1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/oom.h> 34 #include <linux/notifier.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/mempolicy.h> 43 #include <linux/stop_machine.h> 44 #include <linux/sort.h> 45 #include <linux/pfn.h> 46 #include <linux/backing-dev.h> 47 #include <linux/fault-inject.h> 48 #include <linux/page-isolation.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/debugobjects.h> 51 #include <linux/kmemleak.h> 52 #include <linux/memory.h> 53 #include <linux/compaction.h> 54 #include <trace/events/kmem.h> 55 #include <linux/ftrace_event.h> 56 57 #include <asm/tlbflush.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 62 DEFINE_PER_CPU(int, numa_node); 63 EXPORT_PER_CPU_SYMBOL(numa_node); 64 #endif 65 66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 67 /* 68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 71 * defined in <linux/topology.h>. 72 */ 73 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 74 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 75 #endif 76 77 /* 78 * Array of node states. 79 */ 80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 81 [N_POSSIBLE] = NODE_MASK_ALL, 82 [N_ONLINE] = { { [0] = 1UL } }, 83 #ifndef CONFIG_NUMA 84 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 85 #ifdef CONFIG_HIGHMEM 86 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 87 #endif 88 [N_CPU] = { { [0] = 1UL } }, 89 #endif /* NUMA */ 90 }; 91 EXPORT_SYMBOL(node_states); 92 93 unsigned long totalram_pages __read_mostly; 94 unsigned long totalreserve_pages __read_mostly; 95 int percpu_pagelist_fraction; 96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 97 98 #ifdef CONFIG_PM_SLEEP 99 /* 100 * The following functions are used by the suspend/hibernate code to temporarily 101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 102 * while devices are suspended. To avoid races with the suspend/hibernate code, 103 * they should always be called with pm_mutex held (gfp_allowed_mask also should 104 * only be modified with pm_mutex held, unless the suspend/hibernate code is 105 * guaranteed not to run in parallel with that modification). 106 */ 107 void set_gfp_allowed_mask(gfp_t mask) 108 { 109 WARN_ON(!mutex_is_locked(&pm_mutex)); 110 gfp_allowed_mask = mask; 111 } 112 113 gfp_t clear_gfp_allowed_mask(gfp_t mask) 114 { 115 gfp_t ret = gfp_allowed_mask; 116 117 WARN_ON(!mutex_is_locked(&pm_mutex)); 118 gfp_allowed_mask &= ~mask; 119 return ret; 120 } 121 #endif /* CONFIG_PM_SLEEP */ 122 123 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 124 int pageblock_order __read_mostly; 125 #endif 126 127 static void __free_pages_ok(struct page *page, unsigned int order); 128 129 /* 130 * results with 256, 32 in the lowmem_reserve sysctl: 131 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 132 * 1G machine -> (16M dma, 784M normal, 224M high) 133 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 134 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 135 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 136 * 137 * TBD: should special case ZONE_DMA32 machines here - in those we normally 138 * don't need any ZONE_NORMAL reservation 139 */ 140 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 141 #ifdef CONFIG_ZONE_DMA 142 256, 143 #endif 144 #ifdef CONFIG_ZONE_DMA32 145 256, 146 #endif 147 #ifdef CONFIG_HIGHMEM 148 32, 149 #endif 150 32, 151 }; 152 153 EXPORT_SYMBOL(totalram_pages); 154 155 static char * const zone_names[MAX_NR_ZONES] = { 156 #ifdef CONFIG_ZONE_DMA 157 "DMA", 158 #endif 159 #ifdef CONFIG_ZONE_DMA32 160 "DMA32", 161 #endif 162 "Normal", 163 #ifdef CONFIG_HIGHMEM 164 "HighMem", 165 #endif 166 "Movable", 167 }; 168 169 int min_free_kbytes = 1024; 170 171 static unsigned long __meminitdata nr_kernel_pages; 172 static unsigned long __meminitdata nr_all_pages; 173 static unsigned long __meminitdata dma_reserve; 174 175 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 176 /* 177 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 178 * ranges of memory (RAM) that may be registered with add_active_range(). 179 * Ranges passed to add_active_range() will be merged if possible 180 * so the number of times add_active_range() can be called is 181 * related to the number of nodes and the number of holes 182 */ 183 #ifdef CONFIG_MAX_ACTIVE_REGIONS 184 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 185 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 186 #else 187 #if MAX_NUMNODES >= 32 188 /* If there can be many nodes, allow up to 50 holes per node */ 189 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 190 #else 191 /* By default, allow up to 256 distinct regions */ 192 #define MAX_ACTIVE_REGIONS 256 193 #endif 194 #endif 195 196 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 197 static int __meminitdata nr_nodemap_entries; 198 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 199 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 200 static unsigned long __initdata required_kernelcore; 201 static unsigned long __initdata required_movablecore; 202 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 203 204 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 205 int movable_zone; 206 EXPORT_SYMBOL(movable_zone); 207 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 208 209 #if MAX_NUMNODES > 1 210 int nr_node_ids __read_mostly = MAX_NUMNODES; 211 int nr_online_nodes __read_mostly = 1; 212 EXPORT_SYMBOL(nr_node_ids); 213 EXPORT_SYMBOL(nr_online_nodes); 214 #endif 215 216 int page_group_by_mobility_disabled __read_mostly; 217 218 static void set_pageblock_migratetype(struct page *page, int migratetype) 219 { 220 221 if (unlikely(page_group_by_mobility_disabled)) 222 migratetype = MIGRATE_UNMOVABLE; 223 224 set_pageblock_flags_group(page, (unsigned long)migratetype, 225 PB_migrate, PB_migrate_end); 226 } 227 228 bool oom_killer_disabled __read_mostly; 229 230 #ifdef CONFIG_DEBUG_VM 231 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 232 { 233 int ret = 0; 234 unsigned seq; 235 unsigned long pfn = page_to_pfn(page); 236 237 do { 238 seq = zone_span_seqbegin(zone); 239 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 240 ret = 1; 241 else if (pfn < zone->zone_start_pfn) 242 ret = 1; 243 } while (zone_span_seqretry(zone, seq)); 244 245 return ret; 246 } 247 248 static int page_is_consistent(struct zone *zone, struct page *page) 249 { 250 if (!pfn_valid_within(page_to_pfn(page))) 251 return 0; 252 if (zone != page_zone(page)) 253 return 0; 254 255 return 1; 256 } 257 /* 258 * Temporary debugging check for pages not lying within a given zone. 259 */ 260 static int bad_range(struct zone *zone, struct page *page) 261 { 262 if (page_outside_zone_boundaries(zone, page)) 263 return 1; 264 if (!page_is_consistent(zone, page)) 265 return 1; 266 267 return 0; 268 } 269 #else 270 static inline int bad_range(struct zone *zone, struct page *page) 271 { 272 return 0; 273 } 274 #endif 275 276 static void bad_page(struct page *page) 277 { 278 static unsigned long resume; 279 static unsigned long nr_shown; 280 static unsigned long nr_unshown; 281 282 /* Don't complain about poisoned pages */ 283 if (PageHWPoison(page)) { 284 __ClearPageBuddy(page); 285 return; 286 } 287 288 /* 289 * Allow a burst of 60 reports, then keep quiet for that minute; 290 * or allow a steady drip of one report per second. 291 */ 292 if (nr_shown == 60) { 293 if (time_before(jiffies, resume)) { 294 nr_unshown++; 295 goto out; 296 } 297 if (nr_unshown) { 298 printk(KERN_ALERT 299 "BUG: Bad page state: %lu messages suppressed\n", 300 nr_unshown); 301 nr_unshown = 0; 302 } 303 nr_shown = 0; 304 } 305 if (nr_shown++ == 0) 306 resume = jiffies + 60 * HZ; 307 308 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 309 current->comm, page_to_pfn(page)); 310 dump_page(page); 311 312 dump_stack(); 313 out: 314 /* Leave bad fields for debug, except PageBuddy could make trouble */ 315 __ClearPageBuddy(page); 316 add_taint(TAINT_BAD_PAGE); 317 } 318 319 /* 320 * Higher-order pages are called "compound pages". They are structured thusly: 321 * 322 * The first PAGE_SIZE page is called the "head page". 323 * 324 * The remaining PAGE_SIZE pages are called "tail pages". 325 * 326 * All pages have PG_compound set. All pages have their ->private pointing at 327 * the head page (even the head page has this). 328 * 329 * The first tail page's ->lru.next holds the address of the compound page's 330 * put_page() function. Its ->lru.prev holds the order of allocation. 331 * This usage means that zero-order pages may not be compound. 332 */ 333 334 static void free_compound_page(struct page *page) 335 { 336 __free_pages_ok(page, compound_order(page)); 337 } 338 339 void prep_compound_page(struct page *page, unsigned long order) 340 { 341 int i; 342 int nr_pages = 1 << order; 343 344 set_compound_page_dtor(page, free_compound_page); 345 set_compound_order(page, order); 346 __SetPageHead(page); 347 for (i = 1; i < nr_pages; i++) { 348 struct page *p = page + i; 349 350 __SetPageTail(p); 351 p->first_page = page; 352 } 353 } 354 355 static int destroy_compound_page(struct page *page, unsigned long order) 356 { 357 int i; 358 int nr_pages = 1 << order; 359 int bad = 0; 360 361 if (unlikely(compound_order(page) != order) || 362 unlikely(!PageHead(page))) { 363 bad_page(page); 364 bad++; 365 } 366 367 __ClearPageHead(page); 368 369 for (i = 1; i < nr_pages; i++) { 370 struct page *p = page + i; 371 372 if (unlikely(!PageTail(p) || (p->first_page != page))) { 373 bad_page(page); 374 bad++; 375 } 376 __ClearPageTail(p); 377 } 378 379 return bad; 380 } 381 382 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 383 { 384 int i; 385 386 /* 387 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 388 * and __GFP_HIGHMEM from hard or soft interrupt context. 389 */ 390 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 391 for (i = 0; i < (1 << order); i++) 392 clear_highpage(page + i); 393 } 394 395 static inline void set_page_order(struct page *page, int order) 396 { 397 set_page_private(page, order); 398 __SetPageBuddy(page); 399 } 400 401 static inline void rmv_page_order(struct page *page) 402 { 403 __ClearPageBuddy(page); 404 set_page_private(page, 0); 405 } 406 407 /* 408 * Locate the struct page for both the matching buddy in our 409 * pair (buddy1) and the combined O(n+1) page they form (page). 410 * 411 * 1) Any buddy B1 will have an order O twin B2 which satisfies 412 * the following equation: 413 * B2 = B1 ^ (1 << O) 414 * For example, if the starting buddy (buddy2) is #8 its order 415 * 1 buddy is #10: 416 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 417 * 418 * 2) Any buddy B will have an order O+1 parent P which 419 * satisfies the following equation: 420 * P = B & ~(1 << O) 421 * 422 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 423 */ 424 static inline struct page * 425 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 426 { 427 unsigned long buddy_idx = page_idx ^ (1 << order); 428 429 return page + (buddy_idx - page_idx); 430 } 431 432 static inline unsigned long 433 __find_combined_index(unsigned long page_idx, unsigned int order) 434 { 435 return (page_idx & ~(1 << order)); 436 } 437 438 /* 439 * This function checks whether a page is free && is the buddy 440 * we can do coalesce a page and its buddy if 441 * (a) the buddy is not in a hole && 442 * (b) the buddy is in the buddy system && 443 * (c) a page and its buddy have the same order && 444 * (d) a page and its buddy are in the same zone. 445 * 446 * For recording whether a page is in the buddy system, we use PG_buddy. 447 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 448 * 449 * For recording page's order, we use page_private(page). 450 */ 451 static inline int page_is_buddy(struct page *page, struct page *buddy, 452 int order) 453 { 454 if (!pfn_valid_within(page_to_pfn(buddy))) 455 return 0; 456 457 if (page_zone_id(page) != page_zone_id(buddy)) 458 return 0; 459 460 if (PageBuddy(buddy) && page_order(buddy) == order) { 461 VM_BUG_ON(page_count(buddy) != 0); 462 return 1; 463 } 464 return 0; 465 } 466 467 /* 468 * Freeing function for a buddy system allocator. 469 * 470 * The concept of a buddy system is to maintain direct-mapped table 471 * (containing bit values) for memory blocks of various "orders". 472 * The bottom level table contains the map for the smallest allocatable 473 * units of memory (here, pages), and each level above it describes 474 * pairs of units from the levels below, hence, "buddies". 475 * At a high level, all that happens here is marking the table entry 476 * at the bottom level available, and propagating the changes upward 477 * as necessary, plus some accounting needed to play nicely with other 478 * parts of the VM system. 479 * At each level, we keep a list of pages, which are heads of continuous 480 * free pages of length of (1 << order) and marked with PG_buddy. Page's 481 * order is recorded in page_private(page) field. 482 * So when we are allocating or freeing one, we can derive the state of the 483 * other. That is, if we allocate a small block, and both were 484 * free, the remainder of the region must be split into blocks. 485 * If a block is freed, and its buddy is also free, then this 486 * triggers coalescing into a block of larger size. 487 * 488 * -- wli 489 */ 490 491 static inline void __free_one_page(struct page *page, 492 struct zone *zone, unsigned int order, 493 int migratetype) 494 { 495 unsigned long page_idx; 496 unsigned long combined_idx; 497 struct page *buddy; 498 499 if (unlikely(PageCompound(page))) 500 if (unlikely(destroy_compound_page(page, order))) 501 return; 502 503 VM_BUG_ON(migratetype == -1); 504 505 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 506 507 VM_BUG_ON(page_idx & ((1 << order) - 1)); 508 VM_BUG_ON(bad_range(zone, page)); 509 510 while (order < MAX_ORDER-1) { 511 buddy = __page_find_buddy(page, page_idx, order); 512 if (!page_is_buddy(page, buddy, order)) 513 break; 514 515 /* Our buddy is free, merge with it and move up one order. */ 516 list_del(&buddy->lru); 517 zone->free_area[order].nr_free--; 518 rmv_page_order(buddy); 519 combined_idx = __find_combined_index(page_idx, order); 520 page = page + (combined_idx - page_idx); 521 page_idx = combined_idx; 522 order++; 523 } 524 set_page_order(page, order); 525 526 /* 527 * If this is not the largest possible page, check if the buddy 528 * of the next-highest order is free. If it is, it's possible 529 * that pages are being freed that will coalesce soon. In case, 530 * that is happening, add the free page to the tail of the list 531 * so it's less likely to be used soon and more likely to be merged 532 * as a higher order page 533 */ 534 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) { 535 struct page *higher_page, *higher_buddy; 536 combined_idx = __find_combined_index(page_idx, order); 537 higher_page = page + combined_idx - page_idx; 538 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1); 539 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 540 list_add_tail(&page->lru, 541 &zone->free_area[order].free_list[migratetype]); 542 goto out; 543 } 544 } 545 546 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 547 out: 548 zone->free_area[order].nr_free++; 549 } 550 551 /* 552 * free_page_mlock() -- clean up attempts to free and mlocked() page. 553 * Page should not be on lru, so no need to fix that up. 554 * free_pages_check() will verify... 555 */ 556 static inline void free_page_mlock(struct page *page) 557 { 558 __dec_zone_page_state(page, NR_MLOCK); 559 __count_vm_event(UNEVICTABLE_MLOCKFREED); 560 } 561 562 static inline int free_pages_check(struct page *page) 563 { 564 if (unlikely(page_mapcount(page) | 565 (page->mapping != NULL) | 566 (atomic_read(&page->_count) != 0) | 567 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 568 bad_page(page); 569 return 1; 570 } 571 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 572 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 573 return 0; 574 } 575 576 /* 577 * Frees a number of pages from the PCP lists 578 * Assumes all pages on list are in same zone, and of same order. 579 * count is the number of pages to free. 580 * 581 * If the zone was previously in an "all pages pinned" state then look to 582 * see if this freeing clears that state. 583 * 584 * And clear the zone's pages_scanned counter, to hold off the "all pages are 585 * pinned" detection logic. 586 */ 587 static void free_pcppages_bulk(struct zone *zone, int count, 588 struct per_cpu_pages *pcp) 589 { 590 int migratetype = 0; 591 int batch_free = 0; 592 int to_free = count; 593 594 spin_lock(&zone->lock); 595 zone->all_unreclaimable = 0; 596 zone->pages_scanned = 0; 597 598 while (to_free) { 599 struct page *page; 600 struct list_head *list; 601 602 /* 603 * Remove pages from lists in a round-robin fashion. A 604 * batch_free count is maintained that is incremented when an 605 * empty list is encountered. This is so more pages are freed 606 * off fuller lists instead of spinning excessively around empty 607 * lists 608 */ 609 do { 610 batch_free++; 611 if (++migratetype == MIGRATE_PCPTYPES) 612 migratetype = 0; 613 list = &pcp->lists[migratetype]; 614 } while (list_empty(list)); 615 616 do { 617 page = list_entry(list->prev, struct page, lru); 618 /* must delete as __free_one_page list manipulates */ 619 list_del(&page->lru); 620 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 621 __free_one_page(page, zone, 0, page_private(page)); 622 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 623 } while (--to_free && --batch_free && !list_empty(list)); 624 } 625 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 626 spin_unlock(&zone->lock); 627 } 628 629 static void free_one_page(struct zone *zone, struct page *page, int order, 630 int migratetype) 631 { 632 spin_lock(&zone->lock); 633 zone->all_unreclaimable = 0; 634 zone->pages_scanned = 0; 635 636 __free_one_page(page, zone, order, migratetype); 637 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 638 spin_unlock(&zone->lock); 639 } 640 641 static bool free_pages_prepare(struct page *page, unsigned int order) 642 { 643 int i; 644 int bad = 0; 645 646 trace_mm_page_free_direct(page, order); 647 kmemcheck_free_shadow(page, order); 648 649 for (i = 0; i < (1 << order); i++) { 650 struct page *pg = page + i; 651 652 if (PageAnon(pg)) 653 pg->mapping = NULL; 654 bad += free_pages_check(pg); 655 } 656 if (bad) 657 return false; 658 659 if (!PageHighMem(page)) { 660 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 661 debug_check_no_obj_freed(page_address(page), 662 PAGE_SIZE << order); 663 } 664 arch_free_page(page, order); 665 kernel_map_pages(page, 1 << order, 0); 666 667 return true; 668 } 669 670 static void __free_pages_ok(struct page *page, unsigned int order) 671 { 672 unsigned long flags; 673 int wasMlocked = __TestClearPageMlocked(page); 674 675 if (!free_pages_prepare(page, order)) 676 return; 677 678 local_irq_save(flags); 679 if (unlikely(wasMlocked)) 680 free_page_mlock(page); 681 __count_vm_events(PGFREE, 1 << order); 682 free_one_page(page_zone(page), page, order, 683 get_pageblock_migratetype(page)); 684 local_irq_restore(flags); 685 } 686 687 /* 688 * permit the bootmem allocator to evade page validation on high-order frees 689 */ 690 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 691 { 692 if (order == 0) { 693 __ClearPageReserved(page); 694 set_page_count(page, 0); 695 set_page_refcounted(page); 696 __free_page(page); 697 } else { 698 int loop; 699 700 prefetchw(page); 701 for (loop = 0; loop < BITS_PER_LONG; loop++) { 702 struct page *p = &page[loop]; 703 704 if (loop + 1 < BITS_PER_LONG) 705 prefetchw(p + 1); 706 __ClearPageReserved(p); 707 set_page_count(p, 0); 708 } 709 710 set_page_refcounted(page); 711 __free_pages(page, order); 712 } 713 } 714 715 716 /* 717 * The order of subdivision here is critical for the IO subsystem. 718 * Please do not alter this order without good reasons and regression 719 * testing. Specifically, as large blocks of memory are subdivided, 720 * the order in which smaller blocks are delivered depends on the order 721 * they're subdivided in this function. This is the primary factor 722 * influencing the order in which pages are delivered to the IO 723 * subsystem according to empirical testing, and this is also justified 724 * by considering the behavior of a buddy system containing a single 725 * large block of memory acted on by a series of small allocations. 726 * This behavior is a critical factor in sglist merging's success. 727 * 728 * -- wli 729 */ 730 static inline void expand(struct zone *zone, struct page *page, 731 int low, int high, struct free_area *area, 732 int migratetype) 733 { 734 unsigned long size = 1 << high; 735 736 while (high > low) { 737 area--; 738 high--; 739 size >>= 1; 740 VM_BUG_ON(bad_range(zone, &page[size])); 741 list_add(&page[size].lru, &area->free_list[migratetype]); 742 area->nr_free++; 743 set_page_order(&page[size], high); 744 } 745 } 746 747 /* 748 * This page is about to be returned from the page allocator 749 */ 750 static inline int check_new_page(struct page *page) 751 { 752 if (unlikely(page_mapcount(page) | 753 (page->mapping != NULL) | 754 (atomic_read(&page->_count) != 0) | 755 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 756 bad_page(page); 757 return 1; 758 } 759 return 0; 760 } 761 762 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 763 { 764 int i; 765 766 for (i = 0; i < (1 << order); i++) { 767 struct page *p = page + i; 768 if (unlikely(check_new_page(p))) 769 return 1; 770 } 771 772 set_page_private(page, 0); 773 set_page_refcounted(page); 774 775 arch_alloc_page(page, order); 776 kernel_map_pages(page, 1 << order, 1); 777 778 if (gfp_flags & __GFP_ZERO) 779 prep_zero_page(page, order, gfp_flags); 780 781 if (order && (gfp_flags & __GFP_COMP)) 782 prep_compound_page(page, order); 783 784 return 0; 785 } 786 787 /* 788 * Go through the free lists for the given migratetype and remove 789 * the smallest available page from the freelists 790 */ 791 static inline 792 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 793 int migratetype) 794 { 795 unsigned int current_order; 796 struct free_area * area; 797 struct page *page; 798 799 /* Find a page of the appropriate size in the preferred list */ 800 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 801 area = &(zone->free_area[current_order]); 802 if (list_empty(&area->free_list[migratetype])) 803 continue; 804 805 page = list_entry(area->free_list[migratetype].next, 806 struct page, lru); 807 list_del(&page->lru); 808 rmv_page_order(page); 809 area->nr_free--; 810 expand(zone, page, order, current_order, area, migratetype); 811 return page; 812 } 813 814 return NULL; 815 } 816 817 818 /* 819 * This array describes the order lists are fallen back to when 820 * the free lists for the desirable migrate type are depleted 821 */ 822 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 823 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 824 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 825 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 826 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 827 }; 828 829 /* 830 * Move the free pages in a range to the free lists of the requested type. 831 * Note that start_page and end_pages are not aligned on a pageblock 832 * boundary. If alignment is required, use move_freepages_block() 833 */ 834 static int move_freepages(struct zone *zone, 835 struct page *start_page, struct page *end_page, 836 int migratetype) 837 { 838 struct page *page; 839 unsigned long order; 840 int pages_moved = 0; 841 842 #ifndef CONFIG_HOLES_IN_ZONE 843 /* 844 * page_zone is not safe to call in this context when 845 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 846 * anyway as we check zone boundaries in move_freepages_block(). 847 * Remove at a later date when no bug reports exist related to 848 * grouping pages by mobility 849 */ 850 BUG_ON(page_zone(start_page) != page_zone(end_page)); 851 #endif 852 853 for (page = start_page; page <= end_page;) { 854 /* Make sure we are not inadvertently changing nodes */ 855 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 856 857 if (!pfn_valid_within(page_to_pfn(page))) { 858 page++; 859 continue; 860 } 861 862 if (!PageBuddy(page)) { 863 page++; 864 continue; 865 } 866 867 order = page_order(page); 868 list_del(&page->lru); 869 list_add(&page->lru, 870 &zone->free_area[order].free_list[migratetype]); 871 page += 1 << order; 872 pages_moved += 1 << order; 873 } 874 875 return pages_moved; 876 } 877 878 static int move_freepages_block(struct zone *zone, struct page *page, 879 int migratetype) 880 { 881 unsigned long start_pfn, end_pfn; 882 struct page *start_page, *end_page; 883 884 start_pfn = page_to_pfn(page); 885 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 886 start_page = pfn_to_page(start_pfn); 887 end_page = start_page + pageblock_nr_pages - 1; 888 end_pfn = start_pfn + pageblock_nr_pages - 1; 889 890 /* Do not cross zone boundaries */ 891 if (start_pfn < zone->zone_start_pfn) 892 start_page = page; 893 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 894 return 0; 895 896 return move_freepages(zone, start_page, end_page, migratetype); 897 } 898 899 static void change_pageblock_range(struct page *pageblock_page, 900 int start_order, int migratetype) 901 { 902 int nr_pageblocks = 1 << (start_order - pageblock_order); 903 904 while (nr_pageblocks--) { 905 set_pageblock_migratetype(pageblock_page, migratetype); 906 pageblock_page += pageblock_nr_pages; 907 } 908 } 909 910 /* Remove an element from the buddy allocator from the fallback list */ 911 static inline struct page * 912 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 913 { 914 struct free_area * area; 915 int current_order; 916 struct page *page; 917 int migratetype, i; 918 919 /* Find the largest possible block of pages in the other list */ 920 for (current_order = MAX_ORDER-1; current_order >= order; 921 --current_order) { 922 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 923 migratetype = fallbacks[start_migratetype][i]; 924 925 /* MIGRATE_RESERVE handled later if necessary */ 926 if (migratetype == MIGRATE_RESERVE) 927 continue; 928 929 area = &(zone->free_area[current_order]); 930 if (list_empty(&area->free_list[migratetype])) 931 continue; 932 933 page = list_entry(area->free_list[migratetype].next, 934 struct page, lru); 935 area->nr_free--; 936 937 /* 938 * If breaking a large block of pages, move all free 939 * pages to the preferred allocation list. If falling 940 * back for a reclaimable kernel allocation, be more 941 * agressive about taking ownership of free pages 942 */ 943 if (unlikely(current_order >= (pageblock_order >> 1)) || 944 start_migratetype == MIGRATE_RECLAIMABLE || 945 page_group_by_mobility_disabled) { 946 unsigned long pages; 947 pages = move_freepages_block(zone, page, 948 start_migratetype); 949 950 /* Claim the whole block if over half of it is free */ 951 if (pages >= (1 << (pageblock_order-1)) || 952 page_group_by_mobility_disabled) 953 set_pageblock_migratetype(page, 954 start_migratetype); 955 956 migratetype = start_migratetype; 957 } 958 959 /* Remove the page from the freelists */ 960 list_del(&page->lru); 961 rmv_page_order(page); 962 963 /* Take ownership for orders >= pageblock_order */ 964 if (current_order >= pageblock_order) 965 change_pageblock_range(page, current_order, 966 start_migratetype); 967 968 expand(zone, page, order, current_order, area, migratetype); 969 970 trace_mm_page_alloc_extfrag(page, order, current_order, 971 start_migratetype, migratetype); 972 973 return page; 974 } 975 } 976 977 return NULL; 978 } 979 980 /* 981 * Do the hard work of removing an element from the buddy allocator. 982 * Call me with the zone->lock already held. 983 */ 984 static struct page *__rmqueue(struct zone *zone, unsigned int order, 985 int migratetype) 986 { 987 struct page *page; 988 989 retry_reserve: 990 page = __rmqueue_smallest(zone, order, migratetype); 991 992 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 993 page = __rmqueue_fallback(zone, order, migratetype); 994 995 /* 996 * Use MIGRATE_RESERVE rather than fail an allocation. goto 997 * is used because __rmqueue_smallest is an inline function 998 * and we want just one call site 999 */ 1000 if (!page) { 1001 migratetype = MIGRATE_RESERVE; 1002 goto retry_reserve; 1003 } 1004 } 1005 1006 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1007 return page; 1008 } 1009 1010 /* 1011 * Obtain a specified number of elements from the buddy allocator, all under 1012 * a single hold of the lock, for efficiency. Add them to the supplied list. 1013 * Returns the number of new pages which were placed at *list. 1014 */ 1015 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1016 unsigned long count, struct list_head *list, 1017 int migratetype, int cold) 1018 { 1019 int i; 1020 1021 spin_lock(&zone->lock); 1022 for (i = 0; i < count; ++i) { 1023 struct page *page = __rmqueue(zone, order, migratetype); 1024 if (unlikely(page == NULL)) 1025 break; 1026 1027 /* 1028 * Split buddy pages returned by expand() are received here 1029 * in physical page order. The page is added to the callers and 1030 * list and the list head then moves forward. From the callers 1031 * perspective, the linked list is ordered by page number in 1032 * some conditions. This is useful for IO devices that can 1033 * merge IO requests if the physical pages are ordered 1034 * properly. 1035 */ 1036 if (likely(cold == 0)) 1037 list_add(&page->lru, list); 1038 else 1039 list_add_tail(&page->lru, list); 1040 set_page_private(page, migratetype); 1041 list = &page->lru; 1042 } 1043 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1044 spin_unlock(&zone->lock); 1045 return i; 1046 } 1047 1048 #ifdef CONFIG_NUMA 1049 /* 1050 * Called from the vmstat counter updater to drain pagesets of this 1051 * currently executing processor on remote nodes after they have 1052 * expired. 1053 * 1054 * Note that this function must be called with the thread pinned to 1055 * a single processor. 1056 */ 1057 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1058 { 1059 unsigned long flags; 1060 int to_drain; 1061 1062 local_irq_save(flags); 1063 if (pcp->count >= pcp->batch) 1064 to_drain = pcp->batch; 1065 else 1066 to_drain = pcp->count; 1067 free_pcppages_bulk(zone, to_drain, pcp); 1068 pcp->count -= to_drain; 1069 local_irq_restore(flags); 1070 } 1071 #endif 1072 1073 /* 1074 * Drain pages of the indicated processor. 1075 * 1076 * The processor must either be the current processor and the 1077 * thread pinned to the current processor or a processor that 1078 * is not online. 1079 */ 1080 static void drain_pages(unsigned int cpu) 1081 { 1082 unsigned long flags; 1083 struct zone *zone; 1084 1085 for_each_populated_zone(zone) { 1086 struct per_cpu_pageset *pset; 1087 struct per_cpu_pages *pcp; 1088 1089 local_irq_save(flags); 1090 pset = per_cpu_ptr(zone->pageset, cpu); 1091 1092 pcp = &pset->pcp; 1093 free_pcppages_bulk(zone, pcp->count, pcp); 1094 pcp->count = 0; 1095 local_irq_restore(flags); 1096 } 1097 } 1098 1099 /* 1100 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1101 */ 1102 void drain_local_pages(void *arg) 1103 { 1104 drain_pages(smp_processor_id()); 1105 } 1106 1107 /* 1108 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1109 */ 1110 void drain_all_pages(void) 1111 { 1112 on_each_cpu(drain_local_pages, NULL, 1); 1113 } 1114 1115 #ifdef CONFIG_HIBERNATION 1116 1117 void mark_free_pages(struct zone *zone) 1118 { 1119 unsigned long pfn, max_zone_pfn; 1120 unsigned long flags; 1121 int order, t; 1122 struct list_head *curr; 1123 1124 if (!zone->spanned_pages) 1125 return; 1126 1127 spin_lock_irqsave(&zone->lock, flags); 1128 1129 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1130 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1131 if (pfn_valid(pfn)) { 1132 struct page *page = pfn_to_page(pfn); 1133 1134 if (!swsusp_page_is_forbidden(page)) 1135 swsusp_unset_page_free(page); 1136 } 1137 1138 for_each_migratetype_order(order, t) { 1139 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1140 unsigned long i; 1141 1142 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1143 for (i = 0; i < (1UL << order); i++) 1144 swsusp_set_page_free(pfn_to_page(pfn + i)); 1145 } 1146 } 1147 spin_unlock_irqrestore(&zone->lock, flags); 1148 } 1149 #endif /* CONFIG_PM */ 1150 1151 /* 1152 * Free a 0-order page 1153 * cold == 1 ? free a cold page : free a hot page 1154 */ 1155 void free_hot_cold_page(struct page *page, int cold) 1156 { 1157 struct zone *zone = page_zone(page); 1158 struct per_cpu_pages *pcp; 1159 unsigned long flags; 1160 int migratetype; 1161 int wasMlocked = __TestClearPageMlocked(page); 1162 1163 if (!free_pages_prepare(page, 0)) 1164 return; 1165 1166 migratetype = get_pageblock_migratetype(page); 1167 set_page_private(page, migratetype); 1168 local_irq_save(flags); 1169 if (unlikely(wasMlocked)) 1170 free_page_mlock(page); 1171 __count_vm_event(PGFREE); 1172 1173 /* 1174 * We only track unmovable, reclaimable and movable on pcp lists. 1175 * Free ISOLATE pages back to the allocator because they are being 1176 * offlined but treat RESERVE as movable pages so we can get those 1177 * areas back if necessary. Otherwise, we may have to free 1178 * excessively into the page allocator 1179 */ 1180 if (migratetype >= MIGRATE_PCPTYPES) { 1181 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1182 free_one_page(zone, page, 0, migratetype); 1183 goto out; 1184 } 1185 migratetype = MIGRATE_MOVABLE; 1186 } 1187 1188 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1189 if (cold) 1190 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1191 else 1192 list_add(&page->lru, &pcp->lists[migratetype]); 1193 pcp->count++; 1194 if (pcp->count >= pcp->high) { 1195 free_pcppages_bulk(zone, pcp->batch, pcp); 1196 pcp->count -= pcp->batch; 1197 } 1198 1199 out: 1200 local_irq_restore(flags); 1201 } 1202 1203 /* 1204 * split_page takes a non-compound higher-order page, and splits it into 1205 * n (1<<order) sub-pages: page[0..n] 1206 * Each sub-page must be freed individually. 1207 * 1208 * Note: this is probably too low level an operation for use in drivers. 1209 * Please consult with lkml before using this in your driver. 1210 */ 1211 void split_page(struct page *page, unsigned int order) 1212 { 1213 int i; 1214 1215 VM_BUG_ON(PageCompound(page)); 1216 VM_BUG_ON(!page_count(page)); 1217 1218 #ifdef CONFIG_KMEMCHECK 1219 /* 1220 * Split shadow pages too, because free(page[0]) would 1221 * otherwise free the whole shadow. 1222 */ 1223 if (kmemcheck_page_is_tracked(page)) 1224 split_page(virt_to_page(page[0].shadow), order); 1225 #endif 1226 1227 for (i = 1; i < (1 << order); i++) 1228 set_page_refcounted(page + i); 1229 } 1230 1231 /* 1232 * Similar to split_page except the page is already free. As this is only 1233 * being used for migration, the migratetype of the block also changes. 1234 * As this is called with interrupts disabled, the caller is responsible 1235 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1236 * are enabled. 1237 * 1238 * Note: this is probably too low level an operation for use in drivers. 1239 * Please consult with lkml before using this in your driver. 1240 */ 1241 int split_free_page(struct page *page) 1242 { 1243 unsigned int order; 1244 unsigned long watermark; 1245 struct zone *zone; 1246 1247 BUG_ON(!PageBuddy(page)); 1248 1249 zone = page_zone(page); 1250 order = page_order(page); 1251 1252 /* Obey watermarks as if the page was being allocated */ 1253 watermark = low_wmark_pages(zone) + (1 << order); 1254 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1255 return 0; 1256 1257 /* Remove page from free list */ 1258 list_del(&page->lru); 1259 zone->free_area[order].nr_free--; 1260 rmv_page_order(page); 1261 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1262 1263 /* Split into individual pages */ 1264 set_page_refcounted(page); 1265 split_page(page, order); 1266 1267 if (order >= pageblock_order - 1) { 1268 struct page *endpage = page + (1 << order) - 1; 1269 for (; page < endpage; page += pageblock_nr_pages) 1270 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1271 } 1272 1273 return 1 << order; 1274 } 1275 1276 /* 1277 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1278 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1279 * or two. 1280 */ 1281 static inline 1282 struct page *buffered_rmqueue(struct zone *preferred_zone, 1283 struct zone *zone, int order, gfp_t gfp_flags, 1284 int migratetype) 1285 { 1286 unsigned long flags; 1287 struct page *page; 1288 int cold = !!(gfp_flags & __GFP_COLD); 1289 1290 again: 1291 if (likely(order == 0)) { 1292 struct per_cpu_pages *pcp; 1293 struct list_head *list; 1294 1295 local_irq_save(flags); 1296 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1297 list = &pcp->lists[migratetype]; 1298 if (list_empty(list)) { 1299 pcp->count += rmqueue_bulk(zone, 0, 1300 pcp->batch, list, 1301 migratetype, cold); 1302 if (unlikely(list_empty(list))) 1303 goto failed; 1304 } 1305 1306 if (cold) 1307 page = list_entry(list->prev, struct page, lru); 1308 else 1309 page = list_entry(list->next, struct page, lru); 1310 1311 list_del(&page->lru); 1312 pcp->count--; 1313 } else { 1314 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1315 /* 1316 * __GFP_NOFAIL is not to be used in new code. 1317 * 1318 * All __GFP_NOFAIL callers should be fixed so that they 1319 * properly detect and handle allocation failures. 1320 * 1321 * We most definitely don't want callers attempting to 1322 * allocate greater than order-1 page units with 1323 * __GFP_NOFAIL. 1324 */ 1325 WARN_ON_ONCE(order > 1); 1326 } 1327 spin_lock_irqsave(&zone->lock, flags); 1328 page = __rmqueue(zone, order, migratetype); 1329 spin_unlock(&zone->lock); 1330 if (!page) 1331 goto failed; 1332 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1333 } 1334 1335 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1336 zone_statistics(preferred_zone, zone); 1337 local_irq_restore(flags); 1338 1339 VM_BUG_ON(bad_range(zone, page)); 1340 if (prep_new_page(page, order, gfp_flags)) 1341 goto again; 1342 return page; 1343 1344 failed: 1345 local_irq_restore(flags); 1346 return NULL; 1347 } 1348 1349 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1350 #define ALLOC_WMARK_MIN WMARK_MIN 1351 #define ALLOC_WMARK_LOW WMARK_LOW 1352 #define ALLOC_WMARK_HIGH WMARK_HIGH 1353 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1354 1355 /* Mask to get the watermark bits */ 1356 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1357 1358 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1359 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1360 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1361 1362 #ifdef CONFIG_FAIL_PAGE_ALLOC 1363 1364 static struct fail_page_alloc_attr { 1365 struct fault_attr attr; 1366 1367 u32 ignore_gfp_highmem; 1368 u32 ignore_gfp_wait; 1369 u32 min_order; 1370 1371 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1372 1373 struct dentry *ignore_gfp_highmem_file; 1374 struct dentry *ignore_gfp_wait_file; 1375 struct dentry *min_order_file; 1376 1377 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1378 1379 } fail_page_alloc = { 1380 .attr = FAULT_ATTR_INITIALIZER, 1381 .ignore_gfp_wait = 1, 1382 .ignore_gfp_highmem = 1, 1383 .min_order = 1, 1384 }; 1385 1386 static int __init setup_fail_page_alloc(char *str) 1387 { 1388 return setup_fault_attr(&fail_page_alloc.attr, str); 1389 } 1390 __setup("fail_page_alloc=", setup_fail_page_alloc); 1391 1392 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1393 { 1394 if (order < fail_page_alloc.min_order) 1395 return 0; 1396 if (gfp_mask & __GFP_NOFAIL) 1397 return 0; 1398 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1399 return 0; 1400 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1401 return 0; 1402 1403 return should_fail(&fail_page_alloc.attr, 1 << order); 1404 } 1405 1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1407 1408 static int __init fail_page_alloc_debugfs(void) 1409 { 1410 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1411 struct dentry *dir; 1412 int err; 1413 1414 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1415 "fail_page_alloc"); 1416 if (err) 1417 return err; 1418 dir = fail_page_alloc.attr.dentries.dir; 1419 1420 fail_page_alloc.ignore_gfp_wait_file = 1421 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1422 &fail_page_alloc.ignore_gfp_wait); 1423 1424 fail_page_alloc.ignore_gfp_highmem_file = 1425 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1426 &fail_page_alloc.ignore_gfp_highmem); 1427 fail_page_alloc.min_order_file = 1428 debugfs_create_u32("min-order", mode, dir, 1429 &fail_page_alloc.min_order); 1430 1431 if (!fail_page_alloc.ignore_gfp_wait_file || 1432 !fail_page_alloc.ignore_gfp_highmem_file || 1433 !fail_page_alloc.min_order_file) { 1434 err = -ENOMEM; 1435 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1436 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1437 debugfs_remove(fail_page_alloc.min_order_file); 1438 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1439 } 1440 1441 return err; 1442 } 1443 1444 late_initcall(fail_page_alloc_debugfs); 1445 1446 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1447 1448 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1449 1450 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1451 { 1452 return 0; 1453 } 1454 1455 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1456 1457 /* 1458 * Return 1 if free pages are above 'mark'. This takes into account the order 1459 * of the allocation. 1460 */ 1461 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1462 int classzone_idx, int alloc_flags) 1463 { 1464 /* free_pages my go negative - that's OK */ 1465 long min = mark; 1466 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1; 1467 int o; 1468 1469 if (alloc_flags & ALLOC_HIGH) 1470 min -= min / 2; 1471 if (alloc_flags & ALLOC_HARDER) 1472 min -= min / 4; 1473 1474 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1475 return 0; 1476 for (o = 0; o < order; o++) { 1477 /* At the next order, this order's pages become unavailable */ 1478 free_pages -= z->free_area[o].nr_free << o; 1479 1480 /* Require fewer higher order pages to be free */ 1481 min >>= 1; 1482 1483 if (free_pages <= min) 1484 return 0; 1485 } 1486 return 1; 1487 } 1488 1489 #ifdef CONFIG_NUMA 1490 /* 1491 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1492 * skip over zones that are not allowed by the cpuset, or that have 1493 * been recently (in last second) found to be nearly full. See further 1494 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1495 * that have to skip over a lot of full or unallowed zones. 1496 * 1497 * If the zonelist cache is present in the passed in zonelist, then 1498 * returns a pointer to the allowed node mask (either the current 1499 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1500 * 1501 * If the zonelist cache is not available for this zonelist, does 1502 * nothing and returns NULL. 1503 * 1504 * If the fullzones BITMAP in the zonelist cache is stale (more than 1505 * a second since last zap'd) then we zap it out (clear its bits.) 1506 * 1507 * We hold off even calling zlc_setup, until after we've checked the 1508 * first zone in the zonelist, on the theory that most allocations will 1509 * be satisfied from that first zone, so best to examine that zone as 1510 * quickly as we can. 1511 */ 1512 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1513 { 1514 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1515 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1516 1517 zlc = zonelist->zlcache_ptr; 1518 if (!zlc) 1519 return NULL; 1520 1521 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1522 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1523 zlc->last_full_zap = jiffies; 1524 } 1525 1526 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1527 &cpuset_current_mems_allowed : 1528 &node_states[N_HIGH_MEMORY]; 1529 return allowednodes; 1530 } 1531 1532 /* 1533 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1534 * if it is worth looking at further for free memory: 1535 * 1) Check that the zone isn't thought to be full (doesn't have its 1536 * bit set in the zonelist_cache fullzones BITMAP). 1537 * 2) Check that the zones node (obtained from the zonelist_cache 1538 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1539 * Return true (non-zero) if zone is worth looking at further, or 1540 * else return false (zero) if it is not. 1541 * 1542 * This check -ignores- the distinction between various watermarks, 1543 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1544 * found to be full for any variation of these watermarks, it will 1545 * be considered full for up to one second by all requests, unless 1546 * we are so low on memory on all allowed nodes that we are forced 1547 * into the second scan of the zonelist. 1548 * 1549 * In the second scan we ignore this zonelist cache and exactly 1550 * apply the watermarks to all zones, even it is slower to do so. 1551 * We are low on memory in the second scan, and should leave no stone 1552 * unturned looking for a free page. 1553 */ 1554 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1555 nodemask_t *allowednodes) 1556 { 1557 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1558 int i; /* index of *z in zonelist zones */ 1559 int n; /* node that zone *z is on */ 1560 1561 zlc = zonelist->zlcache_ptr; 1562 if (!zlc) 1563 return 1; 1564 1565 i = z - zonelist->_zonerefs; 1566 n = zlc->z_to_n[i]; 1567 1568 /* This zone is worth trying if it is allowed but not full */ 1569 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1570 } 1571 1572 /* 1573 * Given 'z' scanning a zonelist, set the corresponding bit in 1574 * zlc->fullzones, so that subsequent attempts to allocate a page 1575 * from that zone don't waste time re-examining it. 1576 */ 1577 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1578 { 1579 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1580 int i; /* index of *z in zonelist zones */ 1581 1582 zlc = zonelist->zlcache_ptr; 1583 if (!zlc) 1584 return; 1585 1586 i = z - zonelist->_zonerefs; 1587 1588 set_bit(i, zlc->fullzones); 1589 } 1590 1591 #else /* CONFIG_NUMA */ 1592 1593 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1594 { 1595 return NULL; 1596 } 1597 1598 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1599 nodemask_t *allowednodes) 1600 { 1601 return 1; 1602 } 1603 1604 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1605 { 1606 } 1607 #endif /* CONFIG_NUMA */ 1608 1609 /* 1610 * get_page_from_freelist goes through the zonelist trying to allocate 1611 * a page. 1612 */ 1613 static struct page * 1614 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1615 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1616 struct zone *preferred_zone, int migratetype) 1617 { 1618 struct zoneref *z; 1619 struct page *page = NULL; 1620 int classzone_idx; 1621 struct zone *zone; 1622 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1623 int zlc_active = 0; /* set if using zonelist_cache */ 1624 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1625 1626 classzone_idx = zone_idx(preferred_zone); 1627 zonelist_scan: 1628 /* 1629 * Scan zonelist, looking for a zone with enough free. 1630 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1631 */ 1632 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1633 high_zoneidx, nodemask) { 1634 if (NUMA_BUILD && zlc_active && 1635 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1636 continue; 1637 if ((alloc_flags & ALLOC_CPUSET) && 1638 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1639 goto try_next_zone; 1640 1641 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1642 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1643 unsigned long mark; 1644 int ret; 1645 1646 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1647 if (zone_watermark_ok(zone, order, mark, 1648 classzone_idx, alloc_flags)) 1649 goto try_this_zone; 1650 1651 if (zone_reclaim_mode == 0) 1652 goto this_zone_full; 1653 1654 ret = zone_reclaim(zone, gfp_mask, order); 1655 switch (ret) { 1656 case ZONE_RECLAIM_NOSCAN: 1657 /* did not scan */ 1658 goto try_next_zone; 1659 case ZONE_RECLAIM_FULL: 1660 /* scanned but unreclaimable */ 1661 goto this_zone_full; 1662 default: 1663 /* did we reclaim enough */ 1664 if (!zone_watermark_ok(zone, order, mark, 1665 classzone_idx, alloc_flags)) 1666 goto this_zone_full; 1667 } 1668 } 1669 1670 try_this_zone: 1671 page = buffered_rmqueue(preferred_zone, zone, order, 1672 gfp_mask, migratetype); 1673 if (page) 1674 break; 1675 this_zone_full: 1676 if (NUMA_BUILD) 1677 zlc_mark_zone_full(zonelist, z); 1678 try_next_zone: 1679 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1680 /* 1681 * we do zlc_setup after the first zone is tried but only 1682 * if there are multiple nodes make it worthwhile 1683 */ 1684 allowednodes = zlc_setup(zonelist, alloc_flags); 1685 zlc_active = 1; 1686 did_zlc_setup = 1; 1687 } 1688 } 1689 1690 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1691 /* Disable zlc cache for second zonelist scan */ 1692 zlc_active = 0; 1693 goto zonelist_scan; 1694 } 1695 return page; 1696 } 1697 1698 static inline int 1699 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1700 unsigned long pages_reclaimed) 1701 { 1702 /* Do not loop if specifically requested */ 1703 if (gfp_mask & __GFP_NORETRY) 1704 return 0; 1705 1706 /* 1707 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1708 * means __GFP_NOFAIL, but that may not be true in other 1709 * implementations. 1710 */ 1711 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1712 return 1; 1713 1714 /* 1715 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1716 * specified, then we retry until we no longer reclaim any pages 1717 * (above), or we've reclaimed an order of pages at least as 1718 * large as the allocation's order. In both cases, if the 1719 * allocation still fails, we stop retrying. 1720 */ 1721 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1722 return 1; 1723 1724 /* 1725 * Don't let big-order allocations loop unless the caller 1726 * explicitly requests that. 1727 */ 1728 if (gfp_mask & __GFP_NOFAIL) 1729 return 1; 1730 1731 return 0; 1732 } 1733 1734 static inline struct page * 1735 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1736 struct zonelist *zonelist, enum zone_type high_zoneidx, 1737 nodemask_t *nodemask, struct zone *preferred_zone, 1738 int migratetype) 1739 { 1740 struct page *page; 1741 1742 /* Acquire the OOM killer lock for the zones in zonelist */ 1743 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 1744 schedule_timeout_uninterruptible(1); 1745 return NULL; 1746 } 1747 1748 /* 1749 * Go through the zonelist yet one more time, keep very high watermark 1750 * here, this is only to catch a parallel oom killing, we must fail if 1751 * we're still under heavy pressure. 1752 */ 1753 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1754 order, zonelist, high_zoneidx, 1755 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1756 preferred_zone, migratetype); 1757 if (page) 1758 goto out; 1759 1760 if (!(gfp_mask & __GFP_NOFAIL)) { 1761 /* The OOM killer will not help higher order allocs */ 1762 if (order > PAGE_ALLOC_COSTLY_ORDER) 1763 goto out; 1764 /* The OOM killer does not needlessly kill tasks for lowmem */ 1765 if (high_zoneidx < ZONE_NORMAL) 1766 goto out; 1767 /* 1768 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1769 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1770 * The caller should handle page allocation failure by itself if 1771 * it specifies __GFP_THISNODE. 1772 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1773 */ 1774 if (gfp_mask & __GFP_THISNODE) 1775 goto out; 1776 } 1777 /* Exhausted what can be done so it's blamo time */ 1778 out_of_memory(zonelist, gfp_mask, order, nodemask); 1779 1780 out: 1781 clear_zonelist_oom(zonelist, gfp_mask); 1782 return page; 1783 } 1784 1785 #ifdef CONFIG_COMPACTION 1786 /* Try memory compaction for high-order allocations before reclaim */ 1787 static struct page * 1788 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1789 struct zonelist *zonelist, enum zone_type high_zoneidx, 1790 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1791 int migratetype, unsigned long *did_some_progress) 1792 { 1793 struct page *page; 1794 1795 if (!order || compaction_deferred(preferred_zone)) 1796 return NULL; 1797 1798 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1799 nodemask); 1800 if (*did_some_progress != COMPACT_SKIPPED) { 1801 1802 /* Page migration frees to the PCP lists but we want merging */ 1803 drain_pages(get_cpu()); 1804 put_cpu(); 1805 1806 page = get_page_from_freelist(gfp_mask, nodemask, 1807 order, zonelist, high_zoneidx, 1808 alloc_flags, preferred_zone, 1809 migratetype); 1810 if (page) { 1811 preferred_zone->compact_considered = 0; 1812 preferred_zone->compact_defer_shift = 0; 1813 count_vm_event(COMPACTSUCCESS); 1814 return page; 1815 } 1816 1817 /* 1818 * It's bad if compaction run occurs and fails. 1819 * The most likely reason is that pages exist, 1820 * but not enough to satisfy watermarks. 1821 */ 1822 count_vm_event(COMPACTFAIL); 1823 defer_compaction(preferred_zone); 1824 1825 cond_resched(); 1826 } 1827 1828 return NULL; 1829 } 1830 #else 1831 static inline struct page * 1832 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1833 struct zonelist *zonelist, enum zone_type high_zoneidx, 1834 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1835 int migratetype, unsigned long *did_some_progress) 1836 { 1837 return NULL; 1838 } 1839 #endif /* CONFIG_COMPACTION */ 1840 1841 /* The really slow allocator path where we enter direct reclaim */ 1842 static inline struct page * 1843 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1844 struct zonelist *zonelist, enum zone_type high_zoneidx, 1845 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1846 int migratetype, unsigned long *did_some_progress) 1847 { 1848 struct page *page = NULL; 1849 struct reclaim_state reclaim_state; 1850 struct task_struct *p = current; 1851 bool drained = false; 1852 1853 cond_resched(); 1854 1855 /* We now go into synchronous reclaim */ 1856 cpuset_memory_pressure_bump(); 1857 p->flags |= PF_MEMALLOC; 1858 lockdep_set_current_reclaim_state(gfp_mask); 1859 reclaim_state.reclaimed_slab = 0; 1860 p->reclaim_state = &reclaim_state; 1861 1862 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1863 1864 p->reclaim_state = NULL; 1865 lockdep_clear_current_reclaim_state(); 1866 p->flags &= ~PF_MEMALLOC; 1867 1868 cond_resched(); 1869 1870 if (unlikely(!(*did_some_progress))) 1871 return NULL; 1872 1873 retry: 1874 page = get_page_from_freelist(gfp_mask, nodemask, order, 1875 zonelist, high_zoneidx, 1876 alloc_flags, preferred_zone, 1877 migratetype); 1878 1879 /* 1880 * If an allocation failed after direct reclaim, it could be because 1881 * pages are pinned on the per-cpu lists. Drain them and try again 1882 */ 1883 if (!page && !drained) { 1884 drain_all_pages(); 1885 drained = true; 1886 goto retry; 1887 } 1888 1889 return page; 1890 } 1891 1892 /* 1893 * This is called in the allocator slow-path if the allocation request is of 1894 * sufficient urgency to ignore watermarks and take other desperate measures 1895 */ 1896 static inline struct page * 1897 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1898 struct zonelist *zonelist, enum zone_type high_zoneidx, 1899 nodemask_t *nodemask, struct zone *preferred_zone, 1900 int migratetype) 1901 { 1902 struct page *page; 1903 1904 do { 1905 page = get_page_from_freelist(gfp_mask, nodemask, order, 1906 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1907 preferred_zone, migratetype); 1908 1909 if (!page && gfp_mask & __GFP_NOFAIL) 1910 congestion_wait(BLK_RW_ASYNC, HZ/50); 1911 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1912 1913 return page; 1914 } 1915 1916 static inline 1917 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1918 enum zone_type high_zoneidx) 1919 { 1920 struct zoneref *z; 1921 struct zone *zone; 1922 1923 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1924 wakeup_kswapd(zone, order); 1925 } 1926 1927 static inline int 1928 gfp_to_alloc_flags(gfp_t gfp_mask) 1929 { 1930 struct task_struct *p = current; 1931 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1932 const gfp_t wait = gfp_mask & __GFP_WAIT; 1933 1934 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1935 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1936 1937 /* 1938 * The caller may dip into page reserves a bit more if the caller 1939 * cannot run direct reclaim, or if the caller has realtime scheduling 1940 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1941 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1942 */ 1943 alloc_flags |= (gfp_mask & __GFP_HIGH); 1944 1945 if (!wait) { 1946 alloc_flags |= ALLOC_HARDER; 1947 /* 1948 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1949 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1950 */ 1951 alloc_flags &= ~ALLOC_CPUSET; 1952 } else if (unlikely(rt_task(p)) && !in_interrupt()) 1953 alloc_flags |= ALLOC_HARDER; 1954 1955 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1956 if (!in_interrupt() && 1957 ((p->flags & PF_MEMALLOC) || 1958 unlikely(test_thread_flag(TIF_MEMDIE)))) 1959 alloc_flags |= ALLOC_NO_WATERMARKS; 1960 } 1961 1962 return alloc_flags; 1963 } 1964 1965 static inline struct page * 1966 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1967 struct zonelist *zonelist, enum zone_type high_zoneidx, 1968 nodemask_t *nodemask, struct zone *preferred_zone, 1969 int migratetype) 1970 { 1971 const gfp_t wait = gfp_mask & __GFP_WAIT; 1972 struct page *page = NULL; 1973 int alloc_flags; 1974 unsigned long pages_reclaimed = 0; 1975 unsigned long did_some_progress; 1976 struct task_struct *p = current; 1977 1978 /* 1979 * In the slowpath, we sanity check order to avoid ever trying to 1980 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1981 * be using allocators in order of preference for an area that is 1982 * too large. 1983 */ 1984 if (order >= MAX_ORDER) { 1985 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1986 return NULL; 1987 } 1988 1989 /* 1990 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1991 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1992 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1993 * using a larger set of nodes after it has established that the 1994 * allowed per node queues are empty and that nodes are 1995 * over allocated. 1996 */ 1997 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1998 goto nopage; 1999 2000 restart: 2001 wake_all_kswapd(order, zonelist, high_zoneidx); 2002 2003 /* 2004 * OK, we're below the kswapd watermark and have kicked background 2005 * reclaim. Now things get more complex, so set up alloc_flags according 2006 * to how we want to proceed. 2007 */ 2008 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2009 2010 /* This is the last chance, in general, before the goto nopage. */ 2011 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2012 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2013 preferred_zone, migratetype); 2014 if (page) 2015 goto got_pg; 2016 2017 rebalance: 2018 /* Allocate without watermarks if the context allows */ 2019 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2020 page = __alloc_pages_high_priority(gfp_mask, order, 2021 zonelist, high_zoneidx, nodemask, 2022 preferred_zone, migratetype); 2023 if (page) 2024 goto got_pg; 2025 } 2026 2027 /* Atomic allocations - we can't balance anything */ 2028 if (!wait) 2029 goto nopage; 2030 2031 /* Avoid recursion of direct reclaim */ 2032 if (p->flags & PF_MEMALLOC) 2033 goto nopage; 2034 2035 /* Avoid allocations with no watermarks from looping endlessly */ 2036 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2037 goto nopage; 2038 2039 /* Try direct compaction */ 2040 page = __alloc_pages_direct_compact(gfp_mask, order, 2041 zonelist, high_zoneidx, 2042 nodemask, 2043 alloc_flags, preferred_zone, 2044 migratetype, &did_some_progress); 2045 if (page) 2046 goto got_pg; 2047 2048 /* Try direct reclaim and then allocating */ 2049 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2050 zonelist, high_zoneidx, 2051 nodemask, 2052 alloc_flags, preferred_zone, 2053 migratetype, &did_some_progress); 2054 if (page) 2055 goto got_pg; 2056 2057 /* 2058 * If we failed to make any progress reclaiming, then we are 2059 * running out of options and have to consider going OOM 2060 */ 2061 if (!did_some_progress) { 2062 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2063 if (oom_killer_disabled) 2064 goto nopage; 2065 page = __alloc_pages_may_oom(gfp_mask, order, 2066 zonelist, high_zoneidx, 2067 nodemask, preferred_zone, 2068 migratetype); 2069 if (page) 2070 goto got_pg; 2071 2072 if (!(gfp_mask & __GFP_NOFAIL)) { 2073 /* 2074 * The oom killer is not called for high-order 2075 * allocations that may fail, so if no progress 2076 * is being made, there are no other options and 2077 * retrying is unlikely to help. 2078 */ 2079 if (order > PAGE_ALLOC_COSTLY_ORDER) 2080 goto nopage; 2081 /* 2082 * The oom killer is not called for lowmem 2083 * allocations to prevent needlessly killing 2084 * innocent tasks. 2085 */ 2086 if (high_zoneidx < ZONE_NORMAL) 2087 goto nopage; 2088 } 2089 2090 goto restart; 2091 } 2092 } 2093 2094 /* Check if we should retry the allocation */ 2095 pages_reclaimed += did_some_progress; 2096 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2097 /* Wait for some write requests to complete then retry */ 2098 congestion_wait(BLK_RW_ASYNC, HZ/50); 2099 goto rebalance; 2100 } 2101 2102 nopage: 2103 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 2104 printk(KERN_WARNING "%s: page allocation failure." 2105 " order:%d, mode:0x%x\n", 2106 p->comm, order, gfp_mask); 2107 dump_stack(); 2108 show_mem(); 2109 } 2110 return page; 2111 got_pg: 2112 if (kmemcheck_enabled) 2113 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2114 return page; 2115 2116 } 2117 2118 /* 2119 * This is the 'heart' of the zoned buddy allocator. 2120 */ 2121 struct page * 2122 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2123 struct zonelist *zonelist, nodemask_t *nodemask) 2124 { 2125 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2126 struct zone *preferred_zone; 2127 struct page *page; 2128 int migratetype = allocflags_to_migratetype(gfp_mask); 2129 2130 gfp_mask &= gfp_allowed_mask; 2131 2132 lockdep_trace_alloc(gfp_mask); 2133 2134 might_sleep_if(gfp_mask & __GFP_WAIT); 2135 2136 if (should_fail_alloc_page(gfp_mask, order)) 2137 return NULL; 2138 2139 /* 2140 * Check the zones suitable for the gfp_mask contain at least one 2141 * valid zone. It's possible to have an empty zonelist as a result 2142 * of GFP_THISNODE and a memoryless node 2143 */ 2144 if (unlikely(!zonelist->_zonerefs->zone)) 2145 return NULL; 2146 2147 get_mems_allowed(); 2148 /* The preferred zone is used for statistics later */ 2149 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 2150 if (!preferred_zone) { 2151 put_mems_allowed(); 2152 return NULL; 2153 } 2154 2155 /* First allocation attempt */ 2156 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2157 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2158 preferred_zone, migratetype); 2159 if (unlikely(!page)) 2160 page = __alloc_pages_slowpath(gfp_mask, order, 2161 zonelist, high_zoneidx, nodemask, 2162 preferred_zone, migratetype); 2163 put_mems_allowed(); 2164 2165 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2166 return page; 2167 } 2168 EXPORT_SYMBOL(__alloc_pages_nodemask); 2169 2170 /* 2171 * Common helper functions. 2172 */ 2173 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2174 { 2175 struct page *page; 2176 2177 /* 2178 * __get_free_pages() returns a 32-bit address, which cannot represent 2179 * a highmem page 2180 */ 2181 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2182 2183 page = alloc_pages(gfp_mask, order); 2184 if (!page) 2185 return 0; 2186 return (unsigned long) page_address(page); 2187 } 2188 EXPORT_SYMBOL(__get_free_pages); 2189 2190 unsigned long get_zeroed_page(gfp_t gfp_mask) 2191 { 2192 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2193 } 2194 EXPORT_SYMBOL(get_zeroed_page); 2195 2196 void __pagevec_free(struct pagevec *pvec) 2197 { 2198 int i = pagevec_count(pvec); 2199 2200 while (--i >= 0) { 2201 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2202 free_hot_cold_page(pvec->pages[i], pvec->cold); 2203 } 2204 } 2205 2206 void __free_pages(struct page *page, unsigned int order) 2207 { 2208 if (put_page_testzero(page)) { 2209 if (order == 0) 2210 free_hot_cold_page(page, 0); 2211 else 2212 __free_pages_ok(page, order); 2213 } 2214 } 2215 2216 EXPORT_SYMBOL(__free_pages); 2217 2218 void free_pages(unsigned long addr, unsigned int order) 2219 { 2220 if (addr != 0) { 2221 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2222 __free_pages(virt_to_page((void *)addr), order); 2223 } 2224 } 2225 2226 EXPORT_SYMBOL(free_pages); 2227 2228 /** 2229 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2230 * @size: the number of bytes to allocate 2231 * @gfp_mask: GFP flags for the allocation 2232 * 2233 * This function is similar to alloc_pages(), except that it allocates the 2234 * minimum number of pages to satisfy the request. alloc_pages() can only 2235 * allocate memory in power-of-two pages. 2236 * 2237 * This function is also limited by MAX_ORDER. 2238 * 2239 * Memory allocated by this function must be released by free_pages_exact(). 2240 */ 2241 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2242 { 2243 unsigned int order = get_order(size); 2244 unsigned long addr; 2245 2246 addr = __get_free_pages(gfp_mask, order); 2247 if (addr) { 2248 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2249 unsigned long used = addr + PAGE_ALIGN(size); 2250 2251 split_page(virt_to_page((void *)addr), order); 2252 while (used < alloc_end) { 2253 free_page(used); 2254 used += PAGE_SIZE; 2255 } 2256 } 2257 2258 return (void *)addr; 2259 } 2260 EXPORT_SYMBOL(alloc_pages_exact); 2261 2262 /** 2263 * free_pages_exact - release memory allocated via alloc_pages_exact() 2264 * @virt: the value returned by alloc_pages_exact. 2265 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2266 * 2267 * Release the memory allocated by a previous call to alloc_pages_exact. 2268 */ 2269 void free_pages_exact(void *virt, size_t size) 2270 { 2271 unsigned long addr = (unsigned long)virt; 2272 unsigned long end = addr + PAGE_ALIGN(size); 2273 2274 while (addr < end) { 2275 free_page(addr); 2276 addr += PAGE_SIZE; 2277 } 2278 } 2279 EXPORT_SYMBOL(free_pages_exact); 2280 2281 static unsigned int nr_free_zone_pages(int offset) 2282 { 2283 struct zoneref *z; 2284 struct zone *zone; 2285 2286 /* Just pick one node, since fallback list is circular */ 2287 unsigned int sum = 0; 2288 2289 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2290 2291 for_each_zone_zonelist(zone, z, zonelist, offset) { 2292 unsigned long size = zone->present_pages; 2293 unsigned long high = high_wmark_pages(zone); 2294 if (size > high) 2295 sum += size - high; 2296 } 2297 2298 return sum; 2299 } 2300 2301 /* 2302 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2303 */ 2304 unsigned int nr_free_buffer_pages(void) 2305 { 2306 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2307 } 2308 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2309 2310 /* 2311 * Amount of free RAM allocatable within all zones 2312 */ 2313 unsigned int nr_free_pagecache_pages(void) 2314 { 2315 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2316 } 2317 2318 static inline void show_node(struct zone *zone) 2319 { 2320 if (NUMA_BUILD) 2321 printk("Node %d ", zone_to_nid(zone)); 2322 } 2323 2324 void si_meminfo(struct sysinfo *val) 2325 { 2326 val->totalram = totalram_pages; 2327 val->sharedram = 0; 2328 val->freeram = global_page_state(NR_FREE_PAGES); 2329 val->bufferram = nr_blockdev_pages(); 2330 val->totalhigh = totalhigh_pages; 2331 val->freehigh = nr_free_highpages(); 2332 val->mem_unit = PAGE_SIZE; 2333 } 2334 2335 EXPORT_SYMBOL(si_meminfo); 2336 2337 #ifdef CONFIG_NUMA 2338 void si_meminfo_node(struct sysinfo *val, int nid) 2339 { 2340 pg_data_t *pgdat = NODE_DATA(nid); 2341 2342 val->totalram = pgdat->node_present_pages; 2343 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2344 #ifdef CONFIG_HIGHMEM 2345 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2346 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2347 NR_FREE_PAGES); 2348 #else 2349 val->totalhigh = 0; 2350 val->freehigh = 0; 2351 #endif 2352 val->mem_unit = PAGE_SIZE; 2353 } 2354 #endif 2355 2356 #define K(x) ((x) << (PAGE_SHIFT-10)) 2357 2358 /* 2359 * Show free area list (used inside shift_scroll-lock stuff) 2360 * We also calculate the percentage fragmentation. We do this by counting the 2361 * memory on each free list with the exception of the first item on the list. 2362 */ 2363 void show_free_areas(void) 2364 { 2365 int cpu; 2366 struct zone *zone; 2367 2368 for_each_populated_zone(zone) { 2369 show_node(zone); 2370 printk("%s per-cpu:\n", zone->name); 2371 2372 for_each_online_cpu(cpu) { 2373 struct per_cpu_pageset *pageset; 2374 2375 pageset = per_cpu_ptr(zone->pageset, cpu); 2376 2377 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2378 cpu, pageset->pcp.high, 2379 pageset->pcp.batch, pageset->pcp.count); 2380 } 2381 } 2382 2383 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2384 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2385 " unevictable:%lu" 2386 " dirty:%lu writeback:%lu unstable:%lu\n" 2387 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2388 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2389 global_page_state(NR_ACTIVE_ANON), 2390 global_page_state(NR_INACTIVE_ANON), 2391 global_page_state(NR_ISOLATED_ANON), 2392 global_page_state(NR_ACTIVE_FILE), 2393 global_page_state(NR_INACTIVE_FILE), 2394 global_page_state(NR_ISOLATED_FILE), 2395 global_page_state(NR_UNEVICTABLE), 2396 global_page_state(NR_FILE_DIRTY), 2397 global_page_state(NR_WRITEBACK), 2398 global_page_state(NR_UNSTABLE_NFS), 2399 global_page_state(NR_FREE_PAGES), 2400 global_page_state(NR_SLAB_RECLAIMABLE), 2401 global_page_state(NR_SLAB_UNRECLAIMABLE), 2402 global_page_state(NR_FILE_MAPPED), 2403 global_page_state(NR_SHMEM), 2404 global_page_state(NR_PAGETABLE), 2405 global_page_state(NR_BOUNCE)); 2406 2407 for_each_populated_zone(zone) { 2408 int i; 2409 2410 show_node(zone); 2411 printk("%s" 2412 " free:%lukB" 2413 " min:%lukB" 2414 " low:%lukB" 2415 " high:%lukB" 2416 " active_anon:%lukB" 2417 " inactive_anon:%lukB" 2418 " active_file:%lukB" 2419 " inactive_file:%lukB" 2420 " unevictable:%lukB" 2421 " isolated(anon):%lukB" 2422 " isolated(file):%lukB" 2423 " present:%lukB" 2424 " mlocked:%lukB" 2425 " dirty:%lukB" 2426 " writeback:%lukB" 2427 " mapped:%lukB" 2428 " shmem:%lukB" 2429 " slab_reclaimable:%lukB" 2430 " slab_unreclaimable:%lukB" 2431 " kernel_stack:%lukB" 2432 " pagetables:%lukB" 2433 " unstable:%lukB" 2434 " bounce:%lukB" 2435 " writeback_tmp:%lukB" 2436 " pages_scanned:%lu" 2437 " all_unreclaimable? %s" 2438 "\n", 2439 zone->name, 2440 K(zone_nr_free_pages(zone)), 2441 K(min_wmark_pages(zone)), 2442 K(low_wmark_pages(zone)), 2443 K(high_wmark_pages(zone)), 2444 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2445 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2446 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2447 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2448 K(zone_page_state(zone, NR_UNEVICTABLE)), 2449 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2450 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2451 K(zone->present_pages), 2452 K(zone_page_state(zone, NR_MLOCK)), 2453 K(zone_page_state(zone, NR_FILE_DIRTY)), 2454 K(zone_page_state(zone, NR_WRITEBACK)), 2455 K(zone_page_state(zone, NR_FILE_MAPPED)), 2456 K(zone_page_state(zone, NR_SHMEM)), 2457 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2458 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2459 zone_page_state(zone, NR_KERNEL_STACK) * 2460 THREAD_SIZE / 1024, 2461 K(zone_page_state(zone, NR_PAGETABLE)), 2462 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2463 K(zone_page_state(zone, NR_BOUNCE)), 2464 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2465 zone->pages_scanned, 2466 (zone->all_unreclaimable ? "yes" : "no") 2467 ); 2468 printk("lowmem_reserve[]:"); 2469 for (i = 0; i < MAX_NR_ZONES; i++) 2470 printk(" %lu", zone->lowmem_reserve[i]); 2471 printk("\n"); 2472 } 2473 2474 for_each_populated_zone(zone) { 2475 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2476 2477 show_node(zone); 2478 printk("%s: ", zone->name); 2479 2480 spin_lock_irqsave(&zone->lock, flags); 2481 for (order = 0; order < MAX_ORDER; order++) { 2482 nr[order] = zone->free_area[order].nr_free; 2483 total += nr[order] << order; 2484 } 2485 spin_unlock_irqrestore(&zone->lock, flags); 2486 for (order = 0; order < MAX_ORDER; order++) 2487 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2488 printk("= %lukB\n", K(total)); 2489 } 2490 2491 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2492 2493 show_swap_cache_info(); 2494 } 2495 2496 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2497 { 2498 zoneref->zone = zone; 2499 zoneref->zone_idx = zone_idx(zone); 2500 } 2501 2502 /* 2503 * Builds allocation fallback zone lists. 2504 * 2505 * Add all populated zones of a node to the zonelist. 2506 */ 2507 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2508 int nr_zones, enum zone_type zone_type) 2509 { 2510 struct zone *zone; 2511 2512 BUG_ON(zone_type >= MAX_NR_ZONES); 2513 zone_type++; 2514 2515 do { 2516 zone_type--; 2517 zone = pgdat->node_zones + zone_type; 2518 if (populated_zone(zone)) { 2519 zoneref_set_zone(zone, 2520 &zonelist->_zonerefs[nr_zones++]); 2521 check_highest_zone(zone_type); 2522 } 2523 2524 } while (zone_type); 2525 return nr_zones; 2526 } 2527 2528 2529 /* 2530 * zonelist_order: 2531 * 0 = automatic detection of better ordering. 2532 * 1 = order by ([node] distance, -zonetype) 2533 * 2 = order by (-zonetype, [node] distance) 2534 * 2535 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2536 * the same zonelist. So only NUMA can configure this param. 2537 */ 2538 #define ZONELIST_ORDER_DEFAULT 0 2539 #define ZONELIST_ORDER_NODE 1 2540 #define ZONELIST_ORDER_ZONE 2 2541 2542 /* zonelist order in the kernel. 2543 * set_zonelist_order() will set this to NODE or ZONE. 2544 */ 2545 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2546 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2547 2548 2549 #ifdef CONFIG_NUMA 2550 /* The value user specified ....changed by config */ 2551 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2552 /* string for sysctl */ 2553 #define NUMA_ZONELIST_ORDER_LEN 16 2554 char numa_zonelist_order[16] = "default"; 2555 2556 /* 2557 * interface for configure zonelist ordering. 2558 * command line option "numa_zonelist_order" 2559 * = "[dD]efault - default, automatic configuration. 2560 * = "[nN]ode - order by node locality, then by zone within node 2561 * = "[zZ]one - order by zone, then by locality within zone 2562 */ 2563 2564 static int __parse_numa_zonelist_order(char *s) 2565 { 2566 if (*s == 'd' || *s == 'D') { 2567 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2568 } else if (*s == 'n' || *s == 'N') { 2569 user_zonelist_order = ZONELIST_ORDER_NODE; 2570 } else if (*s == 'z' || *s == 'Z') { 2571 user_zonelist_order = ZONELIST_ORDER_ZONE; 2572 } else { 2573 printk(KERN_WARNING 2574 "Ignoring invalid numa_zonelist_order value: " 2575 "%s\n", s); 2576 return -EINVAL; 2577 } 2578 return 0; 2579 } 2580 2581 static __init int setup_numa_zonelist_order(char *s) 2582 { 2583 if (s) 2584 return __parse_numa_zonelist_order(s); 2585 return 0; 2586 } 2587 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2588 2589 /* 2590 * sysctl handler for numa_zonelist_order 2591 */ 2592 int numa_zonelist_order_handler(ctl_table *table, int write, 2593 void __user *buffer, size_t *length, 2594 loff_t *ppos) 2595 { 2596 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2597 int ret; 2598 static DEFINE_MUTEX(zl_order_mutex); 2599 2600 mutex_lock(&zl_order_mutex); 2601 if (write) 2602 strcpy(saved_string, (char*)table->data); 2603 ret = proc_dostring(table, write, buffer, length, ppos); 2604 if (ret) 2605 goto out; 2606 if (write) { 2607 int oldval = user_zonelist_order; 2608 if (__parse_numa_zonelist_order((char*)table->data)) { 2609 /* 2610 * bogus value. restore saved string 2611 */ 2612 strncpy((char*)table->data, saved_string, 2613 NUMA_ZONELIST_ORDER_LEN); 2614 user_zonelist_order = oldval; 2615 } else if (oldval != user_zonelist_order) { 2616 mutex_lock(&zonelists_mutex); 2617 build_all_zonelists(NULL); 2618 mutex_unlock(&zonelists_mutex); 2619 } 2620 } 2621 out: 2622 mutex_unlock(&zl_order_mutex); 2623 return ret; 2624 } 2625 2626 2627 #define MAX_NODE_LOAD (nr_online_nodes) 2628 static int node_load[MAX_NUMNODES]; 2629 2630 /** 2631 * find_next_best_node - find the next node that should appear in a given node's fallback list 2632 * @node: node whose fallback list we're appending 2633 * @used_node_mask: nodemask_t of already used nodes 2634 * 2635 * We use a number of factors to determine which is the next node that should 2636 * appear on a given node's fallback list. The node should not have appeared 2637 * already in @node's fallback list, and it should be the next closest node 2638 * according to the distance array (which contains arbitrary distance values 2639 * from each node to each node in the system), and should also prefer nodes 2640 * with no CPUs, since presumably they'll have very little allocation pressure 2641 * on them otherwise. 2642 * It returns -1 if no node is found. 2643 */ 2644 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2645 { 2646 int n, val; 2647 int min_val = INT_MAX; 2648 int best_node = -1; 2649 const struct cpumask *tmp = cpumask_of_node(0); 2650 2651 /* Use the local node if we haven't already */ 2652 if (!node_isset(node, *used_node_mask)) { 2653 node_set(node, *used_node_mask); 2654 return node; 2655 } 2656 2657 for_each_node_state(n, N_HIGH_MEMORY) { 2658 2659 /* Don't want a node to appear more than once */ 2660 if (node_isset(n, *used_node_mask)) 2661 continue; 2662 2663 /* Use the distance array to find the distance */ 2664 val = node_distance(node, n); 2665 2666 /* Penalize nodes under us ("prefer the next node") */ 2667 val += (n < node); 2668 2669 /* Give preference to headless and unused nodes */ 2670 tmp = cpumask_of_node(n); 2671 if (!cpumask_empty(tmp)) 2672 val += PENALTY_FOR_NODE_WITH_CPUS; 2673 2674 /* Slight preference for less loaded node */ 2675 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2676 val += node_load[n]; 2677 2678 if (val < min_val) { 2679 min_val = val; 2680 best_node = n; 2681 } 2682 } 2683 2684 if (best_node >= 0) 2685 node_set(best_node, *used_node_mask); 2686 2687 return best_node; 2688 } 2689 2690 2691 /* 2692 * Build zonelists ordered by node and zones within node. 2693 * This results in maximum locality--normal zone overflows into local 2694 * DMA zone, if any--but risks exhausting DMA zone. 2695 */ 2696 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2697 { 2698 int j; 2699 struct zonelist *zonelist; 2700 2701 zonelist = &pgdat->node_zonelists[0]; 2702 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2703 ; 2704 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2705 MAX_NR_ZONES - 1); 2706 zonelist->_zonerefs[j].zone = NULL; 2707 zonelist->_zonerefs[j].zone_idx = 0; 2708 } 2709 2710 /* 2711 * Build gfp_thisnode zonelists 2712 */ 2713 static void build_thisnode_zonelists(pg_data_t *pgdat) 2714 { 2715 int j; 2716 struct zonelist *zonelist; 2717 2718 zonelist = &pgdat->node_zonelists[1]; 2719 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2720 zonelist->_zonerefs[j].zone = NULL; 2721 zonelist->_zonerefs[j].zone_idx = 0; 2722 } 2723 2724 /* 2725 * Build zonelists ordered by zone and nodes within zones. 2726 * This results in conserving DMA zone[s] until all Normal memory is 2727 * exhausted, but results in overflowing to remote node while memory 2728 * may still exist in local DMA zone. 2729 */ 2730 static int node_order[MAX_NUMNODES]; 2731 2732 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2733 { 2734 int pos, j, node; 2735 int zone_type; /* needs to be signed */ 2736 struct zone *z; 2737 struct zonelist *zonelist; 2738 2739 zonelist = &pgdat->node_zonelists[0]; 2740 pos = 0; 2741 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2742 for (j = 0; j < nr_nodes; j++) { 2743 node = node_order[j]; 2744 z = &NODE_DATA(node)->node_zones[zone_type]; 2745 if (populated_zone(z)) { 2746 zoneref_set_zone(z, 2747 &zonelist->_zonerefs[pos++]); 2748 check_highest_zone(zone_type); 2749 } 2750 } 2751 } 2752 zonelist->_zonerefs[pos].zone = NULL; 2753 zonelist->_zonerefs[pos].zone_idx = 0; 2754 } 2755 2756 static int default_zonelist_order(void) 2757 { 2758 int nid, zone_type; 2759 unsigned long low_kmem_size,total_size; 2760 struct zone *z; 2761 int average_size; 2762 /* 2763 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2764 * If they are really small and used heavily, the system can fall 2765 * into OOM very easily. 2766 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2767 */ 2768 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2769 low_kmem_size = 0; 2770 total_size = 0; 2771 for_each_online_node(nid) { 2772 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2773 z = &NODE_DATA(nid)->node_zones[zone_type]; 2774 if (populated_zone(z)) { 2775 if (zone_type < ZONE_NORMAL) 2776 low_kmem_size += z->present_pages; 2777 total_size += z->present_pages; 2778 } else if (zone_type == ZONE_NORMAL) { 2779 /* 2780 * If any node has only lowmem, then node order 2781 * is preferred to allow kernel allocations 2782 * locally; otherwise, they can easily infringe 2783 * on other nodes when there is an abundance of 2784 * lowmem available to allocate from. 2785 */ 2786 return ZONELIST_ORDER_NODE; 2787 } 2788 } 2789 } 2790 if (!low_kmem_size || /* there are no DMA area. */ 2791 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2792 return ZONELIST_ORDER_NODE; 2793 /* 2794 * look into each node's config. 2795 * If there is a node whose DMA/DMA32 memory is very big area on 2796 * local memory, NODE_ORDER may be suitable. 2797 */ 2798 average_size = total_size / 2799 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2800 for_each_online_node(nid) { 2801 low_kmem_size = 0; 2802 total_size = 0; 2803 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2804 z = &NODE_DATA(nid)->node_zones[zone_type]; 2805 if (populated_zone(z)) { 2806 if (zone_type < ZONE_NORMAL) 2807 low_kmem_size += z->present_pages; 2808 total_size += z->present_pages; 2809 } 2810 } 2811 if (low_kmem_size && 2812 total_size > average_size && /* ignore small node */ 2813 low_kmem_size > total_size * 70/100) 2814 return ZONELIST_ORDER_NODE; 2815 } 2816 return ZONELIST_ORDER_ZONE; 2817 } 2818 2819 static void set_zonelist_order(void) 2820 { 2821 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2822 current_zonelist_order = default_zonelist_order(); 2823 else 2824 current_zonelist_order = user_zonelist_order; 2825 } 2826 2827 static void build_zonelists(pg_data_t *pgdat) 2828 { 2829 int j, node, load; 2830 enum zone_type i; 2831 nodemask_t used_mask; 2832 int local_node, prev_node; 2833 struct zonelist *zonelist; 2834 int order = current_zonelist_order; 2835 2836 /* initialize zonelists */ 2837 for (i = 0; i < MAX_ZONELISTS; i++) { 2838 zonelist = pgdat->node_zonelists + i; 2839 zonelist->_zonerefs[0].zone = NULL; 2840 zonelist->_zonerefs[0].zone_idx = 0; 2841 } 2842 2843 /* NUMA-aware ordering of nodes */ 2844 local_node = pgdat->node_id; 2845 load = nr_online_nodes; 2846 prev_node = local_node; 2847 nodes_clear(used_mask); 2848 2849 memset(node_order, 0, sizeof(node_order)); 2850 j = 0; 2851 2852 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2853 int distance = node_distance(local_node, node); 2854 2855 /* 2856 * If another node is sufficiently far away then it is better 2857 * to reclaim pages in a zone before going off node. 2858 */ 2859 if (distance > RECLAIM_DISTANCE) 2860 zone_reclaim_mode = 1; 2861 2862 /* 2863 * We don't want to pressure a particular node. 2864 * So adding penalty to the first node in same 2865 * distance group to make it round-robin. 2866 */ 2867 if (distance != node_distance(local_node, prev_node)) 2868 node_load[node] = load; 2869 2870 prev_node = node; 2871 load--; 2872 if (order == ZONELIST_ORDER_NODE) 2873 build_zonelists_in_node_order(pgdat, node); 2874 else 2875 node_order[j++] = node; /* remember order */ 2876 } 2877 2878 if (order == ZONELIST_ORDER_ZONE) { 2879 /* calculate node order -- i.e., DMA last! */ 2880 build_zonelists_in_zone_order(pgdat, j); 2881 } 2882 2883 build_thisnode_zonelists(pgdat); 2884 } 2885 2886 /* Construct the zonelist performance cache - see further mmzone.h */ 2887 static void build_zonelist_cache(pg_data_t *pgdat) 2888 { 2889 struct zonelist *zonelist; 2890 struct zonelist_cache *zlc; 2891 struct zoneref *z; 2892 2893 zonelist = &pgdat->node_zonelists[0]; 2894 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2895 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2896 for (z = zonelist->_zonerefs; z->zone; z++) 2897 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2898 } 2899 2900 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 2901 /* 2902 * Return node id of node used for "local" allocations. 2903 * I.e., first node id of first zone in arg node's generic zonelist. 2904 * Used for initializing percpu 'numa_mem', which is used primarily 2905 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 2906 */ 2907 int local_memory_node(int node) 2908 { 2909 struct zone *zone; 2910 2911 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 2912 gfp_zone(GFP_KERNEL), 2913 NULL, 2914 &zone); 2915 return zone->node; 2916 } 2917 #endif 2918 2919 #else /* CONFIG_NUMA */ 2920 2921 static void set_zonelist_order(void) 2922 { 2923 current_zonelist_order = ZONELIST_ORDER_ZONE; 2924 } 2925 2926 static void build_zonelists(pg_data_t *pgdat) 2927 { 2928 int node, local_node; 2929 enum zone_type j; 2930 struct zonelist *zonelist; 2931 2932 local_node = pgdat->node_id; 2933 2934 zonelist = &pgdat->node_zonelists[0]; 2935 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2936 2937 /* 2938 * Now we build the zonelist so that it contains the zones 2939 * of all the other nodes. 2940 * We don't want to pressure a particular node, so when 2941 * building the zones for node N, we make sure that the 2942 * zones coming right after the local ones are those from 2943 * node N+1 (modulo N) 2944 */ 2945 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2946 if (!node_online(node)) 2947 continue; 2948 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2949 MAX_NR_ZONES - 1); 2950 } 2951 for (node = 0; node < local_node; node++) { 2952 if (!node_online(node)) 2953 continue; 2954 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2955 MAX_NR_ZONES - 1); 2956 } 2957 2958 zonelist->_zonerefs[j].zone = NULL; 2959 zonelist->_zonerefs[j].zone_idx = 0; 2960 } 2961 2962 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2963 static void build_zonelist_cache(pg_data_t *pgdat) 2964 { 2965 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2966 } 2967 2968 #endif /* CONFIG_NUMA */ 2969 2970 /* 2971 * Boot pageset table. One per cpu which is going to be used for all 2972 * zones and all nodes. The parameters will be set in such a way 2973 * that an item put on a list will immediately be handed over to 2974 * the buddy list. This is safe since pageset manipulation is done 2975 * with interrupts disabled. 2976 * 2977 * The boot_pagesets must be kept even after bootup is complete for 2978 * unused processors and/or zones. They do play a role for bootstrapping 2979 * hotplugged processors. 2980 * 2981 * zoneinfo_show() and maybe other functions do 2982 * not check if the processor is online before following the pageset pointer. 2983 * Other parts of the kernel may not check if the zone is available. 2984 */ 2985 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 2986 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 2987 static void setup_zone_pageset(struct zone *zone); 2988 2989 /* 2990 * Global mutex to protect against size modification of zonelists 2991 * as well as to serialize pageset setup for the new populated zone. 2992 */ 2993 DEFINE_MUTEX(zonelists_mutex); 2994 2995 /* return values int ....just for stop_machine() */ 2996 static __init_refok int __build_all_zonelists(void *data) 2997 { 2998 int nid; 2999 int cpu; 3000 3001 #ifdef CONFIG_NUMA 3002 memset(node_load, 0, sizeof(node_load)); 3003 #endif 3004 for_each_online_node(nid) { 3005 pg_data_t *pgdat = NODE_DATA(nid); 3006 3007 build_zonelists(pgdat); 3008 build_zonelist_cache(pgdat); 3009 } 3010 3011 #ifdef CONFIG_MEMORY_HOTPLUG 3012 /* Setup real pagesets for the new zone */ 3013 if (data) { 3014 struct zone *zone = data; 3015 setup_zone_pageset(zone); 3016 } 3017 #endif 3018 3019 /* 3020 * Initialize the boot_pagesets that are going to be used 3021 * for bootstrapping processors. The real pagesets for 3022 * each zone will be allocated later when the per cpu 3023 * allocator is available. 3024 * 3025 * boot_pagesets are used also for bootstrapping offline 3026 * cpus if the system is already booted because the pagesets 3027 * are needed to initialize allocators on a specific cpu too. 3028 * F.e. the percpu allocator needs the page allocator which 3029 * needs the percpu allocator in order to allocate its pagesets 3030 * (a chicken-egg dilemma). 3031 */ 3032 for_each_possible_cpu(cpu) { 3033 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3034 3035 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3036 /* 3037 * We now know the "local memory node" for each node-- 3038 * i.e., the node of the first zone in the generic zonelist. 3039 * Set up numa_mem percpu variable for on-line cpus. During 3040 * boot, only the boot cpu should be on-line; we'll init the 3041 * secondary cpus' numa_mem as they come on-line. During 3042 * node/memory hotplug, we'll fixup all on-line cpus. 3043 */ 3044 if (cpu_online(cpu)) 3045 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3046 #endif 3047 } 3048 3049 return 0; 3050 } 3051 3052 /* 3053 * Called with zonelists_mutex held always 3054 * unless system_state == SYSTEM_BOOTING. 3055 */ 3056 void build_all_zonelists(void *data) 3057 { 3058 set_zonelist_order(); 3059 3060 if (system_state == SYSTEM_BOOTING) { 3061 __build_all_zonelists(NULL); 3062 mminit_verify_zonelist(); 3063 cpuset_init_current_mems_allowed(); 3064 } else { 3065 /* we have to stop all cpus to guarantee there is no user 3066 of zonelist */ 3067 stop_machine(__build_all_zonelists, data, NULL); 3068 /* cpuset refresh routine should be here */ 3069 } 3070 vm_total_pages = nr_free_pagecache_pages(); 3071 /* 3072 * Disable grouping by mobility if the number of pages in the 3073 * system is too low to allow the mechanism to work. It would be 3074 * more accurate, but expensive to check per-zone. This check is 3075 * made on memory-hotadd so a system can start with mobility 3076 * disabled and enable it later 3077 */ 3078 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3079 page_group_by_mobility_disabled = 1; 3080 else 3081 page_group_by_mobility_disabled = 0; 3082 3083 printk("Built %i zonelists in %s order, mobility grouping %s. " 3084 "Total pages: %ld\n", 3085 nr_online_nodes, 3086 zonelist_order_name[current_zonelist_order], 3087 page_group_by_mobility_disabled ? "off" : "on", 3088 vm_total_pages); 3089 #ifdef CONFIG_NUMA 3090 printk("Policy zone: %s\n", zone_names[policy_zone]); 3091 #endif 3092 } 3093 3094 /* 3095 * Helper functions to size the waitqueue hash table. 3096 * Essentially these want to choose hash table sizes sufficiently 3097 * large so that collisions trying to wait on pages are rare. 3098 * But in fact, the number of active page waitqueues on typical 3099 * systems is ridiculously low, less than 200. So this is even 3100 * conservative, even though it seems large. 3101 * 3102 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3103 * waitqueues, i.e. the size of the waitq table given the number of pages. 3104 */ 3105 #define PAGES_PER_WAITQUEUE 256 3106 3107 #ifndef CONFIG_MEMORY_HOTPLUG 3108 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3109 { 3110 unsigned long size = 1; 3111 3112 pages /= PAGES_PER_WAITQUEUE; 3113 3114 while (size < pages) 3115 size <<= 1; 3116 3117 /* 3118 * Once we have dozens or even hundreds of threads sleeping 3119 * on IO we've got bigger problems than wait queue collision. 3120 * Limit the size of the wait table to a reasonable size. 3121 */ 3122 size = min(size, 4096UL); 3123 3124 return max(size, 4UL); 3125 } 3126 #else 3127 /* 3128 * A zone's size might be changed by hot-add, so it is not possible to determine 3129 * a suitable size for its wait_table. So we use the maximum size now. 3130 * 3131 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3132 * 3133 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3134 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3135 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3136 * 3137 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3138 * or more by the traditional way. (See above). It equals: 3139 * 3140 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3141 * ia64(16K page size) : = ( 8G + 4M)byte. 3142 * powerpc (64K page size) : = (32G +16M)byte. 3143 */ 3144 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3145 { 3146 return 4096UL; 3147 } 3148 #endif 3149 3150 /* 3151 * This is an integer logarithm so that shifts can be used later 3152 * to extract the more random high bits from the multiplicative 3153 * hash function before the remainder is taken. 3154 */ 3155 static inline unsigned long wait_table_bits(unsigned long size) 3156 { 3157 return ffz(~size); 3158 } 3159 3160 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3161 3162 /* 3163 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3164 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3165 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3166 * higher will lead to a bigger reserve which will get freed as contiguous 3167 * blocks as reclaim kicks in 3168 */ 3169 static void setup_zone_migrate_reserve(struct zone *zone) 3170 { 3171 unsigned long start_pfn, pfn, end_pfn; 3172 struct page *page; 3173 unsigned long block_migratetype; 3174 int reserve; 3175 3176 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3177 start_pfn = zone->zone_start_pfn; 3178 end_pfn = start_pfn + zone->spanned_pages; 3179 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3180 pageblock_order; 3181 3182 /* 3183 * Reserve blocks are generally in place to help high-order atomic 3184 * allocations that are short-lived. A min_free_kbytes value that 3185 * would result in more than 2 reserve blocks for atomic allocations 3186 * is assumed to be in place to help anti-fragmentation for the 3187 * future allocation of hugepages at runtime. 3188 */ 3189 reserve = min(2, reserve); 3190 3191 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3192 if (!pfn_valid(pfn)) 3193 continue; 3194 page = pfn_to_page(pfn); 3195 3196 /* Watch out for overlapping nodes */ 3197 if (page_to_nid(page) != zone_to_nid(zone)) 3198 continue; 3199 3200 /* Blocks with reserved pages will never free, skip them. */ 3201 if (PageReserved(page)) 3202 continue; 3203 3204 block_migratetype = get_pageblock_migratetype(page); 3205 3206 /* If this block is reserved, account for it */ 3207 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3208 reserve--; 3209 continue; 3210 } 3211 3212 /* Suitable for reserving if this block is movable */ 3213 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3214 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3215 move_freepages_block(zone, page, MIGRATE_RESERVE); 3216 reserve--; 3217 continue; 3218 } 3219 3220 /* 3221 * If the reserve is met and this is a previous reserved block, 3222 * take it back 3223 */ 3224 if (block_migratetype == MIGRATE_RESERVE) { 3225 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3226 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3227 } 3228 } 3229 } 3230 3231 /* 3232 * Initially all pages are reserved - free ones are freed 3233 * up by free_all_bootmem() once the early boot process is 3234 * done. Non-atomic initialization, single-pass. 3235 */ 3236 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3237 unsigned long start_pfn, enum memmap_context context) 3238 { 3239 struct page *page; 3240 unsigned long end_pfn = start_pfn + size; 3241 unsigned long pfn; 3242 struct zone *z; 3243 3244 if (highest_memmap_pfn < end_pfn - 1) 3245 highest_memmap_pfn = end_pfn - 1; 3246 3247 z = &NODE_DATA(nid)->node_zones[zone]; 3248 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3249 /* 3250 * There can be holes in boot-time mem_map[]s 3251 * handed to this function. They do not 3252 * exist on hotplugged memory. 3253 */ 3254 if (context == MEMMAP_EARLY) { 3255 if (!early_pfn_valid(pfn)) 3256 continue; 3257 if (!early_pfn_in_nid(pfn, nid)) 3258 continue; 3259 } 3260 page = pfn_to_page(pfn); 3261 set_page_links(page, zone, nid, pfn); 3262 mminit_verify_page_links(page, zone, nid, pfn); 3263 init_page_count(page); 3264 reset_page_mapcount(page); 3265 SetPageReserved(page); 3266 /* 3267 * Mark the block movable so that blocks are reserved for 3268 * movable at startup. This will force kernel allocations 3269 * to reserve their blocks rather than leaking throughout 3270 * the address space during boot when many long-lived 3271 * kernel allocations are made. Later some blocks near 3272 * the start are marked MIGRATE_RESERVE by 3273 * setup_zone_migrate_reserve() 3274 * 3275 * bitmap is created for zone's valid pfn range. but memmap 3276 * can be created for invalid pages (for alignment) 3277 * check here not to call set_pageblock_migratetype() against 3278 * pfn out of zone. 3279 */ 3280 if ((z->zone_start_pfn <= pfn) 3281 && (pfn < z->zone_start_pfn + z->spanned_pages) 3282 && !(pfn & (pageblock_nr_pages - 1))) 3283 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3284 3285 INIT_LIST_HEAD(&page->lru); 3286 #ifdef WANT_PAGE_VIRTUAL 3287 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3288 if (!is_highmem_idx(zone)) 3289 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3290 #endif 3291 } 3292 } 3293 3294 static void __meminit zone_init_free_lists(struct zone *zone) 3295 { 3296 int order, t; 3297 for_each_migratetype_order(order, t) { 3298 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3299 zone->free_area[order].nr_free = 0; 3300 } 3301 } 3302 3303 #ifndef __HAVE_ARCH_MEMMAP_INIT 3304 #define memmap_init(size, nid, zone, start_pfn) \ 3305 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3306 #endif 3307 3308 static int zone_batchsize(struct zone *zone) 3309 { 3310 #ifdef CONFIG_MMU 3311 int batch; 3312 3313 /* 3314 * The per-cpu-pages pools are set to around 1000th of the 3315 * size of the zone. But no more than 1/2 of a meg. 3316 * 3317 * OK, so we don't know how big the cache is. So guess. 3318 */ 3319 batch = zone->present_pages / 1024; 3320 if (batch * PAGE_SIZE > 512 * 1024) 3321 batch = (512 * 1024) / PAGE_SIZE; 3322 batch /= 4; /* We effectively *= 4 below */ 3323 if (batch < 1) 3324 batch = 1; 3325 3326 /* 3327 * Clamp the batch to a 2^n - 1 value. Having a power 3328 * of 2 value was found to be more likely to have 3329 * suboptimal cache aliasing properties in some cases. 3330 * 3331 * For example if 2 tasks are alternately allocating 3332 * batches of pages, one task can end up with a lot 3333 * of pages of one half of the possible page colors 3334 * and the other with pages of the other colors. 3335 */ 3336 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3337 3338 return batch; 3339 3340 #else 3341 /* The deferral and batching of frees should be suppressed under NOMMU 3342 * conditions. 3343 * 3344 * The problem is that NOMMU needs to be able to allocate large chunks 3345 * of contiguous memory as there's no hardware page translation to 3346 * assemble apparent contiguous memory from discontiguous pages. 3347 * 3348 * Queueing large contiguous runs of pages for batching, however, 3349 * causes the pages to actually be freed in smaller chunks. As there 3350 * can be a significant delay between the individual batches being 3351 * recycled, this leads to the once large chunks of space being 3352 * fragmented and becoming unavailable for high-order allocations. 3353 */ 3354 return 0; 3355 #endif 3356 } 3357 3358 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3359 { 3360 struct per_cpu_pages *pcp; 3361 int migratetype; 3362 3363 memset(p, 0, sizeof(*p)); 3364 3365 pcp = &p->pcp; 3366 pcp->count = 0; 3367 pcp->high = 6 * batch; 3368 pcp->batch = max(1UL, 1 * batch); 3369 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3370 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3371 } 3372 3373 /* 3374 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3375 * to the value high for the pageset p. 3376 */ 3377 3378 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3379 unsigned long high) 3380 { 3381 struct per_cpu_pages *pcp; 3382 3383 pcp = &p->pcp; 3384 pcp->high = high; 3385 pcp->batch = max(1UL, high/4); 3386 if ((high/4) > (PAGE_SHIFT * 8)) 3387 pcp->batch = PAGE_SHIFT * 8; 3388 } 3389 3390 static __meminit void setup_zone_pageset(struct zone *zone) 3391 { 3392 int cpu; 3393 3394 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3395 3396 for_each_possible_cpu(cpu) { 3397 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3398 3399 setup_pageset(pcp, zone_batchsize(zone)); 3400 3401 if (percpu_pagelist_fraction) 3402 setup_pagelist_highmark(pcp, 3403 (zone->present_pages / 3404 percpu_pagelist_fraction)); 3405 } 3406 } 3407 3408 /* 3409 * Allocate per cpu pagesets and initialize them. 3410 * Before this call only boot pagesets were available. 3411 */ 3412 void __init setup_per_cpu_pageset(void) 3413 { 3414 struct zone *zone; 3415 3416 for_each_populated_zone(zone) 3417 setup_zone_pageset(zone); 3418 } 3419 3420 static noinline __init_refok 3421 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3422 { 3423 int i; 3424 struct pglist_data *pgdat = zone->zone_pgdat; 3425 size_t alloc_size; 3426 3427 /* 3428 * The per-page waitqueue mechanism uses hashed waitqueues 3429 * per zone. 3430 */ 3431 zone->wait_table_hash_nr_entries = 3432 wait_table_hash_nr_entries(zone_size_pages); 3433 zone->wait_table_bits = 3434 wait_table_bits(zone->wait_table_hash_nr_entries); 3435 alloc_size = zone->wait_table_hash_nr_entries 3436 * sizeof(wait_queue_head_t); 3437 3438 if (!slab_is_available()) { 3439 zone->wait_table = (wait_queue_head_t *) 3440 alloc_bootmem_node(pgdat, alloc_size); 3441 } else { 3442 /* 3443 * This case means that a zone whose size was 0 gets new memory 3444 * via memory hot-add. 3445 * But it may be the case that a new node was hot-added. In 3446 * this case vmalloc() will not be able to use this new node's 3447 * memory - this wait_table must be initialized to use this new 3448 * node itself as well. 3449 * To use this new node's memory, further consideration will be 3450 * necessary. 3451 */ 3452 zone->wait_table = vmalloc(alloc_size); 3453 } 3454 if (!zone->wait_table) 3455 return -ENOMEM; 3456 3457 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3458 init_waitqueue_head(zone->wait_table + i); 3459 3460 return 0; 3461 } 3462 3463 static int __zone_pcp_update(void *data) 3464 { 3465 struct zone *zone = data; 3466 int cpu; 3467 unsigned long batch = zone_batchsize(zone), flags; 3468 3469 for_each_possible_cpu(cpu) { 3470 struct per_cpu_pageset *pset; 3471 struct per_cpu_pages *pcp; 3472 3473 pset = per_cpu_ptr(zone->pageset, cpu); 3474 pcp = &pset->pcp; 3475 3476 local_irq_save(flags); 3477 free_pcppages_bulk(zone, pcp->count, pcp); 3478 setup_pageset(pset, batch); 3479 local_irq_restore(flags); 3480 } 3481 return 0; 3482 } 3483 3484 void zone_pcp_update(struct zone *zone) 3485 { 3486 stop_machine(__zone_pcp_update, zone, NULL); 3487 } 3488 3489 static __meminit void zone_pcp_init(struct zone *zone) 3490 { 3491 /* 3492 * per cpu subsystem is not up at this point. The following code 3493 * relies on the ability of the linker to provide the 3494 * offset of a (static) per cpu variable into the per cpu area. 3495 */ 3496 zone->pageset = &boot_pageset; 3497 3498 if (zone->present_pages) 3499 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3500 zone->name, zone->present_pages, 3501 zone_batchsize(zone)); 3502 } 3503 3504 __meminit int init_currently_empty_zone(struct zone *zone, 3505 unsigned long zone_start_pfn, 3506 unsigned long size, 3507 enum memmap_context context) 3508 { 3509 struct pglist_data *pgdat = zone->zone_pgdat; 3510 int ret; 3511 ret = zone_wait_table_init(zone, size); 3512 if (ret) 3513 return ret; 3514 pgdat->nr_zones = zone_idx(zone) + 1; 3515 3516 zone->zone_start_pfn = zone_start_pfn; 3517 3518 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3519 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3520 pgdat->node_id, 3521 (unsigned long)zone_idx(zone), 3522 zone_start_pfn, (zone_start_pfn + size)); 3523 3524 zone_init_free_lists(zone); 3525 3526 return 0; 3527 } 3528 3529 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3530 /* 3531 * Basic iterator support. Return the first range of PFNs for a node 3532 * Note: nid == MAX_NUMNODES returns first region regardless of node 3533 */ 3534 static int __meminit first_active_region_index_in_nid(int nid) 3535 { 3536 int i; 3537 3538 for (i = 0; i < nr_nodemap_entries; i++) 3539 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3540 return i; 3541 3542 return -1; 3543 } 3544 3545 /* 3546 * Basic iterator support. Return the next active range of PFNs for a node 3547 * Note: nid == MAX_NUMNODES returns next region regardless of node 3548 */ 3549 static int __meminit next_active_region_index_in_nid(int index, int nid) 3550 { 3551 for (index = index + 1; index < nr_nodemap_entries; index++) 3552 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3553 return index; 3554 3555 return -1; 3556 } 3557 3558 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3559 /* 3560 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3561 * Architectures may implement their own version but if add_active_range() 3562 * was used and there are no special requirements, this is a convenient 3563 * alternative 3564 */ 3565 int __meminit __early_pfn_to_nid(unsigned long pfn) 3566 { 3567 int i; 3568 3569 for (i = 0; i < nr_nodemap_entries; i++) { 3570 unsigned long start_pfn = early_node_map[i].start_pfn; 3571 unsigned long end_pfn = early_node_map[i].end_pfn; 3572 3573 if (start_pfn <= pfn && pfn < end_pfn) 3574 return early_node_map[i].nid; 3575 } 3576 /* This is a memory hole */ 3577 return -1; 3578 } 3579 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3580 3581 int __meminit early_pfn_to_nid(unsigned long pfn) 3582 { 3583 int nid; 3584 3585 nid = __early_pfn_to_nid(pfn); 3586 if (nid >= 0) 3587 return nid; 3588 /* just returns 0 */ 3589 return 0; 3590 } 3591 3592 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3593 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3594 { 3595 int nid; 3596 3597 nid = __early_pfn_to_nid(pfn); 3598 if (nid >= 0 && nid != node) 3599 return false; 3600 return true; 3601 } 3602 #endif 3603 3604 /* Basic iterator support to walk early_node_map[] */ 3605 #define for_each_active_range_index_in_nid(i, nid) \ 3606 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3607 i = next_active_region_index_in_nid(i, nid)) 3608 3609 /** 3610 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3611 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3612 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3613 * 3614 * If an architecture guarantees that all ranges registered with 3615 * add_active_ranges() contain no holes and may be freed, this 3616 * this function may be used instead of calling free_bootmem() manually. 3617 */ 3618 void __init free_bootmem_with_active_regions(int nid, 3619 unsigned long max_low_pfn) 3620 { 3621 int i; 3622 3623 for_each_active_range_index_in_nid(i, nid) { 3624 unsigned long size_pages = 0; 3625 unsigned long end_pfn = early_node_map[i].end_pfn; 3626 3627 if (early_node_map[i].start_pfn >= max_low_pfn) 3628 continue; 3629 3630 if (end_pfn > max_low_pfn) 3631 end_pfn = max_low_pfn; 3632 3633 size_pages = end_pfn - early_node_map[i].start_pfn; 3634 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3635 PFN_PHYS(early_node_map[i].start_pfn), 3636 size_pages << PAGE_SHIFT); 3637 } 3638 } 3639 3640 #ifdef CONFIG_HAVE_MEMBLOCK 3641 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 3642 u64 goal, u64 limit) 3643 { 3644 int i; 3645 3646 /* Need to go over early_node_map to find out good range for node */ 3647 for_each_active_range_index_in_nid(i, nid) { 3648 u64 addr; 3649 u64 ei_start, ei_last; 3650 u64 final_start, final_end; 3651 3652 ei_last = early_node_map[i].end_pfn; 3653 ei_last <<= PAGE_SHIFT; 3654 ei_start = early_node_map[i].start_pfn; 3655 ei_start <<= PAGE_SHIFT; 3656 3657 final_start = max(ei_start, goal); 3658 final_end = min(ei_last, limit); 3659 3660 if (final_start >= final_end) 3661 continue; 3662 3663 addr = memblock_find_in_range(final_start, final_end, size, align); 3664 3665 if (addr == MEMBLOCK_ERROR) 3666 continue; 3667 3668 return addr; 3669 } 3670 3671 return MEMBLOCK_ERROR; 3672 } 3673 #endif 3674 3675 int __init add_from_early_node_map(struct range *range, int az, 3676 int nr_range, int nid) 3677 { 3678 int i; 3679 u64 start, end; 3680 3681 /* need to go over early_node_map to find out good range for node */ 3682 for_each_active_range_index_in_nid(i, nid) { 3683 start = early_node_map[i].start_pfn; 3684 end = early_node_map[i].end_pfn; 3685 nr_range = add_range(range, az, nr_range, start, end); 3686 } 3687 return nr_range; 3688 } 3689 3690 #ifdef CONFIG_NO_BOOTMEM 3691 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, 3692 u64 goal, u64 limit) 3693 { 3694 void *ptr; 3695 u64 addr; 3696 3697 if (limit > memblock.current_limit) 3698 limit = memblock.current_limit; 3699 3700 addr = find_memory_core_early(nid, size, align, goal, limit); 3701 3702 if (addr == MEMBLOCK_ERROR) 3703 return NULL; 3704 3705 ptr = phys_to_virt(addr); 3706 memset(ptr, 0, size); 3707 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM"); 3708 /* 3709 * The min_count is set to 0 so that bootmem allocated blocks 3710 * are never reported as leaks. 3711 */ 3712 kmemleak_alloc(ptr, size, 0, 0); 3713 return ptr; 3714 } 3715 #endif 3716 3717 3718 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3719 { 3720 int i; 3721 int ret; 3722 3723 for_each_active_range_index_in_nid(i, nid) { 3724 ret = work_fn(early_node_map[i].start_pfn, 3725 early_node_map[i].end_pfn, data); 3726 if (ret) 3727 break; 3728 } 3729 } 3730 /** 3731 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3732 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3733 * 3734 * If an architecture guarantees that all ranges registered with 3735 * add_active_ranges() contain no holes and may be freed, this 3736 * function may be used instead of calling memory_present() manually. 3737 */ 3738 void __init sparse_memory_present_with_active_regions(int nid) 3739 { 3740 int i; 3741 3742 for_each_active_range_index_in_nid(i, nid) 3743 memory_present(early_node_map[i].nid, 3744 early_node_map[i].start_pfn, 3745 early_node_map[i].end_pfn); 3746 } 3747 3748 /** 3749 * get_pfn_range_for_nid - Return the start and end page frames for a node 3750 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3751 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3752 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3753 * 3754 * It returns the start and end page frame of a node based on information 3755 * provided by an arch calling add_active_range(). If called for a node 3756 * with no available memory, a warning is printed and the start and end 3757 * PFNs will be 0. 3758 */ 3759 void __meminit get_pfn_range_for_nid(unsigned int nid, 3760 unsigned long *start_pfn, unsigned long *end_pfn) 3761 { 3762 int i; 3763 *start_pfn = -1UL; 3764 *end_pfn = 0; 3765 3766 for_each_active_range_index_in_nid(i, nid) { 3767 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3768 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3769 } 3770 3771 if (*start_pfn == -1UL) 3772 *start_pfn = 0; 3773 } 3774 3775 /* 3776 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3777 * assumption is made that zones within a node are ordered in monotonic 3778 * increasing memory addresses so that the "highest" populated zone is used 3779 */ 3780 static void __init find_usable_zone_for_movable(void) 3781 { 3782 int zone_index; 3783 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3784 if (zone_index == ZONE_MOVABLE) 3785 continue; 3786 3787 if (arch_zone_highest_possible_pfn[zone_index] > 3788 arch_zone_lowest_possible_pfn[zone_index]) 3789 break; 3790 } 3791 3792 VM_BUG_ON(zone_index == -1); 3793 movable_zone = zone_index; 3794 } 3795 3796 /* 3797 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3798 * because it is sized independant of architecture. Unlike the other zones, 3799 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3800 * in each node depending on the size of each node and how evenly kernelcore 3801 * is distributed. This helper function adjusts the zone ranges 3802 * provided by the architecture for a given node by using the end of the 3803 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3804 * zones within a node are in order of monotonic increases memory addresses 3805 */ 3806 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3807 unsigned long zone_type, 3808 unsigned long node_start_pfn, 3809 unsigned long node_end_pfn, 3810 unsigned long *zone_start_pfn, 3811 unsigned long *zone_end_pfn) 3812 { 3813 /* Only adjust if ZONE_MOVABLE is on this node */ 3814 if (zone_movable_pfn[nid]) { 3815 /* Size ZONE_MOVABLE */ 3816 if (zone_type == ZONE_MOVABLE) { 3817 *zone_start_pfn = zone_movable_pfn[nid]; 3818 *zone_end_pfn = min(node_end_pfn, 3819 arch_zone_highest_possible_pfn[movable_zone]); 3820 3821 /* Adjust for ZONE_MOVABLE starting within this range */ 3822 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3823 *zone_end_pfn > zone_movable_pfn[nid]) { 3824 *zone_end_pfn = zone_movable_pfn[nid]; 3825 3826 /* Check if this whole range is within ZONE_MOVABLE */ 3827 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3828 *zone_start_pfn = *zone_end_pfn; 3829 } 3830 } 3831 3832 /* 3833 * Return the number of pages a zone spans in a node, including holes 3834 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3835 */ 3836 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3837 unsigned long zone_type, 3838 unsigned long *ignored) 3839 { 3840 unsigned long node_start_pfn, node_end_pfn; 3841 unsigned long zone_start_pfn, zone_end_pfn; 3842 3843 /* Get the start and end of the node and zone */ 3844 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3845 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3846 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3847 adjust_zone_range_for_zone_movable(nid, zone_type, 3848 node_start_pfn, node_end_pfn, 3849 &zone_start_pfn, &zone_end_pfn); 3850 3851 /* Check that this node has pages within the zone's required range */ 3852 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3853 return 0; 3854 3855 /* Move the zone boundaries inside the node if necessary */ 3856 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3857 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3858 3859 /* Return the spanned pages */ 3860 return zone_end_pfn - zone_start_pfn; 3861 } 3862 3863 /* 3864 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3865 * then all holes in the requested range will be accounted for. 3866 */ 3867 unsigned long __meminit __absent_pages_in_range(int nid, 3868 unsigned long range_start_pfn, 3869 unsigned long range_end_pfn) 3870 { 3871 int i = 0; 3872 unsigned long prev_end_pfn = 0, hole_pages = 0; 3873 unsigned long start_pfn; 3874 3875 /* Find the end_pfn of the first active range of pfns in the node */ 3876 i = first_active_region_index_in_nid(nid); 3877 if (i == -1) 3878 return 0; 3879 3880 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3881 3882 /* Account for ranges before physical memory on this node */ 3883 if (early_node_map[i].start_pfn > range_start_pfn) 3884 hole_pages = prev_end_pfn - range_start_pfn; 3885 3886 /* Find all holes for the zone within the node */ 3887 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3888 3889 /* No need to continue if prev_end_pfn is outside the zone */ 3890 if (prev_end_pfn >= range_end_pfn) 3891 break; 3892 3893 /* Make sure the end of the zone is not within the hole */ 3894 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3895 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3896 3897 /* Update the hole size cound and move on */ 3898 if (start_pfn > range_start_pfn) { 3899 BUG_ON(prev_end_pfn > start_pfn); 3900 hole_pages += start_pfn - prev_end_pfn; 3901 } 3902 prev_end_pfn = early_node_map[i].end_pfn; 3903 } 3904 3905 /* Account for ranges past physical memory on this node */ 3906 if (range_end_pfn > prev_end_pfn) 3907 hole_pages += range_end_pfn - 3908 max(range_start_pfn, prev_end_pfn); 3909 3910 return hole_pages; 3911 } 3912 3913 /** 3914 * absent_pages_in_range - Return number of page frames in holes within a range 3915 * @start_pfn: The start PFN to start searching for holes 3916 * @end_pfn: The end PFN to stop searching for holes 3917 * 3918 * It returns the number of pages frames in memory holes within a range. 3919 */ 3920 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3921 unsigned long end_pfn) 3922 { 3923 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3924 } 3925 3926 /* Return the number of page frames in holes in a zone on a node */ 3927 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3928 unsigned long zone_type, 3929 unsigned long *ignored) 3930 { 3931 unsigned long node_start_pfn, node_end_pfn; 3932 unsigned long zone_start_pfn, zone_end_pfn; 3933 3934 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3935 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3936 node_start_pfn); 3937 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3938 node_end_pfn); 3939 3940 adjust_zone_range_for_zone_movable(nid, zone_type, 3941 node_start_pfn, node_end_pfn, 3942 &zone_start_pfn, &zone_end_pfn); 3943 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3944 } 3945 3946 #else 3947 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3948 unsigned long zone_type, 3949 unsigned long *zones_size) 3950 { 3951 return zones_size[zone_type]; 3952 } 3953 3954 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3955 unsigned long zone_type, 3956 unsigned long *zholes_size) 3957 { 3958 if (!zholes_size) 3959 return 0; 3960 3961 return zholes_size[zone_type]; 3962 } 3963 3964 #endif 3965 3966 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3967 unsigned long *zones_size, unsigned long *zholes_size) 3968 { 3969 unsigned long realtotalpages, totalpages = 0; 3970 enum zone_type i; 3971 3972 for (i = 0; i < MAX_NR_ZONES; i++) 3973 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3974 zones_size); 3975 pgdat->node_spanned_pages = totalpages; 3976 3977 realtotalpages = totalpages; 3978 for (i = 0; i < MAX_NR_ZONES; i++) 3979 realtotalpages -= 3980 zone_absent_pages_in_node(pgdat->node_id, i, 3981 zholes_size); 3982 pgdat->node_present_pages = realtotalpages; 3983 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3984 realtotalpages); 3985 } 3986 3987 #ifndef CONFIG_SPARSEMEM 3988 /* 3989 * Calculate the size of the zone->blockflags rounded to an unsigned long 3990 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3991 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3992 * round what is now in bits to nearest long in bits, then return it in 3993 * bytes. 3994 */ 3995 static unsigned long __init usemap_size(unsigned long zonesize) 3996 { 3997 unsigned long usemapsize; 3998 3999 usemapsize = roundup(zonesize, pageblock_nr_pages); 4000 usemapsize = usemapsize >> pageblock_order; 4001 usemapsize *= NR_PAGEBLOCK_BITS; 4002 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4003 4004 return usemapsize / 8; 4005 } 4006 4007 static void __init setup_usemap(struct pglist_data *pgdat, 4008 struct zone *zone, unsigned long zonesize) 4009 { 4010 unsigned long usemapsize = usemap_size(zonesize); 4011 zone->pageblock_flags = NULL; 4012 if (usemapsize) 4013 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 4014 } 4015 #else 4016 static void inline setup_usemap(struct pglist_data *pgdat, 4017 struct zone *zone, unsigned long zonesize) {} 4018 #endif /* CONFIG_SPARSEMEM */ 4019 4020 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4021 4022 /* Return a sensible default order for the pageblock size. */ 4023 static inline int pageblock_default_order(void) 4024 { 4025 if (HPAGE_SHIFT > PAGE_SHIFT) 4026 return HUGETLB_PAGE_ORDER; 4027 4028 return MAX_ORDER-1; 4029 } 4030 4031 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4032 static inline void __init set_pageblock_order(unsigned int order) 4033 { 4034 /* Check that pageblock_nr_pages has not already been setup */ 4035 if (pageblock_order) 4036 return; 4037 4038 /* 4039 * Assume the largest contiguous order of interest is a huge page. 4040 * This value may be variable depending on boot parameters on IA64 4041 */ 4042 pageblock_order = order; 4043 } 4044 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4045 4046 /* 4047 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4048 * and pageblock_default_order() are unused as pageblock_order is set 4049 * at compile-time. See include/linux/pageblock-flags.h for the values of 4050 * pageblock_order based on the kernel config 4051 */ 4052 static inline int pageblock_default_order(unsigned int order) 4053 { 4054 return MAX_ORDER-1; 4055 } 4056 #define set_pageblock_order(x) do {} while (0) 4057 4058 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4059 4060 /* 4061 * Set up the zone data structures: 4062 * - mark all pages reserved 4063 * - mark all memory queues empty 4064 * - clear the memory bitmaps 4065 */ 4066 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4067 unsigned long *zones_size, unsigned long *zholes_size) 4068 { 4069 enum zone_type j; 4070 int nid = pgdat->node_id; 4071 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4072 int ret; 4073 4074 pgdat_resize_init(pgdat); 4075 pgdat->nr_zones = 0; 4076 init_waitqueue_head(&pgdat->kswapd_wait); 4077 pgdat->kswapd_max_order = 0; 4078 pgdat_page_cgroup_init(pgdat); 4079 4080 for (j = 0; j < MAX_NR_ZONES; j++) { 4081 struct zone *zone = pgdat->node_zones + j; 4082 unsigned long size, realsize, memmap_pages; 4083 enum lru_list l; 4084 4085 size = zone_spanned_pages_in_node(nid, j, zones_size); 4086 realsize = size - zone_absent_pages_in_node(nid, j, 4087 zholes_size); 4088 4089 /* 4090 * Adjust realsize so that it accounts for how much memory 4091 * is used by this zone for memmap. This affects the watermark 4092 * and per-cpu initialisations 4093 */ 4094 memmap_pages = 4095 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4096 if (realsize >= memmap_pages) { 4097 realsize -= memmap_pages; 4098 if (memmap_pages) 4099 printk(KERN_DEBUG 4100 " %s zone: %lu pages used for memmap\n", 4101 zone_names[j], memmap_pages); 4102 } else 4103 printk(KERN_WARNING 4104 " %s zone: %lu pages exceeds realsize %lu\n", 4105 zone_names[j], memmap_pages, realsize); 4106 4107 /* Account for reserved pages */ 4108 if (j == 0 && realsize > dma_reserve) { 4109 realsize -= dma_reserve; 4110 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4111 zone_names[0], dma_reserve); 4112 } 4113 4114 if (!is_highmem_idx(j)) 4115 nr_kernel_pages += realsize; 4116 nr_all_pages += realsize; 4117 4118 zone->spanned_pages = size; 4119 zone->present_pages = realsize; 4120 #ifdef CONFIG_NUMA 4121 zone->node = nid; 4122 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4123 / 100; 4124 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4125 #endif 4126 zone->name = zone_names[j]; 4127 spin_lock_init(&zone->lock); 4128 spin_lock_init(&zone->lru_lock); 4129 zone_seqlock_init(zone); 4130 zone->zone_pgdat = pgdat; 4131 4132 zone_pcp_init(zone); 4133 for_each_lru(l) { 4134 INIT_LIST_HEAD(&zone->lru[l].list); 4135 zone->reclaim_stat.nr_saved_scan[l] = 0; 4136 } 4137 zone->reclaim_stat.recent_rotated[0] = 0; 4138 zone->reclaim_stat.recent_rotated[1] = 0; 4139 zone->reclaim_stat.recent_scanned[0] = 0; 4140 zone->reclaim_stat.recent_scanned[1] = 0; 4141 zap_zone_vm_stats(zone); 4142 zone->flags = 0; 4143 if (!size) 4144 continue; 4145 4146 set_pageblock_order(pageblock_default_order()); 4147 setup_usemap(pgdat, zone, size); 4148 ret = init_currently_empty_zone(zone, zone_start_pfn, 4149 size, MEMMAP_EARLY); 4150 BUG_ON(ret); 4151 memmap_init(size, nid, j, zone_start_pfn); 4152 zone_start_pfn += size; 4153 } 4154 } 4155 4156 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4157 { 4158 /* Skip empty nodes */ 4159 if (!pgdat->node_spanned_pages) 4160 return; 4161 4162 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4163 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4164 if (!pgdat->node_mem_map) { 4165 unsigned long size, start, end; 4166 struct page *map; 4167 4168 /* 4169 * The zone's endpoints aren't required to be MAX_ORDER 4170 * aligned but the node_mem_map endpoints must be in order 4171 * for the buddy allocator to function correctly. 4172 */ 4173 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4174 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4175 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4176 size = (end - start) * sizeof(struct page); 4177 map = alloc_remap(pgdat->node_id, size); 4178 if (!map) 4179 map = alloc_bootmem_node(pgdat, size); 4180 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4181 } 4182 #ifndef CONFIG_NEED_MULTIPLE_NODES 4183 /* 4184 * With no DISCONTIG, the global mem_map is just set as node 0's 4185 */ 4186 if (pgdat == NODE_DATA(0)) { 4187 mem_map = NODE_DATA(0)->node_mem_map; 4188 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4189 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4190 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4191 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4192 } 4193 #endif 4194 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4195 } 4196 4197 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4198 unsigned long node_start_pfn, unsigned long *zholes_size) 4199 { 4200 pg_data_t *pgdat = NODE_DATA(nid); 4201 4202 pgdat->node_id = nid; 4203 pgdat->node_start_pfn = node_start_pfn; 4204 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4205 4206 alloc_node_mem_map(pgdat); 4207 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4208 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4209 nid, (unsigned long)pgdat, 4210 (unsigned long)pgdat->node_mem_map); 4211 #endif 4212 4213 free_area_init_core(pgdat, zones_size, zholes_size); 4214 } 4215 4216 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4217 4218 #if MAX_NUMNODES > 1 4219 /* 4220 * Figure out the number of possible node ids. 4221 */ 4222 static void __init setup_nr_node_ids(void) 4223 { 4224 unsigned int node; 4225 unsigned int highest = 0; 4226 4227 for_each_node_mask(node, node_possible_map) 4228 highest = node; 4229 nr_node_ids = highest + 1; 4230 } 4231 #else 4232 static inline void setup_nr_node_ids(void) 4233 { 4234 } 4235 #endif 4236 4237 /** 4238 * add_active_range - Register a range of PFNs backed by physical memory 4239 * @nid: The node ID the range resides on 4240 * @start_pfn: The start PFN of the available physical memory 4241 * @end_pfn: The end PFN of the available physical memory 4242 * 4243 * These ranges are stored in an early_node_map[] and later used by 4244 * free_area_init_nodes() to calculate zone sizes and holes. If the 4245 * range spans a memory hole, it is up to the architecture to ensure 4246 * the memory is not freed by the bootmem allocator. If possible 4247 * the range being registered will be merged with existing ranges. 4248 */ 4249 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4250 unsigned long end_pfn) 4251 { 4252 int i; 4253 4254 mminit_dprintk(MMINIT_TRACE, "memory_register", 4255 "Entering add_active_range(%d, %#lx, %#lx) " 4256 "%d entries of %d used\n", 4257 nid, start_pfn, end_pfn, 4258 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4259 4260 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4261 4262 /* Merge with existing active regions if possible */ 4263 for (i = 0; i < nr_nodemap_entries; i++) { 4264 if (early_node_map[i].nid != nid) 4265 continue; 4266 4267 /* Skip if an existing region covers this new one */ 4268 if (start_pfn >= early_node_map[i].start_pfn && 4269 end_pfn <= early_node_map[i].end_pfn) 4270 return; 4271 4272 /* Merge forward if suitable */ 4273 if (start_pfn <= early_node_map[i].end_pfn && 4274 end_pfn > early_node_map[i].end_pfn) { 4275 early_node_map[i].end_pfn = end_pfn; 4276 return; 4277 } 4278 4279 /* Merge backward if suitable */ 4280 if (start_pfn < early_node_map[i].start_pfn && 4281 end_pfn >= early_node_map[i].start_pfn) { 4282 early_node_map[i].start_pfn = start_pfn; 4283 return; 4284 } 4285 } 4286 4287 /* Check that early_node_map is large enough */ 4288 if (i >= MAX_ACTIVE_REGIONS) { 4289 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4290 MAX_ACTIVE_REGIONS); 4291 return; 4292 } 4293 4294 early_node_map[i].nid = nid; 4295 early_node_map[i].start_pfn = start_pfn; 4296 early_node_map[i].end_pfn = end_pfn; 4297 nr_nodemap_entries = i + 1; 4298 } 4299 4300 /** 4301 * remove_active_range - Shrink an existing registered range of PFNs 4302 * @nid: The node id the range is on that should be shrunk 4303 * @start_pfn: The new PFN of the range 4304 * @end_pfn: The new PFN of the range 4305 * 4306 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4307 * The map is kept near the end physical page range that has already been 4308 * registered. This function allows an arch to shrink an existing registered 4309 * range. 4310 */ 4311 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4312 unsigned long end_pfn) 4313 { 4314 int i, j; 4315 int removed = 0; 4316 4317 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4318 nid, start_pfn, end_pfn); 4319 4320 /* Find the old active region end and shrink */ 4321 for_each_active_range_index_in_nid(i, nid) { 4322 if (early_node_map[i].start_pfn >= start_pfn && 4323 early_node_map[i].end_pfn <= end_pfn) { 4324 /* clear it */ 4325 early_node_map[i].start_pfn = 0; 4326 early_node_map[i].end_pfn = 0; 4327 removed = 1; 4328 continue; 4329 } 4330 if (early_node_map[i].start_pfn < start_pfn && 4331 early_node_map[i].end_pfn > start_pfn) { 4332 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4333 early_node_map[i].end_pfn = start_pfn; 4334 if (temp_end_pfn > end_pfn) 4335 add_active_range(nid, end_pfn, temp_end_pfn); 4336 continue; 4337 } 4338 if (early_node_map[i].start_pfn >= start_pfn && 4339 early_node_map[i].end_pfn > end_pfn && 4340 early_node_map[i].start_pfn < end_pfn) { 4341 early_node_map[i].start_pfn = end_pfn; 4342 continue; 4343 } 4344 } 4345 4346 if (!removed) 4347 return; 4348 4349 /* remove the blank ones */ 4350 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4351 if (early_node_map[i].nid != nid) 4352 continue; 4353 if (early_node_map[i].end_pfn) 4354 continue; 4355 /* we found it, get rid of it */ 4356 for (j = i; j < nr_nodemap_entries - 1; j++) 4357 memcpy(&early_node_map[j], &early_node_map[j+1], 4358 sizeof(early_node_map[j])); 4359 j = nr_nodemap_entries - 1; 4360 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4361 nr_nodemap_entries--; 4362 } 4363 } 4364 4365 /** 4366 * remove_all_active_ranges - Remove all currently registered regions 4367 * 4368 * During discovery, it may be found that a table like SRAT is invalid 4369 * and an alternative discovery method must be used. This function removes 4370 * all currently registered regions. 4371 */ 4372 void __init remove_all_active_ranges(void) 4373 { 4374 memset(early_node_map, 0, sizeof(early_node_map)); 4375 nr_nodemap_entries = 0; 4376 } 4377 4378 /* Compare two active node_active_regions */ 4379 static int __init cmp_node_active_region(const void *a, const void *b) 4380 { 4381 struct node_active_region *arange = (struct node_active_region *)a; 4382 struct node_active_region *brange = (struct node_active_region *)b; 4383 4384 /* Done this way to avoid overflows */ 4385 if (arange->start_pfn > brange->start_pfn) 4386 return 1; 4387 if (arange->start_pfn < brange->start_pfn) 4388 return -1; 4389 4390 return 0; 4391 } 4392 4393 /* sort the node_map by start_pfn */ 4394 void __init sort_node_map(void) 4395 { 4396 sort(early_node_map, (size_t)nr_nodemap_entries, 4397 sizeof(struct node_active_region), 4398 cmp_node_active_region, NULL); 4399 } 4400 4401 /* Find the lowest pfn for a node */ 4402 static unsigned long __init find_min_pfn_for_node(int nid) 4403 { 4404 int i; 4405 unsigned long min_pfn = ULONG_MAX; 4406 4407 /* Assuming a sorted map, the first range found has the starting pfn */ 4408 for_each_active_range_index_in_nid(i, nid) 4409 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4410 4411 if (min_pfn == ULONG_MAX) { 4412 printk(KERN_WARNING 4413 "Could not find start_pfn for node %d\n", nid); 4414 return 0; 4415 } 4416 4417 return min_pfn; 4418 } 4419 4420 /** 4421 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4422 * 4423 * It returns the minimum PFN based on information provided via 4424 * add_active_range(). 4425 */ 4426 unsigned long __init find_min_pfn_with_active_regions(void) 4427 { 4428 return find_min_pfn_for_node(MAX_NUMNODES); 4429 } 4430 4431 /* 4432 * early_calculate_totalpages() 4433 * Sum pages in active regions for movable zone. 4434 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4435 */ 4436 static unsigned long __init early_calculate_totalpages(void) 4437 { 4438 int i; 4439 unsigned long totalpages = 0; 4440 4441 for (i = 0; i < nr_nodemap_entries; i++) { 4442 unsigned long pages = early_node_map[i].end_pfn - 4443 early_node_map[i].start_pfn; 4444 totalpages += pages; 4445 if (pages) 4446 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4447 } 4448 return totalpages; 4449 } 4450 4451 /* 4452 * Find the PFN the Movable zone begins in each node. Kernel memory 4453 * is spread evenly between nodes as long as the nodes have enough 4454 * memory. When they don't, some nodes will have more kernelcore than 4455 * others 4456 */ 4457 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4458 { 4459 int i, nid; 4460 unsigned long usable_startpfn; 4461 unsigned long kernelcore_node, kernelcore_remaining; 4462 /* save the state before borrow the nodemask */ 4463 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4464 unsigned long totalpages = early_calculate_totalpages(); 4465 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4466 4467 /* 4468 * If movablecore was specified, calculate what size of 4469 * kernelcore that corresponds so that memory usable for 4470 * any allocation type is evenly spread. If both kernelcore 4471 * and movablecore are specified, then the value of kernelcore 4472 * will be used for required_kernelcore if it's greater than 4473 * what movablecore would have allowed. 4474 */ 4475 if (required_movablecore) { 4476 unsigned long corepages; 4477 4478 /* 4479 * Round-up so that ZONE_MOVABLE is at least as large as what 4480 * was requested by the user 4481 */ 4482 required_movablecore = 4483 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4484 corepages = totalpages - required_movablecore; 4485 4486 required_kernelcore = max(required_kernelcore, corepages); 4487 } 4488 4489 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4490 if (!required_kernelcore) 4491 goto out; 4492 4493 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4494 find_usable_zone_for_movable(); 4495 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4496 4497 restart: 4498 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4499 kernelcore_node = required_kernelcore / usable_nodes; 4500 for_each_node_state(nid, N_HIGH_MEMORY) { 4501 /* 4502 * Recalculate kernelcore_node if the division per node 4503 * now exceeds what is necessary to satisfy the requested 4504 * amount of memory for the kernel 4505 */ 4506 if (required_kernelcore < kernelcore_node) 4507 kernelcore_node = required_kernelcore / usable_nodes; 4508 4509 /* 4510 * As the map is walked, we track how much memory is usable 4511 * by the kernel using kernelcore_remaining. When it is 4512 * 0, the rest of the node is usable by ZONE_MOVABLE 4513 */ 4514 kernelcore_remaining = kernelcore_node; 4515 4516 /* Go through each range of PFNs within this node */ 4517 for_each_active_range_index_in_nid(i, nid) { 4518 unsigned long start_pfn, end_pfn; 4519 unsigned long size_pages; 4520 4521 start_pfn = max(early_node_map[i].start_pfn, 4522 zone_movable_pfn[nid]); 4523 end_pfn = early_node_map[i].end_pfn; 4524 if (start_pfn >= end_pfn) 4525 continue; 4526 4527 /* Account for what is only usable for kernelcore */ 4528 if (start_pfn < usable_startpfn) { 4529 unsigned long kernel_pages; 4530 kernel_pages = min(end_pfn, usable_startpfn) 4531 - start_pfn; 4532 4533 kernelcore_remaining -= min(kernel_pages, 4534 kernelcore_remaining); 4535 required_kernelcore -= min(kernel_pages, 4536 required_kernelcore); 4537 4538 /* Continue if range is now fully accounted */ 4539 if (end_pfn <= usable_startpfn) { 4540 4541 /* 4542 * Push zone_movable_pfn to the end so 4543 * that if we have to rebalance 4544 * kernelcore across nodes, we will 4545 * not double account here 4546 */ 4547 zone_movable_pfn[nid] = end_pfn; 4548 continue; 4549 } 4550 start_pfn = usable_startpfn; 4551 } 4552 4553 /* 4554 * The usable PFN range for ZONE_MOVABLE is from 4555 * start_pfn->end_pfn. Calculate size_pages as the 4556 * number of pages used as kernelcore 4557 */ 4558 size_pages = end_pfn - start_pfn; 4559 if (size_pages > kernelcore_remaining) 4560 size_pages = kernelcore_remaining; 4561 zone_movable_pfn[nid] = start_pfn + size_pages; 4562 4563 /* 4564 * Some kernelcore has been met, update counts and 4565 * break if the kernelcore for this node has been 4566 * satisified 4567 */ 4568 required_kernelcore -= min(required_kernelcore, 4569 size_pages); 4570 kernelcore_remaining -= size_pages; 4571 if (!kernelcore_remaining) 4572 break; 4573 } 4574 } 4575 4576 /* 4577 * If there is still required_kernelcore, we do another pass with one 4578 * less node in the count. This will push zone_movable_pfn[nid] further 4579 * along on the nodes that still have memory until kernelcore is 4580 * satisified 4581 */ 4582 usable_nodes--; 4583 if (usable_nodes && required_kernelcore > usable_nodes) 4584 goto restart; 4585 4586 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4587 for (nid = 0; nid < MAX_NUMNODES; nid++) 4588 zone_movable_pfn[nid] = 4589 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4590 4591 out: 4592 /* restore the node_state */ 4593 node_states[N_HIGH_MEMORY] = saved_node_state; 4594 } 4595 4596 /* Any regular memory on that node ? */ 4597 static void check_for_regular_memory(pg_data_t *pgdat) 4598 { 4599 #ifdef CONFIG_HIGHMEM 4600 enum zone_type zone_type; 4601 4602 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4603 struct zone *zone = &pgdat->node_zones[zone_type]; 4604 if (zone->present_pages) 4605 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4606 } 4607 #endif 4608 } 4609 4610 /** 4611 * free_area_init_nodes - Initialise all pg_data_t and zone data 4612 * @max_zone_pfn: an array of max PFNs for each zone 4613 * 4614 * This will call free_area_init_node() for each active node in the system. 4615 * Using the page ranges provided by add_active_range(), the size of each 4616 * zone in each node and their holes is calculated. If the maximum PFN 4617 * between two adjacent zones match, it is assumed that the zone is empty. 4618 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4619 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4620 * starts where the previous one ended. For example, ZONE_DMA32 starts 4621 * at arch_max_dma_pfn. 4622 */ 4623 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4624 { 4625 unsigned long nid; 4626 int i; 4627 4628 /* Sort early_node_map as initialisation assumes it is sorted */ 4629 sort_node_map(); 4630 4631 /* Record where the zone boundaries are */ 4632 memset(arch_zone_lowest_possible_pfn, 0, 4633 sizeof(arch_zone_lowest_possible_pfn)); 4634 memset(arch_zone_highest_possible_pfn, 0, 4635 sizeof(arch_zone_highest_possible_pfn)); 4636 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4637 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4638 for (i = 1; i < MAX_NR_ZONES; i++) { 4639 if (i == ZONE_MOVABLE) 4640 continue; 4641 arch_zone_lowest_possible_pfn[i] = 4642 arch_zone_highest_possible_pfn[i-1]; 4643 arch_zone_highest_possible_pfn[i] = 4644 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4645 } 4646 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4647 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4648 4649 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4650 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4651 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4652 4653 /* Print out the zone ranges */ 4654 printk("Zone PFN ranges:\n"); 4655 for (i = 0; i < MAX_NR_ZONES; i++) { 4656 if (i == ZONE_MOVABLE) 4657 continue; 4658 printk(" %-8s ", zone_names[i]); 4659 if (arch_zone_lowest_possible_pfn[i] == 4660 arch_zone_highest_possible_pfn[i]) 4661 printk("empty\n"); 4662 else 4663 printk("%0#10lx -> %0#10lx\n", 4664 arch_zone_lowest_possible_pfn[i], 4665 arch_zone_highest_possible_pfn[i]); 4666 } 4667 4668 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4669 printk("Movable zone start PFN for each node\n"); 4670 for (i = 0; i < MAX_NUMNODES; i++) { 4671 if (zone_movable_pfn[i]) 4672 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4673 } 4674 4675 /* Print out the early_node_map[] */ 4676 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4677 for (i = 0; i < nr_nodemap_entries; i++) 4678 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4679 early_node_map[i].start_pfn, 4680 early_node_map[i].end_pfn); 4681 4682 /* Initialise every node */ 4683 mminit_verify_pageflags_layout(); 4684 setup_nr_node_ids(); 4685 for_each_online_node(nid) { 4686 pg_data_t *pgdat = NODE_DATA(nid); 4687 free_area_init_node(nid, NULL, 4688 find_min_pfn_for_node(nid), NULL); 4689 4690 /* Any memory on that node */ 4691 if (pgdat->node_present_pages) 4692 node_set_state(nid, N_HIGH_MEMORY); 4693 check_for_regular_memory(pgdat); 4694 } 4695 } 4696 4697 static int __init cmdline_parse_core(char *p, unsigned long *core) 4698 { 4699 unsigned long long coremem; 4700 if (!p) 4701 return -EINVAL; 4702 4703 coremem = memparse(p, &p); 4704 *core = coremem >> PAGE_SHIFT; 4705 4706 /* Paranoid check that UL is enough for the coremem value */ 4707 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4708 4709 return 0; 4710 } 4711 4712 /* 4713 * kernelcore=size sets the amount of memory for use for allocations that 4714 * cannot be reclaimed or migrated. 4715 */ 4716 static int __init cmdline_parse_kernelcore(char *p) 4717 { 4718 return cmdline_parse_core(p, &required_kernelcore); 4719 } 4720 4721 /* 4722 * movablecore=size sets the amount of memory for use for allocations that 4723 * can be reclaimed or migrated. 4724 */ 4725 static int __init cmdline_parse_movablecore(char *p) 4726 { 4727 return cmdline_parse_core(p, &required_movablecore); 4728 } 4729 4730 early_param("kernelcore", cmdline_parse_kernelcore); 4731 early_param("movablecore", cmdline_parse_movablecore); 4732 4733 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4734 4735 /** 4736 * set_dma_reserve - set the specified number of pages reserved in the first zone 4737 * @new_dma_reserve: The number of pages to mark reserved 4738 * 4739 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4740 * In the DMA zone, a significant percentage may be consumed by kernel image 4741 * and other unfreeable allocations which can skew the watermarks badly. This 4742 * function may optionally be used to account for unfreeable pages in the 4743 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4744 * smaller per-cpu batchsize. 4745 */ 4746 void __init set_dma_reserve(unsigned long new_dma_reserve) 4747 { 4748 dma_reserve = new_dma_reserve; 4749 } 4750 4751 #ifndef CONFIG_NEED_MULTIPLE_NODES 4752 struct pglist_data __refdata contig_page_data = { 4753 #ifndef CONFIG_NO_BOOTMEM 4754 .bdata = &bootmem_node_data[0] 4755 #endif 4756 }; 4757 EXPORT_SYMBOL(contig_page_data); 4758 #endif 4759 4760 void __init free_area_init(unsigned long *zones_size) 4761 { 4762 free_area_init_node(0, zones_size, 4763 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4764 } 4765 4766 static int page_alloc_cpu_notify(struct notifier_block *self, 4767 unsigned long action, void *hcpu) 4768 { 4769 int cpu = (unsigned long)hcpu; 4770 4771 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4772 drain_pages(cpu); 4773 4774 /* 4775 * Spill the event counters of the dead processor 4776 * into the current processors event counters. 4777 * This artificially elevates the count of the current 4778 * processor. 4779 */ 4780 vm_events_fold_cpu(cpu); 4781 4782 /* 4783 * Zero the differential counters of the dead processor 4784 * so that the vm statistics are consistent. 4785 * 4786 * This is only okay since the processor is dead and cannot 4787 * race with what we are doing. 4788 */ 4789 refresh_cpu_vm_stats(cpu); 4790 } 4791 return NOTIFY_OK; 4792 } 4793 4794 void __init page_alloc_init(void) 4795 { 4796 hotcpu_notifier(page_alloc_cpu_notify, 0); 4797 } 4798 4799 /* 4800 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4801 * or min_free_kbytes changes. 4802 */ 4803 static void calculate_totalreserve_pages(void) 4804 { 4805 struct pglist_data *pgdat; 4806 unsigned long reserve_pages = 0; 4807 enum zone_type i, j; 4808 4809 for_each_online_pgdat(pgdat) { 4810 for (i = 0; i < MAX_NR_ZONES; i++) { 4811 struct zone *zone = pgdat->node_zones + i; 4812 unsigned long max = 0; 4813 4814 /* Find valid and maximum lowmem_reserve in the zone */ 4815 for (j = i; j < MAX_NR_ZONES; j++) { 4816 if (zone->lowmem_reserve[j] > max) 4817 max = zone->lowmem_reserve[j]; 4818 } 4819 4820 /* we treat the high watermark as reserved pages. */ 4821 max += high_wmark_pages(zone); 4822 4823 if (max > zone->present_pages) 4824 max = zone->present_pages; 4825 reserve_pages += max; 4826 } 4827 } 4828 totalreserve_pages = reserve_pages; 4829 } 4830 4831 /* 4832 * setup_per_zone_lowmem_reserve - called whenever 4833 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4834 * has a correct pages reserved value, so an adequate number of 4835 * pages are left in the zone after a successful __alloc_pages(). 4836 */ 4837 static void setup_per_zone_lowmem_reserve(void) 4838 { 4839 struct pglist_data *pgdat; 4840 enum zone_type j, idx; 4841 4842 for_each_online_pgdat(pgdat) { 4843 for (j = 0; j < MAX_NR_ZONES; j++) { 4844 struct zone *zone = pgdat->node_zones + j; 4845 unsigned long present_pages = zone->present_pages; 4846 4847 zone->lowmem_reserve[j] = 0; 4848 4849 idx = j; 4850 while (idx) { 4851 struct zone *lower_zone; 4852 4853 idx--; 4854 4855 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4856 sysctl_lowmem_reserve_ratio[idx] = 1; 4857 4858 lower_zone = pgdat->node_zones + idx; 4859 lower_zone->lowmem_reserve[j] = present_pages / 4860 sysctl_lowmem_reserve_ratio[idx]; 4861 present_pages += lower_zone->present_pages; 4862 } 4863 } 4864 } 4865 4866 /* update totalreserve_pages */ 4867 calculate_totalreserve_pages(); 4868 } 4869 4870 /** 4871 * setup_per_zone_wmarks - called when min_free_kbytes changes 4872 * or when memory is hot-{added|removed} 4873 * 4874 * Ensures that the watermark[min,low,high] values for each zone are set 4875 * correctly with respect to min_free_kbytes. 4876 */ 4877 void setup_per_zone_wmarks(void) 4878 { 4879 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4880 unsigned long lowmem_pages = 0; 4881 struct zone *zone; 4882 unsigned long flags; 4883 4884 /* Calculate total number of !ZONE_HIGHMEM pages */ 4885 for_each_zone(zone) { 4886 if (!is_highmem(zone)) 4887 lowmem_pages += zone->present_pages; 4888 } 4889 4890 for_each_zone(zone) { 4891 u64 tmp; 4892 4893 spin_lock_irqsave(&zone->lock, flags); 4894 tmp = (u64)pages_min * zone->present_pages; 4895 do_div(tmp, lowmem_pages); 4896 if (is_highmem(zone)) { 4897 /* 4898 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4899 * need highmem pages, so cap pages_min to a small 4900 * value here. 4901 * 4902 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4903 * deltas controls asynch page reclaim, and so should 4904 * not be capped for highmem. 4905 */ 4906 int min_pages; 4907 4908 min_pages = zone->present_pages / 1024; 4909 if (min_pages < SWAP_CLUSTER_MAX) 4910 min_pages = SWAP_CLUSTER_MAX; 4911 if (min_pages > 128) 4912 min_pages = 128; 4913 zone->watermark[WMARK_MIN] = min_pages; 4914 } else { 4915 /* 4916 * If it's a lowmem zone, reserve a number of pages 4917 * proportionate to the zone's size. 4918 */ 4919 zone->watermark[WMARK_MIN] = tmp; 4920 } 4921 4922 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4923 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4924 setup_zone_migrate_reserve(zone); 4925 spin_unlock_irqrestore(&zone->lock, flags); 4926 } 4927 4928 /* update totalreserve_pages */ 4929 calculate_totalreserve_pages(); 4930 } 4931 4932 /* 4933 * The inactive anon list should be small enough that the VM never has to 4934 * do too much work, but large enough that each inactive page has a chance 4935 * to be referenced again before it is swapped out. 4936 * 4937 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4938 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4939 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4940 * the anonymous pages are kept on the inactive list. 4941 * 4942 * total target max 4943 * memory ratio inactive anon 4944 * ------------------------------------- 4945 * 10MB 1 5MB 4946 * 100MB 1 50MB 4947 * 1GB 3 250MB 4948 * 10GB 10 0.9GB 4949 * 100GB 31 3GB 4950 * 1TB 101 10GB 4951 * 10TB 320 32GB 4952 */ 4953 void calculate_zone_inactive_ratio(struct zone *zone) 4954 { 4955 unsigned int gb, ratio; 4956 4957 /* Zone size in gigabytes */ 4958 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4959 if (gb) 4960 ratio = int_sqrt(10 * gb); 4961 else 4962 ratio = 1; 4963 4964 zone->inactive_ratio = ratio; 4965 } 4966 4967 static void __init setup_per_zone_inactive_ratio(void) 4968 { 4969 struct zone *zone; 4970 4971 for_each_zone(zone) 4972 calculate_zone_inactive_ratio(zone); 4973 } 4974 4975 /* 4976 * Initialise min_free_kbytes. 4977 * 4978 * For small machines we want it small (128k min). For large machines 4979 * we want it large (64MB max). But it is not linear, because network 4980 * bandwidth does not increase linearly with machine size. We use 4981 * 4982 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4983 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4984 * 4985 * which yields 4986 * 4987 * 16MB: 512k 4988 * 32MB: 724k 4989 * 64MB: 1024k 4990 * 128MB: 1448k 4991 * 256MB: 2048k 4992 * 512MB: 2896k 4993 * 1024MB: 4096k 4994 * 2048MB: 5792k 4995 * 4096MB: 8192k 4996 * 8192MB: 11584k 4997 * 16384MB: 16384k 4998 */ 4999 static int __init init_per_zone_wmark_min(void) 5000 { 5001 unsigned long lowmem_kbytes; 5002 5003 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5004 5005 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5006 if (min_free_kbytes < 128) 5007 min_free_kbytes = 128; 5008 if (min_free_kbytes > 65536) 5009 min_free_kbytes = 65536; 5010 setup_per_zone_wmarks(); 5011 setup_per_zone_lowmem_reserve(); 5012 setup_per_zone_inactive_ratio(); 5013 return 0; 5014 } 5015 module_init(init_per_zone_wmark_min) 5016 5017 /* 5018 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5019 * that we can call two helper functions whenever min_free_kbytes 5020 * changes. 5021 */ 5022 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5023 void __user *buffer, size_t *length, loff_t *ppos) 5024 { 5025 proc_dointvec(table, write, buffer, length, ppos); 5026 if (write) 5027 setup_per_zone_wmarks(); 5028 return 0; 5029 } 5030 5031 #ifdef CONFIG_NUMA 5032 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5033 void __user *buffer, size_t *length, loff_t *ppos) 5034 { 5035 struct zone *zone; 5036 int rc; 5037 5038 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5039 if (rc) 5040 return rc; 5041 5042 for_each_zone(zone) 5043 zone->min_unmapped_pages = (zone->present_pages * 5044 sysctl_min_unmapped_ratio) / 100; 5045 return 0; 5046 } 5047 5048 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5049 void __user *buffer, size_t *length, loff_t *ppos) 5050 { 5051 struct zone *zone; 5052 int rc; 5053 5054 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5055 if (rc) 5056 return rc; 5057 5058 for_each_zone(zone) 5059 zone->min_slab_pages = (zone->present_pages * 5060 sysctl_min_slab_ratio) / 100; 5061 return 0; 5062 } 5063 #endif 5064 5065 /* 5066 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5067 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5068 * whenever sysctl_lowmem_reserve_ratio changes. 5069 * 5070 * The reserve ratio obviously has absolutely no relation with the 5071 * minimum watermarks. The lowmem reserve ratio can only make sense 5072 * if in function of the boot time zone sizes. 5073 */ 5074 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5075 void __user *buffer, size_t *length, loff_t *ppos) 5076 { 5077 proc_dointvec_minmax(table, write, buffer, length, ppos); 5078 setup_per_zone_lowmem_reserve(); 5079 return 0; 5080 } 5081 5082 /* 5083 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5084 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5085 * can have before it gets flushed back to buddy allocator. 5086 */ 5087 5088 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5089 void __user *buffer, size_t *length, loff_t *ppos) 5090 { 5091 struct zone *zone; 5092 unsigned int cpu; 5093 int ret; 5094 5095 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5096 if (!write || (ret == -EINVAL)) 5097 return ret; 5098 for_each_populated_zone(zone) { 5099 for_each_possible_cpu(cpu) { 5100 unsigned long high; 5101 high = zone->present_pages / percpu_pagelist_fraction; 5102 setup_pagelist_highmark( 5103 per_cpu_ptr(zone->pageset, cpu), high); 5104 } 5105 } 5106 return 0; 5107 } 5108 5109 int hashdist = HASHDIST_DEFAULT; 5110 5111 #ifdef CONFIG_NUMA 5112 static int __init set_hashdist(char *str) 5113 { 5114 if (!str) 5115 return 0; 5116 hashdist = simple_strtoul(str, &str, 0); 5117 return 1; 5118 } 5119 __setup("hashdist=", set_hashdist); 5120 #endif 5121 5122 /* 5123 * allocate a large system hash table from bootmem 5124 * - it is assumed that the hash table must contain an exact power-of-2 5125 * quantity of entries 5126 * - limit is the number of hash buckets, not the total allocation size 5127 */ 5128 void *__init alloc_large_system_hash(const char *tablename, 5129 unsigned long bucketsize, 5130 unsigned long numentries, 5131 int scale, 5132 int flags, 5133 unsigned int *_hash_shift, 5134 unsigned int *_hash_mask, 5135 unsigned long limit) 5136 { 5137 unsigned long long max = limit; 5138 unsigned long log2qty, size; 5139 void *table = NULL; 5140 5141 /* allow the kernel cmdline to have a say */ 5142 if (!numentries) { 5143 /* round applicable memory size up to nearest megabyte */ 5144 numentries = nr_kernel_pages; 5145 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5146 numentries >>= 20 - PAGE_SHIFT; 5147 numentries <<= 20 - PAGE_SHIFT; 5148 5149 /* limit to 1 bucket per 2^scale bytes of low memory */ 5150 if (scale > PAGE_SHIFT) 5151 numentries >>= (scale - PAGE_SHIFT); 5152 else 5153 numentries <<= (PAGE_SHIFT - scale); 5154 5155 /* Make sure we've got at least a 0-order allocation.. */ 5156 if (unlikely(flags & HASH_SMALL)) { 5157 /* Makes no sense without HASH_EARLY */ 5158 WARN_ON(!(flags & HASH_EARLY)); 5159 if (!(numentries >> *_hash_shift)) { 5160 numentries = 1UL << *_hash_shift; 5161 BUG_ON(!numentries); 5162 } 5163 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5164 numentries = PAGE_SIZE / bucketsize; 5165 } 5166 numentries = roundup_pow_of_two(numentries); 5167 5168 /* limit allocation size to 1/16 total memory by default */ 5169 if (max == 0) { 5170 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5171 do_div(max, bucketsize); 5172 } 5173 5174 if (numentries > max) 5175 numentries = max; 5176 5177 log2qty = ilog2(numentries); 5178 5179 do { 5180 size = bucketsize << log2qty; 5181 if (flags & HASH_EARLY) 5182 table = alloc_bootmem_nopanic(size); 5183 else if (hashdist) 5184 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5185 else { 5186 /* 5187 * If bucketsize is not a power-of-two, we may free 5188 * some pages at the end of hash table which 5189 * alloc_pages_exact() automatically does 5190 */ 5191 if (get_order(size) < MAX_ORDER) { 5192 table = alloc_pages_exact(size, GFP_ATOMIC); 5193 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5194 } 5195 } 5196 } while (!table && size > PAGE_SIZE && --log2qty); 5197 5198 if (!table) 5199 panic("Failed to allocate %s hash table\n", tablename); 5200 5201 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5202 tablename, 5203 (1UL << log2qty), 5204 ilog2(size) - PAGE_SHIFT, 5205 size); 5206 5207 if (_hash_shift) 5208 *_hash_shift = log2qty; 5209 if (_hash_mask) 5210 *_hash_mask = (1 << log2qty) - 1; 5211 5212 return table; 5213 } 5214 5215 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5216 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5217 unsigned long pfn) 5218 { 5219 #ifdef CONFIG_SPARSEMEM 5220 return __pfn_to_section(pfn)->pageblock_flags; 5221 #else 5222 return zone->pageblock_flags; 5223 #endif /* CONFIG_SPARSEMEM */ 5224 } 5225 5226 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5227 { 5228 #ifdef CONFIG_SPARSEMEM 5229 pfn &= (PAGES_PER_SECTION-1); 5230 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5231 #else 5232 pfn = pfn - zone->zone_start_pfn; 5233 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5234 #endif /* CONFIG_SPARSEMEM */ 5235 } 5236 5237 /** 5238 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5239 * @page: The page within the block of interest 5240 * @start_bitidx: The first bit of interest to retrieve 5241 * @end_bitidx: The last bit of interest 5242 * returns pageblock_bits flags 5243 */ 5244 unsigned long get_pageblock_flags_group(struct page *page, 5245 int start_bitidx, int end_bitidx) 5246 { 5247 struct zone *zone; 5248 unsigned long *bitmap; 5249 unsigned long pfn, bitidx; 5250 unsigned long flags = 0; 5251 unsigned long value = 1; 5252 5253 zone = page_zone(page); 5254 pfn = page_to_pfn(page); 5255 bitmap = get_pageblock_bitmap(zone, pfn); 5256 bitidx = pfn_to_bitidx(zone, pfn); 5257 5258 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5259 if (test_bit(bitidx + start_bitidx, bitmap)) 5260 flags |= value; 5261 5262 return flags; 5263 } 5264 5265 /** 5266 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5267 * @page: The page within the block of interest 5268 * @start_bitidx: The first bit of interest 5269 * @end_bitidx: The last bit of interest 5270 * @flags: The flags to set 5271 */ 5272 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5273 int start_bitidx, int end_bitidx) 5274 { 5275 struct zone *zone; 5276 unsigned long *bitmap; 5277 unsigned long pfn, bitidx; 5278 unsigned long value = 1; 5279 5280 zone = page_zone(page); 5281 pfn = page_to_pfn(page); 5282 bitmap = get_pageblock_bitmap(zone, pfn); 5283 bitidx = pfn_to_bitidx(zone, pfn); 5284 VM_BUG_ON(pfn < zone->zone_start_pfn); 5285 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5286 5287 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5288 if (flags & value) 5289 __set_bit(bitidx + start_bitidx, bitmap); 5290 else 5291 __clear_bit(bitidx + start_bitidx, bitmap); 5292 } 5293 5294 /* 5295 * This is designed as sub function...plz see page_isolation.c also. 5296 * set/clear page block's type to be ISOLATE. 5297 * page allocater never alloc memory from ISOLATE block. 5298 */ 5299 5300 int set_migratetype_isolate(struct page *page) 5301 { 5302 struct zone *zone; 5303 struct page *curr_page; 5304 unsigned long flags, pfn, iter; 5305 unsigned long immobile = 0; 5306 struct memory_isolate_notify arg; 5307 int notifier_ret; 5308 int ret = -EBUSY; 5309 int zone_idx; 5310 5311 zone = page_zone(page); 5312 zone_idx = zone_idx(zone); 5313 5314 spin_lock_irqsave(&zone->lock, flags); 5315 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE || 5316 zone_idx == ZONE_MOVABLE) { 5317 ret = 0; 5318 goto out; 5319 } 5320 5321 pfn = page_to_pfn(page); 5322 arg.start_pfn = pfn; 5323 arg.nr_pages = pageblock_nr_pages; 5324 arg.pages_found = 0; 5325 5326 /* 5327 * It may be possible to isolate a pageblock even if the 5328 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5329 * notifier chain is used by balloon drivers to return the 5330 * number of pages in a range that are held by the balloon 5331 * driver to shrink memory. If all the pages are accounted for 5332 * by balloons, are free, or on the LRU, isolation can continue. 5333 * Later, for example, when memory hotplug notifier runs, these 5334 * pages reported as "can be isolated" should be isolated(freed) 5335 * by the balloon driver through the memory notifier chain. 5336 */ 5337 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5338 notifier_ret = notifier_to_errno(notifier_ret); 5339 if (notifier_ret || !arg.pages_found) 5340 goto out; 5341 5342 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) { 5343 if (!pfn_valid_within(pfn)) 5344 continue; 5345 5346 curr_page = pfn_to_page(iter); 5347 if (!page_count(curr_page) || PageLRU(curr_page)) 5348 continue; 5349 5350 immobile++; 5351 } 5352 5353 if (arg.pages_found == immobile) 5354 ret = 0; 5355 5356 out: 5357 if (!ret) { 5358 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5359 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5360 } 5361 5362 spin_unlock_irqrestore(&zone->lock, flags); 5363 if (!ret) 5364 drain_all_pages(); 5365 return ret; 5366 } 5367 5368 void unset_migratetype_isolate(struct page *page) 5369 { 5370 struct zone *zone; 5371 unsigned long flags; 5372 zone = page_zone(page); 5373 spin_lock_irqsave(&zone->lock, flags); 5374 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5375 goto out; 5376 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5377 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5378 out: 5379 spin_unlock_irqrestore(&zone->lock, flags); 5380 } 5381 5382 #ifdef CONFIG_MEMORY_HOTREMOVE 5383 /* 5384 * All pages in the range must be isolated before calling this. 5385 */ 5386 void 5387 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5388 { 5389 struct page *page; 5390 struct zone *zone; 5391 int order, i; 5392 unsigned long pfn; 5393 unsigned long flags; 5394 /* find the first valid pfn */ 5395 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5396 if (pfn_valid(pfn)) 5397 break; 5398 if (pfn == end_pfn) 5399 return; 5400 zone = page_zone(pfn_to_page(pfn)); 5401 spin_lock_irqsave(&zone->lock, flags); 5402 pfn = start_pfn; 5403 while (pfn < end_pfn) { 5404 if (!pfn_valid(pfn)) { 5405 pfn++; 5406 continue; 5407 } 5408 page = pfn_to_page(pfn); 5409 BUG_ON(page_count(page)); 5410 BUG_ON(!PageBuddy(page)); 5411 order = page_order(page); 5412 #ifdef CONFIG_DEBUG_VM 5413 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5414 pfn, 1 << order, end_pfn); 5415 #endif 5416 list_del(&page->lru); 5417 rmv_page_order(page); 5418 zone->free_area[order].nr_free--; 5419 __mod_zone_page_state(zone, NR_FREE_PAGES, 5420 - (1UL << order)); 5421 for (i = 0; i < (1 << order); i++) 5422 SetPageReserved((page+i)); 5423 pfn += (1 << order); 5424 } 5425 spin_unlock_irqrestore(&zone->lock, flags); 5426 } 5427 #endif 5428 5429 #ifdef CONFIG_MEMORY_FAILURE 5430 bool is_free_buddy_page(struct page *page) 5431 { 5432 struct zone *zone = page_zone(page); 5433 unsigned long pfn = page_to_pfn(page); 5434 unsigned long flags; 5435 int order; 5436 5437 spin_lock_irqsave(&zone->lock, flags); 5438 for (order = 0; order < MAX_ORDER; order++) { 5439 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5440 5441 if (PageBuddy(page_head) && page_order(page_head) >= order) 5442 break; 5443 } 5444 spin_unlock_irqrestore(&zone->lock, flags); 5445 5446 return order < MAX_ORDER; 5447 } 5448 #endif 5449 5450 static struct trace_print_flags pageflag_names[] = { 5451 {1UL << PG_locked, "locked" }, 5452 {1UL << PG_error, "error" }, 5453 {1UL << PG_referenced, "referenced" }, 5454 {1UL << PG_uptodate, "uptodate" }, 5455 {1UL << PG_dirty, "dirty" }, 5456 {1UL << PG_lru, "lru" }, 5457 {1UL << PG_active, "active" }, 5458 {1UL << PG_slab, "slab" }, 5459 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5460 {1UL << PG_arch_1, "arch_1" }, 5461 {1UL << PG_reserved, "reserved" }, 5462 {1UL << PG_private, "private" }, 5463 {1UL << PG_private_2, "private_2" }, 5464 {1UL << PG_writeback, "writeback" }, 5465 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5466 {1UL << PG_head, "head" }, 5467 {1UL << PG_tail, "tail" }, 5468 #else 5469 {1UL << PG_compound, "compound" }, 5470 #endif 5471 {1UL << PG_swapcache, "swapcache" }, 5472 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5473 {1UL << PG_reclaim, "reclaim" }, 5474 {1UL << PG_buddy, "buddy" }, 5475 {1UL << PG_swapbacked, "swapbacked" }, 5476 {1UL << PG_unevictable, "unevictable" }, 5477 #ifdef CONFIG_MMU 5478 {1UL << PG_mlocked, "mlocked" }, 5479 #endif 5480 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5481 {1UL << PG_uncached, "uncached" }, 5482 #endif 5483 #ifdef CONFIG_MEMORY_FAILURE 5484 {1UL << PG_hwpoison, "hwpoison" }, 5485 #endif 5486 {-1UL, NULL }, 5487 }; 5488 5489 static void dump_page_flags(unsigned long flags) 5490 { 5491 const char *delim = ""; 5492 unsigned long mask; 5493 int i; 5494 5495 printk(KERN_ALERT "page flags: %#lx(", flags); 5496 5497 /* remove zone id */ 5498 flags &= (1UL << NR_PAGEFLAGS) - 1; 5499 5500 for (i = 0; pageflag_names[i].name && flags; i++) { 5501 5502 mask = pageflag_names[i].mask; 5503 if ((flags & mask) != mask) 5504 continue; 5505 5506 flags &= ~mask; 5507 printk("%s%s", delim, pageflag_names[i].name); 5508 delim = "|"; 5509 } 5510 5511 /* check for left over flags */ 5512 if (flags) 5513 printk("%s%#lx", delim, flags); 5514 5515 printk(")\n"); 5516 } 5517 5518 void dump_page(struct page *page) 5519 { 5520 printk(KERN_ALERT 5521 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5522 page, page_count(page), page_mapcount(page), 5523 page->mapping, page->index); 5524 dump_page_flags(page->flags); 5525 } 5526