batch_free count is maintained that is incremented when an 847 * empty list is encountered. This is so more pages are freed 848 * off fuller lists instead of spinning excessively around empty 849 * lists 850 */ 851 do { 852 batch_free++; 853 if (++migratetype == MIGRATE_PCPTYPES) 854 migratetype = 0; 855 list = &pcp->lists[migratetype]; 856 } while (list_empty(list)); 857 858 /* This is the only non-empty list. Free them all. */ 859 if (batch_free == MIGRATE_PCPTYPES) 860 batch_free = to_free; 861 862 do { 863 int mt; /* migratetype of the to-be-freed page */ 864 865 page = list_last_entry(list, struct page, lru); 866 /* must delete as __free_one_page list manipulates */ 867 list_del(&page->lru); 868 869 mt = get_pcppage_migratetype(page); 870 /* MIGRATE_ISOLATE page should not go to pcplists */ 871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 872 /* Pageblock could have been isolated meanwhile */ 873 if (unlikely(has_isolate_pageblock(zone))) 874 mt = get_pageblock_migratetype(page); 875 876 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 877 trace_mm_page_pcpu_drain(page, 0, mt); 878 } while (--to_free && --batch_free && !list_empty(list)); 879 } 880 spin_unlock(&zone->lock); 881 } 882 883 static void free_one_page(struct zone *zone, 884 struct page *page, unsigned long pfn, 885 unsigned int order, 886 int migratetype) 887 { 888 unsigned long nr_scanned; 889 spin_lock(&zone->lock); 890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 891 if (nr_scanned) 892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 893 894 if (unlikely(has_isolate_pageblock(zone) || 895 is_migrate_isolate(migratetype))) { 896 migratetype = get_pfnblock_migratetype(page, pfn); 897 } 898 __free_one_page(page, pfn, zone, order, migratetype); 899 spin_unlock(&zone->lock); 900 } 901 902 static int free_tail_pages_check(struct page *head_page, struct page *page) 903 { 904 int ret = 1; 905 906 /* 907 * We rely page->lru.next never has bit 0 set, unless the page 908 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 909 */ 910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 911 912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 913 ret = 0; 914 goto out; 915 } 916 switch (page - head_page) { 917 case 1: 918 /* the first tail page: ->mapping is compound_mapcount() */ 919 if (unlikely(compound_mapcount(page))) { 920 bad_page(page, "nonzero compound_mapcount", 0); 921 goto out; 922 } 923 break; 924 case 2: 925 /* 926 * the second tail page: ->mapping is 927 * page_deferred_list().next -- ignore value. 928 */ 929 break; 930 default: 931 if (page->mapping != TAIL_MAPPING) { 932 bad_page(page, "corrupted mapping in tail page", 0); 933 goto out; 934 } 935 break; 936 } 937 if (unlikely(!PageTail(page))) { 938 bad_page(page, "PageTail not set", 0); 939 goto out; 940 } 941 if (unlikely(compound_head(page) != head_page)) { 942 bad_page(page, "compound_head not consistent", 0); 943 goto out; 944 } 945 ret = 0; 946 out: 947 page->mapping = NULL; 948 clear_compound_head(page); 949 return ret; 950 } 951 952 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 953 unsigned long zone, int nid) 954 { 955 set_page_links(page, zone, nid, pfn); 956 init_page_count(page); 957 page_mapcount_reset(page); 958 page_cpupid_reset_last(page); 959 960 INIT_LIST_HEAD(&page->lru); 961 #ifdef WANT_PAGE_VIRTUAL 962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 963 if (!is_highmem_idx(zone)) 964 set_page_address(page, __va(pfn << PAGE_SHIFT)); 965 #endif 966 } 967 968 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 969 int nid) 970 { 971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 972 } 973 974 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 975 static void init_reserved_page(unsigned long pfn) 976 { 977 pg_data_t *pgdat; 978 int nid, zid; 979 980 if (!early_page_uninitialised(pfn)) 981 return; 982 983 nid = early_pfn_to_nid(pfn); 984 pgdat = NODE_DATA(nid); 985 986 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 987 struct zone *zone = &pgdat->node_zones[zid]; 988 989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 990 break; 991 } 992 __init_single_pfn(pfn, zid, nid); 993 } 994 #else 995 static inline void init_reserved_page(unsigned long pfn) 996 { 997 } 998 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 999 1000 /* 1001 * Initialised pages do not have PageReserved set. This function is 1002 * called for each range allocated by the bootmem allocator and 1003 * marks the pages PageReserved. The remaining valid pages are later 1004 * sent to the buddy page allocator. 1005 */ 1006 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end) 1007 { 1008 unsigned long start_pfn = PFN_DOWN(start); 1009 unsigned long end_pfn = PFN_UP(end); 1010 1011 for (; start_pfn < end_pfn; start_pfn++) { 1012 if (pfn_valid(start_pfn)) { 1013 struct page *page = pfn_to_page(start_pfn); 1014 1015 init_reserved_page(start_pfn); 1016 1017 /* Avoid false-positive PageTail() */ 1018 INIT_LIST_HEAD(&page->lru); 1019 1020 SetPageReserved(page); 1021 } 1022 } 1023 } 1024 1025 static bool free_pages_prepare(struct page *page, unsigned int order) 1026 { 1027 bool compound = PageCompound(page); 1028 int i, bad = 0; 1029 1030 VM_BUG_ON_PAGE(PageTail(page), page); 1031 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1032 1033 trace_mm_page_free(page, order); 1034 kmemcheck_free_shadow(page, order); 1035 kasan_free_pages(page, order); 1036 1037 if (PageAnon(page)) 1038 page->mapping = NULL; 1039 bad += free_pages_check(page); 1040 for (i = 1; i < (1 << order); i++) { 1041 if (compound) 1042 bad += free_tail_pages_check(page, page + i); 1043 bad += free_pages_check(page + i); 1044 } 1045 if (bad) 1046 return false; 1047 1048 reset_page_owner(page, order); 1049 1050 if (!PageHighMem(page)) { 1051 debug_check_no_locks_freed(page_address(page), 1052 PAGE_SIZE << order); 1053 debug_check_no_obj_freed(page_address(page), 1054 PAGE_SIZE << order); 1055 } 1056 arch_free_page(page, order); 1057 kernel_poison_pages(page, 1 << order, 0); 1058 kernel_map_pages(page, 1 << order, 0); 1059 1060 return true; 1061 } 1062 1063 static void __free_pages_ok(struct page *page, unsigned int order) 1064 { 1065 unsigned long flags; 1066 int migratetype; 1067 unsigned long pfn = page_to_pfn(page); 1068 1069 if (!free_pages_prepare(page, order)) 1070 return; 1071 1072 migratetype = get_pfnblock_migratetype(page, pfn); 1073 local_irq_save(flags); 1074 __count_vm_events(PGFREE, 1 << order); 1075 free_one_page(page_zone(page), page, pfn, order, migratetype); 1076 local_irq_restore(flags); 1077 } 1078 1079 static void __init __free_pages_boot_core(struct page *page, 1080 unsigned long pfn, unsigned int order) 1081 { 1082 unsigned int nr_pages = 1 << order; 1083 struct page *p = page; 1084 unsigned int loop; 1085 1086 prefetchw(p); 1087 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1088 prefetchw(p + 1); 1089 __ClearPageReserved(p); 1090 set_page_count(p, 0); 1091 } 1092 __ClearPageReserved(p); 1093 set_page_count(p, 0); 1094 1095 page_zone(page)->managed_pages += nr_pages; 1096 set_page_refcounted(page); 1097 __free_pages(page, order); 1098 } 1099 1100 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1101 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1102 1103 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1104 1105 int __meminit early_pfn_to_nid(unsigned long pfn) 1106 { 1107 static DEFINE_SPINLOCK(early_pfn_lock); 1108 int nid; 1109 1110 spin_lock(&early_pfn_lock); 1111 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1112 if (nid < 0) 1113 nid = 0; 1114 spin_unlock(&early_pfn_lock); 1115 1116 return nid; 1117 } 1118 #endif 1119 1120 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1121 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1122 struct mminit_pfnnid_cache *state) 1123 { 1124 int nid; 1125 1126 nid = __early_pfn_to_nid(pfn, state); 1127 if (nid >= 0 && nid != node) 1128 return false; 1129 return true; 1130 } 1131 1132 /* Only safe to use early in boot when initialisation is single-threaded */ 1133 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1134 { 1135 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1136 } 1137 1138 #else 1139 1140 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1141 { 1142 return true; 1143 } 1144 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1145 struct mminit_pfnnid_cache *state) 1146 { 1147 return true; 1148 } 1149 #endif 1150 1151 1152 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1153 unsigned int order) 1154 { 1155 if (early_page_uninitialised(pfn)) 1156 return; 1157 return __free_pages_boot_core(page, pfn, order); 1158 } 1159 1160 /* 1161 * Check that the whole (or subset of) a pageblock given by the interval of 1162 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1163 * with the migration of free compaction scanner. The scanners then need to 1164 * use only pfn_valid_within() check for arches that allow holes within 1165 * pageblocks. 1166 * 1167 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1168 * 1169 * It's possible on some configurations to have a setup like node0 node1 node0 1170 * i.e. it's possible that all pages within a zones range of pages do not 1171 * belong to a single zone. We assume that a border between node0 and node1 1172 * can occur within a single pageblock, but not a node0 node1 node0 1173 * interleaving within a single pageblock. It is therefore sufficient to check 1174 * the first and last page of a pageblock and avoid checking each individual 1175 * page in a pageblock. 1176 */ 1177 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1178 unsigned long end_pfn, struct zone *zone) 1179 { 1180 struct page *start_page; 1181 struct page *end_page; 1182 1183 /* end_pfn is one past the range we are checking */ 1184 end_pfn--; 1185 1186 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1187 return NULL; 1188 1189 start_page = pfn_to_page(start_pfn); 1190 1191 if (page_zone(start_page) != zone) 1192 return NULL; 1193 1194 end_page = pfn_to_page(end_pfn); 1195 1196 /* This gives a shorter code than deriving page_zone(end_page) */ 1197 if (page_zone_id(start_page) != page_zone_id(end_page)) 1198 return NULL; 1199 1200 return start_page; 1201 } 1202 1203 void set_zone_contiguous(struct zone *zone) 1204 { 1205 unsigned long block_start_pfn = zone->zone_start_pfn; 1206 unsigned long block_end_pfn; 1207 1208 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1209 for (; block_start_pfn < zone_end_pfn(zone); 1210 block_start_pfn = block_end_pfn, 1211 block_end_pfn += pageblock_nr_pages) { 1212 1213 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1214 1215 if (!__pageblock_pfn_to_page(block_start_pfn, 1216 block_end_pfn, zone)) 1217 return; 1218 } 1219 1220 /* We confirm that there is no hole */ 1221 zone->contiguous = true; 1222 } 1223 1224 void clear_zone_contiguous(struct zone *zone) 1225 { 1226 zone->contiguous = false; 1227 } 1228 1229 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1230 static void __init deferred_free_range(struct page *page, 1231 unsigned long pfn, int nr_pages) 1232 { 1233 int i; 1234 1235 if (!page) 1236 return; 1237 1238 /* Free a large naturally-aligned chunk if possible */ 1239 if (nr_pages == MAX_ORDER_NR_PAGES && 1240 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) { 1241 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1242 __free_pages_boot_core(page, pfn, MAX_ORDER-1); 1243 return; 1244 } 1245 1246 for (i = 0; i < nr_pages; i++, page++, pfn++) 1247 __free_pages_boot_core(page, pfn, 0); 1248 } 1249 1250 /* Completion tracking for deferred_init_memmap() threads */ 1251 static atomic_t pgdat_init_n_undone __initdata; 1252 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1253 1254 static inline void __init pgdat_init_report_one_done(void) 1255 { 1256 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1257 complete(&pgdat_init_all_done_comp); 1258 } 1259 1260 /* Initialise remaining memory on a node */ 1261 static int __init deferred_init_memmap(void *data) 1262 { 1263 pg_data_t *pgdat = data; 1264 int nid = pgdat->node_id; 1265 struct mminit_pfnnid_cache nid_init_state = { }; 1266 unsigned long start = jiffies; 1267 unsigned long nr_pages = 0; 1268 unsigned long walk_start, walk_end; 1269 int i, zid; 1270 struct zone *zone; 1271 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1272 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1273 1274 if (first_init_pfn == ULONG_MAX) { 1275 pgdat_init_report_one_done(); 1276 return 0; 1277 } 1278 1279 /* Bind memory initialisation thread to a local node if possible */ 1280 if (!cpumask_empty(cpumask)) 1281 set_cpus_allowed_ptr(current, cpumask); 1282 1283 /* Sanity check boundaries */ 1284 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1285 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1286 pgdat->first_deferred_pfn = ULONG_MAX; 1287 1288 /* Only the highest zone is deferred so find it */ 1289 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1290 zone = pgdat->node_zones + zid; 1291 if (first_init_pfn < zone_end_pfn(zone)) 1292 break; 1293 } 1294 1295 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1296 unsigned long pfn, end_pfn; 1297 struct page *page = NULL; 1298 struct page *free_base_page = NULL; 1299 unsigned long free_base_pfn = 0; 1300 int nr_to_free = 0; 1301 1302 end_pfn = min(walk_end, zone_end_pfn(zone)); 1303 pfn = first_init_pfn; 1304 if (pfn < walk_start) 1305 pfn = walk_start; 1306 if (pfn < zone->zone_start_pfn) 1307 pfn = zone->zone_start_pfn; 1308 1309 for (; pfn < end_pfn; pfn++) { 1310 if (!pfn_valid_within(pfn)) 1311 goto free_range; 1312 1313 /* 1314 * Ensure pfn_valid is checked every 1315 * MAX_ORDER_NR_PAGES for memory holes 1316 */ 1317 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 1318 if (!pfn_valid(pfn)) { 1319 page = NULL; 1320 goto free_range; 1321 } 1322 } 1323 1324 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1325 page = NULL; 1326 goto free_range; 1327 } 1328 1329 /* Minimise pfn page lookups and scheduler checks */ 1330 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) { 1331 page++; 1332 } else { 1333 nr_pages += nr_to_free; 1334 deferred_free_range(free_base_page, 1335 free_base_pfn, nr_to_free); 1336 free_base_page = NULL; 1337 free_base_pfn = nr_to_free = 0; 1338 1339 page = pfn_to_page(pfn); 1340 cond_resched(); 1341 } 1342 1343 if (page->flags) { 1344 VM_BUG_ON(page_zone(page) != zone); 1345 goto free_range; 1346 } 1347 1348 __init_single_page(page, pfn, zid, nid); 1349 if (!free_base_page) { 1350 free_base_page = page; 1351 free_base_pfn = pfn; 1352 nr_to_free = 0; 1353 } 1354 nr_to_free++; 1355 1356 /* Where possible, batch up pages for a single free */ 1357 continue; 1358 free_range: 1359 /* Free the current block of pages to allocator */ 1360 nr_pages += nr_to_free; 1361 deferred_free_range(free_base_page, free_base_pfn, 1362 nr_to_free); 1363 free_base_page = NULL; 1364 free_base_pfn = nr_to_free = 0; 1365 } 1366 1367 first_init_pfn = max(end_pfn, first_init_pfn); 1368 } 1369 1370 /* Sanity check that the next zone really is unpopulated */ 1371 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1372 1373 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1374 jiffies_to_msecs(jiffies - start)); 1375 1376 pgdat_init_report_one_done(); 1377 return 0; 1378 } 1379 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1380 1381 void __init page_alloc_init_late(void) 1382 { 1383 struct zone *zone; 1384 1385 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1386 int nid; 1387 1388 /* There will be num_node_state(N_MEMORY) threads */ 1389 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1390 for_each_node_state(nid, N_MEMORY) { 1391 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1392 } 1393 1394 /* Block until all are initialised */ 1395 wait_for_completion(&pgdat_init_all_done_comp); 1396 1397 /* Reinit limits that are based on free pages after the kernel is up */ 1398 files_maxfiles_init(); 1399 #endif 1400 1401 for_each_populated_zone(zone) 1402 set_zone_contiguous(zone); 1403 } 1404 1405 #ifdef CONFIG_CMA 1406 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1407 void __init init_cma_reserved_pageblock(struct page *page) 1408 { 1409 unsigned i = pageblock_nr_pages; 1410 struct page *p = page; 1411 1412 do { 1413 __ClearPageReserved(p); 1414 set_page_count(p, 0); 1415 } while (++p, --i); 1416 1417 set_pageblock_migratetype(page, MIGRATE_CMA); 1418 1419 if (pageblock_order >= MAX_ORDER) { 1420 i = pageblock_nr_pages; 1421 p = page; 1422 do { 1423 set_page_refcounted(p); 1424 __free_pages(p, MAX_ORDER - 1); 1425 p += MAX_ORDER_NR_PAGES; 1426 } while (i -= MAX_ORDER_NR_PAGES); 1427 } else { 1428 set_page_refcounted(page); 1429 __free_pages(page, pageblock_order); 1430 } 1431 1432 adjust_managed_page_count(page, pageblock_nr_pages); 1433 } 1434 #endif 1435 1436 /* 1437 * The order of subdivision here is critical for the IO subsystem. 1438 * Please do not alter this order without good reasons and regression 1439 * testing. Specifically, as large blocks of memory are subdivided, 1440 * the order in which smaller blocks are delivered depends on the order 1441 * they're subdivided in this function. This is the primary factor 1442 * influencing the order in which pages are delivered to the IO 1443 * subsystem according to empirical testing, and this is also justified 1444 * by considering the behavior of a buddy system containing a single 1445 * large block of memory acted on by a series of small allocations. 1446 * This behavior is a critical factor in sglist merging's success. 1447 * 1448 * -- nyc 1449 */ 1450 static inline void expand(struct zone *zone, struct page *page, 1451 int low, int high, struct free_area *area, 1452 int migratetype) 1453 { 1454 unsigned long size = 1 << high; 1455 1456 while (high > low) { 1457 area--; 1458 high--; 1459 size >>= 1; 1460 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1461 1462 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 1463 debug_guardpage_enabled() && 1464 high < debug_guardpage_minorder()) { 1465 /* 1466 * Mark as guard pages (or page), that will allow to 1467 * merge back to allocator when buddy will be freed. 1468 * Corresponding page table entries will not be touched, 1469 * pages will stay not present in virtual address space 1470 */ 1471 set_page_guard(zone, &page[size], high, migratetype); 1472 continue; 1473 } 1474 list_add(&page[size].lru, &area->free_list[migratetype]); 1475 area->nr_free++; 1476 set_page_order(&page[size], high); 1477 } 1478 } 1479 1480 /* 1481 * This page is about to be returned from the page allocator 1482 */ 1483 static inline int check_new_page(struct page *page) 1484 { 1485 const char *bad_reason = NULL; 1486 unsigned long bad_flags = 0; 1487 1488 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1489 bad_reason = "nonzero mapcount"; 1490 if (unlikely(page->mapping != NULL)) 1491 bad_reason = "non-NULL mapping"; 1492 if (unlikely(page_ref_count(page) != 0)) 1493 bad_reason = "nonzero _count"; 1494 if (unlikely(page->flags & __PG_HWPOISON)) { 1495 bad_reason = "HWPoisoned (hardware-corrupted)"; 1496 bad_flags = __PG_HWPOISON; 1497 } 1498 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1499 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1500 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1501 } 1502 #ifdef CONFIG_MEMCG 1503 if (unlikely(page->mem_cgroup)) 1504 bad_reason = "page still charged to cgroup"; 1505 #endif 1506 if (unlikely(bad_reason)) { 1507 bad_page(page, bad_reason, bad_flags); 1508 return 1; 1509 } 1510 return 0; 1511 } 1512 1513 static inline bool free_pages_prezeroed(bool poisoned) 1514 { 1515 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1516 page_poisoning_enabled() && poisoned; 1517 } 1518 1519 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1520 int alloc_flags) 1521 { 1522 int i; 1523 bool poisoned = true; 1524 1525 for (i = 0; i < (1 << order); i++) { 1526 struct page *p = page + i; 1527 if (unlikely(check_new_page(p))) 1528 return 1; 1529 if (poisoned) 1530 poisoned &= page_is_poisoned(p); 1531 } 1532 1533 set_page_private(page, 0); 1534 set_page_refcounted(page); 1535 1536 arch_alloc_page(page, order); 1537 kernel_map_pages(page, 1 << order, 1); 1538 kernel_poison_pages(page, 1 << order, 1); 1539 kasan_alloc_pages(page, order); 1540 1541 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) 1542 for (i = 0; i < (1 << order); i++) 1543 clear_highpage(page + i); 1544 1545 if (order && (gfp_flags & __GFP_COMP)) 1546 prep_compound_page(page, order); 1547 1548 set_page_owner(page, order, gfp_flags); 1549 1550 /* 1551 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1552 * allocate the page. The expectation is that the caller is taking 1553 * steps that will free more memory. The caller should avoid the page 1554 * being used for !PFMEMALLOC purposes. 1555 */ 1556 if (alloc_flags & ALLOC_NO_WATERMARKS) 1557 set_page_pfmemalloc(page); 1558 else 1559 clear_page_pfmemalloc(page); 1560 1561 return 0; 1562 } 1563 1564 /* 1565 * Go through the free lists for the given migratetype and remove 1566 * the smallest available page from the freelists 1567 */ 1568 static inline 1569 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1570 int migratetype) 1571 { 1572 unsigned int current_order; 1573 struct free_area *area; 1574 struct page *page; 1575 1576 /* Find a page of the appropriate size in the preferred list */ 1577 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1578 area = &(zone->free_area[current_order]); 1579 page = list_first_entry_or_null(&area->free_list[migratetype], 1580 struct page, lru); 1581 if (!page) 1582 continue; 1583 list_del(&page->lru); 1584 rmv_page_order(page); 1585 area->nr_free--; 1586 expand(zone, page, order, current_order, area, migratetype); 1587 set_pcppage_migratetype(page, migratetype); 1588 return page; 1589 } 1590 1591 return NULL; 1592 } 1593 1594 1595 /* 1596 * This array describes the order lists are fallen back to when 1597 * the free lists for the desirable migrate type are depleted 1598 */ 1599 static int fallbacks[MIGRATE_TYPES][4] = { 1600 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1601 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1602 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1603 #ifdef CONFIG_CMA 1604 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1605 #endif 1606 #ifdef CONFIG_MEMORY_ISOLATION 1607 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1608 #endif 1609 }; 1610 1611 #ifdef CONFIG_CMA 1612 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1613 unsigned int order) 1614 { 1615 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1616 } 1617 #else 1618 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1619 unsigned int order) { return NULL; } 1620 #endif 1621 1622 /* 1623 * Move the free pages in a range to the free lists of the requested type. 1624 * Note that start_page and end_pages are not aligned on a pageblock 1625 * boundary. If alignment is required, use move_freepages_block() 1626 */ 1627 int move_freepages(struct zone *zone, 1628 struct page *start_page, struct page *end_page, 1629 int migratetype) 1630 { 1631 struct page *page; 1632 unsigned int order; 1633 int pages_moved = 0; 1634 1635 #ifndef CONFIG_HOLES_IN_ZONE 1636 /* 1637 * page_zone is not safe to call in this context when 1638 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1639 * anyway as we check zone boundaries in move_freepages_block(). 1640 * Remove at a later date when no bug reports exist related to 1641 * grouping pages by mobility 1642 */ 1643 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1644 #endif 1645 1646 for (page = start_page; page <= end_page;) { 1647 /* Make sure we are not inadvertently changing nodes */ 1648 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1649 1650 if (!pfn_valid_within(page_to_pfn(page))) { 1651 page++; 1652 continue; 1653 } 1654 1655 if (!PageBuddy(page)) { 1656 page++; 1657 continue; 1658 } 1659 1660 order = page_order(page); 1661 list_move(&page->lru, 1662 &zone->free_area[order].free_list[migratetype]); 1663 page += 1 << order; 1664 pages_moved += 1 << order; 1665 } 1666 1667 return pages_moved; 1668 } 1669 1670 int move_freepages_block(struct zone *zone, struct page *page, 1671 int migratetype) 1672 { 1673 unsigned long start_pfn, end_pfn; 1674 struct page *start_page, *end_page; 1675 1676 start_pfn = page_to_pfn(page); 1677 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1678 start_page = pfn_to_page(start_pfn); 1679 end_page = start_page + pageblock_nr_pages - 1; 1680 end_pfn = start_pfn + pageblock_nr_pages - 1; 1681 1682 /* Do not cross zone boundaries */ 1683 if (!zone_spans_pfn(zone, start_pfn)) 1684 start_page = page; 1685 if (!zone_spans_pfn(zone, end_pfn)) 1686 return 0; 1687 1688 return move_freepages(zone, start_page, end_page, migratetype); 1689 } 1690 1691 static void change_pageblock_range(struct page *pageblock_page, 1692 int start_order, int migratetype) 1693 { 1694 int nr_pageblocks = 1 << (start_order - pageblock_order); 1695 1696 while (nr_pageblocks--) { 1697 set_pageblock_migratetype(pageblock_page, migratetype); 1698 pageblock_page += pageblock_nr_pages; 1699 } 1700 } 1701 1702 /* 1703 * When we are falling back to another migratetype during allocation, try to 1704 * steal extra free pages from the same pageblocks to satisfy further 1705 * allocations, instead of polluting multiple pageblocks. 1706 * 1707 * If we are stealing a relatively large buddy page, it is likely there will 1708 * be more free pages in the pageblock, so try to steal them all. For 1709 * reclaimable and unmovable allocations, we steal regardless of page size, 1710 * as fragmentation caused by those allocations polluting movable pageblocks 1711 * is worse than movable allocations stealing from unmovable and reclaimable 1712 * pageblocks. 1713 */ 1714 static bool can_steal_fallback(unsigned int order, int start_mt) 1715 { 1716 /* 1717 * Leaving this order check is intended, although there is 1718 * relaxed order check in next check. The reason is that 1719 * we can actually steal whole pageblock if this condition met, 1720 * but, below check doesn't guarantee it and that is just heuristic 1721 * so could be changed anytime. 1722 */ 1723 if (order >= pageblock_order) 1724 return true; 1725 1726 if (order >= pageblock_order / 2 || 1727 start_mt == MIGRATE_RECLAIMABLE || 1728 start_mt == MIGRATE_UNMOVABLE || 1729 page_group_by_mobility_disabled) 1730 return true; 1731 1732 return false; 1733 } 1734 1735 /* 1736 * This function implements actual steal behaviour. If order is large enough, 1737 * we can steal whole pageblock. If not, we first move freepages in this 1738 * pageblock and check whether half of pages are moved or not. If half of 1739 * pages are moved, we can change migratetype of pageblock and permanently 1740 * use it's pages as requested migratetype in the future. 1741 */ 1742 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1743 int start_type) 1744 { 1745 unsigned int current_order = page_order(page); 1746 int pages; 1747 1748 /* Take ownership for orders >= pageblock_order */ 1749 if (current_order >= pageblock_order) { 1750 change_pageblock_range(page, current_order, start_type); 1751 return; 1752 } 1753 1754 pages = move_freepages_block(zone, page, start_type); 1755 1756 /* Claim the whole block if over half of it is free */ 1757 if (pages >= (1 << (pageblock_order-1)) || 1758 page_group_by_mobility_disabled) 1759 set_pageblock_migratetype(page, start_type); 1760 } 1761 1762 /* 1763 * Check whether there is a suitable fallback freepage with requested order. 1764 * If only_stealable is true, this function returns fallback_mt only if 1765 * we can steal other freepages all together. This would help to reduce 1766 * fragmentation due to mixed migratetype pages in one pageblock. 1767 */ 1768 int find_suitable_fallback(struct free_area *area, unsigned int order, 1769 int migratetype, bool only_stealable, bool *can_steal) 1770 { 1771 int i; 1772 int fallback_mt; 1773 1774 if (area->nr_free == 0) 1775 return -1; 1776 1777 *can_steal = false; 1778 for (i = 0;; i++) { 1779 fallback_mt = fallbacks[migratetype][i]; 1780 if (fallback_mt == MIGRATE_TYPES) 1781 break; 1782 1783 if (list_empty(&area->free_list[fallback_mt])) 1784 continue; 1785 1786 if (can_steal_fallback(order, migratetype)) 1787 *can_steal = true; 1788 1789 if (!only_stealable) 1790 return fallback_mt; 1791 1792 if (*can_steal) 1793 return fallback_mt; 1794 } 1795 1796 return -1; 1797 } 1798 1799 /* 1800 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1801 * there are no empty page blocks that contain a page with a suitable order 1802 */ 1803 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 1804 unsigned int alloc_order) 1805 { 1806 int mt; 1807 unsigned long max_managed, flags; 1808 1809 /* 1810 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 1811 * Check is race-prone but harmless. 1812 */ 1813 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 1814 if (zone->nr_reserved_highatomic >= max_managed) 1815 return; 1816 1817 spin_lock_irqsave(&zone->lock, flags); 1818 1819 /* Recheck the nr_reserved_highatomic limit under the lock */ 1820 if (zone->nr_reserved_highatomic >= max_managed) 1821 goto out_unlock; 1822 1823 /* Yoink! */ 1824 mt = get_pageblock_migratetype(page); 1825 if (mt != MIGRATE_HIGHATOMIC && 1826 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { 1827 zone->nr_reserved_highatomic += pageblock_nr_pages; 1828 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 1829 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); 1830 } 1831 1832 out_unlock: 1833 spin_unlock_irqrestore(&zone->lock, flags); 1834 } 1835 1836 /* 1837 * Used when an allocation is about to fail under memory pressure. This 1838 * potentially hurts the reliability of high-order allocations when under 1839 * intense memory pressure but failed atomic allocations should be easier 1840 * to recover from than an OOM. 1841 */ 1842 static void unreserve_highatomic_pageblock(const struct alloc_context *ac) 1843 { 1844 struct zonelist *zonelist = ac->zonelist; 1845 unsigned long flags; 1846 struct zoneref *z; 1847 struct zone *zone; 1848 struct page *page; 1849 int order; 1850 1851 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 1852 ac->nodemask) { 1853 /* Preserve at least one pageblock */ 1854 if (zone->nr_reserved_highatomic <= pageblock_nr_pages) 1855 continue; 1856 1857 spin_lock_irqsave(&zone->lock, flags); 1858 for (order = 0; order < MAX_ORDER; order++) { 1859 struct free_area *area = &(zone->free_area[order]); 1860 1861 page = list_first_entry_or_null( 1862 &area->free_list[MIGRATE_HIGHATOMIC], 1863 struct page, lru); 1864 if (!page) 1865 continue; 1866 1867 /* 1868 * It should never happen but changes to locking could 1869 * inadvertently allow a per-cpu drain to add pages 1870 * to MIGRATE_HIGHATOMIC while unreserving so be safe 1871 * and watch for underflows. 1872 */ 1873 zone->nr_reserved_highatomic -= min(pageblock_nr_pages, 1874 zone->nr_reserved_highatomic); 1875 1876 /* 1877 * Convert to ac->migratetype and avoid the normal 1878 * pageblock stealing heuristics. Minimally, the caller 1879 * is doing the work and needs the pages. More 1880 * importantly, if the block was always converted to 1881 * MIGRATE_UNMOVABLE or another type then the number 1882 * of pageblocks that cannot be completely freed 1883 * may increase. 1884 */ 1885 set_pageblock_migratetype(page, ac->migratetype); 1886 move_freepages_block(zone, page, ac->migratetype); 1887 spin_unlock_irqrestore(&zone->lock, flags); 1888 return; 1889 } 1890 spin_unlock_irqrestore(&zone->lock, flags); 1891 } 1892 } 1893 1894 /* Remove an element from the buddy allocator from the fallback list */ 1895 static inline struct page * 1896 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1897 { 1898 struct free_area *area; 1899 unsigned int current_order; 1900 struct page *page; 1901 int fallback_mt; 1902 bool can_steal; 1903 1904 /* Find the largest possible block of pages in the other list */ 1905 for (current_order = MAX_ORDER-1; 1906 current_order >= order && current_order <= MAX_ORDER-1; 1907 --current_order) { 1908 area = &(zone->free_area[current_order]); 1909 fallback_mt = find_suitable_fallback(area, current_order, 1910 start_migratetype, false, &can_steal); 1911 if (fallback_mt == -1) 1912 continue; 1913 1914 page = list_first_entry(&area->free_list[fallback_mt], 1915 struct page, lru); 1916 if (can_steal) 1917 steal_suitable_fallback(zone, page, start_migratetype); 1918 1919 /* Remove the page from the freelists */ 1920 area->nr_free--; 1921 list_del(&page->lru); 1922 rmv_page_order(page); 1923 1924 expand(zone, page, order, current_order, area, 1925 start_migratetype); 1926 /* 1927 * The pcppage_migratetype may differ from pageblock's 1928 * migratetype depending on the decisions in 1929 * find_suitable_fallback(). This is OK as long as it does not 1930 * differ for MIGRATE_CMA pageblocks. Those can be used as 1931 * fallback only via special __rmqueue_cma_fallback() function 1932 */ 1933 set_pcppage_migratetype(page, start_migratetype); 1934 1935 trace_mm_page_alloc_extfrag(page, order, current_order, 1936 start_migratetype, fallback_mt); 1937 1938 return page; 1939 } 1940 1941 return NULL; 1942 } 1943 1944 /* 1945 * Do the hard work of removing an element from the buddy allocator. 1946 * Call me with the zone->lock already held. 1947 */ 1948 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1949 int migratetype) 1950 { 1951 struct page *page; 1952 1953 page = __rmqueue_smallest(zone, order, migratetype); 1954 if (unlikely(!page)) { 1955 if (migratetype == MIGRATE_MOVABLE) 1956 page = __rmqueue_cma_fallback(zone, order); 1957 1958 if (!page) 1959 page = __rmqueue_fallback(zone, order, migratetype); 1960 } 1961 1962 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1963 return page; 1964 } 1965 1966 /* 1967 * Obtain a specified number of elements from the buddy allocator, all under 1968 * a single hold of the lock, for efficiency. Add them to the supplied list. 1969 * Returns the number of new pages which were placed at *list. 1970 */ 1971 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1972 unsigned long count, struct list_head *list, 1973 int migratetype, bool cold) 1974 { 1975 int i; 1976 1977 spin_lock(&zone->lock); 1978 for (i = 0; i < count; ++i) { 1979 struct page *page = __rmqueue(zone, order, migratetype); 1980 if (unlikely(page == NULL)) 1981 break; 1982 1983 /* 1984 * Split buddy pages returned by expand() are received here 1985 * in physical page order. The page is added to the callers and 1986 * list and the list head then moves forward. From the callers 1987 * perspective, the linked list is ordered by page number in 1988 * some conditions. This is useful for IO devices that can 1989 * merge IO requests if the physical pages are ordered 1990 * properly. 1991 */ 1992 if (likely(!cold)) 1993 list_add(&page->lru, list); 1994 else 1995 list_add_tail(&page->lru, list); 1996 list = &page->lru; 1997 if (is_migrate_cma(get_pcppage_migratetype(page))) 1998 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1999 -(1 << order)); 2000 } 2001 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2002 spin_unlock(&zone->lock); 2003 return i; 2004 } 2005 2006 #ifdef CONFIG_NUMA 2007 /* 2008 * Called from the vmstat counter updater to drain pagesets of this 2009 * currently executing processor on remote nodes after they have 2010 * expired. 2011 * 2012 * Note that this function must be called with the thread pinned to 2013 * a single processor. 2014 */ 2015 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2016 { 2017 unsigned long flags; 2018 int to_drain, batch; 2019 2020 local_irq_save(flags); 2021 batch = READ_ONCE(pcp->batch); 2022 to_drain = min(pcp->count, batch); 2023 if (to_drain > 0) { 2024 free_pcppages_bulk(zone, to_drain, pcp); 2025 pcp->count -= to_drain; 2026 } 2027 local_irq_restore(flags); 2028 } 2029 #endif 2030 2031 /* 2032 * Drain pcplists of the indicated processor and zone. 2033 * 2034 * The processor must either be the current processor and the 2035 * thread pinned to the current processor or a processor that 2036 * is not online. 2037 */ 2038 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2039 { 2040 unsigned long flags; 2041 struct per_cpu_pageset *pset; 2042 struct per_cpu_pages *pcp; 2043 2044 local_irq_save(flags); 2045 pset = per_cpu_ptr(zone->pageset, cpu); 2046 2047 pcp = &pset->pcp; 2048 if (pcp->count) { 2049 free_pcppages_bulk(zone, pcp->count, pcp); 2050 pcp->count = 0; 2051 } 2052 local_irq_restore(flags); 2053 } 2054 2055 /* 2056 * Drain pcplists of all zones on the indicated processor. 2057 * 2058 * The processor must either be the current processor and the 2059 * thread pinned to the current processor or a processor that 2060 * is not online. 2061 */ 2062 static void drain_pages(unsigned int cpu) 2063 { 2064 struct zone *zone; 2065 2066 for_each_populated_zone(zone) { 2067 drain_pages_zone(cpu, zone); 2068 } 2069 } 2070 2071 /* 2072 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2073 * 2074 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2075 * the single zone's pages. 2076 */ 2077 void drain_local_pages(struct zone *zone) 2078 { 2079 int cpu = smp_processor_id(); 2080 2081 if (zone) 2082 drain_pages_zone(cpu, zone); 2083 else 2084 drain_pages(cpu); 2085 } 2086 2087 /* 2088 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2089 * 2090 * When zone parameter is non-NULL, spill just the single zone's pages. 2091 * 2092 * Note that this code is protected against sending an IPI to an offline 2093 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 2094 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 2095 * nothing keeps CPUs from showing up after we populated the cpumask and 2096 * before the call to on_each_cpu_mask(). 2097 */ 2098 void drain_all_pages(struct zone *zone) 2099 { 2100 int cpu; 2101 2102 /* 2103 * Allocate in the BSS so we wont require allocation in 2104 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2105 */ 2106 static cpumask_t cpus_with_pcps; 2107 2108 /* 2109 * We don't care about racing with CPU hotplug event 2110 * as offline notification will cause the notified 2111 * cpu to drain that CPU pcps and on_each_cpu_mask 2112 * disables preemption as part of its processing 2113 */ 2114 for_each_online_cpu(cpu) { 2115 struct per_cpu_pageset *pcp; 2116 struct zone *z; 2117 bool has_pcps = false; 2118 2119 if (zone) { 2120 pcp = per_cpu_ptr(zone->pageset, cpu); 2121 if (pcp->pcp.count) 2122 has_pcps = true; 2123 } else { 2124 for_each_populated_zone(z) { 2125 pcp = per_cpu_ptr(z->pageset, cpu); 2126 if (pcp->pcp.count) { 2127 has_pcps = true; 2128 break; 2129 } 2130 } 2131 } 2132 2133 if (has_pcps) 2134 cpumask_set_cpu(cpu, &cpus_with_pcps); 2135 else 2136 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2137 } 2138 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 2139 zone, 1); 2140 } 2141 2142 #ifdef CONFIG_HIBERNATION 2143 2144 void mark_free_pages(struct zone *zone) 2145 { 2146 unsigned long pfn, max_zone_pfn; 2147 unsigned long flags; 2148 unsigned int order, t; 2149 struct page *page; 2150 2151 if (zone_is_empty(zone)) 2152 return; 2153 2154 spin_lock_irqsave(&zone->lock, flags); 2155 2156 max_zone_pfn = zone_end_pfn(zone); 2157 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2158 if (pfn_valid(pfn)) { 2159 page = pfn_to_page(pfn); 2160 if (!swsusp_page_is_forbidden(page)) 2161 swsusp_unset_page_free(page); 2162 } 2163 2164 for_each_migratetype_order(order, t) { 2165 list_for_each_entry(page, 2166 &zone->free_area[order].free_list[t], lru) { 2167 unsigned long i; 2168 2169 pfn = page_to_pfn(page); 2170 for (i = 0; i < (1UL << order); i++) 2171 swsusp_set_page_free(pfn_to_page(pfn + i)); 2172 } 2173 } 2174 spin_unlock_irqrestore(&zone->lock, flags); 2175 } 2176 #endif /* CONFIG_PM */ 2177 2178 /* 2179 * Free a 0-order page 2180 * cold == true ? free a cold page : free a hot page 2181 */ 2182 void free_hot_cold_page(struct page *page, bool cold) 2183 { 2184 struct zone *zone = page_zone(page); 2185 struct per_cpu_pages *pcp; 2186 unsigned long flags; 2187 unsigned long pfn = page_to_pfn(page); 2188 int migratetype; 2189 2190 if (!free_pages_prepare(page, 0)) 2191 return; 2192 2193 migratetype = get_pfnblock_migratetype(page, pfn); 2194 set_pcppage_migratetype(page, migratetype); 2195 local_irq_save(flags); 2196 __count_vm_event(PGFREE); 2197 2198 /* 2199 * We only track unmovable, reclaimable and movable on pcp lists. 2200 * Free ISOLATE pages back to the allocator because they are being 2201 * offlined but treat RESERVE as movable pages so we can get those 2202 * areas back if necessary. Otherwise, we may have to free 2203 * excessively into the page allocator 2204 */ 2205 if (migratetype >= MIGRATE_PCPTYPES) { 2206 if (unlikely(is_migrate_isolate(migratetype))) { 2207 free_one_page(zone, page, pfn, 0, migratetype); 2208 goto out; 2209 } 2210 migratetype = MIGRATE_MOVABLE; 2211 } 2212 2213 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2214 if (!cold) 2215 list_add(&page->lru, &pcp->lists[migratetype]); 2216 else 2217 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2218 pcp->count++; 2219 if (pcp->count >= pcp->high) { 2220 unsigned long batch = READ_ONCE(pcp->batch); 2221 free_pcppages_bulk(zone, batch, pcp); 2222 pcp->count -= batch; 2223 } 2224 2225 out: 2226 local_irq_restore(flags); 2227 } 2228 2229 /* 2230 * Free a list of 0-order pages 2231 */ 2232 void free_hot_cold_page_list(struct list_head *list, bool cold) 2233 { 2234 struct page *page, *next; 2235 2236 list_for_each_entry_safe(page, next, list, lru) { 2237 trace_mm_page_free_batched(page, cold); 2238 free_hot_cold_page(page, cold); 2239 } 2240 } 2241 2242 /* 2243 * split_page takes a non-compound higher-order page, and splits it into 2244 * n (1<<order) sub-pages: page[0..n] 2245 * Each sub-page must be freed individually. 2246 * 2247 * Note: this is probably too low level an operation for use in drivers. 2248 * Please consult with lkml before using this in your driver. 2249 */ 2250 void split_page(struct page *page, unsigned int order) 2251 { 2252 int i; 2253 gfp_t gfp_mask; 2254 2255 VM_BUG_ON_PAGE(PageCompound(page), page); 2256 VM_BUG_ON_PAGE(!page_count(page), page); 2257 2258 #ifdef CONFIG_KMEMCHECK 2259 /* 2260 * Split shadow pages too, because free(page[0]) would 2261 * otherwise free the whole shadow. 2262 */ 2263 if (kmemcheck_page_is_tracked(page)) 2264 split_page(virt_to_page(page[0].shadow), order); 2265 #endif 2266 2267 gfp_mask = get_page_owner_gfp(page); 2268 set_page_owner(page, 0, gfp_mask); 2269 for (i = 1; i < (1 << order); i++) { 2270 set_page_refcounted(page + i); 2271 set_page_owner(page + i, 0, gfp_mask); 2272 } 2273 } 2274 EXPORT_SYMBOL_GPL(split_page); 2275 2276 int __isolate_free_page(struct page *page, unsigned int order) 2277 { 2278 unsigned long watermark; 2279 struct zone *zone; 2280 int mt; 2281 2282 BUG_ON(!PageBuddy(page)); 2283 2284 zone = page_zone(page); 2285 mt = get_pageblock_migratetype(page); 2286 2287 if (!is_migrate_isolate(mt)) { 2288 /* Obey watermarks as if the page was being allocated */ 2289 watermark = low_wmark_pages(zone) + (1 << order); 2290 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 2291 return 0; 2292 2293 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2294 } 2295 2296 /* Remove page from free list */ 2297 list_del(&page->lru); 2298 zone->free_area[order].nr_free--; 2299 rmv_page_order(page); 2300 2301 set_page_owner(page, order, __GFP_MOVABLE); 2302 2303 /* Set the pageblock if the isolated page is at least a pageblock */ 2304 if (order >= pageblock_order - 1) { 2305 struct page *endpage = page + (1 << order) - 1; 2306 for (; page < endpage; page += pageblock_nr_pages) { 2307 int mt = get_pageblock_migratetype(page); 2308 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 2309 set_pageblock_migratetype(page, 2310 MIGRATE_MOVABLE); 2311 } 2312 } 2313 2314 2315 return 1UL << order; 2316 } 2317 2318 /* 2319 * Similar to split_page except the page is already free. As this is only 2320 * being used for migration, the migratetype of the block also changes. 2321 * As this is called with interrupts disabled, the caller is responsible 2322 * for calling arch_alloc_page() and kernel_map_page() after interrupts 2323 * are enabled. 2324 * 2325 * Note: this is probably too low level an operation for use in drivers. 2326 * Please consult with lkml before using this in your driver. 2327 */ 2328 int split_free_page(struct page *page) 2329 { 2330 unsigned int order; 2331 int nr_pages; 2332 2333 order = page_order(page); 2334 2335 nr_pages = __isolate_free_page(page, order); 2336 if (!nr_pages) 2337 return 0; 2338 2339 /* Split into individual pages */ 2340 set_page_refcounted(page); 2341 split_page(page, order); 2342 return nr_pages; 2343 } 2344 2345 /* 2346 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2347 */ 2348 static inline 2349 struct page *buffered_rmqueue(struct zone *preferred_zone, 2350 struct zone *zone, unsigned int order, 2351 gfp_t gfp_flags, int alloc_flags, int migratetype) 2352 { 2353 unsigned long flags; 2354 struct page *page; 2355 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2356 2357 if (likely(order == 0)) { 2358 struct per_cpu_pages *pcp; 2359 struct list_head *list; 2360 2361 local_irq_save(flags); 2362 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2363 list = &pcp->lists[migratetype]; 2364 if (list_empty(list)) { 2365 pcp->count += rmqueue_bulk(zone, 0, 2366 pcp->batch, list, 2367 migratetype, cold); 2368 if (unlikely(list_empty(list))) 2369 goto failed; 2370 } 2371 2372 if (cold) 2373 page = list_last_entry(list, struct page, lru); 2374 else 2375 page = list_first_entry(list, struct page, lru); 2376 2377 list_del(&page->lru); 2378 pcp->count--; 2379 } else { 2380 /* 2381 * We most definitely don't want callers attempting to 2382 * allocate greater than order-1 page units with __GFP_NOFAIL. 2383 */ 2384 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2385 spin_lock_irqsave(&zone->lock, flags); 2386 2387 page = NULL; 2388 if (alloc_flags & ALLOC_HARDER) { 2389 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2390 if (page) 2391 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2392 } 2393 if (!page) 2394 page = __rmqueue(zone, order, migratetype); 2395 spin_unlock(&zone->lock); 2396 if (!page) 2397 goto failed; 2398 __mod_zone_freepage_state(zone, -(1 << order), 2399 get_pcppage_migratetype(page)); 2400 } 2401 2402 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 2403 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 2404 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 2405 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2406 2407 __count_zone_vm_events(PGALLOC, zone, 1 << order); 2408 zone_statistics(preferred_zone, zone, gfp_flags); 2409 local_irq_restore(flags); 2410 2411 VM_BUG_ON_PAGE(bad_range(zone, page), page); 2412 return page; 2413 2414 failed: 2415 local_irq_restore(flags); 2416 return NULL; 2417 } 2418 2419 #ifdef CONFIG_FAIL_PAGE_ALLOC 2420 2421 static struct { 2422 struct fault_attr attr; 2423 2424 bool ignore_gfp_highmem; 2425 bool ignore_gfp_reclaim; 2426 u32 min_order; 2427 } fail_page_alloc = { 2428 .attr = FAULT_ATTR_INITIALIZER, 2429 .ignore_gfp_reclaim = true, 2430 .ignore_gfp_highmem = true, 2431 .min_order = 1, 2432 }; 2433 2434 static int __init setup_fail_page_alloc(char *str) 2435 { 2436 return setup_fault_attr(&fail_page_alloc.attr, str); 2437 } 2438 __setup("fail_page_alloc=", setup_fail_page_alloc); 2439 2440 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2441 { 2442 if (order < fail_page_alloc.min_order) 2443 return false; 2444 if (gfp_mask & __GFP_NOFAIL) 2445 return false; 2446 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2447 return false; 2448 if (fail_page_alloc.ignore_gfp_reclaim && 2449 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2450 return false; 2451 2452 return should_fail(&fail_page_alloc.attr, 1 << order); 2453 } 2454 2455 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2456 2457 static int __init fail_page_alloc_debugfs(void) 2458 { 2459 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2460 struct dentry *dir; 2461 2462 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2463 &fail_page_alloc.attr); 2464 if (IS_ERR(dir)) 2465 return PTR_ERR(dir); 2466 2467 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2468 &fail_page_alloc.ignore_gfp_reclaim)) 2469 goto fail; 2470 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2471 &fail_page_alloc.ignore_gfp_highmem)) 2472 goto fail; 2473 if (!debugfs_create_u32("min-order", mode, dir, 2474 &fail_page_alloc.min_order)) 2475 goto fail; 2476 2477 return 0; 2478 fail: 2479 debugfs_remove_recursive(dir); 2480 2481 return -ENOMEM; 2482 } 2483 2484 late_initcall(fail_page_alloc_debugfs); 2485 2486 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2487 2488 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2489 2490 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2491 { 2492 return false; 2493 } 2494 2495 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2496 2497 /* 2498 * Return true if free base pages are above 'mark'. For high-order checks it 2499 * will return true of the order-0 watermark is reached and there is at least 2500 * one free page of a suitable size. Checking now avoids taking the zone lock 2501 * to check in the allocation paths if no pages are free. 2502 */ 2503 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 2504 unsigned long mark, int classzone_idx, int alloc_flags, 2505 long free_pages) 2506 { 2507 long min = mark; 2508 int o; 2509 const int alloc_harder = (alloc_flags & ALLOC_HARDER); 2510 2511 /* free_pages may go negative - that's OK */ 2512 free_pages -= (1 << order) - 1; 2513 2514 if (alloc_flags & ALLOC_HIGH) 2515 min -= min / 2; 2516 2517 /* 2518 * If the caller does not have rights to ALLOC_HARDER then subtract 2519 * the high-atomic reserves. This will over-estimate the size of the 2520 * atomic reserve but it avoids a search. 2521 */ 2522 if (likely(!alloc_harder)) 2523 free_pages -= z->nr_reserved_highatomic; 2524 else 2525 min -= min / 4; 2526 2527 #ifdef CONFIG_CMA 2528 /* If allocation can't use CMA areas don't use free CMA pages */ 2529 if (!(alloc_flags & ALLOC_CMA)) 2530 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2531 #endif 2532 2533 /* 2534 * Check watermarks for an order-0 allocation request. If these 2535 * are not met, then a high-order request also cannot go ahead 2536 * even if a suitable page happened to be free. 2537 */ 2538 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2539 return false; 2540 2541 /* If this is an order-0 request then the watermark is fine */ 2542 if (!order) 2543 return true; 2544 2545 /* For a high-order request, check at least one suitable page is free */ 2546 for (o = order; o < MAX_ORDER; o++) { 2547 struct free_area *area = &z->free_area[o]; 2548 int mt; 2549 2550 if (!area->nr_free) 2551 continue; 2552 2553 if (alloc_harder) 2554 return true; 2555 2556 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2557 if (!list_empty(&area->free_list[mt])) 2558 return true; 2559 } 2560 2561 #ifdef CONFIG_CMA 2562 if ((alloc_flags & ALLOC_CMA) && 2563 !list_empty(&area->free_list[MIGRATE_CMA])) { 2564 return true; 2565 } 2566 #endif 2567 } 2568 return false; 2569 } 2570 2571 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2572 int classzone_idx, int alloc_flags) 2573 { 2574 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2575 zone_page_state(z, NR_FREE_PAGES)); 2576 } 2577 2578 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2579 unsigned long mark, int classzone_idx) 2580 { 2581 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2582 2583 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2584 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2585 2586 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 2587 free_pages); 2588 } 2589 2590 #ifdef CONFIG_NUMA 2591 static bool zone_local(struct zone *local_zone, struct zone *zone) 2592 { 2593 return local_zone->node == zone->node; 2594 } 2595 2596 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2597 { 2598 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2599 RECLAIM_DISTANCE; 2600 } 2601 #else /* CONFIG_NUMA */ 2602 static bool zone_local(struct zone *local_zone, struct zone *zone) 2603 { 2604 return true; 2605 } 2606 2607 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2608 { 2609 return true; 2610 } 2611 #endif /* CONFIG_NUMA */ 2612 2613 static void reset_alloc_batches(struct zone *preferred_zone) 2614 { 2615 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2616 2617 do { 2618 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2619 high_wmark_pages(zone) - low_wmark_pages(zone) - 2620 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2621 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2622 } while (zone++ != preferred_zone); 2623 } 2624 2625 /* 2626 * get_page_from_freelist goes through the zonelist trying to allocate 2627 * a page. 2628 */ 2629 static struct page * 2630 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2631 const struct alloc_context *ac) 2632 { 2633 struct zonelist *zonelist = ac->zonelist; 2634 struct zoneref *z; 2635 struct page *page = NULL; 2636 struct zone *zone; 2637 int nr_fair_skipped = 0; 2638 bool zonelist_rescan; 2639 2640 zonelist_scan: 2641 zonelist_rescan = false; 2642 2643 /* 2644 * Scan zonelist, looking for a zone with enough free. 2645 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2646 */ 2647 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2648 ac->nodemask) { 2649 unsigned long mark; 2650 2651 if (cpusets_enabled() && 2652 (alloc_flags & ALLOC_CPUSET) && 2653 !cpuset_zone_allowed(zone, gfp_mask)) 2654 continue; 2655 /* 2656 * Distribute pages in proportion to the individual 2657 * zone size to ensure fair page aging. The zone a 2658 * page was allocated in should have no effect on the 2659 * time the page has in memory before being reclaimed. 2660 */ 2661 if (alloc_flags & ALLOC_FAIR) { 2662 if (!zone_local(ac->preferred_zone, zone)) 2663 break; 2664 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2665 nr_fair_skipped++; 2666 continue; 2667 } 2668 } 2669 /* 2670 * When allocating a page cache page for writing, we 2671 * want to get it from a zone that is within its dirty 2672 * limit, such that no single zone holds more than its 2673 * proportional share of globally allowed dirty pages. 2674 * The dirty limits take into account the zone's 2675 * lowmem reserves and high watermark so that kswapd 2676 * should be able to balance it without having to 2677 * write pages from its LRU list. 2678 * 2679 * This may look like it could increase pressure on 2680 * lower zones by failing allocations in higher zones 2681 * before they are full. But the pages that do spill 2682 * over are limited as the lower zones are protected 2683 * by this very same mechanism. It should not become 2684 * a practical burden to them. 2685 * 2686 * XXX: For now, allow allocations to potentially 2687 * exceed the per-zone dirty limit in the slowpath 2688 * (spread_dirty_pages unset) before going into reclaim, 2689 * which is important when on a NUMA setup the allowed 2690 * zones are together not big enough to reach the 2691 * global limit. The proper fix for these situations 2692 * will require awareness of zones in the 2693 * dirty-throttling and the flusher threads. 2694 */ 2695 if (ac->spread_dirty_pages && !zone_dirty_ok(zone)) 2696 continue; 2697 2698 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2699 if (!zone_watermark_ok(zone, order, mark, 2700 ac->classzone_idx, alloc_flags)) { 2701 int ret; 2702 2703 /* Checked here to keep the fast path fast */ 2704 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2705 if (alloc_flags & ALLOC_NO_WATERMARKS) 2706 goto try_this_zone; 2707 2708 if (zone_reclaim_mode == 0 || 2709 !zone_allows_reclaim(ac->preferred_zone, zone)) 2710 continue; 2711 2712 ret = zone_reclaim(zone, gfp_mask, order); 2713 switch (ret) { 2714 case ZONE_RECLAIM_NOSCAN: 2715 /* did not scan */ 2716 continue; 2717 case ZONE_RECLAIM_FULL: 2718 /* scanned but unreclaimable */ 2719 continue; 2720 default: 2721 /* did we reclaim enough */ 2722 if (zone_watermark_ok(zone, order, mark, 2723 ac->classzone_idx, alloc_flags)) 2724 goto try_this_zone; 2725 2726 continue; 2727 } 2728 } 2729 2730 try_this_zone: 2731 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2732 gfp_mask, alloc_flags, ac->migratetype); 2733 if (page) { 2734 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2735 goto try_this_zone; 2736 2737 /* 2738 * If this is a high-order atomic allocation then check 2739 * if the pageblock should be reserved for the future 2740 */ 2741 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 2742 reserve_highatomic_pageblock(page, zone, order); 2743 2744 return page; 2745 } 2746 } 2747 2748 /* 2749 * The first pass makes sure allocations are spread fairly within the 2750 * local node. However, the local node might have free pages left 2751 * after the fairness batches are exhausted, and remote zones haven't 2752 * even been considered yet. Try once more without fairness, and 2753 * include remote zones now, before entering the slowpath and waking 2754 * kswapd: prefer spilling to a remote zone over swapping locally. 2755 */ 2756 if (alloc_flags & ALLOC_FAIR) { 2757 alloc_flags &= ~ALLOC_FAIR; 2758 if (nr_fair_skipped) { 2759 zonelist_rescan = true; 2760 reset_alloc_batches(ac->preferred_zone); 2761 } 2762 if (nr_online_nodes > 1) 2763 zonelist_rescan = true; 2764 } 2765 2766 if (zonelist_rescan) 2767 goto zonelist_scan; 2768 2769 return NULL; 2770 } 2771 2772 /* 2773 * Large machines with many possible nodes should not always dump per-node 2774 * meminfo in irq context. 2775 */ 2776 static inline bool should_suppress_show_mem(void) 2777 { 2778 bool ret = false; 2779 2780 #if NODES_SHIFT > 8 2781 ret = in_interrupt(); 2782 #endif 2783 return ret; 2784 } 2785 2786 static DEFINE_RATELIMIT_STATE(nopage_rs, 2787 DEFAULT_RATELIMIT_INTERVAL, 2788 DEFAULT_RATELIMIT_BURST); 2789 2790 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...) 2791 { 2792 unsigned int filter = SHOW_MEM_FILTER_NODES; 2793 2794 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2795 debug_guardpage_minorder() > 0) 2796 return; 2797 2798 /* 2799 * This documents exceptions given to allocations in certain 2800 * contexts that are allowed to allocate outside current's set 2801 * of allowed nodes. 2802 */ 2803 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2804 if (test_thread_flag(TIF_MEMDIE) || 2805 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2806 filter &= ~SHOW_MEM_FILTER_NODES; 2807 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 2808 filter &= ~SHOW_MEM_FILTER_NODES; 2809 2810 if (fmt) { 2811 struct va_format vaf; 2812 va_list args; 2813 2814 va_start(args, fmt); 2815 2816 vaf.fmt = fmt; 2817 vaf.va = &args; 2818 2819 pr_warn("%pV", &vaf); 2820 2821 va_end(args); 2822 } 2823 2824 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n", 2825 current->comm, order, gfp_mask, &gfp_mask); 2826 dump_stack(); 2827 if (!should_suppress_show_mem()) 2828 show_mem(filter); 2829 } 2830 2831 static inline struct page * 2832 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2833 const struct alloc_context *ac, unsigned long *did_some_progress) 2834 { 2835 struct oom_control oc = { 2836 .zonelist = ac->zonelist, 2837 .nodemask = ac->nodemask, 2838 .gfp_mask = gfp_mask, 2839 .order = order, 2840 }; 2841 struct page *page; 2842 2843 *did_some_progress = 0; 2844 2845 /* 2846 * Acquire the oom lock. If that fails, somebody else is 2847 * making progress for us. 2848 */ 2849 if (!mutex_trylock(&oom_lock)) { 2850 *did_some_progress = 1; 2851 schedule_timeout_uninterruptible(1); 2852 return NULL; 2853 } 2854 2855 /* 2856 * Go through the zonelist yet one more time, keep very high watermark 2857 * here, this is only to catch a parallel oom killing, we must fail if 2858 * we're still under heavy pressure. 2859 */ 2860 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2861 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2862 if (page) 2863 goto out; 2864 2865 if (!(gfp_mask & __GFP_NOFAIL)) { 2866 /* Coredumps can quickly deplete all memory reserves */ 2867 if (current->flags & PF_DUMPCORE) 2868 goto out; 2869 /* The OOM killer will not help higher order allocs */ 2870 if (order > PAGE_ALLOC_COSTLY_ORDER) 2871 goto out; 2872 /* The OOM killer does not needlessly kill tasks for lowmem */ 2873 if (ac->high_zoneidx < ZONE_NORMAL) 2874 goto out; 2875 /* The OOM killer does not compensate for IO-less reclaim */ 2876 if (!(gfp_mask & __GFP_FS)) { 2877 /* 2878 * XXX: Page reclaim didn't yield anything, 2879 * and the OOM killer can't be invoked, but 2880 * keep looping as per tradition. 2881 * 2882 * But do not keep looping if oom_killer_disable() 2883 * was already called, for the system is trying to 2884 * enter a quiescent state during suspend. 2885 */ 2886 *did_some_progress = !oom_killer_disabled; 2887 goto out; 2888 } 2889 if (pm_suspended_storage()) 2890 goto out; 2891 /* The OOM killer may not free memory on a specific node */ 2892 if (gfp_mask & __GFP_THISNODE) 2893 goto out; 2894 } 2895 /* Exhausted what can be done so it's blamo time */ 2896 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 2897 *did_some_progress = 1; 2898 2899 if (gfp_mask & __GFP_NOFAIL) { 2900 page = get_page_from_freelist(gfp_mask, order, 2901 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac); 2902 /* 2903 * fallback to ignore cpuset restriction if our nodes 2904 * are depleted 2905 */ 2906 if (!page) 2907 page = get_page_from_freelist(gfp_mask, order, 2908 ALLOC_NO_WATERMARKS, ac); 2909 } 2910 } 2911 out: 2912 mutex_unlock(&oom_lock); 2913 return page; 2914 } 2915 2916 #ifdef CONFIG_COMPACTION 2917 /* Try memory compaction for high-order allocations before reclaim */ 2918 static struct page * 2919 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2920 int alloc_flags, const struct alloc_context *ac, 2921 enum migrate_mode mode, int *contended_compaction, 2922 bool *deferred_compaction) 2923 { 2924 unsigned long compact_result; 2925 struct page *page; 2926 2927 if (!order) 2928 return NULL; 2929 2930 current->flags |= PF_MEMALLOC; 2931 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2932 mode, contended_compaction); 2933 current->flags &= ~PF_MEMALLOC; 2934 2935 switch (compact_result) { 2936 case COMPACT_DEFERRED: 2937 *deferred_compaction = true; 2938 /* fall-through */ 2939 case COMPACT_SKIPPED: 2940 return NULL; 2941 default: 2942 break; 2943 } 2944 2945 /* 2946 * At least in one zone compaction wasn't deferred or skipped, so let's 2947 * count a compaction stall 2948 */ 2949 count_vm_event(COMPACTSTALL); 2950 2951 page = get_page_from_freelist(gfp_mask, order, 2952 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2953 2954 if (page) { 2955 struct zone *zone = page_zone(page); 2956 2957 zone->compact_blockskip_flush = false; 2958 compaction_defer_reset(zone, order, true); 2959 count_vm_event(COMPACTSUCCESS); 2960 return page; 2961 } 2962 2963 /* 2964 * It's bad if compaction run occurs and fails. The most likely reason 2965 * is that pages exist, but not enough to satisfy watermarks. 2966 */ 2967 count_vm_event(COMPACTFAIL); 2968 2969 cond_resched(); 2970 2971 return NULL; 2972 } 2973 #else 2974 static inline struct page * 2975 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2976 int alloc_flags, const struct alloc_context *ac, 2977 enum migrate_mode mode, int *contended_compaction, 2978 bool *deferred_compaction) 2979 { 2980 return NULL; 2981 } 2982 #endif /* CONFIG_COMPACTION */ 2983 2984 /* Perform direct synchronous page reclaim */ 2985 static int 2986 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 2987 const struct alloc_context *ac) 2988 { 2989 struct reclaim_state reclaim_state; 2990 int progress; 2991 2992 cond_resched(); 2993 2994 /* We now go into synchronous reclaim */ 2995 cpuset_memory_pressure_bump(); 2996 current->flags |= PF_MEMALLOC; 2997 lockdep_set_current_reclaim_state(gfp_mask); 2998 reclaim_state.reclaimed_slab = 0; 2999 current->reclaim_state = &reclaim_state; 3000 3001 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3002 ac->nodemask); 3003 3004 current->reclaim_state = NULL; 3005 lockdep_clear_current_reclaim_state(); 3006 current->flags &= ~PF_MEMALLOC; 3007 3008 cond_resched(); 3009 3010 return progress; 3011 } 3012 3013 /* The really slow allocator path where we enter direct reclaim */ 3014 static inline struct page * 3015 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3016 int alloc_flags, const struct alloc_context *ac, 3017 unsigned long *did_some_progress) 3018 { 3019 struct page *page = NULL; 3020 bool drained = false; 3021 3022 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3023 if (unlikely(!(*did_some_progress))) 3024 return NULL; 3025 3026 retry: 3027 page = get_page_from_freelist(gfp_mask, order, 3028 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 3029 3030 /* 3031 * If an allocation failed after direct reclaim, it could be because 3032 * pages are pinned on the per-cpu lists or in high alloc reserves. 3033 * Shrink them them and try again 3034 */ 3035 if (!page && !drained) { 3036 unreserve_highatomic_pageblock(ac); 3037 drain_all_pages(NULL); 3038 drained = true; 3039 goto retry; 3040 } 3041 3042 return page; 3043 } 3044 3045 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3046 { 3047 struct zoneref *z; 3048 struct zone *zone; 3049 3050 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3051 ac->high_zoneidx, ac->nodemask) 3052 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 3053 } 3054 3055 static inline int 3056 gfp_to_alloc_flags(gfp_t gfp_mask) 3057 { 3058 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3059 3060 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3061 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3062 3063 /* 3064 * The caller may dip into page reserves a bit more if the caller 3065 * cannot run direct reclaim, or if the caller has realtime scheduling 3066 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3067 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3068 */ 3069 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3070 3071 if (gfp_mask & __GFP_ATOMIC) { 3072 /* 3073 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3074 * if it can't schedule. 3075 */ 3076 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3077 alloc_flags |= ALLOC_HARDER; 3078 /* 3079 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3080 * comment for __cpuset_node_allowed(). 3081 */ 3082 alloc_flags &= ~ALLOC_CPUSET; 3083 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3084 alloc_flags |= ALLOC_HARDER; 3085 3086 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 3087 if (gfp_mask & __GFP_MEMALLOC) 3088 alloc_flags |= ALLOC_NO_WATERMARKS; 3089 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3090 alloc_flags |= ALLOC_NO_WATERMARKS; 3091 else if (!in_interrupt() && 3092 ((current->flags & PF_MEMALLOC) || 3093 unlikely(test_thread_flag(TIF_MEMDIE)))) 3094 alloc_flags |= ALLOC_NO_WATERMARKS; 3095 } 3096 #ifdef CONFIG_CMA 3097 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3098 alloc_flags |= ALLOC_CMA; 3099 #endif 3100 return alloc_flags; 3101 } 3102 3103 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3104 { 3105 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 3106 } 3107 3108 static inline bool is_thp_gfp_mask(gfp_t gfp_mask) 3109 { 3110 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE; 3111 } 3112 3113 static inline struct page * 3114 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3115 struct alloc_context *ac) 3116 { 3117 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3118 struct page *page = NULL; 3119 int alloc_flags; 3120 unsigned long pages_reclaimed = 0; 3121 unsigned long did_some_progress; 3122 enum migrate_mode migration_mode = MIGRATE_ASYNC; 3123 bool deferred_compaction = false; 3124 int contended_compaction = COMPACT_CONTENDED_NONE; 3125 3126 /* 3127 * In the slowpath, we sanity check order to avoid ever trying to 3128 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3129 * be using allocators in order of preference for an area that is 3130 * too large. 3131 */ 3132 if (order >= MAX_ORDER) { 3133 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3134 return NULL; 3135 } 3136 3137 /* 3138 * We also sanity check to catch abuse of atomic reserves being used by 3139 * callers that are not in atomic context. 3140 */ 3141 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3142 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3143 gfp_mask &= ~__GFP_ATOMIC; 3144 3145 retry: 3146 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3147 wake_all_kswapds(order, ac); 3148 3149 /* 3150 * OK, we're below the kswapd watermark and have kicked background 3151 * reclaim. Now things get more complex, so set up alloc_flags according 3152 * to how we want to proceed. 3153 */ 3154 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3155 3156 /* 3157 * Find the true preferred zone if the allocation is unconstrained by 3158 * cpusets. 3159 */ 3160 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 3161 struct zoneref *preferred_zoneref; 3162 preferred_zoneref = first_zones_zonelist(ac->zonelist, 3163 ac->high_zoneidx, NULL, &ac->preferred_zone); 3164 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 3165 } 3166 3167 /* This is the last chance, in general, before the goto nopage. */ 3168 page = get_page_from_freelist(gfp_mask, order, 3169 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 3170 if (page) 3171 goto got_pg; 3172 3173 /* Allocate without watermarks if the context allows */ 3174 if (alloc_flags & ALLOC_NO_WATERMARKS) { 3175 /* 3176 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 3177 * the allocation is high priority and these type of 3178 * allocations are system rather than user orientated 3179 */ 3180 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3181 page = get_page_from_freelist(gfp_mask, order, 3182 ALLOC_NO_WATERMARKS, ac); 3183 if (page) 3184 goto got_pg; 3185 } 3186 3187 /* Caller is not willing to reclaim, we can't balance anything */ 3188 if (!can_direct_reclaim) { 3189 /* 3190 * All existing users of the __GFP_NOFAIL are blockable, so warn 3191 * of any new users that actually allow this type of allocation 3192 * to fail. 3193 */ 3194 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 3195 goto nopage; 3196 } 3197 3198 /* Avoid recursion of direct reclaim */ 3199 if (current->flags & PF_MEMALLOC) { 3200 /* 3201 * __GFP_NOFAIL request from this context is rather bizarre 3202 * because we cannot reclaim anything and only can loop waiting 3203 * for somebody to do a work for us. 3204 */ 3205 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3206 cond_resched(); 3207 goto retry; 3208 } 3209 goto nopage; 3210 } 3211 3212 /* Avoid allocations with no watermarks from looping endlessly */ 3213 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 3214 goto nopage; 3215 3216 /* 3217 * Try direct compaction. The first pass is asynchronous. Subsequent 3218 * attempts after direct reclaim are synchronous 3219 */ 3220 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3221 migration_mode, 3222 &contended_compaction, 3223 &deferred_compaction); 3224 if (page) 3225 goto got_pg; 3226 3227 /* Checks for THP-specific high-order allocations */ 3228 if (is_thp_gfp_mask(gfp_mask)) { 3229 /* 3230 * If compaction is deferred for high-order allocations, it is 3231 * because sync compaction recently failed. If this is the case 3232 * and the caller requested a THP allocation, we do not want 3233 * to heavily disrupt the system, so we fail the allocation 3234 * instead of entering direct reclaim. 3235 */ 3236 if (deferred_compaction) 3237 goto nopage; 3238 3239 /* 3240 * In all zones where compaction was attempted (and not 3241 * deferred or skipped), lock contention has been detected. 3242 * For THP allocation we do not want to disrupt the others 3243 * so we fallback to base pages instead. 3244 */ 3245 if (contended_compaction == COMPACT_CONTENDED_LOCK) 3246 goto nopage; 3247 3248 /* 3249 * If compaction was aborted due to need_resched(), we do not 3250 * want to further increase allocation latency, unless it is 3251 * khugepaged trying to collapse. 3252 */ 3253 if (contended_compaction == COMPACT_CONTENDED_SCHED 3254 && !(current->flags & PF_KTHREAD)) 3255 goto nopage; 3256 } 3257 3258 /* 3259 * It can become very expensive to allocate transparent hugepages at 3260 * fault, so use asynchronous memory compaction for THP unless it is 3261 * khugepaged trying to collapse. 3262 */ 3263 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD)) 3264 migration_mode = MIGRATE_SYNC_LIGHT; 3265 3266 /* Try direct reclaim and then allocating */ 3267 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3268 &did_some_progress); 3269 if (page) 3270 goto got_pg; 3271 3272 /* Do not loop if specifically requested */ 3273 if (gfp_mask & __GFP_NORETRY) 3274 goto noretry; 3275 3276 /* Keep reclaiming pages as long as there is reasonable progress */ 3277 pages_reclaimed += did_some_progress; 3278 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) || 3279 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) { 3280 /* Wait for some write requests to complete then retry */ 3281 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 3282 goto retry; 3283 } 3284 3285 /* Reclaim has failed us, start killing things */ 3286 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3287 if (page) 3288 goto got_pg; 3289 3290 /* Retry as long as the OOM killer is making progress */ 3291 if (did_some_progress) 3292 goto retry; 3293 3294 noretry: 3295 /* 3296 * High-order allocations do not necessarily loop after 3297 * direct reclaim and reclaim/compaction depends on compaction 3298 * being called after reclaim so call directly if necessary 3299 */ 3300 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, 3301 ac, migration_mode, 3302 &contended_compaction, 3303 &deferred_compaction); 3304 if (page) 3305 goto got_pg; 3306 nopage: 3307 warn_alloc_failed(gfp_mask, order, NULL); 3308 got_pg: 3309 return page; 3310 } 3311 3312 /* 3313 * This is the 'heart' of the zoned buddy allocator. 3314 */ 3315 struct page * 3316 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3317 struct zonelist *zonelist, nodemask_t *nodemask) 3318 { 3319 struct zoneref *preferred_zoneref; 3320 struct page *page = NULL; 3321 unsigned int cpuset_mems_cookie; 3322 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 3323 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 3324 struct alloc_context ac = { 3325 .high_zoneidx = gfp_zone(gfp_mask), 3326 .nodemask = nodemask, 3327 .migratetype = gfpflags_to_migratetype(gfp_mask), 3328 }; 3329 3330 gfp_mask &= gfp_allowed_mask; 3331 3332 lockdep_trace_alloc(gfp_mask); 3333 3334 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 3335 3336 if (should_fail_alloc_page(gfp_mask, order)) 3337 return NULL; 3338 3339 /* 3340 * Check the zones suitable for the gfp_mask contain at least one 3341 * valid zone. It's possible to have an empty zonelist as a result 3342 * of __GFP_THISNODE and a memoryless node 3343 */ 3344 if (unlikely(!zonelist->_zonerefs->zone)) 3345 return NULL; 3346 3347 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 3348 alloc_flags |= ALLOC_CMA; 3349 3350 retry_cpuset: 3351 cpuset_mems_cookie = read_mems_allowed_begin(); 3352 3353 /* We set it here, as __alloc_pages_slowpath might have changed it */ 3354 ac.zonelist = zonelist; 3355 3356 /* Dirty zone balancing only done in the fast path */ 3357 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE); 3358 3359 /* The preferred zone is used for statistics later */ 3360 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 3361 ac.nodemask ? : &cpuset_current_mems_allowed, 3362 &ac.preferred_zone); 3363 if (!ac.preferred_zone) 3364 goto out; 3365 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 3366 3367 /* First allocation attempt */ 3368 alloc_mask = gfp_mask|__GFP_HARDWALL; 3369 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3370 if (unlikely(!page)) { 3371 /* 3372 * Runtime PM, block IO and its error handling path 3373 * can deadlock because I/O on the device might not 3374 * complete. 3375 */ 3376 alloc_mask = memalloc_noio_flags(gfp_mask); 3377 ac.spread_dirty_pages = false; 3378 3379 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3380 } 3381 3382 if (kmemcheck_enabled && page) 3383 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3384 3385 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3386 3387 out: 3388 /* 3389 * When updating a task's mems_allowed, it is possible to race with 3390 * parallel threads in such a way that an allocation can fail while 3391 * the mask is being updated. If a page allocation is about to fail, 3392 * check if the cpuset changed during allocation and if so, retry. 3393 */ 3394 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 3395 goto retry_cpuset; 3396 3397 return page; 3398 } 3399 EXPORT_SYMBOL(__alloc_pages_nodemask); 3400 3401 /* 3402 * Common helper functions. 3403 */ 3404 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 3405 { 3406 struct page *page; 3407 3408 /* 3409 * __get_free_pages() returns a 32-bit address, which cannot represent 3410 * a highmem page 3411 */ 3412 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 3413 3414 page = alloc_pages(gfp_mask, order); 3415 if (!page) 3416 return 0; 3417 return (unsigned long) page_address(page); 3418 } 3419 EXPORT_SYMBOL(__get_free_pages); 3420 3421 unsigned long get_zeroed_page(gfp_t gfp_mask) 3422 { 3423 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 3424 } 3425 EXPORT_SYMBOL(get_zeroed_page); 3426 3427 void __free_pages(struct page *page, unsigned int order) 3428 { 3429 if (put_page_testzero(page)) { 3430 if (order == 0) 3431 free_hot_cold_page(page, false); 3432 else 3433 __free_pages_ok(page, order); 3434 } 3435 } 3436 3437 EXPORT_SYMBOL(__free_pages); 3438 3439 void free_pages(unsigned long addr, unsigned int order) 3440 { 3441 if (addr != 0) { 3442 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3443 __free_pages(virt_to_page((void *)addr), order); 3444 } 3445 } 3446 3447 EXPORT_SYMBOL(free_pages); 3448 3449 /* 3450 * Page Fragment: 3451 * An arbitrary-length arbitrary-offset area of memory which resides 3452 * within a 0 or higher order page. Multiple fragments within that page 3453 * are individually refcounted, in the page's reference counter. 3454 * 3455 * The page_frag functions below provide a simple allocation framework for 3456 * page fragments. This is used by the network stack and network device 3457 * drivers to provide a backing region of memory for use as either an 3458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 3459 */ 3460 static struct page *__page_frag_refill(struct page_frag_cache *nc, 3461 gfp_t gfp_mask) 3462 { 3463 struct page *page = NULL; 3464 gfp_t gfp = gfp_mask; 3465 3466 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3467 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 3468 __GFP_NOMEMALLOC; 3469 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 3470 PAGE_FRAG_CACHE_MAX_ORDER); 3471 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 3472 #endif 3473 if (unlikely(!page)) 3474 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 3475 3476 nc->va = page ? page_address(page) : NULL; 3477 3478 return page; 3479 } 3480 3481 void *__alloc_page_frag(struct page_frag_cache *nc, 3482 unsigned int fragsz, gfp_t gfp_mask) 3483 { 3484 unsigned int size = PAGE_SIZE; 3485 struct page *page; 3486 int offset; 3487 3488 if (unlikely(!nc->va)) { 3489 refill: 3490 page = __page_frag_refill(nc, gfp_mask); 3491 if (!page) 3492 return NULL; 3493 3494 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3495 /* if size can vary use size else just use PAGE_SIZE */ 3496 size = nc->size; 3497 #endif 3498 /* Even if we own the page, we do not use atomic_set(). 3499 * This would break get_page_unless_zero() users. 3500 */ 3501 page_ref_add(page, size - 1); 3502 3503 /* reset page count bias and offset to start of new frag */ 3504 nc->pfmemalloc = page_is_pfmemalloc(page); 3505 nc->pagecnt_bias = size; 3506 nc->offset = size; 3507 } 3508 3509 offset = nc->offset - fragsz; 3510 if (unlikely(offset < 0)) { 3511 page = virt_to_page(nc->va); 3512 3513 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 3514 goto refill; 3515 3516 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3517 /* if size can vary use size else just use PAGE_SIZE */ 3518 size = nc->size; 3519 #endif 3520 /* OK, page count is 0, we can safely set it */ 3521 set_page_count(page, size); 3522 3523 /* reset page count bias and offset to start of new frag */ 3524 nc->pagecnt_bias = size; 3525 offset = size - fragsz; 3526 } 3527 3528 nc->pagecnt_bias--; 3529 nc->offset = offset; 3530 3531 return nc->va + offset; 3532 } 3533 EXPORT_SYMBOL(__alloc_page_frag); 3534 3535 /* 3536 * Frees a page fragment allocated out of either a compound or order 0 page. 3537 */ 3538 void __free_page_frag(void *addr) 3539 { 3540 struct page *page = virt_to_head_page(addr); 3541 3542 if (unlikely(put_page_testzero(page))) 3543 __free_pages_ok(page, compound_order(page)); 3544 } 3545 EXPORT_SYMBOL(__free_page_frag); 3546 3547 /* 3548 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 3549 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is 3550 * equivalent to alloc_pages. 3551 * 3552 * It should be used when the caller would like to use kmalloc, but since the 3553 * allocation is large, it has to fall back to the page allocator. 3554 */ 3555 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 3556 { 3557 struct page *page; 3558 3559 page = alloc_pages(gfp_mask, order); 3560 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { 3561 __free_pages(page, order); 3562 page = NULL; 3563 } 3564 return page; 3565 } 3566 3567 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 3568 { 3569 struct page *page; 3570 3571 page = alloc_pages_node(nid, gfp_mask, order); 3572 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { 3573 __free_pages(page, order); 3574 page = NULL; 3575 } 3576 return page; 3577 } 3578 3579 /* 3580 * __free_kmem_pages and free_kmem_pages will free pages allocated with 3581 * alloc_kmem_pages. 3582 */ 3583 void __free_kmem_pages(struct page *page, unsigned int order) 3584 { 3585 memcg_kmem_uncharge(page, order); 3586 __free_pages(page, order); 3587 } 3588 3589 void free_kmem_pages(unsigned long addr, unsigned int order) 3590 { 3591 if (addr != 0) { 3592 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3593 __free_kmem_pages(virt_to_page((void *)addr), order); 3594 } 3595 } 3596 3597 static void *make_alloc_exact(unsigned long addr, unsigned int order, 3598 size_t size) 3599 { 3600 if (addr) { 3601 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3602 unsigned long used = addr + PAGE_ALIGN(size); 3603 3604 split_page(virt_to_page((void *)addr), order); 3605 while (used < alloc_end) { 3606 free_page(used); 3607 used += PAGE_SIZE; 3608 } 3609 } 3610 return (void *)addr; 3611 } 3612 3613 /** 3614 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3615 * @size: the number of bytes to allocate 3616 * @gfp_mask: GFP flags for the allocation 3617 * 3618 * This function is similar to alloc_pages(), except that it allocates the 3619 * minimum number of pages to satisfy the request. alloc_pages() can only 3620 * allocate memory in power-of-two pages. 3621 * 3622 * This function is also limited by MAX_ORDER. 3623 * 3624 * Memory allocated by this function must be released by free_pages_exact(). 3625 */ 3626 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3627 { 3628 unsigned int order = get_order(size); 3629 unsigned long addr; 3630 3631 addr = __get_free_pages(gfp_mask, order); 3632 return make_alloc_exact(addr, order, size); 3633 } 3634 EXPORT_SYMBOL(alloc_pages_exact); 3635 3636 /** 3637 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3638 * pages on a node. 3639 * @nid: the preferred node ID where memory should be allocated 3640 * @size: the number of bytes to allocate 3641 * @gfp_mask: GFP flags for the allocation 3642 * 3643 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3644 * back. 3645 */ 3646 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3647 { 3648 unsigned int order = get_order(size); 3649 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3650 if (!p) 3651 return NULL; 3652 return make_alloc_exact((unsigned long)page_address(p), order, size); 3653 } 3654 3655 /** 3656 * free_pages_exact - release memory allocated via alloc_pages_exact() 3657 * @virt: the value returned by alloc_pages_exact. 3658 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3659 * 3660 * Release the memory allocated by a previous call to alloc_pages_exact. 3661 */ 3662 void free_pages_exact(void *virt, size_t size) 3663 { 3664 unsigned long addr = (unsigned long)virt; 3665 unsigned long end = addr + PAGE_ALIGN(size); 3666 3667 while (addr < end) { 3668 free_page(addr); 3669 addr += PAGE_SIZE; 3670 } 3671 } 3672 EXPORT_SYMBOL(free_pages_exact); 3673 3674 /** 3675 * nr_free_zone_pages - count number of pages beyond high watermark 3676 * @offset: The zone index of the highest zone 3677 * 3678 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3679 * high watermark within all zones at or below a given zone index. For each 3680 * zone, the number of pages is calculated as: 3681 * managed_pages - high_pages 3682 */ 3683 static unsigned long nr_free_zone_pages(int offset) 3684 { 3685 struct zoneref *z; 3686 struct zone *zone; 3687 3688 /* Just pick one node, since fallback list is circular */ 3689 unsigned long sum = 0; 3690 3691 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3692 3693 for_each_zone_zonelist(zone, z, zonelist, offset) { 3694 unsigned long size = zone->managed_pages; 3695 unsigned long high = high_wmark_pages(zone); 3696 if (size > high) 3697 sum += size - high; 3698 } 3699 3700 return sum; 3701 } 3702 3703 /** 3704 * nr_free_buffer_pages - count number of pages beyond high watermark 3705 * 3706 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3707 * watermark within ZONE_DMA and ZONE_NORMAL. 3708 */ 3709 unsigned long nr_free_buffer_pages(void) 3710 { 3711 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3712 } 3713 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3714 3715 /** 3716 * nr_free_pagecache_pages - count number of pages beyond high watermark 3717 * 3718 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3719 * high watermark within all zones. 3720 */ 3721 unsigned long nr_free_pagecache_pages(void) 3722 { 3723 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3724 } 3725 3726 static inline void show_node(struct zone *zone) 3727 { 3728 if (IS_ENABLED(CONFIG_NUMA)) 3729 printk("Node %d ", zone_to_nid(zone)); 3730 } 3731 3732 long si_mem_available(void) 3733 { 3734 long available; 3735 unsigned long pagecache; 3736 unsigned long wmark_low = 0; 3737 unsigned long pages[NR_LRU_LISTS]; 3738 struct zone *zone; 3739 int lru; 3740 3741 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 3742 pages[lru] = global_page_state(NR_LRU_BASE + lru); 3743 3744 for_each_zone(zone) 3745 wmark_low += zone->watermark[WMARK_LOW]; 3746 3747 /* 3748 * Estimate the amount of memory available for userspace allocations, 3749 * without causing swapping. 3750 */ 3751 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 3752 3753 /* 3754 * Not all the page cache can be freed, otherwise the system will 3755 * start swapping. Assume at least half of the page cache, or the 3756 * low watermark worth of cache, needs to stay. 3757 */ 3758 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 3759 pagecache -= min(pagecache / 2, wmark_low); 3760 available += pagecache; 3761 3762 /* 3763 * Part of the reclaimable slab consists of items that are in use, 3764 * and cannot be freed. Cap this estimate at the low watermark. 3765 */ 3766 available += global_page_state(NR_SLAB_RECLAIMABLE) - 3767 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); 3768 3769 if (available < 0) 3770 available = 0; 3771 return available; 3772 } 3773 EXPORT_SYMBOL_GPL(si_mem_available); 3774 3775 void si_meminfo(struct sysinfo *val) 3776 { 3777 val->totalram = totalram_pages; 3778 val->sharedram = global_page_state(NR_SHMEM); 3779 val->freeram = global_page_state(NR_FREE_PAGES); 3780 val->bufferram = nr_blockdev_pages(); 3781 val->totalhigh = totalhigh_pages; 3782 val->freehigh = nr_free_highpages(); 3783 val->mem_unit = PAGE_SIZE; 3784 } 3785 3786 EXPORT_SYMBOL(si_meminfo); 3787 3788 #ifdef CONFIG_NUMA 3789 void si_meminfo_node(struct sysinfo *val, int nid) 3790 { 3791 int zone_type; /* needs to be signed */ 3792 unsigned long managed_pages = 0; 3793 pg_data_t *pgdat = NODE_DATA(nid); 3794 3795 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3796 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3797 val->totalram = managed_pages; 3798 val->sharedram = node_page_state(nid, NR_SHMEM); 3799 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3800 #ifdef CONFIG_HIGHMEM 3801 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3802 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3803 NR_FREE_PAGES); 3804 #else 3805 val->totalhigh = 0; 3806 val->freehigh = 0; 3807 #endif 3808 val->mem_unit = PAGE_SIZE; 3809 } 3810 #endif 3811 3812 /* 3813 * Determine whether the node should be displayed or not, depending on whether 3814 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3815 */ 3816 bool skip_free_areas_node(unsigned int flags, int nid) 3817 { 3818 bool ret = false; 3819 unsigned int cpuset_mems_cookie; 3820 3821 if (!(flags & SHOW_MEM_FILTER_NODES)) 3822 goto out; 3823 3824 do { 3825 cpuset_mems_cookie = read_mems_allowed_begin(); 3826 ret = !node_isset(nid, cpuset_current_mems_allowed); 3827 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3828 out: 3829 return ret; 3830 } 3831 3832 #define K(x) ((x) << (PAGE_SHIFT-10)) 3833 3834 static void show_migration_types(unsigned char type) 3835 { 3836 static const char types[MIGRATE_TYPES] = { 3837 [MIGRATE_UNMOVABLE] = 'U', 3838 [MIGRATE_MOVABLE] = 'M', 3839 [MIGRATE_RECLAIMABLE] = 'E', 3840 [MIGRATE_HIGHATOMIC] = 'H', 3841 #ifdef CONFIG_CMA 3842 [MIGRATE_CMA] = 'C', 3843 #endif 3844 #ifdef CONFIG_MEMORY_ISOLATION 3845 [MIGRATE_ISOLATE] = 'I', 3846 #endif 3847 }; 3848 char tmp[MIGRATE_TYPES + 1]; 3849 char *p = tmp; 3850 int i; 3851 3852 for (i = 0; i < MIGRATE_TYPES; i++) { 3853 if (type & (1 << i)) 3854 *p++ = types[i]; 3855 } 3856 3857 *p = '\0'; 3858 printk("(%s) ", tmp); 3859 } 3860 3861 /* 3862 * Show free area list (used inside shift_scroll-lock stuff) 3863 * We also calculate the percentage fragmentation. We do this by counting the 3864 * memory on each free list with the exception of the first item on the list. 3865 * 3866 * Bits in @filter: 3867 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 3868 * cpuset. 3869 */ 3870 void show_free_areas(unsigned int filter) 3871 { 3872 unsigned long free_pcp = 0; 3873 int cpu; 3874 struct zone *zone; 3875 3876 for_each_populated_zone(zone) { 3877 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3878 continue; 3879 3880 for_each_online_cpu(cpu) 3881 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3882 } 3883 3884 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3885 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3886 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 3887 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3888 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3889 " free:%lu free_pcp:%lu free_cma:%lu\n", 3890 global_page_state(NR_ACTIVE_ANON), 3891 global_page_state(NR_INACTIVE_ANON), 3892 global_page_state(NR_ISOLATED_ANON), 3893 global_page_state(NR_ACTIVE_FILE), 3894 global_page_state(NR_INACTIVE_FILE), 3895 global_page_state(NR_ISOLATED_FILE), 3896 global_page_state(NR_UNEVICTABLE), 3897 global_page_state(NR_FILE_DIRTY), 3898 global_page_state(NR_WRITEBACK), 3899 global_page_state(NR_UNSTABLE_NFS), 3900 global_page_state(NR_SLAB_RECLAIMABLE), 3901 global_page_state(NR_SLAB_UNRECLAIMABLE), 3902 global_page_state(NR_FILE_MAPPED), 3903 global_page_state(NR_SHMEM), 3904 global_page_state(NR_PAGETABLE), 3905 global_page_state(NR_BOUNCE), 3906 global_page_state(NR_FREE_PAGES), 3907 free_pcp, 3908 global_page_state(NR_FREE_CMA_PAGES)); 3909 3910 for_each_populated_zone(zone) { 3911 int i; 3912 3913 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3914 continue; 3915 3916 free_pcp = 0; 3917 for_each_online_cpu(cpu) 3918 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3919 3920 show_node(zone); 3921 printk("%s" 3922 " free:%lukB" 3923 " min:%lukB" 3924 " low:%lukB" 3925 " high:%lukB" 3926 " active_anon:%lukB" 3927 " inactive_anon:%lukB" 3928 " active_file:%lukB" 3929 " inactive_file:%lukB" 3930 " unevictable:%lukB" 3931 " isolated(anon):%lukB" 3932 " isolated(file):%lukB" 3933 " present:%lukB" 3934 " managed:%lukB" 3935 " mlocked:%lukB" 3936 " dirty:%lukB" 3937 " writeback:%lukB" 3938 " mapped:%lukB" 3939 " shmem:%lukB" 3940 " slab_reclaimable:%lukB" 3941 " slab_unreclaimable:%lukB" 3942 " kernel_stack:%lukB" 3943 " pagetables:%lukB" 3944 " unstable:%lukB" 3945 " bounce:%lukB" 3946 " free_pcp:%lukB" 3947 " local_pcp:%ukB" 3948 " free_cma:%lukB" 3949 " writeback_tmp:%lukB" 3950 " pages_scanned:%lu" 3951 " all_unreclaimable? %s" 3952 "\n", 3953 zone->name, 3954 K(zone_page_state(zone, NR_FREE_PAGES)), 3955 K(min_wmark_pages(zone)), 3956 K(low_wmark_pages(zone)), 3957 K(high_wmark_pages(zone)), 3958 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3959 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3960 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3961 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3962 K(zone_page_state(zone, NR_UNEVICTABLE)), 3963 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3964 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3965 K(zone->present_pages), 3966 K(zone->managed_pages), 3967 K(zone_page_state(zone, NR_MLOCK)), 3968 K(zone_page_state(zone, NR_FILE_DIRTY)), 3969 K(zone_page_state(zone, NR_WRITEBACK)), 3970 K(zone_page_state(zone, NR_FILE_MAPPED)), 3971 K(zone_page_state(zone, NR_SHMEM)), 3972 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3973 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3974 zone_page_state(zone, NR_KERNEL_STACK) * 3975 THREAD_SIZE / 1024, 3976 K(zone_page_state(zone, NR_PAGETABLE)), 3977 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3978 K(zone_page_state(zone, NR_BOUNCE)), 3979 K(free_pcp), 3980 K(this_cpu_read(zone->pageset->pcp.count)), 3981 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3982 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3983 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3984 (!zone_reclaimable(zone) ? "yes" : "no") 3985 ); 3986 printk("lowmem_reserve[]:"); 3987 for (i = 0; i < MAX_NR_ZONES; i++) 3988 printk(" %ld", zone->lowmem_reserve[i]); 3989 printk("\n"); 3990 } 3991 3992 for_each_populated_zone(zone) { 3993 unsigned int order; 3994 unsigned long nr[MAX_ORDER], flags, total = 0; 3995 unsigned char types[MAX_ORDER]; 3996 3997 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3998 continue; 3999 show_node(zone); 4000 printk("%s: ", zone->name); 4001 4002 spin_lock_irqsave(&zone->lock, flags); 4003 for (order = 0; order < MAX_ORDER; order++) { 4004 struct free_area *area = &zone->free_area[order]; 4005 int type; 4006 4007 nr[order] = area->nr_free; 4008 total += nr[order] << order; 4009 4010 types[order] = 0; 4011 for (type = 0; type < MIGRATE_TYPES; type++) { 4012 if (!list_empty(&area->free_list[type])) 4013 types[order] |= 1 << type; 4014 } 4015 } 4016 spin_unlock_irqrestore(&zone->lock, flags); 4017 for (order = 0; order < MAX_ORDER; order++) { 4018 printk("%lu*%lukB ", nr[order], K(1UL) << order); 4019 if (nr[order]) 4020 show_migration_types(types[order]); 4021 } 4022 printk("= %lukB\n", K(total)); 4023 } 4024 4025 hugetlb_show_meminfo(); 4026 4027 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 4028 4029 show_swap_cache_info(); 4030 } 4031 4032 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4033 { 4034 zoneref->zone = zone; 4035 zoneref->zone_idx = zone_idx(zone); 4036 } 4037 4038 /* 4039 * Builds allocation fallback zone lists. 4040 * 4041 * Add all populated zones of a node to the zonelist. 4042 */ 4043 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4044 int nr_zones) 4045 { 4046 struct zone *zone; 4047 enum zone_type zone_type = MAX_NR_ZONES; 4048 4049 do { 4050 zone_type--; 4051 zone = pgdat->node_zones + zone_type; 4052 if (populated_zone(zone)) { 4053 zoneref_set_zone(zone, 4054 &zonelist->_zonerefs[nr_zones++]); 4055 check_highest_zone(zone_type); 4056 } 4057 } while (zone_type); 4058 4059 return nr_zones; 4060 } 4061 4062 4063 /* 4064 * zonelist_order: 4065 * 0 = automatic detection of better ordering. 4066 * 1 = order by ([node] distance, -zonetype) 4067 * 2 = order by (-zonetype, [node] distance) 4068 * 4069 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4070 * the same zonelist. So only NUMA can configure this param. 4071 */ 4072 #define ZONELIST_ORDER_DEFAULT 0 4073 #define ZONELIST_ORDER_NODE 1 4074 #define ZONELIST_ORDER_ZONE 2 4075 4076 /* zonelist order in the kernel. 4077 * set_zonelist_order() will set this to NODE or ZONE. 4078 */ 4079 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4080 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4081 4082 4083 #ifdef CONFIG_NUMA 4084 /* The value user specified ....changed by config */ 4085 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4086 /* string for sysctl */ 4087 #define NUMA_ZONELIST_ORDER_LEN 16 4088 char numa_zonelist_order[16] = "default"; 4089 4090 /* 4091 * interface for configure zonelist ordering. 4092 * command line option "numa_zonelist_order" 4093 * = "[dD]efault - default, automatic configuration. 4094 * = "[nN]ode - order by node locality, then by zone within node 4095 * = "[zZ]one - order by zone, then by locality within zone 4096 */ 4097 4098 static int __parse_numa_zonelist_order(char *s) 4099 { 4100 if (*s == 'd' || *s == 'D') { 4101 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4102 } else if (*s == 'n' || *s == 'N') { 4103 user_zonelist_order = ZONELIST_ORDER_NODE; 4104 } else if (*s == 'z' || *s == 'Z') { 4105 user_zonelist_order = ZONELIST_ORDER_ZONE; 4106 } else { 4107 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4108 return -EINVAL; 4109 } 4110 return 0; 4111 } 4112 4113 static __init int setup_numa_zonelist_order(char *s) 4114 { 4115 int ret; 4116 4117 if (!s) 4118 return 0; 4119 4120 ret = __parse_numa_zonelist_order(s); 4121 if (ret == 0) 4122 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4123 4124 return ret; 4125 } 4126 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4127 4128 /* 4129 * sysctl handler for numa_zonelist_order 4130 */ 4131 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4132 void __user *buffer, size_t *length, 4133 loff_t *ppos) 4134 { 4135 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4136 int ret; 4137 static DEFINE_MUTEX(zl_order_mutex); 4138 4139 mutex_lock(&zl_order_mutex); 4140 if (write) { 4141 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4142 ret = -EINVAL; 4143 goto out; 4144 } 4145 strcpy(saved_string, (char *)table->data); 4146 } 4147 ret = proc_dostring(table, write, buffer, length, ppos); 4148 if (ret) 4149 goto out; 4150 if (write) { 4151 int oldval = user_zonelist_order; 4152 4153 ret = __parse_numa_zonelist_order((char *)table->data); 4154 if (ret) { 4155 /* 4156 * bogus value. restore saved string 4157 */ 4158 strncpy((char *)table->data, saved_string, 4159 NUMA_ZONELIST_ORDER_LEN); 4160 user_zonelist_order = oldval; 4161 } else if (oldval != user_zonelist_order) { 4162 mutex_lock(&zonelists_mutex); 4163 build_all_zonelists(NULL, NULL); 4164 mutex_unlock(&zonelists_mutex); 4165 } 4166 } 4167 out: 4168 mutex_unlock(&zl_order_mutex); 4169 return ret; 4170 } 4171 4172 4173 #define MAX_NODE_LOAD (nr_online_nodes) 4174 static int node_load[MAX_NUMNODES]; 4175 4176 /** 4177 * find_next_best_node - find the next node that should appear in a given node's fallback list 4178 * @node: node whose fallback list we're appending 4179 * @used_node_mask: nodemask_t of already used nodes 4180 * 4181 * We use a number of factors to determine which is the next node that should 4182 * appear on a given node's fallback list. The node should not have appeared 4183 * already in @node's fallback list, and it should be the next closest node 4184 * according to the distance array (which contains arbitrary distance values 4185 * from each node to each node in the system), and should also prefer nodes 4186 * with no CPUs, since presumably they'll have very little allocation pressure 4187 * on them otherwise. 4188 * It returns -1 if no node is found. 4189 */ 4190 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4191 { 4192 int n, val; 4193 int min_val = INT_MAX; 4194 int best_node = NUMA_NO_NODE; 4195 const struct cpumask *tmp = cpumask_of_node(0); 4196 4197 /* Use the local node if we haven't already */ 4198 if (!node_isset(node, *used_node_mask)) { 4199 node_set(node, *used_node_mask); 4200 return node; 4201 } 4202 4203 for_each_node_state(n, N_MEMORY) { 4204 4205 /* Don't want a node to appear more than once */ 4206 if (node_isset(n, *used_node_mask)) 4207 continue; 4208 4209 /* Use the distance array to find the distance */ 4210 val = node_distance(node, n); 4211 4212 /* Penalize nodes under us ("prefer the next node") */ 4213 val += (n < node); 4214 4215 /* Give preference to headless and unused nodes */ 4216 tmp = cpumask_of_node(n); 4217 if (!cpumask_empty(tmp)) 4218 val += PENALTY_FOR_NODE_WITH_CPUS; 4219 4220 /* Slight preference for less loaded node */ 4221 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4222 val += node_load[n]; 4223 4224 if (val < min_val) { 4225 min_val = val; 4226 best_node = n; 4227 } 4228 } 4229 4230 if (best_node >= 0) 4231 node_set(best_node, *used_node_mask); 4232 4233 return best_node; 4234 } 4235 4236 4237 /* 4238 * Build zonelists ordered by node and zones within node. 4239 * This results in maximum locality--normal zone overflows into local 4240 * DMA zone, if any--but risks exhausting DMA zone. 4241 */ 4242 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4243 { 4244 int j; 4245 struct zonelist *zonelist; 4246 4247 zonelist = &pgdat->node_zonelists[0]; 4248 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4249 ; 4250 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4251 zonelist->_zonerefs[j].zone = NULL; 4252 zonelist->_zonerefs[j].zone_idx = 0; 4253 } 4254 4255 /* 4256 * Build gfp_thisnode zonelists 4257 */ 4258 static void build_thisnode_zonelists(pg_data_t *pgdat) 4259 { 4260 int j; 4261 struct zonelist *zonelist; 4262 4263 zonelist = &pgdat->node_zonelists[1]; 4264 j = build_zonelists_node(pgdat, zonelist, 0); 4265 zonelist->_zonerefs[j].zone = NULL; 4266 zonelist->_zonerefs[j].zone_idx = 0; 4267 } 4268 4269 /* 4270 * Build zonelists ordered by zone and nodes within zones. 4271 * This results in conserving DMA zone[s] until all Normal memory is 4272 * exhausted, but results in overflowing to remote node while memory 4273 * may still exist in local DMA zone. 4274 */ 4275 static int node_order[MAX_NUMNODES]; 4276 4277 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4278 { 4279 int pos, j, node; 4280 int zone_type; /* needs to be signed */ 4281 struct zone *z; 4282 struct zonelist *zonelist; 4283 4284 zonelist = &pgdat->node_zonelists[0]; 4285 pos = 0; 4286 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4287 for (j = 0; j < nr_nodes; j++) { 4288 node = node_order[j]; 4289 z = &NODE_DATA(node)->node_zones[zone_type]; 4290 if (populated_zone(z)) { 4291 zoneref_set_zone(z, 4292 &zonelist->_zonerefs[pos++]); 4293 check_highest_zone(zone_type); 4294 } 4295 } 4296 } 4297 zonelist->_zonerefs[pos].zone = NULL; 4298 zonelist->_zonerefs[pos].zone_idx = 0; 4299 } 4300 4301 #if defined(CONFIG_64BIT) 4302 /* 4303 * Devices that require DMA32/DMA are relatively rare and do not justify a 4304 * penalty to every machine in case the specialised case applies. Default 4305 * to Node-ordering on 64-bit NUMA machines 4306 */ 4307 static int default_zonelist_order(void) 4308 { 4309 return ZONELIST_ORDER_NODE; 4310 } 4311 #else 4312 /* 4313 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4314 * by the kernel. If processes running on node 0 deplete the low memory zone 4315 * then reclaim will occur more frequency increasing stalls and potentially 4316 * be easier to OOM if a large percentage of the zone is under writeback or 4317 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4318 * Hence, default to zone ordering on 32-bit. 4319 */ 4320 static int default_zonelist_order(void) 4321 { 4322 return ZONELIST_ORDER_ZONE; 4323 } 4324 #endif /* CONFIG_64BIT */ 4325 4326 static void set_zonelist_order(void) 4327 { 4328 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4329 current_zonelist_order = default_zonelist_order(); 4330 else 4331 current_zonelist_order = user_zonelist_order; 4332 } 4333 4334 static void build_zonelists(pg_data_t *pgdat) 4335 { 4336 int i, node, load; 4337 nodemask_t used_mask; 4338 int local_node, prev_node; 4339 struct zonelist *zonelist; 4340 unsigned int order = current_zonelist_order; 4341 4342 /* initialize zonelists */ 4343 for (i = 0; i < MAX_ZONELISTS; i++) { 4344 zonelist = pgdat->node_zonelists + i; 4345 zonelist->_zonerefs[0].zone = NULL; 4346 zonelist->_zonerefs[0].zone_idx = 0; 4347 } 4348 4349 /* NUMA-aware ordering of nodes */ 4350 local_node = pgdat->node_id; 4351 load = nr_online_nodes; 4352 prev_node = local_node; 4353 nodes_clear(used_mask); 4354 4355 memset(node_order, 0, sizeof(node_order)); 4356 i = 0; 4357 4358 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4359 /* 4360 * We don't want to pressure a particular node. 4361 * So adding penalty to the first node in same 4362 * distance group to make it round-robin. 4363 */ 4364 if (node_distance(local_node, node) != 4365 node_distance(local_node, prev_node)) 4366 node_load[node] = load; 4367 4368 prev_node = node; 4369 load--; 4370 if (order == ZONELIST_ORDER_NODE) 4371 build_zonelists_in_node_order(pgdat, node); 4372 else 4373 node_order[i++] = node; /* remember order */ 4374 } 4375 4376 if (order == ZONELIST_ORDER_ZONE) { 4377 /* calculate node order -- i.e., DMA last! */ 4378 build_zonelists_in_zone_order(pgdat, i); 4379 } 4380 4381 build_thisnode_zonelists(pgdat); 4382 } 4383 4384 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4385 /* 4386 * Return node id of node used for "local" allocations. 4387 * I.e., first node id of first zone in arg node's generic zonelist. 4388 * Used for initializing percpu 'numa_mem', which is used primarily 4389 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4390 */ 4391 int local_memory_node(int node) 4392 { 4393 struct zone *zone; 4394 4395 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 4396 gfp_zone(GFP_KERNEL), 4397 NULL, 4398 &zone); 4399 return zone->node; 4400 } 4401 #endif 4402 4403 #else /* CONFIG_NUMA */ 4404 4405 static void set_zonelist_order(void) 4406 { 4407 current_zonelist_order = ZONELIST_ORDER_ZONE; 4408 } 4409 4410 static void build_zonelists(pg_data_t *pgdat) 4411 { 4412 int node, local_node; 4413 enum zone_type j; 4414 struct zonelist *zonelist; 4415 4416 local_node = pgdat->node_id; 4417 4418 zonelist = &pgdat->node_zonelists[0]; 4419 j = build_zonelists_node(pgdat, zonelist, 0); 4420 4421 /* 4422 * Now we build the zonelist so that it contains the zones 4423 * of all the other nodes. 4424 * We don't want to pressure a particular node, so when 4425 * building the zones for node N, we make sure that the 4426 * zones coming right after the local ones are those from 4427 * node N+1 (modulo N) 4428 */ 4429 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 4430 if (!node_online(node)) 4431 continue; 4432 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4433 } 4434 for (node = 0; node < local_node; node++) { 4435 if (!node_online(node)) 4436 continue; 4437 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4438 } 4439 4440 zonelist->_zonerefs[j].zone = NULL; 4441 zonelist->_zonerefs[j].zone_idx = 0; 4442 } 4443 4444 #endif /* CONFIG_NUMA */ 4445 4446 /* 4447 * Boot pageset table. One per cpu which is going to be used for all 4448 * zones and all nodes. The parameters will be set in such a way 4449 * that an item put on a list will immediately be handed over to 4450 * the buddy list. This is safe since pageset manipulation is done 4451 * with interrupts disabled. 4452 * 4453 * The boot_pagesets must be kept even after bootup is complete for 4454 * unused processors and/or zones. They do play a role for bootstrapping 4455 * hotplugged processors. 4456 * 4457 * zoneinfo_show() and maybe other functions do 4458 * not check if the processor is online before following the pageset pointer. 4459 * Other parts of the kernel may not check if the zone is available. 4460 */ 4461 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 4462 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 4463 static void setup_zone_pageset(struct zone *zone); 4464 4465 /* 4466 * Global mutex to protect against size modification of zonelists 4467 * as well as to serialize pageset setup for the new populated zone. 4468 */ 4469 DEFINE_MUTEX(zonelists_mutex); 4470 4471 /* return values int ....just for stop_machine() */ 4472 static int __build_all_zonelists(void *data) 4473 { 4474 int nid; 4475 int cpu; 4476 pg_data_t *self = data; 4477 4478 #ifdef CONFIG_NUMA 4479 memset(node_load, 0, sizeof(node_load)); 4480 #endif 4481 4482 if (self && !node_online(self->node_id)) { 4483 build_zonelists(self); 4484 } 4485 4486 for_each_online_node(nid) { 4487 pg_data_t *pgdat = NODE_DATA(nid); 4488 4489 build_zonelists(pgdat); 4490 } 4491 4492 /* 4493 * Initialize the boot_pagesets that are going to be used 4494 * for bootstrapping processors. The real pagesets for 4495 * each zone will be allocated later when the per cpu 4496 * allocator is available. 4497 * 4498 * boot_pagesets are used also for bootstrapping offline 4499 * cpus if the system is already booted because the pagesets 4500 * are needed to initialize allocators on a specific cpu too. 4501 * F.e. the percpu allocator needs the page allocator which 4502 * needs the percpu allocator in order to allocate its pagesets 4503 * (a chicken-egg dilemma). 4504 */ 4505 for_each_possible_cpu(cpu) { 4506 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 4507 4508 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4509 /* 4510 * We now know the "local memory node" for each node-- 4511 * i.e., the node of the first zone in the generic zonelist. 4512 * Set up numa_mem percpu variable for on-line cpus. During 4513 * boot, only the boot cpu should be on-line; we'll init the 4514 * secondary cpus' numa_mem as they come on-line. During 4515 * node/memory hotplug, we'll fixup all on-line cpus. 4516 */ 4517 if (cpu_online(cpu)) 4518 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 4519 #endif 4520 } 4521 4522 return 0; 4523 } 4524 4525 static noinline void __init 4526 build_all_zonelists_init(void) 4527 { 4528 __build_all_zonelists(NULL); 4529 mminit_verify_zonelist(); 4530 cpuset_init_current_mems_allowed(); 4531 } 4532 4533 /* 4534 * Called with zonelists_mutex held always 4535 * unless system_state == SYSTEM_BOOTING. 4536 * 4537 * __ref due to (1) call of __meminit annotated setup_zone_pageset 4538 * [we're only called with non-NULL zone through __meminit paths] and 4539 * (2) call of __init annotated helper build_all_zonelists_init 4540 * [protected by SYSTEM_BOOTING]. 4541 */ 4542 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 4543 { 4544 set_zonelist_order(); 4545 4546 if (system_state == SYSTEM_BOOTING) { 4547 build_all_zonelists_init(); 4548 } else { 4549 #ifdef CONFIG_MEMORY_HOTPLUG 4550 if (zone) 4551 setup_zone_pageset(zone); 4552 #endif 4553 /* we have to stop all cpus to guarantee there is no user 4554 of zonelist */ 4555 stop_machine(__build_all_zonelists, pgdat, NULL); 4556 /* cpuset refresh routine should be here */ 4557 } 4558 vm_total_pages = nr_free_pagecache_pages(); 4559 /* 4560 * Disable grouping by mobility if the number of pages in the 4561 * system is too low to allow the mechanism to work. It would be 4562 * more accurate, but expensive to check per-zone. This check is 4563 * made on memory-hotadd so a system can start with mobility 4564 * disabled and enable it later 4565 */ 4566 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4567 page_group_by_mobility_disabled = 1; 4568 else 4569 page_group_by_mobility_disabled = 0; 4570 4571 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 4572 nr_online_nodes, 4573 zonelist_order_name[current_zonelist_order], 4574 page_group_by_mobility_disabled ? "off" : "on", 4575 vm_total_pages); 4576 #ifdef CONFIG_NUMA 4577 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4578 #endif 4579 } 4580 4581 /* 4582 * Helper functions to size the waitqueue hash table. 4583 * Essentially these want to choose hash table sizes sufficiently 4584 * large so that collisions trying to wait on pages are rare. 4585 * But in fact, the number of active page waitqueues on typical 4586 * systems is ridiculously low, less than 200. So this is even 4587 * conservative, even though it seems large. 4588 * 4589 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4590 * waitqueues, i.e. the size of the waitq table given the number of pages. 4591 */ 4592 #define PAGES_PER_WAITQUEUE 256 4593 4594 #ifndef CONFIG_MEMORY_HOTPLUG 4595 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4596 { 4597 unsigned long size = 1; 4598 4599 pages /= PAGES_PER_WAITQUEUE; 4600 4601 while (size < pages) 4602 size <<= 1; 4603 4604 /* 4605 * Once we have dozens or even hundreds of threads sleeping 4606 * on IO we've got bigger problems than wait queue collision. 4607 * Limit the size of the wait table to a reasonable size. 4608 */ 4609 size = min(size, 4096UL); 4610 4611 return max(size, 4UL); 4612 } 4613 #else 4614 /* 4615 * A zone's size might be changed by hot-add, so it is not possible to determine 4616 * a suitable size for its wait_table. So we use the maximum size now. 4617 * 4618 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4619 * 4620 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4621 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4622 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4623 * 4624 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4625 * or more by the traditional way. (See above). It equals: 4626 * 4627 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4628 * ia64(16K page size) : = ( 8G + 4M)byte. 4629 * powerpc (64K page size) : = (32G +16M)byte. 4630 */ 4631 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4632 { 4633 return 4096UL; 4634 } 4635 #endif 4636 4637 /* 4638 * This is an integer logarithm so that shifts can be used later 4639 * to extract the more random high bits from the multiplicative 4640 * hash function before the remainder is taken. 4641 */ 4642 static inline unsigned long wait_table_bits(unsigned long size) 4643 { 4644 return ffz(~size); 4645 } 4646 4647 /* 4648 * Initially all pages are reserved - free ones are freed 4649 * up by free_all_bootmem() once the early boot process is 4650 * done. Non-atomic initialization, single-pass. 4651 */ 4652 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4653 unsigned long start_pfn, enum memmap_context context) 4654 { 4655 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 4656 unsigned long end_pfn = start_pfn + size; 4657 pg_data_t *pgdat = NODE_DATA(nid); 4658 unsigned long pfn; 4659 unsigned long nr_initialised = 0; 4660 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4661 struct memblock_region *r = NULL, *tmp; 4662 #endif 4663 4664 if (highest_memmap_pfn < end_pfn - 1) 4665 highest_memmap_pfn = end_pfn - 1; 4666 4667 /* 4668 * Honor reservation requested by the driver for this ZONE_DEVICE 4669 * memory 4670 */ 4671 if (altmap && start_pfn == altmap->base_pfn) 4672 start_pfn += altmap->reserve; 4673 4674 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4675 /* 4676 * There can be holes in boot-time mem_map[]s handed to this 4677 * function. They do not exist on hotplugged memory. 4678 */ 4679 if (context != MEMMAP_EARLY) 4680 goto not_early; 4681 4682 if (!early_pfn_valid(pfn)) 4683 continue; 4684 if (!early_pfn_in_nid(pfn, nid)) 4685 continue; 4686 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 4687 break; 4688 4689 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4690 /* 4691 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range 4692 * from zone_movable_pfn[nid] to end of each node should be 4693 * ZONE_MOVABLE not ZONE_NORMAL. skip it. 4694 */ 4695 if (!mirrored_kernelcore && zone_movable_pfn[nid]) 4696 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid]) 4697 continue; 4698 4699 /* 4700 * Check given memblock attribute by firmware which can affect 4701 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 4702 * mirrored, it's an overlapped memmap init. skip it. 4703 */ 4704 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 4705 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 4706 for_each_memblock(memory, tmp) 4707 if (pfn < memblock_region_memory_end_pfn(tmp)) 4708 break; 4709 r = tmp; 4710 } 4711 if (pfn >= memblock_region_memory_base_pfn(r) && 4712 memblock_is_mirror(r)) { 4713 /* already initialized as NORMAL */ 4714 pfn = memblock_region_memory_end_pfn(r); 4715 continue; 4716 } 4717 } 4718 #endif 4719 4720 not_early: 4721 /* 4722 * Mark the block movable so that blocks are reserved for 4723 * movable at startup. This will force kernel allocations 4724 * to reserve their blocks rather than leaking throughout 4725 * the address space during boot when many long-lived 4726 * kernel allocations are made. 4727 * 4728 * bitmap is created for zone's valid pfn range. but memmap 4729 * can be created for invalid pages (for alignment) 4730 * check here not to call set_pageblock_migratetype() against 4731 * pfn out of zone. 4732 */ 4733 if (!(pfn & (pageblock_nr_pages - 1))) { 4734 struct page *page = pfn_to_page(pfn); 4735 4736 __init_single_page(page, pfn, zone, nid); 4737 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4738 } else { 4739 __init_single_pfn(pfn, zone, nid); 4740 } 4741 } 4742 } 4743 4744 static void __meminit zone_init_free_lists(struct zone *zone) 4745 { 4746 unsigned int order, t; 4747 for_each_migratetype_order(order, t) { 4748 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4749 zone->free_area[order].nr_free = 0; 4750 } 4751 } 4752 4753 #ifndef __HAVE_ARCH_MEMMAP_INIT 4754 #define memmap_init(size, nid, zone, start_pfn) \ 4755 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4756 #endif 4757 4758 static int zone_batchsize(struct zone *zone) 4759 { 4760 #ifdef CONFIG_MMU 4761 int batch; 4762 4763 /* 4764 * The per-cpu-pages pools are set to around 1000th of the 4765 * size of the zone. But no more than 1/2 of a meg. 4766 * 4767 * OK, so we don't know how big the cache is. So guess. 4768 */ 4769 batch = zone->managed_pages / 1024; 4770 if (batch * PAGE_SIZE > 512 * 1024) 4771 batch = (512 * 1024) / PAGE_SIZE; 4772 batch /= 4; /* We effectively *= 4 below */ 4773 if (batch < 1) 4774 batch = 1; 4775 4776 /* 4777 * Clamp the batch to a 2^n - 1 value. Having a power 4778 * of 2 value was found to be more likely to have 4779 * suboptimal cache aliasing properties in some cases. 4780 * 4781 * For example if 2 tasks are alternately allocating 4782 * batches of pages, one task can end up with a lot 4783 * of pages of one half of the possible page colors 4784 * and the other with pages of the other colors. 4785 */ 4786 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4787 4788 return batch; 4789 4790 #else 4791 /* The deferral and batching of frees should be suppressed under NOMMU 4792 * conditions. 4793 * 4794 * The problem is that NOMMU needs to be able to allocate large chunks 4795 * of contiguous memory as there's no hardware page translation to 4796 * assemble apparent contiguous memory from discontiguous pages. 4797 * 4798 * Queueing large contiguous runs of pages for batching, however, 4799 * causes the pages to actually be freed in smaller chunks. As there 4800 * can be a significant delay between the individual batches being 4801 * recycled, this leads to the once large chunks of space being 4802 * fragmented and becoming unavailable for high-order allocations. 4803 */ 4804 return 0; 4805 #endif 4806 } 4807 4808 /* 4809 * pcp->high and pcp->batch values are related and dependent on one another: 4810 * ->batch must never be higher then ->high. 4811 * The following function updates them in a safe manner without read side 4812 * locking. 4813 * 4814 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4815 * those fields changing asynchronously (acording the the above rule). 4816 * 4817 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4818 * outside of boot time (or some other assurance that no concurrent updaters 4819 * exist). 4820 */ 4821 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4822 unsigned long batch) 4823 { 4824 /* start with a fail safe value for batch */ 4825 pcp->batch = 1; 4826 smp_wmb(); 4827 4828 /* Update high, then batch, in order */ 4829 pcp->high = high; 4830 smp_wmb(); 4831 4832 pcp->batch = batch; 4833 } 4834 4835 /* a companion to pageset_set_high() */ 4836 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4837 { 4838 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4839 } 4840 4841 static void pageset_init(struct per_cpu_pageset *p) 4842 { 4843 struct per_cpu_pages *pcp; 4844 int migratetype; 4845 4846 memset(p, 0, sizeof(*p)); 4847 4848 pcp = &p->pcp; 4849 pcp->count = 0; 4850 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4851 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4852 } 4853 4854 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4855 { 4856 pageset_init(p); 4857 pageset_set_batch(p, batch); 4858 } 4859 4860 /* 4861 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4862 * to the value high for the pageset p. 4863 */ 4864 static void pageset_set_high(struct per_cpu_pageset *p, 4865 unsigned long high) 4866 { 4867 unsigned long batch = max(1UL, high / 4); 4868 if ((high / 4) > (PAGE_SHIFT * 8)) 4869 batch = PAGE_SHIFT * 8; 4870 4871 pageset_update(&p->pcp, high, batch); 4872 } 4873 4874 static void pageset_set_high_and_batch(struct zone *zone, 4875 struct per_cpu_pageset *pcp) 4876 { 4877 if (percpu_pagelist_fraction) 4878 pageset_set_high(pcp, 4879 (zone->managed_pages / 4880 percpu_pagelist_fraction)); 4881 else 4882 pageset_set_batch(pcp, zone_batchsize(zone)); 4883 } 4884 4885 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4886 { 4887 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4888 4889 pageset_init(pcp); 4890 pageset_set_high_and_batch(zone, pcp); 4891 } 4892 4893 static void __meminit setup_zone_pageset(struct zone *zone) 4894 { 4895 int cpu; 4896 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4897 for_each_possible_cpu(cpu) 4898 zone_pageset_init(zone, cpu); 4899 } 4900 4901 /* 4902 * Allocate per cpu pagesets and initialize them. 4903 * Before this call only boot pagesets were available. 4904 */ 4905 void __init setup_per_cpu_pageset(void) 4906 { 4907 struct zone *zone; 4908 4909 for_each_populated_zone(zone) 4910 setup_zone_pageset(zone); 4911 } 4912 4913 static noinline __init_refok 4914 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4915 { 4916 int i; 4917 size_t alloc_size; 4918 4919 /* 4920 * The per-page waitqueue mechanism uses hashed waitqueues 4921 * per zone. 4922 */ 4923 zone->wait_table_hash_nr_entries = 4924 wait_table_hash_nr_entries(zone_size_pages); 4925 zone->wait_table_bits = 4926 wait_table_bits(zone->wait_table_hash_nr_entries); 4927 alloc_size = zone->wait_table_hash_nr_entries 4928 * sizeof(wait_queue_head_t); 4929 4930 if (!slab_is_available()) { 4931 zone->wait_table = (wait_queue_head_t *) 4932 memblock_virt_alloc_node_nopanic( 4933 alloc_size, zone->zone_pgdat->node_id); 4934 } else { 4935 /* 4936 * This case means that a zone whose size was 0 gets new memory 4937 * via memory hot-add. 4938 * But it may be the case that a new node was hot-added. In 4939 * this case vmalloc() will not be able to use this new node's 4940 * memory - this wait_table must be initialized to use this new 4941 * node itself as well. 4942 * To use this new node's memory, further consideration will be 4943 * necessary. 4944 */ 4945 zone->wait_table = vmalloc(alloc_size); 4946 } 4947 if (!zone->wait_table) 4948 return -ENOMEM; 4949 4950 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4951 init_waitqueue_head(zone->wait_table + i); 4952 4953 return 0; 4954 } 4955 4956 static __meminit void zone_pcp_init(struct zone *zone) 4957 { 4958 /* 4959 * per cpu subsystem is not up at this point. The following code 4960 * relies on the ability of the linker to provide the 4961 * offset of a (static) per cpu variable into the per cpu area. 4962 */ 4963 zone->pageset = &boot_pageset; 4964 4965 if (populated_zone(zone)) 4966 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4967 zone->name, zone->present_pages, 4968 zone_batchsize(zone)); 4969 } 4970 4971 int __meminit init_currently_empty_zone(struct zone *zone, 4972 unsigned long zone_start_pfn, 4973 unsigned long size) 4974 { 4975 struct pglist_data *pgdat = zone->zone_pgdat; 4976 int ret; 4977 ret = zone_wait_table_init(zone, size); 4978 if (ret) 4979 return ret; 4980 pgdat->nr_zones = zone_idx(zone) + 1; 4981 4982 zone->zone_start_pfn = zone_start_pfn; 4983 4984 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4985 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4986 pgdat->node_id, 4987 (unsigned long)zone_idx(zone), 4988 zone_start_pfn, (zone_start_pfn + size)); 4989 4990 zone_init_free_lists(zone); 4991 4992 return 0; 4993 } 4994 4995 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4996 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4997 4998 /* 4999 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5000 */ 5001 int __meminit __early_pfn_to_nid(unsigned long pfn, 5002 struct mminit_pfnnid_cache *state) 5003 { 5004 unsigned long start_pfn, end_pfn; 5005 int nid; 5006 5007 if (state->last_start <= pfn && pfn < state->last_end) 5008 return state->last_nid; 5009 5010 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5011 if (nid != -1) { 5012 state->last_start = start_pfn; 5013 state->last_end = end_pfn; 5014 state->last_nid = nid; 5015 } 5016 5017 return nid; 5018 } 5019 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5020 5021 /** 5022 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5023 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5024 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5025 * 5026 * If an architecture guarantees that all ranges registered contain no holes 5027 * and may be freed, this this function may be used instead of calling 5028 * memblock_free_early_nid() manually. 5029 */ 5030 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5031 { 5032 unsigned long start_pfn, end_pfn; 5033 int i, this_nid; 5034 5035 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5036 start_pfn = min(start_pfn, max_low_pfn); 5037 end_pfn = min(end_pfn, max_low_pfn); 5038 5039 if (start_pfn < end_pfn) 5040 memblock_free_early_nid(PFN_PHYS(start_pfn), 5041 (end_pfn - start_pfn) << PAGE_SHIFT, 5042 this_nid); 5043 } 5044 } 5045 5046 /** 5047 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5048 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5049 * 5050 * If an architecture guarantees that all ranges registered contain no holes and may 5051 * be freed, this function may be used instead of calling memory_present() manually. 5052 */ 5053 void __init sparse_memory_present_with_active_regions(int nid) 5054 { 5055 unsigned long start_pfn, end_pfn; 5056 int i, this_nid; 5057 5058 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5059 memory_present(this_nid, start_pfn, end_pfn); 5060 } 5061 5062 /** 5063 * get_pfn_range_for_nid - Return the start and end page frames for a node 5064 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5065 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5066 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5067 * 5068 * It returns the start and end page frame of a node based on information 5069 * provided by memblock_set_node(). If called for a node 5070 * with no available memory, a warning is printed and the start and end 5071 * PFNs will be 0. 5072 */ 5073 void __meminit get_pfn_range_for_nid(unsigned int nid, 5074 unsigned long *start_pfn, unsigned long *end_pfn) 5075 { 5076 unsigned long this_start_pfn, this_end_pfn; 5077 int i; 5078 5079 *start_pfn = -1UL; 5080 *end_pfn = 0; 5081 5082 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5083 *start_pfn = min(*start_pfn, this_start_pfn); 5084 *end_pfn = max(*end_pfn, this_end_pfn); 5085 } 5086 5087 if (*start_pfn == -1UL) 5088 *start_pfn = 0; 5089 } 5090 5091 /* 5092 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5093 * assumption is made that zones within a node are ordered in monotonic 5094 * increasing memory addresses so that the "highest" populated zone is used 5095 */ 5096 static void __init find_usable_zone_for_movable(void) 5097 { 5098 int zone_index; 5099 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5100 if (zone_index == ZONE_MOVABLE) 5101 continue; 5102 5103 if (arch_zone_highest_possible_pfn[zone_index] > 5104 arch_zone_lowest_possible_pfn[zone_index]) 5105 break; 5106 } 5107 5108 VM_BUG_ON(zone_index == -1); 5109 movable_zone = zone_index; 5110 } 5111 5112 /* 5113 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5114 * because it is sized independent of architecture. Unlike the other zones, 5115 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5116 * in each node depending on the size of each node and how evenly kernelcore 5117 * is distributed. This helper function adjusts the zone ranges 5118 * provided by the architecture for a given node by using the end of the 5119 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5120 * zones within a node are in order of monotonic increases memory addresses 5121 */ 5122 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5123 unsigned long zone_type, 5124 unsigned long node_start_pfn, 5125 unsigned long node_end_pfn, 5126 unsigned long *zone_start_pfn, 5127 unsigned long *zone_end_pfn) 5128 { 5129 /* Only adjust if ZONE_MOVABLE is on this node */ 5130 if (zone_movable_pfn[nid]) { 5131 /* Size ZONE_MOVABLE */ 5132 if (zone_type == ZONE_MOVABLE) { 5133 *zone_start_pfn = zone_movable_pfn[nid]; 5134 *zone_end_pfn = min(node_end_pfn, 5135 arch_zone_highest_possible_pfn[movable_zone]); 5136 5137 /* Check if this whole range is within ZONE_MOVABLE */ 5138 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5139 *zone_start_pfn = *zone_end_pfn; 5140 } 5141 } 5142 5143 /* 5144 * Return the number of pages a zone spans in a node, including holes 5145 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5146 */ 5147 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5148 unsigned long zone_type, 5149 unsigned long node_start_pfn, 5150 unsigned long node_end_pfn, 5151 unsigned long *zone_start_pfn, 5152 unsigned long *zone_end_pfn, 5153 unsigned long *ignored) 5154 { 5155 /* When hotadd a new node from cpu_up(), the node should be empty */ 5156 if (!node_start_pfn && !node_end_pfn) 5157 return 0; 5158 5159 /* Get the start and end of the zone */ 5160 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5161 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5162 adjust_zone_range_for_zone_movable(nid, zone_type, 5163 node_start_pfn, node_end_pfn, 5164 zone_start_pfn, zone_end_pfn); 5165 5166 /* Check that this node has pages within the zone's required range */ 5167 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5168 return 0; 5169 5170 /* Move the zone boundaries inside the node if necessary */ 5171 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5172 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5173 5174 /* Return the spanned pages */ 5175 return *zone_end_pfn - *zone_start_pfn; 5176 } 5177 5178 /* 5179 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5180 * then all holes in the requested range will be accounted for. 5181 */ 5182 unsigned long __meminit __absent_pages_in_range(int nid, 5183 unsigned long range_start_pfn, 5184 unsigned long range_end_pfn) 5185 { 5186 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5187 unsigned long start_pfn, end_pfn; 5188 int i; 5189 5190 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5191 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5192 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5193 nr_absent -= end_pfn - start_pfn; 5194 } 5195 return nr_absent; 5196 } 5197 5198 /** 5199 * absent_pages_in_range - Return number of page frames in holes within a range 5200 * @start_pfn: The start PFN to start searching for holes 5201 * @end_pfn: The end PFN to stop searching for holes 5202 * 5203 * It returns the number of pages frames in memory holes within a range. 5204 */ 5205 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5206 unsigned long end_pfn) 5207 { 5208 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5209 } 5210 5211 /* Return the number of page frames in holes in a zone on a node */ 5212 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5213 unsigned long zone_type, 5214 unsigned long node_start_pfn, 5215 unsigned long node_end_pfn, 5216 unsigned long *ignored) 5217 { 5218 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5219 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5220 unsigned long zone_start_pfn, zone_end_pfn; 5221 unsigned long nr_absent; 5222 5223 /* When hotadd a new node from cpu_up(), the node should be empty */ 5224 if (!node_start_pfn && !node_end_pfn) 5225 return 0; 5226 5227 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5228 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5229 5230 adjust_zone_range_for_zone_movable(nid, zone_type, 5231 node_start_pfn, node_end_pfn, 5232 &zone_start_pfn, &zone_end_pfn); 5233 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5234 5235 /* 5236 * ZONE_MOVABLE handling. 5237 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5238 * and vice versa. 5239 */ 5240 if (zone_movable_pfn[nid]) { 5241 if (mirrored_kernelcore) { 5242 unsigned long start_pfn, end_pfn; 5243 struct memblock_region *r; 5244 5245 for_each_memblock(memory, r) { 5246 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5247 zone_start_pfn, zone_end_pfn); 5248 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5249 zone_start_pfn, zone_end_pfn); 5250 5251 if (zone_type == ZONE_MOVABLE && 5252 memblock_is_mirror(r)) 5253 nr_absent += end_pfn - start_pfn; 5254 5255 if (zone_type == ZONE_NORMAL && 5256 !memblock_is_mirror(r)) 5257 nr_absent += end_pfn - start_pfn; 5258 } 5259 } else { 5260 if (zone_type == ZONE_NORMAL) 5261 nr_absent += node_end_pfn - zone_movable_pfn[nid]; 5262 } 5263 } 5264 5265 return nr_absent; 5266 } 5267 5268 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5269 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5270 unsigned long zone_type, 5271 unsigned long node_start_pfn, 5272 unsigned long node_end_pfn, 5273 unsigned long *zone_start_pfn, 5274 unsigned long *zone_end_pfn, 5275 unsigned long *zones_size) 5276 { 5277 unsigned int zone; 5278 5279 *zone_start_pfn = node_start_pfn; 5280 for (zone = 0; zone < zone_type; zone++) 5281 *zone_start_pfn += zones_size[zone]; 5282 5283 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5284 5285 return zones_size[zone_type]; 5286 } 5287 5288 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5289 unsigned long zone_type, 5290 unsigned long node_start_pfn, 5291 unsigned long node_end_pfn, 5292 unsigned long *zholes_size) 5293 { 5294 if (!zholes_size) 5295 return 0; 5296 5297 return zholes_size[zone_type]; 5298 } 5299 5300 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5301 5302 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5303 unsigned long node_start_pfn, 5304 unsigned long node_end_pfn, 5305 unsigned long *zones_size, 5306 unsigned long *zholes_size) 5307 { 5308 unsigned long realtotalpages = 0, totalpages = 0; 5309 enum zone_type i; 5310 5311 for (i = 0; i < MAX_NR_ZONES; i++) { 5312 struct zone *zone = pgdat->node_zones + i; 5313 unsigned long zone_start_pfn, zone_end_pfn; 5314 unsigned long size, real_size; 5315 5316 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5317 node_start_pfn, 5318 node_end_pfn, 5319 &zone_start_pfn, 5320 &zone_end_pfn, 5321 zones_size); 5322 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5323 node_start_pfn, node_end_pfn, 5324 zholes_size); 5325 if (size) 5326 zone->zone_start_pfn = zone_start_pfn; 5327 else 5328 zone->zone_start_pfn = 0; 5329 zone->spanned_pages = size; 5330 zone->present_pages = real_size; 5331 5332 totalpages += size; 5333 realtotalpages += real_size; 5334 } 5335 5336 pgdat->node_spanned_pages = totalpages; 5337 pgdat->node_present_pages = realtotalpages; 5338 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5339 realtotalpages); 5340 } 5341 5342 #ifndef CONFIG_SPARSEMEM 5343 /* 5344 * Calculate the size of the zone->blockflags rounded to an unsigned long 5345 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5346 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5347 * round what is now in bits to nearest long in bits, then return it in 5348 * bytes. 5349 */ 5350 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5351 { 5352 unsigned long usemapsize; 5353 5354 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5355 usemapsize = roundup(zonesize, pageblock_nr_pages); 5356 usemapsize = usemapsize >> pageblock_order; 5357 usemapsize *= NR_PAGEBLOCK_BITS; 5358 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5359 5360 return usemapsize / 8; 5361 } 5362 5363 static void __init setup_usemap(struct pglist_data *pgdat, 5364 struct zone *zone, 5365 unsigned long zone_start_pfn, 5366 unsigned long zonesize) 5367 { 5368 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5369 zone->pageblock_flags = NULL; 5370 if (usemapsize) 5371 zone->pageblock_flags = 5372 memblock_virt_alloc_node_nopanic(usemapsize, 5373 pgdat->node_id); 5374 } 5375 #else 5376 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5377 unsigned long zone_start_pfn, unsigned long zonesize) {} 5378 #endif /* CONFIG_SPARSEMEM */ 5379 5380 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5381 5382 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5383 void __paginginit set_pageblock_order(void) 5384 { 5385 unsigned int order; 5386 5387 /* Check that pageblock_nr_pages has not already been setup */ 5388 if (pageblock_order) 5389 return; 5390 5391 if (HPAGE_SHIFT > PAGE_SHIFT) 5392 order = HUGETLB_PAGE_ORDER; 5393 else 5394 order = MAX_ORDER - 1; 5395 5396 /* 5397 * Assume the largest contiguous order of interest is a huge page. 5398 * This value may be variable depending on boot parameters on IA64 and 5399 * powerpc. 5400 */ 5401 pageblock_order = order; 5402 } 5403 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5404 5405 /* 5406 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5407 * is unused as pageblock_order is set at compile-time. See 5408 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5409 * the kernel config 5410 */ 5411 void __paginginit set_pageblock_order(void) 5412 { 5413 } 5414 5415 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5416 5417 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5418 unsigned long present_pages) 5419 { 5420 unsigned long pages = spanned_pages; 5421 5422 /* 5423 * Provide a more accurate estimation if there are holes within 5424 * the zone and SPARSEMEM is in use. If there are holes within the 5425 * zone, each populated memory region may cost us one or two extra 5426 * memmap pages due to alignment because memmap pages for each 5427 * populated regions may not naturally algined on page boundary. 5428 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5429 */ 5430 if (spanned_pages > present_pages + (present_pages >> 4) && 5431 IS_ENABLED(CONFIG_SPARSEMEM)) 5432 pages = present_pages; 5433 5434 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5435 } 5436 5437 /* 5438 * Set up the zone data structures: 5439 * - mark all pages reserved 5440 * - mark all memory queues empty 5441 * - clear the memory bitmaps 5442 * 5443 * NOTE: pgdat should get zeroed by caller. 5444 */ 5445 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5446 { 5447 enum zone_type j; 5448 int nid = pgdat->node_id; 5449 int ret; 5450 5451 pgdat_resize_init(pgdat); 5452 #ifdef CONFIG_NUMA_BALANCING 5453 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5454 pgdat->numabalancing_migrate_nr_pages = 0; 5455 pgdat->numabalancing_migrate_next_window = jiffies; 5456 #endif 5457 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5458 spin_lock_init(&pgdat->split_queue_lock); 5459 INIT_LIST_HEAD(&pgdat->split_queue); 5460 pgdat->split_queue_len = 0; 5461 #endif 5462 init_waitqueue_head(&pgdat->kswapd_wait); 5463 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5464 #ifdef CONFIG_COMPACTION 5465 init_waitqueue_head(&pgdat->kcompactd_wait); 5466 #endif 5467 pgdat_page_ext_init(pgdat); 5468 5469 for (j = 0; j < MAX_NR_ZONES; j++) { 5470 struct zone *zone = pgdat->node_zones + j; 5471 unsigned long size, realsize, freesize, memmap_pages; 5472 unsigned long zone_start_pfn = zone->zone_start_pfn; 5473 5474 size = zone->spanned_pages; 5475 realsize = freesize = zone->present_pages; 5476 5477 /* 5478 * Adjust freesize so that it accounts for how much memory 5479 * is used by this zone for memmap. This affects the watermark 5480 * and per-cpu initialisations 5481 */ 5482 memmap_pages = calc_memmap_size(size, realsize); 5483 if (!is_highmem_idx(j)) { 5484 if (freesize >= memmap_pages) { 5485 freesize -= memmap_pages; 5486 if (memmap_pages) 5487 printk(KERN_DEBUG 5488 " %s zone: %lu pages used for memmap\n", 5489 zone_names[j], memmap_pages); 5490 } else 5491 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 5492 zone_names[j], memmap_pages, freesize); 5493 } 5494 5495 /* Account for reserved pages */ 5496 if (j == 0 && freesize > dma_reserve) { 5497 freesize -= dma_reserve; 5498 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 5499 zone_names[0], dma_reserve); 5500 } 5501 5502 if (!is_highmem_idx(j)) 5503 nr_kernel_pages += freesize; 5504 /* Charge for highmem memmap if there are enough kernel pages */ 5505 else if (nr_kernel_pages > memmap_pages * 2) 5506 nr_kernel_pages -= memmap_pages; 5507 nr_all_pages += freesize; 5508 5509 /* 5510 * Set an approximate value for lowmem here, it will be adjusted 5511 * when the bootmem allocator frees pages into the buddy system. 5512 * And all highmem pages will be managed by the buddy system. 5513 */ 5514 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 5515 #ifdef CONFIG_NUMA 5516 zone->node = nid; 5517 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 5518 / 100; 5519 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 5520 #endif 5521 zone->name = zone_names[j]; 5522 spin_lock_init(&zone->lock); 5523 spin_lock_init(&zone->lru_lock); 5524 zone_seqlock_init(zone); 5525 zone->zone_pgdat = pgdat; 5526 zone_pcp_init(zone); 5527 5528 /* For bootup, initialized properly in watermark setup */ 5529 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 5530 5531 lruvec_init(&zone->lruvec); 5532 if (!size) 5533 continue; 5534 5535 set_pageblock_order(); 5536 setup_usemap(pgdat, zone, zone_start_pfn, size); 5537 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 5538 BUG_ON(ret); 5539 memmap_init(size, nid, j, zone_start_pfn); 5540 } 5541 } 5542 5543 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 5544 { 5545 unsigned long __maybe_unused start = 0; 5546 unsigned long __maybe_unused offset = 0; 5547 5548 /* Skip empty nodes */ 5549 if (!pgdat->node_spanned_pages) 5550 return; 5551 5552 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5553 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5554 offset = pgdat->node_start_pfn - start; 5555 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5556 if (!pgdat->node_mem_map) { 5557 unsigned long size, end; 5558 struct page *map; 5559 5560 /* 5561 * The zone's endpoints aren't required to be MAX_ORDER 5562 * aligned but the node_mem_map endpoints must be in order 5563 * for the buddy allocator to function correctly. 5564 */ 5565 end = pgdat_end_pfn(pgdat); 5566 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5567 size = (end - start) * sizeof(struct page); 5568 map = alloc_remap(pgdat->node_id, size); 5569 if (!map) 5570 map = memblock_virt_alloc_node_nopanic(size, 5571 pgdat->node_id); 5572 pgdat->node_mem_map = map + offset; 5573 } 5574 #ifndef CONFIG_NEED_MULTIPLE_NODES 5575 /* 5576 * With no DISCONTIG, the global mem_map is just set as node 0's 5577 */ 5578 if (pgdat == NODE_DATA(0)) { 5579 mem_map = NODE_DATA(0)->node_mem_map; 5580 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 5581 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5582 mem_map -= offset; 5583 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5584 } 5585 #endif 5586 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5587 } 5588 5589 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5590 unsigned long node_start_pfn, unsigned long *zholes_size) 5591 { 5592 pg_data_t *pgdat = NODE_DATA(nid); 5593 unsigned long start_pfn = 0; 5594 unsigned long end_pfn = 0; 5595 5596 /* pg_data_t should be reset to zero when it's allocated */ 5597 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5598 5599 reset_deferred_meminit(pgdat); 5600 pgdat->node_id = nid; 5601 pgdat->node_start_pfn = node_start_pfn; 5602 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5603 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5604 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5605 (u64)start_pfn << PAGE_SHIFT, 5606 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 5607 #else 5608 start_pfn = node_start_pfn; 5609 #endif 5610 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5611 zones_size, zholes_size); 5612 5613 alloc_node_mem_map(pgdat); 5614 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5615 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5616 nid, (unsigned long)pgdat, 5617 (unsigned long)pgdat->node_mem_map); 5618 #endif 5619 5620 free_area_init_core(pgdat); 5621 } 5622 5623 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5624 5625 #if MAX_NUMNODES > 1 5626 /* 5627 * Figure out the number of possible node ids. 5628 */ 5629 void __init setup_nr_node_ids(void) 5630 { 5631 unsigned int highest; 5632 5633 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 5634 nr_node_ids = highest + 1; 5635 } 5636 #endif 5637 5638 /** 5639 * node_map_pfn_alignment - determine the maximum internode alignment 5640 * 5641 * This function should be called after node map is populated and sorted. 5642 * It calculates the maximum power of two alignment which can distinguish 5643 * all the nodes. 5644 * 5645 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5646 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5647 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5648 * shifted, 1GiB is enough and this function will indicate so. 5649 * 5650 * This is used to test whether pfn -> nid mapping of the chosen memory 5651 * model has fine enough granularity to avoid incorrect mapping for the 5652 * populated node map. 5653 * 5654 * Returns the determined alignment in pfn's. 0 if there is no alignment 5655 * requirement (single node). 5656 */ 5657 unsigned long __init node_map_pfn_alignment(void) 5658 { 5659 unsigned long accl_mask = 0, last_end = 0; 5660 unsigned long start, end, mask; 5661 int last_nid = -1; 5662 int i, nid; 5663 5664 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5665 if (!start || last_nid < 0 || last_nid == nid) { 5666 last_nid = nid; 5667 last_end = end; 5668 continue; 5669 } 5670 5671 /* 5672 * Start with a mask granular enough to pin-point to the 5673 * start pfn and tick off bits one-by-one until it becomes 5674 * too coarse to separate the current node from the last. 5675 */ 5676 mask = ~((1 << __ffs(start)) - 1); 5677 while (mask && last_end <= (start & (mask << 1))) 5678 mask <<= 1; 5679 5680 /* accumulate all internode masks */ 5681 accl_mask |= mask; 5682 } 5683 5684 /* convert mask to number of pages */ 5685 return ~accl_mask + 1; 5686 } 5687 5688 /* Find the lowest pfn for a node */ 5689 static unsigned long __init find_min_pfn_for_node(int nid) 5690 { 5691 unsigned long min_pfn = ULONG_MAX; 5692 unsigned long start_pfn; 5693 int i; 5694 5695 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5696 min_pfn = min(min_pfn, start_pfn); 5697 5698 if (min_pfn == ULONG_MAX) { 5699 pr_warn("Could not find start_pfn for node %d\n", nid); 5700 return 0; 5701 } 5702 5703 return min_pfn; 5704 } 5705 5706 /** 5707 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5708 * 5709 * It returns the minimum PFN based on information provided via 5710 * memblock_set_node(). 5711 */ 5712 unsigned long __init find_min_pfn_with_active_regions(void) 5713 { 5714 return find_min_pfn_for_node(MAX_NUMNODES); 5715 } 5716 5717 /* 5718 * early_calculate_totalpages() 5719 * Sum pages in active regions for movable zone. 5720 * Populate N_MEMORY for calculating usable_nodes. 5721 */ 5722 static unsigned long __init early_calculate_totalpages(void) 5723 { 5724 unsigned long totalpages = 0; 5725 unsigned long start_pfn, end_pfn; 5726 int i, nid; 5727 5728 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5729 unsigned long pages = end_pfn - start_pfn; 5730 5731 totalpages += pages; 5732 if (pages) 5733 node_set_state(nid, N_MEMORY); 5734 } 5735 return totalpages; 5736 } 5737 5738 /* 5739 * Find the PFN the Movable zone begins in each node. Kernel memory 5740 * is spread evenly between nodes as long as the nodes have enough 5741 * memory. When they don't, some nodes will have more kernelcore than 5742 * others 5743 */ 5744 static void __init find_zone_movable_pfns_for_nodes(void) 5745 { 5746 int i, nid; 5747 unsigned long usable_startpfn; 5748 unsigned long kernelcore_node, kernelcore_remaining; 5749 /* save the state before borrow the nodemask */ 5750 nodemask_t saved_node_state = node_states[N_MEMORY]; 5751 unsigned long totalpages = early_calculate_totalpages(); 5752 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5753 struct memblock_region *r; 5754 5755 /* Need to find movable_zone earlier when movable_node is specified. */ 5756 find_usable_zone_for_movable(); 5757 5758 /* 5759 * If movable_node is specified, ignore kernelcore and movablecore 5760 * options. 5761 */ 5762 if (movable_node_is_enabled()) { 5763 for_each_memblock(memory, r) { 5764 if (!memblock_is_hotpluggable(r)) 5765 continue; 5766 5767 nid = r->nid; 5768 5769 usable_startpfn = PFN_DOWN(r->base); 5770 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5771 min(usable_startpfn, zone_movable_pfn[nid]) : 5772 usable_startpfn; 5773 } 5774 5775 goto out2; 5776 } 5777 5778 /* 5779 * If kernelcore=mirror is specified, ignore movablecore option 5780 */ 5781 if (mirrored_kernelcore) { 5782 bool mem_below_4gb_not_mirrored = false; 5783 5784 for_each_memblock(memory, r) { 5785 if (memblock_is_mirror(r)) 5786 continue; 5787 5788 nid = r->nid; 5789 5790 usable_startpfn = memblock_region_memory_base_pfn(r); 5791 5792 if (usable_startpfn < 0x100000) { 5793 mem_below_4gb_not_mirrored = true; 5794 continue; 5795 } 5796 5797 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5798 min(usable_startpfn, zone_movable_pfn[nid]) : 5799 usable_startpfn; 5800 } 5801 5802 if (mem_below_4gb_not_mirrored) 5803 pr_warn("This configuration results in unmirrored kernel memory."); 5804 5805 goto out2; 5806 } 5807 5808 /* 5809 * If movablecore=nn[KMG] was specified, calculate what size of 5810 * kernelcore that corresponds so that memory usable for 5811 * any allocation type is evenly spread. If both kernelcore 5812 * and movablecore are specified, then the value of kernelcore 5813 * will be used for required_kernelcore if it's greater than 5814 * what movablecore would have allowed. 5815 */ 5816 if (required_movablecore) { 5817 unsigned long corepages; 5818 5819 /* 5820 * Round-up so that ZONE_MOVABLE is at least as large as what 5821 * was requested by the user 5822 */ 5823 required_movablecore = 5824 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5825 required_movablecore = min(totalpages, required_movablecore); 5826 corepages = totalpages - required_movablecore; 5827 5828 required_kernelcore = max(required_kernelcore, corepages); 5829 } 5830 5831 /* 5832 * If kernelcore was not specified or kernelcore size is larger 5833 * than totalpages, there is no ZONE_MOVABLE. 5834 */ 5835 if (!required_kernelcore || required_kernelcore >= totalpages) 5836 goto out; 5837 5838 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5839 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5840 5841 restart: 5842 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5843 kernelcore_node = required_kernelcore / usable_nodes; 5844 for_each_node_state(nid, N_MEMORY) { 5845 unsigned long start_pfn, end_pfn; 5846 5847 /* 5848 * Recalculate kernelcore_node if the division per node 5849 * now exceeds what is necessary to satisfy the requested 5850 * amount of memory for the kernel 5851 */ 5852 if (required_kernelcore < kernelcore_node) 5853 kernelcore_node = required_kernelcore / usable_nodes; 5854 5855 /* 5856 * As the map is walked, we track how much memory is usable 5857 * by the kernel using kernelcore_remaining. When it is 5858 * 0, the rest of the node is usable by ZONE_MOVABLE 5859 */ 5860 kernelcore_remaining = kernelcore_node; 5861 5862 /* Go through each range of PFNs within this node */ 5863 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5864 unsigned long size_pages; 5865 5866 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5867 if (start_pfn >= end_pfn) 5868 continue; 5869 5870 /* Account for what is only usable for kernelcore */ 5871 if (start_pfn < usable_startpfn) { 5872 unsigned long kernel_pages; 5873 kernel_pages = min(end_pfn, usable_startpfn) 5874 - start_pfn; 5875 5876 kernelcore_remaining -= min(kernel_pages, 5877 kernelcore_remaining); 5878 required_kernelcore -= min(kernel_pages, 5879 required_kernelcore); 5880 5881 /* Continue if range is now fully accounted */ 5882 if (end_pfn <= usable_startpfn) { 5883 5884 /* 5885 * Push zone_movable_pfn to the end so 5886 * that if we have to rebalance 5887 * kernelcore across nodes, we will 5888 * not double account here 5889 */ 5890 zone_movable_pfn[nid] = end_pfn; 5891 continue; 5892 } 5893 start_pfn = usable_startpfn; 5894 } 5895 5896 /* 5897 * The usable PFN range for ZONE_MOVABLE is from 5898 * start_pfn->end_pfn. Calculate size_pages as the 5899 * number of pages used as kernelcore 5900 */ 5901 size_pages = end_pfn - start_pfn; 5902 if (size_pages > kernelcore_remaining) 5903 size_pages = kernelcore_remaining; 5904 zone_movable_pfn[nid] = start_pfn + size_pages; 5905 5906 /* 5907 * Some kernelcore has been met, update counts and 5908 * break if the kernelcore for this node has been 5909 * satisfied 5910 */ 5911 required_kernelcore -= min(required_kernelcore, 5912 size_pages); 5913 kernelcore_remaining -= size_pages; 5914 if (!kernelcore_remaining) 5915 break; 5916 } 5917 } 5918 5919 /* 5920 * If there is still required_kernelcore, we do another pass with one 5921 * less node in the count. This will push zone_movable_pfn[nid] further 5922 * along on the nodes that still have memory until kernelcore is 5923 * satisfied 5924 */ 5925 usable_nodes--; 5926 if (usable_nodes && required_kernelcore > usable_nodes) 5927 goto restart; 5928 5929 out2: 5930 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5931 for (nid = 0; nid < MAX_NUMNODES; nid++) 5932 zone_movable_pfn[nid] = 5933 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5934 5935 out: 5936 /* restore the node_state */ 5937 node_states[N_MEMORY] = saved_node_state; 5938 } 5939 5940 /* Any regular or high memory on that node ? */ 5941 static void check_for_memory(pg_data_t *pgdat, int nid) 5942 { 5943 enum zone_type zone_type; 5944 5945 if (N_MEMORY == N_NORMAL_MEMORY) 5946 return; 5947 5948 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5949 struct zone *zone = &pgdat->node_zones[zone_type]; 5950 if (populated_zone(zone)) { 5951 node_set_state(nid, N_HIGH_MEMORY); 5952 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5953 zone_type <= ZONE_NORMAL) 5954 node_set_state(nid, N_NORMAL_MEMORY); 5955 break; 5956 } 5957 } 5958 } 5959 5960 /** 5961 * free_area_init_nodes - Initialise all pg_data_t and zone data 5962 * @max_zone_pfn: an array of max PFNs for each zone 5963 * 5964 * This will call free_area_init_node() for each active node in the system. 5965 * Using the page ranges provided by memblock_set_node(), the size of each 5966 * zone in each node and their holes is calculated. If the maximum PFN 5967 * between two adjacent zones match, it is assumed that the zone is empty. 5968 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5969 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5970 * starts where the previous one ended. For example, ZONE_DMA32 starts 5971 * at arch_max_dma_pfn. 5972 */ 5973 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5974 { 5975 unsigned long start_pfn, end_pfn; 5976 int i, nid; 5977 5978 /* Record where the zone boundaries are */ 5979 memset(arch_zone_lowest_possible_pfn, 0, 5980 sizeof(arch_zone_lowest_possible_pfn)); 5981 memset(arch_zone_highest_possible_pfn, 0, 5982 sizeof(arch_zone_highest_possible_pfn)); 5983 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5984 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5985 for (i = 1; i < MAX_NR_ZONES; i++) { 5986 if (i == ZONE_MOVABLE) 5987 continue; 5988 arch_zone_lowest_possible_pfn[i] = 5989 arch_zone_highest_possible_pfn[i-1]; 5990 arch_zone_highest_possible_pfn[i] = 5991 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5992 } 5993 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5994 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5995 5996 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5997 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5998 find_zone_movable_pfns_for_nodes(); 5999 6000 /* Print out the zone ranges */ 6001 pr_info("Zone ranges:\n"); 6002 for (i = 0; i < MAX_NR_ZONES; i++) { 6003 if (i == ZONE_MOVABLE) 6004 continue; 6005 pr_info(" %-8s ", zone_names[i]); 6006 if (arch_zone_lowest_possible_pfn[i] == 6007 arch_zone_highest_possible_pfn[i]) 6008 pr_cont("empty\n"); 6009 else 6010 pr_cont("[mem %#018Lx-%#018Lx]\n", 6011 (u64)arch_zone_lowest_possible_pfn[i] 6012 << PAGE_SHIFT, 6013 ((u64)arch_zone_highest_possible_pfn[i] 6014 << PAGE_SHIFT) - 1); 6015 } 6016 6017 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6018 pr_info("Movable zone start for each node\n"); 6019 for (i = 0; i < MAX_NUMNODES; i++) { 6020 if (zone_movable_pfn[i]) 6021 pr_info(" Node %d: %#018Lx\n", i, 6022 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6023 } 6024 6025 /* Print out the early node map */ 6026 pr_info("Early memory node ranges\n"); 6027 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6028 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6029 (u64)start_pfn << PAGE_SHIFT, 6030 ((u64)end_pfn << PAGE_SHIFT) - 1); 6031 6032 /* Initialise every node */ 6033 mminit_verify_pageflags_layout(); 6034 setup_nr_node_ids(); 6035 for_each_online_node(nid) { 6036 pg_data_t *pgdat = NODE_DATA(nid); 6037 free_area_init_node(nid, NULL, 6038 find_min_pfn_for_node(nid), NULL); 6039 6040 /* Any memory on that node */ 6041 if (pgdat->node_present_pages) 6042 node_set_state(nid, N_MEMORY); 6043 check_for_memory(pgdat, nid); 6044 } 6045 } 6046 6047 static int __init cmdline_parse_core(char *p, unsigned long *core) 6048 { 6049 unsigned long long coremem; 6050 if (!p) 6051 return -EINVAL; 6052 6053 coremem = memparse(p, &p); 6054 *core = coremem >> PAGE_SHIFT; 6055 6056 /* Paranoid check that UL is enough for the coremem value */ 6057 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6058 6059 return 0; 6060 } 6061 6062 /* 6063 * kernelcore=size sets the amount of memory for use for allocations that 6064 * cannot be reclaimed or migrated. 6065 */ 6066 static int __init cmdline_parse_kernelcore(char *p) 6067 { 6068 /* parse kernelcore=mirror */ 6069 if (parse_option_str(p, "mirror")) { 6070 mirrored_kernelcore = true; 6071 return 0; 6072 } 6073 6074 return cmdline_parse_core(p, &required_kernelcore); 6075 } 6076 6077 /* 6078 * movablecore=size sets the amount of memory for use for allocations that 6079 * can be reclaimed or migrated. 6080 */ 6081 static int __init cmdline_parse_movablecore(char *p) 6082 { 6083 return cmdline_parse_core(p, &required_movablecore); 6084 } 6085 6086 early_param("kernelcore", cmdline_parse_kernelcore); 6087 early_param("movablecore", cmdline_parse_movablecore); 6088 6089 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6090 6091 void adjust_managed_page_count(struct page *page, long count) 6092 { 6093 spin_lock(&managed_page_count_lock); 6094 page_zone(page)->managed_pages += count; 6095 totalram_pages += count; 6096 #ifdef CONFIG_HIGHMEM 6097 if (PageHighMem(page)) 6098 totalhigh_pages += count; 6099 #endif 6100 spin_unlock(&managed_page_count_lock); 6101 } 6102 EXPORT_SYMBOL(adjust_managed_page_count); 6103 6104 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6105 { 6106 void *pos; 6107 unsigned long pages = 0; 6108 6109 start = (void *)PAGE_ALIGN((unsigned long)start); 6110 end = (void *)((unsigned long)end & PAGE_MASK); 6111 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6112 if ((unsigned int)poison <= 0xFF) 6113 memset(pos, poison, PAGE_SIZE); 6114 free_reserved_page(virt_to_page(pos)); 6115 } 6116 6117 if (pages && s) 6118 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 6119 s, pages << (PAGE_SHIFT - 10), start, end); 6120 6121 return pages; 6122 } 6123 EXPORT_SYMBOL(free_reserved_area); 6124 6125 #ifdef CONFIG_HIGHMEM 6126 void free_highmem_page(struct page *page) 6127 { 6128 __free_reserved_page(page); 6129 totalram_pages++; 6130 page_zone(page)->managed_pages++; 6131 totalhigh_pages++; 6132 } 6133 #endif 6134 6135 6136 void __init mem_init_print_info(const char *str) 6137 { 6138 unsigned long physpages, codesize, datasize, rosize, bss_size; 6139 unsigned long init_code_size, init_data_size; 6140 6141 physpages = get_num_physpages(); 6142 codesize = _etext - _stext; 6143 datasize = _edata - _sdata; 6144 rosize = __end_rodata - __start_rodata; 6145 bss_size = __bss_stop - __bss_start; 6146 init_data_size = __init_end - __init_begin; 6147 init_code_size = _einittext - _sinittext; 6148 6149 /* 6150 * Detect special cases and adjust section sizes accordingly: 6151 * 1) .init.* may be embedded into .data sections 6152 * 2) .init.text.* may be out of [__init_begin, __init_end], 6153 * please refer to arch/tile/kernel/vmlinux.lds.S. 6154 * 3) .rodata.* may be embedded into .text or .data sections. 6155 */ 6156 #define adj_init_size(start, end, size, pos, adj) \ 6157 do { \ 6158 if (start <= pos && pos < end && size > adj) \ 6159 size -= adj; \ 6160 } while (0) 6161 6162 adj_init_size(__init_begin, __init_end, init_data_size, 6163 _sinittext, init_code_size); 6164 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6165 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6166 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6167 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6168 6169 #undef adj_init_size 6170 6171 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6172 #ifdef CONFIG_HIGHMEM 6173 ", %luK highmem" 6174 #endif 6175 "%s%s)\n", 6176 nr_free_pages() << (PAGE_SHIFT - 10), 6177 physpages << (PAGE_SHIFT - 10), 6178 codesize >> 10, datasize >> 10, rosize >> 10, 6179 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6180 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6181 totalcma_pages << (PAGE_SHIFT - 10), 6182 #ifdef CONFIG_HIGHMEM 6183 totalhigh_pages << (PAGE_SHIFT - 10), 6184 #endif 6185 str ? ", " : "", str ? str : ""); 6186 } 6187 6188 /** 6189 * set_dma_reserve - set the specified number of pages reserved in the first zone 6190 * @new_dma_reserve: The number of pages to mark reserved 6191 * 6192 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6193 * In the DMA zone, a significant percentage may be consumed by kernel image 6194 * and other unfreeable allocations which can skew the watermarks badly. This 6195 * function may optionally be used to account for unfreeable pages in the 6196 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6197 * smaller per-cpu batchsize. 6198 */ 6199 void __init set_dma_reserve(unsigned long new_dma_reserve) 6200 { 6201 dma_reserve = new_dma_reserve; 6202 } 6203 6204 void __init free_area_init(unsigned long *zones_size) 6205 { 6206 free_area_init_node(0, zones_size, 6207 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6208 } 6209 6210 static int page_alloc_cpu_notify(struct notifier_block *self, 6211 unsigned long action, void *hcpu) 6212 { 6213 int cpu = (unsigned long)hcpu; 6214 6215 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 6216 lru_add_drain_cpu(cpu); 6217 drain_pages(cpu); 6218 6219 /* 6220 * Spill the event counters of the dead processor 6221 * into the current processors event counters. 6222 * This artificially elevates the count of the current 6223 * processor. 6224 */ 6225 vm_events_fold_cpu(cpu); 6226 6227 /* 6228 * Zero the differential counters of the dead processor 6229 * so that the vm statistics are consistent. 6230 * 6231 * This is only okay since the processor is dead and cannot 6232 * race with what we are doing. 6233 */ 6234 cpu_vm_stats_fold(cpu); 6235 } 6236 return NOTIFY_OK; 6237 } 6238 6239 void __init page_alloc_init(void) 6240 { 6241 hotcpu_notifier(page_alloc_cpu_notify, 0); 6242 } 6243 6244 /* 6245 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6246 * or min_free_kbytes changes. 6247 */ 6248 static void calculate_totalreserve_pages(void) 6249 { 6250 struct pglist_data *pgdat; 6251 unsigned long reserve_pages = 0; 6252 enum zone_type i, j; 6253 6254 for_each_online_pgdat(pgdat) { 6255 for (i = 0; i < MAX_NR_ZONES; i++) { 6256 struct zone *zone = pgdat->node_zones + i; 6257 long max = 0; 6258 6259 /* Find valid and maximum lowmem_reserve in the zone */ 6260 for (j = i; j < MAX_NR_ZONES; j++) { 6261 if (zone->lowmem_reserve[j] > max) 6262 max = zone->lowmem_reserve[j]; 6263 } 6264 6265 /* we treat the high watermark as reserved pages. */ 6266 max += high_wmark_pages(zone); 6267 6268 if (max > zone->managed_pages) 6269 max = zone->managed_pages; 6270 6271 zone->totalreserve_pages = max; 6272 6273 reserve_pages += max; 6274 } 6275 } 6276 totalreserve_pages = reserve_pages; 6277 } 6278 6279 /* 6280 * setup_per_zone_lowmem_reserve - called whenever 6281 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6282 * has a correct pages reserved value, so an adequate number of 6283 * pages are left in the zone after a successful __alloc_pages(). 6284 */ 6285 static void setup_per_zone_lowmem_reserve(void) 6286 { 6287 struct pglist_data *pgdat; 6288 enum zone_type j, idx; 6289 6290 for_each_online_pgdat(pgdat) { 6291 for (j = 0; j < MAX_NR_ZONES; j++) { 6292 struct zone *zone = pgdat->node_zones + j; 6293 unsigned long managed_pages = zone->managed_pages; 6294 6295 zone->lowmem_reserve[j] = 0; 6296 6297 idx = j; 6298 while (idx) { 6299 struct zone *lower_zone; 6300 6301 idx--; 6302 6303 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6304 sysctl_lowmem_reserve_ratio[idx] = 1; 6305 6306 lower_zone = pgdat->node_zones + idx; 6307 lower_zone->lowmem_reserve[j] = managed_pages / 6308 sysctl_lowmem_reserve_ratio[idx]; 6309 managed_pages += lower_zone->managed_pages; 6310 } 6311 } 6312 } 6313 6314 /* update totalreserve_pages */ 6315 calculate_totalreserve_pages(); 6316 } 6317 6318 static void __setup_per_zone_wmarks(void) 6319 { 6320 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6321 unsigned long lowmem_pages = 0; 6322 struct zone *zone; 6323 unsigned long flags; 6324 6325 /* Calculate total number of !ZONE_HIGHMEM pages */ 6326 for_each_zone(zone) { 6327 if (!is_highmem(zone)) 6328 lowmem_pages += zone->managed_pages; 6329 } 6330 6331 for_each_zone(zone) { 6332 u64 tmp; 6333 6334 spin_lock_irqsave(&zone->lock, flags); 6335 tmp = (u64)pages_min * zone->managed_pages; 6336 do_div(tmp, lowmem_pages); 6337 if (is_highmem(zone)) { 6338 /* 6339 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6340 * need highmem pages, so cap pages_min to a small 6341 * value here. 6342 * 6343 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6344 * deltas control asynch page reclaim, and so should 6345 * not be capped for highmem. 6346 */ 6347 unsigned long min_pages; 6348 6349 min_pages = zone->managed_pages / 1024; 6350 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6351 zone->watermark[WMARK_MIN] = min_pages; 6352 } else { 6353 /* 6354 * If it's a lowmem zone, reserve a number of pages 6355 * proportionate to the zone's size. 6356 */ 6357 zone->watermark[WMARK_MIN] = tmp; 6358 } 6359 6360 /* 6361 * Set the kswapd watermarks distance according to the 6362 * scale factor in proportion to available memory, but 6363 * ensure a minimum size on small systems. 6364 */ 6365 tmp = max_t(u64, tmp >> 2, 6366 mult_frac(zone->managed_pages, 6367 watermark_scale_factor, 10000)); 6368 6369 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6370 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6371 6372 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 6373 high_wmark_pages(zone) - low_wmark_pages(zone) - 6374 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 6375 6376 spin_unlock_irqrestore(&zone->lock, flags); 6377 } 6378 6379 /* update totalreserve_pages */ 6380 calculate_totalreserve_pages(); 6381 } 6382 6383 /** 6384 * setup_per_zone_wmarks - called when min_free_kbytes changes 6385 * or when memory is hot-{added|removed} 6386 * 6387 * Ensures that the watermark[min,low,high] values for each zone are set 6388 * correctly with respect to min_free_kbytes. 6389 */ 6390 void setup_per_zone_wmarks(void) 6391 { 6392 mutex_lock(&zonelists_mutex); 6393 __setup_per_zone_wmarks(); 6394 mutex_unlock(&zonelists_mutex); 6395 } 6396 6397 /* 6398 * The inactive anon list should be small enough that the VM never has to 6399 * do too much work, but large enough that each inactive page has a chance 6400 * to be referenced again before it is swapped out. 6401 * 6402 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 6403 * INACTIVE_ANON pages on this zone's LRU, maintained by the 6404 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 6405 * the anonymous pages are kept on the inactive list. 6406 * 6407 * total target max 6408 * memory ratio inactive anon 6409 * ------------------------------------- 6410 * 10MB 1 5MB 6411 * 100MB 1 50MB 6412 * 1GB 3 250MB 6413 * 10GB 10 0.9GB 6414 * 100GB 31 3GB 6415 * 1TB 101 10GB 6416 * 10TB 320 32GB 6417 */ 6418 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 6419 { 6420 unsigned int gb, ratio; 6421 6422 /* Zone size in gigabytes */ 6423 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 6424 if (gb) 6425 ratio = int_sqrt(10 * gb); 6426 else 6427 ratio = 1; 6428 6429 zone->inactive_ratio = ratio; 6430 } 6431 6432 static void __meminit setup_per_zone_inactive_ratio(void) 6433 { 6434 struct zone *zone; 6435 6436 for_each_zone(zone) 6437 calculate_zone_inactive_ratio(zone); 6438 } 6439 6440 /* 6441 * Initialise min_free_kbytes. 6442 * 6443 * For small machines we want it small (128k min). For large machines 6444 * we want it large (64MB max). But it is not linear, because network 6445 * bandwidth does not increase linearly with machine size. We use 6446 * 6447 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6448 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6449 * 6450 * which yields 6451 * 6452 * 16MB: 512k 6453 * 32MB: 724k 6454 * 64MB: 1024k 6455 * 128MB: 1448k 6456 * 256MB: 2048k 6457 * 512MB: 2896k 6458 * 1024MB: 4096k 6459 * 2048MB: 5792k 6460 * 4096MB: 8192k 6461 * 8192MB: 11584k 6462 * 16384MB: 16384k 6463 */ 6464 int __meminit init_per_zone_wmark_min(void) 6465 { 6466 unsigned long lowmem_kbytes; 6467 int new_min_free_kbytes; 6468 6469 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6470 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6471 6472 if (new_min_free_kbytes > user_min_free_kbytes) { 6473 min_free_kbytes = new_min_free_kbytes; 6474 if (min_free_kbytes < 128) 6475 min_free_kbytes = 128; 6476 if (min_free_kbytes > 65536) 6477 min_free_kbytes = 65536; 6478 } else { 6479 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6480 new_min_free_kbytes, user_min_free_kbytes); 6481 } 6482 setup_per_zone_wmarks(); 6483 refresh_zone_stat_thresholds(); 6484 setup_per_zone_lowmem_reserve(); 6485 setup_per_zone_inactive_ratio(); 6486 return 0; 6487 } 6488 module_init(init_per_zone_wmark_min) 6489 6490 /* 6491 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6492 * that we can call two helper functions whenever min_free_kbytes 6493 * changes. 6494 */ 6495 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6496 void __user *buffer, size_t *length, loff_t *ppos) 6497 { 6498 int rc; 6499 6500 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6501 if (rc) 6502 return rc; 6503 6504 if (write) { 6505 user_min_free_kbytes = min_free_kbytes; 6506 setup_per_zone_wmarks(); 6507 } 6508 return 0; 6509 } 6510 6511 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6512 void __user *buffer, size_t *length, loff_t *ppos) 6513 { 6514 int rc; 6515 6516 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6517 if (rc) 6518 return rc; 6519 6520 if (write) 6521 setup_per_zone_wmarks(); 6522 6523 return 0; 6524 } 6525 6526 #ifdef CONFIG_NUMA 6527 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6528 void __user *buffer, size_t *length, loff_t *ppos) 6529 { 6530 struct zone *zone; 6531 int rc; 6532 6533 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6534 if (rc) 6535 return rc; 6536 6537 for_each_zone(zone) 6538 zone->min_unmapped_pages = (zone->managed_pages * 6539 sysctl_min_unmapped_ratio) / 100; 6540 return 0; 6541 } 6542 6543 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6544 void __user *buffer, size_t *length, loff_t *ppos) 6545 { 6546 struct zone *zone; 6547 int rc; 6548 6549 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6550 if (rc) 6551 return rc; 6552 6553 for_each_zone(zone) 6554 zone->min_slab_pages = (zone->managed_pages * 6555 sysctl_min_slab_ratio) / 100; 6556 return 0; 6557 } 6558 #endif 6559 6560 /* 6561 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6562 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6563 * whenever sysctl_lowmem_reserve_ratio changes. 6564 * 6565 * The reserve ratio obviously has absolutely no relation with the 6566 * minimum watermarks. The lowmem reserve ratio can only make sense 6567 * if in function of the boot time zone sizes. 6568 */ 6569 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6570 void __user *buffer, size_t *length, loff_t *ppos) 6571 { 6572 proc_dointvec_minmax(table, write, buffer, length, ppos); 6573 setup_per_zone_lowmem_reserve(); 6574 return 0; 6575 } 6576 6577 /* 6578 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6579 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6580 * pagelist can have before it gets flushed back to buddy allocator. 6581 */ 6582 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6583 void __user *buffer, size_t *length, loff_t *ppos) 6584 { 6585 struct zone *zone; 6586 int old_percpu_pagelist_fraction; 6587 int ret; 6588 6589 mutex_lock(&pcp_batch_high_lock); 6590 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6591 6592 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6593 if (!write || ret < 0) 6594 goto out; 6595 6596 /* Sanity checking to avoid pcp imbalance */ 6597 if (percpu_pagelist_fraction && 6598 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6599 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6600 ret = -EINVAL; 6601 goto out; 6602 } 6603 6604 /* No change? */ 6605 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6606 goto out; 6607 6608 for_each_populated_zone(zone) { 6609 unsigned int cpu; 6610 6611 for_each_possible_cpu(cpu) 6612 pageset_set_high_and_batch(zone, 6613 per_cpu_ptr(zone->pageset, cpu)); 6614 } 6615 out: 6616 mutex_unlock(&pcp_batch_high_lock); 6617 return ret; 6618 } 6619 6620 #ifdef CONFIG_NUMA 6621 int hashdist = HASHDIST_DEFAULT; 6622 6623 static int __init set_hashdist(char *str) 6624 { 6625 if (!str) 6626 return 0; 6627 hashdist = simple_strtoul(str, &str, 0); 6628 return 1; 6629 } 6630 __setup("hashdist=", set_hashdist); 6631 #endif 6632 6633 /* 6634 * allocate a large system hash table from bootmem 6635 * - it is assumed that the hash table must contain an exact power-of-2 6636 * quantity of entries 6637 * - limit is the number of hash buckets, not the total allocation size 6638 */ 6639 void *__init alloc_large_system_hash(const char *tablename, 6640 unsigned long bucketsize, 6641 unsigned long numentries, 6642 int scale, 6643 int flags, 6644 unsigned int *_hash_shift, 6645 unsigned int *_hash_mask, 6646 unsigned long low_limit, 6647 unsigned long high_limit) 6648 { 6649 unsigned long long max = high_limit; 6650 unsigned long log2qty, size; 6651 void *table = NULL; 6652 6653 /* allow the kernel cmdline to have a say */ 6654 if (!numentries) { 6655 /* round applicable memory size up to nearest megabyte */ 6656 numentries = nr_kernel_pages; 6657 6658 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6659 if (PAGE_SHIFT < 20) 6660 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6661 6662 /* limit to 1 bucket per 2^scale bytes of low memory */ 6663 if (scale > PAGE_SHIFT) 6664 numentries >>= (scale - PAGE_SHIFT); 6665 else 6666 numentries <<= (PAGE_SHIFT - scale); 6667 6668 /* Make sure we've got at least a 0-order allocation.. */ 6669 if (unlikely(flags & HASH_SMALL)) { 6670 /* Makes no sense without HASH_EARLY */ 6671 WARN_ON(!(flags & HASH_EARLY)); 6672 if (!(numentries >> *_hash_shift)) { 6673 numentries = 1UL << *_hash_shift; 6674 BUG_ON(!numentries); 6675 } 6676 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6677 numentries = PAGE_SIZE / bucketsize; 6678 } 6679 numentries = roundup_pow_of_two(numentries); 6680 6681 /* limit allocation size to 1/16 total memory by default */ 6682 if (max == 0) { 6683 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6684 do_div(max, bucketsize); 6685 } 6686 max = min(max, 0x80000000ULL); 6687 6688 if (numentries < low_limit) 6689 numentries = low_limit; 6690 if (numentries > max) 6691 numentries = max; 6692 6693 log2qty = ilog2(numentries); 6694 6695 do { 6696 size = bucketsize << log2qty; 6697 if (flags & HASH_EARLY) 6698 table = memblock_virt_alloc_nopanic(size, 0); 6699 else if (hashdist) 6700 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6701 else { 6702 /* 6703 * If bucketsize is not a power-of-two, we may free 6704 * some pages at the end of hash table which 6705 * alloc_pages_exact() automatically does 6706 */ 6707 if (get_order(size) < MAX_ORDER) { 6708 table = alloc_pages_exact(size, GFP_ATOMIC); 6709 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6710 } 6711 } 6712 } while (!table && size > PAGE_SIZE && --log2qty); 6713 6714 if (!table) 6715 panic("Failed to allocate %s hash table\n", tablename); 6716 6717 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 6718 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 6719 6720 if (_hash_shift) 6721 *_hash_shift = log2qty; 6722 if (_hash_mask) 6723 *_hash_mask = (1 << log2qty) - 1; 6724 6725 return table; 6726 } 6727 6728 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6729 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6730 unsigned long pfn) 6731 { 6732 #ifdef CONFIG_SPARSEMEM 6733 return __pfn_to_section(pfn)->pageblock_flags; 6734 #else 6735 return zone->pageblock_flags; 6736 #endif /* CONFIG_SPARSEMEM */ 6737 } 6738 6739 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6740 { 6741 #ifdef CONFIG_SPARSEMEM 6742 pfn &= (PAGES_PER_SECTION-1); 6743 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6744 #else 6745 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6746 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6747 #endif /* CONFIG_SPARSEMEM */ 6748 } 6749 6750 /** 6751 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6752 * @page: The page within the block of interest 6753 * @pfn: The target page frame number 6754 * @end_bitidx: The last bit of interest to retrieve 6755 * @mask: mask of bits that the caller is interested in 6756 * 6757 * Return: pageblock_bits flags 6758 */ 6759 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6760 unsigned long end_bitidx, 6761 unsigned long mask) 6762 { 6763 struct zone *zone; 6764 unsigned long *bitmap; 6765 unsigned long bitidx, word_bitidx; 6766 unsigned long word; 6767 6768 zone = page_zone(page); 6769 bitmap = get_pageblock_bitmap(zone, pfn); 6770 bitidx = pfn_to_bitidx(zone, pfn); 6771 word_bitidx = bitidx / BITS_PER_LONG; 6772 bitidx &= (BITS_PER_LONG-1); 6773 6774 word = bitmap[word_bitidx]; 6775 bitidx += end_bitidx; 6776 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6777 } 6778 6779 /** 6780 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6781 * @page: The page within the block of interest 6782 * @flags: The flags to set 6783 * @pfn: The target page frame number 6784 * @end_bitidx: The last bit of interest 6785 * @mask: mask of bits that the caller is interested in 6786 */ 6787 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6788 unsigned long pfn, 6789 unsigned long end_bitidx, 6790 unsigned long mask) 6791 { 6792 struct zone *zone; 6793 unsigned long *bitmap; 6794 unsigned long bitidx, word_bitidx; 6795 unsigned long old_word, word; 6796 6797 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6798 6799 zone = page_zone(page); 6800 bitmap = get_pageblock_bitmap(zone, pfn); 6801 bitidx = pfn_to_bitidx(zone, pfn); 6802 word_bitidx = bitidx / BITS_PER_LONG; 6803 bitidx &= (BITS_PER_LONG-1); 6804 6805 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6806 6807 bitidx += end_bitidx; 6808 mask <<= (BITS_PER_LONG - bitidx - 1); 6809 flags <<= (BITS_PER_LONG - bitidx - 1); 6810 6811 word = READ_ONCE(bitmap[word_bitidx]); 6812 for (;;) { 6813 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6814 if (word == old_word) 6815 break; 6816 word = old_word; 6817 } 6818 } 6819 6820 /* 6821 * This function checks whether pageblock includes unmovable pages or not. 6822 * If @count is not zero, it is okay to include less @count unmovable pages 6823 * 6824 * PageLRU check without isolation or lru_lock could race so that 6825 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6826 * expect this function should be exact. 6827 */ 6828 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6829 bool skip_hwpoisoned_pages) 6830 { 6831 unsigned long pfn, iter, found; 6832 int mt; 6833 6834 /* 6835 * For avoiding noise data, lru_add_drain_all() should be called 6836 * If ZONE_MOVABLE, the zone never contains unmovable pages 6837 */ 6838 if (zone_idx(zone) == ZONE_MOVABLE) 6839 return false; 6840 mt = get_pageblock_migratetype(page); 6841 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6842 return false; 6843 6844 pfn = page_to_pfn(page); 6845 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6846 unsigned long check = pfn + iter; 6847 6848 if (!pfn_valid_within(check)) 6849 continue; 6850 6851 page = pfn_to_page(check); 6852 6853 /* 6854 * Hugepages are not in LRU lists, but they're movable. 6855 * We need not scan over tail pages bacause we don't 6856 * handle each tail page individually in migration. 6857 */ 6858 if (PageHuge(page)) { 6859 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6860 continue; 6861 } 6862 6863 /* 6864 * We can't use page_count without pin a page 6865 * because another CPU can free compound page. 6866 * This check already skips compound tails of THP 6867 * because their page->_count is zero at all time. 6868 */ 6869 if (!page_ref_count(page)) { 6870 if (PageBuddy(page)) 6871 iter += (1 << page_order(page)) - 1; 6872 continue; 6873 } 6874 6875 /* 6876 * The HWPoisoned page may be not in buddy system, and 6877 * page_count() is not 0. 6878 */ 6879 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6880 continue; 6881 6882 if (!PageLRU(page)) 6883 found++; 6884 /* 6885 * If there are RECLAIMABLE pages, we need to check 6886 * it. But now, memory offline itself doesn't call 6887 * shrink_node_slabs() and it still to be fixed. 6888 */ 6889 /* 6890 * If the page is not RAM, page_count()should be 0. 6891 * we don't need more check. This is an _used_ not-movable page. 6892 * 6893 * The problematic thing here is PG_reserved pages. PG_reserved 6894 * is set to both of a memory hole page and a _used_ kernel 6895 * page at boot. 6896 */ 6897 if (found > count) 6898 return true; 6899 } 6900 return false; 6901 } 6902 6903 bool is_pageblock_removable_nolock(struct page *page) 6904 { 6905 struct zone *zone; 6906 unsigned long pfn; 6907 6908 /* 6909 * We have to be careful here because we are iterating over memory 6910 * sections which are not zone aware so we might end up outside of 6911 * the zone but still within the section. 6912 * We have to take care about the node as well. If the node is offline 6913 * its NODE_DATA will be NULL - see page_zone. 6914 */ 6915 if (!node_online(page_to_nid(page))) 6916 return false; 6917 6918 zone = page_zone(page); 6919 pfn = page_to_pfn(page); 6920 if (!zone_spans_pfn(zone, pfn)) 6921 return false; 6922 6923 return !has_unmovable_pages(zone, page, 0, true); 6924 } 6925 6926 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 6927 6928 static unsigned long pfn_max_align_down(unsigned long pfn) 6929 { 6930 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6931 pageblock_nr_pages) - 1); 6932 } 6933 6934 static unsigned long pfn_max_align_up(unsigned long pfn) 6935 { 6936 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6937 pageblock_nr_pages)); 6938 } 6939 6940 /* [start, end) must belong to a single zone. */ 6941 static int __alloc_contig_migrate_range(struct compact_control *cc, 6942 unsigned long start, unsigned long end) 6943 { 6944 /* This function is based on compact_zone() from compaction.c. */ 6945 unsigned long nr_reclaimed; 6946 unsigned long pfn = start; 6947 unsigned int tries = 0; 6948 int ret = 0; 6949 6950 migrate_prep(); 6951 6952 while (pfn < end || !list_empty(&cc->migratepages)) { 6953 if (fatal_signal_pending(current)) { 6954 ret = -EINTR; 6955 break; 6956 } 6957 6958 if (list_empty(&cc->migratepages)) { 6959 cc->nr_migratepages = 0; 6960 pfn = isolate_migratepages_range(cc, pfn, end); 6961 if (!pfn) { 6962 ret = -EINTR; 6963 break; 6964 } 6965 tries = 0; 6966 } else if (++tries == 5) { 6967 ret = ret < 0 ? ret : -EBUSY; 6968 break; 6969 } 6970 6971 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6972 &cc->migratepages); 6973 cc->nr_migratepages -= nr_reclaimed; 6974 6975 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6976 NULL, 0, cc->mode, MR_CMA); 6977 } 6978 if (ret < 0) { 6979 putback_movable_pages(&cc->migratepages); 6980 return ret; 6981 } 6982 return 0; 6983 } 6984 6985 /** 6986 * alloc_contig_range() -- tries to allocate given range of pages 6987 * @start: start PFN to allocate 6988 * @end: one-past-the-last PFN to allocate 6989 * @migratetype: migratetype of the underlaying pageblocks (either 6990 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6991 * in range must have the same migratetype and it must 6992 * be either of the two. 6993 * 6994 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6995 * aligned, however it's the caller's responsibility to guarantee that 6996 * we are the only thread that changes migrate type of pageblocks the 6997 * pages fall in. 6998 * 6999 * The PFN range must belong to a single zone. 7000 * 7001 * Returns zero on success or negative error code. On success all 7002 * pages which PFN is in [start, end) are allocated for the caller and 7003 * need to be freed with free_contig_range(). 7004 */ 7005 int alloc_contig_range(unsigned long start, unsigned long end, 7006 unsigned migratetype) 7007 { 7008 unsigned long outer_start, outer_end; 7009 unsigned int order; 7010 int ret = 0; 7011 7012 struct compact_control cc = { 7013 .nr_migratepages = 0, 7014 .order = -1, 7015 .zone = page_zone(pfn_to_page(start)), 7016 .mode = MIGRATE_SYNC, 7017 .ignore_skip_hint = true, 7018 }; 7019 INIT_LIST_HEAD(&cc.migratepages); 7020 7021 /* 7022 * What we do here is we mark all pageblocks in range as 7023 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7024 * have different sizes, and due to the way page allocator 7025 * work, we align the range to biggest of the two pages so 7026 * that page allocator won't try to merge buddies from 7027 * different pageblocks and change MIGRATE_ISOLATE to some 7028 * other migration type. 7029 * 7030 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7031 * migrate the pages from an unaligned range (ie. pages that 7032 * we are interested in). This will put all the pages in 7033 * range back to page allocator as MIGRATE_ISOLATE. 7034 * 7035 * When this is done, we take the pages in range from page 7036 * allocator removing them from the buddy system. This way 7037 * page allocator will never consider using them. 7038 * 7039 * This lets us mark the pageblocks back as 7040 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7041 * aligned range but not in the unaligned, original range are 7042 * put back to page allocator so that buddy can use them. 7043 */ 7044 7045 ret = start_isolate_page_range(pfn_max_align_down(start), 7046 pfn_max_align_up(end), migratetype, 7047 false); 7048 if (ret) 7049 return ret; 7050 7051 /* 7052 * In case of -EBUSY, we'd like to know which page causes problem. 7053 * So, just fall through. We will check it in test_pages_isolated(). 7054 */ 7055 ret = __alloc_contig_migrate_range(&cc, start, end); 7056 if (ret && ret != -EBUSY) 7057 goto done; 7058 7059 /* 7060 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7061 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7062 * more, all pages in [start, end) are free in page allocator. 7063 * What we are going to do is to allocate all pages from 7064 * [start, end) (that is remove them from page allocator). 7065 * 7066 * The only problem is that pages at the beginning and at the 7067 * end of interesting range may be not aligned with pages that 7068 * page allocator holds, ie. they can be part of higher order 7069 * pages. Because of this, we reserve the bigger range and 7070 * once this is done free the pages we are not interested in. 7071 * 7072 * We don't have to hold zone->lock here because the pages are 7073 * isolated thus they won't get removed from buddy. 7074 */ 7075 7076 lru_add_drain_all(); 7077 drain_all_pages(cc.zone); 7078 7079 order = 0; 7080 outer_start = start; 7081 while (!PageBuddy(pfn_to_page(outer_start))) { 7082 if (++order >= MAX_ORDER) { 7083 outer_start = start; 7084 break; 7085 } 7086 outer_start &= ~0UL << order; 7087 } 7088 7089 if (outer_start != start) { 7090 order = page_order(pfn_to_page(outer_start)); 7091 7092 /* 7093 * outer_start page could be small order buddy page and 7094 * it doesn't include start page. Adjust outer_start 7095 * in this case to report failed page properly 7096 * on tracepoint in test_pages_isolated() 7097 */ 7098 if (outer_start + (1UL << order) <= start) 7099 outer_start = start; 7100 } 7101 7102 /* Make sure the range is really isolated. */ 7103 if (test_pages_isolated(outer_start, end, false)) { 7104 pr_info("%s: [%lx, %lx) PFNs busy\n", 7105 __func__, outer_start, end); 7106 ret = -EBUSY; 7107 goto done; 7108 } 7109 7110 /* Grab isolated pages from freelists. */ 7111 outer_end = isolate_freepages_range(&cc, outer_start, end); 7112 if (!outer_end) { 7113 ret = -EBUSY; 7114 goto done; 7115 } 7116 7117 /* Free head and tail (if any) */ 7118 if (start != outer_start) 7119 free_contig_range(outer_start, start - outer_start); 7120 if (end != outer_end) 7121 free_contig_range(end, outer_end - end); 7122 7123 done: 7124 undo_isolate_page_range(pfn_max_align_down(start), 7125 pfn_max_align_up(end), migratetype); 7126 return ret; 7127 } 7128 7129 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7130 { 7131 unsigned int count = 0; 7132 7133 for (; nr_pages--; pfn++) { 7134 struct page *page = pfn_to_page(pfn); 7135 7136 count += page_count(page) != 1; 7137 __free_page(page); 7138 } 7139 WARN(count != 0, "%d pages are still in use!\n", count); 7140 } 7141 #endif 7142 7143 #ifdef CONFIG_MEMORY_HOTPLUG 7144 /* 7145 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7146 * page high values need to be recalulated. 7147 */ 7148 void __meminit zone_pcp_update(struct zone *zone) 7149 { 7150 unsigned cpu; 7151 mutex_lock(&pcp_batch_high_lock); 7152 for_each_possible_cpu(cpu) 7153 pageset_set_high_and_batch(zone, 7154 per_cpu_ptr(zone->pageset, cpu)); 7155 mutex_unlock(&pcp_batch_high_lock); 7156 } 7157 #endif 7158 7159 void zone_pcp_reset(struct zone *zone) 7160 { 7161 unsigned long flags; 7162 int cpu; 7163 struct per_cpu_pageset *pset; 7164 7165 /* avoid races with drain_pages() */ 7166 local_irq_save(flags); 7167 if (zone->pageset != &boot_pageset) { 7168 for_each_online_cpu(cpu) { 7169 pset = per_cpu_ptr(zone->pageset, cpu); 7170 drain_zonestat(zone, pset); 7171 } 7172 free_percpu(zone->pageset); 7173 zone->pageset = &boot_pageset; 7174 } 7175 local_irq_restore(flags); 7176 } 7177 7178 #ifdef CONFIG_MEMORY_HOTREMOVE 7179 /* 7180 * All pages in the range must be isolated before calling this. 7181 */ 7182 void 7183 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7184 { 7185 struct page *page; 7186 struct zone *zone; 7187 unsigned int order, i; 7188 unsigned long pfn; 7189 unsigned long flags; 7190 /* find the first valid pfn */ 7191 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7192 if (pfn_valid(pfn)) 7193 break; 7194 if (pfn == end_pfn) 7195 return; 7196 zone = page_zone(pfn_to_page(pfn)); 7197 spin_lock_irqsave(&zone->lock, flags); 7198 pfn = start_pfn; 7199 while (pfn < end_pfn) { 7200 if (!pfn_valid(pfn)) { 7201 pfn++; 7202 continue; 7203 } 7204 page = pfn_to_page(pfn); 7205 /* 7206 * The HWPoisoned page may be not in buddy system, and 7207 * page_count() is not 0. 7208 */ 7209 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7210 pfn++; 7211 SetPageReserved(page); 7212 continue; 7213 } 7214 7215 BUG_ON(page_count(page)); 7216 BUG_ON(!PageBuddy(page)); 7217 order = page_order(page); 7218 #ifdef CONFIG_DEBUG_VM 7219 pr_info("remove from free list %lx %d %lx\n", 7220 pfn, 1 << order, end_pfn); 7221 #endif 7222 list_del(&page->lru); 7223 rmv_page_order(page); 7224 zone->free_area[order].nr_free--; 7225 for (i = 0; i < (1 << order); i++) 7226 SetPageReserved((page+i)); 7227 pfn += (1 << order); 7228 } 7229 spin_unlock_irqrestore(&zone->lock, flags); 7230 } 7231 #endif 7232 7233 bool is_free_buddy_page(struct page *page) 7234 { 7235 struct zone *zone = page_zone(page); 7236 unsigned long pfn = page_to_pfn(page); 7237 unsigned long flags; 7238 unsigned int order; 7239 7240 spin_lock_irqsave(&zone->lock, flags); 7241 for (order = 0; order < MAX_ORDER; order++) { 7242 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7243 7244 if (PageBuddy(page_head) && page_order(page_head) >= order) 7245 break; 7246 } 7247 spin_unlock_irqrestore(&zone->lock, flags); 7248 7249 return order < MAX_ORDER; 7250 } 7251