1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/oom.h> 32 #include <linux/notifier.h> 33 #include <linux/topology.h> 34 #include <linux/sysctl.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/memory_hotplug.h> 38 #include <linux/nodemask.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mempolicy.h> 41 #include <linux/stop_machine.h> 42 #include <linux/sort.h> 43 #include <linux/pfn.h> 44 #include <linux/backing-dev.h> 45 #include <linux/fault-inject.h> 46 #include <linux/page-isolation.h> 47 #include <linux/page_cgroup.h> 48 #include <linux/debugobjects.h> 49 50 #include <asm/tlbflush.h> 51 #include <asm/div64.h> 52 #include "internal.h" 53 54 /* 55 * Array of node states. 56 */ 57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 58 [N_POSSIBLE] = NODE_MASK_ALL, 59 [N_ONLINE] = { { [0] = 1UL } }, 60 #ifndef CONFIG_NUMA 61 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 62 #ifdef CONFIG_HIGHMEM 63 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 64 #endif 65 [N_CPU] = { { [0] = 1UL } }, 66 #endif /* NUMA */ 67 }; 68 EXPORT_SYMBOL(node_states); 69 70 unsigned long totalram_pages __read_mostly; 71 unsigned long totalreserve_pages __read_mostly; 72 unsigned long highest_memmap_pfn __read_mostly; 73 int percpu_pagelist_fraction; 74 75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 76 int pageblock_order __read_mostly; 77 #endif 78 79 static void __free_pages_ok(struct page *page, unsigned int order); 80 81 /* 82 * results with 256, 32 in the lowmem_reserve sysctl: 83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 84 * 1G machine -> (16M dma, 784M normal, 224M high) 85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 88 * 89 * TBD: should special case ZONE_DMA32 machines here - in those we normally 90 * don't need any ZONE_NORMAL reservation 91 */ 92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 93 #ifdef CONFIG_ZONE_DMA 94 256, 95 #endif 96 #ifdef CONFIG_ZONE_DMA32 97 256, 98 #endif 99 #ifdef CONFIG_HIGHMEM 100 32, 101 #endif 102 32, 103 }; 104 105 EXPORT_SYMBOL(totalram_pages); 106 107 static char * const zone_names[MAX_NR_ZONES] = { 108 #ifdef CONFIG_ZONE_DMA 109 "DMA", 110 #endif 111 #ifdef CONFIG_ZONE_DMA32 112 "DMA32", 113 #endif 114 "Normal", 115 #ifdef CONFIG_HIGHMEM 116 "HighMem", 117 #endif 118 "Movable", 119 }; 120 121 int min_free_kbytes = 1024; 122 123 unsigned long __meminitdata nr_kernel_pages; 124 unsigned long __meminitdata nr_all_pages; 125 static unsigned long __meminitdata dma_reserve; 126 127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 128 /* 129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 130 * ranges of memory (RAM) that may be registered with add_active_range(). 131 * Ranges passed to add_active_range() will be merged if possible 132 * so the number of times add_active_range() can be called is 133 * related to the number of nodes and the number of holes 134 */ 135 #ifdef CONFIG_MAX_ACTIVE_REGIONS 136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 138 #else 139 #if MAX_NUMNODES >= 32 140 /* If there can be many nodes, allow up to 50 holes per node */ 141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 142 #else 143 /* By default, allow up to 256 distinct regions */ 144 #define MAX_ACTIVE_REGIONS 256 145 #endif 146 #endif 147 148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 149 static int __meminitdata nr_nodemap_entries; 150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES]; 154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES]; 155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 156 static unsigned long __initdata required_kernelcore; 157 static unsigned long __initdata required_movablecore; 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 159 160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 161 int movable_zone; 162 EXPORT_SYMBOL(movable_zone); 163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 164 165 #if MAX_NUMNODES > 1 166 int nr_node_ids __read_mostly = MAX_NUMNODES; 167 EXPORT_SYMBOL(nr_node_ids); 168 #endif 169 170 int page_group_by_mobility_disabled __read_mostly; 171 172 static void set_pageblock_migratetype(struct page *page, int migratetype) 173 { 174 set_pageblock_flags_group(page, (unsigned long)migratetype, 175 PB_migrate, PB_migrate_end); 176 } 177 178 #ifdef CONFIG_DEBUG_VM 179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 180 { 181 int ret = 0; 182 unsigned seq; 183 unsigned long pfn = page_to_pfn(page); 184 185 do { 186 seq = zone_span_seqbegin(zone); 187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 188 ret = 1; 189 else if (pfn < zone->zone_start_pfn) 190 ret = 1; 191 } while (zone_span_seqretry(zone, seq)); 192 193 return ret; 194 } 195 196 static int page_is_consistent(struct zone *zone, struct page *page) 197 { 198 if (!pfn_valid_within(page_to_pfn(page))) 199 return 0; 200 if (zone != page_zone(page)) 201 return 0; 202 203 return 1; 204 } 205 /* 206 * Temporary debugging check for pages not lying within a given zone. 207 */ 208 static int bad_range(struct zone *zone, struct page *page) 209 { 210 if (page_outside_zone_boundaries(zone, page)) 211 return 1; 212 if (!page_is_consistent(zone, page)) 213 return 1; 214 215 return 0; 216 } 217 #else 218 static inline int bad_range(struct zone *zone, struct page *page) 219 { 220 return 0; 221 } 222 #endif 223 224 static void bad_page(struct page *page) 225 { 226 static unsigned long resume; 227 static unsigned long nr_shown; 228 static unsigned long nr_unshown; 229 230 /* 231 * Allow a burst of 60 reports, then keep quiet for that minute; 232 * or allow a steady drip of one report per second. 233 */ 234 if (nr_shown == 60) { 235 if (time_before(jiffies, resume)) { 236 nr_unshown++; 237 goto out; 238 } 239 if (nr_unshown) { 240 printk(KERN_ALERT 241 "BUG: Bad page state: %lu messages suppressed\n", 242 nr_unshown); 243 nr_unshown = 0; 244 } 245 nr_shown = 0; 246 } 247 if (nr_shown++ == 0) 248 resume = jiffies + 60 * HZ; 249 250 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 251 current->comm, page_to_pfn(page)); 252 printk(KERN_ALERT 253 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 254 page, (void *)page->flags, page_count(page), 255 page_mapcount(page), page->mapping, page->index); 256 257 dump_stack(); 258 out: 259 /* Leave bad fields for debug, except PageBuddy could make trouble */ 260 __ClearPageBuddy(page); 261 add_taint(TAINT_BAD_PAGE); 262 } 263 264 /* 265 * Higher-order pages are called "compound pages". They are structured thusly: 266 * 267 * The first PAGE_SIZE page is called the "head page". 268 * 269 * The remaining PAGE_SIZE pages are called "tail pages". 270 * 271 * All pages have PG_compound set. All pages have their ->private pointing at 272 * the head page (even the head page has this). 273 * 274 * The first tail page's ->lru.next holds the address of the compound page's 275 * put_page() function. Its ->lru.prev holds the order of allocation. 276 * This usage means that zero-order pages may not be compound. 277 */ 278 279 static void free_compound_page(struct page *page) 280 { 281 __free_pages_ok(page, compound_order(page)); 282 } 283 284 void prep_compound_page(struct page *page, unsigned long order) 285 { 286 int i; 287 int nr_pages = 1 << order; 288 289 set_compound_page_dtor(page, free_compound_page); 290 set_compound_order(page, order); 291 __SetPageHead(page); 292 for (i = 1; i < nr_pages; i++) { 293 struct page *p = page + i; 294 295 __SetPageTail(p); 296 p->first_page = page; 297 } 298 } 299 300 #ifdef CONFIG_HUGETLBFS 301 void prep_compound_gigantic_page(struct page *page, unsigned long order) 302 { 303 int i; 304 int nr_pages = 1 << order; 305 struct page *p = page + 1; 306 307 set_compound_page_dtor(page, free_compound_page); 308 set_compound_order(page, order); 309 __SetPageHead(page); 310 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { 311 __SetPageTail(p); 312 p->first_page = page; 313 } 314 } 315 #endif 316 317 static int destroy_compound_page(struct page *page, unsigned long order) 318 { 319 int i; 320 int nr_pages = 1 << order; 321 int bad = 0; 322 323 if (unlikely(compound_order(page) != order) || 324 unlikely(!PageHead(page))) { 325 bad_page(page); 326 bad++; 327 } 328 329 __ClearPageHead(page); 330 331 for (i = 1; i < nr_pages; i++) { 332 struct page *p = page + i; 333 334 if (unlikely(!PageTail(p) | (p->first_page != page))) { 335 bad_page(page); 336 bad++; 337 } 338 __ClearPageTail(p); 339 } 340 341 return bad; 342 } 343 344 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 345 { 346 int i; 347 348 /* 349 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 350 * and __GFP_HIGHMEM from hard or soft interrupt context. 351 */ 352 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 353 for (i = 0; i < (1 << order); i++) 354 clear_highpage(page + i); 355 } 356 357 static inline void set_page_order(struct page *page, int order) 358 { 359 set_page_private(page, order); 360 __SetPageBuddy(page); 361 } 362 363 static inline void rmv_page_order(struct page *page) 364 { 365 __ClearPageBuddy(page); 366 set_page_private(page, 0); 367 } 368 369 /* 370 * Locate the struct page for both the matching buddy in our 371 * pair (buddy1) and the combined O(n+1) page they form (page). 372 * 373 * 1) Any buddy B1 will have an order O twin B2 which satisfies 374 * the following equation: 375 * B2 = B1 ^ (1 << O) 376 * For example, if the starting buddy (buddy2) is #8 its order 377 * 1 buddy is #10: 378 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 379 * 380 * 2) Any buddy B will have an order O+1 parent P which 381 * satisfies the following equation: 382 * P = B & ~(1 << O) 383 * 384 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 385 */ 386 static inline struct page * 387 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 388 { 389 unsigned long buddy_idx = page_idx ^ (1 << order); 390 391 return page + (buddy_idx - page_idx); 392 } 393 394 static inline unsigned long 395 __find_combined_index(unsigned long page_idx, unsigned int order) 396 { 397 return (page_idx & ~(1 << order)); 398 } 399 400 /* 401 * This function checks whether a page is free && is the buddy 402 * we can do coalesce a page and its buddy if 403 * (a) the buddy is not in a hole && 404 * (b) the buddy is in the buddy system && 405 * (c) a page and its buddy have the same order && 406 * (d) a page and its buddy are in the same zone. 407 * 408 * For recording whether a page is in the buddy system, we use PG_buddy. 409 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 410 * 411 * For recording page's order, we use page_private(page). 412 */ 413 static inline int page_is_buddy(struct page *page, struct page *buddy, 414 int order) 415 { 416 if (!pfn_valid_within(page_to_pfn(buddy))) 417 return 0; 418 419 if (page_zone_id(page) != page_zone_id(buddy)) 420 return 0; 421 422 if (PageBuddy(buddy) && page_order(buddy) == order) { 423 BUG_ON(page_count(buddy) != 0); 424 return 1; 425 } 426 return 0; 427 } 428 429 /* 430 * Freeing function for a buddy system allocator. 431 * 432 * The concept of a buddy system is to maintain direct-mapped table 433 * (containing bit values) for memory blocks of various "orders". 434 * The bottom level table contains the map for the smallest allocatable 435 * units of memory (here, pages), and each level above it describes 436 * pairs of units from the levels below, hence, "buddies". 437 * At a high level, all that happens here is marking the table entry 438 * at the bottom level available, and propagating the changes upward 439 * as necessary, plus some accounting needed to play nicely with other 440 * parts of the VM system. 441 * At each level, we keep a list of pages, which are heads of continuous 442 * free pages of length of (1 << order) and marked with PG_buddy. Page's 443 * order is recorded in page_private(page) field. 444 * So when we are allocating or freeing one, we can derive the state of the 445 * other. That is, if we allocate a small block, and both were 446 * free, the remainder of the region must be split into blocks. 447 * If a block is freed, and its buddy is also free, then this 448 * triggers coalescing into a block of larger size. 449 * 450 * -- wli 451 */ 452 453 static inline void __free_one_page(struct page *page, 454 struct zone *zone, unsigned int order) 455 { 456 unsigned long page_idx; 457 int order_size = 1 << order; 458 int migratetype = get_pageblock_migratetype(page); 459 460 if (unlikely(PageCompound(page))) 461 if (unlikely(destroy_compound_page(page, order))) 462 return; 463 464 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 465 466 VM_BUG_ON(page_idx & (order_size - 1)); 467 VM_BUG_ON(bad_range(zone, page)); 468 469 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size); 470 while (order < MAX_ORDER-1) { 471 unsigned long combined_idx; 472 struct page *buddy; 473 474 buddy = __page_find_buddy(page, page_idx, order); 475 if (!page_is_buddy(page, buddy, order)) 476 break; 477 478 /* Our buddy is free, merge with it and move up one order. */ 479 list_del(&buddy->lru); 480 zone->free_area[order].nr_free--; 481 rmv_page_order(buddy); 482 combined_idx = __find_combined_index(page_idx, order); 483 page = page + (combined_idx - page_idx); 484 page_idx = combined_idx; 485 order++; 486 } 487 set_page_order(page, order); 488 list_add(&page->lru, 489 &zone->free_area[order].free_list[migratetype]); 490 zone->free_area[order].nr_free++; 491 } 492 493 static inline int free_pages_check(struct page *page) 494 { 495 free_page_mlock(page); 496 if (unlikely(page_mapcount(page) | 497 (page->mapping != NULL) | 498 (page_count(page) != 0) | 499 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 500 bad_page(page); 501 return 1; 502 } 503 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 504 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 505 return 0; 506 } 507 508 /* 509 * Frees a list of pages. 510 * Assumes all pages on list are in same zone, and of same order. 511 * count is the number of pages to free. 512 * 513 * If the zone was previously in an "all pages pinned" state then look to 514 * see if this freeing clears that state. 515 * 516 * And clear the zone's pages_scanned counter, to hold off the "all pages are 517 * pinned" detection logic. 518 */ 519 static void free_pages_bulk(struct zone *zone, int count, 520 struct list_head *list, int order) 521 { 522 spin_lock(&zone->lock); 523 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 524 zone->pages_scanned = 0; 525 while (count--) { 526 struct page *page; 527 528 VM_BUG_ON(list_empty(list)); 529 page = list_entry(list->prev, struct page, lru); 530 /* have to delete it as __free_one_page list manipulates */ 531 list_del(&page->lru); 532 __free_one_page(page, zone, order); 533 } 534 spin_unlock(&zone->lock); 535 } 536 537 static void free_one_page(struct zone *zone, struct page *page, int order) 538 { 539 spin_lock(&zone->lock); 540 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE); 541 zone->pages_scanned = 0; 542 __free_one_page(page, zone, order); 543 spin_unlock(&zone->lock); 544 } 545 546 static void __free_pages_ok(struct page *page, unsigned int order) 547 { 548 unsigned long flags; 549 int i; 550 int bad = 0; 551 552 for (i = 0 ; i < (1 << order) ; ++i) 553 bad += free_pages_check(page + i); 554 if (bad) 555 return; 556 557 if (!PageHighMem(page)) { 558 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 559 debug_check_no_obj_freed(page_address(page), 560 PAGE_SIZE << order); 561 } 562 arch_free_page(page, order); 563 kernel_map_pages(page, 1 << order, 0); 564 565 local_irq_save(flags); 566 __count_vm_events(PGFREE, 1 << order); 567 free_one_page(page_zone(page), page, order); 568 local_irq_restore(flags); 569 } 570 571 /* 572 * permit the bootmem allocator to evade page validation on high-order frees 573 */ 574 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 575 { 576 if (order == 0) { 577 __ClearPageReserved(page); 578 set_page_count(page, 0); 579 set_page_refcounted(page); 580 __free_page(page); 581 } else { 582 int loop; 583 584 prefetchw(page); 585 for (loop = 0; loop < BITS_PER_LONG; loop++) { 586 struct page *p = &page[loop]; 587 588 if (loop + 1 < BITS_PER_LONG) 589 prefetchw(p + 1); 590 __ClearPageReserved(p); 591 set_page_count(p, 0); 592 } 593 594 set_page_refcounted(page); 595 __free_pages(page, order); 596 } 597 } 598 599 600 /* 601 * The order of subdivision here is critical for the IO subsystem. 602 * Please do not alter this order without good reasons and regression 603 * testing. Specifically, as large blocks of memory are subdivided, 604 * the order in which smaller blocks are delivered depends on the order 605 * they're subdivided in this function. This is the primary factor 606 * influencing the order in which pages are delivered to the IO 607 * subsystem according to empirical testing, and this is also justified 608 * by considering the behavior of a buddy system containing a single 609 * large block of memory acted on by a series of small allocations. 610 * This behavior is a critical factor in sglist merging's success. 611 * 612 * -- wli 613 */ 614 static inline void expand(struct zone *zone, struct page *page, 615 int low, int high, struct free_area *area, 616 int migratetype) 617 { 618 unsigned long size = 1 << high; 619 620 while (high > low) { 621 area--; 622 high--; 623 size >>= 1; 624 VM_BUG_ON(bad_range(zone, &page[size])); 625 list_add(&page[size].lru, &area->free_list[migratetype]); 626 area->nr_free++; 627 set_page_order(&page[size], high); 628 } 629 } 630 631 /* 632 * This page is about to be returned from the page allocator 633 */ 634 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 635 { 636 if (unlikely(page_mapcount(page) | 637 (page->mapping != NULL) | 638 (page_count(page) != 0) | 639 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 640 bad_page(page); 641 return 1; 642 } 643 644 set_page_private(page, 0); 645 set_page_refcounted(page); 646 647 arch_alloc_page(page, order); 648 kernel_map_pages(page, 1 << order, 1); 649 650 if (gfp_flags & __GFP_ZERO) 651 prep_zero_page(page, order, gfp_flags); 652 653 if (order && (gfp_flags & __GFP_COMP)) 654 prep_compound_page(page, order); 655 656 return 0; 657 } 658 659 /* 660 * Go through the free lists for the given migratetype and remove 661 * the smallest available page from the freelists 662 */ 663 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 664 int migratetype) 665 { 666 unsigned int current_order; 667 struct free_area * area; 668 struct page *page; 669 670 /* Find a page of the appropriate size in the preferred list */ 671 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 672 area = &(zone->free_area[current_order]); 673 if (list_empty(&area->free_list[migratetype])) 674 continue; 675 676 page = list_entry(area->free_list[migratetype].next, 677 struct page, lru); 678 list_del(&page->lru); 679 rmv_page_order(page); 680 area->nr_free--; 681 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order)); 682 expand(zone, page, order, current_order, area, migratetype); 683 return page; 684 } 685 686 return NULL; 687 } 688 689 690 /* 691 * This array describes the order lists are fallen back to when 692 * the free lists for the desirable migrate type are depleted 693 */ 694 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 695 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 696 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 697 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 698 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 699 }; 700 701 /* 702 * Move the free pages in a range to the free lists of the requested type. 703 * Note that start_page and end_pages are not aligned on a pageblock 704 * boundary. If alignment is required, use move_freepages_block() 705 */ 706 static int move_freepages(struct zone *zone, 707 struct page *start_page, struct page *end_page, 708 int migratetype) 709 { 710 struct page *page; 711 unsigned long order; 712 int pages_moved = 0; 713 714 #ifndef CONFIG_HOLES_IN_ZONE 715 /* 716 * page_zone is not safe to call in this context when 717 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 718 * anyway as we check zone boundaries in move_freepages_block(). 719 * Remove at a later date when no bug reports exist related to 720 * grouping pages by mobility 721 */ 722 BUG_ON(page_zone(start_page) != page_zone(end_page)); 723 #endif 724 725 for (page = start_page; page <= end_page;) { 726 /* Make sure we are not inadvertently changing nodes */ 727 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 728 729 if (!pfn_valid_within(page_to_pfn(page))) { 730 page++; 731 continue; 732 } 733 734 if (!PageBuddy(page)) { 735 page++; 736 continue; 737 } 738 739 order = page_order(page); 740 list_del(&page->lru); 741 list_add(&page->lru, 742 &zone->free_area[order].free_list[migratetype]); 743 page += 1 << order; 744 pages_moved += 1 << order; 745 } 746 747 return pages_moved; 748 } 749 750 static int move_freepages_block(struct zone *zone, struct page *page, 751 int migratetype) 752 { 753 unsigned long start_pfn, end_pfn; 754 struct page *start_page, *end_page; 755 756 start_pfn = page_to_pfn(page); 757 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 758 start_page = pfn_to_page(start_pfn); 759 end_page = start_page + pageblock_nr_pages - 1; 760 end_pfn = start_pfn + pageblock_nr_pages - 1; 761 762 /* Do not cross zone boundaries */ 763 if (start_pfn < zone->zone_start_pfn) 764 start_page = page; 765 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 766 return 0; 767 768 return move_freepages(zone, start_page, end_page, migratetype); 769 } 770 771 /* Remove an element from the buddy allocator from the fallback list */ 772 static struct page *__rmqueue_fallback(struct zone *zone, int order, 773 int start_migratetype) 774 { 775 struct free_area * area; 776 int current_order; 777 struct page *page; 778 int migratetype, i; 779 780 /* Find the largest possible block of pages in the other list */ 781 for (current_order = MAX_ORDER-1; current_order >= order; 782 --current_order) { 783 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 784 migratetype = fallbacks[start_migratetype][i]; 785 786 /* MIGRATE_RESERVE handled later if necessary */ 787 if (migratetype == MIGRATE_RESERVE) 788 continue; 789 790 area = &(zone->free_area[current_order]); 791 if (list_empty(&area->free_list[migratetype])) 792 continue; 793 794 page = list_entry(area->free_list[migratetype].next, 795 struct page, lru); 796 area->nr_free--; 797 798 /* 799 * If breaking a large block of pages, move all free 800 * pages to the preferred allocation list. If falling 801 * back for a reclaimable kernel allocation, be more 802 * agressive about taking ownership of free pages 803 */ 804 if (unlikely(current_order >= (pageblock_order >> 1)) || 805 start_migratetype == MIGRATE_RECLAIMABLE) { 806 unsigned long pages; 807 pages = move_freepages_block(zone, page, 808 start_migratetype); 809 810 /* Claim the whole block if over half of it is free */ 811 if (pages >= (1 << (pageblock_order-1))) 812 set_pageblock_migratetype(page, 813 start_migratetype); 814 815 migratetype = start_migratetype; 816 } 817 818 /* Remove the page from the freelists */ 819 list_del(&page->lru); 820 rmv_page_order(page); 821 __mod_zone_page_state(zone, NR_FREE_PAGES, 822 -(1UL << order)); 823 824 if (current_order == pageblock_order) 825 set_pageblock_migratetype(page, 826 start_migratetype); 827 828 expand(zone, page, order, current_order, area, migratetype); 829 return page; 830 } 831 } 832 833 /* Use MIGRATE_RESERVE rather than fail an allocation */ 834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE); 835 } 836 837 /* 838 * Do the hard work of removing an element from the buddy allocator. 839 * Call me with the zone->lock already held. 840 */ 841 static struct page *__rmqueue(struct zone *zone, unsigned int order, 842 int migratetype) 843 { 844 struct page *page; 845 846 page = __rmqueue_smallest(zone, order, migratetype); 847 848 if (unlikely(!page)) 849 page = __rmqueue_fallback(zone, order, migratetype); 850 851 return page; 852 } 853 854 /* 855 * Obtain a specified number of elements from the buddy allocator, all under 856 * a single hold of the lock, for efficiency. Add them to the supplied list. 857 * Returns the number of new pages which were placed at *list. 858 */ 859 static int rmqueue_bulk(struct zone *zone, unsigned int order, 860 unsigned long count, struct list_head *list, 861 int migratetype) 862 { 863 int i; 864 865 spin_lock(&zone->lock); 866 for (i = 0; i < count; ++i) { 867 struct page *page = __rmqueue(zone, order, migratetype); 868 if (unlikely(page == NULL)) 869 break; 870 871 /* 872 * Split buddy pages returned by expand() are received here 873 * in physical page order. The page is added to the callers and 874 * list and the list head then moves forward. From the callers 875 * perspective, the linked list is ordered by page number in 876 * some conditions. This is useful for IO devices that can 877 * merge IO requests if the physical pages are ordered 878 * properly. 879 */ 880 list_add(&page->lru, list); 881 set_page_private(page, migratetype); 882 list = &page->lru; 883 } 884 spin_unlock(&zone->lock); 885 return i; 886 } 887 888 #ifdef CONFIG_NUMA 889 /* 890 * Called from the vmstat counter updater to drain pagesets of this 891 * currently executing processor on remote nodes after they have 892 * expired. 893 * 894 * Note that this function must be called with the thread pinned to 895 * a single processor. 896 */ 897 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 898 { 899 unsigned long flags; 900 int to_drain; 901 902 local_irq_save(flags); 903 if (pcp->count >= pcp->batch) 904 to_drain = pcp->batch; 905 else 906 to_drain = pcp->count; 907 free_pages_bulk(zone, to_drain, &pcp->list, 0); 908 pcp->count -= to_drain; 909 local_irq_restore(flags); 910 } 911 #endif 912 913 /* 914 * Drain pages of the indicated processor. 915 * 916 * The processor must either be the current processor and the 917 * thread pinned to the current processor or a processor that 918 * is not online. 919 */ 920 static void drain_pages(unsigned int cpu) 921 { 922 unsigned long flags; 923 struct zone *zone; 924 925 for_each_zone(zone) { 926 struct per_cpu_pageset *pset; 927 struct per_cpu_pages *pcp; 928 929 if (!populated_zone(zone)) 930 continue; 931 932 pset = zone_pcp(zone, cpu); 933 934 pcp = &pset->pcp; 935 local_irq_save(flags); 936 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 937 pcp->count = 0; 938 local_irq_restore(flags); 939 } 940 } 941 942 /* 943 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 944 */ 945 void drain_local_pages(void *arg) 946 { 947 drain_pages(smp_processor_id()); 948 } 949 950 /* 951 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 952 */ 953 void drain_all_pages(void) 954 { 955 on_each_cpu(drain_local_pages, NULL, 1); 956 } 957 958 #ifdef CONFIG_HIBERNATION 959 960 void mark_free_pages(struct zone *zone) 961 { 962 unsigned long pfn, max_zone_pfn; 963 unsigned long flags; 964 int order, t; 965 struct list_head *curr; 966 967 if (!zone->spanned_pages) 968 return; 969 970 spin_lock_irqsave(&zone->lock, flags); 971 972 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 973 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 974 if (pfn_valid(pfn)) { 975 struct page *page = pfn_to_page(pfn); 976 977 if (!swsusp_page_is_forbidden(page)) 978 swsusp_unset_page_free(page); 979 } 980 981 for_each_migratetype_order(order, t) { 982 list_for_each(curr, &zone->free_area[order].free_list[t]) { 983 unsigned long i; 984 985 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 986 for (i = 0; i < (1UL << order); i++) 987 swsusp_set_page_free(pfn_to_page(pfn + i)); 988 } 989 } 990 spin_unlock_irqrestore(&zone->lock, flags); 991 } 992 #endif /* CONFIG_PM */ 993 994 /* 995 * Free a 0-order page 996 */ 997 static void free_hot_cold_page(struct page *page, int cold) 998 { 999 struct zone *zone = page_zone(page); 1000 struct per_cpu_pages *pcp; 1001 unsigned long flags; 1002 1003 if (PageAnon(page)) 1004 page->mapping = NULL; 1005 if (free_pages_check(page)) 1006 return; 1007 1008 if (!PageHighMem(page)) { 1009 debug_check_no_locks_freed(page_address(page), PAGE_SIZE); 1010 debug_check_no_obj_freed(page_address(page), PAGE_SIZE); 1011 } 1012 arch_free_page(page, 0); 1013 kernel_map_pages(page, 1, 0); 1014 1015 pcp = &zone_pcp(zone, get_cpu())->pcp; 1016 local_irq_save(flags); 1017 __count_vm_event(PGFREE); 1018 if (cold) 1019 list_add_tail(&page->lru, &pcp->list); 1020 else 1021 list_add(&page->lru, &pcp->list); 1022 set_page_private(page, get_pageblock_migratetype(page)); 1023 pcp->count++; 1024 if (pcp->count >= pcp->high) { 1025 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 1026 pcp->count -= pcp->batch; 1027 } 1028 local_irq_restore(flags); 1029 put_cpu(); 1030 } 1031 1032 void free_hot_page(struct page *page) 1033 { 1034 free_hot_cold_page(page, 0); 1035 } 1036 1037 void free_cold_page(struct page *page) 1038 { 1039 free_hot_cold_page(page, 1); 1040 } 1041 1042 /* 1043 * split_page takes a non-compound higher-order page, and splits it into 1044 * n (1<<order) sub-pages: page[0..n] 1045 * Each sub-page must be freed individually. 1046 * 1047 * Note: this is probably too low level an operation for use in drivers. 1048 * Please consult with lkml before using this in your driver. 1049 */ 1050 void split_page(struct page *page, unsigned int order) 1051 { 1052 int i; 1053 1054 VM_BUG_ON(PageCompound(page)); 1055 VM_BUG_ON(!page_count(page)); 1056 for (i = 1; i < (1 << order); i++) 1057 set_page_refcounted(page + i); 1058 } 1059 1060 /* 1061 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1062 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1063 * or two. 1064 */ 1065 static struct page *buffered_rmqueue(struct zone *preferred_zone, 1066 struct zone *zone, int order, gfp_t gfp_flags) 1067 { 1068 unsigned long flags; 1069 struct page *page; 1070 int cold = !!(gfp_flags & __GFP_COLD); 1071 int cpu; 1072 int migratetype = allocflags_to_migratetype(gfp_flags); 1073 1074 again: 1075 cpu = get_cpu(); 1076 if (likely(order == 0)) { 1077 struct per_cpu_pages *pcp; 1078 1079 pcp = &zone_pcp(zone, cpu)->pcp; 1080 local_irq_save(flags); 1081 if (!pcp->count) { 1082 pcp->count = rmqueue_bulk(zone, 0, 1083 pcp->batch, &pcp->list, migratetype); 1084 if (unlikely(!pcp->count)) 1085 goto failed; 1086 } 1087 1088 /* Find a page of the appropriate migrate type */ 1089 if (cold) { 1090 list_for_each_entry_reverse(page, &pcp->list, lru) 1091 if (page_private(page) == migratetype) 1092 break; 1093 } else { 1094 list_for_each_entry(page, &pcp->list, lru) 1095 if (page_private(page) == migratetype) 1096 break; 1097 } 1098 1099 /* Allocate more to the pcp list if necessary */ 1100 if (unlikely(&page->lru == &pcp->list)) { 1101 pcp->count += rmqueue_bulk(zone, 0, 1102 pcp->batch, &pcp->list, migratetype); 1103 page = list_entry(pcp->list.next, struct page, lru); 1104 } 1105 1106 list_del(&page->lru); 1107 pcp->count--; 1108 } else { 1109 spin_lock_irqsave(&zone->lock, flags); 1110 page = __rmqueue(zone, order, migratetype); 1111 spin_unlock(&zone->lock); 1112 if (!page) 1113 goto failed; 1114 } 1115 1116 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1117 zone_statistics(preferred_zone, zone); 1118 local_irq_restore(flags); 1119 put_cpu(); 1120 1121 VM_BUG_ON(bad_range(zone, page)); 1122 if (prep_new_page(page, order, gfp_flags)) 1123 goto again; 1124 return page; 1125 1126 failed: 1127 local_irq_restore(flags); 1128 put_cpu(); 1129 return NULL; 1130 } 1131 1132 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 1133 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 1134 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 1135 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 1136 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1137 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1138 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1139 1140 #ifdef CONFIG_FAIL_PAGE_ALLOC 1141 1142 static struct fail_page_alloc_attr { 1143 struct fault_attr attr; 1144 1145 u32 ignore_gfp_highmem; 1146 u32 ignore_gfp_wait; 1147 u32 min_order; 1148 1149 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1150 1151 struct dentry *ignore_gfp_highmem_file; 1152 struct dentry *ignore_gfp_wait_file; 1153 struct dentry *min_order_file; 1154 1155 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1156 1157 } fail_page_alloc = { 1158 .attr = FAULT_ATTR_INITIALIZER, 1159 .ignore_gfp_wait = 1, 1160 .ignore_gfp_highmem = 1, 1161 .min_order = 1, 1162 }; 1163 1164 static int __init setup_fail_page_alloc(char *str) 1165 { 1166 return setup_fault_attr(&fail_page_alloc.attr, str); 1167 } 1168 __setup("fail_page_alloc=", setup_fail_page_alloc); 1169 1170 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1171 { 1172 if (order < fail_page_alloc.min_order) 1173 return 0; 1174 if (gfp_mask & __GFP_NOFAIL) 1175 return 0; 1176 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1177 return 0; 1178 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1179 return 0; 1180 1181 return should_fail(&fail_page_alloc.attr, 1 << order); 1182 } 1183 1184 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1185 1186 static int __init fail_page_alloc_debugfs(void) 1187 { 1188 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1189 struct dentry *dir; 1190 int err; 1191 1192 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1193 "fail_page_alloc"); 1194 if (err) 1195 return err; 1196 dir = fail_page_alloc.attr.dentries.dir; 1197 1198 fail_page_alloc.ignore_gfp_wait_file = 1199 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1200 &fail_page_alloc.ignore_gfp_wait); 1201 1202 fail_page_alloc.ignore_gfp_highmem_file = 1203 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1204 &fail_page_alloc.ignore_gfp_highmem); 1205 fail_page_alloc.min_order_file = 1206 debugfs_create_u32("min-order", mode, dir, 1207 &fail_page_alloc.min_order); 1208 1209 if (!fail_page_alloc.ignore_gfp_wait_file || 1210 !fail_page_alloc.ignore_gfp_highmem_file || 1211 !fail_page_alloc.min_order_file) { 1212 err = -ENOMEM; 1213 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1214 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1215 debugfs_remove(fail_page_alloc.min_order_file); 1216 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1217 } 1218 1219 return err; 1220 } 1221 1222 late_initcall(fail_page_alloc_debugfs); 1223 1224 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1225 1226 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1227 1228 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1229 { 1230 return 0; 1231 } 1232 1233 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1234 1235 /* 1236 * Return 1 if free pages are above 'mark'. This takes into account the order 1237 * of the allocation. 1238 */ 1239 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1240 int classzone_idx, int alloc_flags) 1241 { 1242 /* free_pages my go negative - that's OK */ 1243 long min = mark; 1244 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1245 int o; 1246 1247 if (alloc_flags & ALLOC_HIGH) 1248 min -= min / 2; 1249 if (alloc_flags & ALLOC_HARDER) 1250 min -= min / 4; 1251 1252 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1253 return 0; 1254 for (o = 0; o < order; o++) { 1255 /* At the next order, this order's pages become unavailable */ 1256 free_pages -= z->free_area[o].nr_free << o; 1257 1258 /* Require fewer higher order pages to be free */ 1259 min >>= 1; 1260 1261 if (free_pages <= min) 1262 return 0; 1263 } 1264 return 1; 1265 } 1266 1267 #ifdef CONFIG_NUMA 1268 /* 1269 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1270 * skip over zones that are not allowed by the cpuset, or that have 1271 * been recently (in last second) found to be nearly full. See further 1272 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1273 * that have to skip over a lot of full or unallowed zones. 1274 * 1275 * If the zonelist cache is present in the passed in zonelist, then 1276 * returns a pointer to the allowed node mask (either the current 1277 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1278 * 1279 * If the zonelist cache is not available for this zonelist, does 1280 * nothing and returns NULL. 1281 * 1282 * If the fullzones BITMAP in the zonelist cache is stale (more than 1283 * a second since last zap'd) then we zap it out (clear its bits.) 1284 * 1285 * We hold off even calling zlc_setup, until after we've checked the 1286 * first zone in the zonelist, on the theory that most allocations will 1287 * be satisfied from that first zone, so best to examine that zone as 1288 * quickly as we can. 1289 */ 1290 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1291 { 1292 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1293 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1294 1295 zlc = zonelist->zlcache_ptr; 1296 if (!zlc) 1297 return NULL; 1298 1299 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1300 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1301 zlc->last_full_zap = jiffies; 1302 } 1303 1304 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1305 &cpuset_current_mems_allowed : 1306 &node_states[N_HIGH_MEMORY]; 1307 return allowednodes; 1308 } 1309 1310 /* 1311 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1312 * if it is worth looking at further for free memory: 1313 * 1) Check that the zone isn't thought to be full (doesn't have its 1314 * bit set in the zonelist_cache fullzones BITMAP). 1315 * 2) Check that the zones node (obtained from the zonelist_cache 1316 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1317 * Return true (non-zero) if zone is worth looking at further, or 1318 * else return false (zero) if it is not. 1319 * 1320 * This check -ignores- the distinction between various watermarks, 1321 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1322 * found to be full for any variation of these watermarks, it will 1323 * be considered full for up to one second by all requests, unless 1324 * we are so low on memory on all allowed nodes that we are forced 1325 * into the second scan of the zonelist. 1326 * 1327 * In the second scan we ignore this zonelist cache and exactly 1328 * apply the watermarks to all zones, even it is slower to do so. 1329 * We are low on memory in the second scan, and should leave no stone 1330 * unturned looking for a free page. 1331 */ 1332 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1333 nodemask_t *allowednodes) 1334 { 1335 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1336 int i; /* index of *z in zonelist zones */ 1337 int n; /* node that zone *z is on */ 1338 1339 zlc = zonelist->zlcache_ptr; 1340 if (!zlc) 1341 return 1; 1342 1343 i = z - zonelist->_zonerefs; 1344 n = zlc->z_to_n[i]; 1345 1346 /* This zone is worth trying if it is allowed but not full */ 1347 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1348 } 1349 1350 /* 1351 * Given 'z' scanning a zonelist, set the corresponding bit in 1352 * zlc->fullzones, so that subsequent attempts to allocate a page 1353 * from that zone don't waste time re-examining it. 1354 */ 1355 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1356 { 1357 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1358 int i; /* index of *z in zonelist zones */ 1359 1360 zlc = zonelist->zlcache_ptr; 1361 if (!zlc) 1362 return; 1363 1364 i = z - zonelist->_zonerefs; 1365 1366 set_bit(i, zlc->fullzones); 1367 } 1368 1369 #else /* CONFIG_NUMA */ 1370 1371 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1372 { 1373 return NULL; 1374 } 1375 1376 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1377 nodemask_t *allowednodes) 1378 { 1379 return 1; 1380 } 1381 1382 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1383 { 1384 } 1385 #endif /* CONFIG_NUMA */ 1386 1387 /* 1388 * get_page_from_freelist goes through the zonelist trying to allocate 1389 * a page. 1390 */ 1391 static struct page * 1392 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1393 struct zonelist *zonelist, int high_zoneidx, int alloc_flags) 1394 { 1395 struct zoneref *z; 1396 struct page *page = NULL; 1397 int classzone_idx; 1398 struct zone *zone, *preferred_zone; 1399 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1400 int zlc_active = 0; /* set if using zonelist_cache */ 1401 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1402 1403 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask, 1404 &preferred_zone); 1405 if (!preferred_zone) 1406 return NULL; 1407 1408 classzone_idx = zone_idx(preferred_zone); 1409 1410 zonelist_scan: 1411 /* 1412 * Scan zonelist, looking for a zone with enough free. 1413 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1414 */ 1415 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1416 high_zoneidx, nodemask) { 1417 if (NUMA_BUILD && zlc_active && 1418 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1419 continue; 1420 if ((alloc_flags & ALLOC_CPUSET) && 1421 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1422 goto try_next_zone; 1423 1424 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1425 unsigned long mark; 1426 if (alloc_flags & ALLOC_WMARK_MIN) 1427 mark = zone->pages_min; 1428 else if (alloc_flags & ALLOC_WMARK_LOW) 1429 mark = zone->pages_low; 1430 else 1431 mark = zone->pages_high; 1432 if (!zone_watermark_ok(zone, order, mark, 1433 classzone_idx, alloc_flags)) { 1434 if (!zone_reclaim_mode || 1435 !zone_reclaim(zone, gfp_mask, order)) 1436 goto this_zone_full; 1437 } 1438 } 1439 1440 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask); 1441 if (page) 1442 break; 1443 this_zone_full: 1444 if (NUMA_BUILD) 1445 zlc_mark_zone_full(zonelist, z); 1446 try_next_zone: 1447 if (NUMA_BUILD && !did_zlc_setup) { 1448 /* we do zlc_setup after the first zone is tried */ 1449 allowednodes = zlc_setup(zonelist, alloc_flags); 1450 zlc_active = 1; 1451 did_zlc_setup = 1; 1452 } 1453 } 1454 1455 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1456 /* Disable zlc cache for second zonelist scan */ 1457 zlc_active = 0; 1458 goto zonelist_scan; 1459 } 1460 return page; 1461 } 1462 1463 /* 1464 * This is the 'heart' of the zoned buddy allocator. 1465 */ 1466 struct page * 1467 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order, 1468 struct zonelist *zonelist, nodemask_t *nodemask) 1469 { 1470 const gfp_t wait = gfp_mask & __GFP_WAIT; 1471 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 1472 struct zoneref *z; 1473 struct zone *zone; 1474 struct page *page; 1475 struct reclaim_state reclaim_state; 1476 struct task_struct *p = current; 1477 int do_retry; 1478 int alloc_flags; 1479 unsigned long did_some_progress; 1480 unsigned long pages_reclaimed = 0; 1481 1482 might_sleep_if(wait); 1483 1484 if (should_fail_alloc_page(gfp_mask, order)) 1485 return NULL; 1486 1487 restart: 1488 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */ 1489 1490 if (unlikely(!z->zone)) { 1491 /* 1492 * Happens if we have an empty zonelist as a result of 1493 * GFP_THISNODE being used on a memoryless node 1494 */ 1495 return NULL; 1496 } 1497 1498 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 1499 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET); 1500 if (page) 1501 goto got_pg; 1502 1503 /* 1504 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1505 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1506 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1507 * using a larger set of nodes after it has established that the 1508 * allowed per node queues are empty and that nodes are 1509 * over allocated. 1510 */ 1511 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1512 goto nopage; 1513 1514 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1515 wakeup_kswapd(zone, order); 1516 1517 /* 1518 * OK, we're below the kswapd watermark and have kicked background 1519 * reclaim. Now things get more complex, so set up alloc_flags according 1520 * to how we want to proceed. 1521 * 1522 * The caller may dip into page reserves a bit more if the caller 1523 * cannot run direct reclaim, or if the caller has realtime scheduling 1524 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1525 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1526 */ 1527 alloc_flags = ALLOC_WMARK_MIN; 1528 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 1529 alloc_flags |= ALLOC_HARDER; 1530 if (gfp_mask & __GFP_HIGH) 1531 alloc_flags |= ALLOC_HIGH; 1532 if (wait) 1533 alloc_flags |= ALLOC_CPUSET; 1534 1535 /* 1536 * Go through the zonelist again. Let __GFP_HIGH and allocations 1537 * coming from realtime tasks go deeper into reserves. 1538 * 1539 * This is the last chance, in general, before the goto nopage. 1540 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1541 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1542 */ 1543 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1544 high_zoneidx, alloc_flags); 1545 if (page) 1546 goto got_pg; 1547 1548 /* This allocation should allow future memory freeing. */ 1549 1550 rebalance: 1551 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 1552 && !in_interrupt()) { 1553 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 1554 nofail_alloc: 1555 /* go through the zonelist yet again, ignoring mins */ 1556 page = get_page_from_freelist(gfp_mask, nodemask, order, 1557 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS); 1558 if (page) 1559 goto got_pg; 1560 if (gfp_mask & __GFP_NOFAIL) { 1561 congestion_wait(WRITE, HZ/50); 1562 goto nofail_alloc; 1563 } 1564 } 1565 goto nopage; 1566 } 1567 1568 /* Atomic allocations - we can't balance anything */ 1569 if (!wait) 1570 goto nopage; 1571 1572 cond_resched(); 1573 1574 /* We now go into synchronous reclaim */ 1575 cpuset_memory_pressure_bump(); 1576 /* 1577 * The task's cpuset might have expanded its set of allowable nodes 1578 */ 1579 cpuset_update_task_memory_state(); 1580 p->flags |= PF_MEMALLOC; 1581 reclaim_state.reclaimed_slab = 0; 1582 p->reclaim_state = &reclaim_state; 1583 1584 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask); 1585 1586 p->reclaim_state = NULL; 1587 p->flags &= ~PF_MEMALLOC; 1588 1589 cond_resched(); 1590 1591 if (order != 0) 1592 drain_all_pages(); 1593 1594 if (likely(did_some_progress)) { 1595 page = get_page_from_freelist(gfp_mask, nodemask, order, 1596 zonelist, high_zoneidx, alloc_flags); 1597 if (page) 1598 goto got_pg; 1599 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1600 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1601 schedule_timeout_uninterruptible(1); 1602 goto restart; 1603 } 1604 1605 /* 1606 * Go through the zonelist yet one more time, keep 1607 * very high watermark here, this is only to catch 1608 * a parallel oom killing, we must fail if we're still 1609 * under heavy pressure. 1610 */ 1611 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1612 order, zonelist, high_zoneidx, 1613 ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1614 if (page) { 1615 clear_zonelist_oom(zonelist, gfp_mask); 1616 goto got_pg; 1617 } 1618 1619 /* The OOM killer will not help higher order allocs so fail */ 1620 if (order > PAGE_ALLOC_COSTLY_ORDER) { 1621 clear_zonelist_oom(zonelist, gfp_mask); 1622 goto nopage; 1623 } 1624 1625 out_of_memory(zonelist, gfp_mask, order); 1626 clear_zonelist_oom(zonelist, gfp_mask); 1627 goto restart; 1628 } 1629 1630 /* 1631 * Don't let big-order allocations loop unless the caller explicitly 1632 * requests that. Wait for some write requests to complete then retry. 1633 * 1634 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1635 * means __GFP_NOFAIL, but that may not be true in other 1636 * implementations. 1637 * 1638 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1639 * specified, then we retry until we no longer reclaim any pages 1640 * (above), or we've reclaimed an order of pages at least as 1641 * large as the allocation's order. In both cases, if the 1642 * allocation still fails, we stop retrying. 1643 */ 1644 pages_reclaimed += did_some_progress; 1645 do_retry = 0; 1646 if (!(gfp_mask & __GFP_NORETRY)) { 1647 if (order <= PAGE_ALLOC_COSTLY_ORDER) { 1648 do_retry = 1; 1649 } else { 1650 if (gfp_mask & __GFP_REPEAT && 1651 pages_reclaimed < (1 << order)) 1652 do_retry = 1; 1653 } 1654 if (gfp_mask & __GFP_NOFAIL) 1655 do_retry = 1; 1656 } 1657 if (do_retry) { 1658 congestion_wait(WRITE, HZ/50); 1659 goto rebalance; 1660 } 1661 1662 nopage: 1663 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1664 printk(KERN_WARNING "%s: page allocation failure." 1665 " order:%d, mode:0x%x\n", 1666 p->comm, order, gfp_mask); 1667 dump_stack(); 1668 show_mem(); 1669 } 1670 got_pg: 1671 return page; 1672 } 1673 EXPORT_SYMBOL(__alloc_pages_internal); 1674 1675 /* 1676 * Common helper functions. 1677 */ 1678 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1679 { 1680 struct page * page; 1681 page = alloc_pages(gfp_mask, order); 1682 if (!page) 1683 return 0; 1684 return (unsigned long) page_address(page); 1685 } 1686 1687 EXPORT_SYMBOL(__get_free_pages); 1688 1689 unsigned long get_zeroed_page(gfp_t gfp_mask) 1690 { 1691 struct page * page; 1692 1693 /* 1694 * get_zeroed_page() returns a 32-bit address, which cannot represent 1695 * a highmem page 1696 */ 1697 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1698 1699 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1700 if (page) 1701 return (unsigned long) page_address(page); 1702 return 0; 1703 } 1704 1705 EXPORT_SYMBOL(get_zeroed_page); 1706 1707 void __pagevec_free(struct pagevec *pvec) 1708 { 1709 int i = pagevec_count(pvec); 1710 1711 while (--i >= 0) 1712 free_hot_cold_page(pvec->pages[i], pvec->cold); 1713 } 1714 1715 void __free_pages(struct page *page, unsigned int order) 1716 { 1717 if (put_page_testzero(page)) { 1718 if (order == 0) 1719 free_hot_page(page); 1720 else 1721 __free_pages_ok(page, order); 1722 } 1723 } 1724 1725 EXPORT_SYMBOL(__free_pages); 1726 1727 void free_pages(unsigned long addr, unsigned int order) 1728 { 1729 if (addr != 0) { 1730 VM_BUG_ON(!virt_addr_valid((void *)addr)); 1731 __free_pages(virt_to_page((void *)addr), order); 1732 } 1733 } 1734 1735 EXPORT_SYMBOL(free_pages); 1736 1737 /** 1738 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 1739 * @size: the number of bytes to allocate 1740 * @gfp_mask: GFP flags for the allocation 1741 * 1742 * This function is similar to alloc_pages(), except that it allocates the 1743 * minimum number of pages to satisfy the request. alloc_pages() can only 1744 * allocate memory in power-of-two pages. 1745 * 1746 * This function is also limited by MAX_ORDER. 1747 * 1748 * Memory allocated by this function must be released by free_pages_exact(). 1749 */ 1750 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 1751 { 1752 unsigned int order = get_order(size); 1753 unsigned long addr; 1754 1755 addr = __get_free_pages(gfp_mask, order); 1756 if (addr) { 1757 unsigned long alloc_end = addr + (PAGE_SIZE << order); 1758 unsigned long used = addr + PAGE_ALIGN(size); 1759 1760 split_page(virt_to_page(addr), order); 1761 while (used < alloc_end) { 1762 free_page(used); 1763 used += PAGE_SIZE; 1764 } 1765 } 1766 1767 return (void *)addr; 1768 } 1769 EXPORT_SYMBOL(alloc_pages_exact); 1770 1771 /** 1772 * free_pages_exact - release memory allocated via alloc_pages_exact() 1773 * @virt: the value returned by alloc_pages_exact. 1774 * @size: size of allocation, same value as passed to alloc_pages_exact(). 1775 * 1776 * Release the memory allocated by a previous call to alloc_pages_exact. 1777 */ 1778 void free_pages_exact(void *virt, size_t size) 1779 { 1780 unsigned long addr = (unsigned long)virt; 1781 unsigned long end = addr + PAGE_ALIGN(size); 1782 1783 while (addr < end) { 1784 free_page(addr); 1785 addr += PAGE_SIZE; 1786 } 1787 } 1788 EXPORT_SYMBOL(free_pages_exact); 1789 1790 static unsigned int nr_free_zone_pages(int offset) 1791 { 1792 struct zoneref *z; 1793 struct zone *zone; 1794 1795 /* Just pick one node, since fallback list is circular */ 1796 unsigned int sum = 0; 1797 1798 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 1799 1800 for_each_zone_zonelist(zone, z, zonelist, offset) { 1801 unsigned long size = zone->present_pages; 1802 unsigned long high = zone->pages_high; 1803 if (size > high) 1804 sum += size - high; 1805 } 1806 1807 return sum; 1808 } 1809 1810 /* 1811 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1812 */ 1813 unsigned int nr_free_buffer_pages(void) 1814 { 1815 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1816 } 1817 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 1818 1819 /* 1820 * Amount of free RAM allocatable within all zones 1821 */ 1822 unsigned int nr_free_pagecache_pages(void) 1823 { 1824 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 1825 } 1826 1827 static inline void show_node(struct zone *zone) 1828 { 1829 if (NUMA_BUILD) 1830 printk("Node %d ", zone_to_nid(zone)); 1831 } 1832 1833 void si_meminfo(struct sysinfo *val) 1834 { 1835 val->totalram = totalram_pages; 1836 val->sharedram = 0; 1837 val->freeram = global_page_state(NR_FREE_PAGES); 1838 val->bufferram = nr_blockdev_pages(); 1839 val->totalhigh = totalhigh_pages; 1840 val->freehigh = nr_free_highpages(); 1841 val->mem_unit = PAGE_SIZE; 1842 } 1843 1844 EXPORT_SYMBOL(si_meminfo); 1845 1846 #ifdef CONFIG_NUMA 1847 void si_meminfo_node(struct sysinfo *val, int nid) 1848 { 1849 pg_data_t *pgdat = NODE_DATA(nid); 1850 1851 val->totalram = pgdat->node_present_pages; 1852 val->freeram = node_page_state(nid, NR_FREE_PAGES); 1853 #ifdef CONFIG_HIGHMEM 1854 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1855 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 1856 NR_FREE_PAGES); 1857 #else 1858 val->totalhigh = 0; 1859 val->freehigh = 0; 1860 #endif 1861 val->mem_unit = PAGE_SIZE; 1862 } 1863 #endif 1864 1865 #define K(x) ((x) << (PAGE_SHIFT-10)) 1866 1867 /* 1868 * Show free area list (used inside shift_scroll-lock stuff) 1869 * We also calculate the percentage fragmentation. We do this by counting the 1870 * memory on each free list with the exception of the first item on the list. 1871 */ 1872 void show_free_areas(void) 1873 { 1874 int cpu; 1875 struct zone *zone; 1876 1877 for_each_zone(zone) { 1878 if (!populated_zone(zone)) 1879 continue; 1880 1881 show_node(zone); 1882 printk("%s per-cpu:\n", zone->name); 1883 1884 for_each_online_cpu(cpu) { 1885 struct per_cpu_pageset *pageset; 1886 1887 pageset = zone_pcp(zone, cpu); 1888 1889 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 1890 cpu, pageset->pcp.high, 1891 pageset->pcp.batch, pageset->pcp.count); 1892 } 1893 } 1894 1895 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n" 1896 " inactive_file:%lu" 1897 //TODO: check/adjust line lengths 1898 #ifdef CONFIG_UNEVICTABLE_LRU 1899 " unevictable:%lu" 1900 #endif 1901 " dirty:%lu writeback:%lu unstable:%lu\n" 1902 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n", 1903 global_page_state(NR_ACTIVE_ANON), 1904 global_page_state(NR_ACTIVE_FILE), 1905 global_page_state(NR_INACTIVE_ANON), 1906 global_page_state(NR_INACTIVE_FILE), 1907 #ifdef CONFIG_UNEVICTABLE_LRU 1908 global_page_state(NR_UNEVICTABLE), 1909 #endif 1910 global_page_state(NR_FILE_DIRTY), 1911 global_page_state(NR_WRITEBACK), 1912 global_page_state(NR_UNSTABLE_NFS), 1913 global_page_state(NR_FREE_PAGES), 1914 global_page_state(NR_SLAB_RECLAIMABLE) + 1915 global_page_state(NR_SLAB_UNRECLAIMABLE), 1916 global_page_state(NR_FILE_MAPPED), 1917 global_page_state(NR_PAGETABLE), 1918 global_page_state(NR_BOUNCE)); 1919 1920 for_each_zone(zone) { 1921 int i; 1922 1923 if (!populated_zone(zone)) 1924 continue; 1925 1926 show_node(zone); 1927 printk("%s" 1928 " free:%lukB" 1929 " min:%lukB" 1930 " low:%lukB" 1931 " high:%lukB" 1932 " active_anon:%lukB" 1933 " inactive_anon:%lukB" 1934 " active_file:%lukB" 1935 " inactive_file:%lukB" 1936 #ifdef CONFIG_UNEVICTABLE_LRU 1937 " unevictable:%lukB" 1938 #endif 1939 " present:%lukB" 1940 " pages_scanned:%lu" 1941 " all_unreclaimable? %s" 1942 "\n", 1943 zone->name, 1944 K(zone_page_state(zone, NR_FREE_PAGES)), 1945 K(zone->pages_min), 1946 K(zone->pages_low), 1947 K(zone->pages_high), 1948 K(zone_page_state(zone, NR_ACTIVE_ANON)), 1949 K(zone_page_state(zone, NR_INACTIVE_ANON)), 1950 K(zone_page_state(zone, NR_ACTIVE_FILE)), 1951 K(zone_page_state(zone, NR_INACTIVE_FILE)), 1952 #ifdef CONFIG_UNEVICTABLE_LRU 1953 K(zone_page_state(zone, NR_UNEVICTABLE)), 1954 #endif 1955 K(zone->present_pages), 1956 zone->pages_scanned, 1957 (zone_is_all_unreclaimable(zone) ? "yes" : "no") 1958 ); 1959 printk("lowmem_reserve[]:"); 1960 for (i = 0; i < MAX_NR_ZONES; i++) 1961 printk(" %lu", zone->lowmem_reserve[i]); 1962 printk("\n"); 1963 } 1964 1965 for_each_zone(zone) { 1966 unsigned long nr[MAX_ORDER], flags, order, total = 0; 1967 1968 if (!populated_zone(zone)) 1969 continue; 1970 1971 show_node(zone); 1972 printk("%s: ", zone->name); 1973 1974 spin_lock_irqsave(&zone->lock, flags); 1975 for (order = 0; order < MAX_ORDER; order++) { 1976 nr[order] = zone->free_area[order].nr_free; 1977 total += nr[order] << order; 1978 } 1979 spin_unlock_irqrestore(&zone->lock, flags); 1980 for (order = 0; order < MAX_ORDER; order++) 1981 printk("%lu*%lukB ", nr[order], K(1UL) << order); 1982 printk("= %lukB\n", K(total)); 1983 } 1984 1985 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 1986 1987 show_swap_cache_info(); 1988 } 1989 1990 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 1991 { 1992 zoneref->zone = zone; 1993 zoneref->zone_idx = zone_idx(zone); 1994 } 1995 1996 /* 1997 * Builds allocation fallback zone lists. 1998 * 1999 * Add all populated zones of a node to the zonelist. 2000 */ 2001 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2002 int nr_zones, enum zone_type zone_type) 2003 { 2004 struct zone *zone; 2005 2006 BUG_ON(zone_type >= MAX_NR_ZONES); 2007 zone_type++; 2008 2009 do { 2010 zone_type--; 2011 zone = pgdat->node_zones + zone_type; 2012 if (populated_zone(zone)) { 2013 zoneref_set_zone(zone, 2014 &zonelist->_zonerefs[nr_zones++]); 2015 check_highest_zone(zone_type); 2016 } 2017 2018 } while (zone_type); 2019 return nr_zones; 2020 } 2021 2022 2023 /* 2024 * zonelist_order: 2025 * 0 = automatic detection of better ordering. 2026 * 1 = order by ([node] distance, -zonetype) 2027 * 2 = order by (-zonetype, [node] distance) 2028 * 2029 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2030 * the same zonelist. So only NUMA can configure this param. 2031 */ 2032 #define ZONELIST_ORDER_DEFAULT 0 2033 #define ZONELIST_ORDER_NODE 1 2034 #define ZONELIST_ORDER_ZONE 2 2035 2036 /* zonelist order in the kernel. 2037 * set_zonelist_order() will set this to NODE or ZONE. 2038 */ 2039 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2040 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2041 2042 2043 #ifdef CONFIG_NUMA 2044 /* The value user specified ....changed by config */ 2045 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2046 /* string for sysctl */ 2047 #define NUMA_ZONELIST_ORDER_LEN 16 2048 char numa_zonelist_order[16] = "default"; 2049 2050 /* 2051 * interface for configure zonelist ordering. 2052 * command line option "numa_zonelist_order" 2053 * = "[dD]efault - default, automatic configuration. 2054 * = "[nN]ode - order by node locality, then by zone within node 2055 * = "[zZ]one - order by zone, then by locality within zone 2056 */ 2057 2058 static int __parse_numa_zonelist_order(char *s) 2059 { 2060 if (*s == 'd' || *s == 'D') { 2061 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2062 } else if (*s == 'n' || *s == 'N') { 2063 user_zonelist_order = ZONELIST_ORDER_NODE; 2064 } else if (*s == 'z' || *s == 'Z') { 2065 user_zonelist_order = ZONELIST_ORDER_ZONE; 2066 } else { 2067 printk(KERN_WARNING 2068 "Ignoring invalid numa_zonelist_order value: " 2069 "%s\n", s); 2070 return -EINVAL; 2071 } 2072 return 0; 2073 } 2074 2075 static __init int setup_numa_zonelist_order(char *s) 2076 { 2077 if (s) 2078 return __parse_numa_zonelist_order(s); 2079 return 0; 2080 } 2081 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2082 2083 /* 2084 * sysctl handler for numa_zonelist_order 2085 */ 2086 int numa_zonelist_order_handler(ctl_table *table, int write, 2087 struct file *file, void __user *buffer, size_t *length, 2088 loff_t *ppos) 2089 { 2090 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2091 int ret; 2092 2093 if (write) 2094 strncpy(saved_string, (char*)table->data, 2095 NUMA_ZONELIST_ORDER_LEN); 2096 ret = proc_dostring(table, write, file, buffer, length, ppos); 2097 if (ret) 2098 return ret; 2099 if (write) { 2100 int oldval = user_zonelist_order; 2101 if (__parse_numa_zonelist_order((char*)table->data)) { 2102 /* 2103 * bogus value. restore saved string 2104 */ 2105 strncpy((char*)table->data, saved_string, 2106 NUMA_ZONELIST_ORDER_LEN); 2107 user_zonelist_order = oldval; 2108 } else if (oldval != user_zonelist_order) 2109 build_all_zonelists(); 2110 } 2111 return 0; 2112 } 2113 2114 2115 #define MAX_NODE_LOAD (num_online_nodes()) 2116 static int node_load[MAX_NUMNODES]; 2117 2118 /** 2119 * find_next_best_node - find the next node that should appear in a given node's fallback list 2120 * @node: node whose fallback list we're appending 2121 * @used_node_mask: nodemask_t of already used nodes 2122 * 2123 * We use a number of factors to determine which is the next node that should 2124 * appear on a given node's fallback list. The node should not have appeared 2125 * already in @node's fallback list, and it should be the next closest node 2126 * according to the distance array (which contains arbitrary distance values 2127 * from each node to each node in the system), and should also prefer nodes 2128 * with no CPUs, since presumably they'll have very little allocation pressure 2129 * on them otherwise. 2130 * It returns -1 if no node is found. 2131 */ 2132 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2133 { 2134 int n, val; 2135 int min_val = INT_MAX; 2136 int best_node = -1; 2137 node_to_cpumask_ptr(tmp, 0); 2138 2139 /* Use the local node if we haven't already */ 2140 if (!node_isset(node, *used_node_mask)) { 2141 node_set(node, *used_node_mask); 2142 return node; 2143 } 2144 2145 for_each_node_state(n, N_HIGH_MEMORY) { 2146 2147 /* Don't want a node to appear more than once */ 2148 if (node_isset(n, *used_node_mask)) 2149 continue; 2150 2151 /* Use the distance array to find the distance */ 2152 val = node_distance(node, n); 2153 2154 /* Penalize nodes under us ("prefer the next node") */ 2155 val += (n < node); 2156 2157 /* Give preference to headless and unused nodes */ 2158 node_to_cpumask_ptr_next(tmp, n); 2159 if (!cpus_empty(*tmp)) 2160 val += PENALTY_FOR_NODE_WITH_CPUS; 2161 2162 /* Slight preference for less loaded node */ 2163 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2164 val += node_load[n]; 2165 2166 if (val < min_val) { 2167 min_val = val; 2168 best_node = n; 2169 } 2170 } 2171 2172 if (best_node >= 0) 2173 node_set(best_node, *used_node_mask); 2174 2175 return best_node; 2176 } 2177 2178 2179 /* 2180 * Build zonelists ordered by node and zones within node. 2181 * This results in maximum locality--normal zone overflows into local 2182 * DMA zone, if any--but risks exhausting DMA zone. 2183 */ 2184 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2185 { 2186 int j; 2187 struct zonelist *zonelist; 2188 2189 zonelist = &pgdat->node_zonelists[0]; 2190 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2191 ; 2192 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2193 MAX_NR_ZONES - 1); 2194 zonelist->_zonerefs[j].zone = NULL; 2195 zonelist->_zonerefs[j].zone_idx = 0; 2196 } 2197 2198 /* 2199 * Build gfp_thisnode zonelists 2200 */ 2201 static void build_thisnode_zonelists(pg_data_t *pgdat) 2202 { 2203 int j; 2204 struct zonelist *zonelist; 2205 2206 zonelist = &pgdat->node_zonelists[1]; 2207 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2208 zonelist->_zonerefs[j].zone = NULL; 2209 zonelist->_zonerefs[j].zone_idx = 0; 2210 } 2211 2212 /* 2213 * Build zonelists ordered by zone and nodes within zones. 2214 * This results in conserving DMA zone[s] until all Normal memory is 2215 * exhausted, but results in overflowing to remote node while memory 2216 * may still exist in local DMA zone. 2217 */ 2218 static int node_order[MAX_NUMNODES]; 2219 2220 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2221 { 2222 int pos, j, node; 2223 int zone_type; /* needs to be signed */ 2224 struct zone *z; 2225 struct zonelist *zonelist; 2226 2227 zonelist = &pgdat->node_zonelists[0]; 2228 pos = 0; 2229 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2230 for (j = 0; j < nr_nodes; j++) { 2231 node = node_order[j]; 2232 z = &NODE_DATA(node)->node_zones[zone_type]; 2233 if (populated_zone(z)) { 2234 zoneref_set_zone(z, 2235 &zonelist->_zonerefs[pos++]); 2236 check_highest_zone(zone_type); 2237 } 2238 } 2239 } 2240 zonelist->_zonerefs[pos].zone = NULL; 2241 zonelist->_zonerefs[pos].zone_idx = 0; 2242 } 2243 2244 static int default_zonelist_order(void) 2245 { 2246 int nid, zone_type; 2247 unsigned long low_kmem_size,total_size; 2248 struct zone *z; 2249 int average_size; 2250 /* 2251 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem. 2252 * If they are really small and used heavily, the system can fall 2253 * into OOM very easily. 2254 * This function detect ZONE_DMA/DMA32 size and confgigures zone order. 2255 */ 2256 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2257 low_kmem_size = 0; 2258 total_size = 0; 2259 for_each_online_node(nid) { 2260 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2261 z = &NODE_DATA(nid)->node_zones[zone_type]; 2262 if (populated_zone(z)) { 2263 if (zone_type < ZONE_NORMAL) 2264 low_kmem_size += z->present_pages; 2265 total_size += z->present_pages; 2266 } 2267 } 2268 } 2269 if (!low_kmem_size || /* there are no DMA area. */ 2270 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2271 return ZONELIST_ORDER_NODE; 2272 /* 2273 * look into each node's config. 2274 * If there is a node whose DMA/DMA32 memory is very big area on 2275 * local memory, NODE_ORDER may be suitable. 2276 */ 2277 average_size = total_size / 2278 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2279 for_each_online_node(nid) { 2280 low_kmem_size = 0; 2281 total_size = 0; 2282 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2283 z = &NODE_DATA(nid)->node_zones[zone_type]; 2284 if (populated_zone(z)) { 2285 if (zone_type < ZONE_NORMAL) 2286 low_kmem_size += z->present_pages; 2287 total_size += z->present_pages; 2288 } 2289 } 2290 if (low_kmem_size && 2291 total_size > average_size && /* ignore small node */ 2292 low_kmem_size > total_size * 70/100) 2293 return ZONELIST_ORDER_NODE; 2294 } 2295 return ZONELIST_ORDER_ZONE; 2296 } 2297 2298 static void set_zonelist_order(void) 2299 { 2300 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2301 current_zonelist_order = default_zonelist_order(); 2302 else 2303 current_zonelist_order = user_zonelist_order; 2304 } 2305 2306 static void build_zonelists(pg_data_t *pgdat) 2307 { 2308 int j, node, load; 2309 enum zone_type i; 2310 nodemask_t used_mask; 2311 int local_node, prev_node; 2312 struct zonelist *zonelist; 2313 int order = current_zonelist_order; 2314 2315 /* initialize zonelists */ 2316 for (i = 0; i < MAX_ZONELISTS; i++) { 2317 zonelist = pgdat->node_zonelists + i; 2318 zonelist->_zonerefs[0].zone = NULL; 2319 zonelist->_zonerefs[0].zone_idx = 0; 2320 } 2321 2322 /* NUMA-aware ordering of nodes */ 2323 local_node = pgdat->node_id; 2324 load = num_online_nodes(); 2325 prev_node = local_node; 2326 nodes_clear(used_mask); 2327 2328 memset(node_load, 0, sizeof(node_load)); 2329 memset(node_order, 0, sizeof(node_order)); 2330 j = 0; 2331 2332 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2333 int distance = node_distance(local_node, node); 2334 2335 /* 2336 * If another node is sufficiently far away then it is better 2337 * to reclaim pages in a zone before going off node. 2338 */ 2339 if (distance > RECLAIM_DISTANCE) 2340 zone_reclaim_mode = 1; 2341 2342 /* 2343 * We don't want to pressure a particular node. 2344 * So adding penalty to the first node in same 2345 * distance group to make it round-robin. 2346 */ 2347 if (distance != node_distance(local_node, prev_node)) 2348 node_load[node] = load; 2349 2350 prev_node = node; 2351 load--; 2352 if (order == ZONELIST_ORDER_NODE) 2353 build_zonelists_in_node_order(pgdat, node); 2354 else 2355 node_order[j++] = node; /* remember order */ 2356 } 2357 2358 if (order == ZONELIST_ORDER_ZONE) { 2359 /* calculate node order -- i.e., DMA last! */ 2360 build_zonelists_in_zone_order(pgdat, j); 2361 } 2362 2363 build_thisnode_zonelists(pgdat); 2364 } 2365 2366 /* Construct the zonelist performance cache - see further mmzone.h */ 2367 static void build_zonelist_cache(pg_data_t *pgdat) 2368 { 2369 struct zonelist *zonelist; 2370 struct zonelist_cache *zlc; 2371 struct zoneref *z; 2372 2373 zonelist = &pgdat->node_zonelists[0]; 2374 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2375 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2376 for (z = zonelist->_zonerefs; z->zone; z++) 2377 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2378 } 2379 2380 2381 #else /* CONFIG_NUMA */ 2382 2383 static void set_zonelist_order(void) 2384 { 2385 current_zonelist_order = ZONELIST_ORDER_ZONE; 2386 } 2387 2388 static void build_zonelists(pg_data_t *pgdat) 2389 { 2390 int node, local_node; 2391 enum zone_type j; 2392 struct zonelist *zonelist; 2393 2394 local_node = pgdat->node_id; 2395 2396 zonelist = &pgdat->node_zonelists[0]; 2397 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2398 2399 /* 2400 * Now we build the zonelist so that it contains the zones 2401 * of all the other nodes. 2402 * We don't want to pressure a particular node, so when 2403 * building the zones for node N, we make sure that the 2404 * zones coming right after the local ones are those from 2405 * node N+1 (modulo N) 2406 */ 2407 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2408 if (!node_online(node)) 2409 continue; 2410 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2411 MAX_NR_ZONES - 1); 2412 } 2413 for (node = 0; node < local_node; node++) { 2414 if (!node_online(node)) 2415 continue; 2416 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2417 MAX_NR_ZONES - 1); 2418 } 2419 2420 zonelist->_zonerefs[j].zone = NULL; 2421 zonelist->_zonerefs[j].zone_idx = 0; 2422 } 2423 2424 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2425 static void build_zonelist_cache(pg_data_t *pgdat) 2426 { 2427 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2428 } 2429 2430 #endif /* CONFIG_NUMA */ 2431 2432 /* return values int ....just for stop_machine() */ 2433 static int __build_all_zonelists(void *dummy) 2434 { 2435 int nid; 2436 2437 for_each_online_node(nid) { 2438 pg_data_t *pgdat = NODE_DATA(nid); 2439 2440 build_zonelists(pgdat); 2441 build_zonelist_cache(pgdat); 2442 } 2443 return 0; 2444 } 2445 2446 void build_all_zonelists(void) 2447 { 2448 set_zonelist_order(); 2449 2450 if (system_state == SYSTEM_BOOTING) { 2451 __build_all_zonelists(NULL); 2452 mminit_verify_zonelist(); 2453 cpuset_init_current_mems_allowed(); 2454 } else { 2455 /* we have to stop all cpus to guarantee there is no user 2456 of zonelist */ 2457 stop_machine(__build_all_zonelists, NULL, NULL); 2458 /* cpuset refresh routine should be here */ 2459 } 2460 vm_total_pages = nr_free_pagecache_pages(); 2461 /* 2462 * Disable grouping by mobility if the number of pages in the 2463 * system is too low to allow the mechanism to work. It would be 2464 * more accurate, but expensive to check per-zone. This check is 2465 * made on memory-hotadd so a system can start with mobility 2466 * disabled and enable it later 2467 */ 2468 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 2469 page_group_by_mobility_disabled = 1; 2470 else 2471 page_group_by_mobility_disabled = 0; 2472 2473 printk("Built %i zonelists in %s order, mobility grouping %s. " 2474 "Total pages: %ld\n", 2475 num_online_nodes(), 2476 zonelist_order_name[current_zonelist_order], 2477 page_group_by_mobility_disabled ? "off" : "on", 2478 vm_total_pages); 2479 #ifdef CONFIG_NUMA 2480 printk("Policy zone: %s\n", zone_names[policy_zone]); 2481 #endif 2482 } 2483 2484 /* 2485 * Helper functions to size the waitqueue hash table. 2486 * Essentially these want to choose hash table sizes sufficiently 2487 * large so that collisions trying to wait on pages are rare. 2488 * But in fact, the number of active page waitqueues on typical 2489 * systems is ridiculously low, less than 200. So this is even 2490 * conservative, even though it seems large. 2491 * 2492 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 2493 * waitqueues, i.e. the size of the waitq table given the number of pages. 2494 */ 2495 #define PAGES_PER_WAITQUEUE 256 2496 2497 #ifndef CONFIG_MEMORY_HOTPLUG 2498 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2499 { 2500 unsigned long size = 1; 2501 2502 pages /= PAGES_PER_WAITQUEUE; 2503 2504 while (size < pages) 2505 size <<= 1; 2506 2507 /* 2508 * Once we have dozens or even hundreds of threads sleeping 2509 * on IO we've got bigger problems than wait queue collision. 2510 * Limit the size of the wait table to a reasonable size. 2511 */ 2512 size = min(size, 4096UL); 2513 2514 return max(size, 4UL); 2515 } 2516 #else 2517 /* 2518 * A zone's size might be changed by hot-add, so it is not possible to determine 2519 * a suitable size for its wait_table. So we use the maximum size now. 2520 * 2521 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 2522 * 2523 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 2524 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 2525 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 2526 * 2527 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 2528 * or more by the traditional way. (See above). It equals: 2529 * 2530 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 2531 * ia64(16K page size) : = ( 8G + 4M)byte. 2532 * powerpc (64K page size) : = (32G +16M)byte. 2533 */ 2534 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 2535 { 2536 return 4096UL; 2537 } 2538 #endif 2539 2540 /* 2541 * This is an integer logarithm so that shifts can be used later 2542 * to extract the more random high bits from the multiplicative 2543 * hash function before the remainder is taken. 2544 */ 2545 static inline unsigned long wait_table_bits(unsigned long size) 2546 { 2547 return ffz(~size); 2548 } 2549 2550 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 2551 2552 /* 2553 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 2554 * of blocks reserved is based on zone->pages_min. The memory within the 2555 * reserve will tend to store contiguous free pages. Setting min_free_kbytes 2556 * higher will lead to a bigger reserve which will get freed as contiguous 2557 * blocks as reclaim kicks in 2558 */ 2559 static void setup_zone_migrate_reserve(struct zone *zone) 2560 { 2561 unsigned long start_pfn, pfn, end_pfn; 2562 struct page *page; 2563 unsigned long reserve, block_migratetype; 2564 2565 /* Get the start pfn, end pfn and the number of blocks to reserve */ 2566 start_pfn = zone->zone_start_pfn; 2567 end_pfn = start_pfn + zone->spanned_pages; 2568 reserve = roundup(zone->pages_min, pageblock_nr_pages) >> 2569 pageblock_order; 2570 2571 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 2572 if (!pfn_valid(pfn)) 2573 continue; 2574 page = pfn_to_page(pfn); 2575 2576 /* Watch out for overlapping nodes */ 2577 if (page_to_nid(page) != zone_to_nid(zone)) 2578 continue; 2579 2580 /* Blocks with reserved pages will never free, skip them. */ 2581 if (PageReserved(page)) 2582 continue; 2583 2584 block_migratetype = get_pageblock_migratetype(page); 2585 2586 /* If this block is reserved, account for it */ 2587 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 2588 reserve--; 2589 continue; 2590 } 2591 2592 /* Suitable for reserving if this block is movable */ 2593 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 2594 set_pageblock_migratetype(page, MIGRATE_RESERVE); 2595 move_freepages_block(zone, page, MIGRATE_RESERVE); 2596 reserve--; 2597 continue; 2598 } 2599 2600 /* 2601 * If the reserve is met and this is a previous reserved block, 2602 * take it back 2603 */ 2604 if (block_migratetype == MIGRATE_RESERVE) { 2605 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2606 move_freepages_block(zone, page, MIGRATE_MOVABLE); 2607 } 2608 } 2609 } 2610 2611 /* 2612 * Initially all pages are reserved - free ones are freed 2613 * up by free_all_bootmem() once the early boot process is 2614 * done. Non-atomic initialization, single-pass. 2615 */ 2616 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 2617 unsigned long start_pfn, enum memmap_context context) 2618 { 2619 struct page *page; 2620 unsigned long end_pfn = start_pfn + size; 2621 unsigned long pfn; 2622 struct zone *z; 2623 2624 if (highest_memmap_pfn < end_pfn - 1) 2625 highest_memmap_pfn = end_pfn - 1; 2626 2627 z = &NODE_DATA(nid)->node_zones[zone]; 2628 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 2629 /* 2630 * There can be holes in boot-time mem_map[]s 2631 * handed to this function. They do not 2632 * exist on hotplugged memory. 2633 */ 2634 if (context == MEMMAP_EARLY) { 2635 if (!early_pfn_valid(pfn)) 2636 continue; 2637 if (!early_pfn_in_nid(pfn, nid)) 2638 continue; 2639 } 2640 page = pfn_to_page(pfn); 2641 set_page_links(page, zone, nid, pfn); 2642 mminit_verify_page_links(page, zone, nid, pfn); 2643 init_page_count(page); 2644 reset_page_mapcount(page); 2645 SetPageReserved(page); 2646 /* 2647 * Mark the block movable so that blocks are reserved for 2648 * movable at startup. This will force kernel allocations 2649 * to reserve their blocks rather than leaking throughout 2650 * the address space during boot when many long-lived 2651 * kernel allocations are made. Later some blocks near 2652 * the start are marked MIGRATE_RESERVE by 2653 * setup_zone_migrate_reserve() 2654 * 2655 * bitmap is created for zone's valid pfn range. but memmap 2656 * can be created for invalid pages (for alignment) 2657 * check here not to call set_pageblock_migratetype() against 2658 * pfn out of zone. 2659 */ 2660 if ((z->zone_start_pfn <= pfn) 2661 && (pfn < z->zone_start_pfn + z->spanned_pages) 2662 && !(pfn & (pageblock_nr_pages - 1))) 2663 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 2664 2665 INIT_LIST_HEAD(&page->lru); 2666 #ifdef WANT_PAGE_VIRTUAL 2667 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 2668 if (!is_highmem_idx(zone)) 2669 set_page_address(page, __va(pfn << PAGE_SHIFT)); 2670 #endif 2671 } 2672 } 2673 2674 static void __meminit zone_init_free_lists(struct zone *zone) 2675 { 2676 int order, t; 2677 for_each_migratetype_order(order, t) { 2678 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 2679 zone->free_area[order].nr_free = 0; 2680 } 2681 } 2682 2683 #ifndef __HAVE_ARCH_MEMMAP_INIT 2684 #define memmap_init(size, nid, zone, start_pfn) \ 2685 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 2686 #endif 2687 2688 static int zone_batchsize(struct zone *zone) 2689 { 2690 int batch; 2691 2692 /* 2693 * The per-cpu-pages pools are set to around 1000th of the 2694 * size of the zone. But no more than 1/2 of a meg. 2695 * 2696 * OK, so we don't know how big the cache is. So guess. 2697 */ 2698 batch = zone->present_pages / 1024; 2699 if (batch * PAGE_SIZE > 512 * 1024) 2700 batch = (512 * 1024) / PAGE_SIZE; 2701 batch /= 4; /* We effectively *= 4 below */ 2702 if (batch < 1) 2703 batch = 1; 2704 2705 /* 2706 * Clamp the batch to a 2^n - 1 value. Having a power 2707 * of 2 value was found to be more likely to have 2708 * suboptimal cache aliasing properties in some cases. 2709 * 2710 * For example if 2 tasks are alternately allocating 2711 * batches of pages, one task can end up with a lot 2712 * of pages of one half of the possible page colors 2713 * and the other with pages of the other colors. 2714 */ 2715 batch = (1 << (fls(batch + batch/2)-1)) - 1; 2716 2717 return batch; 2718 } 2719 2720 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 2721 { 2722 struct per_cpu_pages *pcp; 2723 2724 memset(p, 0, sizeof(*p)); 2725 2726 pcp = &p->pcp; 2727 pcp->count = 0; 2728 pcp->high = 6 * batch; 2729 pcp->batch = max(1UL, 1 * batch); 2730 INIT_LIST_HEAD(&pcp->list); 2731 } 2732 2733 /* 2734 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 2735 * to the value high for the pageset p. 2736 */ 2737 2738 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 2739 unsigned long high) 2740 { 2741 struct per_cpu_pages *pcp; 2742 2743 pcp = &p->pcp; 2744 pcp->high = high; 2745 pcp->batch = max(1UL, high/4); 2746 if ((high/4) > (PAGE_SHIFT * 8)) 2747 pcp->batch = PAGE_SHIFT * 8; 2748 } 2749 2750 2751 #ifdef CONFIG_NUMA 2752 /* 2753 * Boot pageset table. One per cpu which is going to be used for all 2754 * zones and all nodes. The parameters will be set in such a way 2755 * that an item put on a list will immediately be handed over to 2756 * the buddy list. This is safe since pageset manipulation is done 2757 * with interrupts disabled. 2758 * 2759 * Some NUMA counter updates may also be caught by the boot pagesets. 2760 * 2761 * The boot_pagesets must be kept even after bootup is complete for 2762 * unused processors and/or zones. They do play a role for bootstrapping 2763 * hotplugged processors. 2764 * 2765 * zoneinfo_show() and maybe other functions do 2766 * not check if the processor is online before following the pageset pointer. 2767 * Other parts of the kernel may not check if the zone is available. 2768 */ 2769 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 2770 2771 /* 2772 * Dynamically allocate memory for the 2773 * per cpu pageset array in struct zone. 2774 */ 2775 static int __cpuinit process_zones(int cpu) 2776 { 2777 struct zone *zone, *dzone; 2778 int node = cpu_to_node(cpu); 2779 2780 node_set_state(node, N_CPU); /* this node has a cpu */ 2781 2782 for_each_zone(zone) { 2783 2784 if (!populated_zone(zone)) 2785 continue; 2786 2787 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 2788 GFP_KERNEL, node); 2789 if (!zone_pcp(zone, cpu)) 2790 goto bad; 2791 2792 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 2793 2794 if (percpu_pagelist_fraction) 2795 setup_pagelist_highmark(zone_pcp(zone, cpu), 2796 (zone->present_pages / percpu_pagelist_fraction)); 2797 } 2798 2799 return 0; 2800 bad: 2801 for_each_zone(dzone) { 2802 if (!populated_zone(dzone)) 2803 continue; 2804 if (dzone == zone) 2805 break; 2806 kfree(zone_pcp(dzone, cpu)); 2807 zone_pcp(dzone, cpu) = NULL; 2808 } 2809 return -ENOMEM; 2810 } 2811 2812 static inline void free_zone_pagesets(int cpu) 2813 { 2814 struct zone *zone; 2815 2816 for_each_zone(zone) { 2817 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 2818 2819 /* Free per_cpu_pageset if it is slab allocated */ 2820 if (pset != &boot_pageset[cpu]) 2821 kfree(pset); 2822 zone_pcp(zone, cpu) = NULL; 2823 } 2824 } 2825 2826 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 2827 unsigned long action, 2828 void *hcpu) 2829 { 2830 int cpu = (long)hcpu; 2831 int ret = NOTIFY_OK; 2832 2833 switch (action) { 2834 case CPU_UP_PREPARE: 2835 case CPU_UP_PREPARE_FROZEN: 2836 if (process_zones(cpu)) 2837 ret = NOTIFY_BAD; 2838 break; 2839 case CPU_UP_CANCELED: 2840 case CPU_UP_CANCELED_FROZEN: 2841 case CPU_DEAD: 2842 case CPU_DEAD_FROZEN: 2843 free_zone_pagesets(cpu); 2844 break; 2845 default: 2846 break; 2847 } 2848 return ret; 2849 } 2850 2851 static struct notifier_block __cpuinitdata pageset_notifier = 2852 { &pageset_cpuup_callback, NULL, 0 }; 2853 2854 void __init setup_per_cpu_pageset(void) 2855 { 2856 int err; 2857 2858 /* Initialize per_cpu_pageset for cpu 0. 2859 * A cpuup callback will do this for every cpu 2860 * as it comes online 2861 */ 2862 err = process_zones(smp_processor_id()); 2863 BUG_ON(err); 2864 register_cpu_notifier(&pageset_notifier); 2865 } 2866 2867 #endif 2868 2869 static noinline __init_refok 2870 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2871 { 2872 int i; 2873 struct pglist_data *pgdat = zone->zone_pgdat; 2874 size_t alloc_size; 2875 2876 /* 2877 * The per-page waitqueue mechanism uses hashed waitqueues 2878 * per zone. 2879 */ 2880 zone->wait_table_hash_nr_entries = 2881 wait_table_hash_nr_entries(zone_size_pages); 2882 zone->wait_table_bits = 2883 wait_table_bits(zone->wait_table_hash_nr_entries); 2884 alloc_size = zone->wait_table_hash_nr_entries 2885 * sizeof(wait_queue_head_t); 2886 2887 if (!slab_is_available()) { 2888 zone->wait_table = (wait_queue_head_t *) 2889 alloc_bootmem_node(pgdat, alloc_size); 2890 } else { 2891 /* 2892 * This case means that a zone whose size was 0 gets new memory 2893 * via memory hot-add. 2894 * But it may be the case that a new node was hot-added. In 2895 * this case vmalloc() will not be able to use this new node's 2896 * memory - this wait_table must be initialized to use this new 2897 * node itself as well. 2898 * To use this new node's memory, further consideration will be 2899 * necessary. 2900 */ 2901 zone->wait_table = vmalloc(alloc_size); 2902 } 2903 if (!zone->wait_table) 2904 return -ENOMEM; 2905 2906 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 2907 init_waitqueue_head(zone->wait_table + i); 2908 2909 return 0; 2910 } 2911 2912 static __meminit void zone_pcp_init(struct zone *zone) 2913 { 2914 int cpu; 2915 unsigned long batch = zone_batchsize(zone); 2916 2917 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2918 #ifdef CONFIG_NUMA 2919 /* Early boot. Slab allocator not functional yet */ 2920 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2921 setup_pageset(&boot_pageset[cpu],0); 2922 #else 2923 setup_pageset(zone_pcp(zone,cpu), batch); 2924 #endif 2925 } 2926 if (zone->present_pages) 2927 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2928 zone->name, zone->present_pages, batch); 2929 } 2930 2931 __meminit int init_currently_empty_zone(struct zone *zone, 2932 unsigned long zone_start_pfn, 2933 unsigned long size, 2934 enum memmap_context context) 2935 { 2936 struct pglist_data *pgdat = zone->zone_pgdat; 2937 int ret; 2938 ret = zone_wait_table_init(zone, size); 2939 if (ret) 2940 return ret; 2941 pgdat->nr_zones = zone_idx(zone) + 1; 2942 2943 zone->zone_start_pfn = zone_start_pfn; 2944 2945 mminit_dprintk(MMINIT_TRACE, "memmap_init", 2946 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 2947 pgdat->node_id, 2948 (unsigned long)zone_idx(zone), 2949 zone_start_pfn, (zone_start_pfn + size)); 2950 2951 zone_init_free_lists(zone); 2952 2953 return 0; 2954 } 2955 2956 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 2957 /* 2958 * Basic iterator support. Return the first range of PFNs for a node 2959 * Note: nid == MAX_NUMNODES returns first region regardless of node 2960 */ 2961 static int __meminit first_active_region_index_in_nid(int nid) 2962 { 2963 int i; 2964 2965 for (i = 0; i < nr_nodemap_entries; i++) 2966 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 2967 return i; 2968 2969 return -1; 2970 } 2971 2972 /* 2973 * Basic iterator support. Return the next active range of PFNs for a node 2974 * Note: nid == MAX_NUMNODES returns next region regardless of node 2975 */ 2976 static int __meminit next_active_region_index_in_nid(int index, int nid) 2977 { 2978 for (index = index + 1; index < nr_nodemap_entries; index++) 2979 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 2980 return index; 2981 2982 return -1; 2983 } 2984 2985 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 2986 /* 2987 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 2988 * Architectures may implement their own version but if add_active_range() 2989 * was used and there are no special requirements, this is a convenient 2990 * alternative 2991 */ 2992 int __meminit __early_pfn_to_nid(unsigned long pfn) 2993 { 2994 int i; 2995 2996 for (i = 0; i < nr_nodemap_entries; i++) { 2997 unsigned long start_pfn = early_node_map[i].start_pfn; 2998 unsigned long end_pfn = early_node_map[i].end_pfn; 2999 3000 if (start_pfn <= pfn && pfn < end_pfn) 3001 return early_node_map[i].nid; 3002 } 3003 /* This is a memory hole */ 3004 return -1; 3005 } 3006 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3007 3008 int __meminit early_pfn_to_nid(unsigned long pfn) 3009 { 3010 int nid; 3011 3012 nid = __early_pfn_to_nid(pfn); 3013 if (nid >= 0) 3014 return nid; 3015 /* just returns 0 */ 3016 return 0; 3017 } 3018 3019 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3020 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3021 { 3022 int nid; 3023 3024 nid = __early_pfn_to_nid(pfn); 3025 if (nid >= 0 && nid != node) 3026 return false; 3027 return true; 3028 } 3029 #endif 3030 3031 /* Basic iterator support to walk early_node_map[] */ 3032 #define for_each_active_range_index_in_nid(i, nid) \ 3033 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3034 i = next_active_region_index_in_nid(i, nid)) 3035 3036 /** 3037 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3038 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3039 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3040 * 3041 * If an architecture guarantees that all ranges registered with 3042 * add_active_ranges() contain no holes and may be freed, this 3043 * this function may be used instead of calling free_bootmem() manually. 3044 */ 3045 void __init free_bootmem_with_active_regions(int nid, 3046 unsigned long max_low_pfn) 3047 { 3048 int i; 3049 3050 for_each_active_range_index_in_nid(i, nid) { 3051 unsigned long size_pages = 0; 3052 unsigned long end_pfn = early_node_map[i].end_pfn; 3053 3054 if (early_node_map[i].start_pfn >= max_low_pfn) 3055 continue; 3056 3057 if (end_pfn > max_low_pfn) 3058 end_pfn = max_low_pfn; 3059 3060 size_pages = end_pfn - early_node_map[i].start_pfn; 3061 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3062 PFN_PHYS(early_node_map[i].start_pfn), 3063 size_pages << PAGE_SHIFT); 3064 } 3065 } 3066 3067 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3068 { 3069 int i; 3070 int ret; 3071 3072 for_each_active_range_index_in_nid(i, nid) { 3073 ret = work_fn(early_node_map[i].start_pfn, 3074 early_node_map[i].end_pfn, data); 3075 if (ret) 3076 break; 3077 } 3078 } 3079 /** 3080 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3081 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3082 * 3083 * If an architecture guarantees that all ranges registered with 3084 * add_active_ranges() contain no holes and may be freed, this 3085 * function may be used instead of calling memory_present() manually. 3086 */ 3087 void __init sparse_memory_present_with_active_regions(int nid) 3088 { 3089 int i; 3090 3091 for_each_active_range_index_in_nid(i, nid) 3092 memory_present(early_node_map[i].nid, 3093 early_node_map[i].start_pfn, 3094 early_node_map[i].end_pfn); 3095 } 3096 3097 /** 3098 * push_node_boundaries - Push node boundaries to at least the requested boundary 3099 * @nid: The nid of the node to push the boundary for 3100 * @start_pfn: The start pfn of the node 3101 * @end_pfn: The end pfn of the node 3102 * 3103 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd 3104 * time. Specifically, on x86_64, SRAT will report ranges that can potentially 3105 * be hotplugged even though no physical memory exists. This function allows 3106 * an arch to push out the node boundaries so mem_map is allocated that can 3107 * be used later. 3108 */ 3109 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3110 void __init push_node_boundaries(unsigned int nid, 3111 unsigned long start_pfn, unsigned long end_pfn) 3112 { 3113 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3114 "Entering push_node_boundaries(%u, %lu, %lu)\n", 3115 nid, start_pfn, end_pfn); 3116 3117 /* Initialise the boundary for this node if necessary */ 3118 if (node_boundary_end_pfn[nid] == 0) 3119 node_boundary_start_pfn[nid] = -1UL; 3120 3121 /* Update the boundaries */ 3122 if (node_boundary_start_pfn[nid] > start_pfn) 3123 node_boundary_start_pfn[nid] = start_pfn; 3124 if (node_boundary_end_pfn[nid] < end_pfn) 3125 node_boundary_end_pfn[nid] = end_pfn; 3126 } 3127 3128 /* If necessary, push the node boundary out for reserve hotadd */ 3129 static void __meminit account_node_boundary(unsigned int nid, 3130 unsigned long *start_pfn, unsigned long *end_pfn) 3131 { 3132 mminit_dprintk(MMINIT_TRACE, "zoneboundary", 3133 "Entering account_node_boundary(%u, %lu, %lu)\n", 3134 nid, *start_pfn, *end_pfn); 3135 3136 /* Return if boundary information has not been provided */ 3137 if (node_boundary_end_pfn[nid] == 0) 3138 return; 3139 3140 /* Check the boundaries and update if necessary */ 3141 if (node_boundary_start_pfn[nid] < *start_pfn) 3142 *start_pfn = node_boundary_start_pfn[nid]; 3143 if (node_boundary_end_pfn[nid] > *end_pfn) 3144 *end_pfn = node_boundary_end_pfn[nid]; 3145 } 3146 #else 3147 void __init push_node_boundaries(unsigned int nid, 3148 unsigned long start_pfn, unsigned long end_pfn) {} 3149 3150 static void __meminit account_node_boundary(unsigned int nid, 3151 unsigned long *start_pfn, unsigned long *end_pfn) {} 3152 #endif 3153 3154 3155 /** 3156 * get_pfn_range_for_nid - Return the start and end page frames for a node 3157 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3158 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3159 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3160 * 3161 * It returns the start and end page frame of a node based on information 3162 * provided by an arch calling add_active_range(). If called for a node 3163 * with no available memory, a warning is printed and the start and end 3164 * PFNs will be 0. 3165 */ 3166 void __meminit get_pfn_range_for_nid(unsigned int nid, 3167 unsigned long *start_pfn, unsigned long *end_pfn) 3168 { 3169 int i; 3170 *start_pfn = -1UL; 3171 *end_pfn = 0; 3172 3173 for_each_active_range_index_in_nid(i, nid) { 3174 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3175 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3176 } 3177 3178 if (*start_pfn == -1UL) 3179 *start_pfn = 0; 3180 3181 /* Push the node boundaries out if requested */ 3182 account_node_boundary(nid, start_pfn, end_pfn); 3183 } 3184 3185 /* 3186 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3187 * assumption is made that zones within a node are ordered in monotonic 3188 * increasing memory addresses so that the "highest" populated zone is used 3189 */ 3190 static void __init find_usable_zone_for_movable(void) 3191 { 3192 int zone_index; 3193 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3194 if (zone_index == ZONE_MOVABLE) 3195 continue; 3196 3197 if (arch_zone_highest_possible_pfn[zone_index] > 3198 arch_zone_lowest_possible_pfn[zone_index]) 3199 break; 3200 } 3201 3202 VM_BUG_ON(zone_index == -1); 3203 movable_zone = zone_index; 3204 } 3205 3206 /* 3207 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3208 * because it is sized independant of architecture. Unlike the other zones, 3209 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3210 * in each node depending on the size of each node and how evenly kernelcore 3211 * is distributed. This helper function adjusts the zone ranges 3212 * provided by the architecture for a given node by using the end of the 3213 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3214 * zones within a node are in order of monotonic increases memory addresses 3215 */ 3216 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3217 unsigned long zone_type, 3218 unsigned long node_start_pfn, 3219 unsigned long node_end_pfn, 3220 unsigned long *zone_start_pfn, 3221 unsigned long *zone_end_pfn) 3222 { 3223 /* Only adjust if ZONE_MOVABLE is on this node */ 3224 if (zone_movable_pfn[nid]) { 3225 /* Size ZONE_MOVABLE */ 3226 if (zone_type == ZONE_MOVABLE) { 3227 *zone_start_pfn = zone_movable_pfn[nid]; 3228 *zone_end_pfn = min(node_end_pfn, 3229 arch_zone_highest_possible_pfn[movable_zone]); 3230 3231 /* Adjust for ZONE_MOVABLE starting within this range */ 3232 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3233 *zone_end_pfn > zone_movable_pfn[nid]) { 3234 *zone_end_pfn = zone_movable_pfn[nid]; 3235 3236 /* Check if this whole range is within ZONE_MOVABLE */ 3237 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3238 *zone_start_pfn = *zone_end_pfn; 3239 } 3240 } 3241 3242 /* 3243 * Return the number of pages a zone spans in a node, including holes 3244 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3245 */ 3246 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3247 unsigned long zone_type, 3248 unsigned long *ignored) 3249 { 3250 unsigned long node_start_pfn, node_end_pfn; 3251 unsigned long zone_start_pfn, zone_end_pfn; 3252 3253 /* Get the start and end of the node and zone */ 3254 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3255 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3256 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3257 adjust_zone_range_for_zone_movable(nid, zone_type, 3258 node_start_pfn, node_end_pfn, 3259 &zone_start_pfn, &zone_end_pfn); 3260 3261 /* Check that this node has pages within the zone's required range */ 3262 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3263 return 0; 3264 3265 /* Move the zone boundaries inside the node if necessary */ 3266 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3267 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3268 3269 /* Return the spanned pages */ 3270 return zone_end_pfn - zone_start_pfn; 3271 } 3272 3273 /* 3274 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3275 * then all holes in the requested range will be accounted for. 3276 */ 3277 static unsigned long __meminit __absent_pages_in_range(int nid, 3278 unsigned long range_start_pfn, 3279 unsigned long range_end_pfn) 3280 { 3281 int i = 0; 3282 unsigned long prev_end_pfn = 0, hole_pages = 0; 3283 unsigned long start_pfn; 3284 3285 /* Find the end_pfn of the first active range of pfns in the node */ 3286 i = first_active_region_index_in_nid(nid); 3287 if (i == -1) 3288 return 0; 3289 3290 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3291 3292 /* Account for ranges before physical memory on this node */ 3293 if (early_node_map[i].start_pfn > range_start_pfn) 3294 hole_pages = prev_end_pfn - range_start_pfn; 3295 3296 /* Find all holes for the zone within the node */ 3297 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3298 3299 /* No need to continue if prev_end_pfn is outside the zone */ 3300 if (prev_end_pfn >= range_end_pfn) 3301 break; 3302 3303 /* Make sure the end of the zone is not within the hole */ 3304 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3305 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3306 3307 /* Update the hole size cound and move on */ 3308 if (start_pfn > range_start_pfn) { 3309 BUG_ON(prev_end_pfn > start_pfn); 3310 hole_pages += start_pfn - prev_end_pfn; 3311 } 3312 prev_end_pfn = early_node_map[i].end_pfn; 3313 } 3314 3315 /* Account for ranges past physical memory on this node */ 3316 if (range_end_pfn > prev_end_pfn) 3317 hole_pages += range_end_pfn - 3318 max(range_start_pfn, prev_end_pfn); 3319 3320 return hole_pages; 3321 } 3322 3323 /** 3324 * absent_pages_in_range - Return number of page frames in holes within a range 3325 * @start_pfn: The start PFN to start searching for holes 3326 * @end_pfn: The end PFN to stop searching for holes 3327 * 3328 * It returns the number of pages frames in memory holes within a range. 3329 */ 3330 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3331 unsigned long end_pfn) 3332 { 3333 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3334 } 3335 3336 /* Return the number of page frames in holes in a zone on a node */ 3337 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3338 unsigned long zone_type, 3339 unsigned long *ignored) 3340 { 3341 unsigned long node_start_pfn, node_end_pfn; 3342 unsigned long zone_start_pfn, zone_end_pfn; 3343 3344 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3345 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3346 node_start_pfn); 3347 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3348 node_end_pfn); 3349 3350 adjust_zone_range_for_zone_movable(nid, zone_type, 3351 node_start_pfn, node_end_pfn, 3352 &zone_start_pfn, &zone_end_pfn); 3353 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3354 } 3355 3356 #else 3357 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3358 unsigned long zone_type, 3359 unsigned long *zones_size) 3360 { 3361 return zones_size[zone_type]; 3362 } 3363 3364 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3365 unsigned long zone_type, 3366 unsigned long *zholes_size) 3367 { 3368 if (!zholes_size) 3369 return 0; 3370 3371 return zholes_size[zone_type]; 3372 } 3373 3374 #endif 3375 3376 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3377 unsigned long *zones_size, unsigned long *zholes_size) 3378 { 3379 unsigned long realtotalpages, totalpages = 0; 3380 enum zone_type i; 3381 3382 for (i = 0; i < MAX_NR_ZONES; i++) 3383 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3384 zones_size); 3385 pgdat->node_spanned_pages = totalpages; 3386 3387 realtotalpages = totalpages; 3388 for (i = 0; i < MAX_NR_ZONES; i++) 3389 realtotalpages -= 3390 zone_absent_pages_in_node(pgdat->node_id, i, 3391 zholes_size); 3392 pgdat->node_present_pages = realtotalpages; 3393 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3394 realtotalpages); 3395 } 3396 3397 #ifndef CONFIG_SPARSEMEM 3398 /* 3399 * Calculate the size of the zone->blockflags rounded to an unsigned long 3400 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3401 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3402 * round what is now in bits to nearest long in bits, then return it in 3403 * bytes. 3404 */ 3405 static unsigned long __init usemap_size(unsigned long zonesize) 3406 { 3407 unsigned long usemapsize; 3408 3409 usemapsize = roundup(zonesize, pageblock_nr_pages); 3410 usemapsize = usemapsize >> pageblock_order; 3411 usemapsize *= NR_PAGEBLOCK_BITS; 3412 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3413 3414 return usemapsize / 8; 3415 } 3416 3417 static void __init setup_usemap(struct pglist_data *pgdat, 3418 struct zone *zone, unsigned long zonesize) 3419 { 3420 unsigned long usemapsize = usemap_size(zonesize); 3421 zone->pageblock_flags = NULL; 3422 if (usemapsize) 3423 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3424 } 3425 #else 3426 static void inline setup_usemap(struct pglist_data *pgdat, 3427 struct zone *zone, unsigned long zonesize) {} 3428 #endif /* CONFIG_SPARSEMEM */ 3429 3430 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3431 3432 /* Return a sensible default order for the pageblock size. */ 3433 static inline int pageblock_default_order(void) 3434 { 3435 if (HPAGE_SHIFT > PAGE_SHIFT) 3436 return HUGETLB_PAGE_ORDER; 3437 3438 return MAX_ORDER-1; 3439 } 3440 3441 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3442 static inline void __init set_pageblock_order(unsigned int order) 3443 { 3444 /* Check that pageblock_nr_pages has not already been setup */ 3445 if (pageblock_order) 3446 return; 3447 3448 /* 3449 * Assume the largest contiguous order of interest is a huge page. 3450 * This value may be variable depending on boot parameters on IA64 3451 */ 3452 pageblock_order = order; 3453 } 3454 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3455 3456 /* 3457 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 3458 * and pageblock_default_order() are unused as pageblock_order is set 3459 * at compile-time. See include/linux/pageblock-flags.h for the values of 3460 * pageblock_order based on the kernel config 3461 */ 3462 static inline int pageblock_default_order(unsigned int order) 3463 { 3464 return MAX_ORDER-1; 3465 } 3466 #define set_pageblock_order(x) do {} while (0) 3467 3468 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3469 3470 /* 3471 * Set up the zone data structures: 3472 * - mark all pages reserved 3473 * - mark all memory queues empty 3474 * - clear the memory bitmaps 3475 */ 3476 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 3477 unsigned long *zones_size, unsigned long *zholes_size) 3478 { 3479 enum zone_type j; 3480 int nid = pgdat->node_id; 3481 unsigned long zone_start_pfn = pgdat->node_start_pfn; 3482 int ret; 3483 3484 pgdat_resize_init(pgdat); 3485 pgdat->nr_zones = 0; 3486 init_waitqueue_head(&pgdat->kswapd_wait); 3487 pgdat->kswapd_max_order = 0; 3488 pgdat_page_cgroup_init(pgdat); 3489 3490 for (j = 0; j < MAX_NR_ZONES; j++) { 3491 struct zone *zone = pgdat->node_zones + j; 3492 unsigned long size, realsize, memmap_pages; 3493 enum lru_list l; 3494 3495 size = zone_spanned_pages_in_node(nid, j, zones_size); 3496 realsize = size - zone_absent_pages_in_node(nid, j, 3497 zholes_size); 3498 3499 /* 3500 * Adjust realsize so that it accounts for how much memory 3501 * is used by this zone for memmap. This affects the watermark 3502 * and per-cpu initialisations 3503 */ 3504 memmap_pages = 3505 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 3506 if (realsize >= memmap_pages) { 3507 realsize -= memmap_pages; 3508 if (memmap_pages) 3509 printk(KERN_DEBUG 3510 " %s zone: %lu pages used for memmap\n", 3511 zone_names[j], memmap_pages); 3512 } else 3513 printk(KERN_WARNING 3514 " %s zone: %lu pages exceeds realsize %lu\n", 3515 zone_names[j], memmap_pages, realsize); 3516 3517 /* Account for reserved pages */ 3518 if (j == 0 && realsize > dma_reserve) { 3519 realsize -= dma_reserve; 3520 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 3521 zone_names[0], dma_reserve); 3522 } 3523 3524 if (!is_highmem_idx(j)) 3525 nr_kernel_pages += realsize; 3526 nr_all_pages += realsize; 3527 3528 zone->spanned_pages = size; 3529 zone->present_pages = realsize; 3530 #ifdef CONFIG_NUMA 3531 zone->node = nid; 3532 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 3533 / 100; 3534 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 3535 #endif 3536 zone->name = zone_names[j]; 3537 spin_lock_init(&zone->lock); 3538 spin_lock_init(&zone->lru_lock); 3539 zone_seqlock_init(zone); 3540 zone->zone_pgdat = pgdat; 3541 3542 zone->prev_priority = DEF_PRIORITY; 3543 3544 zone_pcp_init(zone); 3545 for_each_lru(l) { 3546 INIT_LIST_HEAD(&zone->lru[l].list); 3547 zone->lru[l].nr_scan = 0; 3548 } 3549 zone->reclaim_stat.recent_rotated[0] = 0; 3550 zone->reclaim_stat.recent_rotated[1] = 0; 3551 zone->reclaim_stat.recent_scanned[0] = 0; 3552 zone->reclaim_stat.recent_scanned[1] = 0; 3553 zap_zone_vm_stats(zone); 3554 zone->flags = 0; 3555 if (!size) 3556 continue; 3557 3558 set_pageblock_order(pageblock_default_order()); 3559 setup_usemap(pgdat, zone, size); 3560 ret = init_currently_empty_zone(zone, zone_start_pfn, 3561 size, MEMMAP_EARLY); 3562 BUG_ON(ret); 3563 memmap_init(size, nid, j, zone_start_pfn); 3564 zone_start_pfn += size; 3565 } 3566 } 3567 3568 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 3569 { 3570 /* Skip empty nodes */ 3571 if (!pgdat->node_spanned_pages) 3572 return; 3573 3574 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3575 /* ia64 gets its own node_mem_map, before this, without bootmem */ 3576 if (!pgdat->node_mem_map) { 3577 unsigned long size, start, end; 3578 struct page *map; 3579 3580 /* 3581 * The zone's endpoints aren't required to be MAX_ORDER 3582 * aligned but the node_mem_map endpoints must be in order 3583 * for the buddy allocator to function correctly. 3584 */ 3585 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 3586 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 3587 end = ALIGN(end, MAX_ORDER_NR_PAGES); 3588 size = (end - start) * sizeof(struct page); 3589 map = alloc_remap(pgdat->node_id, size); 3590 if (!map) 3591 map = alloc_bootmem_node(pgdat, size); 3592 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 3593 } 3594 #ifndef CONFIG_NEED_MULTIPLE_NODES 3595 /* 3596 * With no DISCONTIG, the global mem_map is just set as node 0's 3597 */ 3598 if (pgdat == NODE_DATA(0)) { 3599 mem_map = NODE_DATA(0)->node_mem_map; 3600 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3601 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 3602 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 3603 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 3604 } 3605 #endif 3606 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 3607 } 3608 3609 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 3610 unsigned long node_start_pfn, unsigned long *zholes_size) 3611 { 3612 pg_data_t *pgdat = NODE_DATA(nid); 3613 3614 pgdat->node_id = nid; 3615 pgdat->node_start_pfn = node_start_pfn; 3616 calculate_node_totalpages(pgdat, zones_size, zholes_size); 3617 3618 alloc_node_mem_map(pgdat); 3619 #ifdef CONFIG_FLAT_NODE_MEM_MAP 3620 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 3621 nid, (unsigned long)pgdat, 3622 (unsigned long)pgdat->node_mem_map); 3623 #endif 3624 3625 free_area_init_core(pgdat, zones_size, zholes_size); 3626 } 3627 3628 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3629 3630 #if MAX_NUMNODES > 1 3631 /* 3632 * Figure out the number of possible node ids. 3633 */ 3634 static void __init setup_nr_node_ids(void) 3635 { 3636 unsigned int node; 3637 unsigned int highest = 0; 3638 3639 for_each_node_mask(node, node_possible_map) 3640 highest = node; 3641 nr_node_ids = highest + 1; 3642 } 3643 #else 3644 static inline void setup_nr_node_ids(void) 3645 { 3646 } 3647 #endif 3648 3649 /** 3650 * add_active_range - Register a range of PFNs backed by physical memory 3651 * @nid: The node ID the range resides on 3652 * @start_pfn: The start PFN of the available physical memory 3653 * @end_pfn: The end PFN of the available physical memory 3654 * 3655 * These ranges are stored in an early_node_map[] and later used by 3656 * free_area_init_nodes() to calculate zone sizes and holes. If the 3657 * range spans a memory hole, it is up to the architecture to ensure 3658 * the memory is not freed by the bootmem allocator. If possible 3659 * the range being registered will be merged with existing ranges. 3660 */ 3661 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 3662 unsigned long end_pfn) 3663 { 3664 int i; 3665 3666 mminit_dprintk(MMINIT_TRACE, "memory_register", 3667 "Entering add_active_range(%d, %#lx, %#lx) " 3668 "%d entries of %d used\n", 3669 nid, start_pfn, end_pfn, 3670 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 3671 3672 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 3673 3674 /* Merge with existing active regions if possible */ 3675 for (i = 0; i < nr_nodemap_entries; i++) { 3676 if (early_node_map[i].nid != nid) 3677 continue; 3678 3679 /* Skip if an existing region covers this new one */ 3680 if (start_pfn >= early_node_map[i].start_pfn && 3681 end_pfn <= early_node_map[i].end_pfn) 3682 return; 3683 3684 /* Merge forward if suitable */ 3685 if (start_pfn <= early_node_map[i].end_pfn && 3686 end_pfn > early_node_map[i].end_pfn) { 3687 early_node_map[i].end_pfn = end_pfn; 3688 return; 3689 } 3690 3691 /* Merge backward if suitable */ 3692 if (start_pfn < early_node_map[i].end_pfn && 3693 end_pfn >= early_node_map[i].start_pfn) { 3694 early_node_map[i].start_pfn = start_pfn; 3695 return; 3696 } 3697 } 3698 3699 /* Check that early_node_map is large enough */ 3700 if (i >= MAX_ACTIVE_REGIONS) { 3701 printk(KERN_CRIT "More than %d memory regions, truncating\n", 3702 MAX_ACTIVE_REGIONS); 3703 return; 3704 } 3705 3706 early_node_map[i].nid = nid; 3707 early_node_map[i].start_pfn = start_pfn; 3708 early_node_map[i].end_pfn = end_pfn; 3709 nr_nodemap_entries = i + 1; 3710 } 3711 3712 /** 3713 * remove_active_range - Shrink an existing registered range of PFNs 3714 * @nid: The node id the range is on that should be shrunk 3715 * @start_pfn: The new PFN of the range 3716 * @end_pfn: The new PFN of the range 3717 * 3718 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 3719 * The map is kept near the end physical page range that has already been 3720 * registered. This function allows an arch to shrink an existing registered 3721 * range. 3722 */ 3723 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 3724 unsigned long end_pfn) 3725 { 3726 int i, j; 3727 int removed = 0; 3728 3729 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 3730 nid, start_pfn, end_pfn); 3731 3732 /* Find the old active region end and shrink */ 3733 for_each_active_range_index_in_nid(i, nid) { 3734 if (early_node_map[i].start_pfn >= start_pfn && 3735 early_node_map[i].end_pfn <= end_pfn) { 3736 /* clear it */ 3737 early_node_map[i].start_pfn = 0; 3738 early_node_map[i].end_pfn = 0; 3739 removed = 1; 3740 continue; 3741 } 3742 if (early_node_map[i].start_pfn < start_pfn && 3743 early_node_map[i].end_pfn > start_pfn) { 3744 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 3745 early_node_map[i].end_pfn = start_pfn; 3746 if (temp_end_pfn > end_pfn) 3747 add_active_range(nid, end_pfn, temp_end_pfn); 3748 continue; 3749 } 3750 if (early_node_map[i].start_pfn >= start_pfn && 3751 early_node_map[i].end_pfn > end_pfn && 3752 early_node_map[i].start_pfn < end_pfn) { 3753 early_node_map[i].start_pfn = end_pfn; 3754 continue; 3755 } 3756 } 3757 3758 if (!removed) 3759 return; 3760 3761 /* remove the blank ones */ 3762 for (i = nr_nodemap_entries - 1; i > 0; i--) { 3763 if (early_node_map[i].nid != nid) 3764 continue; 3765 if (early_node_map[i].end_pfn) 3766 continue; 3767 /* we found it, get rid of it */ 3768 for (j = i; j < nr_nodemap_entries - 1; j++) 3769 memcpy(&early_node_map[j], &early_node_map[j+1], 3770 sizeof(early_node_map[j])); 3771 j = nr_nodemap_entries - 1; 3772 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 3773 nr_nodemap_entries--; 3774 } 3775 } 3776 3777 /** 3778 * remove_all_active_ranges - Remove all currently registered regions 3779 * 3780 * During discovery, it may be found that a table like SRAT is invalid 3781 * and an alternative discovery method must be used. This function removes 3782 * all currently registered regions. 3783 */ 3784 void __init remove_all_active_ranges(void) 3785 { 3786 memset(early_node_map, 0, sizeof(early_node_map)); 3787 nr_nodemap_entries = 0; 3788 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE 3789 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn)); 3790 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn)); 3791 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */ 3792 } 3793 3794 /* Compare two active node_active_regions */ 3795 static int __init cmp_node_active_region(const void *a, const void *b) 3796 { 3797 struct node_active_region *arange = (struct node_active_region *)a; 3798 struct node_active_region *brange = (struct node_active_region *)b; 3799 3800 /* Done this way to avoid overflows */ 3801 if (arange->start_pfn > brange->start_pfn) 3802 return 1; 3803 if (arange->start_pfn < brange->start_pfn) 3804 return -1; 3805 3806 return 0; 3807 } 3808 3809 /* sort the node_map by start_pfn */ 3810 static void __init sort_node_map(void) 3811 { 3812 sort(early_node_map, (size_t)nr_nodemap_entries, 3813 sizeof(struct node_active_region), 3814 cmp_node_active_region, NULL); 3815 } 3816 3817 /* Find the lowest pfn for a node */ 3818 static unsigned long __init find_min_pfn_for_node(int nid) 3819 { 3820 int i; 3821 unsigned long min_pfn = ULONG_MAX; 3822 3823 /* Assuming a sorted map, the first range found has the starting pfn */ 3824 for_each_active_range_index_in_nid(i, nid) 3825 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 3826 3827 if (min_pfn == ULONG_MAX) { 3828 printk(KERN_WARNING 3829 "Could not find start_pfn for node %d\n", nid); 3830 return 0; 3831 } 3832 3833 return min_pfn; 3834 } 3835 3836 /** 3837 * find_min_pfn_with_active_regions - Find the minimum PFN registered 3838 * 3839 * It returns the minimum PFN based on information provided via 3840 * add_active_range(). 3841 */ 3842 unsigned long __init find_min_pfn_with_active_regions(void) 3843 { 3844 return find_min_pfn_for_node(MAX_NUMNODES); 3845 } 3846 3847 /* 3848 * early_calculate_totalpages() 3849 * Sum pages in active regions for movable zone. 3850 * Populate N_HIGH_MEMORY for calculating usable_nodes. 3851 */ 3852 static unsigned long __init early_calculate_totalpages(void) 3853 { 3854 int i; 3855 unsigned long totalpages = 0; 3856 3857 for (i = 0; i < nr_nodemap_entries; i++) { 3858 unsigned long pages = early_node_map[i].end_pfn - 3859 early_node_map[i].start_pfn; 3860 totalpages += pages; 3861 if (pages) 3862 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 3863 } 3864 return totalpages; 3865 } 3866 3867 /* 3868 * Find the PFN the Movable zone begins in each node. Kernel memory 3869 * is spread evenly between nodes as long as the nodes have enough 3870 * memory. When they don't, some nodes will have more kernelcore than 3871 * others 3872 */ 3873 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 3874 { 3875 int i, nid; 3876 unsigned long usable_startpfn; 3877 unsigned long kernelcore_node, kernelcore_remaining; 3878 unsigned long totalpages = early_calculate_totalpages(); 3879 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 3880 3881 /* 3882 * If movablecore was specified, calculate what size of 3883 * kernelcore that corresponds so that memory usable for 3884 * any allocation type is evenly spread. If both kernelcore 3885 * and movablecore are specified, then the value of kernelcore 3886 * will be used for required_kernelcore if it's greater than 3887 * what movablecore would have allowed. 3888 */ 3889 if (required_movablecore) { 3890 unsigned long corepages; 3891 3892 /* 3893 * Round-up so that ZONE_MOVABLE is at least as large as what 3894 * was requested by the user 3895 */ 3896 required_movablecore = 3897 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 3898 corepages = totalpages - required_movablecore; 3899 3900 required_kernelcore = max(required_kernelcore, corepages); 3901 } 3902 3903 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 3904 if (!required_kernelcore) 3905 return; 3906 3907 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 3908 find_usable_zone_for_movable(); 3909 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 3910 3911 restart: 3912 /* Spread kernelcore memory as evenly as possible throughout nodes */ 3913 kernelcore_node = required_kernelcore / usable_nodes; 3914 for_each_node_state(nid, N_HIGH_MEMORY) { 3915 /* 3916 * Recalculate kernelcore_node if the division per node 3917 * now exceeds what is necessary to satisfy the requested 3918 * amount of memory for the kernel 3919 */ 3920 if (required_kernelcore < kernelcore_node) 3921 kernelcore_node = required_kernelcore / usable_nodes; 3922 3923 /* 3924 * As the map is walked, we track how much memory is usable 3925 * by the kernel using kernelcore_remaining. When it is 3926 * 0, the rest of the node is usable by ZONE_MOVABLE 3927 */ 3928 kernelcore_remaining = kernelcore_node; 3929 3930 /* Go through each range of PFNs within this node */ 3931 for_each_active_range_index_in_nid(i, nid) { 3932 unsigned long start_pfn, end_pfn; 3933 unsigned long size_pages; 3934 3935 start_pfn = max(early_node_map[i].start_pfn, 3936 zone_movable_pfn[nid]); 3937 end_pfn = early_node_map[i].end_pfn; 3938 if (start_pfn >= end_pfn) 3939 continue; 3940 3941 /* Account for what is only usable for kernelcore */ 3942 if (start_pfn < usable_startpfn) { 3943 unsigned long kernel_pages; 3944 kernel_pages = min(end_pfn, usable_startpfn) 3945 - start_pfn; 3946 3947 kernelcore_remaining -= min(kernel_pages, 3948 kernelcore_remaining); 3949 required_kernelcore -= min(kernel_pages, 3950 required_kernelcore); 3951 3952 /* Continue if range is now fully accounted */ 3953 if (end_pfn <= usable_startpfn) { 3954 3955 /* 3956 * Push zone_movable_pfn to the end so 3957 * that if we have to rebalance 3958 * kernelcore across nodes, we will 3959 * not double account here 3960 */ 3961 zone_movable_pfn[nid] = end_pfn; 3962 continue; 3963 } 3964 start_pfn = usable_startpfn; 3965 } 3966 3967 /* 3968 * The usable PFN range for ZONE_MOVABLE is from 3969 * start_pfn->end_pfn. Calculate size_pages as the 3970 * number of pages used as kernelcore 3971 */ 3972 size_pages = end_pfn - start_pfn; 3973 if (size_pages > kernelcore_remaining) 3974 size_pages = kernelcore_remaining; 3975 zone_movable_pfn[nid] = start_pfn + size_pages; 3976 3977 /* 3978 * Some kernelcore has been met, update counts and 3979 * break if the kernelcore for this node has been 3980 * satisified 3981 */ 3982 required_kernelcore -= min(required_kernelcore, 3983 size_pages); 3984 kernelcore_remaining -= size_pages; 3985 if (!kernelcore_remaining) 3986 break; 3987 } 3988 } 3989 3990 /* 3991 * If there is still required_kernelcore, we do another pass with one 3992 * less node in the count. This will push zone_movable_pfn[nid] further 3993 * along on the nodes that still have memory until kernelcore is 3994 * satisified 3995 */ 3996 usable_nodes--; 3997 if (usable_nodes && required_kernelcore > usable_nodes) 3998 goto restart; 3999 4000 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4001 for (nid = 0; nid < MAX_NUMNODES; nid++) 4002 zone_movable_pfn[nid] = 4003 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4004 } 4005 4006 /* Any regular memory on that node ? */ 4007 static void check_for_regular_memory(pg_data_t *pgdat) 4008 { 4009 #ifdef CONFIG_HIGHMEM 4010 enum zone_type zone_type; 4011 4012 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4013 struct zone *zone = &pgdat->node_zones[zone_type]; 4014 if (zone->present_pages) 4015 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4016 } 4017 #endif 4018 } 4019 4020 /** 4021 * free_area_init_nodes - Initialise all pg_data_t and zone data 4022 * @max_zone_pfn: an array of max PFNs for each zone 4023 * 4024 * This will call free_area_init_node() for each active node in the system. 4025 * Using the page ranges provided by add_active_range(), the size of each 4026 * zone in each node and their holes is calculated. If the maximum PFN 4027 * between two adjacent zones match, it is assumed that the zone is empty. 4028 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4029 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4030 * starts where the previous one ended. For example, ZONE_DMA32 starts 4031 * at arch_max_dma_pfn. 4032 */ 4033 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4034 { 4035 unsigned long nid; 4036 int i; 4037 4038 /* Sort early_node_map as initialisation assumes it is sorted */ 4039 sort_node_map(); 4040 4041 /* Record where the zone boundaries are */ 4042 memset(arch_zone_lowest_possible_pfn, 0, 4043 sizeof(arch_zone_lowest_possible_pfn)); 4044 memset(arch_zone_highest_possible_pfn, 0, 4045 sizeof(arch_zone_highest_possible_pfn)); 4046 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4047 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4048 for (i = 1; i < MAX_NR_ZONES; i++) { 4049 if (i == ZONE_MOVABLE) 4050 continue; 4051 arch_zone_lowest_possible_pfn[i] = 4052 arch_zone_highest_possible_pfn[i-1]; 4053 arch_zone_highest_possible_pfn[i] = 4054 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4055 } 4056 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4057 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4058 4059 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4060 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4061 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4062 4063 /* Print out the zone ranges */ 4064 printk("Zone PFN ranges:\n"); 4065 for (i = 0; i < MAX_NR_ZONES; i++) { 4066 if (i == ZONE_MOVABLE) 4067 continue; 4068 printk(" %-8s %0#10lx -> %0#10lx\n", 4069 zone_names[i], 4070 arch_zone_lowest_possible_pfn[i], 4071 arch_zone_highest_possible_pfn[i]); 4072 } 4073 4074 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4075 printk("Movable zone start PFN for each node\n"); 4076 for (i = 0; i < MAX_NUMNODES; i++) { 4077 if (zone_movable_pfn[i]) 4078 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4079 } 4080 4081 /* Print out the early_node_map[] */ 4082 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4083 for (i = 0; i < nr_nodemap_entries; i++) 4084 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4085 early_node_map[i].start_pfn, 4086 early_node_map[i].end_pfn); 4087 4088 /* Initialise every node */ 4089 mminit_verify_pageflags_layout(); 4090 setup_nr_node_ids(); 4091 for_each_online_node(nid) { 4092 pg_data_t *pgdat = NODE_DATA(nid); 4093 free_area_init_node(nid, NULL, 4094 find_min_pfn_for_node(nid), NULL); 4095 4096 /* Any memory on that node */ 4097 if (pgdat->node_present_pages) 4098 node_set_state(nid, N_HIGH_MEMORY); 4099 check_for_regular_memory(pgdat); 4100 } 4101 } 4102 4103 static int __init cmdline_parse_core(char *p, unsigned long *core) 4104 { 4105 unsigned long long coremem; 4106 if (!p) 4107 return -EINVAL; 4108 4109 coremem = memparse(p, &p); 4110 *core = coremem >> PAGE_SHIFT; 4111 4112 /* Paranoid check that UL is enough for the coremem value */ 4113 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4114 4115 return 0; 4116 } 4117 4118 /* 4119 * kernelcore=size sets the amount of memory for use for allocations that 4120 * cannot be reclaimed or migrated. 4121 */ 4122 static int __init cmdline_parse_kernelcore(char *p) 4123 { 4124 return cmdline_parse_core(p, &required_kernelcore); 4125 } 4126 4127 /* 4128 * movablecore=size sets the amount of memory for use for allocations that 4129 * can be reclaimed or migrated. 4130 */ 4131 static int __init cmdline_parse_movablecore(char *p) 4132 { 4133 return cmdline_parse_core(p, &required_movablecore); 4134 } 4135 4136 early_param("kernelcore", cmdline_parse_kernelcore); 4137 early_param("movablecore", cmdline_parse_movablecore); 4138 4139 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4140 4141 /** 4142 * set_dma_reserve - set the specified number of pages reserved in the first zone 4143 * @new_dma_reserve: The number of pages to mark reserved 4144 * 4145 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4146 * In the DMA zone, a significant percentage may be consumed by kernel image 4147 * and other unfreeable allocations which can skew the watermarks badly. This 4148 * function may optionally be used to account for unfreeable pages in the 4149 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4150 * smaller per-cpu batchsize. 4151 */ 4152 void __init set_dma_reserve(unsigned long new_dma_reserve) 4153 { 4154 dma_reserve = new_dma_reserve; 4155 } 4156 4157 #ifndef CONFIG_NEED_MULTIPLE_NODES 4158 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] }; 4159 EXPORT_SYMBOL(contig_page_data); 4160 #endif 4161 4162 void __init free_area_init(unsigned long *zones_size) 4163 { 4164 free_area_init_node(0, zones_size, 4165 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4166 } 4167 4168 static int page_alloc_cpu_notify(struct notifier_block *self, 4169 unsigned long action, void *hcpu) 4170 { 4171 int cpu = (unsigned long)hcpu; 4172 4173 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4174 drain_pages(cpu); 4175 4176 /* 4177 * Spill the event counters of the dead processor 4178 * into the current processors event counters. 4179 * This artificially elevates the count of the current 4180 * processor. 4181 */ 4182 vm_events_fold_cpu(cpu); 4183 4184 /* 4185 * Zero the differential counters of the dead processor 4186 * so that the vm statistics are consistent. 4187 * 4188 * This is only okay since the processor is dead and cannot 4189 * race with what we are doing. 4190 */ 4191 refresh_cpu_vm_stats(cpu); 4192 } 4193 return NOTIFY_OK; 4194 } 4195 4196 void __init page_alloc_init(void) 4197 { 4198 hotcpu_notifier(page_alloc_cpu_notify, 0); 4199 } 4200 4201 /* 4202 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4203 * or min_free_kbytes changes. 4204 */ 4205 static void calculate_totalreserve_pages(void) 4206 { 4207 struct pglist_data *pgdat; 4208 unsigned long reserve_pages = 0; 4209 enum zone_type i, j; 4210 4211 for_each_online_pgdat(pgdat) { 4212 for (i = 0; i < MAX_NR_ZONES; i++) { 4213 struct zone *zone = pgdat->node_zones + i; 4214 unsigned long max = 0; 4215 4216 /* Find valid and maximum lowmem_reserve in the zone */ 4217 for (j = i; j < MAX_NR_ZONES; j++) { 4218 if (zone->lowmem_reserve[j] > max) 4219 max = zone->lowmem_reserve[j]; 4220 } 4221 4222 /* we treat pages_high as reserved pages. */ 4223 max += zone->pages_high; 4224 4225 if (max > zone->present_pages) 4226 max = zone->present_pages; 4227 reserve_pages += max; 4228 } 4229 } 4230 totalreserve_pages = reserve_pages; 4231 } 4232 4233 /* 4234 * setup_per_zone_lowmem_reserve - called whenever 4235 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4236 * has a correct pages reserved value, so an adequate number of 4237 * pages are left in the zone after a successful __alloc_pages(). 4238 */ 4239 static void setup_per_zone_lowmem_reserve(void) 4240 { 4241 struct pglist_data *pgdat; 4242 enum zone_type j, idx; 4243 4244 for_each_online_pgdat(pgdat) { 4245 for (j = 0; j < MAX_NR_ZONES; j++) { 4246 struct zone *zone = pgdat->node_zones + j; 4247 unsigned long present_pages = zone->present_pages; 4248 4249 zone->lowmem_reserve[j] = 0; 4250 4251 idx = j; 4252 while (idx) { 4253 struct zone *lower_zone; 4254 4255 idx--; 4256 4257 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4258 sysctl_lowmem_reserve_ratio[idx] = 1; 4259 4260 lower_zone = pgdat->node_zones + idx; 4261 lower_zone->lowmem_reserve[j] = present_pages / 4262 sysctl_lowmem_reserve_ratio[idx]; 4263 present_pages += lower_zone->present_pages; 4264 } 4265 } 4266 } 4267 4268 /* update totalreserve_pages */ 4269 calculate_totalreserve_pages(); 4270 } 4271 4272 /** 4273 * setup_per_zone_pages_min - called when min_free_kbytes changes. 4274 * 4275 * Ensures that the pages_{min,low,high} values for each zone are set correctly 4276 * with respect to min_free_kbytes. 4277 */ 4278 void setup_per_zone_pages_min(void) 4279 { 4280 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4281 unsigned long lowmem_pages = 0; 4282 struct zone *zone; 4283 unsigned long flags; 4284 4285 /* Calculate total number of !ZONE_HIGHMEM pages */ 4286 for_each_zone(zone) { 4287 if (!is_highmem(zone)) 4288 lowmem_pages += zone->present_pages; 4289 } 4290 4291 for_each_zone(zone) { 4292 u64 tmp; 4293 4294 spin_lock_irqsave(&zone->lock, flags); 4295 tmp = (u64)pages_min * zone->present_pages; 4296 do_div(tmp, lowmem_pages); 4297 if (is_highmem(zone)) { 4298 /* 4299 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4300 * need highmem pages, so cap pages_min to a small 4301 * value here. 4302 * 4303 * The (pages_high-pages_low) and (pages_low-pages_min) 4304 * deltas controls asynch page reclaim, and so should 4305 * not be capped for highmem. 4306 */ 4307 int min_pages; 4308 4309 min_pages = zone->present_pages / 1024; 4310 if (min_pages < SWAP_CLUSTER_MAX) 4311 min_pages = SWAP_CLUSTER_MAX; 4312 if (min_pages > 128) 4313 min_pages = 128; 4314 zone->pages_min = min_pages; 4315 } else { 4316 /* 4317 * If it's a lowmem zone, reserve a number of pages 4318 * proportionate to the zone's size. 4319 */ 4320 zone->pages_min = tmp; 4321 } 4322 4323 zone->pages_low = zone->pages_min + (tmp >> 2); 4324 zone->pages_high = zone->pages_min + (tmp >> 1); 4325 setup_zone_migrate_reserve(zone); 4326 spin_unlock_irqrestore(&zone->lock, flags); 4327 } 4328 4329 /* update totalreserve_pages */ 4330 calculate_totalreserve_pages(); 4331 } 4332 4333 /** 4334 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes. 4335 * 4336 * The inactive anon list should be small enough that the VM never has to 4337 * do too much work, but large enough that each inactive page has a chance 4338 * to be referenced again before it is swapped out. 4339 * 4340 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4341 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4342 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4343 * the anonymous pages are kept on the inactive list. 4344 * 4345 * total target max 4346 * memory ratio inactive anon 4347 * ------------------------------------- 4348 * 10MB 1 5MB 4349 * 100MB 1 50MB 4350 * 1GB 3 250MB 4351 * 10GB 10 0.9GB 4352 * 100GB 31 3GB 4353 * 1TB 101 10GB 4354 * 10TB 320 32GB 4355 */ 4356 static void setup_per_zone_inactive_ratio(void) 4357 { 4358 struct zone *zone; 4359 4360 for_each_zone(zone) { 4361 unsigned int gb, ratio; 4362 4363 /* Zone size in gigabytes */ 4364 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4365 ratio = int_sqrt(10 * gb); 4366 if (!ratio) 4367 ratio = 1; 4368 4369 zone->inactive_ratio = ratio; 4370 } 4371 } 4372 4373 /* 4374 * Initialise min_free_kbytes. 4375 * 4376 * For small machines we want it small (128k min). For large machines 4377 * we want it large (64MB max). But it is not linear, because network 4378 * bandwidth does not increase linearly with machine size. We use 4379 * 4380 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4381 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4382 * 4383 * which yields 4384 * 4385 * 16MB: 512k 4386 * 32MB: 724k 4387 * 64MB: 1024k 4388 * 128MB: 1448k 4389 * 256MB: 2048k 4390 * 512MB: 2896k 4391 * 1024MB: 4096k 4392 * 2048MB: 5792k 4393 * 4096MB: 8192k 4394 * 8192MB: 11584k 4395 * 16384MB: 16384k 4396 */ 4397 static int __init init_per_zone_pages_min(void) 4398 { 4399 unsigned long lowmem_kbytes; 4400 4401 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4402 4403 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4404 if (min_free_kbytes < 128) 4405 min_free_kbytes = 128; 4406 if (min_free_kbytes > 65536) 4407 min_free_kbytes = 65536; 4408 setup_per_zone_pages_min(); 4409 setup_per_zone_lowmem_reserve(); 4410 setup_per_zone_inactive_ratio(); 4411 return 0; 4412 } 4413 module_init(init_per_zone_pages_min) 4414 4415 /* 4416 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4417 * that we can call two helper functions whenever min_free_kbytes 4418 * changes. 4419 */ 4420 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4421 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4422 { 4423 proc_dointvec(table, write, file, buffer, length, ppos); 4424 if (write) 4425 setup_per_zone_pages_min(); 4426 return 0; 4427 } 4428 4429 #ifdef CONFIG_NUMA 4430 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4431 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4432 { 4433 struct zone *zone; 4434 int rc; 4435 4436 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4437 if (rc) 4438 return rc; 4439 4440 for_each_zone(zone) 4441 zone->min_unmapped_pages = (zone->present_pages * 4442 sysctl_min_unmapped_ratio) / 100; 4443 return 0; 4444 } 4445 4446 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 4447 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4448 { 4449 struct zone *zone; 4450 int rc; 4451 4452 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4453 if (rc) 4454 return rc; 4455 4456 for_each_zone(zone) 4457 zone->min_slab_pages = (zone->present_pages * 4458 sysctl_min_slab_ratio) / 100; 4459 return 0; 4460 } 4461 #endif 4462 4463 /* 4464 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 4465 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 4466 * whenever sysctl_lowmem_reserve_ratio changes. 4467 * 4468 * The reserve ratio obviously has absolutely no relation with the 4469 * pages_min watermarks. The lowmem reserve ratio can only make sense 4470 * if in function of the boot time zone sizes. 4471 */ 4472 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 4473 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4474 { 4475 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4476 setup_per_zone_lowmem_reserve(); 4477 return 0; 4478 } 4479 4480 /* 4481 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 4482 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 4483 * can have before it gets flushed back to buddy allocator. 4484 */ 4485 4486 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 4487 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 4488 { 4489 struct zone *zone; 4490 unsigned int cpu; 4491 int ret; 4492 4493 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 4494 if (!write || (ret == -EINVAL)) 4495 return ret; 4496 for_each_zone(zone) { 4497 for_each_online_cpu(cpu) { 4498 unsigned long high; 4499 high = zone->present_pages / percpu_pagelist_fraction; 4500 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 4501 } 4502 } 4503 return 0; 4504 } 4505 4506 int hashdist = HASHDIST_DEFAULT; 4507 4508 #ifdef CONFIG_NUMA 4509 static int __init set_hashdist(char *str) 4510 { 4511 if (!str) 4512 return 0; 4513 hashdist = simple_strtoul(str, &str, 0); 4514 return 1; 4515 } 4516 __setup("hashdist=", set_hashdist); 4517 #endif 4518 4519 /* 4520 * allocate a large system hash table from bootmem 4521 * - it is assumed that the hash table must contain an exact power-of-2 4522 * quantity of entries 4523 * - limit is the number of hash buckets, not the total allocation size 4524 */ 4525 void *__init alloc_large_system_hash(const char *tablename, 4526 unsigned long bucketsize, 4527 unsigned long numentries, 4528 int scale, 4529 int flags, 4530 unsigned int *_hash_shift, 4531 unsigned int *_hash_mask, 4532 unsigned long limit) 4533 { 4534 unsigned long long max = limit; 4535 unsigned long log2qty, size; 4536 void *table = NULL; 4537 4538 /* allow the kernel cmdline to have a say */ 4539 if (!numentries) { 4540 /* round applicable memory size up to nearest megabyte */ 4541 numentries = nr_kernel_pages; 4542 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 4543 numentries >>= 20 - PAGE_SHIFT; 4544 numentries <<= 20 - PAGE_SHIFT; 4545 4546 /* limit to 1 bucket per 2^scale bytes of low memory */ 4547 if (scale > PAGE_SHIFT) 4548 numentries >>= (scale - PAGE_SHIFT); 4549 else 4550 numentries <<= (PAGE_SHIFT - scale); 4551 4552 /* Make sure we've got at least a 0-order allocation.. */ 4553 if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 4554 numentries = PAGE_SIZE / bucketsize; 4555 } 4556 numentries = roundup_pow_of_two(numentries); 4557 4558 /* limit allocation size to 1/16 total memory by default */ 4559 if (max == 0) { 4560 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 4561 do_div(max, bucketsize); 4562 } 4563 4564 if (numentries > max) 4565 numentries = max; 4566 4567 log2qty = ilog2(numentries); 4568 4569 do { 4570 size = bucketsize << log2qty; 4571 if (flags & HASH_EARLY) 4572 table = alloc_bootmem_nopanic(size); 4573 else if (hashdist) 4574 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 4575 else { 4576 unsigned long order = get_order(size); 4577 table = (void*) __get_free_pages(GFP_ATOMIC, order); 4578 /* 4579 * If bucketsize is not a power-of-two, we may free 4580 * some pages at the end of hash table. 4581 */ 4582 if (table) { 4583 unsigned long alloc_end = (unsigned long)table + 4584 (PAGE_SIZE << order); 4585 unsigned long used = (unsigned long)table + 4586 PAGE_ALIGN(size); 4587 split_page(virt_to_page(table), order); 4588 while (used < alloc_end) { 4589 free_page(used); 4590 used += PAGE_SIZE; 4591 } 4592 } 4593 } 4594 } while (!table && size > PAGE_SIZE && --log2qty); 4595 4596 if (!table) 4597 panic("Failed to allocate %s hash table\n", tablename); 4598 4599 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 4600 tablename, 4601 (1U << log2qty), 4602 ilog2(size) - PAGE_SHIFT, 4603 size); 4604 4605 if (_hash_shift) 4606 *_hash_shift = log2qty; 4607 if (_hash_mask) 4608 *_hash_mask = (1 << log2qty) - 1; 4609 4610 return table; 4611 } 4612 4613 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 4614 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 4615 unsigned long pfn) 4616 { 4617 #ifdef CONFIG_SPARSEMEM 4618 return __pfn_to_section(pfn)->pageblock_flags; 4619 #else 4620 return zone->pageblock_flags; 4621 #endif /* CONFIG_SPARSEMEM */ 4622 } 4623 4624 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 4625 { 4626 #ifdef CONFIG_SPARSEMEM 4627 pfn &= (PAGES_PER_SECTION-1); 4628 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4629 #else 4630 pfn = pfn - zone->zone_start_pfn; 4631 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 4632 #endif /* CONFIG_SPARSEMEM */ 4633 } 4634 4635 /** 4636 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 4637 * @page: The page within the block of interest 4638 * @start_bitidx: The first bit of interest to retrieve 4639 * @end_bitidx: The last bit of interest 4640 * returns pageblock_bits flags 4641 */ 4642 unsigned long get_pageblock_flags_group(struct page *page, 4643 int start_bitidx, int end_bitidx) 4644 { 4645 struct zone *zone; 4646 unsigned long *bitmap; 4647 unsigned long pfn, bitidx; 4648 unsigned long flags = 0; 4649 unsigned long value = 1; 4650 4651 zone = page_zone(page); 4652 pfn = page_to_pfn(page); 4653 bitmap = get_pageblock_bitmap(zone, pfn); 4654 bitidx = pfn_to_bitidx(zone, pfn); 4655 4656 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4657 if (test_bit(bitidx + start_bitidx, bitmap)) 4658 flags |= value; 4659 4660 return flags; 4661 } 4662 4663 /** 4664 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 4665 * @page: The page within the block of interest 4666 * @start_bitidx: The first bit of interest 4667 * @end_bitidx: The last bit of interest 4668 * @flags: The flags to set 4669 */ 4670 void set_pageblock_flags_group(struct page *page, unsigned long flags, 4671 int start_bitidx, int end_bitidx) 4672 { 4673 struct zone *zone; 4674 unsigned long *bitmap; 4675 unsigned long pfn, bitidx; 4676 unsigned long value = 1; 4677 4678 zone = page_zone(page); 4679 pfn = page_to_pfn(page); 4680 bitmap = get_pageblock_bitmap(zone, pfn); 4681 bitidx = pfn_to_bitidx(zone, pfn); 4682 VM_BUG_ON(pfn < zone->zone_start_pfn); 4683 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 4684 4685 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 4686 if (flags & value) 4687 __set_bit(bitidx + start_bitidx, bitmap); 4688 else 4689 __clear_bit(bitidx + start_bitidx, bitmap); 4690 } 4691 4692 /* 4693 * This is designed as sub function...plz see page_isolation.c also. 4694 * set/clear page block's type to be ISOLATE. 4695 * page allocater never alloc memory from ISOLATE block. 4696 */ 4697 4698 int set_migratetype_isolate(struct page *page) 4699 { 4700 struct zone *zone; 4701 unsigned long flags; 4702 int ret = -EBUSY; 4703 4704 zone = page_zone(page); 4705 spin_lock_irqsave(&zone->lock, flags); 4706 /* 4707 * In future, more migrate types will be able to be isolation target. 4708 */ 4709 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE) 4710 goto out; 4711 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 4712 move_freepages_block(zone, page, MIGRATE_ISOLATE); 4713 ret = 0; 4714 out: 4715 spin_unlock_irqrestore(&zone->lock, flags); 4716 if (!ret) 4717 drain_all_pages(); 4718 return ret; 4719 } 4720 4721 void unset_migratetype_isolate(struct page *page) 4722 { 4723 struct zone *zone; 4724 unsigned long flags; 4725 zone = page_zone(page); 4726 spin_lock_irqsave(&zone->lock, flags); 4727 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 4728 goto out; 4729 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4730 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4731 out: 4732 spin_unlock_irqrestore(&zone->lock, flags); 4733 } 4734 4735 #ifdef CONFIG_MEMORY_HOTREMOVE 4736 /* 4737 * All pages in the range must be isolated before calling this. 4738 */ 4739 void 4740 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 4741 { 4742 struct page *page; 4743 struct zone *zone; 4744 int order, i; 4745 unsigned long pfn; 4746 unsigned long flags; 4747 /* find the first valid pfn */ 4748 for (pfn = start_pfn; pfn < end_pfn; pfn++) 4749 if (pfn_valid(pfn)) 4750 break; 4751 if (pfn == end_pfn) 4752 return; 4753 zone = page_zone(pfn_to_page(pfn)); 4754 spin_lock_irqsave(&zone->lock, flags); 4755 pfn = start_pfn; 4756 while (pfn < end_pfn) { 4757 if (!pfn_valid(pfn)) { 4758 pfn++; 4759 continue; 4760 } 4761 page = pfn_to_page(pfn); 4762 BUG_ON(page_count(page)); 4763 BUG_ON(!PageBuddy(page)); 4764 order = page_order(page); 4765 #ifdef CONFIG_DEBUG_VM 4766 printk(KERN_INFO "remove from free list %lx %d %lx\n", 4767 pfn, 1 << order, end_pfn); 4768 #endif 4769 list_del(&page->lru); 4770 rmv_page_order(page); 4771 zone->free_area[order].nr_free--; 4772 __mod_zone_page_state(zone, NR_FREE_PAGES, 4773 - (1UL << order)); 4774 for (i = 0; i < (1 << order); i++) 4775 SetPageReserved((page+i)); 4776 pfn += (1 << order); 4777 } 4778 spin_unlock_irqrestore(&zone->lock, flags); 4779 } 4780 #endif 4781