xref: /linux/mm/page_alloc.c (revision 0c93ea4064a209cdc36de8a9a3003d43d08f46f7)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49 
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53 
54 /*
55  * Array of node states.
56  */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 	[N_POSSIBLE] = NODE_MASK_ALL,
59 	[N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 	[N_CPU] = { { [0] = 1UL } },
66 #endif	/* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69 
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 unsigned long highest_memmap_pfn __read_mostly;
73 int percpu_pagelist_fraction;
74 
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78 
79 static void __free_pages_ok(struct page *page, unsigned int order);
80 
81 /*
82  * results with 256, 32 in the lowmem_reserve sysctl:
83  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84  *	1G machine -> (16M dma, 784M normal, 224M high)
85  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88  *
89  * TBD: should special case ZONE_DMA32 machines here - in those we normally
90  * don't need any ZONE_NORMAL reservation
91  */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 	 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 	 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 	 32,
101 #endif
102 	 32,
103 };
104 
105 EXPORT_SYMBOL(totalram_pages);
106 
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 	 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 	 "DMA32",
113 #endif
114 	 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 	 "HighMem",
117 #endif
118 	 "Movable",
119 };
120 
121 int min_free_kbytes = 1024;
122 
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126 
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128   /*
129    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130    * ranges of memory (RAM) that may be registered with add_active_range().
131    * Ranges passed to add_active_range() will be merged if possible
132    * so the number of times add_active_range() can be called is
133    * related to the number of nodes and the number of holes
134    */
135   #ifdef CONFIG_MAX_ACTIVE_REGIONS
136     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138   #else
139     #if MAX_NUMNODES >= 32
140       /* If there can be many nodes, allow up to 50 holes per node */
141       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142     #else
143       /* By default, allow up to 256 distinct regions */
144       #define MAX_ACTIVE_REGIONS 256
145     #endif
146   #endif
147 
148   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149   static int __meminitdata nr_nodemap_entries;
150   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156   static unsigned long __initdata required_kernelcore;
157   static unsigned long __initdata required_movablecore;
158   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 
160   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161   int movable_zone;
162   EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169 
170 int page_group_by_mobility_disabled __read_mostly;
171 
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 	set_pageblock_flags_group(page, (unsigned long)migratetype,
175 					PB_migrate, PB_migrate_end);
176 }
177 
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 	int ret = 0;
182 	unsigned seq;
183 	unsigned long pfn = page_to_pfn(page);
184 
185 	do {
186 		seq = zone_span_seqbegin(zone);
187 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 			ret = 1;
189 		else if (pfn < zone->zone_start_pfn)
190 			ret = 1;
191 	} while (zone_span_seqretry(zone, seq));
192 
193 	return ret;
194 }
195 
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 	if (!pfn_valid_within(page_to_pfn(page)))
199 		return 0;
200 	if (zone != page_zone(page))
201 		return 0;
202 
203 	return 1;
204 }
205 /*
206  * Temporary debugging check for pages not lying within a given zone.
207  */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 	if (page_outside_zone_boundaries(zone, page))
211 		return 1;
212 	if (!page_is_consistent(zone, page))
213 		return 1;
214 
215 	return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 	return 0;
221 }
222 #endif
223 
224 static void bad_page(struct page *page)
225 {
226 	static unsigned long resume;
227 	static unsigned long nr_shown;
228 	static unsigned long nr_unshown;
229 
230 	/*
231 	 * Allow a burst of 60 reports, then keep quiet for that minute;
232 	 * or allow a steady drip of one report per second.
233 	 */
234 	if (nr_shown == 60) {
235 		if (time_before(jiffies, resume)) {
236 			nr_unshown++;
237 			goto out;
238 		}
239 		if (nr_unshown) {
240 			printk(KERN_ALERT
241 			      "BUG: Bad page state: %lu messages suppressed\n",
242 				nr_unshown);
243 			nr_unshown = 0;
244 		}
245 		nr_shown = 0;
246 	}
247 	if (nr_shown++ == 0)
248 		resume = jiffies + 60 * HZ;
249 
250 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
251 		current->comm, page_to_pfn(page));
252 	printk(KERN_ALERT
253 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254 		page, (void *)page->flags, page_count(page),
255 		page_mapcount(page), page->mapping, page->index);
256 
257 	dump_stack();
258 out:
259 	/* Leave bad fields for debug, except PageBuddy could make trouble */
260 	__ClearPageBuddy(page);
261 	add_taint(TAINT_BAD_PAGE);
262 }
263 
264 /*
265  * Higher-order pages are called "compound pages".  They are structured thusly:
266  *
267  * The first PAGE_SIZE page is called the "head page".
268  *
269  * The remaining PAGE_SIZE pages are called "tail pages".
270  *
271  * All pages have PG_compound set.  All pages have their ->private pointing at
272  * the head page (even the head page has this).
273  *
274  * The first tail page's ->lru.next holds the address of the compound page's
275  * put_page() function.  Its ->lru.prev holds the order of allocation.
276  * This usage means that zero-order pages may not be compound.
277  */
278 
279 static void free_compound_page(struct page *page)
280 {
281 	__free_pages_ok(page, compound_order(page));
282 }
283 
284 void prep_compound_page(struct page *page, unsigned long order)
285 {
286 	int i;
287 	int nr_pages = 1 << order;
288 
289 	set_compound_page_dtor(page, free_compound_page);
290 	set_compound_order(page, order);
291 	__SetPageHead(page);
292 	for (i = 1; i < nr_pages; i++) {
293 		struct page *p = page + i;
294 
295 		__SetPageTail(p);
296 		p->first_page = page;
297 	}
298 }
299 
300 #ifdef CONFIG_HUGETLBFS
301 void prep_compound_gigantic_page(struct page *page, unsigned long order)
302 {
303 	int i;
304 	int nr_pages = 1 << order;
305 	struct page *p = page + 1;
306 
307 	set_compound_page_dtor(page, free_compound_page);
308 	set_compound_order(page, order);
309 	__SetPageHead(page);
310 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
311 		__SetPageTail(p);
312 		p->first_page = page;
313 	}
314 }
315 #endif
316 
317 static int destroy_compound_page(struct page *page, unsigned long order)
318 {
319 	int i;
320 	int nr_pages = 1 << order;
321 	int bad = 0;
322 
323 	if (unlikely(compound_order(page) != order) ||
324 	    unlikely(!PageHead(page))) {
325 		bad_page(page);
326 		bad++;
327 	}
328 
329 	__ClearPageHead(page);
330 
331 	for (i = 1; i < nr_pages; i++) {
332 		struct page *p = page + i;
333 
334 		if (unlikely(!PageTail(p) | (p->first_page != page))) {
335 			bad_page(page);
336 			bad++;
337 		}
338 		__ClearPageTail(p);
339 	}
340 
341 	return bad;
342 }
343 
344 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
345 {
346 	int i;
347 
348 	/*
349 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
350 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
351 	 */
352 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
353 	for (i = 0; i < (1 << order); i++)
354 		clear_highpage(page + i);
355 }
356 
357 static inline void set_page_order(struct page *page, int order)
358 {
359 	set_page_private(page, order);
360 	__SetPageBuddy(page);
361 }
362 
363 static inline void rmv_page_order(struct page *page)
364 {
365 	__ClearPageBuddy(page);
366 	set_page_private(page, 0);
367 }
368 
369 /*
370  * Locate the struct page for both the matching buddy in our
371  * pair (buddy1) and the combined O(n+1) page they form (page).
372  *
373  * 1) Any buddy B1 will have an order O twin B2 which satisfies
374  * the following equation:
375  *     B2 = B1 ^ (1 << O)
376  * For example, if the starting buddy (buddy2) is #8 its order
377  * 1 buddy is #10:
378  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
379  *
380  * 2) Any buddy B will have an order O+1 parent P which
381  * satisfies the following equation:
382  *     P = B & ~(1 << O)
383  *
384  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
385  */
386 static inline struct page *
387 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
388 {
389 	unsigned long buddy_idx = page_idx ^ (1 << order);
390 
391 	return page + (buddy_idx - page_idx);
392 }
393 
394 static inline unsigned long
395 __find_combined_index(unsigned long page_idx, unsigned int order)
396 {
397 	return (page_idx & ~(1 << order));
398 }
399 
400 /*
401  * This function checks whether a page is free && is the buddy
402  * we can do coalesce a page and its buddy if
403  * (a) the buddy is not in a hole &&
404  * (b) the buddy is in the buddy system &&
405  * (c) a page and its buddy have the same order &&
406  * (d) a page and its buddy are in the same zone.
407  *
408  * For recording whether a page is in the buddy system, we use PG_buddy.
409  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
410  *
411  * For recording page's order, we use page_private(page).
412  */
413 static inline int page_is_buddy(struct page *page, struct page *buddy,
414 								int order)
415 {
416 	if (!pfn_valid_within(page_to_pfn(buddy)))
417 		return 0;
418 
419 	if (page_zone_id(page) != page_zone_id(buddy))
420 		return 0;
421 
422 	if (PageBuddy(buddy) && page_order(buddy) == order) {
423 		BUG_ON(page_count(buddy) != 0);
424 		return 1;
425 	}
426 	return 0;
427 }
428 
429 /*
430  * Freeing function for a buddy system allocator.
431  *
432  * The concept of a buddy system is to maintain direct-mapped table
433  * (containing bit values) for memory blocks of various "orders".
434  * The bottom level table contains the map for the smallest allocatable
435  * units of memory (here, pages), and each level above it describes
436  * pairs of units from the levels below, hence, "buddies".
437  * At a high level, all that happens here is marking the table entry
438  * at the bottom level available, and propagating the changes upward
439  * as necessary, plus some accounting needed to play nicely with other
440  * parts of the VM system.
441  * At each level, we keep a list of pages, which are heads of continuous
442  * free pages of length of (1 << order) and marked with PG_buddy. Page's
443  * order is recorded in page_private(page) field.
444  * So when we are allocating or freeing one, we can derive the state of the
445  * other.  That is, if we allocate a small block, and both were
446  * free, the remainder of the region must be split into blocks.
447  * If a block is freed, and its buddy is also free, then this
448  * triggers coalescing into a block of larger size.
449  *
450  * -- wli
451  */
452 
453 static inline void __free_one_page(struct page *page,
454 		struct zone *zone, unsigned int order)
455 {
456 	unsigned long page_idx;
457 	int order_size = 1 << order;
458 	int migratetype = get_pageblock_migratetype(page);
459 
460 	if (unlikely(PageCompound(page)))
461 		if (unlikely(destroy_compound_page(page, order)))
462 			return;
463 
464 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
465 
466 	VM_BUG_ON(page_idx & (order_size - 1));
467 	VM_BUG_ON(bad_range(zone, page));
468 
469 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
470 	while (order < MAX_ORDER-1) {
471 		unsigned long combined_idx;
472 		struct page *buddy;
473 
474 		buddy = __page_find_buddy(page, page_idx, order);
475 		if (!page_is_buddy(page, buddy, order))
476 			break;
477 
478 		/* Our buddy is free, merge with it and move up one order. */
479 		list_del(&buddy->lru);
480 		zone->free_area[order].nr_free--;
481 		rmv_page_order(buddy);
482 		combined_idx = __find_combined_index(page_idx, order);
483 		page = page + (combined_idx - page_idx);
484 		page_idx = combined_idx;
485 		order++;
486 	}
487 	set_page_order(page, order);
488 	list_add(&page->lru,
489 		&zone->free_area[order].free_list[migratetype]);
490 	zone->free_area[order].nr_free++;
491 }
492 
493 static inline int free_pages_check(struct page *page)
494 {
495 	free_page_mlock(page);
496 	if (unlikely(page_mapcount(page) |
497 		(page->mapping != NULL)  |
498 		(page_count(page) != 0)  |
499 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
500 		bad_page(page);
501 		return 1;
502 	}
503 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
504 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
505 	return 0;
506 }
507 
508 /*
509  * Frees a list of pages.
510  * Assumes all pages on list are in same zone, and of same order.
511  * count is the number of pages to free.
512  *
513  * If the zone was previously in an "all pages pinned" state then look to
514  * see if this freeing clears that state.
515  *
516  * And clear the zone's pages_scanned counter, to hold off the "all pages are
517  * pinned" detection logic.
518  */
519 static void free_pages_bulk(struct zone *zone, int count,
520 					struct list_head *list, int order)
521 {
522 	spin_lock(&zone->lock);
523 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
524 	zone->pages_scanned = 0;
525 	while (count--) {
526 		struct page *page;
527 
528 		VM_BUG_ON(list_empty(list));
529 		page = list_entry(list->prev, struct page, lru);
530 		/* have to delete it as __free_one_page list manipulates */
531 		list_del(&page->lru);
532 		__free_one_page(page, zone, order);
533 	}
534 	spin_unlock(&zone->lock);
535 }
536 
537 static void free_one_page(struct zone *zone, struct page *page, int order)
538 {
539 	spin_lock(&zone->lock);
540 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
541 	zone->pages_scanned = 0;
542 	__free_one_page(page, zone, order);
543 	spin_unlock(&zone->lock);
544 }
545 
546 static void __free_pages_ok(struct page *page, unsigned int order)
547 {
548 	unsigned long flags;
549 	int i;
550 	int bad = 0;
551 
552 	for (i = 0 ; i < (1 << order) ; ++i)
553 		bad += free_pages_check(page + i);
554 	if (bad)
555 		return;
556 
557 	if (!PageHighMem(page)) {
558 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
559 		debug_check_no_obj_freed(page_address(page),
560 					   PAGE_SIZE << order);
561 	}
562 	arch_free_page(page, order);
563 	kernel_map_pages(page, 1 << order, 0);
564 
565 	local_irq_save(flags);
566 	__count_vm_events(PGFREE, 1 << order);
567 	free_one_page(page_zone(page), page, order);
568 	local_irq_restore(flags);
569 }
570 
571 /*
572  * permit the bootmem allocator to evade page validation on high-order frees
573  */
574 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
575 {
576 	if (order == 0) {
577 		__ClearPageReserved(page);
578 		set_page_count(page, 0);
579 		set_page_refcounted(page);
580 		__free_page(page);
581 	} else {
582 		int loop;
583 
584 		prefetchw(page);
585 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
586 			struct page *p = &page[loop];
587 
588 			if (loop + 1 < BITS_PER_LONG)
589 				prefetchw(p + 1);
590 			__ClearPageReserved(p);
591 			set_page_count(p, 0);
592 		}
593 
594 		set_page_refcounted(page);
595 		__free_pages(page, order);
596 	}
597 }
598 
599 
600 /*
601  * The order of subdivision here is critical for the IO subsystem.
602  * Please do not alter this order without good reasons and regression
603  * testing. Specifically, as large blocks of memory are subdivided,
604  * the order in which smaller blocks are delivered depends on the order
605  * they're subdivided in this function. This is the primary factor
606  * influencing the order in which pages are delivered to the IO
607  * subsystem according to empirical testing, and this is also justified
608  * by considering the behavior of a buddy system containing a single
609  * large block of memory acted on by a series of small allocations.
610  * This behavior is a critical factor in sglist merging's success.
611  *
612  * -- wli
613  */
614 static inline void expand(struct zone *zone, struct page *page,
615 	int low, int high, struct free_area *area,
616 	int migratetype)
617 {
618 	unsigned long size = 1 << high;
619 
620 	while (high > low) {
621 		area--;
622 		high--;
623 		size >>= 1;
624 		VM_BUG_ON(bad_range(zone, &page[size]));
625 		list_add(&page[size].lru, &area->free_list[migratetype]);
626 		area->nr_free++;
627 		set_page_order(&page[size], high);
628 	}
629 }
630 
631 /*
632  * This page is about to be returned from the page allocator
633  */
634 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
635 {
636 	if (unlikely(page_mapcount(page) |
637 		(page->mapping != NULL)  |
638 		(page_count(page) != 0)  |
639 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
640 		bad_page(page);
641 		return 1;
642 	}
643 
644 	set_page_private(page, 0);
645 	set_page_refcounted(page);
646 
647 	arch_alloc_page(page, order);
648 	kernel_map_pages(page, 1 << order, 1);
649 
650 	if (gfp_flags & __GFP_ZERO)
651 		prep_zero_page(page, order, gfp_flags);
652 
653 	if (order && (gfp_flags & __GFP_COMP))
654 		prep_compound_page(page, order);
655 
656 	return 0;
657 }
658 
659 /*
660  * Go through the free lists for the given migratetype and remove
661  * the smallest available page from the freelists
662  */
663 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
664 						int migratetype)
665 {
666 	unsigned int current_order;
667 	struct free_area * area;
668 	struct page *page;
669 
670 	/* Find a page of the appropriate size in the preferred list */
671 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
672 		area = &(zone->free_area[current_order]);
673 		if (list_empty(&area->free_list[migratetype]))
674 			continue;
675 
676 		page = list_entry(area->free_list[migratetype].next,
677 							struct page, lru);
678 		list_del(&page->lru);
679 		rmv_page_order(page);
680 		area->nr_free--;
681 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
682 		expand(zone, page, order, current_order, area, migratetype);
683 		return page;
684 	}
685 
686 	return NULL;
687 }
688 
689 
690 /*
691  * This array describes the order lists are fallen back to when
692  * the free lists for the desirable migrate type are depleted
693  */
694 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
695 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
696 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
697 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
698 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
699 };
700 
701 /*
702  * Move the free pages in a range to the free lists of the requested type.
703  * Note that start_page and end_pages are not aligned on a pageblock
704  * boundary. If alignment is required, use move_freepages_block()
705  */
706 static int move_freepages(struct zone *zone,
707 			  struct page *start_page, struct page *end_page,
708 			  int migratetype)
709 {
710 	struct page *page;
711 	unsigned long order;
712 	int pages_moved = 0;
713 
714 #ifndef CONFIG_HOLES_IN_ZONE
715 	/*
716 	 * page_zone is not safe to call in this context when
717 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
718 	 * anyway as we check zone boundaries in move_freepages_block().
719 	 * Remove at a later date when no bug reports exist related to
720 	 * grouping pages by mobility
721 	 */
722 	BUG_ON(page_zone(start_page) != page_zone(end_page));
723 #endif
724 
725 	for (page = start_page; page <= end_page;) {
726 		/* Make sure we are not inadvertently changing nodes */
727 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
728 
729 		if (!pfn_valid_within(page_to_pfn(page))) {
730 			page++;
731 			continue;
732 		}
733 
734 		if (!PageBuddy(page)) {
735 			page++;
736 			continue;
737 		}
738 
739 		order = page_order(page);
740 		list_del(&page->lru);
741 		list_add(&page->lru,
742 			&zone->free_area[order].free_list[migratetype]);
743 		page += 1 << order;
744 		pages_moved += 1 << order;
745 	}
746 
747 	return pages_moved;
748 }
749 
750 static int move_freepages_block(struct zone *zone, struct page *page,
751 				int migratetype)
752 {
753 	unsigned long start_pfn, end_pfn;
754 	struct page *start_page, *end_page;
755 
756 	start_pfn = page_to_pfn(page);
757 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
758 	start_page = pfn_to_page(start_pfn);
759 	end_page = start_page + pageblock_nr_pages - 1;
760 	end_pfn = start_pfn + pageblock_nr_pages - 1;
761 
762 	/* Do not cross zone boundaries */
763 	if (start_pfn < zone->zone_start_pfn)
764 		start_page = page;
765 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
766 		return 0;
767 
768 	return move_freepages(zone, start_page, end_page, migratetype);
769 }
770 
771 /* Remove an element from the buddy allocator from the fallback list */
772 static struct page *__rmqueue_fallback(struct zone *zone, int order,
773 						int start_migratetype)
774 {
775 	struct free_area * area;
776 	int current_order;
777 	struct page *page;
778 	int migratetype, i;
779 
780 	/* Find the largest possible block of pages in the other list */
781 	for (current_order = MAX_ORDER-1; current_order >= order;
782 						--current_order) {
783 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
784 			migratetype = fallbacks[start_migratetype][i];
785 
786 			/* MIGRATE_RESERVE handled later if necessary */
787 			if (migratetype == MIGRATE_RESERVE)
788 				continue;
789 
790 			area = &(zone->free_area[current_order]);
791 			if (list_empty(&area->free_list[migratetype]))
792 				continue;
793 
794 			page = list_entry(area->free_list[migratetype].next,
795 					struct page, lru);
796 			area->nr_free--;
797 
798 			/*
799 			 * If breaking a large block of pages, move all free
800 			 * pages to the preferred allocation list. If falling
801 			 * back for a reclaimable kernel allocation, be more
802 			 * agressive about taking ownership of free pages
803 			 */
804 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
805 					start_migratetype == MIGRATE_RECLAIMABLE) {
806 				unsigned long pages;
807 				pages = move_freepages_block(zone, page,
808 								start_migratetype);
809 
810 				/* Claim the whole block if over half of it is free */
811 				if (pages >= (1 << (pageblock_order-1)))
812 					set_pageblock_migratetype(page,
813 								start_migratetype);
814 
815 				migratetype = start_migratetype;
816 			}
817 
818 			/* Remove the page from the freelists */
819 			list_del(&page->lru);
820 			rmv_page_order(page);
821 			__mod_zone_page_state(zone, NR_FREE_PAGES,
822 							-(1UL << order));
823 
824 			if (current_order == pageblock_order)
825 				set_pageblock_migratetype(page,
826 							start_migratetype);
827 
828 			expand(zone, page, order, current_order, area, migratetype);
829 			return page;
830 		}
831 	}
832 
833 	/* Use MIGRATE_RESERVE rather than fail an allocation */
834 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835 }
836 
837 /*
838  * Do the hard work of removing an element from the buddy allocator.
839  * Call me with the zone->lock already held.
840  */
841 static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 						int migratetype)
843 {
844 	struct page *page;
845 
846 	page = __rmqueue_smallest(zone, order, migratetype);
847 
848 	if (unlikely(!page))
849 		page = __rmqueue_fallback(zone, order, migratetype);
850 
851 	return page;
852 }
853 
854 /*
855  * Obtain a specified number of elements from the buddy allocator, all under
856  * a single hold of the lock, for efficiency.  Add them to the supplied list.
857  * Returns the number of new pages which were placed at *list.
858  */
859 static int rmqueue_bulk(struct zone *zone, unsigned int order,
860 			unsigned long count, struct list_head *list,
861 			int migratetype)
862 {
863 	int i;
864 
865 	spin_lock(&zone->lock);
866 	for (i = 0; i < count; ++i) {
867 		struct page *page = __rmqueue(zone, order, migratetype);
868 		if (unlikely(page == NULL))
869 			break;
870 
871 		/*
872 		 * Split buddy pages returned by expand() are received here
873 		 * in physical page order. The page is added to the callers and
874 		 * list and the list head then moves forward. From the callers
875 		 * perspective, the linked list is ordered by page number in
876 		 * some conditions. This is useful for IO devices that can
877 		 * merge IO requests if the physical pages are ordered
878 		 * properly.
879 		 */
880 		list_add(&page->lru, list);
881 		set_page_private(page, migratetype);
882 		list = &page->lru;
883 	}
884 	spin_unlock(&zone->lock);
885 	return i;
886 }
887 
888 #ifdef CONFIG_NUMA
889 /*
890  * Called from the vmstat counter updater to drain pagesets of this
891  * currently executing processor on remote nodes after they have
892  * expired.
893  *
894  * Note that this function must be called with the thread pinned to
895  * a single processor.
896  */
897 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
898 {
899 	unsigned long flags;
900 	int to_drain;
901 
902 	local_irq_save(flags);
903 	if (pcp->count >= pcp->batch)
904 		to_drain = pcp->batch;
905 	else
906 		to_drain = pcp->count;
907 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
908 	pcp->count -= to_drain;
909 	local_irq_restore(flags);
910 }
911 #endif
912 
913 /*
914  * Drain pages of the indicated processor.
915  *
916  * The processor must either be the current processor and the
917  * thread pinned to the current processor or a processor that
918  * is not online.
919  */
920 static void drain_pages(unsigned int cpu)
921 {
922 	unsigned long flags;
923 	struct zone *zone;
924 
925 	for_each_zone(zone) {
926 		struct per_cpu_pageset *pset;
927 		struct per_cpu_pages *pcp;
928 
929 		if (!populated_zone(zone))
930 			continue;
931 
932 		pset = zone_pcp(zone, cpu);
933 
934 		pcp = &pset->pcp;
935 		local_irq_save(flags);
936 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
937 		pcp->count = 0;
938 		local_irq_restore(flags);
939 	}
940 }
941 
942 /*
943  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
944  */
945 void drain_local_pages(void *arg)
946 {
947 	drain_pages(smp_processor_id());
948 }
949 
950 /*
951  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
952  */
953 void drain_all_pages(void)
954 {
955 	on_each_cpu(drain_local_pages, NULL, 1);
956 }
957 
958 #ifdef CONFIG_HIBERNATION
959 
960 void mark_free_pages(struct zone *zone)
961 {
962 	unsigned long pfn, max_zone_pfn;
963 	unsigned long flags;
964 	int order, t;
965 	struct list_head *curr;
966 
967 	if (!zone->spanned_pages)
968 		return;
969 
970 	spin_lock_irqsave(&zone->lock, flags);
971 
972 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
973 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
974 		if (pfn_valid(pfn)) {
975 			struct page *page = pfn_to_page(pfn);
976 
977 			if (!swsusp_page_is_forbidden(page))
978 				swsusp_unset_page_free(page);
979 		}
980 
981 	for_each_migratetype_order(order, t) {
982 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
983 			unsigned long i;
984 
985 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
986 			for (i = 0; i < (1UL << order); i++)
987 				swsusp_set_page_free(pfn_to_page(pfn + i));
988 		}
989 	}
990 	spin_unlock_irqrestore(&zone->lock, flags);
991 }
992 #endif /* CONFIG_PM */
993 
994 /*
995  * Free a 0-order page
996  */
997 static void free_hot_cold_page(struct page *page, int cold)
998 {
999 	struct zone *zone = page_zone(page);
1000 	struct per_cpu_pages *pcp;
1001 	unsigned long flags;
1002 
1003 	if (PageAnon(page))
1004 		page->mapping = NULL;
1005 	if (free_pages_check(page))
1006 		return;
1007 
1008 	if (!PageHighMem(page)) {
1009 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1010 		debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1011 	}
1012 	arch_free_page(page, 0);
1013 	kernel_map_pages(page, 1, 0);
1014 
1015 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1016 	local_irq_save(flags);
1017 	__count_vm_event(PGFREE);
1018 	if (cold)
1019 		list_add_tail(&page->lru, &pcp->list);
1020 	else
1021 		list_add(&page->lru, &pcp->list);
1022 	set_page_private(page, get_pageblock_migratetype(page));
1023 	pcp->count++;
1024 	if (pcp->count >= pcp->high) {
1025 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1026 		pcp->count -= pcp->batch;
1027 	}
1028 	local_irq_restore(flags);
1029 	put_cpu();
1030 }
1031 
1032 void free_hot_page(struct page *page)
1033 {
1034 	free_hot_cold_page(page, 0);
1035 }
1036 
1037 void free_cold_page(struct page *page)
1038 {
1039 	free_hot_cold_page(page, 1);
1040 }
1041 
1042 /*
1043  * split_page takes a non-compound higher-order page, and splits it into
1044  * n (1<<order) sub-pages: page[0..n]
1045  * Each sub-page must be freed individually.
1046  *
1047  * Note: this is probably too low level an operation for use in drivers.
1048  * Please consult with lkml before using this in your driver.
1049  */
1050 void split_page(struct page *page, unsigned int order)
1051 {
1052 	int i;
1053 
1054 	VM_BUG_ON(PageCompound(page));
1055 	VM_BUG_ON(!page_count(page));
1056 	for (i = 1; i < (1 << order); i++)
1057 		set_page_refcounted(page + i);
1058 }
1059 
1060 /*
1061  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1062  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1063  * or two.
1064  */
1065 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1066 			struct zone *zone, int order, gfp_t gfp_flags)
1067 {
1068 	unsigned long flags;
1069 	struct page *page;
1070 	int cold = !!(gfp_flags & __GFP_COLD);
1071 	int cpu;
1072 	int migratetype = allocflags_to_migratetype(gfp_flags);
1073 
1074 again:
1075 	cpu  = get_cpu();
1076 	if (likely(order == 0)) {
1077 		struct per_cpu_pages *pcp;
1078 
1079 		pcp = &zone_pcp(zone, cpu)->pcp;
1080 		local_irq_save(flags);
1081 		if (!pcp->count) {
1082 			pcp->count = rmqueue_bulk(zone, 0,
1083 					pcp->batch, &pcp->list, migratetype);
1084 			if (unlikely(!pcp->count))
1085 				goto failed;
1086 		}
1087 
1088 		/* Find a page of the appropriate migrate type */
1089 		if (cold) {
1090 			list_for_each_entry_reverse(page, &pcp->list, lru)
1091 				if (page_private(page) == migratetype)
1092 					break;
1093 		} else {
1094 			list_for_each_entry(page, &pcp->list, lru)
1095 				if (page_private(page) == migratetype)
1096 					break;
1097 		}
1098 
1099 		/* Allocate more to the pcp list if necessary */
1100 		if (unlikely(&page->lru == &pcp->list)) {
1101 			pcp->count += rmqueue_bulk(zone, 0,
1102 					pcp->batch, &pcp->list, migratetype);
1103 			page = list_entry(pcp->list.next, struct page, lru);
1104 		}
1105 
1106 		list_del(&page->lru);
1107 		pcp->count--;
1108 	} else {
1109 		spin_lock_irqsave(&zone->lock, flags);
1110 		page = __rmqueue(zone, order, migratetype);
1111 		spin_unlock(&zone->lock);
1112 		if (!page)
1113 			goto failed;
1114 	}
1115 
1116 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1117 	zone_statistics(preferred_zone, zone);
1118 	local_irq_restore(flags);
1119 	put_cpu();
1120 
1121 	VM_BUG_ON(bad_range(zone, page));
1122 	if (prep_new_page(page, order, gfp_flags))
1123 		goto again;
1124 	return page;
1125 
1126 failed:
1127 	local_irq_restore(flags);
1128 	put_cpu();
1129 	return NULL;
1130 }
1131 
1132 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1133 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1134 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1135 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1136 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1137 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1138 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1139 
1140 #ifdef CONFIG_FAIL_PAGE_ALLOC
1141 
1142 static struct fail_page_alloc_attr {
1143 	struct fault_attr attr;
1144 
1145 	u32 ignore_gfp_highmem;
1146 	u32 ignore_gfp_wait;
1147 	u32 min_order;
1148 
1149 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1150 
1151 	struct dentry *ignore_gfp_highmem_file;
1152 	struct dentry *ignore_gfp_wait_file;
1153 	struct dentry *min_order_file;
1154 
1155 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1156 
1157 } fail_page_alloc = {
1158 	.attr = FAULT_ATTR_INITIALIZER,
1159 	.ignore_gfp_wait = 1,
1160 	.ignore_gfp_highmem = 1,
1161 	.min_order = 1,
1162 };
1163 
1164 static int __init setup_fail_page_alloc(char *str)
1165 {
1166 	return setup_fault_attr(&fail_page_alloc.attr, str);
1167 }
1168 __setup("fail_page_alloc=", setup_fail_page_alloc);
1169 
1170 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1171 {
1172 	if (order < fail_page_alloc.min_order)
1173 		return 0;
1174 	if (gfp_mask & __GFP_NOFAIL)
1175 		return 0;
1176 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1177 		return 0;
1178 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1179 		return 0;
1180 
1181 	return should_fail(&fail_page_alloc.attr, 1 << order);
1182 }
1183 
1184 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1185 
1186 static int __init fail_page_alloc_debugfs(void)
1187 {
1188 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1189 	struct dentry *dir;
1190 	int err;
1191 
1192 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1193 				       "fail_page_alloc");
1194 	if (err)
1195 		return err;
1196 	dir = fail_page_alloc.attr.dentries.dir;
1197 
1198 	fail_page_alloc.ignore_gfp_wait_file =
1199 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1200 				      &fail_page_alloc.ignore_gfp_wait);
1201 
1202 	fail_page_alloc.ignore_gfp_highmem_file =
1203 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1204 				      &fail_page_alloc.ignore_gfp_highmem);
1205 	fail_page_alloc.min_order_file =
1206 		debugfs_create_u32("min-order", mode, dir,
1207 				   &fail_page_alloc.min_order);
1208 
1209 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1210             !fail_page_alloc.ignore_gfp_highmem_file ||
1211             !fail_page_alloc.min_order_file) {
1212 		err = -ENOMEM;
1213 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1214 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1215 		debugfs_remove(fail_page_alloc.min_order_file);
1216 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1217 	}
1218 
1219 	return err;
1220 }
1221 
1222 late_initcall(fail_page_alloc_debugfs);
1223 
1224 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1225 
1226 #else /* CONFIG_FAIL_PAGE_ALLOC */
1227 
1228 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1229 {
1230 	return 0;
1231 }
1232 
1233 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1234 
1235 /*
1236  * Return 1 if free pages are above 'mark'. This takes into account the order
1237  * of the allocation.
1238  */
1239 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1240 		      int classzone_idx, int alloc_flags)
1241 {
1242 	/* free_pages my go negative - that's OK */
1243 	long min = mark;
1244 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1245 	int o;
1246 
1247 	if (alloc_flags & ALLOC_HIGH)
1248 		min -= min / 2;
1249 	if (alloc_flags & ALLOC_HARDER)
1250 		min -= min / 4;
1251 
1252 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1253 		return 0;
1254 	for (o = 0; o < order; o++) {
1255 		/* At the next order, this order's pages become unavailable */
1256 		free_pages -= z->free_area[o].nr_free << o;
1257 
1258 		/* Require fewer higher order pages to be free */
1259 		min >>= 1;
1260 
1261 		if (free_pages <= min)
1262 			return 0;
1263 	}
1264 	return 1;
1265 }
1266 
1267 #ifdef CONFIG_NUMA
1268 /*
1269  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1270  * skip over zones that are not allowed by the cpuset, or that have
1271  * been recently (in last second) found to be nearly full.  See further
1272  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1273  * that have to skip over a lot of full or unallowed zones.
1274  *
1275  * If the zonelist cache is present in the passed in zonelist, then
1276  * returns a pointer to the allowed node mask (either the current
1277  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1278  *
1279  * If the zonelist cache is not available for this zonelist, does
1280  * nothing and returns NULL.
1281  *
1282  * If the fullzones BITMAP in the zonelist cache is stale (more than
1283  * a second since last zap'd) then we zap it out (clear its bits.)
1284  *
1285  * We hold off even calling zlc_setup, until after we've checked the
1286  * first zone in the zonelist, on the theory that most allocations will
1287  * be satisfied from that first zone, so best to examine that zone as
1288  * quickly as we can.
1289  */
1290 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1291 {
1292 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1293 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1294 
1295 	zlc = zonelist->zlcache_ptr;
1296 	if (!zlc)
1297 		return NULL;
1298 
1299 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1300 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1301 		zlc->last_full_zap = jiffies;
1302 	}
1303 
1304 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1305 					&cpuset_current_mems_allowed :
1306 					&node_states[N_HIGH_MEMORY];
1307 	return allowednodes;
1308 }
1309 
1310 /*
1311  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1312  * if it is worth looking at further for free memory:
1313  *  1) Check that the zone isn't thought to be full (doesn't have its
1314  *     bit set in the zonelist_cache fullzones BITMAP).
1315  *  2) Check that the zones node (obtained from the zonelist_cache
1316  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1317  * Return true (non-zero) if zone is worth looking at further, or
1318  * else return false (zero) if it is not.
1319  *
1320  * This check -ignores- the distinction between various watermarks,
1321  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1322  * found to be full for any variation of these watermarks, it will
1323  * be considered full for up to one second by all requests, unless
1324  * we are so low on memory on all allowed nodes that we are forced
1325  * into the second scan of the zonelist.
1326  *
1327  * In the second scan we ignore this zonelist cache and exactly
1328  * apply the watermarks to all zones, even it is slower to do so.
1329  * We are low on memory in the second scan, and should leave no stone
1330  * unturned looking for a free page.
1331  */
1332 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1333 						nodemask_t *allowednodes)
1334 {
1335 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1336 	int i;				/* index of *z in zonelist zones */
1337 	int n;				/* node that zone *z is on */
1338 
1339 	zlc = zonelist->zlcache_ptr;
1340 	if (!zlc)
1341 		return 1;
1342 
1343 	i = z - zonelist->_zonerefs;
1344 	n = zlc->z_to_n[i];
1345 
1346 	/* This zone is worth trying if it is allowed but not full */
1347 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1348 }
1349 
1350 /*
1351  * Given 'z' scanning a zonelist, set the corresponding bit in
1352  * zlc->fullzones, so that subsequent attempts to allocate a page
1353  * from that zone don't waste time re-examining it.
1354  */
1355 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1356 {
1357 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1358 	int i;				/* index of *z in zonelist zones */
1359 
1360 	zlc = zonelist->zlcache_ptr;
1361 	if (!zlc)
1362 		return;
1363 
1364 	i = z - zonelist->_zonerefs;
1365 
1366 	set_bit(i, zlc->fullzones);
1367 }
1368 
1369 #else	/* CONFIG_NUMA */
1370 
1371 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1372 {
1373 	return NULL;
1374 }
1375 
1376 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1377 				nodemask_t *allowednodes)
1378 {
1379 	return 1;
1380 }
1381 
1382 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1383 {
1384 }
1385 #endif	/* CONFIG_NUMA */
1386 
1387 /*
1388  * get_page_from_freelist goes through the zonelist trying to allocate
1389  * a page.
1390  */
1391 static struct page *
1392 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1393 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1394 {
1395 	struct zoneref *z;
1396 	struct page *page = NULL;
1397 	int classzone_idx;
1398 	struct zone *zone, *preferred_zone;
1399 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1400 	int zlc_active = 0;		/* set if using zonelist_cache */
1401 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1402 
1403 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1404 							&preferred_zone);
1405 	if (!preferred_zone)
1406 		return NULL;
1407 
1408 	classzone_idx = zone_idx(preferred_zone);
1409 
1410 zonelist_scan:
1411 	/*
1412 	 * Scan zonelist, looking for a zone with enough free.
1413 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1414 	 */
1415 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1416 						high_zoneidx, nodemask) {
1417 		if (NUMA_BUILD && zlc_active &&
1418 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1419 				continue;
1420 		if ((alloc_flags & ALLOC_CPUSET) &&
1421 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1422 				goto try_next_zone;
1423 
1424 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1425 			unsigned long mark;
1426 			if (alloc_flags & ALLOC_WMARK_MIN)
1427 				mark = zone->pages_min;
1428 			else if (alloc_flags & ALLOC_WMARK_LOW)
1429 				mark = zone->pages_low;
1430 			else
1431 				mark = zone->pages_high;
1432 			if (!zone_watermark_ok(zone, order, mark,
1433 				    classzone_idx, alloc_flags)) {
1434 				if (!zone_reclaim_mode ||
1435 				    !zone_reclaim(zone, gfp_mask, order))
1436 					goto this_zone_full;
1437 			}
1438 		}
1439 
1440 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1441 		if (page)
1442 			break;
1443 this_zone_full:
1444 		if (NUMA_BUILD)
1445 			zlc_mark_zone_full(zonelist, z);
1446 try_next_zone:
1447 		if (NUMA_BUILD && !did_zlc_setup) {
1448 			/* we do zlc_setup after the first zone is tried */
1449 			allowednodes = zlc_setup(zonelist, alloc_flags);
1450 			zlc_active = 1;
1451 			did_zlc_setup = 1;
1452 		}
1453 	}
1454 
1455 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1456 		/* Disable zlc cache for second zonelist scan */
1457 		zlc_active = 0;
1458 		goto zonelist_scan;
1459 	}
1460 	return page;
1461 }
1462 
1463 /*
1464  * This is the 'heart' of the zoned buddy allocator.
1465  */
1466 struct page *
1467 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1468 			struct zonelist *zonelist, nodemask_t *nodemask)
1469 {
1470 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1471 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1472 	struct zoneref *z;
1473 	struct zone *zone;
1474 	struct page *page;
1475 	struct reclaim_state reclaim_state;
1476 	struct task_struct *p = current;
1477 	int do_retry;
1478 	int alloc_flags;
1479 	unsigned long did_some_progress;
1480 	unsigned long pages_reclaimed = 0;
1481 
1482 	might_sleep_if(wait);
1483 
1484 	if (should_fail_alloc_page(gfp_mask, order))
1485 		return NULL;
1486 
1487 restart:
1488 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1489 
1490 	if (unlikely(!z->zone)) {
1491 		/*
1492 		 * Happens if we have an empty zonelist as a result of
1493 		 * GFP_THISNODE being used on a memoryless node
1494 		 */
1495 		return NULL;
1496 	}
1497 
1498 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1499 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1500 	if (page)
1501 		goto got_pg;
1502 
1503 	/*
1504 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1505 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1506 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1507 	 * using a larger set of nodes after it has established that the
1508 	 * allowed per node queues are empty and that nodes are
1509 	 * over allocated.
1510 	 */
1511 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1512 		goto nopage;
1513 
1514 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1515 		wakeup_kswapd(zone, order);
1516 
1517 	/*
1518 	 * OK, we're below the kswapd watermark and have kicked background
1519 	 * reclaim. Now things get more complex, so set up alloc_flags according
1520 	 * to how we want to proceed.
1521 	 *
1522 	 * The caller may dip into page reserves a bit more if the caller
1523 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1524 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1525 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1526 	 */
1527 	alloc_flags = ALLOC_WMARK_MIN;
1528 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1529 		alloc_flags |= ALLOC_HARDER;
1530 	if (gfp_mask & __GFP_HIGH)
1531 		alloc_flags |= ALLOC_HIGH;
1532 	if (wait)
1533 		alloc_flags |= ALLOC_CPUSET;
1534 
1535 	/*
1536 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1537 	 * coming from realtime tasks go deeper into reserves.
1538 	 *
1539 	 * This is the last chance, in general, before the goto nopage.
1540 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1541 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1542 	 */
1543 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1544 						high_zoneidx, alloc_flags);
1545 	if (page)
1546 		goto got_pg;
1547 
1548 	/* This allocation should allow future memory freeing. */
1549 
1550 rebalance:
1551 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1552 			&& !in_interrupt()) {
1553 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1554 nofail_alloc:
1555 			/* go through the zonelist yet again, ignoring mins */
1556 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1557 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1558 			if (page)
1559 				goto got_pg;
1560 			if (gfp_mask & __GFP_NOFAIL) {
1561 				congestion_wait(WRITE, HZ/50);
1562 				goto nofail_alloc;
1563 			}
1564 		}
1565 		goto nopage;
1566 	}
1567 
1568 	/* Atomic allocations - we can't balance anything */
1569 	if (!wait)
1570 		goto nopage;
1571 
1572 	cond_resched();
1573 
1574 	/* We now go into synchronous reclaim */
1575 	cpuset_memory_pressure_bump();
1576 	/*
1577 	 * The task's cpuset might have expanded its set of allowable nodes
1578 	 */
1579 	cpuset_update_task_memory_state();
1580 	p->flags |= PF_MEMALLOC;
1581 	reclaim_state.reclaimed_slab = 0;
1582 	p->reclaim_state = &reclaim_state;
1583 
1584 	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1585 
1586 	p->reclaim_state = NULL;
1587 	p->flags &= ~PF_MEMALLOC;
1588 
1589 	cond_resched();
1590 
1591 	if (order != 0)
1592 		drain_all_pages();
1593 
1594 	if (likely(did_some_progress)) {
1595 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1596 					zonelist, high_zoneidx, alloc_flags);
1597 		if (page)
1598 			goto got_pg;
1599 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1600 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1601 			schedule_timeout_uninterruptible(1);
1602 			goto restart;
1603 		}
1604 
1605 		/*
1606 		 * Go through the zonelist yet one more time, keep
1607 		 * very high watermark here, this is only to catch
1608 		 * a parallel oom killing, we must fail if we're still
1609 		 * under heavy pressure.
1610 		 */
1611 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1612 			order, zonelist, high_zoneidx,
1613 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1614 		if (page) {
1615 			clear_zonelist_oom(zonelist, gfp_mask);
1616 			goto got_pg;
1617 		}
1618 
1619 		/* The OOM killer will not help higher order allocs so fail */
1620 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1621 			clear_zonelist_oom(zonelist, gfp_mask);
1622 			goto nopage;
1623 		}
1624 
1625 		out_of_memory(zonelist, gfp_mask, order);
1626 		clear_zonelist_oom(zonelist, gfp_mask);
1627 		goto restart;
1628 	}
1629 
1630 	/*
1631 	 * Don't let big-order allocations loop unless the caller explicitly
1632 	 * requests that.  Wait for some write requests to complete then retry.
1633 	 *
1634 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1635 	 * means __GFP_NOFAIL, but that may not be true in other
1636 	 * implementations.
1637 	 *
1638 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1639 	 * specified, then we retry until we no longer reclaim any pages
1640 	 * (above), or we've reclaimed an order of pages at least as
1641 	 * large as the allocation's order. In both cases, if the
1642 	 * allocation still fails, we stop retrying.
1643 	 */
1644 	pages_reclaimed += did_some_progress;
1645 	do_retry = 0;
1646 	if (!(gfp_mask & __GFP_NORETRY)) {
1647 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1648 			do_retry = 1;
1649 		} else {
1650 			if (gfp_mask & __GFP_REPEAT &&
1651 				pages_reclaimed < (1 << order))
1652 					do_retry = 1;
1653 		}
1654 		if (gfp_mask & __GFP_NOFAIL)
1655 			do_retry = 1;
1656 	}
1657 	if (do_retry) {
1658 		congestion_wait(WRITE, HZ/50);
1659 		goto rebalance;
1660 	}
1661 
1662 nopage:
1663 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1664 		printk(KERN_WARNING "%s: page allocation failure."
1665 			" order:%d, mode:0x%x\n",
1666 			p->comm, order, gfp_mask);
1667 		dump_stack();
1668 		show_mem();
1669 	}
1670 got_pg:
1671 	return page;
1672 }
1673 EXPORT_SYMBOL(__alloc_pages_internal);
1674 
1675 /*
1676  * Common helper functions.
1677  */
1678 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1679 {
1680 	struct page * page;
1681 	page = alloc_pages(gfp_mask, order);
1682 	if (!page)
1683 		return 0;
1684 	return (unsigned long) page_address(page);
1685 }
1686 
1687 EXPORT_SYMBOL(__get_free_pages);
1688 
1689 unsigned long get_zeroed_page(gfp_t gfp_mask)
1690 {
1691 	struct page * page;
1692 
1693 	/*
1694 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1695 	 * a highmem page
1696 	 */
1697 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1698 
1699 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1700 	if (page)
1701 		return (unsigned long) page_address(page);
1702 	return 0;
1703 }
1704 
1705 EXPORT_SYMBOL(get_zeroed_page);
1706 
1707 void __pagevec_free(struct pagevec *pvec)
1708 {
1709 	int i = pagevec_count(pvec);
1710 
1711 	while (--i >= 0)
1712 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1713 }
1714 
1715 void __free_pages(struct page *page, unsigned int order)
1716 {
1717 	if (put_page_testzero(page)) {
1718 		if (order == 0)
1719 			free_hot_page(page);
1720 		else
1721 			__free_pages_ok(page, order);
1722 	}
1723 }
1724 
1725 EXPORT_SYMBOL(__free_pages);
1726 
1727 void free_pages(unsigned long addr, unsigned int order)
1728 {
1729 	if (addr != 0) {
1730 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1731 		__free_pages(virt_to_page((void *)addr), order);
1732 	}
1733 }
1734 
1735 EXPORT_SYMBOL(free_pages);
1736 
1737 /**
1738  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1739  * @size: the number of bytes to allocate
1740  * @gfp_mask: GFP flags for the allocation
1741  *
1742  * This function is similar to alloc_pages(), except that it allocates the
1743  * minimum number of pages to satisfy the request.  alloc_pages() can only
1744  * allocate memory in power-of-two pages.
1745  *
1746  * This function is also limited by MAX_ORDER.
1747  *
1748  * Memory allocated by this function must be released by free_pages_exact().
1749  */
1750 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1751 {
1752 	unsigned int order = get_order(size);
1753 	unsigned long addr;
1754 
1755 	addr = __get_free_pages(gfp_mask, order);
1756 	if (addr) {
1757 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
1758 		unsigned long used = addr + PAGE_ALIGN(size);
1759 
1760 		split_page(virt_to_page(addr), order);
1761 		while (used < alloc_end) {
1762 			free_page(used);
1763 			used += PAGE_SIZE;
1764 		}
1765 	}
1766 
1767 	return (void *)addr;
1768 }
1769 EXPORT_SYMBOL(alloc_pages_exact);
1770 
1771 /**
1772  * free_pages_exact - release memory allocated via alloc_pages_exact()
1773  * @virt: the value returned by alloc_pages_exact.
1774  * @size: size of allocation, same value as passed to alloc_pages_exact().
1775  *
1776  * Release the memory allocated by a previous call to alloc_pages_exact.
1777  */
1778 void free_pages_exact(void *virt, size_t size)
1779 {
1780 	unsigned long addr = (unsigned long)virt;
1781 	unsigned long end = addr + PAGE_ALIGN(size);
1782 
1783 	while (addr < end) {
1784 		free_page(addr);
1785 		addr += PAGE_SIZE;
1786 	}
1787 }
1788 EXPORT_SYMBOL(free_pages_exact);
1789 
1790 static unsigned int nr_free_zone_pages(int offset)
1791 {
1792 	struct zoneref *z;
1793 	struct zone *zone;
1794 
1795 	/* Just pick one node, since fallback list is circular */
1796 	unsigned int sum = 0;
1797 
1798 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1799 
1800 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1801 		unsigned long size = zone->present_pages;
1802 		unsigned long high = zone->pages_high;
1803 		if (size > high)
1804 			sum += size - high;
1805 	}
1806 
1807 	return sum;
1808 }
1809 
1810 /*
1811  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1812  */
1813 unsigned int nr_free_buffer_pages(void)
1814 {
1815 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1816 }
1817 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1818 
1819 /*
1820  * Amount of free RAM allocatable within all zones
1821  */
1822 unsigned int nr_free_pagecache_pages(void)
1823 {
1824 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1825 }
1826 
1827 static inline void show_node(struct zone *zone)
1828 {
1829 	if (NUMA_BUILD)
1830 		printk("Node %d ", zone_to_nid(zone));
1831 }
1832 
1833 void si_meminfo(struct sysinfo *val)
1834 {
1835 	val->totalram = totalram_pages;
1836 	val->sharedram = 0;
1837 	val->freeram = global_page_state(NR_FREE_PAGES);
1838 	val->bufferram = nr_blockdev_pages();
1839 	val->totalhigh = totalhigh_pages;
1840 	val->freehigh = nr_free_highpages();
1841 	val->mem_unit = PAGE_SIZE;
1842 }
1843 
1844 EXPORT_SYMBOL(si_meminfo);
1845 
1846 #ifdef CONFIG_NUMA
1847 void si_meminfo_node(struct sysinfo *val, int nid)
1848 {
1849 	pg_data_t *pgdat = NODE_DATA(nid);
1850 
1851 	val->totalram = pgdat->node_present_pages;
1852 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1853 #ifdef CONFIG_HIGHMEM
1854 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1855 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1856 			NR_FREE_PAGES);
1857 #else
1858 	val->totalhigh = 0;
1859 	val->freehigh = 0;
1860 #endif
1861 	val->mem_unit = PAGE_SIZE;
1862 }
1863 #endif
1864 
1865 #define K(x) ((x) << (PAGE_SHIFT-10))
1866 
1867 /*
1868  * Show free area list (used inside shift_scroll-lock stuff)
1869  * We also calculate the percentage fragmentation. We do this by counting the
1870  * memory on each free list with the exception of the first item on the list.
1871  */
1872 void show_free_areas(void)
1873 {
1874 	int cpu;
1875 	struct zone *zone;
1876 
1877 	for_each_zone(zone) {
1878 		if (!populated_zone(zone))
1879 			continue;
1880 
1881 		show_node(zone);
1882 		printk("%s per-cpu:\n", zone->name);
1883 
1884 		for_each_online_cpu(cpu) {
1885 			struct per_cpu_pageset *pageset;
1886 
1887 			pageset = zone_pcp(zone, cpu);
1888 
1889 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1890 			       cpu, pageset->pcp.high,
1891 			       pageset->pcp.batch, pageset->pcp.count);
1892 		}
1893 	}
1894 
1895 	printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1896 		" inactive_file:%lu"
1897 //TODO:  check/adjust line lengths
1898 #ifdef CONFIG_UNEVICTABLE_LRU
1899 		" unevictable:%lu"
1900 #endif
1901 		" dirty:%lu writeback:%lu unstable:%lu\n"
1902 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1903 		global_page_state(NR_ACTIVE_ANON),
1904 		global_page_state(NR_ACTIVE_FILE),
1905 		global_page_state(NR_INACTIVE_ANON),
1906 		global_page_state(NR_INACTIVE_FILE),
1907 #ifdef CONFIG_UNEVICTABLE_LRU
1908 		global_page_state(NR_UNEVICTABLE),
1909 #endif
1910 		global_page_state(NR_FILE_DIRTY),
1911 		global_page_state(NR_WRITEBACK),
1912 		global_page_state(NR_UNSTABLE_NFS),
1913 		global_page_state(NR_FREE_PAGES),
1914 		global_page_state(NR_SLAB_RECLAIMABLE) +
1915 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1916 		global_page_state(NR_FILE_MAPPED),
1917 		global_page_state(NR_PAGETABLE),
1918 		global_page_state(NR_BOUNCE));
1919 
1920 	for_each_zone(zone) {
1921 		int i;
1922 
1923 		if (!populated_zone(zone))
1924 			continue;
1925 
1926 		show_node(zone);
1927 		printk("%s"
1928 			" free:%lukB"
1929 			" min:%lukB"
1930 			" low:%lukB"
1931 			" high:%lukB"
1932 			" active_anon:%lukB"
1933 			" inactive_anon:%lukB"
1934 			" active_file:%lukB"
1935 			" inactive_file:%lukB"
1936 #ifdef CONFIG_UNEVICTABLE_LRU
1937 			" unevictable:%lukB"
1938 #endif
1939 			" present:%lukB"
1940 			" pages_scanned:%lu"
1941 			" all_unreclaimable? %s"
1942 			"\n",
1943 			zone->name,
1944 			K(zone_page_state(zone, NR_FREE_PAGES)),
1945 			K(zone->pages_min),
1946 			K(zone->pages_low),
1947 			K(zone->pages_high),
1948 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
1949 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
1950 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
1951 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
1952 #ifdef CONFIG_UNEVICTABLE_LRU
1953 			K(zone_page_state(zone, NR_UNEVICTABLE)),
1954 #endif
1955 			K(zone->present_pages),
1956 			zone->pages_scanned,
1957 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1958 			);
1959 		printk("lowmem_reserve[]:");
1960 		for (i = 0; i < MAX_NR_ZONES; i++)
1961 			printk(" %lu", zone->lowmem_reserve[i]);
1962 		printk("\n");
1963 	}
1964 
1965 	for_each_zone(zone) {
1966  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1967 
1968 		if (!populated_zone(zone))
1969 			continue;
1970 
1971 		show_node(zone);
1972 		printk("%s: ", zone->name);
1973 
1974 		spin_lock_irqsave(&zone->lock, flags);
1975 		for (order = 0; order < MAX_ORDER; order++) {
1976 			nr[order] = zone->free_area[order].nr_free;
1977 			total += nr[order] << order;
1978 		}
1979 		spin_unlock_irqrestore(&zone->lock, flags);
1980 		for (order = 0; order < MAX_ORDER; order++)
1981 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1982 		printk("= %lukB\n", K(total));
1983 	}
1984 
1985 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1986 
1987 	show_swap_cache_info();
1988 }
1989 
1990 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1991 {
1992 	zoneref->zone = zone;
1993 	zoneref->zone_idx = zone_idx(zone);
1994 }
1995 
1996 /*
1997  * Builds allocation fallback zone lists.
1998  *
1999  * Add all populated zones of a node to the zonelist.
2000  */
2001 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2002 				int nr_zones, enum zone_type zone_type)
2003 {
2004 	struct zone *zone;
2005 
2006 	BUG_ON(zone_type >= MAX_NR_ZONES);
2007 	zone_type++;
2008 
2009 	do {
2010 		zone_type--;
2011 		zone = pgdat->node_zones + zone_type;
2012 		if (populated_zone(zone)) {
2013 			zoneref_set_zone(zone,
2014 				&zonelist->_zonerefs[nr_zones++]);
2015 			check_highest_zone(zone_type);
2016 		}
2017 
2018 	} while (zone_type);
2019 	return nr_zones;
2020 }
2021 
2022 
2023 /*
2024  *  zonelist_order:
2025  *  0 = automatic detection of better ordering.
2026  *  1 = order by ([node] distance, -zonetype)
2027  *  2 = order by (-zonetype, [node] distance)
2028  *
2029  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2030  *  the same zonelist. So only NUMA can configure this param.
2031  */
2032 #define ZONELIST_ORDER_DEFAULT  0
2033 #define ZONELIST_ORDER_NODE     1
2034 #define ZONELIST_ORDER_ZONE     2
2035 
2036 /* zonelist order in the kernel.
2037  * set_zonelist_order() will set this to NODE or ZONE.
2038  */
2039 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2040 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2041 
2042 
2043 #ifdef CONFIG_NUMA
2044 /* The value user specified ....changed by config */
2045 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2046 /* string for sysctl */
2047 #define NUMA_ZONELIST_ORDER_LEN	16
2048 char numa_zonelist_order[16] = "default";
2049 
2050 /*
2051  * interface for configure zonelist ordering.
2052  * command line option "numa_zonelist_order"
2053  *	= "[dD]efault	- default, automatic configuration.
2054  *	= "[nN]ode 	- order by node locality, then by zone within node
2055  *	= "[zZ]one      - order by zone, then by locality within zone
2056  */
2057 
2058 static int __parse_numa_zonelist_order(char *s)
2059 {
2060 	if (*s == 'd' || *s == 'D') {
2061 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2062 	} else if (*s == 'n' || *s == 'N') {
2063 		user_zonelist_order = ZONELIST_ORDER_NODE;
2064 	} else if (*s == 'z' || *s == 'Z') {
2065 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2066 	} else {
2067 		printk(KERN_WARNING
2068 			"Ignoring invalid numa_zonelist_order value:  "
2069 			"%s\n", s);
2070 		return -EINVAL;
2071 	}
2072 	return 0;
2073 }
2074 
2075 static __init int setup_numa_zonelist_order(char *s)
2076 {
2077 	if (s)
2078 		return __parse_numa_zonelist_order(s);
2079 	return 0;
2080 }
2081 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2082 
2083 /*
2084  * sysctl handler for numa_zonelist_order
2085  */
2086 int numa_zonelist_order_handler(ctl_table *table, int write,
2087 		struct file *file, void __user *buffer, size_t *length,
2088 		loff_t *ppos)
2089 {
2090 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2091 	int ret;
2092 
2093 	if (write)
2094 		strncpy(saved_string, (char*)table->data,
2095 			NUMA_ZONELIST_ORDER_LEN);
2096 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2097 	if (ret)
2098 		return ret;
2099 	if (write) {
2100 		int oldval = user_zonelist_order;
2101 		if (__parse_numa_zonelist_order((char*)table->data)) {
2102 			/*
2103 			 * bogus value.  restore saved string
2104 			 */
2105 			strncpy((char*)table->data, saved_string,
2106 				NUMA_ZONELIST_ORDER_LEN);
2107 			user_zonelist_order = oldval;
2108 		} else if (oldval != user_zonelist_order)
2109 			build_all_zonelists();
2110 	}
2111 	return 0;
2112 }
2113 
2114 
2115 #define MAX_NODE_LOAD (num_online_nodes())
2116 static int node_load[MAX_NUMNODES];
2117 
2118 /**
2119  * find_next_best_node - find the next node that should appear in a given node's fallback list
2120  * @node: node whose fallback list we're appending
2121  * @used_node_mask: nodemask_t of already used nodes
2122  *
2123  * We use a number of factors to determine which is the next node that should
2124  * appear on a given node's fallback list.  The node should not have appeared
2125  * already in @node's fallback list, and it should be the next closest node
2126  * according to the distance array (which contains arbitrary distance values
2127  * from each node to each node in the system), and should also prefer nodes
2128  * with no CPUs, since presumably they'll have very little allocation pressure
2129  * on them otherwise.
2130  * It returns -1 if no node is found.
2131  */
2132 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2133 {
2134 	int n, val;
2135 	int min_val = INT_MAX;
2136 	int best_node = -1;
2137 	node_to_cpumask_ptr(tmp, 0);
2138 
2139 	/* Use the local node if we haven't already */
2140 	if (!node_isset(node, *used_node_mask)) {
2141 		node_set(node, *used_node_mask);
2142 		return node;
2143 	}
2144 
2145 	for_each_node_state(n, N_HIGH_MEMORY) {
2146 
2147 		/* Don't want a node to appear more than once */
2148 		if (node_isset(n, *used_node_mask))
2149 			continue;
2150 
2151 		/* Use the distance array to find the distance */
2152 		val = node_distance(node, n);
2153 
2154 		/* Penalize nodes under us ("prefer the next node") */
2155 		val += (n < node);
2156 
2157 		/* Give preference to headless and unused nodes */
2158 		node_to_cpumask_ptr_next(tmp, n);
2159 		if (!cpus_empty(*tmp))
2160 			val += PENALTY_FOR_NODE_WITH_CPUS;
2161 
2162 		/* Slight preference for less loaded node */
2163 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2164 		val += node_load[n];
2165 
2166 		if (val < min_val) {
2167 			min_val = val;
2168 			best_node = n;
2169 		}
2170 	}
2171 
2172 	if (best_node >= 0)
2173 		node_set(best_node, *used_node_mask);
2174 
2175 	return best_node;
2176 }
2177 
2178 
2179 /*
2180  * Build zonelists ordered by node and zones within node.
2181  * This results in maximum locality--normal zone overflows into local
2182  * DMA zone, if any--but risks exhausting DMA zone.
2183  */
2184 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2185 {
2186 	int j;
2187 	struct zonelist *zonelist;
2188 
2189 	zonelist = &pgdat->node_zonelists[0];
2190 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2191 		;
2192 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2193 							MAX_NR_ZONES - 1);
2194 	zonelist->_zonerefs[j].zone = NULL;
2195 	zonelist->_zonerefs[j].zone_idx = 0;
2196 }
2197 
2198 /*
2199  * Build gfp_thisnode zonelists
2200  */
2201 static void build_thisnode_zonelists(pg_data_t *pgdat)
2202 {
2203 	int j;
2204 	struct zonelist *zonelist;
2205 
2206 	zonelist = &pgdat->node_zonelists[1];
2207 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2208 	zonelist->_zonerefs[j].zone = NULL;
2209 	zonelist->_zonerefs[j].zone_idx = 0;
2210 }
2211 
2212 /*
2213  * Build zonelists ordered by zone and nodes within zones.
2214  * This results in conserving DMA zone[s] until all Normal memory is
2215  * exhausted, but results in overflowing to remote node while memory
2216  * may still exist in local DMA zone.
2217  */
2218 static int node_order[MAX_NUMNODES];
2219 
2220 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2221 {
2222 	int pos, j, node;
2223 	int zone_type;		/* needs to be signed */
2224 	struct zone *z;
2225 	struct zonelist *zonelist;
2226 
2227 	zonelist = &pgdat->node_zonelists[0];
2228 	pos = 0;
2229 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2230 		for (j = 0; j < nr_nodes; j++) {
2231 			node = node_order[j];
2232 			z = &NODE_DATA(node)->node_zones[zone_type];
2233 			if (populated_zone(z)) {
2234 				zoneref_set_zone(z,
2235 					&zonelist->_zonerefs[pos++]);
2236 				check_highest_zone(zone_type);
2237 			}
2238 		}
2239 	}
2240 	zonelist->_zonerefs[pos].zone = NULL;
2241 	zonelist->_zonerefs[pos].zone_idx = 0;
2242 }
2243 
2244 static int default_zonelist_order(void)
2245 {
2246 	int nid, zone_type;
2247 	unsigned long low_kmem_size,total_size;
2248 	struct zone *z;
2249 	int average_size;
2250 	/*
2251          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2252 	 * If they are really small and used heavily, the system can fall
2253 	 * into OOM very easily.
2254 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2255 	 */
2256 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2257 	low_kmem_size = 0;
2258 	total_size = 0;
2259 	for_each_online_node(nid) {
2260 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2261 			z = &NODE_DATA(nid)->node_zones[zone_type];
2262 			if (populated_zone(z)) {
2263 				if (zone_type < ZONE_NORMAL)
2264 					low_kmem_size += z->present_pages;
2265 				total_size += z->present_pages;
2266 			}
2267 		}
2268 	}
2269 	if (!low_kmem_size ||  /* there are no DMA area. */
2270 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2271 		return ZONELIST_ORDER_NODE;
2272 	/*
2273 	 * look into each node's config.
2274   	 * If there is a node whose DMA/DMA32 memory is very big area on
2275  	 * local memory, NODE_ORDER may be suitable.
2276          */
2277 	average_size = total_size /
2278 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2279 	for_each_online_node(nid) {
2280 		low_kmem_size = 0;
2281 		total_size = 0;
2282 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2283 			z = &NODE_DATA(nid)->node_zones[zone_type];
2284 			if (populated_zone(z)) {
2285 				if (zone_type < ZONE_NORMAL)
2286 					low_kmem_size += z->present_pages;
2287 				total_size += z->present_pages;
2288 			}
2289 		}
2290 		if (low_kmem_size &&
2291 		    total_size > average_size && /* ignore small node */
2292 		    low_kmem_size > total_size * 70/100)
2293 			return ZONELIST_ORDER_NODE;
2294 	}
2295 	return ZONELIST_ORDER_ZONE;
2296 }
2297 
2298 static void set_zonelist_order(void)
2299 {
2300 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2301 		current_zonelist_order = default_zonelist_order();
2302 	else
2303 		current_zonelist_order = user_zonelist_order;
2304 }
2305 
2306 static void build_zonelists(pg_data_t *pgdat)
2307 {
2308 	int j, node, load;
2309 	enum zone_type i;
2310 	nodemask_t used_mask;
2311 	int local_node, prev_node;
2312 	struct zonelist *zonelist;
2313 	int order = current_zonelist_order;
2314 
2315 	/* initialize zonelists */
2316 	for (i = 0; i < MAX_ZONELISTS; i++) {
2317 		zonelist = pgdat->node_zonelists + i;
2318 		zonelist->_zonerefs[0].zone = NULL;
2319 		zonelist->_zonerefs[0].zone_idx = 0;
2320 	}
2321 
2322 	/* NUMA-aware ordering of nodes */
2323 	local_node = pgdat->node_id;
2324 	load = num_online_nodes();
2325 	prev_node = local_node;
2326 	nodes_clear(used_mask);
2327 
2328 	memset(node_load, 0, sizeof(node_load));
2329 	memset(node_order, 0, sizeof(node_order));
2330 	j = 0;
2331 
2332 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2333 		int distance = node_distance(local_node, node);
2334 
2335 		/*
2336 		 * If another node is sufficiently far away then it is better
2337 		 * to reclaim pages in a zone before going off node.
2338 		 */
2339 		if (distance > RECLAIM_DISTANCE)
2340 			zone_reclaim_mode = 1;
2341 
2342 		/*
2343 		 * We don't want to pressure a particular node.
2344 		 * So adding penalty to the first node in same
2345 		 * distance group to make it round-robin.
2346 		 */
2347 		if (distance != node_distance(local_node, prev_node))
2348 			node_load[node] = load;
2349 
2350 		prev_node = node;
2351 		load--;
2352 		if (order == ZONELIST_ORDER_NODE)
2353 			build_zonelists_in_node_order(pgdat, node);
2354 		else
2355 			node_order[j++] = node;	/* remember order */
2356 	}
2357 
2358 	if (order == ZONELIST_ORDER_ZONE) {
2359 		/* calculate node order -- i.e., DMA last! */
2360 		build_zonelists_in_zone_order(pgdat, j);
2361 	}
2362 
2363 	build_thisnode_zonelists(pgdat);
2364 }
2365 
2366 /* Construct the zonelist performance cache - see further mmzone.h */
2367 static void build_zonelist_cache(pg_data_t *pgdat)
2368 {
2369 	struct zonelist *zonelist;
2370 	struct zonelist_cache *zlc;
2371 	struct zoneref *z;
2372 
2373 	zonelist = &pgdat->node_zonelists[0];
2374 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2375 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2376 	for (z = zonelist->_zonerefs; z->zone; z++)
2377 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2378 }
2379 
2380 
2381 #else	/* CONFIG_NUMA */
2382 
2383 static void set_zonelist_order(void)
2384 {
2385 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2386 }
2387 
2388 static void build_zonelists(pg_data_t *pgdat)
2389 {
2390 	int node, local_node;
2391 	enum zone_type j;
2392 	struct zonelist *zonelist;
2393 
2394 	local_node = pgdat->node_id;
2395 
2396 	zonelist = &pgdat->node_zonelists[0];
2397 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2398 
2399 	/*
2400 	 * Now we build the zonelist so that it contains the zones
2401 	 * of all the other nodes.
2402 	 * We don't want to pressure a particular node, so when
2403 	 * building the zones for node N, we make sure that the
2404 	 * zones coming right after the local ones are those from
2405 	 * node N+1 (modulo N)
2406 	 */
2407 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2408 		if (!node_online(node))
2409 			continue;
2410 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2411 							MAX_NR_ZONES - 1);
2412 	}
2413 	for (node = 0; node < local_node; node++) {
2414 		if (!node_online(node))
2415 			continue;
2416 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2417 							MAX_NR_ZONES - 1);
2418 	}
2419 
2420 	zonelist->_zonerefs[j].zone = NULL;
2421 	zonelist->_zonerefs[j].zone_idx = 0;
2422 }
2423 
2424 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2425 static void build_zonelist_cache(pg_data_t *pgdat)
2426 {
2427 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2428 }
2429 
2430 #endif	/* CONFIG_NUMA */
2431 
2432 /* return values int ....just for stop_machine() */
2433 static int __build_all_zonelists(void *dummy)
2434 {
2435 	int nid;
2436 
2437 	for_each_online_node(nid) {
2438 		pg_data_t *pgdat = NODE_DATA(nid);
2439 
2440 		build_zonelists(pgdat);
2441 		build_zonelist_cache(pgdat);
2442 	}
2443 	return 0;
2444 }
2445 
2446 void build_all_zonelists(void)
2447 {
2448 	set_zonelist_order();
2449 
2450 	if (system_state == SYSTEM_BOOTING) {
2451 		__build_all_zonelists(NULL);
2452 		mminit_verify_zonelist();
2453 		cpuset_init_current_mems_allowed();
2454 	} else {
2455 		/* we have to stop all cpus to guarantee there is no user
2456 		   of zonelist */
2457 		stop_machine(__build_all_zonelists, NULL, NULL);
2458 		/* cpuset refresh routine should be here */
2459 	}
2460 	vm_total_pages = nr_free_pagecache_pages();
2461 	/*
2462 	 * Disable grouping by mobility if the number of pages in the
2463 	 * system is too low to allow the mechanism to work. It would be
2464 	 * more accurate, but expensive to check per-zone. This check is
2465 	 * made on memory-hotadd so a system can start with mobility
2466 	 * disabled and enable it later
2467 	 */
2468 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2469 		page_group_by_mobility_disabled = 1;
2470 	else
2471 		page_group_by_mobility_disabled = 0;
2472 
2473 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2474 		"Total pages: %ld\n",
2475 			num_online_nodes(),
2476 			zonelist_order_name[current_zonelist_order],
2477 			page_group_by_mobility_disabled ? "off" : "on",
2478 			vm_total_pages);
2479 #ifdef CONFIG_NUMA
2480 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2481 #endif
2482 }
2483 
2484 /*
2485  * Helper functions to size the waitqueue hash table.
2486  * Essentially these want to choose hash table sizes sufficiently
2487  * large so that collisions trying to wait on pages are rare.
2488  * But in fact, the number of active page waitqueues on typical
2489  * systems is ridiculously low, less than 200. So this is even
2490  * conservative, even though it seems large.
2491  *
2492  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2493  * waitqueues, i.e. the size of the waitq table given the number of pages.
2494  */
2495 #define PAGES_PER_WAITQUEUE	256
2496 
2497 #ifndef CONFIG_MEMORY_HOTPLUG
2498 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2499 {
2500 	unsigned long size = 1;
2501 
2502 	pages /= PAGES_PER_WAITQUEUE;
2503 
2504 	while (size < pages)
2505 		size <<= 1;
2506 
2507 	/*
2508 	 * Once we have dozens or even hundreds of threads sleeping
2509 	 * on IO we've got bigger problems than wait queue collision.
2510 	 * Limit the size of the wait table to a reasonable size.
2511 	 */
2512 	size = min(size, 4096UL);
2513 
2514 	return max(size, 4UL);
2515 }
2516 #else
2517 /*
2518  * A zone's size might be changed by hot-add, so it is not possible to determine
2519  * a suitable size for its wait_table.  So we use the maximum size now.
2520  *
2521  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2522  *
2523  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2524  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2525  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2526  *
2527  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2528  * or more by the traditional way. (See above).  It equals:
2529  *
2530  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2531  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2532  *    powerpc (64K page size)             : =  (32G +16M)byte.
2533  */
2534 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2535 {
2536 	return 4096UL;
2537 }
2538 #endif
2539 
2540 /*
2541  * This is an integer logarithm so that shifts can be used later
2542  * to extract the more random high bits from the multiplicative
2543  * hash function before the remainder is taken.
2544  */
2545 static inline unsigned long wait_table_bits(unsigned long size)
2546 {
2547 	return ffz(~size);
2548 }
2549 
2550 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2551 
2552 /*
2553  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2554  * of blocks reserved is based on zone->pages_min. The memory within the
2555  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2556  * higher will lead to a bigger reserve which will get freed as contiguous
2557  * blocks as reclaim kicks in
2558  */
2559 static void setup_zone_migrate_reserve(struct zone *zone)
2560 {
2561 	unsigned long start_pfn, pfn, end_pfn;
2562 	struct page *page;
2563 	unsigned long reserve, block_migratetype;
2564 
2565 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2566 	start_pfn = zone->zone_start_pfn;
2567 	end_pfn = start_pfn + zone->spanned_pages;
2568 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2569 							pageblock_order;
2570 
2571 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2572 		if (!pfn_valid(pfn))
2573 			continue;
2574 		page = pfn_to_page(pfn);
2575 
2576 		/* Watch out for overlapping nodes */
2577 		if (page_to_nid(page) != zone_to_nid(zone))
2578 			continue;
2579 
2580 		/* Blocks with reserved pages will never free, skip them. */
2581 		if (PageReserved(page))
2582 			continue;
2583 
2584 		block_migratetype = get_pageblock_migratetype(page);
2585 
2586 		/* If this block is reserved, account for it */
2587 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2588 			reserve--;
2589 			continue;
2590 		}
2591 
2592 		/* Suitable for reserving if this block is movable */
2593 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2594 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2595 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2596 			reserve--;
2597 			continue;
2598 		}
2599 
2600 		/*
2601 		 * If the reserve is met and this is a previous reserved block,
2602 		 * take it back
2603 		 */
2604 		if (block_migratetype == MIGRATE_RESERVE) {
2605 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2606 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2607 		}
2608 	}
2609 }
2610 
2611 /*
2612  * Initially all pages are reserved - free ones are freed
2613  * up by free_all_bootmem() once the early boot process is
2614  * done. Non-atomic initialization, single-pass.
2615  */
2616 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2617 		unsigned long start_pfn, enum memmap_context context)
2618 {
2619 	struct page *page;
2620 	unsigned long end_pfn = start_pfn + size;
2621 	unsigned long pfn;
2622 	struct zone *z;
2623 
2624 	if (highest_memmap_pfn < end_pfn - 1)
2625 		highest_memmap_pfn = end_pfn - 1;
2626 
2627 	z = &NODE_DATA(nid)->node_zones[zone];
2628 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2629 		/*
2630 		 * There can be holes in boot-time mem_map[]s
2631 		 * handed to this function.  They do not
2632 		 * exist on hotplugged memory.
2633 		 */
2634 		if (context == MEMMAP_EARLY) {
2635 			if (!early_pfn_valid(pfn))
2636 				continue;
2637 			if (!early_pfn_in_nid(pfn, nid))
2638 				continue;
2639 		}
2640 		page = pfn_to_page(pfn);
2641 		set_page_links(page, zone, nid, pfn);
2642 		mminit_verify_page_links(page, zone, nid, pfn);
2643 		init_page_count(page);
2644 		reset_page_mapcount(page);
2645 		SetPageReserved(page);
2646 		/*
2647 		 * Mark the block movable so that blocks are reserved for
2648 		 * movable at startup. This will force kernel allocations
2649 		 * to reserve their blocks rather than leaking throughout
2650 		 * the address space during boot when many long-lived
2651 		 * kernel allocations are made. Later some blocks near
2652 		 * the start are marked MIGRATE_RESERVE by
2653 		 * setup_zone_migrate_reserve()
2654 		 *
2655 		 * bitmap is created for zone's valid pfn range. but memmap
2656 		 * can be created for invalid pages (for alignment)
2657 		 * check here not to call set_pageblock_migratetype() against
2658 		 * pfn out of zone.
2659 		 */
2660 		if ((z->zone_start_pfn <= pfn)
2661 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2662 		    && !(pfn & (pageblock_nr_pages - 1)))
2663 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2664 
2665 		INIT_LIST_HEAD(&page->lru);
2666 #ifdef WANT_PAGE_VIRTUAL
2667 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2668 		if (!is_highmem_idx(zone))
2669 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2670 #endif
2671 	}
2672 }
2673 
2674 static void __meminit zone_init_free_lists(struct zone *zone)
2675 {
2676 	int order, t;
2677 	for_each_migratetype_order(order, t) {
2678 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2679 		zone->free_area[order].nr_free = 0;
2680 	}
2681 }
2682 
2683 #ifndef __HAVE_ARCH_MEMMAP_INIT
2684 #define memmap_init(size, nid, zone, start_pfn) \
2685 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2686 #endif
2687 
2688 static int zone_batchsize(struct zone *zone)
2689 {
2690 	int batch;
2691 
2692 	/*
2693 	 * The per-cpu-pages pools are set to around 1000th of the
2694 	 * size of the zone.  But no more than 1/2 of a meg.
2695 	 *
2696 	 * OK, so we don't know how big the cache is.  So guess.
2697 	 */
2698 	batch = zone->present_pages / 1024;
2699 	if (batch * PAGE_SIZE > 512 * 1024)
2700 		batch = (512 * 1024) / PAGE_SIZE;
2701 	batch /= 4;		/* We effectively *= 4 below */
2702 	if (batch < 1)
2703 		batch = 1;
2704 
2705 	/*
2706 	 * Clamp the batch to a 2^n - 1 value. Having a power
2707 	 * of 2 value was found to be more likely to have
2708 	 * suboptimal cache aliasing properties in some cases.
2709 	 *
2710 	 * For example if 2 tasks are alternately allocating
2711 	 * batches of pages, one task can end up with a lot
2712 	 * of pages of one half of the possible page colors
2713 	 * and the other with pages of the other colors.
2714 	 */
2715 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2716 
2717 	return batch;
2718 }
2719 
2720 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2721 {
2722 	struct per_cpu_pages *pcp;
2723 
2724 	memset(p, 0, sizeof(*p));
2725 
2726 	pcp = &p->pcp;
2727 	pcp->count = 0;
2728 	pcp->high = 6 * batch;
2729 	pcp->batch = max(1UL, 1 * batch);
2730 	INIT_LIST_HEAD(&pcp->list);
2731 }
2732 
2733 /*
2734  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2735  * to the value high for the pageset p.
2736  */
2737 
2738 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2739 				unsigned long high)
2740 {
2741 	struct per_cpu_pages *pcp;
2742 
2743 	pcp = &p->pcp;
2744 	pcp->high = high;
2745 	pcp->batch = max(1UL, high/4);
2746 	if ((high/4) > (PAGE_SHIFT * 8))
2747 		pcp->batch = PAGE_SHIFT * 8;
2748 }
2749 
2750 
2751 #ifdef CONFIG_NUMA
2752 /*
2753  * Boot pageset table. One per cpu which is going to be used for all
2754  * zones and all nodes. The parameters will be set in such a way
2755  * that an item put on a list will immediately be handed over to
2756  * the buddy list. This is safe since pageset manipulation is done
2757  * with interrupts disabled.
2758  *
2759  * Some NUMA counter updates may also be caught by the boot pagesets.
2760  *
2761  * The boot_pagesets must be kept even after bootup is complete for
2762  * unused processors and/or zones. They do play a role for bootstrapping
2763  * hotplugged processors.
2764  *
2765  * zoneinfo_show() and maybe other functions do
2766  * not check if the processor is online before following the pageset pointer.
2767  * Other parts of the kernel may not check if the zone is available.
2768  */
2769 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2770 
2771 /*
2772  * Dynamically allocate memory for the
2773  * per cpu pageset array in struct zone.
2774  */
2775 static int __cpuinit process_zones(int cpu)
2776 {
2777 	struct zone *zone, *dzone;
2778 	int node = cpu_to_node(cpu);
2779 
2780 	node_set_state(node, N_CPU);	/* this node has a cpu */
2781 
2782 	for_each_zone(zone) {
2783 
2784 		if (!populated_zone(zone))
2785 			continue;
2786 
2787 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2788 					 GFP_KERNEL, node);
2789 		if (!zone_pcp(zone, cpu))
2790 			goto bad;
2791 
2792 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2793 
2794 		if (percpu_pagelist_fraction)
2795 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2796 			 	(zone->present_pages / percpu_pagelist_fraction));
2797 	}
2798 
2799 	return 0;
2800 bad:
2801 	for_each_zone(dzone) {
2802 		if (!populated_zone(dzone))
2803 			continue;
2804 		if (dzone == zone)
2805 			break;
2806 		kfree(zone_pcp(dzone, cpu));
2807 		zone_pcp(dzone, cpu) = NULL;
2808 	}
2809 	return -ENOMEM;
2810 }
2811 
2812 static inline void free_zone_pagesets(int cpu)
2813 {
2814 	struct zone *zone;
2815 
2816 	for_each_zone(zone) {
2817 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2818 
2819 		/* Free per_cpu_pageset if it is slab allocated */
2820 		if (pset != &boot_pageset[cpu])
2821 			kfree(pset);
2822 		zone_pcp(zone, cpu) = NULL;
2823 	}
2824 }
2825 
2826 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2827 		unsigned long action,
2828 		void *hcpu)
2829 {
2830 	int cpu = (long)hcpu;
2831 	int ret = NOTIFY_OK;
2832 
2833 	switch (action) {
2834 	case CPU_UP_PREPARE:
2835 	case CPU_UP_PREPARE_FROZEN:
2836 		if (process_zones(cpu))
2837 			ret = NOTIFY_BAD;
2838 		break;
2839 	case CPU_UP_CANCELED:
2840 	case CPU_UP_CANCELED_FROZEN:
2841 	case CPU_DEAD:
2842 	case CPU_DEAD_FROZEN:
2843 		free_zone_pagesets(cpu);
2844 		break;
2845 	default:
2846 		break;
2847 	}
2848 	return ret;
2849 }
2850 
2851 static struct notifier_block __cpuinitdata pageset_notifier =
2852 	{ &pageset_cpuup_callback, NULL, 0 };
2853 
2854 void __init setup_per_cpu_pageset(void)
2855 {
2856 	int err;
2857 
2858 	/* Initialize per_cpu_pageset for cpu 0.
2859 	 * A cpuup callback will do this for every cpu
2860 	 * as it comes online
2861 	 */
2862 	err = process_zones(smp_processor_id());
2863 	BUG_ON(err);
2864 	register_cpu_notifier(&pageset_notifier);
2865 }
2866 
2867 #endif
2868 
2869 static noinline __init_refok
2870 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2871 {
2872 	int i;
2873 	struct pglist_data *pgdat = zone->zone_pgdat;
2874 	size_t alloc_size;
2875 
2876 	/*
2877 	 * The per-page waitqueue mechanism uses hashed waitqueues
2878 	 * per zone.
2879 	 */
2880 	zone->wait_table_hash_nr_entries =
2881 		 wait_table_hash_nr_entries(zone_size_pages);
2882 	zone->wait_table_bits =
2883 		wait_table_bits(zone->wait_table_hash_nr_entries);
2884 	alloc_size = zone->wait_table_hash_nr_entries
2885 					* sizeof(wait_queue_head_t);
2886 
2887 	if (!slab_is_available()) {
2888 		zone->wait_table = (wait_queue_head_t *)
2889 			alloc_bootmem_node(pgdat, alloc_size);
2890 	} else {
2891 		/*
2892 		 * This case means that a zone whose size was 0 gets new memory
2893 		 * via memory hot-add.
2894 		 * But it may be the case that a new node was hot-added.  In
2895 		 * this case vmalloc() will not be able to use this new node's
2896 		 * memory - this wait_table must be initialized to use this new
2897 		 * node itself as well.
2898 		 * To use this new node's memory, further consideration will be
2899 		 * necessary.
2900 		 */
2901 		zone->wait_table = vmalloc(alloc_size);
2902 	}
2903 	if (!zone->wait_table)
2904 		return -ENOMEM;
2905 
2906 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2907 		init_waitqueue_head(zone->wait_table + i);
2908 
2909 	return 0;
2910 }
2911 
2912 static __meminit void zone_pcp_init(struct zone *zone)
2913 {
2914 	int cpu;
2915 	unsigned long batch = zone_batchsize(zone);
2916 
2917 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2918 #ifdef CONFIG_NUMA
2919 		/* Early boot. Slab allocator not functional yet */
2920 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2921 		setup_pageset(&boot_pageset[cpu],0);
2922 #else
2923 		setup_pageset(zone_pcp(zone,cpu), batch);
2924 #endif
2925 	}
2926 	if (zone->present_pages)
2927 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2928 			zone->name, zone->present_pages, batch);
2929 }
2930 
2931 __meminit int init_currently_empty_zone(struct zone *zone,
2932 					unsigned long zone_start_pfn,
2933 					unsigned long size,
2934 					enum memmap_context context)
2935 {
2936 	struct pglist_data *pgdat = zone->zone_pgdat;
2937 	int ret;
2938 	ret = zone_wait_table_init(zone, size);
2939 	if (ret)
2940 		return ret;
2941 	pgdat->nr_zones = zone_idx(zone) + 1;
2942 
2943 	zone->zone_start_pfn = zone_start_pfn;
2944 
2945 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
2946 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
2947 			pgdat->node_id,
2948 			(unsigned long)zone_idx(zone),
2949 			zone_start_pfn, (zone_start_pfn + size));
2950 
2951 	zone_init_free_lists(zone);
2952 
2953 	return 0;
2954 }
2955 
2956 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2957 /*
2958  * Basic iterator support. Return the first range of PFNs for a node
2959  * Note: nid == MAX_NUMNODES returns first region regardless of node
2960  */
2961 static int __meminit first_active_region_index_in_nid(int nid)
2962 {
2963 	int i;
2964 
2965 	for (i = 0; i < nr_nodemap_entries; i++)
2966 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2967 			return i;
2968 
2969 	return -1;
2970 }
2971 
2972 /*
2973  * Basic iterator support. Return the next active range of PFNs for a node
2974  * Note: nid == MAX_NUMNODES returns next region regardless of node
2975  */
2976 static int __meminit next_active_region_index_in_nid(int index, int nid)
2977 {
2978 	for (index = index + 1; index < nr_nodemap_entries; index++)
2979 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2980 			return index;
2981 
2982 	return -1;
2983 }
2984 
2985 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2986 /*
2987  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2988  * Architectures may implement their own version but if add_active_range()
2989  * was used and there are no special requirements, this is a convenient
2990  * alternative
2991  */
2992 int __meminit __early_pfn_to_nid(unsigned long pfn)
2993 {
2994 	int i;
2995 
2996 	for (i = 0; i < nr_nodemap_entries; i++) {
2997 		unsigned long start_pfn = early_node_map[i].start_pfn;
2998 		unsigned long end_pfn = early_node_map[i].end_pfn;
2999 
3000 		if (start_pfn <= pfn && pfn < end_pfn)
3001 			return early_node_map[i].nid;
3002 	}
3003 	/* This is a memory hole */
3004 	return -1;
3005 }
3006 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3007 
3008 int __meminit early_pfn_to_nid(unsigned long pfn)
3009 {
3010 	int nid;
3011 
3012 	nid = __early_pfn_to_nid(pfn);
3013 	if (nid >= 0)
3014 		return nid;
3015 	/* just returns 0 */
3016 	return 0;
3017 }
3018 
3019 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3020 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3021 {
3022 	int nid;
3023 
3024 	nid = __early_pfn_to_nid(pfn);
3025 	if (nid >= 0 && nid != node)
3026 		return false;
3027 	return true;
3028 }
3029 #endif
3030 
3031 /* Basic iterator support to walk early_node_map[] */
3032 #define for_each_active_range_index_in_nid(i, nid) \
3033 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3034 				i = next_active_region_index_in_nid(i, nid))
3035 
3036 /**
3037  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3038  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3039  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3040  *
3041  * If an architecture guarantees that all ranges registered with
3042  * add_active_ranges() contain no holes and may be freed, this
3043  * this function may be used instead of calling free_bootmem() manually.
3044  */
3045 void __init free_bootmem_with_active_regions(int nid,
3046 						unsigned long max_low_pfn)
3047 {
3048 	int i;
3049 
3050 	for_each_active_range_index_in_nid(i, nid) {
3051 		unsigned long size_pages = 0;
3052 		unsigned long end_pfn = early_node_map[i].end_pfn;
3053 
3054 		if (early_node_map[i].start_pfn >= max_low_pfn)
3055 			continue;
3056 
3057 		if (end_pfn > max_low_pfn)
3058 			end_pfn = max_low_pfn;
3059 
3060 		size_pages = end_pfn - early_node_map[i].start_pfn;
3061 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3062 				PFN_PHYS(early_node_map[i].start_pfn),
3063 				size_pages << PAGE_SHIFT);
3064 	}
3065 }
3066 
3067 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3068 {
3069 	int i;
3070 	int ret;
3071 
3072 	for_each_active_range_index_in_nid(i, nid) {
3073 		ret = work_fn(early_node_map[i].start_pfn,
3074 			      early_node_map[i].end_pfn, data);
3075 		if (ret)
3076 			break;
3077 	}
3078 }
3079 /**
3080  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3081  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3082  *
3083  * If an architecture guarantees that all ranges registered with
3084  * add_active_ranges() contain no holes and may be freed, this
3085  * function may be used instead of calling memory_present() manually.
3086  */
3087 void __init sparse_memory_present_with_active_regions(int nid)
3088 {
3089 	int i;
3090 
3091 	for_each_active_range_index_in_nid(i, nid)
3092 		memory_present(early_node_map[i].nid,
3093 				early_node_map[i].start_pfn,
3094 				early_node_map[i].end_pfn);
3095 }
3096 
3097 /**
3098  * push_node_boundaries - Push node boundaries to at least the requested boundary
3099  * @nid: The nid of the node to push the boundary for
3100  * @start_pfn: The start pfn of the node
3101  * @end_pfn: The end pfn of the node
3102  *
3103  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3104  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3105  * be hotplugged even though no physical memory exists. This function allows
3106  * an arch to push out the node boundaries so mem_map is allocated that can
3107  * be used later.
3108  */
3109 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3110 void __init push_node_boundaries(unsigned int nid,
3111 		unsigned long start_pfn, unsigned long end_pfn)
3112 {
3113 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3114 			"Entering push_node_boundaries(%u, %lu, %lu)\n",
3115 			nid, start_pfn, end_pfn);
3116 
3117 	/* Initialise the boundary for this node if necessary */
3118 	if (node_boundary_end_pfn[nid] == 0)
3119 		node_boundary_start_pfn[nid] = -1UL;
3120 
3121 	/* Update the boundaries */
3122 	if (node_boundary_start_pfn[nid] > start_pfn)
3123 		node_boundary_start_pfn[nid] = start_pfn;
3124 	if (node_boundary_end_pfn[nid] < end_pfn)
3125 		node_boundary_end_pfn[nid] = end_pfn;
3126 }
3127 
3128 /* If necessary, push the node boundary out for reserve hotadd */
3129 static void __meminit account_node_boundary(unsigned int nid,
3130 		unsigned long *start_pfn, unsigned long *end_pfn)
3131 {
3132 	mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3133 			"Entering account_node_boundary(%u, %lu, %lu)\n",
3134 			nid, *start_pfn, *end_pfn);
3135 
3136 	/* Return if boundary information has not been provided */
3137 	if (node_boundary_end_pfn[nid] == 0)
3138 		return;
3139 
3140 	/* Check the boundaries and update if necessary */
3141 	if (node_boundary_start_pfn[nid] < *start_pfn)
3142 		*start_pfn = node_boundary_start_pfn[nid];
3143 	if (node_boundary_end_pfn[nid] > *end_pfn)
3144 		*end_pfn = node_boundary_end_pfn[nid];
3145 }
3146 #else
3147 void __init push_node_boundaries(unsigned int nid,
3148 		unsigned long start_pfn, unsigned long end_pfn) {}
3149 
3150 static void __meminit account_node_boundary(unsigned int nid,
3151 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3152 #endif
3153 
3154 
3155 /**
3156  * get_pfn_range_for_nid - Return the start and end page frames for a node
3157  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3158  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3159  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3160  *
3161  * It returns the start and end page frame of a node based on information
3162  * provided by an arch calling add_active_range(). If called for a node
3163  * with no available memory, a warning is printed and the start and end
3164  * PFNs will be 0.
3165  */
3166 void __meminit get_pfn_range_for_nid(unsigned int nid,
3167 			unsigned long *start_pfn, unsigned long *end_pfn)
3168 {
3169 	int i;
3170 	*start_pfn = -1UL;
3171 	*end_pfn = 0;
3172 
3173 	for_each_active_range_index_in_nid(i, nid) {
3174 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3175 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3176 	}
3177 
3178 	if (*start_pfn == -1UL)
3179 		*start_pfn = 0;
3180 
3181 	/* Push the node boundaries out if requested */
3182 	account_node_boundary(nid, start_pfn, end_pfn);
3183 }
3184 
3185 /*
3186  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3187  * assumption is made that zones within a node are ordered in monotonic
3188  * increasing memory addresses so that the "highest" populated zone is used
3189  */
3190 static void __init find_usable_zone_for_movable(void)
3191 {
3192 	int zone_index;
3193 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3194 		if (zone_index == ZONE_MOVABLE)
3195 			continue;
3196 
3197 		if (arch_zone_highest_possible_pfn[zone_index] >
3198 				arch_zone_lowest_possible_pfn[zone_index])
3199 			break;
3200 	}
3201 
3202 	VM_BUG_ON(zone_index == -1);
3203 	movable_zone = zone_index;
3204 }
3205 
3206 /*
3207  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3208  * because it is sized independant of architecture. Unlike the other zones,
3209  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3210  * in each node depending on the size of each node and how evenly kernelcore
3211  * is distributed. This helper function adjusts the zone ranges
3212  * provided by the architecture for a given node by using the end of the
3213  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3214  * zones within a node are in order of monotonic increases memory addresses
3215  */
3216 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3217 					unsigned long zone_type,
3218 					unsigned long node_start_pfn,
3219 					unsigned long node_end_pfn,
3220 					unsigned long *zone_start_pfn,
3221 					unsigned long *zone_end_pfn)
3222 {
3223 	/* Only adjust if ZONE_MOVABLE is on this node */
3224 	if (zone_movable_pfn[nid]) {
3225 		/* Size ZONE_MOVABLE */
3226 		if (zone_type == ZONE_MOVABLE) {
3227 			*zone_start_pfn = zone_movable_pfn[nid];
3228 			*zone_end_pfn = min(node_end_pfn,
3229 				arch_zone_highest_possible_pfn[movable_zone]);
3230 
3231 		/* Adjust for ZONE_MOVABLE starting within this range */
3232 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3233 				*zone_end_pfn > zone_movable_pfn[nid]) {
3234 			*zone_end_pfn = zone_movable_pfn[nid];
3235 
3236 		/* Check if this whole range is within ZONE_MOVABLE */
3237 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3238 			*zone_start_pfn = *zone_end_pfn;
3239 	}
3240 }
3241 
3242 /*
3243  * Return the number of pages a zone spans in a node, including holes
3244  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3245  */
3246 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3247 					unsigned long zone_type,
3248 					unsigned long *ignored)
3249 {
3250 	unsigned long node_start_pfn, node_end_pfn;
3251 	unsigned long zone_start_pfn, zone_end_pfn;
3252 
3253 	/* Get the start and end of the node and zone */
3254 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3255 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3256 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3257 	adjust_zone_range_for_zone_movable(nid, zone_type,
3258 				node_start_pfn, node_end_pfn,
3259 				&zone_start_pfn, &zone_end_pfn);
3260 
3261 	/* Check that this node has pages within the zone's required range */
3262 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3263 		return 0;
3264 
3265 	/* Move the zone boundaries inside the node if necessary */
3266 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3267 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3268 
3269 	/* Return the spanned pages */
3270 	return zone_end_pfn - zone_start_pfn;
3271 }
3272 
3273 /*
3274  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3275  * then all holes in the requested range will be accounted for.
3276  */
3277 static unsigned long __meminit __absent_pages_in_range(int nid,
3278 				unsigned long range_start_pfn,
3279 				unsigned long range_end_pfn)
3280 {
3281 	int i = 0;
3282 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3283 	unsigned long start_pfn;
3284 
3285 	/* Find the end_pfn of the first active range of pfns in the node */
3286 	i = first_active_region_index_in_nid(nid);
3287 	if (i == -1)
3288 		return 0;
3289 
3290 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3291 
3292 	/* Account for ranges before physical memory on this node */
3293 	if (early_node_map[i].start_pfn > range_start_pfn)
3294 		hole_pages = prev_end_pfn - range_start_pfn;
3295 
3296 	/* Find all holes for the zone within the node */
3297 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3298 
3299 		/* No need to continue if prev_end_pfn is outside the zone */
3300 		if (prev_end_pfn >= range_end_pfn)
3301 			break;
3302 
3303 		/* Make sure the end of the zone is not within the hole */
3304 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3305 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3306 
3307 		/* Update the hole size cound and move on */
3308 		if (start_pfn > range_start_pfn) {
3309 			BUG_ON(prev_end_pfn > start_pfn);
3310 			hole_pages += start_pfn - prev_end_pfn;
3311 		}
3312 		prev_end_pfn = early_node_map[i].end_pfn;
3313 	}
3314 
3315 	/* Account for ranges past physical memory on this node */
3316 	if (range_end_pfn > prev_end_pfn)
3317 		hole_pages += range_end_pfn -
3318 				max(range_start_pfn, prev_end_pfn);
3319 
3320 	return hole_pages;
3321 }
3322 
3323 /**
3324  * absent_pages_in_range - Return number of page frames in holes within a range
3325  * @start_pfn: The start PFN to start searching for holes
3326  * @end_pfn: The end PFN to stop searching for holes
3327  *
3328  * It returns the number of pages frames in memory holes within a range.
3329  */
3330 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3331 							unsigned long end_pfn)
3332 {
3333 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3334 }
3335 
3336 /* Return the number of page frames in holes in a zone on a node */
3337 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3338 					unsigned long zone_type,
3339 					unsigned long *ignored)
3340 {
3341 	unsigned long node_start_pfn, node_end_pfn;
3342 	unsigned long zone_start_pfn, zone_end_pfn;
3343 
3344 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3345 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3346 							node_start_pfn);
3347 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3348 							node_end_pfn);
3349 
3350 	adjust_zone_range_for_zone_movable(nid, zone_type,
3351 			node_start_pfn, node_end_pfn,
3352 			&zone_start_pfn, &zone_end_pfn);
3353 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3354 }
3355 
3356 #else
3357 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3358 					unsigned long zone_type,
3359 					unsigned long *zones_size)
3360 {
3361 	return zones_size[zone_type];
3362 }
3363 
3364 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3365 						unsigned long zone_type,
3366 						unsigned long *zholes_size)
3367 {
3368 	if (!zholes_size)
3369 		return 0;
3370 
3371 	return zholes_size[zone_type];
3372 }
3373 
3374 #endif
3375 
3376 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3377 		unsigned long *zones_size, unsigned long *zholes_size)
3378 {
3379 	unsigned long realtotalpages, totalpages = 0;
3380 	enum zone_type i;
3381 
3382 	for (i = 0; i < MAX_NR_ZONES; i++)
3383 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3384 								zones_size);
3385 	pgdat->node_spanned_pages = totalpages;
3386 
3387 	realtotalpages = totalpages;
3388 	for (i = 0; i < MAX_NR_ZONES; i++)
3389 		realtotalpages -=
3390 			zone_absent_pages_in_node(pgdat->node_id, i,
3391 								zholes_size);
3392 	pgdat->node_present_pages = realtotalpages;
3393 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3394 							realtotalpages);
3395 }
3396 
3397 #ifndef CONFIG_SPARSEMEM
3398 /*
3399  * Calculate the size of the zone->blockflags rounded to an unsigned long
3400  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3401  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3402  * round what is now in bits to nearest long in bits, then return it in
3403  * bytes.
3404  */
3405 static unsigned long __init usemap_size(unsigned long zonesize)
3406 {
3407 	unsigned long usemapsize;
3408 
3409 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3410 	usemapsize = usemapsize >> pageblock_order;
3411 	usemapsize *= NR_PAGEBLOCK_BITS;
3412 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3413 
3414 	return usemapsize / 8;
3415 }
3416 
3417 static void __init setup_usemap(struct pglist_data *pgdat,
3418 				struct zone *zone, unsigned long zonesize)
3419 {
3420 	unsigned long usemapsize = usemap_size(zonesize);
3421 	zone->pageblock_flags = NULL;
3422 	if (usemapsize)
3423 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3424 }
3425 #else
3426 static void inline setup_usemap(struct pglist_data *pgdat,
3427 				struct zone *zone, unsigned long zonesize) {}
3428 #endif /* CONFIG_SPARSEMEM */
3429 
3430 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3431 
3432 /* Return a sensible default order for the pageblock size. */
3433 static inline int pageblock_default_order(void)
3434 {
3435 	if (HPAGE_SHIFT > PAGE_SHIFT)
3436 		return HUGETLB_PAGE_ORDER;
3437 
3438 	return MAX_ORDER-1;
3439 }
3440 
3441 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3442 static inline void __init set_pageblock_order(unsigned int order)
3443 {
3444 	/* Check that pageblock_nr_pages has not already been setup */
3445 	if (pageblock_order)
3446 		return;
3447 
3448 	/*
3449 	 * Assume the largest contiguous order of interest is a huge page.
3450 	 * This value may be variable depending on boot parameters on IA64
3451 	 */
3452 	pageblock_order = order;
3453 }
3454 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3455 
3456 /*
3457  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3458  * and pageblock_default_order() are unused as pageblock_order is set
3459  * at compile-time. See include/linux/pageblock-flags.h for the values of
3460  * pageblock_order based on the kernel config
3461  */
3462 static inline int pageblock_default_order(unsigned int order)
3463 {
3464 	return MAX_ORDER-1;
3465 }
3466 #define set_pageblock_order(x)	do {} while (0)
3467 
3468 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3469 
3470 /*
3471  * Set up the zone data structures:
3472  *   - mark all pages reserved
3473  *   - mark all memory queues empty
3474  *   - clear the memory bitmaps
3475  */
3476 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3477 		unsigned long *zones_size, unsigned long *zholes_size)
3478 {
3479 	enum zone_type j;
3480 	int nid = pgdat->node_id;
3481 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3482 	int ret;
3483 
3484 	pgdat_resize_init(pgdat);
3485 	pgdat->nr_zones = 0;
3486 	init_waitqueue_head(&pgdat->kswapd_wait);
3487 	pgdat->kswapd_max_order = 0;
3488 	pgdat_page_cgroup_init(pgdat);
3489 
3490 	for (j = 0; j < MAX_NR_ZONES; j++) {
3491 		struct zone *zone = pgdat->node_zones + j;
3492 		unsigned long size, realsize, memmap_pages;
3493 		enum lru_list l;
3494 
3495 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3496 		realsize = size - zone_absent_pages_in_node(nid, j,
3497 								zholes_size);
3498 
3499 		/*
3500 		 * Adjust realsize so that it accounts for how much memory
3501 		 * is used by this zone for memmap. This affects the watermark
3502 		 * and per-cpu initialisations
3503 		 */
3504 		memmap_pages =
3505 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3506 		if (realsize >= memmap_pages) {
3507 			realsize -= memmap_pages;
3508 			if (memmap_pages)
3509 				printk(KERN_DEBUG
3510 				       "  %s zone: %lu pages used for memmap\n",
3511 				       zone_names[j], memmap_pages);
3512 		} else
3513 			printk(KERN_WARNING
3514 				"  %s zone: %lu pages exceeds realsize %lu\n",
3515 				zone_names[j], memmap_pages, realsize);
3516 
3517 		/* Account for reserved pages */
3518 		if (j == 0 && realsize > dma_reserve) {
3519 			realsize -= dma_reserve;
3520 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3521 					zone_names[0], dma_reserve);
3522 		}
3523 
3524 		if (!is_highmem_idx(j))
3525 			nr_kernel_pages += realsize;
3526 		nr_all_pages += realsize;
3527 
3528 		zone->spanned_pages = size;
3529 		zone->present_pages = realsize;
3530 #ifdef CONFIG_NUMA
3531 		zone->node = nid;
3532 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3533 						/ 100;
3534 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3535 #endif
3536 		zone->name = zone_names[j];
3537 		spin_lock_init(&zone->lock);
3538 		spin_lock_init(&zone->lru_lock);
3539 		zone_seqlock_init(zone);
3540 		zone->zone_pgdat = pgdat;
3541 
3542 		zone->prev_priority = DEF_PRIORITY;
3543 
3544 		zone_pcp_init(zone);
3545 		for_each_lru(l) {
3546 			INIT_LIST_HEAD(&zone->lru[l].list);
3547 			zone->lru[l].nr_scan = 0;
3548 		}
3549 		zone->reclaim_stat.recent_rotated[0] = 0;
3550 		zone->reclaim_stat.recent_rotated[1] = 0;
3551 		zone->reclaim_stat.recent_scanned[0] = 0;
3552 		zone->reclaim_stat.recent_scanned[1] = 0;
3553 		zap_zone_vm_stats(zone);
3554 		zone->flags = 0;
3555 		if (!size)
3556 			continue;
3557 
3558 		set_pageblock_order(pageblock_default_order());
3559 		setup_usemap(pgdat, zone, size);
3560 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3561 						size, MEMMAP_EARLY);
3562 		BUG_ON(ret);
3563 		memmap_init(size, nid, j, zone_start_pfn);
3564 		zone_start_pfn += size;
3565 	}
3566 }
3567 
3568 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3569 {
3570 	/* Skip empty nodes */
3571 	if (!pgdat->node_spanned_pages)
3572 		return;
3573 
3574 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3575 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3576 	if (!pgdat->node_mem_map) {
3577 		unsigned long size, start, end;
3578 		struct page *map;
3579 
3580 		/*
3581 		 * The zone's endpoints aren't required to be MAX_ORDER
3582 		 * aligned but the node_mem_map endpoints must be in order
3583 		 * for the buddy allocator to function correctly.
3584 		 */
3585 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3586 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3587 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3588 		size =  (end - start) * sizeof(struct page);
3589 		map = alloc_remap(pgdat->node_id, size);
3590 		if (!map)
3591 			map = alloc_bootmem_node(pgdat, size);
3592 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3593 	}
3594 #ifndef CONFIG_NEED_MULTIPLE_NODES
3595 	/*
3596 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3597 	 */
3598 	if (pgdat == NODE_DATA(0)) {
3599 		mem_map = NODE_DATA(0)->node_mem_map;
3600 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3601 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3602 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3603 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3604 	}
3605 #endif
3606 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3607 }
3608 
3609 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3610 		unsigned long node_start_pfn, unsigned long *zholes_size)
3611 {
3612 	pg_data_t *pgdat = NODE_DATA(nid);
3613 
3614 	pgdat->node_id = nid;
3615 	pgdat->node_start_pfn = node_start_pfn;
3616 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3617 
3618 	alloc_node_mem_map(pgdat);
3619 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3620 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3621 		nid, (unsigned long)pgdat,
3622 		(unsigned long)pgdat->node_mem_map);
3623 #endif
3624 
3625 	free_area_init_core(pgdat, zones_size, zholes_size);
3626 }
3627 
3628 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3629 
3630 #if MAX_NUMNODES > 1
3631 /*
3632  * Figure out the number of possible node ids.
3633  */
3634 static void __init setup_nr_node_ids(void)
3635 {
3636 	unsigned int node;
3637 	unsigned int highest = 0;
3638 
3639 	for_each_node_mask(node, node_possible_map)
3640 		highest = node;
3641 	nr_node_ids = highest + 1;
3642 }
3643 #else
3644 static inline void setup_nr_node_ids(void)
3645 {
3646 }
3647 #endif
3648 
3649 /**
3650  * add_active_range - Register a range of PFNs backed by physical memory
3651  * @nid: The node ID the range resides on
3652  * @start_pfn: The start PFN of the available physical memory
3653  * @end_pfn: The end PFN of the available physical memory
3654  *
3655  * These ranges are stored in an early_node_map[] and later used by
3656  * free_area_init_nodes() to calculate zone sizes and holes. If the
3657  * range spans a memory hole, it is up to the architecture to ensure
3658  * the memory is not freed by the bootmem allocator. If possible
3659  * the range being registered will be merged with existing ranges.
3660  */
3661 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3662 						unsigned long end_pfn)
3663 {
3664 	int i;
3665 
3666 	mminit_dprintk(MMINIT_TRACE, "memory_register",
3667 			"Entering add_active_range(%d, %#lx, %#lx) "
3668 			"%d entries of %d used\n",
3669 			nid, start_pfn, end_pfn,
3670 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3671 
3672 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3673 
3674 	/* Merge with existing active regions if possible */
3675 	for (i = 0; i < nr_nodemap_entries; i++) {
3676 		if (early_node_map[i].nid != nid)
3677 			continue;
3678 
3679 		/* Skip if an existing region covers this new one */
3680 		if (start_pfn >= early_node_map[i].start_pfn &&
3681 				end_pfn <= early_node_map[i].end_pfn)
3682 			return;
3683 
3684 		/* Merge forward if suitable */
3685 		if (start_pfn <= early_node_map[i].end_pfn &&
3686 				end_pfn > early_node_map[i].end_pfn) {
3687 			early_node_map[i].end_pfn = end_pfn;
3688 			return;
3689 		}
3690 
3691 		/* Merge backward if suitable */
3692 		if (start_pfn < early_node_map[i].end_pfn &&
3693 				end_pfn >= early_node_map[i].start_pfn) {
3694 			early_node_map[i].start_pfn = start_pfn;
3695 			return;
3696 		}
3697 	}
3698 
3699 	/* Check that early_node_map is large enough */
3700 	if (i >= MAX_ACTIVE_REGIONS) {
3701 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3702 							MAX_ACTIVE_REGIONS);
3703 		return;
3704 	}
3705 
3706 	early_node_map[i].nid = nid;
3707 	early_node_map[i].start_pfn = start_pfn;
3708 	early_node_map[i].end_pfn = end_pfn;
3709 	nr_nodemap_entries = i + 1;
3710 }
3711 
3712 /**
3713  * remove_active_range - Shrink an existing registered range of PFNs
3714  * @nid: The node id the range is on that should be shrunk
3715  * @start_pfn: The new PFN of the range
3716  * @end_pfn: The new PFN of the range
3717  *
3718  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3719  * The map is kept near the end physical page range that has already been
3720  * registered. This function allows an arch to shrink an existing registered
3721  * range.
3722  */
3723 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3724 				unsigned long end_pfn)
3725 {
3726 	int i, j;
3727 	int removed = 0;
3728 
3729 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3730 			  nid, start_pfn, end_pfn);
3731 
3732 	/* Find the old active region end and shrink */
3733 	for_each_active_range_index_in_nid(i, nid) {
3734 		if (early_node_map[i].start_pfn >= start_pfn &&
3735 		    early_node_map[i].end_pfn <= end_pfn) {
3736 			/* clear it */
3737 			early_node_map[i].start_pfn = 0;
3738 			early_node_map[i].end_pfn = 0;
3739 			removed = 1;
3740 			continue;
3741 		}
3742 		if (early_node_map[i].start_pfn < start_pfn &&
3743 		    early_node_map[i].end_pfn > start_pfn) {
3744 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3745 			early_node_map[i].end_pfn = start_pfn;
3746 			if (temp_end_pfn > end_pfn)
3747 				add_active_range(nid, end_pfn, temp_end_pfn);
3748 			continue;
3749 		}
3750 		if (early_node_map[i].start_pfn >= start_pfn &&
3751 		    early_node_map[i].end_pfn > end_pfn &&
3752 		    early_node_map[i].start_pfn < end_pfn) {
3753 			early_node_map[i].start_pfn = end_pfn;
3754 			continue;
3755 		}
3756 	}
3757 
3758 	if (!removed)
3759 		return;
3760 
3761 	/* remove the blank ones */
3762 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
3763 		if (early_node_map[i].nid != nid)
3764 			continue;
3765 		if (early_node_map[i].end_pfn)
3766 			continue;
3767 		/* we found it, get rid of it */
3768 		for (j = i; j < nr_nodemap_entries - 1; j++)
3769 			memcpy(&early_node_map[j], &early_node_map[j+1],
3770 				sizeof(early_node_map[j]));
3771 		j = nr_nodemap_entries - 1;
3772 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3773 		nr_nodemap_entries--;
3774 	}
3775 }
3776 
3777 /**
3778  * remove_all_active_ranges - Remove all currently registered regions
3779  *
3780  * During discovery, it may be found that a table like SRAT is invalid
3781  * and an alternative discovery method must be used. This function removes
3782  * all currently registered regions.
3783  */
3784 void __init remove_all_active_ranges(void)
3785 {
3786 	memset(early_node_map, 0, sizeof(early_node_map));
3787 	nr_nodemap_entries = 0;
3788 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3789 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3790 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3791 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3792 }
3793 
3794 /* Compare two active node_active_regions */
3795 static int __init cmp_node_active_region(const void *a, const void *b)
3796 {
3797 	struct node_active_region *arange = (struct node_active_region *)a;
3798 	struct node_active_region *brange = (struct node_active_region *)b;
3799 
3800 	/* Done this way to avoid overflows */
3801 	if (arange->start_pfn > brange->start_pfn)
3802 		return 1;
3803 	if (arange->start_pfn < brange->start_pfn)
3804 		return -1;
3805 
3806 	return 0;
3807 }
3808 
3809 /* sort the node_map by start_pfn */
3810 static void __init sort_node_map(void)
3811 {
3812 	sort(early_node_map, (size_t)nr_nodemap_entries,
3813 			sizeof(struct node_active_region),
3814 			cmp_node_active_region, NULL);
3815 }
3816 
3817 /* Find the lowest pfn for a node */
3818 static unsigned long __init find_min_pfn_for_node(int nid)
3819 {
3820 	int i;
3821 	unsigned long min_pfn = ULONG_MAX;
3822 
3823 	/* Assuming a sorted map, the first range found has the starting pfn */
3824 	for_each_active_range_index_in_nid(i, nid)
3825 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3826 
3827 	if (min_pfn == ULONG_MAX) {
3828 		printk(KERN_WARNING
3829 			"Could not find start_pfn for node %d\n", nid);
3830 		return 0;
3831 	}
3832 
3833 	return min_pfn;
3834 }
3835 
3836 /**
3837  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3838  *
3839  * It returns the minimum PFN based on information provided via
3840  * add_active_range().
3841  */
3842 unsigned long __init find_min_pfn_with_active_regions(void)
3843 {
3844 	return find_min_pfn_for_node(MAX_NUMNODES);
3845 }
3846 
3847 /*
3848  * early_calculate_totalpages()
3849  * Sum pages in active regions for movable zone.
3850  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3851  */
3852 static unsigned long __init early_calculate_totalpages(void)
3853 {
3854 	int i;
3855 	unsigned long totalpages = 0;
3856 
3857 	for (i = 0; i < nr_nodemap_entries; i++) {
3858 		unsigned long pages = early_node_map[i].end_pfn -
3859 						early_node_map[i].start_pfn;
3860 		totalpages += pages;
3861 		if (pages)
3862 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3863 	}
3864   	return totalpages;
3865 }
3866 
3867 /*
3868  * Find the PFN the Movable zone begins in each node. Kernel memory
3869  * is spread evenly between nodes as long as the nodes have enough
3870  * memory. When they don't, some nodes will have more kernelcore than
3871  * others
3872  */
3873 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3874 {
3875 	int i, nid;
3876 	unsigned long usable_startpfn;
3877 	unsigned long kernelcore_node, kernelcore_remaining;
3878 	unsigned long totalpages = early_calculate_totalpages();
3879 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3880 
3881 	/*
3882 	 * If movablecore was specified, calculate what size of
3883 	 * kernelcore that corresponds so that memory usable for
3884 	 * any allocation type is evenly spread. If both kernelcore
3885 	 * and movablecore are specified, then the value of kernelcore
3886 	 * will be used for required_kernelcore if it's greater than
3887 	 * what movablecore would have allowed.
3888 	 */
3889 	if (required_movablecore) {
3890 		unsigned long corepages;
3891 
3892 		/*
3893 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3894 		 * was requested by the user
3895 		 */
3896 		required_movablecore =
3897 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3898 		corepages = totalpages - required_movablecore;
3899 
3900 		required_kernelcore = max(required_kernelcore, corepages);
3901 	}
3902 
3903 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3904 	if (!required_kernelcore)
3905 		return;
3906 
3907 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3908 	find_usable_zone_for_movable();
3909 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3910 
3911 restart:
3912 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3913 	kernelcore_node = required_kernelcore / usable_nodes;
3914 	for_each_node_state(nid, N_HIGH_MEMORY) {
3915 		/*
3916 		 * Recalculate kernelcore_node if the division per node
3917 		 * now exceeds what is necessary to satisfy the requested
3918 		 * amount of memory for the kernel
3919 		 */
3920 		if (required_kernelcore < kernelcore_node)
3921 			kernelcore_node = required_kernelcore / usable_nodes;
3922 
3923 		/*
3924 		 * As the map is walked, we track how much memory is usable
3925 		 * by the kernel using kernelcore_remaining. When it is
3926 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3927 		 */
3928 		kernelcore_remaining = kernelcore_node;
3929 
3930 		/* Go through each range of PFNs within this node */
3931 		for_each_active_range_index_in_nid(i, nid) {
3932 			unsigned long start_pfn, end_pfn;
3933 			unsigned long size_pages;
3934 
3935 			start_pfn = max(early_node_map[i].start_pfn,
3936 						zone_movable_pfn[nid]);
3937 			end_pfn = early_node_map[i].end_pfn;
3938 			if (start_pfn >= end_pfn)
3939 				continue;
3940 
3941 			/* Account for what is only usable for kernelcore */
3942 			if (start_pfn < usable_startpfn) {
3943 				unsigned long kernel_pages;
3944 				kernel_pages = min(end_pfn, usable_startpfn)
3945 								- start_pfn;
3946 
3947 				kernelcore_remaining -= min(kernel_pages,
3948 							kernelcore_remaining);
3949 				required_kernelcore -= min(kernel_pages,
3950 							required_kernelcore);
3951 
3952 				/* Continue if range is now fully accounted */
3953 				if (end_pfn <= usable_startpfn) {
3954 
3955 					/*
3956 					 * Push zone_movable_pfn to the end so
3957 					 * that if we have to rebalance
3958 					 * kernelcore across nodes, we will
3959 					 * not double account here
3960 					 */
3961 					zone_movable_pfn[nid] = end_pfn;
3962 					continue;
3963 				}
3964 				start_pfn = usable_startpfn;
3965 			}
3966 
3967 			/*
3968 			 * The usable PFN range for ZONE_MOVABLE is from
3969 			 * start_pfn->end_pfn. Calculate size_pages as the
3970 			 * number of pages used as kernelcore
3971 			 */
3972 			size_pages = end_pfn - start_pfn;
3973 			if (size_pages > kernelcore_remaining)
3974 				size_pages = kernelcore_remaining;
3975 			zone_movable_pfn[nid] = start_pfn + size_pages;
3976 
3977 			/*
3978 			 * Some kernelcore has been met, update counts and
3979 			 * break if the kernelcore for this node has been
3980 			 * satisified
3981 			 */
3982 			required_kernelcore -= min(required_kernelcore,
3983 								size_pages);
3984 			kernelcore_remaining -= size_pages;
3985 			if (!kernelcore_remaining)
3986 				break;
3987 		}
3988 	}
3989 
3990 	/*
3991 	 * If there is still required_kernelcore, we do another pass with one
3992 	 * less node in the count. This will push zone_movable_pfn[nid] further
3993 	 * along on the nodes that still have memory until kernelcore is
3994 	 * satisified
3995 	 */
3996 	usable_nodes--;
3997 	if (usable_nodes && required_kernelcore > usable_nodes)
3998 		goto restart;
3999 
4000 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4001 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4002 		zone_movable_pfn[nid] =
4003 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4004 }
4005 
4006 /* Any regular memory on that node ? */
4007 static void check_for_regular_memory(pg_data_t *pgdat)
4008 {
4009 #ifdef CONFIG_HIGHMEM
4010 	enum zone_type zone_type;
4011 
4012 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4013 		struct zone *zone = &pgdat->node_zones[zone_type];
4014 		if (zone->present_pages)
4015 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4016 	}
4017 #endif
4018 }
4019 
4020 /**
4021  * free_area_init_nodes - Initialise all pg_data_t and zone data
4022  * @max_zone_pfn: an array of max PFNs for each zone
4023  *
4024  * This will call free_area_init_node() for each active node in the system.
4025  * Using the page ranges provided by add_active_range(), the size of each
4026  * zone in each node and their holes is calculated. If the maximum PFN
4027  * between two adjacent zones match, it is assumed that the zone is empty.
4028  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4029  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4030  * starts where the previous one ended. For example, ZONE_DMA32 starts
4031  * at arch_max_dma_pfn.
4032  */
4033 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4034 {
4035 	unsigned long nid;
4036 	int i;
4037 
4038 	/* Sort early_node_map as initialisation assumes it is sorted */
4039 	sort_node_map();
4040 
4041 	/* Record where the zone boundaries are */
4042 	memset(arch_zone_lowest_possible_pfn, 0,
4043 				sizeof(arch_zone_lowest_possible_pfn));
4044 	memset(arch_zone_highest_possible_pfn, 0,
4045 				sizeof(arch_zone_highest_possible_pfn));
4046 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4047 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4048 	for (i = 1; i < MAX_NR_ZONES; i++) {
4049 		if (i == ZONE_MOVABLE)
4050 			continue;
4051 		arch_zone_lowest_possible_pfn[i] =
4052 			arch_zone_highest_possible_pfn[i-1];
4053 		arch_zone_highest_possible_pfn[i] =
4054 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4055 	}
4056 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4057 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4058 
4059 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4060 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4061 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4062 
4063 	/* Print out the zone ranges */
4064 	printk("Zone PFN ranges:\n");
4065 	for (i = 0; i < MAX_NR_ZONES; i++) {
4066 		if (i == ZONE_MOVABLE)
4067 			continue;
4068 		printk("  %-8s %0#10lx -> %0#10lx\n",
4069 				zone_names[i],
4070 				arch_zone_lowest_possible_pfn[i],
4071 				arch_zone_highest_possible_pfn[i]);
4072 	}
4073 
4074 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4075 	printk("Movable zone start PFN for each node\n");
4076 	for (i = 0; i < MAX_NUMNODES; i++) {
4077 		if (zone_movable_pfn[i])
4078 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4079 	}
4080 
4081 	/* Print out the early_node_map[] */
4082 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4083 	for (i = 0; i < nr_nodemap_entries; i++)
4084 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4085 						early_node_map[i].start_pfn,
4086 						early_node_map[i].end_pfn);
4087 
4088 	/* Initialise every node */
4089 	mminit_verify_pageflags_layout();
4090 	setup_nr_node_ids();
4091 	for_each_online_node(nid) {
4092 		pg_data_t *pgdat = NODE_DATA(nid);
4093 		free_area_init_node(nid, NULL,
4094 				find_min_pfn_for_node(nid), NULL);
4095 
4096 		/* Any memory on that node */
4097 		if (pgdat->node_present_pages)
4098 			node_set_state(nid, N_HIGH_MEMORY);
4099 		check_for_regular_memory(pgdat);
4100 	}
4101 }
4102 
4103 static int __init cmdline_parse_core(char *p, unsigned long *core)
4104 {
4105 	unsigned long long coremem;
4106 	if (!p)
4107 		return -EINVAL;
4108 
4109 	coremem = memparse(p, &p);
4110 	*core = coremem >> PAGE_SHIFT;
4111 
4112 	/* Paranoid check that UL is enough for the coremem value */
4113 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4114 
4115 	return 0;
4116 }
4117 
4118 /*
4119  * kernelcore=size sets the amount of memory for use for allocations that
4120  * cannot be reclaimed or migrated.
4121  */
4122 static int __init cmdline_parse_kernelcore(char *p)
4123 {
4124 	return cmdline_parse_core(p, &required_kernelcore);
4125 }
4126 
4127 /*
4128  * movablecore=size sets the amount of memory for use for allocations that
4129  * can be reclaimed or migrated.
4130  */
4131 static int __init cmdline_parse_movablecore(char *p)
4132 {
4133 	return cmdline_parse_core(p, &required_movablecore);
4134 }
4135 
4136 early_param("kernelcore", cmdline_parse_kernelcore);
4137 early_param("movablecore", cmdline_parse_movablecore);
4138 
4139 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4140 
4141 /**
4142  * set_dma_reserve - set the specified number of pages reserved in the first zone
4143  * @new_dma_reserve: The number of pages to mark reserved
4144  *
4145  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4146  * In the DMA zone, a significant percentage may be consumed by kernel image
4147  * and other unfreeable allocations which can skew the watermarks badly. This
4148  * function may optionally be used to account for unfreeable pages in the
4149  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4150  * smaller per-cpu batchsize.
4151  */
4152 void __init set_dma_reserve(unsigned long new_dma_reserve)
4153 {
4154 	dma_reserve = new_dma_reserve;
4155 }
4156 
4157 #ifndef CONFIG_NEED_MULTIPLE_NODES
4158 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4159 EXPORT_SYMBOL(contig_page_data);
4160 #endif
4161 
4162 void __init free_area_init(unsigned long *zones_size)
4163 {
4164 	free_area_init_node(0, zones_size,
4165 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4166 }
4167 
4168 static int page_alloc_cpu_notify(struct notifier_block *self,
4169 				 unsigned long action, void *hcpu)
4170 {
4171 	int cpu = (unsigned long)hcpu;
4172 
4173 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4174 		drain_pages(cpu);
4175 
4176 		/*
4177 		 * Spill the event counters of the dead processor
4178 		 * into the current processors event counters.
4179 		 * This artificially elevates the count of the current
4180 		 * processor.
4181 		 */
4182 		vm_events_fold_cpu(cpu);
4183 
4184 		/*
4185 		 * Zero the differential counters of the dead processor
4186 		 * so that the vm statistics are consistent.
4187 		 *
4188 		 * This is only okay since the processor is dead and cannot
4189 		 * race with what we are doing.
4190 		 */
4191 		refresh_cpu_vm_stats(cpu);
4192 	}
4193 	return NOTIFY_OK;
4194 }
4195 
4196 void __init page_alloc_init(void)
4197 {
4198 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4199 }
4200 
4201 /*
4202  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4203  *	or min_free_kbytes changes.
4204  */
4205 static void calculate_totalreserve_pages(void)
4206 {
4207 	struct pglist_data *pgdat;
4208 	unsigned long reserve_pages = 0;
4209 	enum zone_type i, j;
4210 
4211 	for_each_online_pgdat(pgdat) {
4212 		for (i = 0; i < MAX_NR_ZONES; i++) {
4213 			struct zone *zone = pgdat->node_zones + i;
4214 			unsigned long max = 0;
4215 
4216 			/* Find valid and maximum lowmem_reserve in the zone */
4217 			for (j = i; j < MAX_NR_ZONES; j++) {
4218 				if (zone->lowmem_reserve[j] > max)
4219 					max = zone->lowmem_reserve[j];
4220 			}
4221 
4222 			/* we treat pages_high as reserved pages. */
4223 			max += zone->pages_high;
4224 
4225 			if (max > zone->present_pages)
4226 				max = zone->present_pages;
4227 			reserve_pages += max;
4228 		}
4229 	}
4230 	totalreserve_pages = reserve_pages;
4231 }
4232 
4233 /*
4234  * setup_per_zone_lowmem_reserve - called whenever
4235  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4236  *	has a correct pages reserved value, so an adequate number of
4237  *	pages are left in the zone after a successful __alloc_pages().
4238  */
4239 static void setup_per_zone_lowmem_reserve(void)
4240 {
4241 	struct pglist_data *pgdat;
4242 	enum zone_type j, idx;
4243 
4244 	for_each_online_pgdat(pgdat) {
4245 		for (j = 0; j < MAX_NR_ZONES; j++) {
4246 			struct zone *zone = pgdat->node_zones + j;
4247 			unsigned long present_pages = zone->present_pages;
4248 
4249 			zone->lowmem_reserve[j] = 0;
4250 
4251 			idx = j;
4252 			while (idx) {
4253 				struct zone *lower_zone;
4254 
4255 				idx--;
4256 
4257 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4258 					sysctl_lowmem_reserve_ratio[idx] = 1;
4259 
4260 				lower_zone = pgdat->node_zones + idx;
4261 				lower_zone->lowmem_reserve[j] = present_pages /
4262 					sysctl_lowmem_reserve_ratio[idx];
4263 				present_pages += lower_zone->present_pages;
4264 			}
4265 		}
4266 	}
4267 
4268 	/* update totalreserve_pages */
4269 	calculate_totalreserve_pages();
4270 }
4271 
4272 /**
4273  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4274  *
4275  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4276  * with respect to min_free_kbytes.
4277  */
4278 void setup_per_zone_pages_min(void)
4279 {
4280 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4281 	unsigned long lowmem_pages = 0;
4282 	struct zone *zone;
4283 	unsigned long flags;
4284 
4285 	/* Calculate total number of !ZONE_HIGHMEM pages */
4286 	for_each_zone(zone) {
4287 		if (!is_highmem(zone))
4288 			lowmem_pages += zone->present_pages;
4289 	}
4290 
4291 	for_each_zone(zone) {
4292 		u64 tmp;
4293 
4294 		spin_lock_irqsave(&zone->lock, flags);
4295 		tmp = (u64)pages_min * zone->present_pages;
4296 		do_div(tmp, lowmem_pages);
4297 		if (is_highmem(zone)) {
4298 			/*
4299 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4300 			 * need highmem pages, so cap pages_min to a small
4301 			 * value here.
4302 			 *
4303 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4304 			 * deltas controls asynch page reclaim, and so should
4305 			 * not be capped for highmem.
4306 			 */
4307 			int min_pages;
4308 
4309 			min_pages = zone->present_pages / 1024;
4310 			if (min_pages < SWAP_CLUSTER_MAX)
4311 				min_pages = SWAP_CLUSTER_MAX;
4312 			if (min_pages > 128)
4313 				min_pages = 128;
4314 			zone->pages_min = min_pages;
4315 		} else {
4316 			/*
4317 			 * If it's a lowmem zone, reserve a number of pages
4318 			 * proportionate to the zone's size.
4319 			 */
4320 			zone->pages_min = tmp;
4321 		}
4322 
4323 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4324 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4325 		setup_zone_migrate_reserve(zone);
4326 		spin_unlock_irqrestore(&zone->lock, flags);
4327 	}
4328 
4329 	/* update totalreserve_pages */
4330 	calculate_totalreserve_pages();
4331 }
4332 
4333 /**
4334  * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4335  *
4336  * The inactive anon list should be small enough that the VM never has to
4337  * do too much work, but large enough that each inactive page has a chance
4338  * to be referenced again before it is swapped out.
4339  *
4340  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4341  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4342  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4343  * the anonymous pages are kept on the inactive list.
4344  *
4345  * total     target    max
4346  * memory    ratio     inactive anon
4347  * -------------------------------------
4348  *   10MB       1         5MB
4349  *  100MB       1        50MB
4350  *    1GB       3       250MB
4351  *   10GB      10       0.9GB
4352  *  100GB      31         3GB
4353  *    1TB     101        10GB
4354  *   10TB     320        32GB
4355  */
4356 static void setup_per_zone_inactive_ratio(void)
4357 {
4358 	struct zone *zone;
4359 
4360 	for_each_zone(zone) {
4361 		unsigned int gb, ratio;
4362 
4363 		/* Zone size in gigabytes */
4364 		gb = zone->present_pages >> (30 - PAGE_SHIFT);
4365 		ratio = int_sqrt(10 * gb);
4366 		if (!ratio)
4367 			ratio = 1;
4368 
4369 		zone->inactive_ratio = ratio;
4370 	}
4371 }
4372 
4373 /*
4374  * Initialise min_free_kbytes.
4375  *
4376  * For small machines we want it small (128k min).  For large machines
4377  * we want it large (64MB max).  But it is not linear, because network
4378  * bandwidth does not increase linearly with machine size.  We use
4379  *
4380  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4381  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4382  *
4383  * which yields
4384  *
4385  * 16MB:	512k
4386  * 32MB:	724k
4387  * 64MB:	1024k
4388  * 128MB:	1448k
4389  * 256MB:	2048k
4390  * 512MB:	2896k
4391  * 1024MB:	4096k
4392  * 2048MB:	5792k
4393  * 4096MB:	8192k
4394  * 8192MB:	11584k
4395  * 16384MB:	16384k
4396  */
4397 static int __init init_per_zone_pages_min(void)
4398 {
4399 	unsigned long lowmem_kbytes;
4400 
4401 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4402 
4403 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4404 	if (min_free_kbytes < 128)
4405 		min_free_kbytes = 128;
4406 	if (min_free_kbytes > 65536)
4407 		min_free_kbytes = 65536;
4408 	setup_per_zone_pages_min();
4409 	setup_per_zone_lowmem_reserve();
4410 	setup_per_zone_inactive_ratio();
4411 	return 0;
4412 }
4413 module_init(init_per_zone_pages_min)
4414 
4415 /*
4416  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4417  *	that we can call two helper functions whenever min_free_kbytes
4418  *	changes.
4419  */
4420 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4421 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4422 {
4423 	proc_dointvec(table, write, file, buffer, length, ppos);
4424 	if (write)
4425 		setup_per_zone_pages_min();
4426 	return 0;
4427 }
4428 
4429 #ifdef CONFIG_NUMA
4430 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4431 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4432 {
4433 	struct zone *zone;
4434 	int rc;
4435 
4436 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4437 	if (rc)
4438 		return rc;
4439 
4440 	for_each_zone(zone)
4441 		zone->min_unmapped_pages = (zone->present_pages *
4442 				sysctl_min_unmapped_ratio) / 100;
4443 	return 0;
4444 }
4445 
4446 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4447 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4448 {
4449 	struct zone *zone;
4450 	int rc;
4451 
4452 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4453 	if (rc)
4454 		return rc;
4455 
4456 	for_each_zone(zone)
4457 		zone->min_slab_pages = (zone->present_pages *
4458 				sysctl_min_slab_ratio) / 100;
4459 	return 0;
4460 }
4461 #endif
4462 
4463 /*
4464  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4465  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4466  *	whenever sysctl_lowmem_reserve_ratio changes.
4467  *
4468  * The reserve ratio obviously has absolutely no relation with the
4469  * pages_min watermarks. The lowmem reserve ratio can only make sense
4470  * if in function of the boot time zone sizes.
4471  */
4472 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4473 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4474 {
4475 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4476 	setup_per_zone_lowmem_reserve();
4477 	return 0;
4478 }
4479 
4480 /*
4481  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4482  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4483  * can have before it gets flushed back to buddy allocator.
4484  */
4485 
4486 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4487 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4488 {
4489 	struct zone *zone;
4490 	unsigned int cpu;
4491 	int ret;
4492 
4493 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4494 	if (!write || (ret == -EINVAL))
4495 		return ret;
4496 	for_each_zone(zone) {
4497 		for_each_online_cpu(cpu) {
4498 			unsigned long  high;
4499 			high = zone->present_pages / percpu_pagelist_fraction;
4500 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4501 		}
4502 	}
4503 	return 0;
4504 }
4505 
4506 int hashdist = HASHDIST_DEFAULT;
4507 
4508 #ifdef CONFIG_NUMA
4509 static int __init set_hashdist(char *str)
4510 {
4511 	if (!str)
4512 		return 0;
4513 	hashdist = simple_strtoul(str, &str, 0);
4514 	return 1;
4515 }
4516 __setup("hashdist=", set_hashdist);
4517 #endif
4518 
4519 /*
4520  * allocate a large system hash table from bootmem
4521  * - it is assumed that the hash table must contain an exact power-of-2
4522  *   quantity of entries
4523  * - limit is the number of hash buckets, not the total allocation size
4524  */
4525 void *__init alloc_large_system_hash(const char *tablename,
4526 				     unsigned long bucketsize,
4527 				     unsigned long numentries,
4528 				     int scale,
4529 				     int flags,
4530 				     unsigned int *_hash_shift,
4531 				     unsigned int *_hash_mask,
4532 				     unsigned long limit)
4533 {
4534 	unsigned long long max = limit;
4535 	unsigned long log2qty, size;
4536 	void *table = NULL;
4537 
4538 	/* allow the kernel cmdline to have a say */
4539 	if (!numentries) {
4540 		/* round applicable memory size up to nearest megabyte */
4541 		numentries = nr_kernel_pages;
4542 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4543 		numentries >>= 20 - PAGE_SHIFT;
4544 		numentries <<= 20 - PAGE_SHIFT;
4545 
4546 		/* limit to 1 bucket per 2^scale bytes of low memory */
4547 		if (scale > PAGE_SHIFT)
4548 			numentries >>= (scale - PAGE_SHIFT);
4549 		else
4550 			numentries <<= (PAGE_SHIFT - scale);
4551 
4552 		/* Make sure we've got at least a 0-order allocation.. */
4553 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4554 			numentries = PAGE_SIZE / bucketsize;
4555 	}
4556 	numentries = roundup_pow_of_two(numentries);
4557 
4558 	/* limit allocation size to 1/16 total memory by default */
4559 	if (max == 0) {
4560 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4561 		do_div(max, bucketsize);
4562 	}
4563 
4564 	if (numentries > max)
4565 		numentries = max;
4566 
4567 	log2qty = ilog2(numentries);
4568 
4569 	do {
4570 		size = bucketsize << log2qty;
4571 		if (flags & HASH_EARLY)
4572 			table = alloc_bootmem_nopanic(size);
4573 		else if (hashdist)
4574 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4575 		else {
4576 			unsigned long order = get_order(size);
4577 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4578 			/*
4579 			 * If bucketsize is not a power-of-two, we may free
4580 			 * some pages at the end of hash table.
4581 			 */
4582 			if (table) {
4583 				unsigned long alloc_end = (unsigned long)table +
4584 						(PAGE_SIZE << order);
4585 				unsigned long used = (unsigned long)table +
4586 						PAGE_ALIGN(size);
4587 				split_page(virt_to_page(table), order);
4588 				while (used < alloc_end) {
4589 					free_page(used);
4590 					used += PAGE_SIZE;
4591 				}
4592 			}
4593 		}
4594 	} while (!table && size > PAGE_SIZE && --log2qty);
4595 
4596 	if (!table)
4597 		panic("Failed to allocate %s hash table\n", tablename);
4598 
4599 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4600 	       tablename,
4601 	       (1U << log2qty),
4602 	       ilog2(size) - PAGE_SHIFT,
4603 	       size);
4604 
4605 	if (_hash_shift)
4606 		*_hash_shift = log2qty;
4607 	if (_hash_mask)
4608 		*_hash_mask = (1 << log2qty) - 1;
4609 
4610 	return table;
4611 }
4612 
4613 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4614 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4615 							unsigned long pfn)
4616 {
4617 #ifdef CONFIG_SPARSEMEM
4618 	return __pfn_to_section(pfn)->pageblock_flags;
4619 #else
4620 	return zone->pageblock_flags;
4621 #endif /* CONFIG_SPARSEMEM */
4622 }
4623 
4624 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4625 {
4626 #ifdef CONFIG_SPARSEMEM
4627 	pfn &= (PAGES_PER_SECTION-1);
4628 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4629 #else
4630 	pfn = pfn - zone->zone_start_pfn;
4631 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4632 #endif /* CONFIG_SPARSEMEM */
4633 }
4634 
4635 /**
4636  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4637  * @page: The page within the block of interest
4638  * @start_bitidx: The first bit of interest to retrieve
4639  * @end_bitidx: The last bit of interest
4640  * returns pageblock_bits flags
4641  */
4642 unsigned long get_pageblock_flags_group(struct page *page,
4643 					int start_bitidx, int end_bitidx)
4644 {
4645 	struct zone *zone;
4646 	unsigned long *bitmap;
4647 	unsigned long pfn, bitidx;
4648 	unsigned long flags = 0;
4649 	unsigned long value = 1;
4650 
4651 	zone = page_zone(page);
4652 	pfn = page_to_pfn(page);
4653 	bitmap = get_pageblock_bitmap(zone, pfn);
4654 	bitidx = pfn_to_bitidx(zone, pfn);
4655 
4656 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4657 		if (test_bit(bitidx + start_bitidx, bitmap))
4658 			flags |= value;
4659 
4660 	return flags;
4661 }
4662 
4663 /**
4664  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4665  * @page: The page within the block of interest
4666  * @start_bitidx: The first bit of interest
4667  * @end_bitidx: The last bit of interest
4668  * @flags: The flags to set
4669  */
4670 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4671 					int start_bitidx, int end_bitidx)
4672 {
4673 	struct zone *zone;
4674 	unsigned long *bitmap;
4675 	unsigned long pfn, bitidx;
4676 	unsigned long value = 1;
4677 
4678 	zone = page_zone(page);
4679 	pfn = page_to_pfn(page);
4680 	bitmap = get_pageblock_bitmap(zone, pfn);
4681 	bitidx = pfn_to_bitidx(zone, pfn);
4682 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4683 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4684 
4685 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4686 		if (flags & value)
4687 			__set_bit(bitidx + start_bitidx, bitmap);
4688 		else
4689 			__clear_bit(bitidx + start_bitidx, bitmap);
4690 }
4691 
4692 /*
4693  * This is designed as sub function...plz see page_isolation.c also.
4694  * set/clear page block's type to be ISOLATE.
4695  * page allocater never alloc memory from ISOLATE block.
4696  */
4697 
4698 int set_migratetype_isolate(struct page *page)
4699 {
4700 	struct zone *zone;
4701 	unsigned long flags;
4702 	int ret = -EBUSY;
4703 
4704 	zone = page_zone(page);
4705 	spin_lock_irqsave(&zone->lock, flags);
4706 	/*
4707 	 * In future, more migrate types will be able to be isolation target.
4708 	 */
4709 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4710 		goto out;
4711 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4712 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4713 	ret = 0;
4714 out:
4715 	spin_unlock_irqrestore(&zone->lock, flags);
4716 	if (!ret)
4717 		drain_all_pages();
4718 	return ret;
4719 }
4720 
4721 void unset_migratetype_isolate(struct page *page)
4722 {
4723 	struct zone *zone;
4724 	unsigned long flags;
4725 	zone = page_zone(page);
4726 	spin_lock_irqsave(&zone->lock, flags);
4727 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4728 		goto out;
4729 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4730 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4731 out:
4732 	spin_unlock_irqrestore(&zone->lock, flags);
4733 }
4734 
4735 #ifdef CONFIG_MEMORY_HOTREMOVE
4736 /*
4737  * All pages in the range must be isolated before calling this.
4738  */
4739 void
4740 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4741 {
4742 	struct page *page;
4743 	struct zone *zone;
4744 	int order, i;
4745 	unsigned long pfn;
4746 	unsigned long flags;
4747 	/* find the first valid pfn */
4748 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4749 		if (pfn_valid(pfn))
4750 			break;
4751 	if (pfn == end_pfn)
4752 		return;
4753 	zone = page_zone(pfn_to_page(pfn));
4754 	spin_lock_irqsave(&zone->lock, flags);
4755 	pfn = start_pfn;
4756 	while (pfn < end_pfn) {
4757 		if (!pfn_valid(pfn)) {
4758 			pfn++;
4759 			continue;
4760 		}
4761 		page = pfn_to_page(pfn);
4762 		BUG_ON(page_count(page));
4763 		BUG_ON(!PageBuddy(page));
4764 		order = page_order(page);
4765 #ifdef CONFIG_DEBUG_VM
4766 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4767 		       pfn, 1 << order, end_pfn);
4768 #endif
4769 		list_del(&page->lru);
4770 		rmv_page_order(page);
4771 		zone->free_area[order].nr_free--;
4772 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4773 				      - (1UL << order));
4774 		for (i = 0; i < (1 << order); i++)
4775 			SetPageReserved((page+i));
4776 		pfn += (1 << order);
4777 	}
4778 	spin_unlock_irqrestore(&zone->lock, flags);
4779 }
4780 #endif
4781