1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 76 #include <asm/sections.h> 77 #include <asm/tlbflush.h> 78 #include <asm/div64.h> 79 #include "internal.h" 80 #include "shuffle.h" 81 #include "page_reporting.h" 82 83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 84 typedef int __bitwise fpi_t; 85 86 /* No special request */ 87 #define FPI_NONE ((__force fpi_t)0) 88 89 /* 90 * Skip free page reporting notification for the (possibly merged) page. 91 * This does not hinder free page reporting from grabbing the page, 92 * reporting it and marking it "reported" - it only skips notifying 93 * the free page reporting infrastructure about a newly freed page. For 94 * example, used when temporarily pulling a page from a freelist and 95 * putting it back unmodified. 96 */ 97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 98 99 /* 100 * Place the (possibly merged) page to the tail of the freelist. Will ignore 101 * page shuffling (relevant code - e.g., memory onlining - is expected to 102 * shuffle the whole zone). 103 * 104 * Note: No code should rely on this flag for correctness - it's purely 105 * to allow for optimizations when handing back either fresh pages 106 * (memory onlining) or untouched pages (page isolation, free page 107 * reporting). 108 */ 109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 110 111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 112 static DEFINE_MUTEX(pcp_batch_high_lock); 113 #define MIN_PERCPU_PAGELIST_FRACTION (8) 114 115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 116 DEFINE_PER_CPU(int, numa_node); 117 EXPORT_PER_CPU_SYMBOL(numa_node); 118 #endif 119 120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 121 122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 123 /* 124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 127 * defined in <linux/topology.h>. 128 */ 129 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 130 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 131 #endif 132 133 /* work_structs for global per-cpu drains */ 134 struct pcpu_drain { 135 struct zone *zone; 136 struct work_struct work; 137 }; 138 static DEFINE_MUTEX(pcpu_drain_mutex); 139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 140 141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 142 volatile unsigned long latent_entropy __latent_entropy; 143 EXPORT_SYMBOL(latent_entropy); 144 #endif 145 146 /* 147 * Array of node states. 148 */ 149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 150 [N_POSSIBLE] = NODE_MASK_ALL, 151 [N_ONLINE] = { { [0] = 1UL } }, 152 #ifndef CONFIG_NUMA 153 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 154 #ifdef CONFIG_HIGHMEM 155 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 156 #endif 157 [N_MEMORY] = { { [0] = 1UL } }, 158 [N_CPU] = { { [0] = 1UL } }, 159 #endif /* NUMA */ 160 }; 161 EXPORT_SYMBOL(node_states); 162 163 atomic_long_t _totalram_pages __read_mostly; 164 EXPORT_SYMBOL(_totalram_pages); 165 unsigned long totalreserve_pages __read_mostly; 166 unsigned long totalcma_pages __read_mostly; 167 168 int percpu_pagelist_fraction; 169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 170 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 171 EXPORT_SYMBOL(init_on_alloc); 172 173 DEFINE_STATIC_KEY_FALSE(init_on_free); 174 EXPORT_SYMBOL(init_on_free); 175 176 static bool _init_on_alloc_enabled_early __read_mostly 177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 178 static int __init early_init_on_alloc(char *buf) 179 { 180 181 return kstrtobool(buf, &_init_on_alloc_enabled_early); 182 } 183 early_param("init_on_alloc", early_init_on_alloc); 184 185 static bool _init_on_free_enabled_early __read_mostly 186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 187 static int __init early_init_on_free(char *buf) 188 { 189 return kstrtobool(buf, &_init_on_free_enabled_early); 190 } 191 early_param("init_on_free", early_init_on_free); 192 193 /* 194 * A cached value of the page's pageblock's migratetype, used when the page is 195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 196 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 197 * Also the migratetype set in the page does not necessarily match the pcplist 198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 199 * other index - this ensures that it will be put on the correct CMA freelist. 200 */ 201 static inline int get_pcppage_migratetype(struct page *page) 202 { 203 return page->index; 204 } 205 206 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 207 { 208 page->index = migratetype; 209 } 210 211 #ifdef CONFIG_PM_SLEEP 212 /* 213 * The following functions are used by the suspend/hibernate code to temporarily 214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 215 * while devices are suspended. To avoid races with the suspend/hibernate code, 216 * they should always be called with system_transition_mutex held 217 * (gfp_allowed_mask also should only be modified with system_transition_mutex 218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 219 * with that modification). 220 */ 221 222 static gfp_t saved_gfp_mask; 223 224 void pm_restore_gfp_mask(void) 225 { 226 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 227 if (saved_gfp_mask) { 228 gfp_allowed_mask = saved_gfp_mask; 229 saved_gfp_mask = 0; 230 } 231 } 232 233 void pm_restrict_gfp_mask(void) 234 { 235 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 236 WARN_ON(saved_gfp_mask); 237 saved_gfp_mask = gfp_allowed_mask; 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 239 } 240 241 bool pm_suspended_storage(void) 242 { 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 244 return false; 245 return true; 246 } 247 #endif /* CONFIG_PM_SLEEP */ 248 249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 250 unsigned int pageblock_order __read_mostly; 251 #endif 252 253 static void __free_pages_ok(struct page *page, unsigned int order, 254 fpi_t fpi_flags); 255 256 /* 257 * results with 256, 32 in the lowmem_reserve sysctl: 258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 259 * 1G machine -> (16M dma, 784M normal, 224M high) 260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 263 * 264 * TBD: should special case ZONE_DMA32 machines here - in those we normally 265 * don't need any ZONE_NORMAL reservation 266 */ 267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 268 #ifdef CONFIG_ZONE_DMA 269 [ZONE_DMA] = 256, 270 #endif 271 #ifdef CONFIG_ZONE_DMA32 272 [ZONE_DMA32] = 256, 273 #endif 274 [ZONE_NORMAL] = 32, 275 #ifdef CONFIG_HIGHMEM 276 [ZONE_HIGHMEM] = 0, 277 #endif 278 [ZONE_MOVABLE] = 0, 279 }; 280 281 static char * const zone_names[MAX_NR_ZONES] = { 282 #ifdef CONFIG_ZONE_DMA 283 "DMA", 284 #endif 285 #ifdef CONFIG_ZONE_DMA32 286 "DMA32", 287 #endif 288 "Normal", 289 #ifdef CONFIG_HIGHMEM 290 "HighMem", 291 #endif 292 "Movable", 293 #ifdef CONFIG_ZONE_DEVICE 294 "Device", 295 #endif 296 }; 297 298 const char * const migratetype_names[MIGRATE_TYPES] = { 299 "Unmovable", 300 "Movable", 301 "Reclaimable", 302 "HighAtomic", 303 #ifdef CONFIG_CMA 304 "CMA", 305 #endif 306 #ifdef CONFIG_MEMORY_ISOLATION 307 "Isolate", 308 #endif 309 }; 310 311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 312 [NULL_COMPOUND_DTOR] = NULL, 313 [COMPOUND_PAGE_DTOR] = free_compound_page, 314 #ifdef CONFIG_HUGETLB_PAGE 315 [HUGETLB_PAGE_DTOR] = free_huge_page, 316 #endif 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 319 #endif 320 }; 321 322 int min_free_kbytes = 1024; 323 int user_min_free_kbytes = -1; 324 #ifdef CONFIG_DISCONTIGMEM 325 /* 326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 327 * are not on separate NUMA nodes. Functionally this works but with 328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 329 * quite small. By default, do not boost watermarks on discontigmem as in 330 * many cases very high-order allocations like THP are likely to be 331 * unsupported and the premature reclaim offsets the advantage of long-term 332 * fragmentation avoidance. 333 */ 334 int watermark_boost_factor __read_mostly; 335 #else 336 int watermark_boost_factor __read_mostly = 15000; 337 #endif 338 int watermark_scale_factor = 10; 339 340 static unsigned long nr_kernel_pages __initdata; 341 static unsigned long nr_all_pages __initdata; 342 static unsigned long dma_reserve __initdata; 343 344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 346 static unsigned long required_kernelcore __initdata; 347 static unsigned long required_kernelcore_percent __initdata; 348 static unsigned long required_movablecore __initdata; 349 static unsigned long required_movablecore_percent __initdata; 350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 351 static bool mirrored_kernelcore __meminitdata; 352 353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 354 int movable_zone; 355 EXPORT_SYMBOL(movable_zone); 356 357 #if MAX_NUMNODES > 1 358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 359 unsigned int nr_online_nodes __read_mostly = 1; 360 EXPORT_SYMBOL(nr_node_ids); 361 EXPORT_SYMBOL(nr_online_nodes); 362 #endif 363 364 int page_group_by_mobility_disabled __read_mostly; 365 366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 367 /* 368 * During boot we initialize deferred pages on-demand, as needed, but once 369 * page_alloc_init_late() has finished, the deferred pages are all initialized, 370 * and we can permanently disable that path. 371 */ 372 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 373 374 /* 375 * Calling kasan_free_pages() only after deferred memory initialization 376 * has completed. Poisoning pages during deferred memory init will greatly 377 * lengthen the process and cause problem in large memory systems as the 378 * deferred pages initialization is done with interrupt disabled. 379 * 380 * Assuming that there will be no reference to those newly initialized 381 * pages before they are ever allocated, this should have no effect on 382 * KASAN memory tracking as the poison will be properly inserted at page 383 * allocation time. The only corner case is when pages are allocated by 384 * on-demand allocation and then freed again before the deferred pages 385 * initialization is done, but this is not likely to happen. 386 */ 387 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 388 { 389 if (!static_branch_unlikely(&deferred_pages)) 390 kasan_free_pages(page, order); 391 } 392 393 /* Returns true if the struct page for the pfn is uninitialised */ 394 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 395 { 396 int nid = early_pfn_to_nid(pfn); 397 398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 399 return true; 400 401 return false; 402 } 403 404 /* 405 * Returns true when the remaining initialisation should be deferred until 406 * later in the boot cycle when it can be parallelised. 407 */ 408 static bool __meminit 409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 410 { 411 static unsigned long prev_end_pfn, nr_initialised; 412 413 /* 414 * prev_end_pfn static that contains the end of previous zone 415 * No need to protect because called very early in boot before smp_init. 416 */ 417 if (prev_end_pfn != end_pfn) { 418 prev_end_pfn = end_pfn; 419 nr_initialised = 0; 420 } 421 422 /* Always populate low zones for address-constrained allocations */ 423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 424 return false; 425 426 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 427 return true; 428 /* 429 * We start only with one section of pages, more pages are added as 430 * needed until the rest of deferred pages are initialized. 431 */ 432 nr_initialised++; 433 if ((nr_initialised > PAGES_PER_SECTION) && 434 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 435 NODE_DATA(nid)->first_deferred_pfn = pfn; 436 return true; 437 } 438 return false; 439 } 440 #else 441 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 442 443 static inline bool early_page_uninitialised(unsigned long pfn) 444 { 445 return false; 446 } 447 448 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 449 { 450 return false; 451 } 452 #endif 453 454 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 455 static inline unsigned long *get_pageblock_bitmap(struct page *page, 456 unsigned long pfn) 457 { 458 #ifdef CONFIG_SPARSEMEM 459 return section_to_usemap(__pfn_to_section(pfn)); 460 #else 461 return page_zone(page)->pageblock_flags; 462 #endif /* CONFIG_SPARSEMEM */ 463 } 464 465 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 466 { 467 #ifdef CONFIG_SPARSEMEM 468 pfn &= (PAGES_PER_SECTION-1); 469 #else 470 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 471 #endif /* CONFIG_SPARSEMEM */ 472 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 473 } 474 475 static __always_inline 476 unsigned long __get_pfnblock_flags_mask(struct page *page, 477 unsigned long pfn, 478 unsigned long mask) 479 { 480 unsigned long *bitmap; 481 unsigned long bitidx, word_bitidx; 482 unsigned long word; 483 484 bitmap = get_pageblock_bitmap(page, pfn); 485 bitidx = pfn_to_bitidx(page, pfn); 486 word_bitidx = bitidx / BITS_PER_LONG; 487 bitidx &= (BITS_PER_LONG-1); 488 489 word = bitmap[word_bitidx]; 490 return (word >> bitidx) & mask; 491 } 492 493 /** 494 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 495 * @page: The page within the block of interest 496 * @pfn: The target page frame number 497 * @mask: mask of bits that the caller is interested in 498 * 499 * Return: pageblock_bits flags 500 */ 501 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 502 unsigned long mask) 503 { 504 return __get_pfnblock_flags_mask(page, pfn, mask); 505 } 506 507 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 508 { 509 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 510 } 511 512 /** 513 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 514 * @page: The page within the block of interest 515 * @flags: The flags to set 516 * @pfn: The target page frame number 517 * @mask: mask of bits that the caller is interested in 518 */ 519 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 520 unsigned long pfn, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 mask <<= bitidx; 538 flags <<= bitidx; 539 540 word = READ_ONCE(bitmap[word_bitidx]); 541 for (;;) { 542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 543 if (word == old_word) 544 break; 545 word = old_word; 546 } 547 } 548 549 void set_pageblock_migratetype(struct page *page, int migratetype) 550 { 551 if (unlikely(page_group_by_mobility_disabled && 552 migratetype < MIGRATE_PCPTYPES)) 553 migratetype = MIGRATE_UNMOVABLE; 554 555 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 556 page_to_pfn(page), MIGRATETYPE_MASK); 557 } 558 559 #ifdef CONFIG_DEBUG_VM 560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 561 { 562 int ret = 0; 563 unsigned seq; 564 unsigned long pfn = page_to_pfn(page); 565 unsigned long sp, start_pfn; 566 567 do { 568 seq = zone_span_seqbegin(zone); 569 start_pfn = zone->zone_start_pfn; 570 sp = zone->spanned_pages; 571 if (!zone_spans_pfn(zone, pfn)) 572 ret = 1; 573 } while (zone_span_seqretry(zone, seq)); 574 575 if (ret) 576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 577 pfn, zone_to_nid(zone), zone->name, 578 start_pfn, start_pfn + sp); 579 580 return ret; 581 } 582 583 static int page_is_consistent(struct zone *zone, struct page *page) 584 { 585 if (!pfn_valid_within(page_to_pfn(page))) 586 return 0; 587 if (zone != page_zone(page)) 588 return 0; 589 590 return 1; 591 } 592 /* 593 * Temporary debugging check for pages not lying within a given zone. 594 */ 595 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 596 { 597 if (page_outside_zone_boundaries(zone, page)) 598 return 1; 599 if (!page_is_consistent(zone, page)) 600 return 1; 601 602 return 0; 603 } 604 #else 605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 606 { 607 return 0; 608 } 609 #endif 610 611 static void bad_page(struct page *page, const char *reason) 612 { 613 static unsigned long resume; 614 static unsigned long nr_shown; 615 static unsigned long nr_unshown; 616 617 /* 618 * Allow a burst of 60 reports, then keep quiet for that minute; 619 * or allow a steady drip of one report per second. 620 */ 621 if (nr_shown == 60) { 622 if (time_before(jiffies, resume)) { 623 nr_unshown++; 624 goto out; 625 } 626 if (nr_unshown) { 627 pr_alert( 628 "BUG: Bad page state: %lu messages suppressed\n", 629 nr_unshown); 630 nr_unshown = 0; 631 } 632 nr_shown = 0; 633 } 634 if (nr_shown++ == 0) 635 resume = jiffies + 60 * HZ; 636 637 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 638 current->comm, page_to_pfn(page)); 639 __dump_page(page, reason); 640 dump_page_owner(page); 641 642 print_modules(); 643 dump_stack(); 644 out: 645 /* Leave bad fields for debug, except PageBuddy could make trouble */ 646 page_mapcount_reset(page); /* remove PageBuddy */ 647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 648 } 649 650 /* 651 * Higher-order pages are called "compound pages". They are structured thusly: 652 * 653 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 654 * 655 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 656 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 657 * 658 * The first tail page's ->compound_dtor holds the offset in array of compound 659 * page destructors. See compound_page_dtors. 660 * 661 * The first tail page's ->compound_order holds the order of allocation. 662 * This usage means that zero-order pages may not be compound. 663 */ 664 665 void free_compound_page(struct page *page) 666 { 667 mem_cgroup_uncharge(page); 668 __free_pages_ok(page, compound_order(page), FPI_NONE); 669 } 670 671 void prep_compound_page(struct page *page, unsigned int order) 672 { 673 int i; 674 int nr_pages = 1 << order; 675 676 __SetPageHead(page); 677 for (i = 1; i < nr_pages; i++) { 678 struct page *p = page + i; 679 set_page_count(p, 0); 680 p->mapping = TAIL_MAPPING; 681 set_compound_head(p, page); 682 } 683 684 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 685 set_compound_order(page, order); 686 atomic_set(compound_mapcount_ptr(page), -1); 687 if (hpage_pincount_available(page)) 688 atomic_set(compound_pincount_ptr(page), 0); 689 } 690 691 #ifdef CONFIG_DEBUG_PAGEALLOC 692 unsigned int _debug_guardpage_minorder; 693 694 bool _debug_pagealloc_enabled_early __read_mostly 695 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 696 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 697 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 698 EXPORT_SYMBOL(_debug_pagealloc_enabled); 699 700 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 701 702 static int __init early_debug_pagealloc(char *buf) 703 { 704 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 705 } 706 early_param("debug_pagealloc", early_debug_pagealloc); 707 708 static int __init debug_guardpage_minorder_setup(char *buf) 709 { 710 unsigned long res; 711 712 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 713 pr_err("Bad debug_guardpage_minorder value\n"); 714 return 0; 715 } 716 _debug_guardpage_minorder = res; 717 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 718 return 0; 719 } 720 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 721 722 static inline bool set_page_guard(struct zone *zone, struct page *page, 723 unsigned int order, int migratetype) 724 { 725 if (!debug_guardpage_enabled()) 726 return false; 727 728 if (order >= debug_guardpage_minorder()) 729 return false; 730 731 __SetPageGuard(page); 732 INIT_LIST_HEAD(&page->lru); 733 set_page_private(page, order); 734 /* Guard pages are not available for any usage */ 735 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 736 737 return true; 738 } 739 740 static inline void clear_page_guard(struct zone *zone, struct page *page, 741 unsigned int order, int migratetype) 742 { 743 if (!debug_guardpage_enabled()) 744 return; 745 746 __ClearPageGuard(page); 747 748 set_page_private(page, 0); 749 if (!is_migrate_isolate(migratetype)) 750 __mod_zone_freepage_state(zone, (1 << order), migratetype); 751 } 752 #else 753 static inline bool set_page_guard(struct zone *zone, struct page *page, 754 unsigned int order, int migratetype) { return false; } 755 static inline void clear_page_guard(struct zone *zone, struct page *page, 756 unsigned int order, int migratetype) {} 757 #endif 758 759 /* 760 * Enable static keys related to various memory debugging and hardening options. 761 * Some override others, and depend on early params that are evaluated in the 762 * order of appearance. So we need to first gather the full picture of what was 763 * enabled, and then make decisions. 764 */ 765 void init_mem_debugging_and_hardening(void) 766 { 767 if (_init_on_alloc_enabled_early) { 768 if (page_poisoning_enabled()) 769 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 770 "will take precedence over init_on_alloc\n"); 771 else 772 static_branch_enable(&init_on_alloc); 773 } 774 if (_init_on_free_enabled_early) { 775 if (page_poisoning_enabled()) 776 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 777 "will take precedence over init_on_free\n"); 778 else 779 static_branch_enable(&init_on_free); 780 } 781 782 #ifdef CONFIG_PAGE_POISONING 783 /* 784 * Page poisoning is debug page alloc for some arches. If 785 * either of those options are enabled, enable poisoning. 786 */ 787 if (page_poisoning_enabled() || 788 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 789 debug_pagealloc_enabled())) 790 static_branch_enable(&_page_poisoning_enabled); 791 #endif 792 793 #ifdef CONFIG_DEBUG_PAGEALLOC 794 if (!debug_pagealloc_enabled()) 795 return; 796 797 static_branch_enable(&_debug_pagealloc_enabled); 798 799 if (!debug_guardpage_minorder()) 800 return; 801 802 static_branch_enable(&_debug_guardpage_enabled); 803 #endif 804 } 805 806 static inline void set_buddy_order(struct page *page, unsigned int order) 807 { 808 set_page_private(page, order); 809 __SetPageBuddy(page); 810 } 811 812 /* 813 * This function checks whether a page is free && is the buddy 814 * we can coalesce a page and its buddy if 815 * (a) the buddy is not in a hole (check before calling!) && 816 * (b) the buddy is in the buddy system && 817 * (c) a page and its buddy have the same order && 818 * (d) a page and its buddy are in the same zone. 819 * 820 * For recording whether a page is in the buddy system, we set PageBuddy. 821 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 822 * 823 * For recording page's order, we use page_private(page). 824 */ 825 static inline bool page_is_buddy(struct page *page, struct page *buddy, 826 unsigned int order) 827 { 828 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 829 return false; 830 831 if (buddy_order(buddy) != order) 832 return false; 833 834 /* 835 * zone check is done late to avoid uselessly calculating 836 * zone/node ids for pages that could never merge. 837 */ 838 if (page_zone_id(page) != page_zone_id(buddy)) 839 return false; 840 841 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 842 843 return true; 844 } 845 846 #ifdef CONFIG_COMPACTION 847 static inline struct capture_control *task_capc(struct zone *zone) 848 { 849 struct capture_control *capc = current->capture_control; 850 851 return unlikely(capc) && 852 !(current->flags & PF_KTHREAD) && 853 !capc->page && 854 capc->cc->zone == zone ? capc : NULL; 855 } 856 857 static inline bool 858 compaction_capture(struct capture_control *capc, struct page *page, 859 int order, int migratetype) 860 { 861 if (!capc || order != capc->cc->order) 862 return false; 863 864 /* Do not accidentally pollute CMA or isolated regions*/ 865 if (is_migrate_cma(migratetype) || 866 is_migrate_isolate(migratetype)) 867 return false; 868 869 /* 870 * Do not let lower order allocations polluate a movable pageblock. 871 * This might let an unmovable request use a reclaimable pageblock 872 * and vice-versa but no more than normal fallback logic which can 873 * have trouble finding a high-order free page. 874 */ 875 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 876 return false; 877 878 capc->page = page; 879 return true; 880 } 881 882 #else 883 static inline struct capture_control *task_capc(struct zone *zone) 884 { 885 return NULL; 886 } 887 888 static inline bool 889 compaction_capture(struct capture_control *capc, struct page *page, 890 int order, int migratetype) 891 { 892 return false; 893 } 894 #endif /* CONFIG_COMPACTION */ 895 896 /* Used for pages not on another list */ 897 static inline void add_to_free_list(struct page *page, struct zone *zone, 898 unsigned int order, int migratetype) 899 { 900 struct free_area *area = &zone->free_area[order]; 901 902 list_add(&page->lru, &area->free_list[migratetype]); 903 area->nr_free++; 904 } 905 906 /* Used for pages not on another list */ 907 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 908 unsigned int order, int migratetype) 909 { 910 struct free_area *area = &zone->free_area[order]; 911 912 list_add_tail(&page->lru, &area->free_list[migratetype]); 913 area->nr_free++; 914 } 915 916 /* 917 * Used for pages which are on another list. Move the pages to the tail 918 * of the list - so the moved pages won't immediately be considered for 919 * allocation again (e.g., optimization for memory onlining). 920 */ 921 static inline void move_to_free_list(struct page *page, struct zone *zone, 922 unsigned int order, int migratetype) 923 { 924 struct free_area *area = &zone->free_area[order]; 925 926 list_move_tail(&page->lru, &area->free_list[migratetype]); 927 } 928 929 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 930 unsigned int order) 931 { 932 /* clear reported state and update reported page count */ 933 if (page_reported(page)) 934 __ClearPageReported(page); 935 936 list_del(&page->lru); 937 __ClearPageBuddy(page); 938 set_page_private(page, 0); 939 zone->free_area[order].nr_free--; 940 } 941 942 /* 943 * If this is not the largest possible page, check if the buddy 944 * of the next-highest order is free. If it is, it's possible 945 * that pages are being freed that will coalesce soon. In case, 946 * that is happening, add the free page to the tail of the list 947 * so it's less likely to be used soon and more likely to be merged 948 * as a higher order page 949 */ 950 static inline bool 951 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 952 struct page *page, unsigned int order) 953 { 954 struct page *higher_page, *higher_buddy; 955 unsigned long combined_pfn; 956 957 if (order >= MAX_ORDER - 2) 958 return false; 959 960 if (!pfn_valid_within(buddy_pfn)) 961 return false; 962 963 combined_pfn = buddy_pfn & pfn; 964 higher_page = page + (combined_pfn - pfn); 965 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 966 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 967 968 return pfn_valid_within(buddy_pfn) && 969 page_is_buddy(higher_page, higher_buddy, order + 1); 970 } 971 972 /* 973 * Freeing function for a buddy system allocator. 974 * 975 * The concept of a buddy system is to maintain direct-mapped table 976 * (containing bit values) for memory blocks of various "orders". 977 * The bottom level table contains the map for the smallest allocatable 978 * units of memory (here, pages), and each level above it describes 979 * pairs of units from the levels below, hence, "buddies". 980 * At a high level, all that happens here is marking the table entry 981 * at the bottom level available, and propagating the changes upward 982 * as necessary, plus some accounting needed to play nicely with other 983 * parts of the VM system. 984 * At each level, we keep a list of pages, which are heads of continuous 985 * free pages of length of (1 << order) and marked with PageBuddy. 986 * Page's order is recorded in page_private(page) field. 987 * So when we are allocating or freeing one, we can derive the state of the 988 * other. That is, if we allocate a small block, and both were 989 * free, the remainder of the region must be split into blocks. 990 * If a block is freed, and its buddy is also free, then this 991 * triggers coalescing into a block of larger size. 992 * 993 * -- nyc 994 */ 995 996 static inline void __free_one_page(struct page *page, 997 unsigned long pfn, 998 struct zone *zone, unsigned int order, 999 int migratetype, fpi_t fpi_flags) 1000 { 1001 struct capture_control *capc = task_capc(zone); 1002 unsigned long buddy_pfn; 1003 unsigned long combined_pfn; 1004 unsigned int max_order; 1005 struct page *buddy; 1006 bool to_tail; 1007 1008 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1009 1010 VM_BUG_ON(!zone_is_initialized(zone)); 1011 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1012 1013 VM_BUG_ON(migratetype == -1); 1014 if (likely(!is_migrate_isolate(migratetype))) 1015 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1016 1017 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1018 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1019 1020 continue_merging: 1021 while (order < max_order) { 1022 if (compaction_capture(capc, page, order, migratetype)) { 1023 __mod_zone_freepage_state(zone, -(1 << order), 1024 migratetype); 1025 return; 1026 } 1027 buddy_pfn = __find_buddy_pfn(pfn, order); 1028 buddy = page + (buddy_pfn - pfn); 1029 1030 if (!pfn_valid_within(buddy_pfn)) 1031 goto done_merging; 1032 if (!page_is_buddy(page, buddy, order)) 1033 goto done_merging; 1034 /* 1035 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1036 * merge with it and move up one order. 1037 */ 1038 if (page_is_guard(buddy)) 1039 clear_page_guard(zone, buddy, order, migratetype); 1040 else 1041 del_page_from_free_list(buddy, zone, order); 1042 combined_pfn = buddy_pfn & pfn; 1043 page = page + (combined_pfn - pfn); 1044 pfn = combined_pfn; 1045 order++; 1046 } 1047 if (order < MAX_ORDER - 1) { 1048 /* If we are here, it means order is >= pageblock_order. 1049 * We want to prevent merge between freepages on isolate 1050 * pageblock and normal pageblock. Without this, pageblock 1051 * isolation could cause incorrect freepage or CMA accounting. 1052 * 1053 * We don't want to hit this code for the more frequent 1054 * low-order merging. 1055 */ 1056 if (unlikely(has_isolate_pageblock(zone))) { 1057 int buddy_mt; 1058 1059 buddy_pfn = __find_buddy_pfn(pfn, order); 1060 buddy = page + (buddy_pfn - pfn); 1061 buddy_mt = get_pageblock_migratetype(buddy); 1062 1063 if (migratetype != buddy_mt 1064 && (is_migrate_isolate(migratetype) || 1065 is_migrate_isolate(buddy_mt))) 1066 goto done_merging; 1067 } 1068 max_order = order + 1; 1069 goto continue_merging; 1070 } 1071 1072 done_merging: 1073 set_buddy_order(page, order); 1074 1075 if (fpi_flags & FPI_TO_TAIL) 1076 to_tail = true; 1077 else if (is_shuffle_order(order)) 1078 to_tail = shuffle_pick_tail(); 1079 else 1080 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1081 1082 if (to_tail) 1083 add_to_free_list_tail(page, zone, order, migratetype); 1084 else 1085 add_to_free_list(page, zone, order, migratetype); 1086 1087 /* Notify page reporting subsystem of freed page */ 1088 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1089 page_reporting_notify_free(order); 1090 } 1091 1092 /* 1093 * A bad page could be due to a number of fields. Instead of multiple branches, 1094 * try and check multiple fields with one check. The caller must do a detailed 1095 * check if necessary. 1096 */ 1097 static inline bool page_expected_state(struct page *page, 1098 unsigned long check_flags) 1099 { 1100 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1101 return false; 1102 1103 if (unlikely((unsigned long)page->mapping | 1104 page_ref_count(page) | 1105 #ifdef CONFIG_MEMCG 1106 (unsigned long)page_memcg(page) | 1107 #endif 1108 (page->flags & check_flags))) 1109 return false; 1110 1111 return true; 1112 } 1113 1114 static const char *page_bad_reason(struct page *page, unsigned long flags) 1115 { 1116 const char *bad_reason = NULL; 1117 1118 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1119 bad_reason = "nonzero mapcount"; 1120 if (unlikely(page->mapping != NULL)) 1121 bad_reason = "non-NULL mapping"; 1122 if (unlikely(page_ref_count(page) != 0)) 1123 bad_reason = "nonzero _refcount"; 1124 if (unlikely(page->flags & flags)) { 1125 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1126 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1127 else 1128 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1129 } 1130 #ifdef CONFIG_MEMCG 1131 if (unlikely(page_memcg(page))) 1132 bad_reason = "page still charged to cgroup"; 1133 #endif 1134 return bad_reason; 1135 } 1136 1137 static void check_free_page_bad(struct page *page) 1138 { 1139 bad_page(page, 1140 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1141 } 1142 1143 static inline int check_free_page(struct page *page) 1144 { 1145 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1146 return 0; 1147 1148 /* Something has gone sideways, find it */ 1149 check_free_page_bad(page); 1150 return 1; 1151 } 1152 1153 static int free_tail_pages_check(struct page *head_page, struct page *page) 1154 { 1155 int ret = 1; 1156 1157 /* 1158 * We rely page->lru.next never has bit 0 set, unless the page 1159 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1160 */ 1161 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1162 1163 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1164 ret = 0; 1165 goto out; 1166 } 1167 switch (page - head_page) { 1168 case 1: 1169 /* the first tail page: ->mapping may be compound_mapcount() */ 1170 if (unlikely(compound_mapcount(page))) { 1171 bad_page(page, "nonzero compound_mapcount"); 1172 goto out; 1173 } 1174 break; 1175 case 2: 1176 /* 1177 * the second tail page: ->mapping is 1178 * deferred_list.next -- ignore value. 1179 */ 1180 break; 1181 default: 1182 if (page->mapping != TAIL_MAPPING) { 1183 bad_page(page, "corrupted mapping in tail page"); 1184 goto out; 1185 } 1186 break; 1187 } 1188 if (unlikely(!PageTail(page))) { 1189 bad_page(page, "PageTail not set"); 1190 goto out; 1191 } 1192 if (unlikely(compound_head(page) != head_page)) { 1193 bad_page(page, "compound_head not consistent"); 1194 goto out; 1195 } 1196 ret = 0; 1197 out: 1198 page->mapping = NULL; 1199 clear_compound_head(page); 1200 return ret; 1201 } 1202 1203 static void kernel_init_free_pages(struct page *page, int numpages) 1204 { 1205 int i; 1206 1207 /* s390's use of memset() could override KASAN redzones. */ 1208 kasan_disable_current(); 1209 for (i = 0; i < numpages; i++) { 1210 page_kasan_tag_reset(page + i); 1211 clear_highpage(page + i); 1212 } 1213 kasan_enable_current(); 1214 } 1215 1216 static __always_inline bool free_pages_prepare(struct page *page, 1217 unsigned int order, bool check_free) 1218 { 1219 int bad = 0; 1220 1221 VM_BUG_ON_PAGE(PageTail(page), page); 1222 1223 trace_mm_page_free(page, order); 1224 1225 if (unlikely(PageHWPoison(page)) && !order) { 1226 /* 1227 * Do not let hwpoison pages hit pcplists/buddy 1228 * Untie memcg state and reset page's owner 1229 */ 1230 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1231 __memcg_kmem_uncharge_page(page, order); 1232 reset_page_owner(page, order); 1233 return false; 1234 } 1235 1236 /* 1237 * Check tail pages before head page information is cleared to 1238 * avoid checking PageCompound for order-0 pages. 1239 */ 1240 if (unlikely(order)) { 1241 bool compound = PageCompound(page); 1242 int i; 1243 1244 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1245 1246 if (compound) 1247 ClearPageDoubleMap(page); 1248 for (i = 1; i < (1 << order); i++) { 1249 if (compound) 1250 bad += free_tail_pages_check(page, page + i); 1251 if (unlikely(check_free_page(page + i))) { 1252 bad++; 1253 continue; 1254 } 1255 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1256 } 1257 } 1258 if (PageMappingFlags(page)) 1259 page->mapping = NULL; 1260 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1261 __memcg_kmem_uncharge_page(page, order); 1262 if (check_free) 1263 bad += check_free_page(page); 1264 if (bad) 1265 return false; 1266 1267 page_cpupid_reset_last(page); 1268 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1269 reset_page_owner(page, order); 1270 1271 if (!PageHighMem(page)) { 1272 debug_check_no_locks_freed(page_address(page), 1273 PAGE_SIZE << order); 1274 debug_check_no_obj_freed(page_address(page), 1275 PAGE_SIZE << order); 1276 } 1277 if (want_init_on_free()) 1278 kernel_init_free_pages(page, 1 << order); 1279 1280 kernel_poison_pages(page, 1 << order); 1281 1282 /* 1283 * arch_free_page() can make the page's contents inaccessible. s390 1284 * does this. So nothing which can access the page's contents should 1285 * happen after this. 1286 */ 1287 arch_free_page(page, order); 1288 1289 debug_pagealloc_unmap_pages(page, 1 << order); 1290 1291 kasan_free_nondeferred_pages(page, order); 1292 1293 return true; 1294 } 1295 1296 #ifdef CONFIG_DEBUG_VM 1297 /* 1298 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1299 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1300 * moved from pcp lists to free lists. 1301 */ 1302 static bool free_pcp_prepare(struct page *page) 1303 { 1304 return free_pages_prepare(page, 0, true); 1305 } 1306 1307 static bool bulkfree_pcp_prepare(struct page *page) 1308 { 1309 if (debug_pagealloc_enabled_static()) 1310 return check_free_page(page); 1311 else 1312 return false; 1313 } 1314 #else 1315 /* 1316 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1317 * moving from pcp lists to free list in order to reduce overhead. With 1318 * debug_pagealloc enabled, they are checked also immediately when being freed 1319 * to the pcp lists. 1320 */ 1321 static bool free_pcp_prepare(struct page *page) 1322 { 1323 if (debug_pagealloc_enabled_static()) 1324 return free_pages_prepare(page, 0, true); 1325 else 1326 return free_pages_prepare(page, 0, false); 1327 } 1328 1329 static bool bulkfree_pcp_prepare(struct page *page) 1330 { 1331 return check_free_page(page); 1332 } 1333 #endif /* CONFIG_DEBUG_VM */ 1334 1335 static inline void prefetch_buddy(struct page *page) 1336 { 1337 unsigned long pfn = page_to_pfn(page); 1338 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1339 struct page *buddy = page + (buddy_pfn - pfn); 1340 1341 prefetch(buddy); 1342 } 1343 1344 /* 1345 * Frees a number of pages from the PCP lists 1346 * Assumes all pages on list are in same zone, and of same order. 1347 * count is the number of pages to free. 1348 * 1349 * If the zone was previously in an "all pages pinned" state then look to 1350 * see if this freeing clears that state. 1351 * 1352 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1353 * pinned" detection logic. 1354 */ 1355 static void free_pcppages_bulk(struct zone *zone, int count, 1356 struct per_cpu_pages *pcp) 1357 { 1358 int migratetype = 0; 1359 int batch_free = 0; 1360 int prefetch_nr = READ_ONCE(pcp->batch); 1361 bool isolated_pageblocks; 1362 struct page *page, *tmp; 1363 LIST_HEAD(head); 1364 1365 /* 1366 * Ensure proper count is passed which otherwise would stuck in the 1367 * below while (list_empty(list)) loop. 1368 */ 1369 count = min(pcp->count, count); 1370 while (count) { 1371 struct list_head *list; 1372 1373 /* 1374 * Remove pages from lists in a round-robin fashion. A 1375 * batch_free count is maintained that is incremented when an 1376 * empty list is encountered. This is so more pages are freed 1377 * off fuller lists instead of spinning excessively around empty 1378 * lists 1379 */ 1380 do { 1381 batch_free++; 1382 if (++migratetype == MIGRATE_PCPTYPES) 1383 migratetype = 0; 1384 list = &pcp->lists[migratetype]; 1385 } while (list_empty(list)); 1386 1387 /* This is the only non-empty list. Free them all. */ 1388 if (batch_free == MIGRATE_PCPTYPES) 1389 batch_free = count; 1390 1391 do { 1392 page = list_last_entry(list, struct page, lru); 1393 /* must delete to avoid corrupting pcp list */ 1394 list_del(&page->lru); 1395 pcp->count--; 1396 1397 if (bulkfree_pcp_prepare(page)) 1398 continue; 1399 1400 list_add_tail(&page->lru, &head); 1401 1402 /* 1403 * We are going to put the page back to the global 1404 * pool, prefetch its buddy to speed up later access 1405 * under zone->lock. It is believed the overhead of 1406 * an additional test and calculating buddy_pfn here 1407 * can be offset by reduced memory latency later. To 1408 * avoid excessive prefetching due to large count, only 1409 * prefetch buddy for the first pcp->batch nr of pages. 1410 */ 1411 if (prefetch_nr) { 1412 prefetch_buddy(page); 1413 prefetch_nr--; 1414 } 1415 } while (--count && --batch_free && !list_empty(list)); 1416 } 1417 1418 spin_lock(&zone->lock); 1419 isolated_pageblocks = has_isolate_pageblock(zone); 1420 1421 /* 1422 * Use safe version since after __free_one_page(), 1423 * page->lru.next will not point to original list. 1424 */ 1425 list_for_each_entry_safe(page, tmp, &head, lru) { 1426 int mt = get_pcppage_migratetype(page); 1427 /* MIGRATE_ISOLATE page should not go to pcplists */ 1428 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1429 /* Pageblock could have been isolated meanwhile */ 1430 if (unlikely(isolated_pageblocks)) 1431 mt = get_pageblock_migratetype(page); 1432 1433 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1434 trace_mm_page_pcpu_drain(page, 0, mt); 1435 } 1436 spin_unlock(&zone->lock); 1437 } 1438 1439 static void free_one_page(struct zone *zone, 1440 struct page *page, unsigned long pfn, 1441 unsigned int order, 1442 int migratetype, fpi_t fpi_flags) 1443 { 1444 spin_lock(&zone->lock); 1445 if (unlikely(has_isolate_pageblock(zone) || 1446 is_migrate_isolate(migratetype))) { 1447 migratetype = get_pfnblock_migratetype(page, pfn); 1448 } 1449 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1450 spin_unlock(&zone->lock); 1451 } 1452 1453 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1454 unsigned long zone, int nid) 1455 { 1456 mm_zero_struct_page(page); 1457 set_page_links(page, zone, nid, pfn); 1458 init_page_count(page); 1459 page_mapcount_reset(page); 1460 page_cpupid_reset_last(page); 1461 page_kasan_tag_reset(page); 1462 1463 INIT_LIST_HEAD(&page->lru); 1464 #ifdef WANT_PAGE_VIRTUAL 1465 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1466 if (!is_highmem_idx(zone)) 1467 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1468 #endif 1469 } 1470 1471 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1472 static void __meminit init_reserved_page(unsigned long pfn) 1473 { 1474 pg_data_t *pgdat; 1475 int nid, zid; 1476 1477 if (!early_page_uninitialised(pfn)) 1478 return; 1479 1480 nid = early_pfn_to_nid(pfn); 1481 pgdat = NODE_DATA(nid); 1482 1483 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1484 struct zone *zone = &pgdat->node_zones[zid]; 1485 1486 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1487 break; 1488 } 1489 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1490 } 1491 #else 1492 static inline void init_reserved_page(unsigned long pfn) 1493 { 1494 } 1495 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1496 1497 /* 1498 * Initialised pages do not have PageReserved set. This function is 1499 * called for each range allocated by the bootmem allocator and 1500 * marks the pages PageReserved. The remaining valid pages are later 1501 * sent to the buddy page allocator. 1502 */ 1503 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1504 { 1505 unsigned long start_pfn = PFN_DOWN(start); 1506 unsigned long end_pfn = PFN_UP(end); 1507 1508 for (; start_pfn < end_pfn; start_pfn++) { 1509 if (pfn_valid(start_pfn)) { 1510 struct page *page = pfn_to_page(start_pfn); 1511 1512 init_reserved_page(start_pfn); 1513 1514 /* Avoid false-positive PageTail() */ 1515 INIT_LIST_HEAD(&page->lru); 1516 1517 /* 1518 * no need for atomic set_bit because the struct 1519 * page is not visible yet so nobody should 1520 * access it yet. 1521 */ 1522 __SetPageReserved(page); 1523 } 1524 } 1525 } 1526 1527 static void __free_pages_ok(struct page *page, unsigned int order, 1528 fpi_t fpi_flags) 1529 { 1530 unsigned long flags; 1531 int migratetype; 1532 unsigned long pfn = page_to_pfn(page); 1533 1534 if (!free_pages_prepare(page, order, true)) 1535 return; 1536 1537 migratetype = get_pfnblock_migratetype(page, pfn); 1538 local_irq_save(flags); 1539 __count_vm_events(PGFREE, 1 << order); 1540 free_one_page(page_zone(page), page, pfn, order, migratetype, 1541 fpi_flags); 1542 local_irq_restore(flags); 1543 } 1544 1545 void __free_pages_core(struct page *page, unsigned int order) 1546 { 1547 unsigned int nr_pages = 1 << order; 1548 struct page *p = page; 1549 unsigned int loop; 1550 1551 /* 1552 * When initializing the memmap, __init_single_page() sets the refcount 1553 * of all pages to 1 ("allocated"/"not free"). We have to set the 1554 * refcount of all involved pages to 0. 1555 */ 1556 prefetchw(p); 1557 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1558 prefetchw(p + 1); 1559 __ClearPageReserved(p); 1560 set_page_count(p, 0); 1561 } 1562 __ClearPageReserved(p); 1563 set_page_count(p, 0); 1564 1565 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1566 1567 /* 1568 * Bypass PCP and place fresh pages right to the tail, primarily 1569 * relevant for memory onlining. 1570 */ 1571 __free_pages_ok(page, order, FPI_TO_TAIL); 1572 } 1573 1574 #ifdef CONFIG_NEED_MULTIPLE_NODES 1575 1576 /* 1577 * During memory init memblocks map pfns to nids. The search is expensive and 1578 * this caches recent lookups. The implementation of __early_pfn_to_nid 1579 * treats start/end as pfns. 1580 */ 1581 struct mminit_pfnnid_cache { 1582 unsigned long last_start; 1583 unsigned long last_end; 1584 int last_nid; 1585 }; 1586 1587 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1588 1589 /* 1590 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1591 */ 1592 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1593 struct mminit_pfnnid_cache *state) 1594 { 1595 unsigned long start_pfn, end_pfn; 1596 int nid; 1597 1598 if (state->last_start <= pfn && pfn < state->last_end) 1599 return state->last_nid; 1600 1601 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1602 if (nid != NUMA_NO_NODE) { 1603 state->last_start = start_pfn; 1604 state->last_end = end_pfn; 1605 state->last_nid = nid; 1606 } 1607 1608 return nid; 1609 } 1610 1611 int __meminit early_pfn_to_nid(unsigned long pfn) 1612 { 1613 static DEFINE_SPINLOCK(early_pfn_lock); 1614 int nid; 1615 1616 spin_lock(&early_pfn_lock); 1617 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1618 if (nid < 0) 1619 nid = first_online_node; 1620 spin_unlock(&early_pfn_lock); 1621 1622 return nid; 1623 } 1624 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1625 1626 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1627 unsigned int order) 1628 { 1629 if (early_page_uninitialised(pfn)) 1630 return; 1631 __free_pages_core(page, order); 1632 } 1633 1634 /* 1635 * Check that the whole (or subset of) a pageblock given by the interval of 1636 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1637 * with the migration of free compaction scanner. The scanners then need to 1638 * use only pfn_valid_within() check for arches that allow holes within 1639 * pageblocks. 1640 * 1641 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1642 * 1643 * It's possible on some configurations to have a setup like node0 node1 node0 1644 * i.e. it's possible that all pages within a zones range of pages do not 1645 * belong to a single zone. We assume that a border between node0 and node1 1646 * can occur within a single pageblock, but not a node0 node1 node0 1647 * interleaving within a single pageblock. It is therefore sufficient to check 1648 * the first and last page of a pageblock and avoid checking each individual 1649 * page in a pageblock. 1650 */ 1651 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1652 unsigned long end_pfn, struct zone *zone) 1653 { 1654 struct page *start_page; 1655 struct page *end_page; 1656 1657 /* end_pfn is one past the range we are checking */ 1658 end_pfn--; 1659 1660 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1661 return NULL; 1662 1663 start_page = pfn_to_online_page(start_pfn); 1664 if (!start_page) 1665 return NULL; 1666 1667 if (page_zone(start_page) != zone) 1668 return NULL; 1669 1670 end_page = pfn_to_page(end_pfn); 1671 1672 /* This gives a shorter code than deriving page_zone(end_page) */ 1673 if (page_zone_id(start_page) != page_zone_id(end_page)) 1674 return NULL; 1675 1676 return start_page; 1677 } 1678 1679 void set_zone_contiguous(struct zone *zone) 1680 { 1681 unsigned long block_start_pfn = zone->zone_start_pfn; 1682 unsigned long block_end_pfn; 1683 1684 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1685 for (; block_start_pfn < zone_end_pfn(zone); 1686 block_start_pfn = block_end_pfn, 1687 block_end_pfn += pageblock_nr_pages) { 1688 1689 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1690 1691 if (!__pageblock_pfn_to_page(block_start_pfn, 1692 block_end_pfn, zone)) 1693 return; 1694 cond_resched(); 1695 } 1696 1697 /* We confirm that there is no hole */ 1698 zone->contiguous = true; 1699 } 1700 1701 void clear_zone_contiguous(struct zone *zone) 1702 { 1703 zone->contiguous = false; 1704 } 1705 1706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1707 static void __init deferred_free_range(unsigned long pfn, 1708 unsigned long nr_pages) 1709 { 1710 struct page *page; 1711 unsigned long i; 1712 1713 if (!nr_pages) 1714 return; 1715 1716 page = pfn_to_page(pfn); 1717 1718 /* Free a large naturally-aligned chunk if possible */ 1719 if (nr_pages == pageblock_nr_pages && 1720 (pfn & (pageblock_nr_pages - 1)) == 0) { 1721 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1722 __free_pages_core(page, pageblock_order); 1723 return; 1724 } 1725 1726 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1727 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1728 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1729 __free_pages_core(page, 0); 1730 } 1731 } 1732 1733 /* Completion tracking for deferred_init_memmap() threads */ 1734 static atomic_t pgdat_init_n_undone __initdata; 1735 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1736 1737 static inline void __init pgdat_init_report_one_done(void) 1738 { 1739 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1740 complete(&pgdat_init_all_done_comp); 1741 } 1742 1743 /* 1744 * Returns true if page needs to be initialized or freed to buddy allocator. 1745 * 1746 * First we check if pfn is valid on architectures where it is possible to have 1747 * holes within pageblock_nr_pages. On systems where it is not possible, this 1748 * function is optimized out. 1749 * 1750 * Then, we check if a current large page is valid by only checking the validity 1751 * of the head pfn. 1752 */ 1753 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1754 { 1755 if (!pfn_valid_within(pfn)) 1756 return false; 1757 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1758 return false; 1759 return true; 1760 } 1761 1762 /* 1763 * Free pages to buddy allocator. Try to free aligned pages in 1764 * pageblock_nr_pages sizes. 1765 */ 1766 static void __init deferred_free_pages(unsigned long pfn, 1767 unsigned long end_pfn) 1768 { 1769 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1770 unsigned long nr_free = 0; 1771 1772 for (; pfn < end_pfn; pfn++) { 1773 if (!deferred_pfn_valid(pfn)) { 1774 deferred_free_range(pfn - nr_free, nr_free); 1775 nr_free = 0; 1776 } else if (!(pfn & nr_pgmask)) { 1777 deferred_free_range(pfn - nr_free, nr_free); 1778 nr_free = 1; 1779 } else { 1780 nr_free++; 1781 } 1782 } 1783 /* Free the last block of pages to allocator */ 1784 deferred_free_range(pfn - nr_free, nr_free); 1785 } 1786 1787 /* 1788 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1789 * by performing it only once every pageblock_nr_pages. 1790 * Return number of pages initialized. 1791 */ 1792 static unsigned long __init deferred_init_pages(struct zone *zone, 1793 unsigned long pfn, 1794 unsigned long end_pfn) 1795 { 1796 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1797 int nid = zone_to_nid(zone); 1798 unsigned long nr_pages = 0; 1799 int zid = zone_idx(zone); 1800 struct page *page = NULL; 1801 1802 for (; pfn < end_pfn; pfn++) { 1803 if (!deferred_pfn_valid(pfn)) { 1804 page = NULL; 1805 continue; 1806 } else if (!page || !(pfn & nr_pgmask)) { 1807 page = pfn_to_page(pfn); 1808 } else { 1809 page++; 1810 } 1811 __init_single_page(page, pfn, zid, nid); 1812 nr_pages++; 1813 } 1814 return (nr_pages); 1815 } 1816 1817 /* 1818 * This function is meant to pre-load the iterator for the zone init. 1819 * Specifically it walks through the ranges until we are caught up to the 1820 * first_init_pfn value and exits there. If we never encounter the value we 1821 * return false indicating there are no valid ranges left. 1822 */ 1823 static bool __init 1824 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1825 unsigned long *spfn, unsigned long *epfn, 1826 unsigned long first_init_pfn) 1827 { 1828 u64 j; 1829 1830 /* 1831 * Start out by walking through the ranges in this zone that have 1832 * already been initialized. We don't need to do anything with them 1833 * so we just need to flush them out of the system. 1834 */ 1835 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1836 if (*epfn <= first_init_pfn) 1837 continue; 1838 if (*spfn < first_init_pfn) 1839 *spfn = first_init_pfn; 1840 *i = j; 1841 return true; 1842 } 1843 1844 return false; 1845 } 1846 1847 /* 1848 * Initialize and free pages. We do it in two loops: first we initialize 1849 * struct page, then free to buddy allocator, because while we are 1850 * freeing pages we can access pages that are ahead (computing buddy 1851 * page in __free_one_page()). 1852 * 1853 * In order to try and keep some memory in the cache we have the loop 1854 * broken along max page order boundaries. This way we will not cause 1855 * any issues with the buddy page computation. 1856 */ 1857 static unsigned long __init 1858 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1859 unsigned long *end_pfn) 1860 { 1861 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1862 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1863 unsigned long nr_pages = 0; 1864 u64 j = *i; 1865 1866 /* First we loop through and initialize the page values */ 1867 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1868 unsigned long t; 1869 1870 if (mo_pfn <= *start_pfn) 1871 break; 1872 1873 t = min(mo_pfn, *end_pfn); 1874 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1875 1876 if (mo_pfn < *end_pfn) { 1877 *start_pfn = mo_pfn; 1878 break; 1879 } 1880 } 1881 1882 /* Reset values and now loop through freeing pages as needed */ 1883 swap(j, *i); 1884 1885 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1886 unsigned long t; 1887 1888 if (mo_pfn <= spfn) 1889 break; 1890 1891 t = min(mo_pfn, epfn); 1892 deferred_free_pages(spfn, t); 1893 1894 if (mo_pfn <= epfn) 1895 break; 1896 } 1897 1898 return nr_pages; 1899 } 1900 1901 static void __init 1902 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1903 void *arg) 1904 { 1905 unsigned long spfn, epfn; 1906 struct zone *zone = arg; 1907 u64 i; 1908 1909 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1910 1911 /* 1912 * Initialize and free pages in MAX_ORDER sized increments so that we 1913 * can avoid introducing any issues with the buddy allocator. 1914 */ 1915 while (spfn < end_pfn) { 1916 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1917 cond_resched(); 1918 } 1919 } 1920 1921 /* An arch may override for more concurrency. */ 1922 __weak int __init 1923 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1924 { 1925 return 1; 1926 } 1927 1928 /* Initialise remaining memory on a node */ 1929 static int __init deferred_init_memmap(void *data) 1930 { 1931 pg_data_t *pgdat = data; 1932 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1933 unsigned long spfn = 0, epfn = 0; 1934 unsigned long first_init_pfn, flags; 1935 unsigned long start = jiffies; 1936 struct zone *zone; 1937 int zid, max_threads; 1938 u64 i; 1939 1940 /* Bind memory initialisation thread to a local node if possible */ 1941 if (!cpumask_empty(cpumask)) 1942 set_cpus_allowed_ptr(current, cpumask); 1943 1944 pgdat_resize_lock(pgdat, &flags); 1945 first_init_pfn = pgdat->first_deferred_pfn; 1946 if (first_init_pfn == ULONG_MAX) { 1947 pgdat_resize_unlock(pgdat, &flags); 1948 pgdat_init_report_one_done(); 1949 return 0; 1950 } 1951 1952 /* Sanity check boundaries */ 1953 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1954 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1955 pgdat->first_deferred_pfn = ULONG_MAX; 1956 1957 /* 1958 * Once we unlock here, the zone cannot be grown anymore, thus if an 1959 * interrupt thread must allocate this early in boot, zone must be 1960 * pre-grown prior to start of deferred page initialization. 1961 */ 1962 pgdat_resize_unlock(pgdat, &flags); 1963 1964 /* Only the highest zone is deferred so find it */ 1965 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1966 zone = pgdat->node_zones + zid; 1967 if (first_init_pfn < zone_end_pfn(zone)) 1968 break; 1969 } 1970 1971 /* If the zone is empty somebody else may have cleared out the zone */ 1972 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1973 first_init_pfn)) 1974 goto zone_empty; 1975 1976 max_threads = deferred_page_init_max_threads(cpumask); 1977 1978 while (spfn < epfn) { 1979 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1980 struct padata_mt_job job = { 1981 .thread_fn = deferred_init_memmap_chunk, 1982 .fn_arg = zone, 1983 .start = spfn, 1984 .size = epfn_align - spfn, 1985 .align = PAGES_PER_SECTION, 1986 .min_chunk = PAGES_PER_SECTION, 1987 .max_threads = max_threads, 1988 }; 1989 1990 padata_do_multithreaded(&job); 1991 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1992 epfn_align); 1993 } 1994 zone_empty: 1995 /* Sanity check that the next zone really is unpopulated */ 1996 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1997 1998 pr_info("node %d deferred pages initialised in %ums\n", 1999 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2000 2001 pgdat_init_report_one_done(); 2002 return 0; 2003 } 2004 2005 /* 2006 * If this zone has deferred pages, try to grow it by initializing enough 2007 * deferred pages to satisfy the allocation specified by order, rounded up to 2008 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2009 * of SECTION_SIZE bytes by initializing struct pages in increments of 2010 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2011 * 2012 * Return true when zone was grown, otherwise return false. We return true even 2013 * when we grow less than requested, to let the caller decide if there are 2014 * enough pages to satisfy the allocation. 2015 * 2016 * Note: We use noinline because this function is needed only during boot, and 2017 * it is called from a __ref function _deferred_grow_zone. This way we are 2018 * making sure that it is not inlined into permanent text section. 2019 */ 2020 static noinline bool __init 2021 deferred_grow_zone(struct zone *zone, unsigned int order) 2022 { 2023 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2024 pg_data_t *pgdat = zone->zone_pgdat; 2025 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2026 unsigned long spfn, epfn, flags; 2027 unsigned long nr_pages = 0; 2028 u64 i; 2029 2030 /* Only the last zone may have deferred pages */ 2031 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2032 return false; 2033 2034 pgdat_resize_lock(pgdat, &flags); 2035 2036 /* 2037 * If someone grew this zone while we were waiting for spinlock, return 2038 * true, as there might be enough pages already. 2039 */ 2040 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2041 pgdat_resize_unlock(pgdat, &flags); 2042 return true; 2043 } 2044 2045 /* If the zone is empty somebody else may have cleared out the zone */ 2046 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2047 first_deferred_pfn)) { 2048 pgdat->first_deferred_pfn = ULONG_MAX; 2049 pgdat_resize_unlock(pgdat, &flags); 2050 /* Retry only once. */ 2051 return first_deferred_pfn != ULONG_MAX; 2052 } 2053 2054 /* 2055 * Initialize and free pages in MAX_ORDER sized increments so 2056 * that we can avoid introducing any issues with the buddy 2057 * allocator. 2058 */ 2059 while (spfn < epfn) { 2060 /* update our first deferred PFN for this section */ 2061 first_deferred_pfn = spfn; 2062 2063 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2064 touch_nmi_watchdog(); 2065 2066 /* We should only stop along section boundaries */ 2067 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2068 continue; 2069 2070 /* If our quota has been met we can stop here */ 2071 if (nr_pages >= nr_pages_needed) 2072 break; 2073 } 2074 2075 pgdat->first_deferred_pfn = spfn; 2076 pgdat_resize_unlock(pgdat, &flags); 2077 2078 return nr_pages > 0; 2079 } 2080 2081 /* 2082 * deferred_grow_zone() is __init, but it is called from 2083 * get_page_from_freelist() during early boot until deferred_pages permanently 2084 * disables this call. This is why we have refdata wrapper to avoid warning, 2085 * and to ensure that the function body gets unloaded. 2086 */ 2087 static bool __ref 2088 _deferred_grow_zone(struct zone *zone, unsigned int order) 2089 { 2090 return deferred_grow_zone(zone, order); 2091 } 2092 2093 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2094 2095 void __init page_alloc_init_late(void) 2096 { 2097 struct zone *zone; 2098 int nid; 2099 2100 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2101 2102 /* There will be num_node_state(N_MEMORY) threads */ 2103 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2104 for_each_node_state(nid, N_MEMORY) { 2105 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2106 } 2107 2108 /* Block until all are initialised */ 2109 wait_for_completion(&pgdat_init_all_done_comp); 2110 2111 /* 2112 * The number of managed pages has changed due to the initialisation 2113 * so the pcpu batch and high limits needs to be updated or the limits 2114 * will be artificially small. 2115 */ 2116 for_each_populated_zone(zone) 2117 zone_pcp_update(zone); 2118 2119 /* 2120 * We initialized the rest of the deferred pages. Permanently disable 2121 * on-demand struct page initialization. 2122 */ 2123 static_branch_disable(&deferred_pages); 2124 2125 /* Reinit limits that are based on free pages after the kernel is up */ 2126 files_maxfiles_init(); 2127 #endif 2128 2129 buffer_init(); 2130 2131 /* Discard memblock private memory */ 2132 memblock_discard(); 2133 2134 for_each_node_state(nid, N_MEMORY) 2135 shuffle_free_memory(NODE_DATA(nid)); 2136 2137 for_each_populated_zone(zone) 2138 set_zone_contiguous(zone); 2139 } 2140 2141 #ifdef CONFIG_CMA 2142 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2143 void __init init_cma_reserved_pageblock(struct page *page) 2144 { 2145 unsigned i = pageblock_nr_pages; 2146 struct page *p = page; 2147 2148 do { 2149 __ClearPageReserved(p); 2150 set_page_count(p, 0); 2151 } while (++p, --i); 2152 2153 set_pageblock_migratetype(page, MIGRATE_CMA); 2154 2155 if (pageblock_order >= MAX_ORDER) { 2156 i = pageblock_nr_pages; 2157 p = page; 2158 do { 2159 set_page_refcounted(p); 2160 __free_pages(p, MAX_ORDER - 1); 2161 p += MAX_ORDER_NR_PAGES; 2162 } while (i -= MAX_ORDER_NR_PAGES); 2163 } else { 2164 set_page_refcounted(page); 2165 __free_pages(page, pageblock_order); 2166 } 2167 2168 adjust_managed_page_count(page, pageblock_nr_pages); 2169 } 2170 #endif 2171 2172 /* 2173 * The order of subdivision here is critical for the IO subsystem. 2174 * Please do not alter this order without good reasons and regression 2175 * testing. Specifically, as large blocks of memory are subdivided, 2176 * the order in which smaller blocks are delivered depends on the order 2177 * they're subdivided in this function. This is the primary factor 2178 * influencing the order in which pages are delivered to the IO 2179 * subsystem according to empirical testing, and this is also justified 2180 * by considering the behavior of a buddy system containing a single 2181 * large block of memory acted on by a series of small allocations. 2182 * This behavior is a critical factor in sglist merging's success. 2183 * 2184 * -- nyc 2185 */ 2186 static inline void expand(struct zone *zone, struct page *page, 2187 int low, int high, int migratetype) 2188 { 2189 unsigned long size = 1 << high; 2190 2191 while (high > low) { 2192 high--; 2193 size >>= 1; 2194 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2195 2196 /* 2197 * Mark as guard pages (or page), that will allow to 2198 * merge back to allocator when buddy will be freed. 2199 * Corresponding page table entries will not be touched, 2200 * pages will stay not present in virtual address space 2201 */ 2202 if (set_page_guard(zone, &page[size], high, migratetype)) 2203 continue; 2204 2205 add_to_free_list(&page[size], zone, high, migratetype); 2206 set_buddy_order(&page[size], high); 2207 } 2208 } 2209 2210 static void check_new_page_bad(struct page *page) 2211 { 2212 if (unlikely(page->flags & __PG_HWPOISON)) { 2213 /* Don't complain about hwpoisoned pages */ 2214 page_mapcount_reset(page); /* remove PageBuddy */ 2215 return; 2216 } 2217 2218 bad_page(page, 2219 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2220 } 2221 2222 /* 2223 * This page is about to be returned from the page allocator 2224 */ 2225 static inline int check_new_page(struct page *page) 2226 { 2227 if (likely(page_expected_state(page, 2228 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2229 return 0; 2230 2231 check_new_page_bad(page); 2232 return 1; 2233 } 2234 2235 #ifdef CONFIG_DEBUG_VM 2236 /* 2237 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2238 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2239 * also checked when pcp lists are refilled from the free lists. 2240 */ 2241 static inline bool check_pcp_refill(struct page *page) 2242 { 2243 if (debug_pagealloc_enabled_static()) 2244 return check_new_page(page); 2245 else 2246 return false; 2247 } 2248 2249 static inline bool check_new_pcp(struct page *page) 2250 { 2251 return check_new_page(page); 2252 } 2253 #else 2254 /* 2255 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2256 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2257 * enabled, they are also checked when being allocated from the pcp lists. 2258 */ 2259 static inline bool check_pcp_refill(struct page *page) 2260 { 2261 return check_new_page(page); 2262 } 2263 static inline bool check_new_pcp(struct page *page) 2264 { 2265 if (debug_pagealloc_enabled_static()) 2266 return check_new_page(page); 2267 else 2268 return false; 2269 } 2270 #endif /* CONFIG_DEBUG_VM */ 2271 2272 static bool check_new_pages(struct page *page, unsigned int order) 2273 { 2274 int i; 2275 for (i = 0; i < (1 << order); i++) { 2276 struct page *p = page + i; 2277 2278 if (unlikely(check_new_page(p))) 2279 return true; 2280 } 2281 2282 return false; 2283 } 2284 2285 inline void post_alloc_hook(struct page *page, unsigned int order, 2286 gfp_t gfp_flags) 2287 { 2288 set_page_private(page, 0); 2289 set_page_refcounted(page); 2290 2291 arch_alloc_page(page, order); 2292 debug_pagealloc_map_pages(page, 1 << order); 2293 kasan_alloc_pages(page, order); 2294 kernel_unpoison_pages(page, 1 << order); 2295 set_page_owner(page, order, gfp_flags); 2296 2297 if (!want_init_on_free() && want_init_on_alloc(gfp_flags)) 2298 kernel_init_free_pages(page, 1 << order); 2299 } 2300 2301 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2302 unsigned int alloc_flags) 2303 { 2304 post_alloc_hook(page, order, gfp_flags); 2305 2306 if (order && (gfp_flags & __GFP_COMP)) 2307 prep_compound_page(page, order); 2308 2309 /* 2310 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2311 * allocate the page. The expectation is that the caller is taking 2312 * steps that will free more memory. The caller should avoid the page 2313 * being used for !PFMEMALLOC purposes. 2314 */ 2315 if (alloc_flags & ALLOC_NO_WATERMARKS) 2316 set_page_pfmemalloc(page); 2317 else 2318 clear_page_pfmemalloc(page); 2319 } 2320 2321 /* 2322 * Go through the free lists for the given migratetype and remove 2323 * the smallest available page from the freelists 2324 */ 2325 static __always_inline 2326 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2327 int migratetype) 2328 { 2329 unsigned int current_order; 2330 struct free_area *area; 2331 struct page *page; 2332 2333 /* Find a page of the appropriate size in the preferred list */ 2334 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2335 area = &(zone->free_area[current_order]); 2336 page = get_page_from_free_area(area, migratetype); 2337 if (!page) 2338 continue; 2339 del_page_from_free_list(page, zone, current_order); 2340 expand(zone, page, order, current_order, migratetype); 2341 set_pcppage_migratetype(page, migratetype); 2342 return page; 2343 } 2344 2345 return NULL; 2346 } 2347 2348 2349 /* 2350 * This array describes the order lists are fallen back to when 2351 * the free lists for the desirable migrate type are depleted 2352 */ 2353 static int fallbacks[MIGRATE_TYPES][3] = { 2354 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2355 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2356 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2357 #ifdef CONFIG_CMA 2358 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2359 #endif 2360 #ifdef CONFIG_MEMORY_ISOLATION 2361 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2362 #endif 2363 }; 2364 2365 #ifdef CONFIG_CMA 2366 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2367 unsigned int order) 2368 { 2369 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2370 } 2371 #else 2372 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2373 unsigned int order) { return NULL; } 2374 #endif 2375 2376 /* 2377 * Move the free pages in a range to the freelist tail of the requested type. 2378 * Note that start_page and end_pages are not aligned on a pageblock 2379 * boundary. If alignment is required, use move_freepages_block() 2380 */ 2381 static int move_freepages(struct zone *zone, 2382 struct page *start_page, struct page *end_page, 2383 int migratetype, int *num_movable) 2384 { 2385 struct page *page; 2386 unsigned int order; 2387 int pages_moved = 0; 2388 2389 for (page = start_page; page <= end_page;) { 2390 if (!pfn_valid_within(page_to_pfn(page))) { 2391 page++; 2392 continue; 2393 } 2394 2395 if (!PageBuddy(page)) { 2396 /* 2397 * We assume that pages that could be isolated for 2398 * migration are movable. But we don't actually try 2399 * isolating, as that would be expensive. 2400 */ 2401 if (num_movable && 2402 (PageLRU(page) || __PageMovable(page))) 2403 (*num_movable)++; 2404 2405 page++; 2406 continue; 2407 } 2408 2409 /* Make sure we are not inadvertently changing nodes */ 2410 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2411 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2412 2413 order = buddy_order(page); 2414 move_to_free_list(page, zone, order, migratetype); 2415 page += 1 << order; 2416 pages_moved += 1 << order; 2417 } 2418 2419 return pages_moved; 2420 } 2421 2422 int move_freepages_block(struct zone *zone, struct page *page, 2423 int migratetype, int *num_movable) 2424 { 2425 unsigned long start_pfn, end_pfn; 2426 struct page *start_page, *end_page; 2427 2428 if (num_movable) 2429 *num_movable = 0; 2430 2431 start_pfn = page_to_pfn(page); 2432 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2433 start_page = pfn_to_page(start_pfn); 2434 end_page = start_page + pageblock_nr_pages - 1; 2435 end_pfn = start_pfn + pageblock_nr_pages - 1; 2436 2437 /* Do not cross zone boundaries */ 2438 if (!zone_spans_pfn(zone, start_pfn)) 2439 start_page = page; 2440 if (!zone_spans_pfn(zone, end_pfn)) 2441 return 0; 2442 2443 return move_freepages(zone, start_page, end_page, migratetype, 2444 num_movable); 2445 } 2446 2447 static void change_pageblock_range(struct page *pageblock_page, 2448 int start_order, int migratetype) 2449 { 2450 int nr_pageblocks = 1 << (start_order - pageblock_order); 2451 2452 while (nr_pageblocks--) { 2453 set_pageblock_migratetype(pageblock_page, migratetype); 2454 pageblock_page += pageblock_nr_pages; 2455 } 2456 } 2457 2458 /* 2459 * When we are falling back to another migratetype during allocation, try to 2460 * steal extra free pages from the same pageblocks to satisfy further 2461 * allocations, instead of polluting multiple pageblocks. 2462 * 2463 * If we are stealing a relatively large buddy page, it is likely there will 2464 * be more free pages in the pageblock, so try to steal them all. For 2465 * reclaimable and unmovable allocations, we steal regardless of page size, 2466 * as fragmentation caused by those allocations polluting movable pageblocks 2467 * is worse than movable allocations stealing from unmovable and reclaimable 2468 * pageblocks. 2469 */ 2470 static bool can_steal_fallback(unsigned int order, int start_mt) 2471 { 2472 /* 2473 * Leaving this order check is intended, although there is 2474 * relaxed order check in next check. The reason is that 2475 * we can actually steal whole pageblock if this condition met, 2476 * but, below check doesn't guarantee it and that is just heuristic 2477 * so could be changed anytime. 2478 */ 2479 if (order >= pageblock_order) 2480 return true; 2481 2482 if (order >= pageblock_order / 2 || 2483 start_mt == MIGRATE_RECLAIMABLE || 2484 start_mt == MIGRATE_UNMOVABLE || 2485 page_group_by_mobility_disabled) 2486 return true; 2487 2488 return false; 2489 } 2490 2491 static inline bool boost_watermark(struct zone *zone) 2492 { 2493 unsigned long max_boost; 2494 2495 if (!watermark_boost_factor) 2496 return false; 2497 /* 2498 * Don't bother in zones that are unlikely to produce results. 2499 * On small machines, including kdump capture kernels running 2500 * in a small area, boosting the watermark can cause an out of 2501 * memory situation immediately. 2502 */ 2503 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2504 return false; 2505 2506 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2507 watermark_boost_factor, 10000); 2508 2509 /* 2510 * high watermark may be uninitialised if fragmentation occurs 2511 * very early in boot so do not boost. We do not fall 2512 * through and boost by pageblock_nr_pages as failing 2513 * allocations that early means that reclaim is not going 2514 * to help and it may even be impossible to reclaim the 2515 * boosted watermark resulting in a hang. 2516 */ 2517 if (!max_boost) 2518 return false; 2519 2520 max_boost = max(pageblock_nr_pages, max_boost); 2521 2522 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2523 max_boost); 2524 2525 return true; 2526 } 2527 2528 /* 2529 * This function implements actual steal behaviour. If order is large enough, 2530 * we can steal whole pageblock. If not, we first move freepages in this 2531 * pageblock to our migratetype and determine how many already-allocated pages 2532 * are there in the pageblock with a compatible migratetype. If at least half 2533 * of pages are free or compatible, we can change migratetype of the pageblock 2534 * itself, so pages freed in the future will be put on the correct free list. 2535 */ 2536 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2537 unsigned int alloc_flags, int start_type, bool whole_block) 2538 { 2539 unsigned int current_order = buddy_order(page); 2540 int free_pages, movable_pages, alike_pages; 2541 int old_block_type; 2542 2543 old_block_type = get_pageblock_migratetype(page); 2544 2545 /* 2546 * This can happen due to races and we want to prevent broken 2547 * highatomic accounting. 2548 */ 2549 if (is_migrate_highatomic(old_block_type)) 2550 goto single_page; 2551 2552 /* Take ownership for orders >= pageblock_order */ 2553 if (current_order >= pageblock_order) { 2554 change_pageblock_range(page, current_order, start_type); 2555 goto single_page; 2556 } 2557 2558 /* 2559 * Boost watermarks to increase reclaim pressure to reduce the 2560 * likelihood of future fallbacks. Wake kswapd now as the node 2561 * may be balanced overall and kswapd will not wake naturally. 2562 */ 2563 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2564 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2565 2566 /* We are not allowed to try stealing from the whole block */ 2567 if (!whole_block) 2568 goto single_page; 2569 2570 free_pages = move_freepages_block(zone, page, start_type, 2571 &movable_pages); 2572 /* 2573 * Determine how many pages are compatible with our allocation. 2574 * For movable allocation, it's the number of movable pages which 2575 * we just obtained. For other types it's a bit more tricky. 2576 */ 2577 if (start_type == MIGRATE_MOVABLE) { 2578 alike_pages = movable_pages; 2579 } else { 2580 /* 2581 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2582 * to MOVABLE pageblock, consider all non-movable pages as 2583 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2584 * vice versa, be conservative since we can't distinguish the 2585 * exact migratetype of non-movable pages. 2586 */ 2587 if (old_block_type == MIGRATE_MOVABLE) 2588 alike_pages = pageblock_nr_pages 2589 - (free_pages + movable_pages); 2590 else 2591 alike_pages = 0; 2592 } 2593 2594 /* moving whole block can fail due to zone boundary conditions */ 2595 if (!free_pages) 2596 goto single_page; 2597 2598 /* 2599 * If a sufficient number of pages in the block are either free or of 2600 * comparable migratability as our allocation, claim the whole block. 2601 */ 2602 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2603 page_group_by_mobility_disabled) 2604 set_pageblock_migratetype(page, start_type); 2605 2606 return; 2607 2608 single_page: 2609 move_to_free_list(page, zone, current_order, start_type); 2610 } 2611 2612 /* 2613 * Check whether there is a suitable fallback freepage with requested order. 2614 * If only_stealable is true, this function returns fallback_mt only if 2615 * we can steal other freepages all together. This would help to reduce 2616 * fragmentation due to mixed migratetype pages in one pageblock. 2617 */ 2618 int find_suitable_fallback(struct free_area *area, unsigned int order, 2619 int migratetype, bool only_stealable, bool *can_steal) 2620 { 2621 int i; 2622 int fallback_mt; 2623 2624 if (area->nr_free == 0) 2625 return -1; 2626 2627 *can_steal = false; 2628 for (i = 0;; i++) { 2629 fallback_mt = fallbacks[migratetype][i]; 2630 if (fallback_mt == MIGRATE_TYPES) 2631 break; 2632 2633 if (free_area_empty(area, fallback_mt)) 2634 continue; 2635 2636 if (can_steal_fallback(order, migratetype)) 2637 *can_steal = true; 2638 2639 if (!only_stealable) 2640 return fallback_mt; 2641 2642 if (*can_steal) 2643 return fallback_mt; 2644 } 2645 2646 return -1; 2647 } 2648 2649 /* 2650 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2651 * there are no empty page blocks that contain a page with a suitable order 2652 */ 2653 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2654 unsigned int alloc_order) 2655 { 2656 int mt; 2657 unsigned long max_managed, flags; 2658 2659 /* 2660 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2661 * Check is race-prone but harmless. 2662 */ 2663 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2664 if (zone->nr_reserved_highatomic >= max_managed) 2665 return; 2666 2667 spin_lock_irqsave(&zone->lock, flags); 2668 2669 /* Recheck the nr_reserved_highatomic limit under the lock */ 2670 if (zone->nr_reserved_highatomic >= max_managed) 2671 goto out_unlock; 2672 2673 /* Yoink! */ 2674 mt = get_pageblock_migratetype(page); 2675 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2676 && !is_migrate_cma(mt)) { 2677 zone->nr_reserved_highatomic += pageblock_nr_pages; 2678 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2679 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2680 } 2681 2682 out_unlock: 2683 spin_unlock_irqrestore(&zone->lock, flags); 2684 } 2685 2686 /* 2687 * Used when an allocation is about to fail under memory pressure. This 2688 * potentially hurts the reliability of high-order allocations when under 2689 * intense memory pressure but failed atomic allocations should be easier 2690 * to recover from than an OOM. 2691 * 2692 * If @force is true, try to unreserve a pageblock even though highatomic 2693 * pageblock is exhausted. 2694 */ 2695 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2696 bool force) 2697 { 2698 struct zonelist *zonelist = ac->zonelist; 2699 unsigned long flags; 2700 struct zoneref *z; 2701 struct zone *zone; 2702 struct page *page; 2703 int order; 2704 bool ret; 2705 2706 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2707 ac->nodemask) { 2708 /* 2709 * Preserve at least one pageblock unless memory pressure 2710 * is really high. 2711 */ 2712 if (!force && zone->nr_reserved_highatomic <= 2713 pageblock_nr_pages) 2714 continue; 2715 2716 spin_lock_irqsave(&zone->lock, flags); 2717 for (order = 0; order < MAX_ORDER; order++) { 2718 struct free_area *area = &(zone->free_area[order]); 2719 2720 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2721 if (!page) 2722 continue; 2723 2724 /* 2725 * In page freeing path, migratetype change is racy so 2726 * we can counter several free pages in a pageblock 2727 * in this loop althoug we changed the pageblock type 2728 * from highatomic to ac->migratetype. So we should 2729 * adjust the count once. 2730 */ 2731 if (is_migrate_highatomic_page(page)) { 2732 /* 2733 * It should never happen but changes to 2734 * locking could inadvertently allow a per-cpu 2735 * drain to add pages to MIGRATE_HIGHATOMIC 2736 * while unreserving so be safe and watch for 2737 * underflows. 2738 */ 2739 zone->nr_reserved_highatomic -= min( 2740 pageblock_nr_pages, 2741 zone->nr_reserved_highatomic); 2742 } 2743 2744 /* 2745 * Convert to ac->migratetype and avoid the normal 2746 * pageblock stealing heuristics. Minimally, the caller 2747 * is doing the work and needs the pages. More 2748 * importantly, if the block was always converted to 2749 * MIGRATE_UNMOVABLE or another type then the number 2750 * of pageblocks that cannot be completely freed 2751 * may increase. 2752 */ 2753 set_pageblock_migratetype(page, ac->migratetype); 2754 ret = move_freepages_block(zone, page, ac->migratetype, 2755 NULL); 2756 if (ret) { 2757 spin_unlock_irqrestore(&zone->lock, flags); 2758 return ret; 2759 } 2760 } 2761 spin_unlock_irqrestore(&zone->lock, flags); 2762 } 2763 2764 return false; 2765 } 2766 2767 /* 2768 * Try finding a free buddy page on the fallback list and put it on the free 2769 * list of requested migratetype, possibly along with other pages from the same 2770 * block, depending on fragmentation avoidance heuristics. Returns true if 2771 * fallback was found so that __rmqueue_smallest() can grab it. 2772 * 2773 * The use of signed ints for order and current_order is a deliberate 2774 * deviation from the rest of this file, to make the for loop 2775 * condition simpler. 2776 */ 2777 static __always_inline bool 2778 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2779 unsigned int alloc_flags) 2780 { 2781 struct free_area *area; 2782 int current_order; 2783 int min_order = order; 2784 struct page *page; 2785 int fallback_mt; 2786 bool can_steal; 2787 2788 /* 2789 * Do not steal pages from freelists belonging to other pageblocks 2790 * i.e. orders < pageblock_order. If there are no local zones free, 2791 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2792 */ 2793 if (alloc_flags & ALLOC_NOFRAGMENT) 2794 min_order = pageblock_order; 2795 2796 /* 2797 * Find the largest available free page in the other list. This roughly 2798 * approximates finding the pageblock with the most free pages, which 2799 * would be too costly to do exactly. 2800 */ 2801 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2802 --current_order) { 2803 area = &(zone->free_area[current_order]); 2804 fallback_mt = find_suitable_fallback(area, current_order, 2805 start_migratetype, false, &can_steal); 2806 if (fallback_mt == -1) 2807 continue; 2808 2809 /* 2810 * We cannot steal all free pages from the pageblock and the 2811 * requested migratetype is movable. In that case it's better to 2812 * steal and split the smallest available page instead of the 2813 * largest available page, because even if the next movable 2814 * allocation falls back into a different pageblock than this 2815 * one, it won't cause permanent fragmentation. 2816 */ 2817 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2818 && current_order > order) 2819 goto find_smallest; 2820 2821 goto do_steal; 2822 } 2823 2824 return false; 2825 2826 find_smallest: 2827 for (current_order = order; current_order < MAX_ORDER; 2828 current_order++) { 2829 area = &(zone->free_area[current_order]); 2830 fallback_mt = find_suitable_fallback(area, current_order, 2831 start_migratetype, false, &can_steal); 2832 if (fallback_mt != -1) 2833 break; 2834 } 2835 2836 /* 2837 * This should not happen - we already found a suitable fallback 2838 * when looking for the largest page. 2839 */ 2840 VM_BUG_ON(current_order == MAX_ORDER); 2841 2842 do_steal: 2843 page = get_page_from_free_area(area, fallback_mt); 2844 2845 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2846 can_steal); 2847 2848 trace_mm_page_alloc_extfrag(page, order, current_order, 2849 start_migratetype, fallback_mt); 2850 2851 return true; 2852 2853 } 2854 2855 /* 2856 * Do the hard work of removing an element from the buddy allocator. 2857 * Call me with the zone->lock already held. 2858 */ 2859 static __always_inline struct page * 2860 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2861 unsigned int alloc_flags) 2862 { 2863 struct page *page; 2864 2865 #ifdef CONFIG_CMA 2866 /* 2867 * Balance movable allocations between regular and CMA areas by 2868 * allocating from CMA when over half of the zone's free memory 2869 * is in the CMA area. 2870 */ 2871 if (alloc_flags & ALLOC_CMA && 2872 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2873 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2874 page = __rmqueue_cma_fallback(zone, order); 2875 if (page) 2876 return page; 2877 } 2878 #endif 2879 retry: 2880 page = __rmqueue_smallest(zone, order, migratetype); 2881 if (unlikely(!page)) { 2882 if (alloc_flags & ALLOC_CMA) 2883 page = __rmqueue_cma_fallback(zone, order); 2884 2885 if (!page && __rmqueue_fallback(zone, order, migratetype, 2886 alloc_flags)) 2887 goto retry; 2888 } 2889 2890 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2891 return page; 2892 } 2893 2894 /* 2895 * Obtain a specified number of elements from the buddy allocator, all under 2896 * a single hold of the lock, for efficiency. Add them to the supplied list. 2897 * Returns the number of new pages which were placed at *list. 2898 */ 2899 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2900 unsigned long count, struct list_head *list, 2901 int migratetype, unsigned int alloc_flags) 2902 { 2903 int i, alloced = 0; 2904 2905 spin_lock(&zone->lock); 2906 for (i = 0; i < count; ++i) { 2907 struct page *page = __rmqueue(zone, order, migratetype, 2908 alloc_flags); 2909 if (unlikely(page == NULL)) 2910 break; 2911 2912 if (unlikely(check_pcp_refill(page))) 2913 continue; 2914 2915 /* 2916 * Split buddy pages returned by expand() are received here in 2917 * physical page order. The page is added to the tail of 2918 * caller's list. From the callers perspective, the linked list 2919 * is ordered by page number under some conditions. This is 2920 * useful for IO devices that can forward direction from the 2921 * head, thus also in the physical page order. This is useful 2922 * for IO devices that can merge IO requests if the physical 2923 * pages are ordered properly. 2924 */ 2925 list_add_tail(&page->lru, list); 2926 alloced++; 2927 if (is_migrate_cma(get_pcppage_migratetype(page))) 2928 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2929 -(1 << order)); 2930 } 2931 2932 /* 2933 * i pages were removed from the buddy list even if some leak due 2934 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2935 * on i. Do not confuse with 'alloced' which is the number of 2936 * pages added to the pcp list. 2937 */ 2938 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2939 spin_unlock(&zone->lock); 2940 return alloced; 2941 } 2942 2943 #ifdef CONFIG_NUMA 2944 /* 2945 * Called from the vmstat counter updater to drain pagesets of this 2946 * currently executing processor on remote nodes after they have 2947 * expired. 2948 * 2949 * Note that this function must be called with the thread pinned to 2950 * a single processor. 2951 */ 2952 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2953 { 2954 unsigned long flags; 2955 int to_drain, batch; 2956 2957 local_irq_save(flags); 2958 batch = READ_ONCE(pcp->batch); 2959 to_drain = min(pcp->count, batch); 2960 if (to_drain > 0) 2961 free_pcppages_bulk(zone, to_drain, pcp); 2962 local_irq_restore(flags); 2963 } 2964 #endif 2965 2966 /* 2967 * Drain pcplists of the indicated processor and zone. 2968 * 2969 * The processor must either be the current processor and the 2970 * thread pinned to the current processor or a processor that 2971 * is not online. 2972 */ 2973 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2974 { 2975 unsigned long flags; 2976 struct per_cpu_pageset *pset; 2977 struct per_cpu_pages *pcp; 2978 2979 local_irq_save(flags); 2980 pset = per_cpu_ptr(zone->pageset, cpu); 2981 2982 pcp = &pset->pcp; 2983 if (pcp->count) 2984 free_pcppages_bulk(zone, pcp->count, pcp); 2985 local_irq_restore(flags); 2986 } 2987 2988 /* 2989 * Drain pcplists of all zones on the indicated processor. 2990 * 2991 * The processor must either be the current processor and the 2992 * thread pinned to the current processor or a processor that 2993 * is not online. 2994 */ 2995 static void drain_pages(unsigned int cpu) 2996 { 2997 struct zone *zone; 2998 2999 for_each_populated_zone(zone) { 3000 drain_pages_zone(cpu, zone); 3001 } 3002 } 3003 3004 /* 3005 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3006 * 3007 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3008 * the single zone's pages. 3009 */ 3010 void drain_local_pages(struct zone *zone) 3011 { 3012 int cpu = smp_processor_id(); 3013 3014 if (zone) 3015 drain_pages_zone(cpu, zone); 3016 else 3017 drain_pages(cpu); 3018 } 3019 3020 static void drain_local_pages_wq(struct work_struct *work) 3021 { 3022 struct pcpu_drain *drain; 3023 3024 drain = container_of(work, struct pcpu_drain, work); 3025 3026 /* 3027 * drain_all_pages doesn't use proper cpu hotplug protection so 3028 * we can race with cpu offline when the WQ can move this from 3029 * a cpu pinned worker to an unbound one. We can operate on a different 3030 * cpu which is allright but we also have to make sure to not move to 3031 * a different one. 3032 */ 3033 preempt_disable(); 3034 drain_local_pages(drain->zone); 3035 preempt_enable(); 3036 } 3037 3038 /* 3039 * The implementation of drain_all_pages(), exposing an extra parameter to 3040 * drain on all cpus. 3041 * 3042 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3043 * not empty. The check for non-emptiness can however race with a free to 3044 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3045 * that need the guarantee that every CPU has drained can disable the 3046 * optimizing racy check. 3047 */ 3048 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3049 { 3050 int cpu; 3051 3052 /* 3053 * Allocate in the BSS so we wont require allocation in 3054 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3055 */ 3056 static cpumask_t cpus_with_pcps; 3057 3058 /* 3059 * Make sure nobody triggers this path before mm_percpu_wq is fully 3060 * initialized. 3061 */ 3062 if (WARN_ON_ONCE(!mm_percpu_wq)) 3063 return; 3064 3065 /* 3066 * Do not drain if one is already in progress unless it's specific to 3067 * a zone. Such callers are primarily CMA and memory hotplug and need 3068 * the drain to be complete when the call returns. 3069 */ 3070 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3071 if (!zone) 3072 return; 3073 mutex_lock(&pcpu_drain_mutex); 3074 } 3075 3076 /* 3077 * We don't care about racing with CPU hotplug event 3078 * as offline notification will cause the notified 3079 * cpu to drain that CPU pcps and on_each_cpu_mask 3080 * disables preemption as part of its processing 3081 */ 3082 for_each_online_cpu(cpu) { 3083 struct per_cpu_pageset *pcp; 3084 struct zone *z; 3085 bool has_pcps = false; 3086 3087 if (force_all_cpus) { 3088 /* 3089 * The pcp.count check is racy, some callers need a 3090 * guarantee that no cpu is missed. 3091 */ 3092 has_pcps = true; 3093 } else if (zone) { 3094 pcp = per_cpu_ptr(zone->pageset, cpu); 3095 if (pcp->pcp.count) 3096 has_pcps = true; 3097 } else { 3098 for_each_populated_zone(z) { 3099 pcp = per_cpu_ptr(z->pageset, cpu); 3100 if (pcp->pcp.count) { 3101 has_pcps = true; 3102 break; 3103 } 3104 } 3105 } 3106 3107 if (has_pcps) 3108 cpumask_set_cpu(cpu, &cpus_with_pcps); 3109 else 3110 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3111 } 3112 3113 for_each_cpu(cpu, &cpus_with_pcps) { 3114 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3115 3116 drain->zone = zone; 3117 INIT_WORK(&drain->work, drain_local_pages_wq); 3118 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3119 } 3120 for_each_cpu(cpu, &cpus_with_pcps) 3121 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3122 3123 mutex_unlock(&pcpu_drain_mutex); 3124 } 3125 3126 /* 3127 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3128 * 3129 * When zone parameter is non-NULL, spill just the single zone's pages. 3130 * 3131 * Note that this can be extremely slow as the draining happens in a workqueue. 3132 */ 3133 void drain_all_pages(struct zone *zone) 3134 { 3135 __drain_all_pages(zone, false); 3136 } 3137 3138 #ifdef CONFIG_HIBERNATION 3139 3140 /* 3141 * Touch the watchdog for every WD_PAGE_COUNT pages. 3142 */ 3143 #define WD_PAGE_COUNT (128*1024) 3144 3145 void mark_free_pages(struct zone *zone) 3146 { 3147 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3148 unsigned long flags; 3149 unsigned int order, t; 3150 struct page *page; 3151 3152 if (zone_is_empty(zone)) 3153 return; 3154 3155 spin_lock_irqsave(&zone->lock, flags); 3156 3157 max_zone_pfn = zone_end_pfn(zone); 3158 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3159 if (pfn_valid(pfn)) { 3160 page = pfn_to_page(pfn); 3161 3162 if (!--page_count) { 3163 touch_nmi_watchdog(); 3164 page_count = WD_PAGE_COUNT; 3165 } 3166 3167 if (page_zone(page) != zone) 3168 continue; 3169 3170 if (!swsusp_page_is_forbidden(page)) 3171 swsusp_unset_page_free(page); 3172 } 3173 3174 for_each_migratetype_order(order, t) { 3175 list_for_each_entry(page, 3176 &zone->free_area[order].free_list[t], lru) { 3177 unsigned long i; 3178 3179 pfn = page_to_pfn(page); 3180 for (i = 0; i < (1UL << order); i++) { 3181 if (!--page_count) { 3182 touch_nmi_watchdog(); 3183 page_count = WD_PAGE_COUNT; 3184 } 3185 swsusp_set_page_free(pfn_to_page(pfn + i)); 3186 } 3187 } 3188 } 3189 spin_unlock_irqrestore(&zone->lock, flags); 3190 } 3191 #endif /* CONFIG_PM */ 3192 3193 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3194 { 3195 int migratetype; 3196 3197 if (!free_pcp_prepare(page)) 3198 return false; 3199 3200 migratetype = get_pfnblock_migratetype(page, pfn); 3201 set_pcppage_migratetype(page, migratetype); 3202 return true; 3203 } 3204 3205 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3206 { 3207 struct zone *zone = page_zone(page); 3208 struct per_cpu_pages *pcp; 3209 int migratetype; 3210 3211 migratetype = get_pcppage_migratetype(page); 3212 __count_vm_event(PGFREE); 3213 3214 /* 3215 * We only track unmovable, reclaimable and movable on pcp lists. 3216 * Free ISOLATE pages back to the allocator because they are being 3217 * offlined but treat HIGHATOMIC as movable pages so we can get those 3218 * areas back if necessary. Otherwise, we may have to free 3219 * excessively into the page allocator 3220 */ 3221 if (migratetype >= MIGRATE_PCPTYPES) { 3222 if (unlikely(is_migrate_isolate(migratetype))) { 3223 free_one_page(zone, page, pfn, 0, migratetype, 3224 FPI_NONE); 3225 return; 3226 } 3227 migratetype = MIGRATE_MOVABLE; 3228 } 3229 3230 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3231 list_add(&page->lru, &pcp->lists[migratetype]); 3232 pcp->count++; 3233 if (pcp->count >= READ_ONCE(pcp->high)) 3234 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp); 3235 } 3236 3237 /* 3238 * Free a 0-order page 3239 */ 3240 void free_unref_page(struct page *page) 3241 { 3242 unsigned long flags; 3243 unsigned long pfn = page_to_pfn(page); 3244 3245 if (!free_unref_page_prepare(page, pfn)) 3246 return; 3247 3248 local_irq_save(flags); 3249 free_unref_page_commit(page, pfn); 3250 local_irq_restore(flags); 3251 } 3252 3253 /* 3254 * Free a list of 0-order pages 3255 */ 3256 void free_unref_page_list(struct list_head *list) 3257 { 3258 struct page *page, *next; 3259 unsigned long flags, pfn; 3260 int batch_count = 0; 3261 3262 /* Prepare pages for freeing */ 3263 list_for_each_entry_safe(page, next, list, lru) { 3264 pfn = page_to_pfn(page); 3265 if (!free_unref_page_prepare(page, pfn)) 3266 list_del(&page->lru); 3267 set_page_private(page, pfn); 3268 } 3269 3270 local_irq_save(flags); 3271 list_for_each_entry_safe(page, next, list, lru) { 3272 unsigned long pfn = page_private(page); 3273 3274 set_page_private(page, 0); 3275 trace_mm_page_free_batched(page); 3276 free_unref_page_commit(page, pfn); 3277 3278 /* 3279 * Guard against excessive IRQ disabled times when we get 3280 * a large list of pages to free. 3281 */ 3282 if (++batch_count == SWAP_CLUSTER_MAX) { 3283 local_irq_restore(flags); 3284 batch_count = 0; 3285 local_irq_save(flags); 3286 } 3287 } 3288 local_irq_restore(flags); 3289 } 3290 3291 /* 3292 * split_page takes a non-compound higher-order page, and splits it into 3293 * n (1<<order) sub-pages: page[0..n] 3294 * Each sub-page must be freed individually. 3295 * 3296 * Note: this is probably too low level an operation for use in drivers. 3297 * Please consult with lkml before using this in your driver. 3298 */ 3299 void split_page(struct page *page, unsigned int order) 3300 { 3301 int i; 3302 3303 VM_BUG_ON_PAGE(PageCompound(page), page); 3304 VM_BUG_ON_PAGE(!page_count(page), page); 3305 3306 for (i = 1; i < (1 << order); i++) 3307 set_page_refcounted(page + i); 3308 split_page_owner(page, 1 << order); 3309 } 3310 EXPORT_SYMBOL_GPL(split_page); 3311 3312 int __isolate_free_page(struct page *page, unsigned int order) 3313 { 3314 unsigned long watermark; 3315 struct zone *zone; 3316 int mt; 3317 3318 BUG_ON(!PageBuddy(page)); 3319 3320 zone = page_zone(page); 3321 mt = get_pageblock_migratetype(page); 3322 3323 if (!is_migrate_isolate(mt)) { 3324 /* 3325 * Obey watermarks as if the page was being allocated. We can 3326 * emulate a high-order watermark check with a raised order-0 3327 * watermark, because we already know our high-order page 3328 * exists. 3329 */ 3330 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3331 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3332 return 0; 3333 3334 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3335 } 3336 3337 /* Remove page from free list */ 3338 3339 del_page_from_free_list(page, zone, order); 3340 3341 /* 3342 * Set the pageblock if the isolated page is at least half of a 3343 * pageblock 3344 */ 3345 if (order >= pageblock_order - 1) { 3346 struct page *endpage = page + (1 << order) - 1; 3347 for (; page < endpage; page += pageblock_nr_pages) { 3348 int mt = get_pageblock_migratetype(page); 3349 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3350 && !is_migrate_highatomic(mt)) 3351 set_pageblock_migratetype(page, 3352 MIGRATE_MOVABLE); 3353 } 3354 } 3355 3356 3357 return 1UL << order; 3358 } 3359 3360 /** 3361 * __putback_isolated_page - Return a now-isolated page back where we got it 3362 * @page: Page that was isolated 3363 * @order: Order of the isolated page 3364 * @mt: The page's pageblock's migratetype 3365 * 3366 * This function is meant to return a page pulled from the free lists via 3367 * __isolate_free_page back to the free lists they were pulled from. 3368 */ 3369 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3370 { 3371 struct zone *zone = page_zone(page); 3372 3373 /* zone lock should be held when this function is called */ 3374 lockdep_assert_held(&zone->lock); 3375 3376 /* Return isolated page to tail of freelist. */ 3377 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3378 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3379 } 3380 3381 /* 3382 * Update NUMA hit/miss statistics 3383 * 3384 * Must be called with interrupts disabled. 3385 */ 3386 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3387 { 3388 #ifdef CONFIG_NUMA 3389 enum numa_stat_item local_stat = NUMA_LOCAL; 3390 3391 /* skip numa counters update if numa stats is disabled */ 3392 if (!static_branch_likely(&vm_numa_stat_key)) 3393 return; 3394 3395 if (zone_to_nid(z) != numa_node_id()) 3396 local_stat = NUMA_OTHER; 3397 3398 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3399 __inc_numa_state(z, NUMA_HIT); 3400 else { 3401 __inc_numa_state(z, NUMA_MISS); 3402 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3403 } 3404 __inc_numa_state(z, local_stat); 3405 #endif 3406 } 3407 3408 /* Remove page from the per-cpu list, caller must protect the list */ 3409 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3410 unsigned int alloc_flags, 3411 struct per_cpu_pages *pcp, 3412 struct list_head *list) 3413 { 3414 struct page *page; 3415 3416 do { 3417 if (list_empty(list)) { 3418 pcp->count += rmqueue_bulk(zone, 0, 3419 READ_ONCE(pcp->batch), list, 3420 migratetype, alloc_flags); 3421 if (unlikely(list_empty(list))) 3422 return NULL; 3423 } 3424 3425 page = list_first_entry(list, struct page, lru); 3426 list_del(&page->lru); 3427 pcp->count--; 3428 } while (check_new_pcp(page)); 3429 3430 return page; 3431 } 3432 3433 /* Lock and remove page from the per-cpu list */ 3434 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3435 struct zone *zone, gfp_t gfp_flags, 3436 int migratetype, unsigned int alloc_flags) 3437 { 3438 struct per_cpu_pages *pcp; 3439 struct list_head *list; 3440 struct page *page; 3441 unsigned long flags; 3442 3443 local_irq_save(flags); 3444 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3445 list = &pcp->lists[migratetype]; 3446 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3447 if (page) { 3448 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3449 zone_statistics(preferred_zone, zone); 3450 } 3451 local_irq_restore(flags); 3452 return page; 3453 } 3454 3455 /* 3456 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3457 */ 3458 static inline 3459 struct page *rmqueue(struct zone *preferred_zone, 3460 struct zone *zone, unsigned int order, 3461 gfp_t gfp_flags, unsigned int alloc_flags, 3462 int migratetype) 3463 { 3464 unsigned long flags; 3465 struct page *page; 3466 3467 if (likely(order == 0)) { 3468 /* 3469 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3470 * we need to skip it when CMA area isn't allowed. 3471 */ 3472 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3473 migratetype != MIGRATE_MOVABLE) { 3474 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3475 migratetype, alloc_flags); 3476 goto out; 3477 } 3478 } 3479 3480 /* 3481 * We most definitely don't want callers attempting to 3482 * allocate greater than order-1 page units with __GFP_NOFAIL. 3483 */ 3484 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3485 spin_lock_irqsave(&zone->lock, flags); 3486 3487 do { 3488 page = NULL; 3489 /* 3490 * order-0 request can reach here when the pcplist is skipped 3491 * due to non-CMA allocation context. HIGHATOMIC area is 3492 * reserved for high-order atomic allocation, so order-0 3493 * request should skip it. 3494 */ 3495 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3496 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3497 if (page) 3498 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3499 } 3500 if (!page) 3501 page = __rmqueue(zone, order, migratetype, alloc_flags); 3502 } while (page && check_new_pages(page, order)); 3503 spin_unlock(&zone->lock); 3504 if (!page) 3505 goto failed; 3506 __mod_zone_freepage_state(zone, -(1 << order), 3507 get_pcppage_migratetype(page)); 3508 3509 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3510 zone_statistics(preferred_zone, zone); 3511 local_irq_restore(flags); 3512 3513 out: 3514 /* Separate test+clear to avoid unnecessary atomics */ 3515 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3516 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3517 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3518 } 3519 3520 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3521 return page; 3522 3523 failed: 3524 local_irq_restore(flags); 3525 return NULL; 3526 } 3527 3528 #ifdef CONFIG_FAIL_PAGE_ALLOC 3529 3530 static struct { 3531 struct fault_attr attr; 3532 3533 bool ignore_gfp_highmem; 3534 bool ignore_gfp_reclaim; 3535 u32 min_order; 3536 } fail_page_alloc = { 3537 .attr = FAULT_ATTR_INITIALIZER, 3538 .ignore_gfp_reclaim = true, 3539 .ignore_gfp_highmem = true, 3540 .min_order = 1, 3541 }; 3542 3543 static int __init setup_fail_page_alloc(char *str) 3544 { 3545 return setup_fault_attr(&fail_page_alloc.attr, str); 3546 } 3547 __setup("fail_page_alloc=", setup_fail_page_alloc); 3548 3549 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3550 { 3551 if (order < fail_page_alloc.min_order) 3552 return false; 3553 if (gfp_mask & __GFP_NOFAIL) 3554 return false; 3555 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3556 return false; 3557 if (fail_page_alloc.ignore_gfp_reclaim && 3558 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3559 return false; 3560 3561 return should_fail(&fail_page_alloc.attr, 1 << order); 3562 } 3563 3564 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3565 3566 static int __init fail_page_alloc_debugfs(void) 3567 { 3568 umode_t mode = S_IFREG | 0600; 3569 struct dentry *dir; 3570 3571 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3572 &fail_page_alloc.attr); 3573 3574 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3575 &fail_page_alloc.ignore_gfp_reclaim); 3576 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3577 &fail_page_alloc.ignore_gfp_highmem); 3578 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3579 3580 return 0; 3581 } 3582 3583 late_initcall(fail_page_alloc_debugfs); 3584 3585 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3586 3587 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3588 3589 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3590 { 3591 return false; 3592 } 3593 3594 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3595 3596 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3597 { 3598 return __should_fail_alloc_page(gfp_mask, order); 3599 } 3600 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3601 3602 static inline long __zone_watermark_unusable_free(struct zone *z, 3603 unsigned int order, unsigned int alloc_flags) 3604 { 3605 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3606 long unusable_free = (1 << order) - 1; 3607 3608 /* 3609 * If the caller does not have rights to ALLOC_HARDER then subtract 3610 * the high-atomic reserves. This will over-estimate the size of the 3611 * atomic reserve but it avoids a search. 3612 */ 3613 if (likely(!alloc_harder)) 3614 unusable_free += z->nr_reserved_highatomic; 3615 3616 #ifdef CONFIG_CMA 3617 /* If allocation can't use CMA areas don't use free CMA pages */ 3618 if (!(alloc_flags & ALLOC_CMA)) 3619 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3620 #endif 3621 3622 return unusable_free; 3623 } 3624 3625 /* 3626 * Return true if free base pages are above 'mark'. For high-order checks it 3627 * will return true of the order-0 watermark is reached and there is at least 3628 * one free page of a suitable size. Checking now avoids taking the zone lock 3629 * to check in the allocation paths if no pages are free. 3630 */ 3631 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3632 int highest_zoneidx, unsigned int alloc_flags, 3633 long free_pages) 3634 { 3635 long min = mark; 3636 int o; 3637 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3638 3639 /* free_pages may go negative - that's OK */ 3640 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3641 3642 if (alloc_flags & ALLOC_HIGH) 3643 min -= min / 2; 3644 3645 if (unlikely(alloc_harder)) { 3646 /* 3647 * OOM victims can try even harder than normal ALLOC_HARDER 3648 * users on the grounds that it's definitely going to be in 3649 * the exit path shortly and free memory. Any allocation it 3650 * makes during the free path will be small and short-lived. 3651 */ 3652 if (alloc_flags & ALLOC_OOM) 3653 min -= min / 2; 3654 else 3655 min -= min / 4; 3656 } 3657 3658 /* 3659 * Check watermarks for an order-0 allocation request. If these 3660 * are not met, then a high-order request also cannot go ahead 3661 * even if a suitable page happened to be free. 3662 */ 3663 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3664 return false; 3665 3666 /* If this is an order-0 request then the watermark is fine */ 3667 if (!order) 3668 return true; 3669 3670 /* For a high-order request, check at least one suitable page is free */ 3671 for (o = order; o < MAX_ORDER; o++) { 3672 struct free_area *area = &z->free_area[o]; 3673 int mt; 3674 3675 if (!area->nr_free) 3676 continue; 3677 3678 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3679 if (!free_area_empty(area, mt)) 3680 return true; 3681 } 3682 3683 #ifdef CONFIG_CMA 3684 if ((alloc_flags & ALLOC_CMA) && 3685 !free_area_empty(area, MIGRATE_CMA)) { 3686 return true; 3687 } 3688 #endif 3689 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3690 return true; 3691 } 3692 return false; 3693 } 3694 3695 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3696 int highest_zoneidx, unsigned int alloc_flags) 3697 { 3698 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3699 zone_page_state(z, NR_FREE_PAGES)); 3700 } 3701 3702 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3703 unsigned long mark, int highest_zoneidx, 3704 unsigned int alloc_flags, gfp_t gfp_mask) 3705 { 3706 long free_pages; 3707 3708 free_pages = zone_page_state(z, NR_FREE_PAGES); 3709 3710 /* 3711 * Fast check for order-0 only. If this fails then the reserves 3712 * need to be calculated. 3713 */ 3714 if (!order) { 3715 long fast_free; 3716 3717 fast_free = free_pages; 3718 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3719 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3720 return true; 3721 } 3722 3723 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3724 free_pages)) 3725 return true; 3726 /* 3727 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3728 * when checking the min watermark. The min watermark is the 3729 * point where boosting is ignored so that kswapd is woken up 3730 * when below the low watermark. 3731 */ 3732 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3733 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3734 mark = z->_watermark[WMARK_MIN]; 3735 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3736 alloc_flags, free_pages); 3737 } 3738 3739 return false; 3740 } 3741 3742 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3743 unsigned long mark, int highest_zoneidx) 3744 { 3745 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3746 3747 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3748 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3749 3750 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3751 free_pages); 3752 } 3753 3754 #ifdef CONFIG_NUMA 3755 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3756 { 3757 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3758 node_reclaim_distance; 3759 } 3760 #else /* CONFIG_NUMA */ 3761 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3762 { 3763 return true; 3764 } 3765 #endif /* CONFIG_NUMA */ 3766 3767 /* 3768 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3769 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3770 * premature use of a lower zone may cause lowmem pressure problems that 3771 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3772 * probably too small. It only makes sense to spread allocations to avoid 3773 * fragmentation between the Normal and DMA32 zones. 3774 */ 3775 static inline unsigned int 3776 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3777 { 3778 unsigned int alloc_flags; 3779 3780 /* 3781 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3782 * to save a branch. 3783 */ 3784 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3785 3786 #ifdef CONFIG_ZONE_DMA32 3787 if (!zone) 3788 return alloc_flags; 3789 3790 if (zone_idx(zone) != ZONE_NORMAL) 3791 return alloc_flags; 3792 3793 /* 3794 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3795 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3796 * on UMA that if Normal is populated then so is DMA32. 3797 */ 3798 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3799 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3800 return alloc_flags; 3801 3802 alloc_flags |= ALLOC_NOFRAGMENT; 3803 #endif /* CONFIG_ZONE_DMA32 */ 3804 return alloc_flags; 3805 } 3806 3807 static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3808 unsigned int alloc_flags) 3809 { 3810 #ifdef CONFIG_CMA 3811 unsigned int pflags = current->flags; 3812 3813 if (!(pflags & PF_MEMALLOC_NOCMA) && 3814 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3815 alloc_flags |= ALLOC_CMA; 3816 3817 #endif 3818 return alloc_flags; 3819 } 3820 3821 /* 3822 * get_page_from_freelist goes through the zonelist trying to allocate 3823 * a page. 3824 */ 3825 static struct page * 3826 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3827 const struct alloc_context *ac) 3828 { 3829 struct zoneref *z; 3830 struct zone *zone; 3831 struct pglist_data *last_pgdat_dirty_limit = NULL; 3832 bool no_fallback; 3833 3834 retry: 3835 /* 3836 * Scan zonelist, looking for a zone with enough free. 3837 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3838 */ 3839 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3840 z = ac->preferred_zoneref; 3841 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3842 ac->nodemask) { 3843 struct page *page; 3844 unsigned long mark; 3845 3846 if (cpusets_enabled() && 3847 (alloc_flags & ALLOC_CPUSET) && 3848 !__cpuset_zone_allowed(zone, gfp_mask)) 3849 continue; 3850 /* 3851 * When allocating a page cache page for writing, we 3852 * want to get it from a node that is within its dirty 3853 * limit, such that no single node holds more than its 3854 * proportional share of globally allowed dirty pages. 3855 * The dirty limits take into account the node's 3856 * lowmem reserves and high watermark so that kswapd 3857 * should be able to balance it without having to 3858 * write pages from its LRU list. 3859 * 3860 * XXX: For now, allow allocations to potentially 3861 * exceed the per-node dirty limit in the slowpath 3862 * (spread_dirty_pages unset) before going into reclaim, 3863 * which is important when on a NUMA setup the allowed 3864 * nodes are together not big enough to reach the 3865 * global limit. The proper fix for these situations 3866 * will require awareness of nodes in the 3867 * dirty-throttling and the flusher threads. 3868 */ 3869 if (ac->spread_dirty_pages) { 3870 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3871 continue; 3872 3873 if (!node_dirty_ok(zone->zone_pgdat)) { 3874 last_pgdat_dirty_limit = zone->zone_pgdat; 3875 continue; 3876 } 3877 } 3878 3879 if (no_fallback && nr_online_nodes > 1 && 3880 zone != ac->preferred_zoneref->zone) { 3881 int local_nid; 3882 3883 /* 3884 * If moving to a remote node, retry but allow 3885 * fragmenting fallbacks. Locality is more important 3886 * than fragmentation avoidance. 3887 */ 3888 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3889 if (zone_to_nid(zone) != local_nid) { 3890 alloc_flags &= ~ALLOC_NOFRAGMENT; 3891 goto retry; 3892 } 3893 } 3894 3895 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3896 if (!zone_watermark_fast(zone, order, mark, 3897 ac->highest_zoneidx, alloc_flags, 3898 gfp_mask)) { 3899 int ret; 3900 3901 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3902 /* 3903 * Watermark failed for this zone, but see if we can 3904 * grow this zone if it contains deferred pages. 3905 */ 3906 if (static_branch_unlikely(&deferred_pages)) { 3907 if (_deferred_grow_zone(zone, order)) 3908 goto try_this_zone; 3909 } 3910 #endif 3911 /* Checked here to keep the fast path fast */ 3912 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3913 if (alloc_flags & ALLOC_NO_WATERMARKS) 3914 goto try_this_zone; 3915 3916 if (node_reclaim_mode == 0 || 3917 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3918 continue; 3919 3920 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3921 switch (ret) { 3922 case NODE_RECLAIM_NOSCAN: 3923 /* did not scan */ 3924 continue; 3925 case NODE_RECLAIM_FULL: 3926 /* scanned but unreclaimable */ 3927 continue; 3928 default: 3929 /* did we reclaim enough */ 3930 if (zone_watermark_ok(zone, order, mark, 3931 ac->highest_zoneidx, alloc_flags)) 3932 goto try_this_zone; 3933 3934 continue; 3935 } 3936 } 3937 3938 try_this_zone: 3939 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3940 gfp_mask, alloc_flags, ac->migratetype); 3941 if (page) { 3942 prep_new_page(page, order, gfp_mask, alloc_flags); 3943 3944 /* 3945 * If this is a high-order atomic allocation then check 3946 * if the pageblock should be reserved for the future 3947 */ 3948 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3949 reserve_highatomic_pageblock(page, zone, order); 3950 3951 return page; 3952 } else { 3953 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3954 /* Try again if zone has deferred pages */ 3955 if (static_branch_unlikely(&deferred_pages)) { 3956 if (_deferred_grow_zone(zone, order)) 3957 goto try_this_zone; 3958 } 3959 #endif 3960 } 3961 } 3962 3963 /* 3964 * It's possible on a UMA machine to get through all zones that are 3965 * fragmented. If avoiding fragmentation, reset and try again. 3966 */ 3967 if (no_fallback) { 3968 alloc_flags &= ~ALLOC_NOFRAGMENT; 3969 goto retry; 3970 } 3971 3972 return NULL; 3973 } 3974 3975 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3976 { 3977 unsigned int filter = SHOW_MEM_FILTER_NODES; 3978 3979 /* 3980 * This documents exceptions given to allocations in certain 3981 * contexts that are allowed to allocate outside current's set 3982 * of allowed nodes. 3983 */ 3984 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3985 if (tsk_is_oom_victim(current) || 3986 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3987 filter &= ~SHOW_MEM_FILTER_NODES; 3988 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3989 filter &= ~SHOW_MEM_FILTER_NODES; 3990 3991 show_mem(filter, nodemask); 3992 } 3993 3994 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3995 { 3996 struct va_format vaf; 3997 va_list args; 3998 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3999 4000 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4001 return; 4002 4003 va_start(args, fmt); 4004 vaf.fmt = fmt; 4005 vaf.va = &args; 4006 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4007 current->comm, &vaf, gfp_mask, &gfp_mask, 4008 nodemask_pr_args(nodemask)); 4009 va_end(args); 4010 4011 cpuset_print_current_mems_allowed(); 4012 pr_cont("\n"); 4013 dump_stack(); 4014 warn_alloc_show_mem(gfp_mask, nodemask); 4015 } 4016 4017 static inline struct page * 4018 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4019 unsigned int alloc_flags, 4020 const struct alloc_context *ac) 4021 { 4022 struct page *page; 4023 4024 page = get_page_from_freelist(gfp_mask, order, 4025 alloc_flags|ALLOC_CPUSET, ac); 4026 /* 4027 * fallback to ignore cpuset restriction if our nodes 4028 * are depleted 4029 */ 4030 if (!page) 4031 page = get_page_from_freelist(gfp_mask, order, 4032 alloc_flags, ac); 4033 4034 return page; 4035 } 4036 4037 static inline struct page * 4038 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4039 const struct alloc_context *ac, unsigned long *did_some_progress) 4040 { 4041 struct oom_control oc = { 4042 .zonelist = ac->zonelist, 4043 .nodemask = ac->nodemask, 4044 .memcg = NULL, 4045 .gfp_mask = gfp_mask, 4046 .order = order, 4047 }; 4048 struct page *page; 4049 4050 *did_some_progress = 0; 4051 4052 /* 4053 * Acquire the oom lock. If that fails, somebody else is 4054 * making progress for us. 4055 */ 4056 if (!mutex_trylock(&oom_lock)) { 4057 *did_some_progress = 1; 4058 schedule_timeout_uninterruptible(1); 4059 return NULL; 4060 } 4061 4062 /* 4063 * Go through the zonelist yet one more time, keep very high watermark 4064 * here, this is only to catch a parallel oom killing, we must fail if 4065 * we're still under heavy pressure. But make sure that this reclaim 4066 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4067 * allocation which will never fail due to oom_lock already held. 4068 */ 4069 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4070 ~__GFP_DIRECT_RECLAIM, order, 4071 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4072 if (page) 4073 goto out; 4074 4075 /* Coredumps can quickly deplete all memory reserves */ 4076 if (current->flags & PF_DUMPCORE) 4077 goto out; 4078 /* The OOM killer will not help higher order allocs */ 4079 if (order > PAGE_ALLOC_COSTLY_ORDER) 4080 goto out; 4081 /* 4082 * We have already exhausted all our reclaim opportunities without any 4083 * success so it is time to admit defeat. We will skip the OOM killer 4084 * because it is very likely that the caller has a more reasonable 4085 * fallback than shooting a random task. 4086 * 4087 * The OOM killer may not free memory on a specific node. 4088 */ 4089 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4090 goto out; 4091 /* The OOM killer does not needlessly kill tasks for lowmem */ 4092 if (ac->highest_zoneidx < ZONE_NORMAL) 4093 goto out; 4094 if (pm_suspended_storage()) 4095 goto out; 4096 /* 4097 * XXX: GFP_NOFS allocations should rather fail than rely on 4098 * other request to make a forward progress. 4099 * We are in an unfortunate situation where out_of_memory cannot 4100 * do much for this context but let's try it to at least get 4101 * access to memory reserved if the current task is killed (see 4102 * out_of_memory). Once filesystems are ready to handle allocation 4103 * failures more gracefully we should just bail out here. 4104 */ 4105 4106 /* Exhausted what can be done so it's blame time */ 4107 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4108 *did_some_progress = 1; 4109 4110 /* 4111 * Help non-failing allocations by giving them access to memory 4112 * reserves 4113 */ 4114 if (gfp_mask & __GFP_NOFAIL) 4115 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4116 ALLOC_NO_WATERMARKS, ac); 4117 } 4118 out: 4119 mutex_unlock(&oom_lock); 4120 return page; 4121 } 4122 4123 /* 4124 * Maximum number of compaction retries wit a progress before OOM 4125 * killer is consider as the only way to move forward. 4126 */ 4127 #define MAX_COMPACT_RETRIES 16 4128 4129 #ifdef CONFIG_COMPACTION 4130 /* Try memory compaction for high-order allocations before reclaim */ 4131 static struct page * 4132 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4133 unsigned int alloc_flags, const struct alloc_context *ac, 4134 enum compact_priority prio, enum compact_result *compact_result) 4135 { 4136 struct page *page = NULL; 4137 unsigned long pflags; 4138 unsigned int noreclaim_flag; 4139 4140 if (!order) 4141 return NULL; 4142 4143 psi_memstall_enter(&pflags); 4144 noreclaim_flag = memalloc_noreclaim_save(); 4145 4146 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4147 prio, &page); 4148 4149 memalloc_noreclaim_restore(noreclaim_flag); 4150 psi_memstall_leave(&pflags); 4151 4152 /* 4153 * At least in one zone compaction wasn't deferred or skipped, so let's 4154 * count a compaction stall 4155 */ 4156 count_vm_event(COMPACTSTALL); 4157 4158 /* Prep a captured page if available */ 4159 if (page) 4160 prep_new_page(page, order, gfp_mask, alloc_flags); 4161 4162 /* Try get a page from the freelist if available */ 4163 if (!page) 4164 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4165 4166 if (page) { 4167 struct zone *zone = page_zone(page); 4168 4169 zone->compact_blockskip_flush = false; 4170 compaction_defer_reset(zone, order, true); 4171 count_vm_event(COMPACTSUCCESS); 4172 return page; 4173 } 4174 4175 /* 4176 * It's bad if compaction run occurs and fails. The most likely reason 4177 * is that pages exist, but not enough to satisfy watermarks. 4178 */ 4179 count_vm_event(COMPACTFAIL); 4180 4181 cond_resched(); 4182 4183 return NULL; 4184 } 4185 4186 static inline bool 4187 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4188 enum compact_result compact_result, 4189 enum compact_priority *compact_priority, 4190 int *compaction_retries) 4191 { 4192 int max_retries = MAX_COMPACT_RETRIES; 4193 int min_priority; 4194 bool ret = false; 4195 int retries = *compaction_retries; 4196 enum compact_priority priority = *compact_priority; 4197 4198 if (!order) 4199 return false; 4200 4201 if (compaction_made_progress(compact_result)) 4202 (*compaction_retries)++; 4203 4204 /* 4205 * compaction considers all the zone as desperately out of memory 4206 * so it doesn't really make much sense to retry except when the 4207 * failure could be caused by insufficient priority 4208 */ 4209 if (compaction_failed(compact_result)) 4210 goto check_priority; 4211 4212 /* 4213 * compaction was skipped because there are not enough order-0 pages 4214 * to work with, so we retry only if it looks like reclaim can help. 4215 */ 4216 if (compaction_needs_reclaim(compact_result)) { 4217 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4218 goto out; 4219 } 4220 4221 /* 4222 * make sure the compaction wasn't deferred or didn't bail out early 4223 * due to locks contention before we declare that we should give up. 4224 * But the next retry should use a higher priority if allowed, so 4225 * we don't just keep bailing out endlessly. 4226 */ 4227 if (compaction_withdrawn(compact_result)) { 4228 goto check_priority; 4229 } 4230 4231 /* 4232 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4233 * costly ones because they are de facto nofail and invoke OOM 4234 * killer to move on while costly can fail and users are ready 4235 * to cope with that. 1/4 retries is rather arbitrary but we 4236 * would need much more detailed feedback from compaction to 4237 * make a better decision. 4238 */ 4239 if (order > PAGE_ALLOC_COSTLY_ORDER) 4240 max_retries /= 4; 4241 if (*compaction_retries <= max_retries) { 4242 ret = true; 4243 goto out; 4244 } 4245 4246 /* 4247 * Make sure there are attempts at the highest priority if we exhausted 4248 * all retries or failed at the lower priorities. 4249 */ 4250 check_priority: 4251 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4252 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4253 4254 if (*compact_priority > min_priority) { 4255 (*compact_priority)--; 4256 *compaction_retries = 0; 4257 ret = true; 4258 } 4259 out: 4260 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4261 return ret; 4262 } 4263 #else 4264 static inline struct page * 4265 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4266 unsigned int alloc_flags, const struct alloc_context *ac, 4267 enum compact_priority prio, enum compact_result *compact_result) 4268 { 4269 *compact_result = COMPACT_SKIPPED; 4270 return NULL; 4271 } 4272 4273 static inline bool 4274 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4275 enum compact_result compact_result, 4276 enum compact_priority *compact_priority, 4277 int *compaction_retries) 4278 { 4279 struct zone *zone; 4280 struct zoneref *z; 4281 4282 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4283 return false; 4284 4285 /* 4286 * There are setups with compaction disabled which would prefer to loop 4287 * inside the allocator rather than hit the oom killer prematurely. 4288 * Let's give them a good hope and keep retrying while the order-0 4289 * watermarks are OK. 4290 */ 4291 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4292 ac->highest_zoneidx, ac->nodemask) { 4293 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4294 ac->highest_zoneidx, alloc_flags)) 4295 return true; 4296 } 4297 return false; 4298 } 4299 #endif /* CONFIG_COMPACTION */ 4300 4301 #ifdef CONFIG_LOCKDEP 4302 static struct lockdep_map __fs_reclaim_map = 4303 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4304 4305 static bool __need_reclaim(gfp_t gfp_mask) 4306 { 4307 /* no reclaim without waiting on it */ 4308 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4309 return false; 4310 4311 /* this guy won't enter reclaim */ 4312 if (current->flags & PF_MEMALLOC) 4313 return false; 4314 4315 if (gfp_mask & __GFP_NOLOCKDEP) 4316 return false; 4317 4318 return true; 4319 } 4320 4321 void __fs_reclaim_acquire(void) 4322 { 4323 lock_map_acquire(&__fs_reclaim_map); 4324 } 4325 4326 void __fs_reclaim_release(void) 4327 { 4328 lock_map_release(&__fs_reclaim_map); 4329 } 4330 4331 void fs_reclaim_acquire(gfp_t gfp_mask) 4332 { 4333 gfp_mask = current_gfp_context(gfp_mask); 4334 4335 if (__need_reclaim(gfp_mask)) { 4336 if (gfp_mask & __GFP_FS) 4337 __fs_reclaim_acquire(); 4338 4339 #ifdef CONFIG_MMU_NOTIFIER 4340 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4341 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4342 #endif 4343 4344 } 4345 } 4346 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4347 4348 void fs_reclaim_release(gfp_t gfp_mask) 4349 { 4350 gfp_mask = current_gfp_context(gfp_mask); 4351 4352 if (__need_reclaim(gfp_mask)) { 4353 if (gfp_mask & __GFP_FS) 4354 __fs_reclaim_release(); 4355 } 4356 } 4357 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4358 #endif 4359 4360 /* Perform direct synchronous page reclaim */ 4361 static unsigned long 4362 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4363 const struct alloc_context *ac) 4364 { 4365 unsigned int noreclaim_flag; 4366 unsigned long pflags, progress; 4367 4368 cond_resched(); 4369 4370 /* We now go into synchronous reclaim */ 4371 cpuset_memory_pressure_bump(); 4372 psi_memstall_enter(&pflags); 4373 fs_reclaim_acquire(gfp_mask); 4374 noreclaim_flag = memalloc_noreclaim_save(); 4375 4376 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4377 ac->nodemask); 4378 4379 memalloc_noreclaim_restore(noreclaim_flag); 4380 fs_reclaim_release(gfp_mask); 4381 psi_memstall_leave(&pflags); 4382 4383 cond_resched(); 4384 4385 return progress; 4386 } 4387 4388 /* The really slow allocator path where we enter direct reclaim */ 4389 static inline struct page * 4390 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4391 unsigned int alloc_flags, const struct alloc_context *ac, 4392 unsigned long *did_some_progress) 4393 { 4394 struct page *page = NULL; 4395 bool drained = false; 4396 4397 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4398 if (unlikely(!(*did_some_progress))) 4399 return NULL; 4400 4401 retry: 4402 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4403 4404 /* 4405 * If an allocation failed after direct reclaim, it could be because 4406 * pages are pinned on the per-cpu lists or in high alloc reserves. 4407 * Shrink them and try again 4408 */ 4409 if (!page && !drained) { 4410 unreserve_highatomic_pageblock(ac, false); 4411 drain_all_pages(NULL); 4412 drained = true; 4413 goto retry; 4414 } 4415 4416 return page; 4417 } 4418 4419 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4420 const struct alloc_context *ac) 4421 { 4422 struct zoneref *z; 4423 struct zone *zone; 4424 pg_data_t *last_pgdat = NULL; 4425 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4426 4427 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4428 ac->nodemask) { 4429 if (last_pgdat != zone->zone_pgdat) 4430 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4431 last_pgdat = zone->zone_pgdat; 4432 } 4433 } 4434 4435 static inline unsigned int 4436 gfp_to_alloc_flags(gfp_t gfp_mask) 4437 { 4438 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4439 4440 /* 4441 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4442 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4443 * to save two branches. 4444 */ 4445 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4446 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4447 4448 /* 4449 * The caller may dip into page reserves a bit more if the caller 4450 * cannot run direct reclaim, or if the caller has realtime scheduling 4451 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4452 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4453 */ 4454 alloc_flags |= (__force int) 4455 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4456 4457 if (gfp_mask & __GFP_ATOMIC) { 4458 /* 4459 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4460 * if it can't schedule. 4461 */ 4462 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4463 alloc_flags |= ALLOC_HARDER; 4464 /* 4465 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4466 * comment for __cpuset_node_allowed(). 4467 */ 4468 alloc_flags &= ~ALLOC_CPUSET; 4469 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4470 alloc_flags |= ALLOC_HARDER; 4471 4472 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4473 4474 return alloc_flags; 4475 } 4476 4477 static bool oom_reserves_allowed(struct task_struct *tsk) 4478 { 4479 if (!tsk_is_oom_victim(tsk)) 4480 return false; 4481 4482 /* 4483 * !MMU doesn't have oom reaper so give access to memory reserves 4484 * only to the thread with TIF_MEMDIE set 4485 */ 4486 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4487 return false; 4488 4489 return true; 4490 } 4491 4492 /* 4493 * Distinguish requests which really need access to full memory 4494 * reserves from oom victims which can live with a portion of it 4495 */ 4496 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4497 { 4498 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4499 return 0; 4500 if (gfp_mask & __GFP_MEMALLOC) 4501 return ALLOC_NO_WATERMARKS; 4502 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4503 return ALLOC_NO_WATERMARKS; 4504 if (!in_interrupt()) { 4505 if (current->flags & PF_MEMALLOC) 4506 return ALLOC_NO_WATERMARKS; 4507 else if (oom_reserves_allowed(current)) 4508 return ALLOC_OOM; 4509 } 4510 4511 return 0; 4512 } 4513 4514 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4515 { 4516 return !!__gfp_pfmemalloc_flags(gfp_mask); 4517 } 4518 4519 /* 4520 * Checks whether it makes sense to retry the reclaim to make a forward progress 4521 * for the given allocation request. 4522 * 4523 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4524 * without success, or when we couldn't even meet the watermark if we 4525 * reclaimed all remaining pages on the LRU lists. 4526 * 4527 * Returns true if a retry is viable or false to enter the oom path. 4528 */ 4529 static inline bool 4530 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4531 struct alloc_context *ac, int alloc_flags, 4532 bool did_some_progress, int *no_progress_loops) 4533 { 4534 struct zone *zone; 4535 struct zoneref *z; 4536 bool ret = false; 4537 4538 /* 4539 * Costly allocations might have made a progress but this doesn't mean 4540 * their order will become available due to high fragmentation so 4541 * always increment the no progress counter for them 4542 */ 4543 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4544 *no_progress_loops = 0; 4545 else 4546 (*no_progress_loops)++; 4547 4548 /* 4549 * Make sure we converge to OOM if we cannot make any progress 4550 * several times in the row. 4551 */ 4552 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4553 /* Before OOM, exhaust highatomic_reserve */ 4554 return unreserve_highatomic_pageblock(ac, true); 4555 } 4556 4557 /* 4558 * Keep reclaiming pages while there is a chance this will lead 4559 * somewhere. If none of the target zones can satisfy our allocation 4560 * request even if all reclaimable pages are considered then we are 4561 * screwed and have to go OOM. 4562 */ 4563 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4564 ac->highest_zoneidx, ac->nodemask) { 4565 unsigned long available; 4566 unsigned long reclaimable; 4567 unsigned long min_wmark = min_wmark_pages(zone); 4568 bool wmark; 4569 4570 available = reclaimable = zone_reclaimable_pages(zone); 4571 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4572 4573 /* 4574 * Would the allocation succeed if we reclaimed all 4575 * reclaimable pages? 4576 */ 4577 wmark = __zone_watermark_ok(zone, order, min_wmark, 4578 ac->highest_zoneidx, alloc_flags, available); 4579 trace_reclaim_retry_zone(z, order, reclaimable, 4580 available, min_wmark, *no_progress_loops, wmark); 4581 if (wmark) { 4582 /* 4583 * If we didn't make any progress and have a lot of 4584 * dirty + writeback pages then we should wait for 4585 * an IO to complete to slow down the reclaim and 4586 * prevent from pre mature OOM 4587 */ 4588 if (!did_some_progress) { 4589 unsigned long write_pending; 4590 4591 write_pending = zone_page_state_snapshot(zone, 4592 NR_ZONE_WRITE_PENDING); 4593 4594 if (2 * write_pending > reclaimable) { 4595 congestion_wait(BLK_RW_ASYNC, HZ/10); 4596 return true; 4597 } 4598 } 4599 4600 ret = true; 4601 goto out; 4602 } 4603 } 4604 4605 out: 4606 /* 4607 * Memory allocation/reclaim might be called from a WQ context and the 4608 * current implementation of the WQ concurrency control doesn't 4609 * recognize that a particular WQ is congested if the worker thread is 4610 * looping without ever sleeping. Therefore we have to do a short sleep 4611 * here rather than calling cond_resched(). 4612 */ 4613 if (current->flags & PF_WQ_WORKER) 4614 schedule_timeout_uninterruptible(1); 4615 else 4616 cond_resched(); 4617 return ret; 4618 } 4619 4620 static inline bool 4621 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4622 { 4623 /* 4624 * It's possible that cpuset's mems_allowed and the nodemask from 4625 * mempolicy don't intersect. This should be normally dealt with by 4626 * policy_nodemask(), but it's possible to race with cpuset update in 4627 * such a way the check therein was true, and then it became false 4628 * before we got our cpuset_mems_cookie here. 4629 * This assumes that for all allocations, ac->nodemask can come only 4630 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4631 * when it does not intersect with the cpuset restrictions) or the 4632 * caller can deal with a violated nodemask. 4633 */ 4634 if (cpusets_enabled() && ac->nodemask && 4635 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4636 ac->nodemask = NULL; 4637 return true; 4638 } 4639 4640 /* 4641 * When updating a task's mems_allowed or mempolicy nodemask, it is 4642 * possible to race with parallel threads in such a way that our 4643 * allocation can fail while the mask is being updated. If we are about 4644 * to fail, check if the cpuset changed during allocation and if so, 4645 * retry. 4646 */ 4647 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4648 return true; 4649 4650 return false; 4651 } 4652 4653 static inline struct page * 4654 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4655 struct alloc_context *ac) 4656 { 4657 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4658 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4659 struct page *page = NULL; 4660 unsigned int alloc_flags; 4661 unsigned long did_some_progress; 4662 enum compact_priority compact_priority; 4663 enum compact_result compact_result; 4664 int compaction_retries; 4665 int no_progress_loops; 4666 unsigned int cpuset_mems_cookie; 4667 int reserve_flags; 4668 4669 /* 4670 * We also sanity check to catch abuse of atomic reserves being used by 4671 * callers that are not in atomic context. 4672 */ 4673 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4674 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4675 gfp_mask &= ~__GFP_ATOMIC; 4676 4677 retry_cpuset: 4678 compaction_retries = 0; 4679 no_progress_loops = 0; 4680 compact_priority = DEF_COMPACT_PRIORITY; 4681 cpuset_mems_cookie = read_mems_allowed_begin(); 4682 4683 /* 4684 * The fast path uses conservative alloc_flags to succeed only until 4685 * kswapd needs to be woken up, and to avoid the cost of setting up 4686 * alloc_flags precisely. So we do that now. 4687 */ 4688 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4689 4690 /* 4691 * We need to recalculate the starting point for the zonelist iterator 4692 * because we might have used different nodemask in the fast path, or 4693 * there was a cpuset modification and we are retrying - otherwise we 4694 * could end up iterating over non-eligible zones endlessly. 4695 */ 4696 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4697 ac->highest_zoneidx, ac->nodemask); 4698 if (!ac->preferred_zoneref->zone) 4699 goto nopage; 4700 4701 if (alloc_flags & ALLOC_KSWAPD) 4702 wake_all_kswapds(order, gfp_mask, ac); 4703 4704 /* 4705 * The adjusted alloc_flags might result in immediate success, so try 4706 * that first 4707 */ 4708 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4709 if (page) 4710 goto got_pg; 4711 4712 /* 4713 * For costly allocations, try direct compaction first, as it's likely 4714 * that we have enough base pages and don't need to reclaim. For non- 4715 * movable high-order allocations, do that as well, as compaction will 4716 * try prevent permanent fragmentation by migrating from blocks of the 4717 * same migratetype. 4718 * Don't try this for allocations that are allowed to ignore 4719 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4720 */ 4721 if (can_direct_reclaim && 4722 (costly_order || 4723 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4724 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4725 page = __alloc_pages_direct_compact(gfp_mask, order, 4726 alloc_flags, ac, 4727 INIT_COMPACT_PRIORITY, 4728 &compact_result); 4729 if (page) 4730 goto got_pg; 4731 4732 /* 4733 * Checks for costly allocations with __GFP_NORETRY, which 4734 * includes some THP page fault allocations 4735 */ 4736 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4737 /* 4738 * If allocating entire pageblock(s) and compaction 4739 * failed because all zones are below low watermarks 4740 * or is prohibited because it recently failed at this 4741 * order, fail immediately unless the allocator has 4742 * requested compaction and reclaim retry. 4743 * 4744 * Reclaim is 4745 * - potentially very expensive because zones are far 4746 * below their low watermarks or this is part of very 4747 * bursty high order allocations, 4748 * - not guaranteed to help because isolate_freepages() 4749 * may not iterate over freed pages as part of its 4750 * linear scan, and 4751 * - unlikely to make entire pageblocks free on its 4752 * own. 4753 */ 4754 if (compact_result == COMPACT_SKIPPED || 4755 compact_result == COMPACT_DEFERRED) 4756 goto nopage; 4757 4758 /* 4759 * Looks like reclaim/compaction is worth trying, but 4760 * sync compaction could be very expensive, so keep 4761 * using async compaction. 4762 */ 4763 compact_priority = INIT_COMPACT_PRIORITY; 4764 } 4765 } 4766 4767 retry: 4768 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4769 if (alloc_flags & ALLOC_KSWAPD) 4770 wake_all_kswapds(order, gfp_mask, ac); 4771 4772 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4773 if (reserve_flags) 4774 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4775 4776 /* 4777 * Reset the nodemask and zonelist iterators if memory policies can be 4778 * ignored. These allocations are high priority and system rather than 4779 * user oriented. 4780 */ 4781 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4782 ac->nodemask = NULL; 4783 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4784 ac->highest_zoneidx, ac->nodemask); 4785 } 4786 4787 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4788 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4789 if (page) 4790 goto got_pg; 4791 4792 /* Caller is not willing to reclaim, we can't balance anything */ 4793 if (!can_direct_reclaim) 4794 goto nopage; 4795 4796 /* Avoid recursion of direct reclaim */ 4797 if (current->flags & PF_MEMALLOC) 4798 goto nopage; 4799 4800 /* Try direct reclaim and then allocating */ 4801 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4802 &did_some_progress); 4803 if (page) 4804 goto got_pg; 4805 4806 /* Try direct compaction and then allocating */ 4807 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4808 compact_priority, &compact_result); 4809 if (page) 4810 goto got_pg; 4811 4812 /* Do not loop if specifically requested */ 4813 if (gfp_mask & __GFP_NORETRY) 4814 goto nopage; 4815 4816 /* 4817 * Do not retry costly high order allocations unless they are 4818 * __GFP_RETRY_MAYFAIL 4819 */ 4820 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4821 goto nopage; 4822 4823 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4824 did_some_progress > 0, &no_progress_loops)) 4825 goto retry; 4826 4827 /* 4828 * It doesn't make any sense to retry for the compaction if the order-0 4829 * reclaim is not able to make any progress because the current 4830 * implementation of the compaction depends on the sufficient amount 4831 * of free memory (see __compaction_suitable) 4832 */ 4833 if (did_some_progress > 0 && 4834 should_compact_retry(ac, order, alloc_flags, 4835 compact_result, &compact_priority, 4836 &compaction_retries)) 4837 goto retry; 4838 4839 4840 /* Deal with possible cpuset update races before we start OOM killing */ 4841 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4842 goto retry_cpuset; 4843 4844 /* Reclaim has failed us, start killing things */ 4845 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4846 if (page) 4847 goto got_pg; 4848 4849 /* Avoid allocations with no watermarks from looping endlessly */ 4850 if (tsk_is_oom_victim(current) && 4851 (alloc_flags & ALLOC_OOM || 4852 (gfp_mask & __GFP_NOMEMALLOC))) 4853 goto nopage; 4854 4855 /* Retry as long as the OOM killer is making progress */ 4856 if (did_some_progress) { 4857 no_progress_loops = 0; 4858 goto retry; 4859 } 4860 4861 nopage: 4862 /* Deal with possible cpuset update races before we fail */ 4863 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4864 goto retry_cpuset; 4865 4866 /* 4867 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4868 * we always retry 4869 */ 4870 if (gfp_mask & __GFP_NOFAIL) { 4871 /* 4872 * All existing users of the __GFP_NOFAIL are blockable, so warn 4873 * of any new users that actually require GFP_NOWAIT 4874 */ 4875 if (WARN_ON_ONCE(!can_direct_reclaim)) 4876 goto fail; 4877 4878 /* 4879 * PF_MEMALLOC request from this context is rather bizarre 4880 * because we cannot reclaim anything and only can loop waiting 4881 * for somebody to do a work for us 4882 */ 4883 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4884 4885 /* 4886 * non failing costly orders are a hard requirement which we 4887 * are not prepared for much so let's warn about these users 4888 * so that we can identify them and convert them to something 4889 * else. 4890 */ 4891 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4892 4893 /* 4894 * Help non-failing allocations by giving them access to memory 4895 * reserves but do not use ALLOC_NO_WATERMARKS because this 4896 * could deplete whole memory reserves which would just make 4897 * the situation worse 4898 */ 4899 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4900 if (page) 4901 goto got_pg; 4902 4903 cond_resched(); 4904 goto retry; 4905 } 4906 fail: 4907 warn_alloc(gfp_mask, ac->nodemask, 4908 "page allocation failure: order:%u", order); 4909 got_pg: 4910 return page; 4911 } 4912 4913 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4914 int preferred_nid, nodemask_t *nodemask, 4915 struct alloc_context *ac, gfp_t *alloc_mask, 4916 unsigned int *alloc_flags) 4917 { 4918 ac->highest_zoneidx = gfp_zone(gfp_mask); 4919 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4920 ac->nodemask = nodemask; 4921 ac->migratetype = gfp_migratetype(gfp_mask); 4922 4923 if (cpusets_enabled()) { 4924 *alloc_mask |= __GFP_HARDWALL; 4925 /* 4926 * When we are in the interrupt context, it is irrelevant 4927 * to the current task context. It means that any node ok. 4928 */ 4929 if (!in_interrupt() && !ac->nodemask) 4930 ac->nodemask = &cpuset_current_mems_allowed; 4931 else 4932 *alloc_flags |= ALLOC_CPUSET; 4933 } 4934 4935 fs_reclaim_acquire(gfp_mask); 4936 fs_reclaim_release(gfp_mask); 4937 4938 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4939 4940 if (should_fail_alloc_page(gfp_mask, order)) 4941 return false; 4942 4943 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4944 4945 /* Dirty zone balancing only done in the fast path */ 4946 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4947 4948 /* 4949 * The preferred zone is used for statistics but crucially it is 4950 * also used as the starting point for the zonelist iterator. It 4951 * may get reset for allocations that ignore memory policies. 4952 */ 4953 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4954 ac->highest_zoneidx, ac->nodemask); 4955 4956 return true; 4957 } 4958 4959 /* 4960 * This is the 'heart' of the zoned buddy allocator. 4961 */ 4962 struct page * 4963 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4964 nodemask_t *nodemask) 4965 { 4966 struct page *page; 4967 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4968 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4969 struct alloc_context ac = { }; 4970 4971 /* 4972 * There are several places where we assume that the order value is sane 4973 * so bail out early if the request is out of bound. 4974 */ 4975 if (unlikely(order >= MAX_ORDER)) { 4976 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4977 return NULL; 4978 } 4979 4980 gfp_mask &= gfp_allowed_mask; 4981 alloc_mask = gfp_mask; 4982 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4983 return NULL; 4984 4985 /* 4986 * Forbid the first pass from falling back to types that fragment 4987 * memory until all local zones are considered. 4988 */ 4989 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4990 4991 /* First allocation attempt */ 4992 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4993 if (likely(page)) 4994 goto out; 4995 4996 /* 4997 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4998 * resp. GFP_NOIO which has to be inherited for all allocation requests 4999 * from a particular context which has been marked by 5000 * memalloc_no{fs,io}_{save,restore}. 5001 */ 5002 alloc_mask = current_gfp_context(gfp_mask); 5003 ac.spread_dirty_pages = false; 5004 5005 /* 5006 * Restore the original nodemask if it was potentially replaced with 5007 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5008 */ 5009 ac.nodemask = nodemask; 5010 5011 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 5012 5013 out: 5014 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 5015 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 5016 __free_pages(page, order); 5017 page = NULL; 5018 } 5019 5020 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 5021 5022 return page; 5023 } 5024 EXPORT_SYMBOL(__alloc_pages_nodemask); 5025 5026 /* 5027 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5028 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5029 * you need to access high mem. 5030 */ 5031 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5032 { 5033 struct page *page; 5034 5035 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5036 if (!page) 5037 return 0; 5038 return (unsigned long) page_address(page); 5039 } 5040 EXPORT_SYMBOL(__get_free_pages); 5041 5042 unsigned long get_zeroed_page(gfp_t gfp_mask) 5043 { 5044 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5045 } 5046 EXPORT_SYMBOL(get_zeroed_page); 5047 5048 static inline void free_the_page(struct page *page, unsigned int order) 5049 { 5050 if (order == 0) /* Via pcp? */ 5051 free_unref_page(page); 5052 else 5053 __free_pages_ok(page, order, FPI_NONE); 5054 } 5055 5056 /** 5057 * __free_pages - Free pages allocated with alloc_pages(). 5058 * @page: The page pointer returned from alloc_pages(). 5059 * @order: The order of the allocation. 5060 * 5061 * This function can free multi-page allocations that are not compound 5062 * pages. It does not check that the @order passed in matches that of 5063 * the allocation, so it is easy to leak memory. Freeing more memory 5064 * than was allocated will probably emit a warning. 5065 * 5066 * If the last reference to this page is speculative, it will be released 5067 * by put_page() which only frees the first page of a non-compound 5068 * allocation. To prevent the remaining pages from being leaked, we free 5069 * the subsequent pages here. If you want to use the page's reference 5070 * count to decide when to free the allocation, you should allocate a 5071 * compound page, and use put_page() instead of __free_pages(). 5072 * 5073 * Context: May be called in interrupt context or while holding a normal 5074 * spinlock, but not in NMI context or while holding a raw spinlock. 5075 */ 5076 void __free_pages(struct page *page, unsigned int order) 5077 { 5078 if (put_page_testzero(page)) 5079 free_the_page(page, order); 5080 else if (!PageHead(page)) 5081 while (order-- > 0) 5082 free_the_page(page + (1 << order), order); 5083 } 5084 EXPORT_SYMBOL(__free_pages); 5085 5086 void free_pages(unsigned long addr, unsigned int order) 5087 { 5088 if (addr != 0) { 5089 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5090 __free_pages(virt_to_page((void *)addr), order); 5091 } 5092 } 5093 5094 EXPORT_SYMBOL(free_pages); 5095 5096 /* 5097 * Page Fragment: 5098 * An arbitrary-length arbitrary-offset area of memory which resides 5099 * within a 0 or higher order page. Multiple fragments within that page 5100 * are individually refcounted, in the page's reference counter. 5101 * 5102 * The page_frag functions below provide a simple allocation framework for 5103 * page fragments. This is used by the network stack and network device 5104 * drivers to provide a backing region of memory for use as either an 5105 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5106 */ 5107 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5108 gfp_t gfp_mask) 5109 { 5110 struct page *page = NULL; 5111 gfp_t gfp = gfp_mask; 5112 5113 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5114 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5115 __GFP_NOMEMALLOC; 5116 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5117 PAGE_FRAG_CACHE_MAX_ORDER); 5118 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5119 #endif 5120 if (unlikely(!page)) 5121 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5122 5123 nc->va = page ? page_address(page) : NULL; 5124 5125 return page; 5126 } 5127 5128 void __page_frag_cache_drain(struct page *page, unsigned int count) 5129 { 5130 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5131 5132 if (page_ref_sub_and_test(page, count)) 5133 free_the_page(page, compound_order(page)); 5134 } 5135 EXPORT_SYMBOL(__page_frag_cache_drain); 5136 5137 void *page_frag_alloc(struct page_frag_cache *nc, 5138 unsigned int fragsz, gfp_t gfp_mask) 5139 { 5140 unsigned int size = PAGE_SIZE; 5141 struct page *page; 5142 int offset; 5143 5144 if (unlikely(!nc->va)) { 5145 refill: 5146 page = __page_frag_cache_refill(nc, gfp_mask); 5147 if (!page) 5148 return NULL; 5149 5150 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5151 /* if size can vary use size else just use PAGE_SIZE */ 5152 size = nc->size; 5153 #endif 5154 /* Even if we own the page, we do not use atomic_set(). 5155 * This would break get_page_unless_zero() users. 5156 */ 5157 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5158 5159 /* reset page count bias and offset to start of new frag */ 5160 nc->pfmemalloc = page_is_pfmemalloc(page); 5161 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5162 nc->offset = size; 5163 } 5164 5165 offset = nc->offset - fragsz; 5166 if (unlikely(offset < 0)) { 5167 page = virt_to_page(nc->va); 5168 5169 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5170 goto refill; 5171 5172 if (unlikely(nc->pfmemalloc)) { 5173 free_the_page(page, compound_order(page)); 5174 goto refill; 5175 } 5176 5177 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5178 /* if size can vary use size else just use PAGE_SIZE */ 5179 size = nc->size; 5180 #endif 5181 /* OK, page count is 0, we can safely set it */ 5182 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5183 5184 /* reset page count bias and offset to start of new frag */ 5185 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5186 offset = size - fragsz; 5187 } 5188 5189 nc->pagecnt_bias--; 5190 nc->offset = offset; 5191 5192 return nc->va + offset; 5193 } 5194 EXPORT_SYMBOL(page_frag_alloc); 5195 5196 /* 5197 * Frees a page fragment allocated out of either a compound or order 0 page. 5198 */ 5199 void page_frag_free(void *addr) 5200 { 5201 struct page *page = virt_to_head_page(addr); 5202 5203 if (unlikely(put_page_testzero(page))) 5204 free_the_page(page, compound_order(page)); 5205 } 5206 EXPORT_SYMBOL(page_frag_free); 5207 5208 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5209 size_t size) 5210 { 5211 if (addr) { 5212 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5213 unsigned long used = addr + PAGE_ALIGN(size); 5214 5215 split_page(virt_to_page((void *)addr), order); 5216 while (used < alloc_end) { 5217 free_page(used); 5218 used += PAGE_SIZE; 5219 } 5220 } 5221 return (void *)addr; 5222 } 5223 5224 /** 5225 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5226 * @size: the number of bytes to allocate 5227 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5228 * 5229 * This function is similar to alloc_pages(), except that it allocates the 5230 * minimum number of pages to satisfy the request. alloc_pages() can only 5231 * allocate memory in power-of-two pages. 5232 * 5233 * This function is also limited by MAX_ORDER. 5234 * 5235 * Memory allocated by this function must be released by free_pages_exact(). 5236 * 5237 * Return: pointer to the allocated area or %NULL in case of error. 5238 */ 5239 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5240 { 5241 unsigned int order = get_order(size); 5242 unsigned long addr; 5243 5244 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5245 gfp_mask &= ~__GFP_COMP; 5246 5247 addr = __get_free_pages(gfp_mask, order); 5248 return make_alloc_exact(addr, order, size); 5249 } 5250 EXPORT_SYMBOL(alloc_pages_exact); 5251 5252 /** 5253 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5254 * pages on a node. 5255 * @nid: the preferred node ID where memory should be allocated 5256 * @size: the number of bytes to allocate 5257 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5258 * 5259 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5260 * back. 5261 * 5262 * Return: pointer to the allocated area or %NULL in case of error. 5263 */ 5264 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5265 { 5266 unsigned int order = get_order(size); 5267 struct page *p; 5268 5269 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5270 gfp_mask &= ~__GFP_COMP; 5271 5272 p = alloc_pages_node(nid, gfp_mask, order); 5273 if (!p) 5274 return NULL; 5275 return make_alloc_exact((unsigned long)page_address(p), order, size); 5276 } 5277 5278 /** 5279 * free_pages_exact - release memory allocated via alloc_pages_exact() 5280 * @virt: the value returned by alloc_pages_exact. 5281 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5282 * 5283 * Release the memory allocated by a previous call to alloc_pages_exact. 5284 */ 5285 void free_pages_exact(void *virt, size_t size) 5286 { 5287 unsigned long addr = (unsigned long)virt; 5288 unsigned long end = addr + PAGE_ALIGN(size); 5289 5290 while (addr < end) { 5291 free_page(addr); 5292 addr += PAGE_SIZE; 5293 } 5294 } 5295 EXPORT_SYMBOL(free_pages_exact); 5296 5297 /** 5298 * nr_free_zone_pages - count number of pages beyond high watermark 5299 * @offset: The zone index of the highest zone 5300 * 5301 * nr_free_zone_pages() counts the number of pages which are beyond the 5302 * high watermark within all zones at or below a given zone index. For each 5303 * zone, the number of pages is calculated as: 5304 * 5305 * nr_free_zone_pages = managed_pages - high_pages 5306 * 5307 * Return: number of pages beyond high watermark. 5308 */ 5309 static unsigned long nr_free_zone_pages(int offset) 5310 { 5311 struct zoneref *z; 5312 struct zone *zone; 5313 5314 /* Just pick one node, since fallback list is circular */ 5315 unsigned long sum = 0; 5316 5317 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5318 5319 for_each_zone_zonelist(zone, z, zonelist, offset) { 5320 unsigned long size = zone_managed_pages(zone); 5321 unsigned long high = high_wmark_pages(zone); 5322 if (size > high) 5323 sum += size - high; 5324 } 5325 5326 return sum; 5327 } 5328 5329 /** 5330 * nr_free_buffer_pages - count number of pages beyond high watermark 5331 * 5332 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5333 * watermark within ZONE_DMA and ZONE_NORMAL. 5334 * 5335 * Return: number of pages beyond high watermark within ZONE_DMA and 5336 * ZONE_NORMAL. 5337 */ 5338 unsigned long nr_free_buffer_pages(void) 5339 { 5340 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5341 } 5342 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5343 5344 static inline void show_node(struct zone *zone) 5345 { 5346 if (IS_ENABLED(CONFIG_NUMA)) 5347 printk("Node %d ", zone_to_nid(zone)); 5348 } 5349 5350 long si_mem_available(void) 5351 { 5352 long available; 5353 unsigned long pagecache; 5354 unsigned long wmark_low = 0; 5355 unsigned long pages[NR_LRU_LISTS]; 5356 unsigned long reclaimable; 5357 struct zone *zone; 5358 int lru; 5359 5360 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5361 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5362 5363 for_each_zone(zone) 5364 wmark_low += low_wmark_pages(zone); 5365 5366 /* 5367 * Estimate the amount of memory available for userspace allocations, 5368 * without causing swapping. 5369 */ 5370 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5371 5372 /* 5373 * Not all the page cache can be freed, otherwise the system will 5374 * start swapping. Assume at least half of the page cache, or the 5375 * low watermark worth of cache, needs to stay. 5376 */ 5377 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5378 pagecache -= min(pagecache / 2, wmark_low); 5379 available += pagecache; 5380 5381 /* 5382 * Part of the reclaimable slab and other kernel memory consists of 5383 * items that are in use, and cannot be freed. Cap this estimate at the 5384 * low watermark. 5385 */ 5386 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5387 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5388 available += reclaimable - min(reclaimable / 2, wmark_low); 5389 5390 if (available < 0) 5391 available = 0; 5392 return available; 5393 } 5394 EXPORT_SYMBOL_GPL(si_mem_available); 5395 5396 void si_meminfo(struct sysinfo *val) 5397 { 5398 val->totalram = totalram_pages(); 5399 val->sharedram = global_node_page_state(NR_SHMEM); 5400 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5401 val->bufferram = nr_blockdev_pages(); 5402 val->totalhigh = totalhigh_pages(); 5403 val->freehigh = nr_free_highpages(); 5404 val->mem_unit = PAGE_SIZE; 5405 } 5406 5407 EXPORT_SYMBOL(si_meminfo); 5408 5409 #ifdef CONFIG_NUMA 5410 void si_meminfo_node(struct sysinfo *val, int nid) 5411 { 5412 int zone_type; /* needs to be signed */ 5413 unsigned long managed_pages = 0; 5414 unsigned long managed_highpages = 0; 5415 unsigned long free_highpages = 0; 5416 pg_data_t *pgdat = NODE_DATA(nid); 5417 5418 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5419 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5420 val->totalram = managed_pages; 5421 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5422 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5423 #ifdef CONFIG_HIGHMEM 5424 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5425 struct zone *zone = &pgdat->node_zones[zone_type]; 5426 5427 if (is_highmem(zone)) { 5428 managed_highpages += zone_managed_pages(zone); 5429 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5430 } 5431 } 5432 val->totalhigh = managed_highpages; 5433 val->freehigh = free_highpages; 5434 #else 5435 val->totalhigh = managed_highpages; 5436 val->freehigh = free_highpages; 5437 #endif 5438 val->mem_unit = PAGE_SIZE; 5439 } 5440 #endif 5441 5442 /* 5443 * Determine whether the node should be displayed or not, depending on whether 5444 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5445 */ 5446 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5447 { 5448 if (!(flags & SHOW_MEM_FILTER_NODES)) 5449 return false; 5450 5451 /* 5452 * no node mask - aka implicit memory numa policy. Do not bother with 5453 * the synchronization - read_mems_allowed_begin - because we do not 5454 * have to be precise here. 5455 */ 5456 if (!nodemask) 5457 nodemask = &cpuset_current_mems_allowed; 5458 5459 return !node_isset(nid, *nodemask); 5460 } 5461 5462 #define K(x) ((x) << (PAGE_SHIFT-10)) 5463 5464 static void show_migration_types(unsigned char type) 5465 { 5466 static const char types[MIGRATE_TYPES] = { 5467 [MIGRATE_UNMOVABLE] = 'U', 5468 [MIGRATE_MOVABLE] = 'M', 5469 [MIGRATE_RECLAIMABLE] = 'E', 5470 [MIGRATE_HIGHATOMIC] = 'H', 5471 #ifdef CONFIG_CMA 5472 [MIGRATE_CMA] = 'C', 5473 #endif 5474 #ifdef CONFIG_MEMORY_ISOLATION 5475 [MIGRATE_ISOLATE] = 'I', 5476 #endif 5477 }; 5478 char tmp[MIGRATE_TYPES + 1]; 5479 char *p = tmp; 5480 int i; 5481 5482 for (i = 0; i < MIGRATE_TYPES; i++) { 5483 if (type & (1 << i)) 5484 *p++ = types[i]; 5485 } 5486 5487 *p = '\0'; 5488 printk(KERN_CONT "(%s) ", tmp); 5489 } 5490 5491 /* 5492 * Show free area list (used inside shift_scroll-lock stuff) 5493 * We also calculate the percentage fragmentation. We do this by counting the 5494 * memory on each free list with the exception of the first item on the list. 5495 * 5496 * Bits in @filter: 5497 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5498 * cpuset. 5499 */ 5500 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5501 { 5502 unsigned long free_pcp = 0; 5503 int cpu; 5504 struct zone *zone; 5505 pg_data_t *pgdat; 5506 5507 for_each_populated_zone(zone) { 5508 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5509 continue; 5510 5511 for_each_online_cpu(cpu) 5512 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5513 } 5514 5515 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5516 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5517 " unevictable:%lu dirty:%lu writeback:%lu\n" 5518 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5519 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5520 " free:%lu free_pcp:%lu free_cma:%lu\n", 5521 global_node_page_state(NR_ACTIVE_ANON), 5522 global_node_page_state(NR_INACTIVE_ANON), 5523 global_node_page_state(NR_ISOLATED_ANON), 5524 global_node_page_state(NR_ACTIVE_FILE), 5525 global_node_page_state(NR_INACTIVE_FILE), 5526 global_node_page_state(NR_ISOLATED_FILE), 5527 global_node_page_state(NR_UNEVICTABLE), 5528 global_node_page_state(NR_FILE_DIRTY), 5529 global_node_page_state(NR_WRITEBACK), 5530 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5531 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5532 global_node_page_state(NR_FILE_MAPPED), 5533 global_node_page_state(NR_SHMEM), 5534 global_node_page_state(NR_PAGETABLE), 5535 global_zone_page_state(NR_BOUNCE), 5536 global_zone_page_state(NR_FREE_PAGES), 5537 free_pcp, 5538 global_zone_page_state(NR_FREE_CMA_PAGES)); 5539 5540 for_each_online_pgdat(pgdat) { 5541 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5542 continue; 5543 5544 printk("Node %d" 5545 " active_anon:%lukB" 5546 " inactive_anon:%lukB" 5547 " active_file:%lukB" 5548 " inactive_file:%lukB" 5549 " unevictable:%lukB" 5550 " isolated(anon):%lukB" 5551 " isolated(file):%lukB" 5552 " mapped:%lukB" 5553 " dirty:%lukB" 5554 " writeback:%lukB" 5555 " shmem:%lukB" 5556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5557 " shmem_thp: %lukB" 5558 " shmem_pmdmapped: %lukB" 5559 " anon_thp: %lukB" 5560 #endif 5561 " writeback_tmp:%lukB" 5562 " kernel_stack:%lukB" 5563 #ifdef CONFIG_SHADOW_CALL_STACK 5564 " shadow_call_stack:%lukB" 5565 #endif 5566 " pagetables:%lukB" 5567 " all_unreclaimable? %s" 5568 "\n", 5569 pgdat->node_id, 5570 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5571 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5572 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5573 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5574 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5575 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5576 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5577 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5578 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5579 K(node_page_state(pgdat, NR_WRITEBACK)), 5580 K(node_page_state(pgdat, NR_SHMEM)), 5581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5582 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5583 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5584 * HPAGE_PMD_NR), 5585 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5586 #endif 5587 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5588 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5589 #ifdef CONFIG_SHADOW_CALL_STACK 5590 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5591 #endif 5592 K(node_page_state(pgdat, NR_PAGETABLE)), 5593 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5594 "yes" : "no"); 5595 } 5596 5597 for_each_populated_zone(zone) { 5598 int i; 5599 5600 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5601 continue; 5602 5603 free_pcp = 0; 5604 for_each_online_cpu(cpu) 5605 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5606 5607 show_node(zone); 5608 printk(KERN_CONT 5609 "%s" 5610 " free:%lukB" 5611 " min:%lukB" 5612 " low:%lukB" 5613 " high:%lukB" 5614 " reserved_highatomic:%luKB" 5615 " active_anon:%lukB" 5616 " inactive_anon:%lukB" 5617 " active_file:%lukB" 5618 " inactive_file:%lukB" 5619 " unevictable:%lukB" 5620 " writepending:%lukB" 5621 " present:%lukB" 5622 " managed:%lukB" 5623 " mlocked:%lukB" 5624 " bounce:%lukB" 5625 " free_pcp:%lukB" 5626 " local_pcp:%ukB" 5627 " free_cma:%lukB" 5628 "\n", 5629 zone->name, 5630 K(zone_page_state(zone, NR_FREE_PAGES)), 5631 K(min_wmark_pages(zone)), 5632 K(low_wmark_pages(zone)), 5633 K(high_wmark_pages(zone)), 5634 K(zone->nr_reserved_highatomic), 5635 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5636 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5637 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5638 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5639 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5640 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5641 K(zone->present_pages), 5642 K(zone_managed_pages(zone)), 5643 K(zone_page_state(zone, NR_MLOCK)), 5644 K(zone_page_state(zone, NR_BOUNCE)), 5645 K(free_pcp), 5646 K(this_cpu_read(zone->pageset->pcp.count)), 5647 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5648 printk("lowmem_reserve[]:"); 5649 for (i = 0; i < MAX_NR_ZONES; i++) 5650 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5651 printk(KERN_CONT "\n"); 5652 } 5653 5654 for_each_populated_zone(zone) { 5655 unsigned int order; 5656 unsigned long nr[MAX_ORDER], flags, total = 0; 5657 unsigned char types[MAX_ORDER]; 5658 5659 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5660 continue; 5661 show_node(zone); 5662 printk(KERN_CONT "%s: ", zone->name); 5663 5664 spin_lock_irqsave(&zone->lock, flags); 5665 for (order = 0; order < MAX_ORDER; order++) { 5666 struct free_area *area = &zone->free_area[order]; 5667 int type; 5668 5669 nr[order] = area->nr_free; 5670 total += nr[order] << order; 5671 5672 types[order] = 0; 5673 for (type = 0; type < MIGRATE_TYPES; type++) { 5674 if (!free_area_empty(area, type)) 5675 types[order] |= 1 << type; 5676 } 5677 } 5678 spin_unlock_irqrestore(&zone->lock, flags); 5679 for (order = 0; order < MAX_ORDER; order++) { 5680 printk(KERN_CONT "%lu*%lukB ", 5681 nr[order], K(1UL) << order); 5682 if (nr[order]) 5683 show_migration_types(types[order]); 5684 } 5685 printk(KERN_CONT "= %lukB\n", K(total)); 5686 } 5687 5688 hugetlb_show_meminfo(); 5689 5690 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5691 5692 show_swap_cache_info(); 5693 } 5694 5695 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5696 { 5697 zoneref->zone = zone; 5698 zoneref->zone_idx = zone_idx(zone); 5699 } 5700 5701 /* 5702 * Builds allocation fallback zone lists. 5703 * 5704 * Add all populated zones of a node to the zonelist. 5705 */ 5706 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5707 { 5708 struct zone *zone; 5709 enum zone_type zone_type = MAX_NR_ZONES; 5710 int nr_zones = 0; 5711 5712 do { 5713 zone_type--; 5714 zone = pgdat->node_zones + zone_type; 5715 if (managed_zone(zone)) { 5716 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5717 check_highest_zone(zone_type); 5718 } 5719 } while (zone_type); 5720 5721 return nr_zones; 5722 } 5723 5724 #ifdef CONFIG_NUMA 5725 5726 static int __parse_numa_zonelist_order(char *s) 5727 { 5728 /* 5729 * We used to support different zonlists modes but they turned 5730 * out to be just not useful. Let's keep the warning in place 5731 * if somebody still use the cmd line parameter so that we do 5732 * not fail it silently 5733 */ 5734 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5735 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5736 return -EINVAL; 5737 } 5738 return 0; 5739 } 5740 5741 char numa_zonelist_order[] = "Node"; 5742 5743 /* 5744 * sysctl handler for numa_zonelist_order 5745 */ 5746 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5747 void *buffer, size_t *length, loff_t *ppos) 5748 { 5749 if (write) 5750 return __parse_numa_zonelist_order(buffer); 5751 return proc_dostring(table, write, buffer, length, ppos); 5752 } 5753 5754 5755 #define MAX_NODE_LOAD (nr_online_nodes) 5756 static int node_load[MAX_NUMNODES]; 5757 5758 /** 5759 * find_next_best_node - find the next node that should appear in a given node's fallback list 5760 * @node: node whose fallback list we're appending 5761 * @used_node_mask: nodemask_t of already used nodes 5762 * 5763 * We use a number of factors to determine which is the next node that should 5764 * appear on a given node's fallback list. The node should not have appeared 5765 * already in @node's fallback list, and it should be the next closest node 5766 * according to the distance array (which contains arbitrary distance values 5767 * from each node to each node in the system), and should also prefer nodes 5768 * with no CPUs, since presumably they'll have very little allocation pressure 5769 * on them otherwise. 5770 * 5771 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5772 */ 5773 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5774 { 5775 int n, val; 5776 int min_val = INT_MAX; 5777 int best_node = NUMA_NO_NODE; 5778 5779 /* Use the local node if we haven't already */ 5780 if (!node_isset(node, *used_node_mask)) { 5781 node_set(node, *used_node_mask); 5782 return node; 5783 } 5784 5785 for_each_node_state(n, N_MEMORY) { 5786 5787 /* Don't want a node to appear more than once */ 5788 if (node_isset(n, *used_node_mask)) 5789 continue; 5790 5791 /* Use the distance array to find the distance */ 5792 val = node_distance(node, n); 5793 5794 /* Penalize nodes under us ("prefer the next node") */ 5795 val += (n < node); 5796 5797 /* Give preference to headless and unused nodes */ 5798 if (!cpumask_empty(cpumask_of_node(n))) 5799 val += PENALTY_FOR_NODE_WITH_CPUS; 5800 5801 /* Slight preference for less loaded node */ 5802 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5803 val += node_load[n]; 5804 5805 if (val < min_val) { 5806 min_val = val; 5807 best_node = n; 5808 } 5809 } 5810 5811 if (best_node >= 0) 5812 node_set(best_node, *used_node_mask); 5813 5814 return best_node; 5815 } 5816 5817 5818 /* 5819 * Build zonelists ordered by node and zones within node. 5820 * This results in maximum locality--normal zone overflows into local 5821 * DMA zone, if any--but risks exhausting DMA zone. 5822 */ 5823 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5824 unsigned nr_nodes) 5825 { 5826 struct zoneref *zonerefs; 5827 int i; 5828 5829 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5830 5831 for (i = 0; i < nr_nodes; i++) { 5832 int nr_zones; 5833 5834 pg_data_t *node = NODE_DATA(node_order[i]); 5835 5836 nr_zones = build_zonerefs_node(node, zonerefs); 5837 zonerefs += nr_zones; 5838 } 5839 zonerefs->zone = NULL; 5840 zonerefs->zone_idx = 0; 5841 } 5842 5843 /* 5844 * Build gfp_thisnode zonelists 5845 */ 5846 static void build_thisnode_zonelists(pg_data_t *pgdat) 5847 { 5848 struct zoneref *zonerefs; 5849 int nr_zones; 5850 5851 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5852 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5853 zonerefs += nr_zones; 5854 zonerefs->zone = NULL; 5855 zonerefs->zone_idx = 0; 5856 } 5857 5858 /* 5859 * Build zonelists ordered by zone and nodes within zones. 5860 * This results in conserving DMA zone[s] until all Normal memory is 5861 * exhausted, but results in overflowing to remote node while memory 5862 * may still exist in local DMA zone. 5863 */ 5864 5865 static void build_zonelists(pg_data_t *pgdat) 5866 { 5867 static int node_order[MAX_NUMNODES]; 5868 int node, load, nr_nodes = 0; 5869 nodemask_t used_mask = NODE_MASK_NONE; 5870 int local_node, prev_node; 5871 5872 /* NUMA-aware ordering of nodes */ 5873 local_node = pgdat->node_id; 5874 load = nr_online_nodes; 5875 prev_node = local_node; 5876 5877 memset(node_order, 0, sizeof(node_order)); 5878 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5879 /* 5880 * We don't want to pressure a particular node. 5881 * So adding penalty to the first node in same 5882 * distance group to make it round-robin. 5883 */ 5884 if (node_distance(local_node, node) != 5885 node_distance(local_node, prev_node)) 5886 node_load[node] = load; 5887 5888 node_order[nr_nodes++] = node; 5889 prev_node = node; 5890 load--; 5891 } 5892 5893 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5894 build_thisnode_zonelists(pgdat); 5895 } 5896 5897 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5898 /* 5899 * Return node id of node used for "local" allocations. 5900 * I.e., first node id of first zone in arg node's generic zonelist. 5901 * Used for initializing percpu 'numa_mem', which is used primarily 5902 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5903 */ 5904 int local_memory_node(int node) 5905 { 5906 struct zoneref *z; 5907 5908 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5909 gfp_zone(GFP_KERNEL), 5910 NULL); 5911 return zone_to_nid(z->zone); 5912 } 5913 #endif 5914 5915 static void setup_min_unmapped_ratio(void); 5916 static void setup_min_slab_ratio(void); 5917 #else /* CONFIG_NUMA */ 5918 5919 static void build_zonelists(pg_data_t *pgdat) 5920 { 5921 int node, local_node; 5922 struct zoneref *zonerefs; 5923 int nr_zones; 5924 5925 local_node = pgdat->node_id; 5926 5927 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5928 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5929 zonerefs += nr_zones; 5930 5931 /* 5932 * Now we build the zonelist so that it contains the zones 5933 * of all the other nodes. 5934 * We don't want to pressure a particular node, so when 5935 * building the zones for node N, we make sure that the 5936 * zones coming right after the local ones are those from 5937 * node N+1 (modulo N) 5938 */ 5939 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5940 if (!node_online(node)) 5941 continue; 5942 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5943 zonerefs += nr_zones; 5944 } 5945 for (node = 0; node < local_node; node++) { 5946 if (!node_online(node)) 5947 continue; 5948 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5949 zonerefs += nr_zones; 5950 } 5951 5952 zonerefs->zone = NULL; 5953 zonerefs->zone_idx = 0; 5954 } 5955 5956 #endif /* CONFIG_NUMA */ 5957 5958 /* 5959 * Boot pageset table. One per cpu which is going to be used for all 5960 * zones and all nodes. The parameters will be set in such a way 5961 * that an item put on a list will immediately be handed over to 5962 * the buddy list. This is safe since pageset manipulation is done 5963 * with interrupts disabled. 5964 * 5965 * The boot_pagesets must be kept even after bootup is complete for 5966 * unused processors and/or zones. They do play a role for bootstrapping 5967 * hotplugged processors. 5968 * 5969 * zoneinfo_show() and maybe other functions do 5970 * not check if the processor is online before following the pageset pointer. 5971 * Other parts of the kernel may not check if the zone is available. 5972 */ 5973 static void pageset_init(struct per_cpu_pageset *p); 5974 /* These effectively disable the pcplists in the boot pageset completely */ 5975 #define BOOT_PAGESET_HIGH 0 5976 #define BOOT_PAGESET_BATCH 1 5977 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5978 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5979 5980 static void __build_all_zonelists(void *data) 5981 { 5982 int nid; 5983 int __maybe_unused cpu; 5984 pg_data_t *self = data; 5985 static DEFINE_SPINLOCK(lock); 5986 5987 spin_lock(&lock); 5988 5989 #ifdef CONFIG_NUMA 5990 memset(node_load, 0, sizeof(node_load)); 5991 #endif 5992 5993 /* 5994 * This node is hotadded and no memory is yet present. So just 5995 * building zonelists is fine - no need to touch other nodes. 5996 */ 5997 if (self && !node_online(self->node_id)) { 5998 build_zonelists(self); 5999 } else { 6000 for_each_online_node(nid) { 6001 pg_data_t *pgdat = NODE_DATA(nid); 6002 6003 build_zonelists(pgdat); 6004 } 6005 6006 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6007 /* 6008 * We now know the "local memory node" for each node-- 6009 * i.e., the node of the first zone in the generic zonelist. 6010 * Set up numa_mem percpu variable for on-line cpus. During 6011 * boot, only the boot cpu should be on-line; we'll init the 6012 * secondary cpus' numa_mem as they come on-line. During 6013 * node/memory hotplug, we'll fixup all on-line cpus. 6014 */ 6015 for_each_online_cpu(cpu) 6016 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6017 #endif 6018 } 6019 6020 spin_unlock(&lock); 6021 } 6022 6023 static noinline void __init 6024 build_all_zonelists_init(void) 6025 { 6026 int cpu; 6027 6028 __build_all_zonelists(NULL); 6029 6030 /* 6031 * Initialize the boot_pagesets that are going to be used 6032 * for bootstrapping processors. The real pagesets for 6033 * each zone will be allocated later when the per cpu 6034 * allocator is available. 6035 * 6036 * boot_pagesets are used also for bootstrapping offline 6037 * cpus if the system is already booted because the pagesets 6038 * are needed to initialize allocators on a specific cpu too. 6039 * F.e. the percpu allocator needs the page allocator which 6040 * needs the percpu allocator in order to allocate its pagesets 6041 * (a chicken-egg dilemma). 6042 */ 6043 for_each_possible_cpu(cpu) 6044 pageset_init(&per_cpu(boot_pageset, cpu)); 6045 6046 mminit_verify_zonelist(); 6047 cpuset_init_current_mems_allowed(); 6048 } 6049 6050 /* 6051 * unless system_state == SYSTEM_BOOTING. 6052 * 6053 * __ref due to call of __init annotated helper build_all_zonelists_init 6054 * [protected by SYSTEM_BOOTING]. 6055 */ 6056 void __ref build_all_zonelists(pg_data_t *pgdat) 6057 { 6058 unsigned long vm_total_pages; 6059 6060 if (system_state == SYSTEM_BOOTING) { 6061 build_all_zonelists_init(); 6062 } else { 6063 __build_all_zonelists(pgdat); 6064 /* cpuset refresh routine should be here */ 6065 } 6066 /* Get the number of free pages beyond high watermark in all zones. */ 6067 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6068 /* 6069 * Disable grouping by mobility if the number of pages in the 6070 * system is too low to allow the mechanism to work. It would be 6071 * more accurate, but expensive to check per-zone. This check is 6072 * made on memory-hotadd so a system can start with mobility 6073 * disabled and enable it later 6074 */ 6075 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6076 page_group_by_mobility_disabled = 1; 6077 else 6078 page_group_by_mobility_disabled = 0; 6079 6080 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6081 nr_online_nodes, 6082 page_group_by_mobility_disabled ? "off" : "on", 6083 vm_total_pages); 6084 #ifdef CONFIG_NUMA 6085 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6086 #endif 6087 } 6088 6089 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6090 static bool __meminit 6091 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6092 { 6093 static struct memblock_region *r; 6094 6095 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6096 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6097 for_each_mem_region(r) { 6098 if (*pfn < memblock_region_memory_end_pfn(r)) 6099 break; 6100 } 6101 } 6102 if (*pfn >= memblock_region_memory_base_pfn(r) && 6103 memblock_is_mirror(r)) { 6104 *pfn = memblock_region_memory_end_pfn(r); 6105 return true; 6106 } 6107 } 6108 return false; 6109 } 6110 6111 /* 6112 * Initially all pages are reserved - free ones are freed 6113 * up by memblock_free_all() once the early boot process is 6114 * done. Non-atomic initialization, single-pass. 6115 * 6116 * All aligned pageblocks are initialized to the specified migratetype 6117 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6118 * zone stats (e.g., nr_isolate_pageblock) are touched. 6119 */ 6120 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 6121 unsigned long start_pfn, unsigned long zone_end_pfn, 6122 enum meminit_context context, 6123 struct vmem_altmap *altmap, int migratetype) 6124 { 6125 unsigned long pfn, end_pfn = start_pfn + size; 6126 struct page *page; 6127 6128 if (highest_memmap_pfn < end_pfn - 1) 6129 highest_memmap_pfn = end_pfn - 1; 6130 6131 #ifdef CONFIG_ZONE_DEVICE 6132 /* 6133 * Honor reservation requested by the driver for this ZONE_DEVICE 6134 * memory. We limit the total number of pages to initialize to just 6135 * those that might contain the memory mapping. We will defer the 6136 * ZONE_DEVICE page initialization until after we have released 6137 * the hotplug lock. 6138 */ 6139 if (zone == ZONE_DEVICE) { 6140 if (!altmap) 6141 return; 6142 6143 if (start_pfn == altmap->base_pfn) 6144 start_pfn += altmap->reserve; 6145 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6146 } 6147 #endif 6148 6149 for (pfn = start_pfn; pfn < end_pfn; ) { 6150 /* 6151 * There can be holes in boot-time mem_map[]s handed to this 6152 * function. They do not exist on hotplugged memory. 6153 */ 6154 if (context == MEMINIT_EARLY) { 6155 if (overlap_memmap_init(zone, &pfn)) 6156 continue; 6157 if (defer_init(nid, pfn, zone_end_pfn)) 6158 break; 6159 } 6160 6161 page = pfn_to_page(pfn); 6162 __init_single_page(page, pfn, zone, nid); 6163 if (context == MEMINIT_HOTPLUG) 6164 __SetPageReserved(page); 6165 6166 /* 6167 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6168 * such that unmovable allocations won't be scattered all 6169 * over the place during system boot. 6170 */ 6171 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6172 set_pageblock_migratetype(page, migratetype); 6173 cond_resched(); 6174 } 6175 pfn++; 6176 } 6177 } 6178 6179 #ifdef CONFIG_ZONE_DEVICE 6180 void __ref memmap_init_zone_device(struct zone *zone, 6181 unsigned long start_pfn, 6182 unsigned long nr_pages, 6183 struct dev_pagemap *pgmap) 6184 { 6185 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6186 struct pglist_data *pgdat = zone->zone_pgdat; 6187 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6188 unsigned long zone_idx = zone_idx(zone); 6189 unsigned long start = jiffies; 6190 int nid = pgdat->node_id; 6191 6192 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6193 return; 6194 6195 /* 6196 * The call to memmap_init_zone should have already taken care 6197 * of the pages reserved for the memmap, so we can just jump to 6198 * the end of that region and start processing the device pages. 6199 */ 6200 if (altmap) { 6201 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6202 nr_pages = end_pfn - start_pfn; 6203 } 6204 6205 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6206 struct page *page = pfn_to_page(pfn); 6207 6208 __init_single_page(page, pfn, zone_idx, nid); 6209 6210 /* 6211 * Mark page reserved as it will need to wait for onlining 6212 * phase for it to be fully associated with a zone. 6213 * 6214 * We can use the non-atomic __set_bit operation for setting 6215 * the flag as we are still initializing the pages. 6216 */ 6217 __SetPageReserved(page); 6218 6219 /* 6220 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6221 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6222 * ever freed or placed on a driver-private list. 6223 */ 6224 page->pgmap = pgmap; 6225 page->zone_device_data = NULL; 6226 6227 /* 6228 * Mark the block movable so that blocks are reserved for 6229 * movable at startup. This will force kernel allocations 6230 * to reserve their blocks rather than leaking throughout 6231 * the address space during boot when many long-lived 6232 * kernel allocations are made. 6233 * 6234 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6235 * because this is done early in section_activate() 6236 */ 6237 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6238 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6239 cond_resched(); 6240 } 6241 } 6242 6243 pr_info("%s initialised %lu pages in %ums\n", __func__, 6244 nr_pages, jiffies_to_msecs(jiffies - start)); 6245 } 6246 6247 #endif 6248 static void __meminit zone_init_free_lists(struct zone *zone) 6249 { 6250 unsigned int order, t; 6251 for_each_migratetype_order(order, t) { 6252 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6253 zone->free_area[order].nr_free = 0; 6254 } 6255 } 6256 6257 void __meminit __weak memmap_init(unsigned long size, int nid, 6258 unsigned long zone, 6259 unsigned long range_start_pfn) 6260 { 6261 unsigned long start_pfn, end_pfn; 6262 unsigned long range_end_pfn = range_start_pfn + size; 6263 int i; 6264 6265 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6266 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6267 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6268 6269 if (end_pfn > start_pfn) { 6270 size = end_pfn - start_pfn; 6271 memmap_init_zone(size, nid, zone, start_pfn, range_end_pfn, 6272 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6273 } 6274 } 6275 } 6276 6277 static int zone_batchsize(struct zone *zone) 6278 { 6279 #ifdef CONFIG_MMU 6280 int batch; 6281 6282 /* 6283 * The per-cpu-pages pools are set to around 1000th of the 6284 * size of the zone. 6285 */ 6286 batch = zone_managed_pages(zone) / 1024; 6287 /* But no more than a meg. */ 6288 if (batch * PAGE_SIZE > 1024 * 1024) 6289 batch = (1024 * 1024) / PAGE_SIZE; 6290 batch /= 4; /* We effectively *= 4 below */ 6291 if (batch < 1) 6292 batch = 1; 6293 6294 /* 6295 * Clamp the batch to a 2^n - 1 value. Having a power 6296 * of 2 value was found to be more likely to have 6297 * suboptimal cache aliasing properties in some cases. 6298 * 6299 * For example if 2 tasks are alternately allocating 6300 * batches of pages, one task can end up with a lot 6301 * of pages of one half of the possible page colors 6302 * and the other with pages of the other colors. 6303 */ 6304 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6305 6306 return batch; 6307 6308 #else 6309 /* The deferral and batching of frees should be suppressed under NOMMU 6310 * conditions. 6311 * 6312 * The problem is that NOMMU needs to be able to allocate large chunks 6313 * of contiguous memory as there's no hardware page translation to 6314 * assemble apparent contiguous memory from discontiguous pages. 6315 * 6316 * Queueing large contiguous runs of pages for batching, however, 6317 * causes the pages to actually be freed in smaller chunks. As there 6318 * can be a significant delay between the individual batches being 6319 * recycled, this leads to the once large chunks of space being 6320 * fragmented and becoming unavailable for high-order allocations. 6321 */ 6322 return 0; 6323 #endif 6324 } 6325 6326 /* 6327 * pcp->high and pcp->batch values are related and generally batch is lower 6328 * than high. They are also related to pcp->count such that count is lower 6329 * than high, and as soon as it reaches high, the pcplist is flushed. 6330 * 6331 * However, guaranteeing these relations at all times would require e.g. write 6332 * barriers here but also careful usage of read barriers at the read side, and 6333 * thus be prone to error and bad for performance. Thus the update only prevents 6334 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6335 * can cope with those fields changing asynchronously, and fully trust only the 6336 * pcp->count field on the local CPU with interrupts disabled. 6337 * 6338 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6339 * outside of boot time (or some other assurance that no concurrent updaters 6340 * exist). 6341 */ 6342 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6343 unsigned long batch) 6344 { 6345 WRITE_ONCE(pcp->batch, batch); 6346 WRITE_ONCE(pcp->high, high); 6347 } 6348 6349 static void pageset_init(struct per_cpu_pageset *p) 6350 { 6351 struct per_cpu_pages *pcp; 6352 int migratetype; 6353 6354 memset(p, 0, sizeof(*p)); 6355 6356 pcp = &p->pcp; 6357 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6358 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6359 6360 /* 6361 * Set batch and high values safe for a boot pageset. A true percpu 6362 * pageset's initialization will update them subsequently. Here we don't 6363 * need to be as careful as pageset_update() as nobody can access the 6364 * pageset yet. 6365 */ 6366 pcp->high = BOOT_PAGESET_HIGH; 6367 pcp->batch = BOOT_PAGESET_BATCH; 6368 } 6369 6370 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6371 unsigned long batch) 6372 { 6373 struct per_cpu_pageset *p; 6374 int cpu; 6375 6376 for_each_possible_cpu(cpu) { 6377 p = per_cpu_ptr(zone->pageset, cpu); 6378 pageset_update(&p->pcp, high, batch); 6379 } 6380 } 6381 6382 /* 6383 * Calculate and set new high and batch values for all per-cpu pagesets of a 6384 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl. 6385 */ 6386 static void zone_set_pageset_high_and_batch(struct zone *zone) 6387 { 6388 unsigned long new_high, new_batch; 6389 6390 if (percpu_pagelist_fraction) { 6391 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction; 6392 new_batch = max(1UL, new_high / 4); 6393 if ((new_high / 4) > (PAGE_SHIFT * 8)) 6394 new_batch = PAGE_SHIFT * 8; 6395 } else { 6396 new_batch = zone_batchsize(zone); 6397 new_high = 6 * new_batch; 6398 new_batch = max(1UL, 1 * new_batch); 6399 } 6400 6401 if (zone->pageset_high == new_high && 6402 zone->pageset_batch == new_batch) 6403 return; 6404 6405 zone->pageset_high = new_high; 6406 zone->pageset_batch = new_batch; 6407 6408 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6409 } 6410 6411 void __meminit setup_zone_pageset(struct zone *zone) 6412 { 6413 struct per_cpu_pageset *p; 6414 int cpu; 6415 6416 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6417 for_each_possible_cpu(cpu) { 6418 p = per_cpu_ptr(zone->pageset, cpu); 6419 pageset_init(p); 6420 } 6421 6422 zone_set_pageset_high_and_batch(zone); 6423 } 6424 6425 /* 6426 * Allocate per cpu pagesets and initialize them. 6427 * Before this call only boot pagesets were available. 6428 */ 6429 void __init setup_per_cpu_pageset(void) 6430 { 6431 struct pglist_data *pgdat; 6432 struct zone *zone; 6433 int __maybe_unused cpu; 6434 6435 for_each_populated_zone(zone) 6436 setup_zone_pageset(zone); 6437 6438 #ifdef CONFIG_NUMA 6439 /* 6440 * Unpopulated zones continue using the boot pagesets. 6441 * The numa stats for these pagesets need to be reset. 6442 * Otherwise, they will end up skewing the stats of 6443 * the nodes these zones are associated with. 6444 */ 6445 for_each_possible_cpu(cpu) { 6446 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6447 memset(pcp->vm_numa_stat_diff, 0, 6448 sizeof(pcp->vm_numa_stat_diff)); 6449 } 6450 #endif 6451 6452 for_each_online_pgdat(pgdat) 6453 pgdat->per_cpu_nodestats = 6454 alloc_percpu(struct per_cpu_nodestat); 6455 } 6456 6457 static __meminit void zone_pcp_init(struct zone *zone) 6458 { 6459 /* 6460 * per cpu subsystem is not up at this point. The following code 6461 * relies on the ability of the linker to provide the 6462 * offset of a (static) per cpu variable into the per cpu area. 6463 */ 6464 zone->pageset = &boot_pageset; 6465 zone->pageset_high = BOOT_PAGESET_HIGH; 6466 zone->pageset_batch = BOOT_PAGESET_BATCH; 6467 6468 if (populated_zone(zone)) 6469 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6470 zone->name, zone->present_pages, 6471 zone_batchsize(zone)); 6472 } 6473 6474 void __meminit init_currently_empty_zone(struct zone *zone, 6475 unsigned long zone_start_pfn, 6476 unsigned long size) 6477 { 6478 struct pglist_data *pgdat = zone->zone_pgdat; 6479 int zone_idx = zone_idx(zone) + 1; 6480 6481 if (zone_idx > pgdat->nr_zones) 6482 pgdat->nr_zones = zone_idx; 6483 6484 zone->zone_start_pfn = zone_start_pfn; 6485 6486 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6487 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6488 pgdat->node_id, 6489 (unsigned long)zone_idx(zone), 6490 zone_start_pfn, (zone_start_pfn + size)); 6491 6492 zone_init_free_lists(zone); 6493 zone->initialized = 1; 6494 } 6495 6496 /** 6497 * get_pfn_range_for_nid - Return the start and end page frames for a node 6498 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6499 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6500 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6501 * 6502 * It returns the start and end page frame of a node based on information 6503 * provided by memblock_set_node(). If called for a node 6504 * with no available memory, a warning is printed and the start and end 6505 * PFNs will be 0. 6506 */ 6507 void __init get_pfn_range_for_nid(unsigned int nid, 6508 unsigned long *start_pfn, unsigned long *end_pfn) 6509 { 6510 unsigned long this_start_pfn, this_end_pfn; 6511 int i; 6512 6513 *start_pfn = -1UL; 6514 *end_pfn = 0; 6515 6516 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6517 *start_pfn = min(*start_pfn, this_start_pfn); 6518 *end_pfn = max(*end_pfn, this_end_pfn); 6519 } 6520 6521 if (*start_pfn == -1UL) 6522 *start_pfn = 0; 6523 } 6524 6525 /* 6526 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6527 * assumption is made that zones within a node are ordered in monotonic 6528 * increasing memory addresses so that the "highest" populated zone is used 6529 */ 6530 static void __init find_usable_zone_for_movable(void) 6531 { 6532 int zone_index; 6533 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6534 if (zone_index == ZONE_MOVABLE) 6535 continue; 6536 6537 if (arch_zone_highest_possible_pfn[zone_index] > 6538 arch_zone_lowest_possible_pfn[zone_index]) 6539 break; 6540 } 6541 6542 VM_BUG_ON(zone_index == -1); 6543 movable_zone = zone_index; 6544 } 6545 6546 /* 6547 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6548 * because it is sized independent of architecture. Unlike the other zones, 6549 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6550 * in each node depending on the size of each node and how evenly kernelcore 6551 * is distributed. This helper function adjusts the zone ranges 6552 * provided by the architecture for a given node by using the end of the 6553 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6554 * zones within a node are in order of monotonic increases memory addresses 6555 */ 6556 static void __init adjust_zone_range_for_zone_movable(int nid, 6557 unsigned long zone_type, 6558 unsigned long node_start_pfn, 6559 unsigned long node_end_pfn, 6560 unsigned long *zone_start_pfn, 6561 unsigned long *zone_end_pfn) 6562 { 6563 /* Only adjust if ZONE_MOVABLE is on this node */ 6564 if (zone_movable_pfn[nid]) { 6565 /* Size ZONE_MOVABLE */ 6566 if (zone_type == ZONE_MOVABLE) { 6567 *zone_start_pfn = zone_movable_pfn[nid]; 6568 *zone_end_pfn = min(node_end_pfn, 6569 arch_zone_highest_possible_pfn[movable_zone]); 6570 6571 /* Adjust for ZONE_MOVABLE starting within this range */ 6572 } else if (!mirrored_kernelcore && 6573 *zone_start_pfn < zone_movable_pfn[nid] && 6574 *zone_end_pfn > zone_movable_pfn[nid]) { 6575 *zone_end_pfn = zone_movable_pfn[nid]; 6576 6577 /* Check if this whole range is within ZONE_MOVABLE */ 6578 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6579 *zone_start_pfn = *zone_end_pfn; 6580 } 6581 } 6582 6583 /* 6584 * Return the number of pages a zone spans in a node, including holes 6585 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6586 */ 6587 static unsigned long __init zone_spanned_pages_in_node(int nid, 6588 unsigned long zone_type, 6589 unsigned long node_start_pfn, 6590 unsigned long node_end_pfn, 6591 unsigned long *zone_start_pfn, 6592 unsigned long *zone_end_pfn) 6593 { 6594 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6595 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6596 /* When hotadd a new node from cpu_up(), the node should be empty */ 6597 if (!node_start_pfn && !node_end_pfn) 6598 return 0; 6599 6600 /* Get the start and end of the zone */ 6601 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6602 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6603 adjust_zone_range_for_zone_movable(nid, zone_type, 6604 node_start_pfn, node_end_pfn, 6605 zone_start_pfn, zone_end_pfn); 6606 6607 /* Check that this node has pages within the zone's required range */ 6608 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6609 return 0; 6610 6611 /* Move the zone boundaries inside the node if necessary */ 6612 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6613 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6614 6615 /* Return the spanned pages */ 6616 return *zone_end_pfn - *zone_start_pfn; 6617 } 6618 6619 /* 6620 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6621 * then all holes in the requested range will be accounted for. 6622 */ 6623 unsigned long __init __absent_pages_in_range(int nid, 6624 unsigned long range_start_pfn, 6625 unsigned long range_end_pfn) 6626 { 6627 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6628 unsigned long start_pfn, end_pfn; 6629 int i; 6630 6631 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6632 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6633 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6634 nr_absent -= end_pfn - start_pfn; 6635 } 6636 return nr_absent; 6637 } 6638 6639 /** 6640 * absent_pages_in_range - Return number of page frames in holes within a range 6641 * @start_pfn: The start PFN to start searching for holes 6642 * @end_pfn: The end PFN to stop searching for holes 6643 * 6644 * Return: the number of pages frames in memory holes within a range. 6645 */ 6646 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6647 unsigned long end_pfn) 6648 { 6649 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6650 } 6651 6652 /* Return the number of page frames in holes in a zone on a node */ 6653 static unsigned long __init zone_absent_pages_in_node(int nid, 6654 unsigned long zone_type, 6655 unsigned long node_start_pfn, 6656 unsigned long node_end_pfn) 6657 { 6658 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6659 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6660 unsigned long zone_start_pfn, zone_end_pfn; 6661 unsigned long nr_absent; 6662 6663 /* When hotadd a new node from cpu_up(), the node should be empty */ 6664 if (!node_start_pfn && !node_end_pfn) 6665 return 0; 6666 6667 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6668 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6669 6670 adjust_zone_range_for_zone_movable(nid, zone_type, 6671 node_start_pfn, node_end_pfn, 6672 &zone_start_pfn, &zone_end_pfn); 6673 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6674 6675 /* 6676 * ZONE_MOVABLE handling. 6677 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6678 * and vice versa. 6679 */ 6680 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6681 unsigned long start_pfn, end_pfn; 6682 struct memblock_region *r; 6683 6684 for_each_mem_region(r) { 6685 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6686 zone_start_pfn, zone_end_pfn); 6687 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6688 zone_start_pfn, zone_end_pfn); 6689 6690 if (zone_type == ZONE_MOVABLE && 6691 memblock_is_mirror(r)) 6692 nr_absent += end_pfn - start_pfn; 6693 6694 if (zone_type == ZONE_NORMAL && 6695 !memblock_is_mirror(r)) 6696 nr_absent += end_pfn - start_pfn; 6697 } 6698 } 6699 6700 return nr_absent; 6701 } 6702 6703 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6704 unsigned long node_start_pfn, 6705 unsigned long node_end_pfn) 6706 { 6707 unsigned long realtotalpages = 0, totalpages = 0; 6708 enum zone_type i; 6709 6710 for (i = 0; i < MAX_NR_ZONES; i++) { 6711 struct zone *zone = pgdat->node_zones + i; 6712 unsigned long zone_start_pfn, zone_end_pfn; 6713 unsigned long spanned, absent; 6714 unsigned long size, real_size; 6715 6716 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6717 node_start_pfn, 6718 node_end_pfn, 6719 &zone_start_pfn, 6720 &zone_end_pfn); 6721 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6722 node_start_pfn, 6723 node_end_pfn); 6724 6725 size = spanned; 6726 real_size = size - absent; 6727 6728 if (size) 6729 zone->zone_start_pfn = zone_start_pfn; 6730 else 6731 zone->zone_start_pfn = 0; 6732 zone->spanned_pages = size; 6733 zone->present_pages = real_size; 6734 6735 totalpages += size; 6736 realtotalpages += real_size; 6737 } 6738 6739 pgdat->node_spanned_pages = totalpages; 6740 pgdat->node_present_pages = realtotalpages; 6741 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6742 realtotalpages); 6743 } 6744 6745 #ifndef CONFIG_SPARSEMEM 6746 /* 6747 * Calculate the size of the zone->blockflags rounded to an unsigned long 6748 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6749 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6750 * round what is now in bits to nearest long in bits, then return it in 6751 * bytes. 6752 */ 6753 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6754 { 6755 unsigned long usemapsize; 6756 6757 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6758 usemapsize = roundup(zonesize, pageblock_nr_pages); 6759 usemapsize = usemapsize >> pageblock_order; 6760 usemapsize *= NR_PAGEBLOCK_BITS; 6761 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6762 6763 return usemapsize / 8; 6764 } 6765 6766 static void __ref setup_usemap(struct pglist_data *pgdat, 6767 struct zone *zone, 6768 unsigned long zone_start_pfn, 6769 unsigned long zonesize) 6770 { 6771 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6772 zone->pageblock_flags = NULL; 6773 if (usemapsize) { 6774 zone->pageblock_flags = 6775 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6776 pgdat->node_id); 6777 if (!zone->pageblock_flags) 6778 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6779 usemapsize, zone->name, pgdat->node_id); 6780 } 6781 } 6782 #else 6783 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6784 unsigned long zone_start_pfn, unsigned long zonesize) {} 6785 #endif /* CONFIG_SPARSEMEM */ 6786 6787 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6788 6789 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6790 void __init set_pageblock_order(void) 6791 { 6792 unsigned int order; 6793 6794 /* Check that pageblock_nr_pages has not already been setup */ 6795 if (pageblock_order) 6796 return; 6797 6798 if (HPAGE_SHIFT > PAGE_SHIFT) 6799 order = HUGETLB_PAGE_ORDER; 6800 else 6801 order = MAX_ORDER - 1; 6802 6803 /* 6804 * Assume the largest contiguous order of interest is a huge page. 6805 * This value may be variable depending on boot parameters on IA64 and 6806 * powerpc. 6807 */ 6808 pageblock_order = order; 6809 } 6810 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6811 6812 /* 6813 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6814 * is unused as pageblock_order is set at compile-time. See 6815 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6816 * the kernel config 6817 */ 6818 void __init set_pageblock_order(void) 6819 { 6820 } 6821 6822 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6823 6824 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6825 unsigned long present_pages) 6826 { 6827 unsigned long pages = spanned_pages; 6828 6829 /* 6830 * Provide a more accurate estimation if there are holes within 6831 * the zone and SPARSEMEM is in use. If there are holes within the 6832 * zone, each populated memory region may cost us one or two extra 6833 * memmap pages due to alignment because memmap pages for each 6834 * populated regions may not be naturally aligned on page boundary. 6835 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6836 */ 6837 if (spanned_pages > present_pages + (present_pages >> 4) && 6838 IS_ENABLED(CONFIG_SPARSEMEM)) 6839 pages = present_pages; 6840 6841 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6842 } 6843 6844 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6845 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6846 { 6847 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6848 6849 spin_lock_init(&ds_queue->split_queue_lock); 6850 INIT_LIST_HEAD(&ds_queue->split_queue); 6851 ds_queue->split_queue_len = 0; 6852 } 6853 #else 6854 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6855 #endif 6856 6857 #ifdef CONFIG_COMPACTION 6858 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6859 { 6860 init_waitqueue_head(&pgdat->kcompactd_wait); 6861 } 6862 #else 6863 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6864 #endif 6865 6866 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6867 { 6868 pgdat_resize_init(pgdat); 6869 6870 pgdat_init_split_queue(pgdat); 6871 pgdat_init_kcompactd(pgdat); 6872 6873 init_waitqueue_head(&pgdat->kswapd_wait); 6874 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6875 6876 pgdat_page_ext_init(pgdat); 6877 lruvec_init(&pgdat->__lruvec); 6878 } 6879 6880 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6881 unsigned long remaining_pages) 6882 { 6883 atomic_long_set(&zone->managed_pages, remaining_pages); 6884 zone_set_nid(zone, nid); 6885 zone->name = zone_names[idx]; 6886 zone->zone_pgdat = NODE_DATA(nid); 6887 spin_lock_init(&zone->lock); 6888 zone_seqlock_init(zone); 6889 zone_pcp_init(zone); 6890 } 6891 6892 /* 6893 * Set up the zone data structures 6894 * - init pgdat internals 6895 * - init all zones belonging to this node 6896 * 6897 * NOTE: this function is only called during memory hotplug 6898 */ 6899 #ifdef CONFIG_MEMORY_HOTPLUG 6900 void __ref free_area_init_core_hotplug(int nid) 6901 { 6902 enum zone_type z; 6903 pg_data_t *pgdat = NODE_DATA(nid); 6904 6905 pgdat_init_internals(pgdat); 6906 for (z = 0; z < MAX_NR_ZONES; z++) 6907 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6908 } 6909 #endif 6910 6911 /* 6912 * Set up the zone data structures: 6913 * - mark all pages reserved 6914 * - mark all memory queues empty 6915 * - clear the memory bitmaps 6916 * 6917 * NOTE: pgdat should get zeroed by caller. 6918 * NOTE: this function is only called during early init. 6919 */ 6920 static void __init free_area_init_core(struct pglist_data *pgdat) 6921 { 6922 enum zone_type j; 6923 int nid = pgdat->node_id; 6924 6925 pgdat_init_internals(pgdat); 6926 pgdat->per_cpu_nodestats = &boot_nodestats; 6927 6928 for (j = 0; j < MAX_NR_ZONES; j++) { 6929 struct zone *zone = pgdat->node_zones + j; 6930 unsigned long size, freesize, memmap_pages; 6931 unsigned long zone_start_pfn = zone->zone_start_pfn; 6932 6933 size = zone->spanned_pages; 6934 freesize = zone->present_pages; 6935 6936 /* 6937 * Adjust freesize so that it accounts for how much memory 6938 * is used by this zone for memmap. This affects the watermark 6939 * and per-cpu initialisations 6940 */ 6941 memmap_pages = calc_memmap_size(size, freesize); 6942 if (!is_highmem_idx(j)) { 6943 if (freesize >= memmap_pages) { 6944 freesize -= memmap_pages; 6945 if (memmap_pages) 6946 printk(KERN_DEBUG 6947 " %s zone: %lu pages used for memmap\n", 6948 zone_names[j], memmap_pages); 6949 } else 6950 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6951 zone_names[j], memmap_pages, freesize); 6952 } 6953 6954 /* Account for reserved pages */ 6955 if (j == 0 && freesize > dma_reserve) { 6956 freesize -= dma_reserve; 6957 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6958 zone_names[0], dma_reserve); 6959 } 6960 6961 if (!is_highmem_idx(j)) 6962 nr_kernel_pages += freesize; 6963 /* Charge for highmem memmap if there are enough kernel pages */ 6964 else if (nr_kernel_pages > memmap_pages * 2) 6965 nr_kernel_pages -= memmap_pages; 6966 nr_all_pages += freesize; 6967 6968 /* 6969 * Set an approximate value for lowmem here, it will be adjusted 6970 * when the bootmem allocator frees pages into the buddy system. 6971 * And all highmem pages will be managed by the buddy system. 6972 */ 6973 zone_init_internals(zone, j, nid, freesize); 6974 6975 if (!size) 6976 continue; 6977 6978 set_pageblock_order(); 6979 setup_usemap(pgdat, zone, zone_start_pfn, size); 6980 init_currently_empty_zone(zone, zone_start_pfn, size); 6981 memmap_init(size, nid, j, zone_start_pfn); 6982 } 6983 } 6984 6985 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6986 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6987 { 6988 unsigned long __maybe_unused start = 0; 6989 unsigned long __maybe_unused offset = 0; 6990 6991 /* Skip empty nodes */ 6992 if (!pgdat->node_spanned_pages) 6993 return; 6994 6995 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6996 offset = pgdat->node_start_pfn - start; 6997 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6998 if (!pgdat->node_mem_map) { 6999 unsigned long size, end; 7000 struct page *map; 7001 7002 /* 7003 * The zone's endpoints aren't required to be MAX_ORDER 7004 * aligned but the node_mem_map endpoints must be in order 7005 * for the buddy allocator to function correctly. 7006 */ 7007 end = pgdat_end_pfn(pgdat); 7008 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7009 size = (end - start) * sizeof(struct page); 7010 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7011 pgdat->node_id); 7012 if (!map) 7013 panic("Failed to allocate %ld bytes for node %d memory map\n", 7014 size, pgdat->node_id); 7015 pgdat->node_mem_map = map + offset; 7016 } 7017 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7018 __func__, pgdat->node_id, (unsigned long)pgdat, 7019 (unsigned long)pgdat->node_mem_map); 7020 #ifndef CONFIG_NEED_MULTIPLE_NODES 7021 /* 7022 * With no DISCONTIG, the global mem_map is just set as node 0's 7023 */ 7024 if (pgdat == NODE_DATA(0)) { 7025 mem_map = NODE_DATA(0)->node_mem_map; 7026 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7027 mem_map -= offset; 7028 } 7029 #endif 7030 } 7031 #else 7032 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7033 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 7034 7035 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7036 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7037 { 7038 pgdat->first_deferred_pfn = ULONG_MAX; 7039 } 7040 #else 7041 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7042 #endif 7043 7044 static void __init free_area_init_node(int nid) 7045 { 7046 pg_data_t *pgdat = NODE_DATA(nid); 7047 unsigned long start_pfn = 0; 7048 unsigned long end_pfn = 0; 7049 7050 /* pg_data_t should be reset to zero when it's allocated */ 7051 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7052 7053 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7054 7055 pgdat->node_id = nid; 7056 pgdat->node_start_pfn = start_pfn; 7057 pgdat->per_cpu_nodestats = NULL; 7058 7059 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7060 (u64)start_pfn << PAGE_SHIFT, 7061 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7062 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7063 7064 alloc_node_mem_map(pgdat); 7065 pgdat_set_deferred_range(pgdat); 7066 7067 free_area_init_core(pgdat); 7068 } 7069 7070 void __init free_area_init_memoryless_node(int nid) 7071 { 7072 free_area_init_node(nid); 7073 } 7074 7075 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 7076 /* 7077 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 7078 * PageReserved(). Return the number of struct pages that were initialized. 7079 */ 7080 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 7081 { 7082 unsigned long pfn; 7083 u64 pgcnt = 0; 7084 7085 for (pfn = spfn; pfn < epfn; pfn++) { 7086 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 7087 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 7088 + pageblock_nr_pages - 1; 7089 continue; 7090 } 7091 /* 7092 * Use a fake node/zone (0) for now. Some of these pages 7093 * (in memblock.reserved but not in memblock.memory) will 7094 * get re-initialized via reserve_bootmem_region() later. 7095 */ 7096 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 7097 __SetPageReserved(pfn_to_page(pfn)); 7098 pgcnt++; 7099 } 7100 7101 return pgcnt; 7102 } 7103 7104 /* 7105 * Only struct pages that are backed by physical memory are zeroed and 7106 * initialized by going through __init_single_page(). But, there are some 7107 * struct pages which are reserved in memblock allocator and their fields 7108 * may be accessed (for example page_to_pfn() on some configuration accesses 7109 * flags). We must explicitly initialize those struct pages. 7110 * 7111 * This function also addresses a similar issue where struct pages are left 7112 * uninitialized because the physical address range is not covered by 7113 * memblock.memory or memblock.reserved. That could happen when memblock 7114 * layout is manually configured via memmap=, or when the highest physical 7115 * address (max_pfn) does not end on a section boundary. 7116 */ 7117 static void __init init_unavailable_mem(void) 7118 { 7119 phys_addr_t start, end; 7120 u64 i, pgcnt; 7121 phys_addr_t next = 0; 7122 7123 /* 7124 * Loop through unavailable ranges not covered by memblock.memory. 7125 */ 7126 pgcnt = 0; 7127 for_each_mem_range(i, &start, &end) { 7128 if (next < start) 7129 pgcnt += init_unavailable_range(PFN_DOWN(next), 7130 PFN_UP(start)); 7131 next = end; 7132 } 7133 7134 /* 7135 * Early sections always have a fully populated memmap for the whole 7136 * section - see pfn_valid(). If the last section has holes at the 7137 * end and that section is marked "online", the memmap will be 7138 * considered initialized. Make sure that memmap has a well defined 7139 * state. 7140 */ 7141 pgcnt += init_unavailable_range(PFN_DOWN(next), 7142 round_up(max_pfn, PAGES_PER_SECTION)); 7143 7144 /* 7145 * Struct pages that do not have backing memory. This could be because 7146 * firmware is using some of this memory, or for some other reasons. 7147 */ 7148 if (pgcnt) 7149 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7150 } 7151 #else 7152 static inline void __init init_unavailable_mem(void) 7153 { 7154 } 7155 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7156 7157 #if MAX_NUMNODES > 1 7158 /* 7159 * Figure out the number of possible node ids. 7160 */ 7161 void __init setup_nr_node_ids(void) 7162 { 7163 unsigned int highest; 7164 7165 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7166 nr_node_ids = highest + 1; 7167 } 7168 #endif 7169 7170 /** 7171 * node_map_pfn_alignment - determine the maximum internode alignment 7172 * 7173 * This function should be called after node map is populated and sorted. 7174 * It calculates the maximum power of two alignment which can distinguish 7175 * all the nodes. 7176 * 7177 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7178 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7179 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7180 * shifted, 1GiB is enough and this function will indicate so. 7181 * 7182 * This is used to test whether pfn -> nid mapping of the chosen memory 7183 * model has fine enough granularity to avoid incorrect mapping for the 7184 * populated node map. 7185 * 7186 * Return: the determined alignment in pfn's. 0 if there is no alignment 7187 * requirement (single node). 7188 */ 7189 unsigned long __init node_map_pfn_alignment(void) 7190 { 7191 unsigned long accl_mask = 0, last_end = 0; 7192 unsigned long start, end, mask; 7193 int last_nid = NUMA_NO_NODE; 7194 int i, nid; 7195 7196 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7197 if (!start || last_nid < 0 || last_nid == nid) { 7198 last_nid = nid; 7199 last_end = end; 7200 continue; 7201 } 7202 7203 /* 7204 * Start with a mask granular enough to pin-point to the 7205 * start pfn and tick off bits one-by-one until it becomes 7206 * too coarse to separate the current node from the last. 7207 */ 7208 mask = ~((1 << __ffs(start)) - 1); 7209 while (mask && last_end <= (start & (mask << 1))) 7210 mask <<= 1; 7211 7212 /* accumulate all internode masks */ 7213 accl_mask |= mask; 7214 } 7215 7216 /* convert mask to number of pages */ 7217 return ~accl_mask + 1; 7218 } 7219 7220 /** 7221 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7222 * 7223 * Return: the minimum PFN based on information provided via 7224 * memblock_set_node(). 7225 */ 7226 unsigned long __init find_min_pfn_with_active_regions(void) 7227 { 7228 return PHYS_PFN(memblock_start_of_DRAM()); 7229 } 7230 7231 /* 7232 * early_calculate_totalpages() 7233 * Sum pages in active regions for movable zone. 7234 * Populate N_MEMORY for calculating usable_nodes. 7235 */ 7236 static unsigned long __init early_calculate_totalpages(void) 7237 { 7238 unsigned long totalpages = 0; 7239 unsigned long start_pfn, end_pfn; 7240 int i, nid; 7241 7242 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7243 unsigned long pages = end_pfn - start_pfn; 7244 7245 totalpages += pages; 7246 if (pages) 7247 node_set_state(nid, N_MEMORY); 7248 } 7249 return totalpages; 7250 } 7251 7252 /* 7253 * Find the PFN the Movable zone begins in each node. Kernel memory 7254 * is spread evenly between nodes as long as the nodes have enough 7255 * memory. When they don't, some nodes will have more kernelcore than 7256 * others 7257 */ 7258 static void __init find_zone_movable_pfns_for_nodes(void) 7259 { 7260 int i, nid; 7261 unsigned long usable_startpfn; 7262 unsigned long kernelcore_node, kernelcore_remaining; 7263 /* save the state before borrow the nodemask */ 7264 nodemask_t saved_node_state = node_states[N_MEMORY]; 7265 unsigned long totalpages = early_calculate_totalpages(); 7266 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7267 struct memblock_region *r; 7268 7269 /* Need to find movable_zone earlier when movable_node is specified. */ 7270 find_usable_zone_for_movable(); 7271 7272 /* 7273 * If movable_node is specified, ignore kernelcore and movablecore 7274 * options. 7275 */ 7276 if (movable_node_is_enabled()) { 7277 for_each_mem_region(r) { 7278 if (!memblock_is_hotpluggable(r)) 7279 continue; 7280 7281 nid = memblock_get_region_node(r); 7282 7283 usable_startpfn = PFN_DOWN(r->base); 7284 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7285 min(usable_startpfn, zone_movable_pfn[nid]) : 7286 usable_startpfn; 7287 } 7288 7289 goto out2; 7290 } 7291 7292 /* 7293 * If kernelcore=mirror is specified, ignore movablecore option 7294 */ 7295 if (mirrored_kernelcore) { 7296 bool mem_below_4gb_not_mirrored = false; 7297 7298 for_each_mem_region(r) { 7299 if (memblock_is_mirror(r)) 7300 continue; 7301 7302 nid = memblock_get_region_node(r); 7303 7304 usable_startpfn = memblock_region_memory_base_pfn(r); 7305 7306 if (usable_startpfn < 0x100000) { 7307 mem_below_4gb_not_mirrored = true; 7308 continue; 7309 } 7310 7311 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7312 min(usable_startpfn, zone_movable_pfn[nid]) : 7313 usable_startpfn; 7314 } 7315 7316 if (mem_below_4gb_not_mirrored) 7317 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7318 7319 goto out2; 7320 } 7321 7322 /* 7323 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7324 * amount of necessary memory. 7325 */ 7326 if (required_kernelcore_percent) 7327 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7328 10000UL; 7329 if (required_movablecore_percent) 7330 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7331 10000UL; 7332 7333 /* 7334 * If movablecore= was specified, calculate what size of 7335 * kernelcore that corresponds so that memory usable for 7336 * any allocation type is evenly spread. If both kernelcore 7337 * and movablecore are specified, then the value of kernelcore 7338 * will be used for required_kernelcore if it's greater than 7339 * what movablecore would have allowed. 7340 */ 7341 if (required_movablecore) { 7342 unsigned long corepages; 7343 7344 /* 7345 * Round-up so that ZONE_MOVABLE is at least as large as what 7346 * was requested by the user 7347 */ 7348 required_movablecore = 7349 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7350 required_movablecore = min(totalpages, required_movablecore); 7351 corepages = totalpages - required_movablecore; 7352 7353 required_kernelcore = max(required_kernelcore, corepages); 7354 } 7355 7356 /* 7357 * If kernelcore was not specified or kernelcore size is larger 7358 * than totalpages, there is no ZONE_MOVABLE. 7359 */ 7360 if (!required_kernelcore || required_kernelcore >= totalpages) 7361 goto out; 7362 7363 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7364 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7365 7366 restart: 7367 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7368 kernelcore_node = required_kernelcore / usable_nodes; 7369 for_each_node_state(nid, N_MEMORY) { 7370 unsigned long start_pfn, end_pfn; 7371 7372 /* 7373 * Recalculate kernelcore_node if the division per node 7374 * now exceeds what is necessary to satisfy the requested 7375 * amount of memory for the kernel 7376 */ 7377 if (required_kernelcore < kernelcore_node) 7378 kernelcore_node = required_kernelcore / usable_nodes; 7379 7380 /* 7381 * As the map is walked, we track how much memory is usable 7382 * by the kernel using kernelcore_remaining. When it is 7383 * 0, the rest of the node is usable by ZONE_MOVABLE 7384 */ 7385 kernelcore_remaining = kernelcore_node; 7386 7387 /* Go through each range of PFNs within this node */ 7388 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7389 unsigned long size_pages; 7390 7391 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7392 if (start_pfn >= end_pfn) 7393 continue; 7394 7395 /* Account for what is only usable for kernelcore */ 7396 if (start_pfn < usable_startpfn) { 7397 unsigned long kernel_pages; 7398 kernel_pages = min(end_pfn, usable_startpfn) 7399 - start_pfn; 7400 7401 kernelcore_remaining -= min(kernel_pages, 7402 kernelcore_remaining); 7403 required_kernelcore -= min(kernel_pages, 7404 required_kernelcore); 7405 7406 /* Continue if range is now fully accounted */ 7407 if (end_pfn <= usable_startpfn) { 7408 7409 /* 7410 * Push zone_movable_pfn to the end so 7411 * that if we have to rebalance 7412 * kernelcore across nodes, we will 7413 * not double account here 7414 */ 7415 zone_movable_pfn[nid] = end_pfn; 7416 continue; 7417 } 7418 start_pfn = usable_startpfn; 7419 } 7420 7421 /* 7422 * The usable PFN range for ZONE_MOVABLE is from 7423 * start_pfn->end_pfn. Calculate size_pages as the 7424 * number of pages used as kernelcore 7425 */ 7426 size_pages = end_pfn - start_pfn; 7427 if (size_pages > kernelcore_remaining) 7428 size_pages = kernelcore_remaining; 7429 zone_movable_pfn[nid] = start_pfn + size_pages; 7430 7431 /* 7432 * Some kernelcore has been met, update counts and 7433 * break if the kernelcore for this node has been 7434 * satisfied 7435 */ 7436 required_kernelcore -= min(required_kernelcore, 7437 size_pages); 7438 kernelcore_remaining -= size_pages; 7439 if (!kernelcore_remaining) 7440 break; 7441 } 7442 } 7443 7444 /* 7445 * If there is still required_kernelcore, we do another pass with one 7446 * less node in the count. This will push zone_movable_pfn[nid] further 7447 * along on the nodes that still have memory until kernelcore is 7448 * satisfied 7449 */ 7450 usable_nodes--; 7451 if (usable_nodes && required_kernelcore > usable_nodes) 7452 goto restart; 7453 7454 out2: 7455 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7456 for (nid = 0; nid < MAX_NUMNODES; nid++) 7457 zone_movable_pfn[nid] = 7458 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7459 7460 out: 7461 /* restore the node_state */ 7462 node_states[N_MEMORY] = saved_node_state; 7463 } 7464 7465 /* Any regular or high memory on that node ? */ 7466 static void check_for_memory(pg_data_t *pgdat, int nid) 7467 { 7468 enum zone_type zone_type; 7469 7470 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7471 struct zone *zone = &pgdat->node_zones[zone_type]; 7472 if (populated_zone(zone)) { 7473 if (IS_ENABLED(CONFIG_HIGHMEM)) 7474 node_set_state(nid, N_HIGH_MEMORY); 7475 if (zone_type <= ZONE_NORMAL) 7476 node_set_state(nid, N_NORMAL_MEMORY); 7477 break; 7478 } 7479 } 7480 } 7481 7482 /* 7483 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7484 * such cases we allow max_zone_pfn sorted in the descending order 7485 */ 7486 bool __weak arch_has_descending_max_zone_pfns(void) 7487 { 7488 return false; 7489 } 7490 7491 /** 7492 * free_area_init - Initialise all pg_data_t and zone data 7493 * @max_zone_pfn: an array of max PFNs for each zone 7494 * 7495 * This will call free_area_init_node() for each active node in the system. 7496 * Using the page ranges provided by memblock_set_node(), the size of each 7497 * zone in each node and their holes is calculated. If the maximum PFN 7498 * between two adjacent zones match, it is assumed that the zone is empty. 7499 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7500 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7501 * starts where the previous one ended. For example, ZONE_DMA32 starts 7502 * at arch_max_dma_pfn. 7503 */ 7504 void __init free_area_init(unsigned long *max_zone_pfn) 7505 { 7506 unsigned long start_pfn, end_pfn; 7507 int i, nid, zone; 7508 bool descending; 7509 7510 /* Record where the zone boundaries are */ 7511 memset(arch_zone_lowest_possible_pfn, 0, 7512 sizeof(arch_zone_lowest_possible_pfn)); 7513 memset(arch_zone_highest_possible_pfn, 0, 7514 sizeof(arch_zone_highest_possible_pfn)); 7515 7516 start_pfn = find_min_pfn_with_active_regions(); 7517 descending = arch_has_descending_max_zone_pfns(); 7518 7519 for (i = 0; i < MAX_NR_ZONES; i++) { 7520 if (descending) 7521 zone = MAX_NR_ZONES - i - 1; 7522 else 7523 zone = i; 7524 7525 if (zone == ZONE_MOVABLE) 7526 continue; 7527 7528 end_pfn = max(max_zone_pfn[zone], start_pfn); 7529 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7530 arch_zone_highest_possible_pfn[zone] = end_pfn; 7531 7532 start_pfn = end_pfn; 7533 } 7534 7535 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7536 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7537 find_zone_movable_pfns_for_nodes(); 7538 7539 /* Print out the zone ranges */ 7540 pr_info("Zone ranges:\n"); 7541 for (i = 0; i < MAX_NR_ZONES; i++) { 7542 if (i == ZONE_MOVABLE) 7543 continue; 7544 pr_info(" %-8s ", zone_names[i]); 7545 if (arch_zone_lowest_possible_pfn[i] == 7546 arch_zone_highest_possible_pfn[i]) 7547 pr_cont("empty\n"); 7548 else 7549 pr_cont("[mem %#018Lx-%#018Lx]\n", 7550 (u64)arch_zone_lowest_possible_pfn[i] 7551 << PAGE_SHIFT, 7552 ((u64)arch_zone_highest_possible_pfn[i] 7553 << PAGE_SHIFT) - 1); 7554 } 7555 7556 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7557 pr_info("Movable zone start for each node\n"); 7558 for (i = 0; i < MAX_NUMNODES; i++) { 7559 if (zone_movable_pfn[i]) 7560 pr_info(" Node %d: %#018Lx\n", i, 7561 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7562 } 7563 7564 /* 7565 * Print out the early node map, and initialize the 7566 * subsection-map relative to active online memory ranges to 7567 * enable future "sub-section" extensions of the memory map. 7568 */ 7569 pr_info("Early memory node ranges\n"); 7570 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7571 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7572 (u64)start_pfn << PAGE_SHIFT, 7573 ((u64)end_pfn << PAGE_SHIFT) - 1); 7574 subsection_map_init(start_pfn, end_pfn - start_pfn); 7575 } 7576 7577 /* Initialise every node */ 7578 mminit_verify_pageflags_layout(); 7579 setup_nr_node_ids(); 7580 init_unavailable_mem(); 7581 for_each_online_node(nid) { 7582 pg_data_t *pgdat = NODE_DATA(nid); 7583 free_area_init_node(nid); 7584 7585 /* Any memory on that node */ 7586 if (pgdat->node_present_pages) 7587 node_set_state(nid, N_MEMORY); 7588 check_for_memory(pgdat, nid); 7589 } 7590 } 7591 7592 static int __init cmdline_parse_core(char *p, unsigned long *core, 7593 unsigned long *percent) 7594 { 7595 unsigned long long coremem; 7596 char *endptr; 7597 7598 if (!p) 7599 return -EINVAL; 7600 7601 /* Value may be a percentage of total memory, otherwise bytes */ 7602 coremem = simple_strtoull(p, &endptr, 0); 7603 if (*endptr == '%') { 7604 /* Paranoid check for percent values greater than 100 */ 7605 WARN_ON(coremem > 100); 7606 7607 *percent = coremem; 7608 } else { 7609 coremem = memparse(p, &p); 7610 /* Paranoid check that UL is enough for the coremem value */ 7611 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7612 7613 *core = coremem >> PAGE_SHIFT; 7614 *percent = 0UL; 7615 } 7616 return 0; 7617 } 7618 7619 /* 7620 * kernelcore=size sets the amount of memory for use for allocations that 7621 * cannot be reclaimed or migrated. 7622 */ 7623 static int __init cmdline_parse_kernelcore(char *p) 7624 { 7625 /* parse kernelcore=mirror */ 7626 if (parse_option_str(p, "mirror")) { 7627 mirrored_kernelcore = true; 7628 return 0; 7629 } 7630 7631 return cmdline_parse_core(p, &required_kernelcore, 7632 &required_kernelcore_percent); 7633 } 7634 7635 /* 7636 * movablecore=size sets the amount of memory for use for allocations that 7637 * can be reclaimed or migrated. 7638 */ 7639 static int __init cmdline_parse_movablecore(char *p) 7640 { 7641 return cmdline_parse_core(p, &required_movablecore, 7642 &required_movablecore_percent); 7643 } 7644 7645 early_param("kernelcore", cmdline_parse_kernelcore); 7646 early_param("movablecore", cmdline_parse_movablecore); 7647 7648 void adjust_managed_page_count(struct page *page, long count) 7649 { 7650 atomic_long_add(count, &page_zone(page)->managed_pages); 7651 totalram_pages_add(count); 7652 #ifdef CONFIG_HIGHMEM 7653 if (PageHighMem(page)) 7654 totalhigh_pages_add(count); 7655 #endif 7656 } 7657 EXPORT_SYMBOL(adjust_managed_page_count); 7658 7659 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7660 { 7661 void *pos; 7662 unsigned long pages = 0; 7663 7664 start = (void *)PAGE_ALIGN((unsigned long)start); 7665 end = (void *)((unsigned long)end & PAGE_MASK); 7666 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7667 struct page *page = virt_to_page(pos); 7668 void *direct_map_addr; 7669 7670 /* 7671 * 'direct_map_addr' might be different from 'pos' 7672 * because some architectures' virt_to_page() 7673 * work with aliases. Getting the direct map 7674 * address ensures that we get a _writeable_ 7675 * alias for the memset(). 7676 */ 7677 direct_map_addr = page_address(page); 7678 /* 7679 * Perform a kasan-unchecked memset() since this memory 7680 * has not been initialized. 7681 */ 7682 direct_map_addr = kasan_reset_tag(direct_map_addr); 7683 if ((unsigned int)poison <= 0xFF) 7684 memset(direct_map_addr, poison, PAGE_SIZE); 7685 7686 free_reserved_page(page); 7687 } 7688 7689 if (pages && s) 7690 pr_info("Freeing %s memory: %ldK\n", 7691 s, pages << (PAGE_SHIFT - 10)); 7692 7693 return pages; 7694 } 7695 7696 #ifdef CONFIG_HIGHMEM 7697 void free_highmem_page(struct page *page) 7698 { 7699 __free_reserved_page(page); 7700 totalram_pages_inc(); 7701 atomic_long_inc(&page_zone(page)->managed_pages); 7702 totalhigh_pages_inc(); 7703 } 7704 #endif 7705 7706 7707 void __init mem_init_print_info(const char *str) 7708 { 7709 unsigned long physpages, codesize, datasize, rosize, bss_size; 7710 unsigned long init_code_size, init_data_size; 7711 7712 physpages = get_num_physpages(); 7713 codesize = _etext - _stext; 7714 datasize = _edata - _sdata; 7715 rosize = __end_rodata - __start_rodata; 7716 bss_size = __bss_stop - __bss_start; 7717 init_data_size = __init_end - __init_begin; 7718 init_code_size = _einittext - _sinittext; 7719 7720 /* 7721 * Detect special cases and adjust section sizes accordingly: 7722 * 1) .init.* may be embedded into .data sections 7723 * 2) .init.text.* may be out of [__init_begin, __init_end], 7724 * please refer to arch/tile/kernel/vmlinux.lds.S. 7725 * 3) .rodata.* may be embedded into .text or .data sections. 7726 */ 7727 #define adj_init_size(start, end, size, pos, adj) \ 7728 do { \ 7729 if (start <= pos && pos < end && size > adj) \ 7730 size -= adj; \ 7731 } while (0) 7732 7733 adj_init_size(__init_begin, __init_end, init_data_size, 7734 _sinittext, init_code_size); 7735 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7736 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7737 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7738 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7739 7740 #undef adj_init_size 7741 7742 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7743 #ifdef CONFIG_HIGHMEM 7744 ", %luK highmem" 7745 #endif 7746 "%s%s)\n", 7747 nr_free_pages() << (PAGE_SHIFT - 10), 7748 physpages << (PAGE_SHIFT - 10), 7749 codesize >> 10, datasize >> 10, rosize >> 10, 7750 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7751 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7752 totalcma_pages << (PAGE_SHIFT - 10), 7753 #ifdef CONFIG_HIGHMEM 7754 totalhigh_pages() << (PAGE_SHIFT - 10), 7755 #endif 7756 str ? ", " : "", str ? str : ""); 7757 } 7758 7759 /** 7760 * set_dma_reserve - set the specified number of pages reserved in the first zone 7761 * @new_dma_reserve: The number of pages to mark reserved 7762 * 7763 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7764 * In the DMA zone, a significant percentage may be consumed by kernel image 7765 * and other unfreeable allocations which can skew the watermarks badly. This 7766 * function may optionally be used to account for unfreeable pages in the 7767 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7768 * smaller per-cpu batchsize. 7769 */ 7770 void __init set_dma_reserve(unsigned long new_dma_reserve) 7771 { 7772 dma_reserve = new_dma_reserve; 7773 } 7774 7775 static int page_alloc_cpu_dead(unsigned int cpu) 7776 { 7777 7778 lru_add_drain_cpu(cpu); 7779 drain_pages(cpu); 7780 7781 /* 7782 * Spill the event counters of the dead processor 7783 * into the current processors event counters. 7784 * This artificially elevates the count of the current 7785 * processor. 7786 */ 7787 vm_events_fold_cpu(cpu); 7788 7789 /* 7790 * Zero the differential counters of the dead processor 7791 * so that the vm statistics are consistent. 7792 * 7793 * This is only okay since the processor is dead and cannot 7794 * race with what we are doing. 7795 */ 7796 cpu_vm_stats_fold(cpu); 7797 return 0; 7798 } 7799 7800 #ifdef CONFIG_NUMA 7801 int hashdist = HASHDIST_DEFAULT; 7802 7803 static int __init set_hashdist(char *str) 7804 { 7805 if (!str) 7806 return 0; 7807 hashdist = simple_strtoul(str, &str, 0); 7808 return 1; 7809 } 7810 __setup("hashdist=", set_hashdist); 7811 #endif 7812 7813 void __init page_alloc_init(void) 7814 { 7815 int ret; 7816 7817 #ifdef CONFIG_NUMA 7818 if (num_node_state(N_MEMORY) == 1) 7819 hashdist = 0; 7820 #endif 7821 7822 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7823 "mm/page_alloc:dead", NULL, 7824 page_alloc_cpu_dead); 7825 WARN_ON(ret < 0); 7826 } 7827 7828 /* 7829 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7830 * or min_free_kbytes changes. 7831 */ 7832 static void calculate_totalreserve_pages(void) 7833 { 7834 struct pglist_data *pgdat; 7835 unsigned long reserve_pages = 0; 7836 enum zone_type i, j; 7837 7838 for_each_online_pgdat(pgdat) { 7839 7840 pgdat->totalreserve_pages = 0; 7841 7842 for (i = 0; i < MAX_NR_ZONES; i++) { 7843 struct zone *zone = pgdat->node_zones + i; 7844 long max = 0; 7845 unsigned long managed_pages = zone_managed_pages(zone); 7846 7847 /* Find valid and maximum lowmem_reserve in the zone */ 7848 for (j = i; j < MAX_NR_ZONES; j++) { 7849 if (zone->lowmem_reserve[j] > max) 7850 max = zone->lowmem_reserve[j]; 7851 } 7852 7853 /* we treat the high watermark as reserved pages. */ 7854 max += high_wmark_pages(zone); 7855 7856 if (max > managed_pages) 7857 max = managed_pages; 7858 7859 pgdat->totalreserve_pages += max; 7860 7861 reserve_pages += max; 7862 } 7863 } 7864 totalreserve_pages = reserve_pages; 7865 } 7866 7867 /* 7868 * setup_per_zone_lowmem_reserve - called whenever 7869 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7870 * has a correct pages reserved value, so an adequate number of 7871 * pages are left in the zone after a successful __alloc_pages(). 7872 */ 7873 static void setup_per_zone_lowmem_reserve(void) 7874 { 7875 struct pglist_data *pgdat; 7876 enum zone_type i, j; 7877 7878 for_each_online_pgdat(pgdat) { 7879 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 7880 struct zone *zone = &pgdat->node_zones[i]; 7881 int ratio = sysctl_lowmem_reserve_ratio[i]; 7882 bool clear = !ratio || !zone_managed_pages(zone); 7883 unsigned long managed_pages = 0; 7884 7885 for (j = i + 1; j < MAX_NR_ZONES; j++) { 7886 if (clear) { 7887 zone->lowmem_reserve[j] = 0; 7888 } else { 7889 struct zone *upper_zone = &pgdat->node_zones[j]; 7890 7891 managed_pages += zone_managed_pages(upper_zone); 7892 zone->lowmem_reserve[j] = managed_pages / ratio; 7893 } 7894 } 7895 } 7896 } 7897 7898 /* update totalreserve_pages */ 7899 calculate_totalreserve_pages(); 7900 } 7901 7902 static void __setup_per_zone_wmarks(void) 7903 { 7904 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7905 unsigned long lowmem_pages = 0; 7906 struct zone *zone; 7907 unsigned long flags; 7908 7909 /* Calculate total number of !ZONE_HIGHMEM pages */ 7910 for_each_zone(zone) { 7911 if (!is_highmem(zone)) 7912 lowmem_pages += zone_managed_pages(zone); 7913 } 7914 7915 for_each_zone(zone) { 7916 u64 tmp; 7917 7918 spin_lock_irqsave(&zone->lock, flags); 7919 tmp = (u64)pages_min * zone_managed_pages(zone); 7920 do_div(tmp, lowmem_pages); 7921 if (is_highmem(zone)) { 7922 /* 7923 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7924 * need highmem pages, so cap pages_min to a small 7925 * value here. 7926 * 7927 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7928 * deltas control async page reclaim, and so should 7929 * not be capped for highmem. 7930 */ 7931 unsigned long min_pages; 7932 7933 min_pages = zone_managed_pages(zone) / 1024; 7934 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7935 zone->_watermark[WMARK_MIN] = min_pages; 7936 } else { 7937 /* 7938 * If it's a lowmem zone, reserve a number of pages 7939 * proportionate to the zone's size. 7940 */ 7941 zone->_watermark[WMARK_MIN] = tmp; 7942 } 7943 7944 /* 7945 * Set the kswapd watermarks distance according to the 7946 * scale factor in proportion to available memory, but 7947 * ensure a minimum size on small systems. 7948 */ 7949 tmp = max_t(u64, tmp >> 2, 7950 mult_frac(zone_managed_pages(zone), 7951 watermark_scale_factor, 10000)); 7952 7953 zone->watermark_boost = 0; 7954 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7955 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7956 7957 spin_unlock_irqrestore(&zone->lock, flags); 7958 } 7959 7960 /* update totalreserve_pages */ 7961 calculate_totalreserve_pages(); 7962 } 7963 7964 /** 7965 * setup_per_zone_wmarks - called when min_free_kbytes changes 7966 * or when memory is hot-{added|removed} 7967 * 7968 * Ensures that the watermark[min,low,high] values for each zone are set 7969 * correctly with respect to min_free_kbytes. 7970 */ 7971 void setup_per_zone_wmarks(void) 7972 { 7973 static DEFINE_SPINLOCK(lock); 7974 7975 spin_lock(&lock); 7976 __setup_per_zone_wmarks(); 7977 spin_unlock(&lock); 7978 } 7979 7980 /* 7981 * Initialise min_free_kbytes. 7982 * 7983 * For small machines we want it small (128k min). For large machines 7984 * we want it large (256MB max). But it is not linear, because network 7985 * bandwidth does not increase linearly with machine size. We use 7986 * 7987 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7988 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7989 * 7990 * which yields 7991 * 7992 * 16MB: 512k 7993 * 32MB: 724k 7994 * 64MB: 1024k 7995 * 128MB: 1448k 7996 * 256MB: 2048k 7997 * 512MB: 2896k 7998 * 1024MB: 4096k 7999 * 2048MB: 5792k 8000 * 4096MB: 8192k 8001 * 8192MB: 11584k 8002 * 16384MB: 16384k 8003 */ 8004 int __meminit init_per_zone_wmark_min(void) 8005 { 8006 unsigned long lowmem_kbytes; 8007 int new_min_free_kbytes; 8008 8009 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8010 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8011 8012 if (new_min_free_kbytes > user_min_free_kbytes) { 8013 min_free_kbytes = new_min_free_kbytes; 8014 if (min_free_kbytes < 128) 8015 min_free_kbytes = 128; 8016 if (min_free_kbytes > 262144) 8017 min_free_kbytes = 262144; 8018 } else { 8019 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8020 new_min_free_kbytes, user_min_free_kbytes); 8021 } 8022 setup_per_zone_wmarks(); 8023 refresh_zone_stat_thresholds(); 8024 setup_per_zone_lowmem_reserve(); 8025 8026 #ifdef CONFIG_NUMA 8027 setup_min_unmapped_ratio(); 8028 setup_min_slab_ratio(); 8029 #endif 8030 8031 khugepaged_min_free_kbytes_update(); 8032 8033 return 0; 8034 } 8035 postcore_initcall(init_per_zone_wmark_min) 8036 8037 /* 8038 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8039 * that we can call two helper functions whenever min_free_kbytes 8040 * changes. 8041 */ 8042 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8043 void *buffer, size_t *length, loff_t *ppos) 8044 { 8045 int rc; 8046 8047 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8048 if (rc) 8049 return rc; 8050 8051 if (write) { 8052 user_min_free_kbytes = min_free_kbytes; 8053 setup_per_zone_wmarks(); 8054 } 8055 return 0; 8056 } 8057 8058 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8059 void *buffer, size_t *length, loff_t *ppos) 8060 { 8061 int rc; 8062 8063 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8064 if (rc) 8065 return rc; 8066 8067 if (write) 8068 setup_per_zone_wmarks(); 8069 8070 return 0; 8071 } 8072 8073 #ifdef CONFIG_NUMA 8074 static void setup_min_unmapped_ratio(void) 8075 { 8076 pg_data_t *pgdat; 8077 struct zone *zone; 8078 8079 for_each_online_pgdat(pgdat) 8080 pgdat->min_unmapped_pages = 0; 8081 8082 for_each_zone(zone) 8083 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8084 sysctl_min_unmapped_ratio) / 100; 8085 } 8086 8087 8088 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8089 void *buffer, size_t *length, loff_t *ppos) 8090 { 8091 int rc; 8092 8093 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8094 if (rc) 8095 return rc; 8096 8097 setup_min_unmapped_ratio(); 8098 8099 return 0; 8100 } 8101 8102 static void setup_min_slab_ratio(void) 8103 { 8104 pg_data_t *pgdat; 8105 struct zone *zone; 8106 8107 for_each_online_pgdat(pgdat) 8108 pgdat->min_slab_pages = 0; 8109 8110 for_each_zone(zone) 8111 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8112 sysctl_min_slab_ratio) / 100; 8113 } 8114 8115 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8116 void *buffer, size_t *length, loff_t *ppos) 8117 { 8118 int rc; 8119 8120 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8121 if (rc) 8122 return rc; 8123 8124 setup_min_slab_ratio(); 8125 8126 return 0; 8127 } 8128 #endif 8129 8130 /* 8131 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8132 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8133 * whenever sysctl_lowmem_reserve_ratio changes. 8134 * 8135 * The reserve ratio obviously has absolutely no relation with the 8136 * minimum watermarks. The lowmem reserve ratio can only make sense 8137 * if in function of the boot time zone sizes. 8138 */ 8139 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8140 void *buffer, size_t *length, loff_t *ppos) 8141 { 8142 int i; 8143 8144 proc_dointvec_minmax(table, write, buffer, length, ppos); 8145 8146 for (i = 0; i < MAX_NR_ZONES; i++) { 8147 if (sysctl_lowmem_reserve_ratio[i] < 1) 8148 sysctl_lowmem_reserve_ratio[i] = 0; 8149 } 8150 8151 setup_per_zone_lowmem_reserve(); 8152 return 0; 8153 } 8154 8155 /* 8156 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8157 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8158 * pagelist can have before it gets flushed back to buddy allocator. 8159 */ 8160 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8161 void *buffer, size_t *length, loff_t *ppos) 8162 { 8163 struct zone *zone; 8164 int old_percpu_pagelist_fraction; 8165 int ret; 8166 8167 mutex_lock(&pcp_batch_high_lock); 8168 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8169 8170 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8171 if (!write || ret < 0) 8172 goto out; 8173 8174 /* Sanity checking to avoid pcp imbalance */ 8175 if (percpu_pagelist_fraction && 8176 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8177 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8178 ret = -EINVAL; 8179 goto out; 8180 } 8181 8182 /* No change? */ 8183 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8184 goto out; 8185 8186 for_each_populated_zone(zone) 8187 zone_set_pageset_high_and_batch(zone); 8188 out: 8189 mutex_unlock(&pcp_batch_high_lock); 8190 return ret; 8191 } 8192 8193 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8194 /* 8195 * Returns the number of pages that arch has reserved but 8196 * is not known to alloc_large_system_hash(). 8197 */ 8198 static unsigned long __init arch_reserved_kernel_pages(void) 8199 { 8200 return 0; 8201 } 8202 #endif 8203 8204 /* 8205 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8206 * machines. As memory size is increased the scale is also increased but at 8207 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8208 * quadruples the scale is increased by one, which means the size of hash table 8209 * only doubles, instead of quadrupling as well. 8210 * Because 32-bit systems cannot have large physical memory, where this scaling 8211 * makes sense, it is disabled on such platforms. 8212 */ 8213 #if __BITS_PER_LONG > 32 8214 #define ADAPT_SCALE_BASE (64ul << 30) 8215 #define ADAPT_SCALE_SHIFT 2 8216 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8217 #endif 8218 8219 /* 8220 * allocate a large system hash table from bootmem 8221 * - it is assumed that the hash table must contain an exact power-of-2 8222 * quantity of entries 8223 * - limit is the number of hash buckets, not the total allocation size 8224 */ 8225 void *__init alloc_large_system_hash(const char *tablename, 8226 unsigned long bucketsize, 8227 unsigned long numentries, 8228 int scale, 8229 int flags, 8230 unsigned int *_hash_shift, 8231 unsigned int *_hash_mask, 8232 unsigned long low_limit, 8233 unsigned long high_limit) 8234 { 8235 unsigned long long max = high_limit; 8236 unsigned long log2qty, size; 8237 void *table = NULL; 8238 gfp_t gfp_flags; 8239 bool virt; 8240 8241 /* allow the kernel cmdline to have a say */ 8242 if (!numentries) { 8243 /* round applicable memory size up to nearest megabyte */ 8244 numentries = nr_kernel_pages; 8245 numentries -= arch_reserved_kernel_pages(); 8246 8247 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8248 if (PAGE_SHIFT < 20) 8249 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8250 8251 #if __BITS_PER_LONG > 32 8252 if (!high_limit) { 8253 unsigned long adapt; 8254 8255 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8256 adapt <<= ADAPT_SCALE_SHIFT) 8257 scale++; 8258 } 8259 #endif 8260 8261 /* limit to 1 bucket per 2^scale bytes of low memory */ 8262 if (scale > PAGE_SHIFT) 8263 numentries >>= (scale - PAGE_SHIFT); 8264 else 8265 numentries <<= (PAGE_SHIFT - scale); 8266 8267 /* Make sure we've got at least a 0-order allocation.. */ 8268 if (unlikely(flags & HASH_SMALL)) { 8269 /* Makes no sense without HASH_EARLY */ 8270 WARN_ON(!(flags & HASH_EARLY)); 8271 if (!(numentries >> *_hash_shift)) { 8272 numentries = 1UL << *_hash_shift; 8273 BUG_ON(!numentries); 8274 } 8275 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8276 numentries = PAGE_SIZE / bucketsize; 8277 } 8278 numentries = roundup_pow_of_two(numentries); 8279 8280 /* limit allocation size to 1/16 total memory by default */ 8281 if (max == 0) { 8282 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8283 do_div(max, bucketsize); 8284 } 8285 max = min(max, 0x80000000ULL); 8286 8287 if (numentries < low_limit) 8288 numentries = low_limit; 8289 if (numentries > max) 8290 numentries = max; 8291 8292 log2qty = ilog2(numentries); 8293 8294 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8295 do { 8296 virt = false; 8297 size = bucketsize << log2qty; 8298 if (flags & HASH_EARLY) { 8299 if (flags & HASH_ZERO) 8300 table = memblock_alloc(size, SMP_CACHE_BYTES); 8301 else 8302 table = memblock_alloc_raw(size, 8303 SMP_CACHE_BYTES); 8304 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8305 table = __vmalloc(size, gfp_flags); 8306 virt = true; 8307 } else { 8308 /* 8309 * If bucketsize is not a power-of-two, we may free 8310 * some pages at the end of hash table which 8311 * alloc_pages_exact() automatically does 8312 */ 8313 table = alloc_pages_exact(size, gfp_flags); 8314 kmemleak_alloc(table, size, 1, gfp_flags); 8315 } 8316 } while (!table && size > PAGE_SIZE && --log2qty); 8317 8318 if (!table) 8319 panic("Failed to allocate %s hash table\n", tablename); 8320 8321 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8322 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8323 virt ? "vmalloc" : "linear"); 8324 8325 if (_hash_shift) 8326 *_hash_shift = log2qty; 8327 if (_hash_mask) 8328 *_hash_mask = (1 << log2qty) - 1; 8329 8330 return table; 8331 } 8332 8333 /* 8334 * This function checks whether pageblock includes unmovable pages or not. 8335 * 8336 * PageLRU check without isolation or lru_lock could race so that 8337 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8338 * check without lock_page also may miss some movable non-lru pages at 8339 * race condition. So you can't expect this function should be exact. 8340 * 8341 * Returns a page without holding a reference. If the caller wants to 8342 * dereference that page (e.g., dumping), it has to make sure that it 8343 * cannot get removed (e.g., via memory unplug) concurrently. 8344 * 8345 */ 8346 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8347 int migratetype, int flags) 8348 { 8349 unsigned long iter = 0; 8350 unsigned long pfn = page_to_pfn(page); 8351 unsigned long offset = pfn % pageblock_nr_pages; 8352 8353 if (is_migrate_cma_page(page)) { 8354 /* 8355 * CMA allocations (alloc_contig_range) really need to mark 8356 * isolate CMA pageblocks even when they are not movable in fact 8357 * so consider them movable here. 8358 */ 8359 if (is_migrate_cma(migratetype)) 8360 return NULL; 8361 8362 return page; 8363 } 8364 8365 for (; iter < pageblock_nr_pages - offset; iter++) { 8366 if (!pfn_valid_within(pfn + iter)) 8367 continue; 8368 8369 page = pfn_to_page(pfn + iter); 8370 8371 /* 8372 * Both, bootmem allocations and memory holes are marked 8373 * PG_reserved and are unmovable. We can even have unmovable 8374 * allocations inside ZONE_MOVABLE, for example when 8375 * specifying "movablecore". 8376 */ 8377 if (PageReserved(page)) 8378 return page; 8379 8380 /* 8381 * If the zone is movable and we have ruled out all reserved 8382 * pages then it should be reasonably safe to assume the rest 8383 * is movable. 8384 */ 8385 if (zone_idx(zone) == ZONE_MOVABLE) 8386 continue; 8387 8388 /* 8389 * Hugepages are not in LRU lists, but they're movable. 8390 * THPs are on the LRU, but need to be counted as #small pages. 8391 * We need not scan over tail pages because we don't 8392 * handle each tail page individually in migration. 8393 */ 8394 if (PageHuge(page) || PageTransCompound(page)) { 8395 struct page *head = compound_head(page); 8396 unsigned int skip_pages; 8397 8398 if (PageHuge(page)) { 8399 if (!hugepage_migration_supported(page_hstate(head))) 8400 return page; 8401 } else if (!PageLRU(head) && !__PageMovable(head)) { 8402 return page; 8403 } 8404 8405 skip_pages = compound_nr(head) - (page - head); 8406 iter += skip_pages - 1; 8407 continue; 8408 } 8409 8410 /* 8411 * We can't use page_count without pin a page 8412 * because another CPU can free compound page. 8413 * This check already skips compound tails of THP 8414 * because their page->_refcount is zero at all time. 8415 */ 8416 if (!page_ref_count(page)) { 8417 if (PageBuddy(page)) 8418 iter += (1 << buddy_order(page)) - 1; 8419 continue; 8420 } 8421 8422 /* 8423 * The HWPoisoned page may be not in buddy system, and 8424 * page_count() is not 0. 8425 */ 8426 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8427 continue; 8428 8429 /* 8430 * We treat all PageOffline() pages as movable when offlining 8431 * to give drivers a chance to decrement their reference count 8432 * in MEM_GOING_OFFLINE in order to indicate that these pages 8433 * can be offlined as there are no direct references anymore. 8434 * For actually unmovable PageOffline() where the driver does 8435 * not support this, we will fail later when trying to actually 8436 * move these pages that still have a reference count > 0. 8437 * (false negatives in this function only) 8438 */ 8439 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8440 continue; 8441 8442 if (__PageMovable(page) || PageLRU(page)) 8443 continue; 8444 8445 /* 8446 * If there are RECLAIMABLE pages, we need to check 8447 * it. But now, memory offline itself doesn't call 8448 * shrink_node_slabs() and it still to be fixed. 8449 */ 8450 return page; 8451 } 8452 return NULL; 8453 } 8454 8455 #ifdef CONFIG_CONTIG_ALLOC 8456 static unsigned long pfn_max_align_down(unsigned long pfn) 8457 { 8458 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8459 pageblock_nr_pages) - 1); 8460 } 8461 8462 static unsigned long pfn_max_align_up(unsigned long pfn) 8463 { 8464 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8465 pageblock_nr_pages)); 8466 } 8467 8468 /* [start, end) must belong to a single zone. */ 8469 static int __alloc_contig_migrate_range(struct compact_control *cc, 8470 unsigned long start, unsigned long end) 8471 { 8472 /* This function is based on compact_zone() from compaction.c. */ 8473 unsigned int nr_reclaimed; 8474 unsigned long pfn = start; 8475 unsigned int tries = 0; 8476 int ret = 0; 8477 struct migration_target_control mtc = { 8478 .nid = zone_to_nid(cc->zone), 8479 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8480 }; 8481 8482 migrate_prep(); 8483 8484 while (pfn < end || !list_empty(&cc->migratepages)) { 8485 if (fatal_signal_pending(current)) { 8486 ret = -EINTR; 8487 break; 8488 } 8489 8490 if (list_empty(&cc->migratepages)) { 8491 cc->nr_migratepages = 0; 8492 pfn = isolate_migratepages_range(cc, pfn, end); 8493 if (!pfn) { 8494 ret = -EINTR; 8495 break; 8496 } 8497 tries = 0; 8498 } else if (++tries == 5) { 8499 ret = ret < 0 ? ret : -EBUSY; 8500 break; 8501 } 8502 8503 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8504 &cc->migratepages); 8505 cc->nr_migratepages -= nr_reclaimed; 8506 8507 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8508 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8509 } 8510 if (ret < 0) { 8511 putback_movable_pages(&cc->migratepages); 8512 return ret; 8513 } 8514 return 0; 8515 } 8516 8517 /** 8518 * alloc_contig_range() -- tries to allocate given range of pages 8519 * @start: start PFN to allocate 8520 * @end: one-past-the-last PFN to allocate 8521 * @migratetype: migratetype of the underlaying pageblocks (either 8522 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8523 * in range must have the same migratetype and it must 8524 * be either of the two. 8525 * @gfp_mask: GFP mask to use during compaction 8526 * 8527 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8528 * aligned. The PFN range must belong to a single zone. 8529 * 8530 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8531 * pageblocks in the range. Once isolated, the pageblocks should not 8532 * be modified by others. 8533 * 8534 * Return: zero on success or negative error code. On success all 8535 * pages which PFN is in [start, end) are allocated for the caller and 8536 * need to be freed with free_contig_range(). 8537 */ 8538 int alloc_contig_range(unsigned long start, unsigned long end, 8539 unsigned migratetype, gfp_t gfp_mask) 8540 { 8541 unsigned long outer_start, outer_end; 8542 unsigned int order; 8543 int ret = 0; 8544 8545 struct compact_control cc = { 8546 .nr_migratepages = 0, 8547 .order = -1, 8548 .zone = page_zone(pfn_to_page(start)), 8549 .mode = MIGRATE_SYNC, 8550 .ignore_skip_hint = true, 8551 .no_set_skip_hint = true, 8552 .gfp_mask = current_gfp_context(gfp_mask), 8553 .alloc_contig = true, 8554 }; 8555 INIT_LIST_HEAD(&cc.migratepages); 8556 8557 /* 8558 * What we do here is we mark all pageblocks in range as 8559 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8560 * have different sizes, and due to the way page allocator 8561 * work, we align the range to biggest of the two pages so 8562 * that page allocator won't try to merge buddies from 8563 * different pageblocks and change MIGRATE_ISOLATE to some 8564 * other migration type. 8565 * 8566 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8567 * migrate the pages from an unaligned range (ie. pages that 8568 * we are interested in). This will put all the pages in 8569 * range back to page allocator as MIGRATE_ISOLATE. 8570 * 8571 * When this is done, we take the pages in range from page 8572 * allocator removing them from the buddy system. This way 8573 * page allocator will never consider using them. 8574 * 8575 * This lets us mark the pageblocks back as 8576 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8577 * aligned range but not in the unaligned, original range are 8578 * put back to page allocator so that buddy can use them. 8579 */ 8580 8581 ret = start_isolate_page_range(pfn_max_align_down(start), 8582 pfn_max_align_up(end), migratetype, 0); 8583 if (ret) 8584 return ret; 8585 8586 drain_all_pages(cc.zone); 8587 8588 /* 8589 * In case of -EBUSY, we'd like to know which page causes problem. 8590 * So, just fall through. test_pages_isolated() has a tracepoint 8591 * which will report the busy page. 8592 * 8593 * It is possible that busy pages could become available before 8594 * the call to test_pages_isolated, and the range will actually be 8595 * allocated. So, if we fall through be sure to clear ret so that 8596 * -EBUSY is not accidentally used or returned to caller. 8597 */ 8598 ret = __alloc_contig_migrate_range(&cc, start, end); 8599 if (ret && ret != -EBUSY) 8600 goto done; 8601 ret =0; 8602 8603 /* 8604 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8605 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8606 * more, all pages in [start, end) are free in page allocator. 8607 * What we are going to do is to allocate all pages from 8608 * [start, end) (that is remove them from page allocator). 8609 * 8610 * The only problem is that pages at the beginning and at the 8611 * end of interesting range may be not aligned with pages that 8612 * page allocator holds, ie. they can be part of higher order 8613 * pages. Because of this, we reserve the bigger range and 8614 * once this is done free the pages we are not interested in. 8615 * 8616 * We don't have to hold zone->lock here because the pages are 8617 * isolated thus they won't get removed from buddy. 8618 */ 8619 8620 lru_add_drain_all(); 8621 8622 order = 0; 8623 outer_start = start; 8624 while (!PageBuddy(pfn_to_page(outer_start))) { 8625 if (++order >= MAX_ORDER) { 8626 outer_start = start; 8627 break; 8628 } 8629 outer_start &= ~0UL << order; 8630 } 8631 8632 if (outer_start != start) { 8633 order = buddy_order(pfn_to_page(outer_start)); 8634 8635 /* 8636 * outer_start page could be small order buddy page and 8637 * it doesn't include start page. Adjust outer_start 8638 * in this case to report failed page properly 8639 * on tracepoint in test_pages_isolated() 8640 */ 8641 if (outer_start + (1UL << order) <= start) 8642 outer_start = start; 8643 } 8644 8645 /* Make sure the range is really isolated. */ 8646 if (test_pages_isolated(outer_start, end, 0)) { 8647 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8648 __func__, outer_start, end); 8649 ret = -EBUSY; 8650 goto done; 8651 } 8652 8653 /* Grab isolated pages from freelists. */ 8654 outer_end = isolate_freepages_range(&cc, outer_start, end); 8655 if (!outer_end) { 8656 ret = -EBUSY; 8657 goto done; 8658 } 8659 8660 /* Free head and tail (if any) */ 8661 if (start != outer_start) 8662 free_contig_range(outer_start, start - outer_start); 8663 if (end != outer_end) 8664 free_contig_range(end, outer_end - end); 8665 8666 done: 8667 undo_isolate_page_range(pfn_max_align_down(start), 8668 pfn_max_align_up(end), migratetype); 8669 return ret; 8670 } 8671 EXPORT_SYMBOL(alloc_contig_range); 8672 8673 static int __alloc_contig_pages(unsigned long start_pfn, 8674 unsigned long nr_pages, gfp_t gfp_mask) 8675 { 8676 unsigned long end_pfn = start_pfn + nr_pages; 8677 8678 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8679 gfp_mask); 8680 } 8681 8682 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8683 unsigned long nr_pages) 8684 { 8685 unsigned long i, end_pfn = start_pfn + nr_pages; 8686 struct page *page; 8687 8688 for (i = start_pfn; i < end_pfn; i++) { 8689 page = pfn_to_online_page(i); 8690 if (!page) 8691 return false; 8692 8693 if (page_zone(page) != z) 8694 return false; 8695 8696 if (PageReserved(page)) 8697 return false; 8698 8699 if (page_count(page) > 0) 8700 return false; 8701 8702 if (PageHuge(page)) 8703 return false; 8704 } 8705 return true; 8706 } 8707 8708 static bool zone_spans_last_pfn(const struct zone *zone, 8709 unsigned long start_pfn, unsigned long nr_pages) 8710 { 8711 unsigned long last_pfn = start_pfn + nr_pages - 1; 8712 8713 return zone_spans_pfn(zone, last_pfn); 8714 } 8715 8716 /** 8717 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8718 * @nr_pages: Number of contiguous pages to allocate 8719 * @gfp_mask: GFP mask to limit search and used during compaction 8720 * @nid: Target node 8721 * @nodemask: Mask for other possible nodes 8722 * 8723 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8724 * on an applicable zonelist to find a contiguous pfn range which can then be 8725 * tried for allocation with alloc_contig_range(). This routine is intended 8726 * for allocation requests which can not be fulfilled with the buddy allocator. 8727 * 8728 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8729 * power of two then the alignment is guaranteed to be to the given nr_pages 8730 * (e.g. 1GB request would be aligned to 1GB). 8731 * 8732 * Allocated pages can be freed with free_contig_range() or by manually calling 8733 * __free_page() on each allocated page. 8734 * 8735 * Return: pointer to contiguous pages on success, or NULL if not successful. 8736 */ 8737 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8738 int nid, nodemask_t *nodemask) 8739 { 8740 unsigned long ret, pfn, flags; 8741 struct zonelist *zonelist; 8742 struct zone *zone; 8743 struct zoneref *z; 8744 8745 zonelist = node_zonelist(nid, gfp_mask); 8746 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8747 gfp_zone(gfp_mask), nodemask) { 8748 spin_lock_irqsave(&zone->lock, flags); 8749 8750 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8751 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8752 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8753 /* 8754 * We release the zone lock here because 8755 * alloc_contig_range() will also lock the zone 8756 * at some point. If there's an allocation 8757 * spinning on this lock, it may win the race 8758 * and cause alloc_contig_range() to fail... 8759 */ 8760 spin_unlock_irqrestore(&zone->lock, flags); 8761 ret = __alloc_contig_pages(pfn, nr_pages, 8762 gfp_mask); 8763 if (!ret) 8764 return pfn_to_page(pfn); 8765 spin_lock_irqsave(&zone->lock, flags); 8766 } 8767 pfn += nr_pages; 8768 } 8769 spin_unlock_irqrestore(&zone->lock, flags); 8770 } 8771 return NULL; 8772 } 8773 #endif /* CONFIG_CONTIG_ALLOC */ 8774 8775 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8776 { 8777 unsigned int count = 0; 8778 8779 for (; nr_pages--; pfn++) { 8780 struct page *page = pfn_to_page(pfn); 8781 8782 count += page_count(page) != 1; 8783 __free_page(page); 8784 } 8785 WARN(count != 0, "%d pages are still in use!\n", count); 8786 } 8787 EXPORT_SYMBOL(free_contig_range); 8788 8789 /* 8790 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8791 * page high values need to be recalulated. 8792 */ 8793 void __meminit zone_pcp_update(struct zone *zone) 8794 { 8795 mutex_lock(&pcp_batch_high_lock); 8796 zone_set_pageset_high_and_batch(zone); 8797 mutex_unlock(&pcp_batch_high_lock); 8798 } 8799 8800 /* 8801 * Effectively disable pcplists for the zone by setting the high limit to 0 8802 * and draining all cpus. A concurrent page freeing on another CPU that's about 8803 * to put the page on pcplist will either finish before the drain and the page 8804 * will be drained, or observe the new high limit and skip the pcplist. 8805 * 8806 * Must be paired with a call to zone_pcp_enable(). 8807 */ 8808 void zone_pcp_disable(struct zone *zone) 8809 { 8810 mutex_lock(&pcp_batch_high_lock); 8811 __zone_set_pageset_high_and_batch(zone, 0, 1); 8812 __drain_all_pages(zone, true); 8813 } 8814 8815 void zone_pcp_enable(struct zone *zone) 8816 { 8817 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 8818 mutex_unlock(&pcp_batch_high_lock); 8819 } 8820 8821 void zone_pcp_reset(struct zone *zone) 8822 { 8823 unsigned long flags; 8824 int cpu; 8825 struct per_cpu_pageset *pset; 8826 8827 /* avoid races with drain_pages() */ 8828 local_irq_save(flags); 8829 if (zone->pageset != &boot_pageset) { 8830 for_each_online_cpu(cpu) { 8831 pset = per_cpu_ptr(zone->pageset, cpu); 8832 drain_zonestat(zone, pset); 8833 } 8834 free_percpu(zone->pageset); 8835 zone->pageset = &boot_pageset; 8836 } 8837 local_irq_restore(flags); 8838 } 8839 8840 #ifdef CONFIG_MEMORY_HOTREMOVE 8841 /* 8842 * All pages in the range must be in a single zone, must not contain holes, 8843 * must span full sections, and must be isolated before calling this function. 8844 */ 8845 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8846 { 8847 unsigned long pfn = start_pfn; 8848 struct page *page; 8849 struct zone *zone; 8850 unsigned int order; 8851 unsigned long flags; 8852 8853 offline_mem_sections(pfn, end_pfn); 8854 zone = page_zone(pfn_to_page(pfn)); 8855 spin_lock_irqsave(&zone->lock, flags); 8856 while (pfn < end_pfn) { 8857 page = pfn_to_page(pfn); 8858 /* 8859 * The HWPoisoned page may be not in buddy system, and 8860 * page_count() is not 0. 8861 */ 8862 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8863 pfn++; 8864 continue; 8865 } 8866 /* 8867 * At this point all remaining PageOffline() pages have a 8868 * reference count of 0 and can simply be skipped. 8869 */ 8870 if (PageOffline(page)) { 8871 BUG_ON(page_count(page)); 8872 BUG_ON(PageBuddy(page)); 8873 pfn++; 8874 continue; 8875 } 8876 8877 BUG_ON(page_count(page)); 8878 BUG_ON(!PageBuddy(page)); 8879 order = buddy_order(page); 8880 del_page_from_free_list(page, zone, order); 8881 pfn += (1 << order); 8882 } 8883 spin_unlock_irqrestore(&zone->lock, flags); 8884 } 8885 #endif 8886 8887 bool is_free_buddy_page(struct page *page) 8888 { 8889 struct zone *zone = page_zone(page); 8890 unsigned long pfn = page_to_pfn(page); 8891 unsigned long flags; 8892 unsigned int order; 8893 8894 spin_lock_irqsave(&zone->lock, flags); 8895 for (order = 0; order < MAX_ORDER; order++) { 8896 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8897 8898 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 8899 break; 8900 } 8901 spin_unlock_irqrestore(&zone->lock, flags); 8902 8903 return order < MAX_ORDER; 8904 } 8905 8906 #ifdef CONFIG_MEMORY_FAILURE 8907 /* 8908 * Break down a higher-order page in sub-pages, and keep our target out of 8909 * buddy allocator. 8910 */ 8911 static void break_down_buddy_pages(struct zone *zone, struct page *page, 8912 struct page *target, int low, int high, 8913 int migratetype) 8914 { 8915 unsigned long size = 1 << high; 8916 struct page *current_buddy, *next_page; 8917 8918 while (high > low) { 8919 high--; 8920 size >>= 1; 8921 8922 if (target >= &page[size]) { 8923 next_page = page + size; 8924 current_buddy = page; 8925 } else { 8926 next_page = page; 8927 current_buddy = page + size; 8928 } 8929 8930 if (set_page_guard(zone, current_buddy, high, migratetype)) 8931 continue; 8932 8933 if (current_buddy != target) { 8934 add_to_free_list(current_buddy, zone, high, migratetype); 8935 set_buddy_order(current_buddy, high); 8936 page = next_page; 8937 } 8938 } 8939 } 8940 8941 /* 8942 * Take a page that will be marked as poisoned off the buddy allocator. 8943 */ 8944 bool take_page_off_buddy(struct page *page) 8945 { 8946 struct zone *zone = page_zone(page); 8947 unsigned long pfn = page_to_pfn(page); 8948 unsigned long flags; 8949 unsigned int order; 8950 bool ret = false; 8951 8952 spin_lock_irqsave(&zone->lock, flags); 8953 for (order = 0; order < MAX_ORDER; order++) { 8954 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8955 int page_order = buddy_order(page_head); 8956 8957 if (PageBuddy(page_head) && page_order >= order) { 8958 unsigned long pfn_head = page_to_pfn(page_head); 8959 int migratetype = get_pfnblock_migratetype(page_head, 8960 pfn_head); 8961 8962 del_page_from_free_list(page_head, zone, page_order); 8963 break_down_buddy_pages(zone, page_head, page, 0, 8964 page_order, migratetype); 8965 ret = true; 8966 break; 8967 } 8968 if (page_count(page_head) > 0) 8969 break; 8970 } 8971 spin_unlock_irqrestore(&zone->lock, flags); 8972 return ret; 8973 } 8974 #endif 8975