xref: /linux/mm/page_alloc.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node);
63 EXPORT_PER_CPU_SYMBOL(numa_node);
64 #endif
65 
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 /*
68  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71  * defined in <linux/topology.h>.
72  */
73 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75 #endif
76 
77 /*
78  * Array of node states.
79  */
80 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 	[N_POSSIBLE] = NODE_MASK_ALL,
82 	[N_ONLINE] = { { [0] = 1UL } },
83 #ifndef CONFIG_NUMA
84 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
85 #ifdef CONFIG_HIGHMEM
86 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
87 #endif
88 	[N_CPU] = { { [0] = 1UL } },
89 #endif	/* NUMA */
90 };
91 EXPORT_SYMBOL(node_states);
92 
93 unsigned long totalram_pages __read_mostly;
94 unsigned long totalreserve_pages __read_mostly;
95 int percpu_pagelist_fraction;
96 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
97 
98 #ifdef CONFIG_PM_SLEEP
99 /*
100  * The following functions are used by the suspend/hibernate code to temporarily
101  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102  * while devices are suspended.  To avoid races with the suspend/hibernate code,
103  * they should always be called with pm_mutex held (gfp_allowed_mask also should
104  * only be modified with pm_mutex held, unless the suspend/hibernate code is
105  * guaranteed not to run in parallel with that modification).
106  */
107 void set_gfp_allowed_mask(gfp_t mask)
108 {
109 	WARN_ON(!mutex_is_locked(&pm_mutex));
110 	gfp_allowed_mask = mask;
111 }
112 
113 gfp_t clear_gfp_allowed_mask(gfp_t mask)
114 {
115 	gfp_t ret = gfp_allowed_mask;
116 
117 	WARN_ON(!mutex_is_locked(&pm_mutex));
118 	gfp_allowed_mask &= ~mask;
119 	return ret;
120 }
121 #endif /* CONFIG_PM_SLEEP */
122 
123 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
124 int pageblock_order __read_mostly;
125 #endif
126 
127 static void __free_pages_ok(struct page *page, unsigned int order);
128 
129 /*
130  * results with 256, 32 in the lowmem_reserve sysctl:
131  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
132  *	1G machine -> (16M dma, 784M normal, 224M high)
133  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
134  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
135  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
136  *
137  * TBD: should special case ZONE_DMA32 machines here - in those we normally
138  * don't need any ZONE_NORMAL reservation
139  */
140 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
141 #ifdef CONFIG_ZONE_DMA
142 	 256,
143 #endif
144 #ifdef CONFIG_ZONE_DMA32
145 	 256,
146 #endif
147 #ifdef CONFIG_HIGHMEM
148 	 32,
149 #endif
150 	 32,
151 };
152 
153 EXPORT_SYMBOL(totalram_pages);
154 
155 static char * const zone_names[MAX_NR_ZONES] = {
156 #ifdef CONFIG_ZONE_DMA
157 	 "DMA",
158 #endif
159 #ifdef CONFIG_ZONE_DMA32
160 	 "DMA32",
161 #endif
162 	 "Normal",
163 #ifdef CONFIG_HIGHMEM
164 	 "HighMem",
165 #endif
166 	 "Movable",
167 };
168 
169 int min_free_kbytes = 1024;
170 
171 static unsigned long __meminitdata nr_kernel_pages;
172 static unsigned long __meminitdata nr_all_pages;
173 static unsigned long __meminitdata dma_reserve;
174 
175 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
176   /*
177    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
178    * ranges of memory (RAM) that may be registered with add_active_range().
179    * Ranges passed to add_active_range() will be merged if possible
180    * so the number of times add_active_range() can be called is
181    * related to the number of nodes and the number of holes
182    */
183   #ifdef CONFIG_MAX_ACTIVE_REGIONS
184     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
185     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
186   #else
187     #if MAX_NUMNODES >= 32
188       /* If there can be many nodes, allow up to 50 holes per node */
189       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
190     #else
191       /* By default, allow up to 256 distinct regions */
192       #define MAX_ACTIVE_REGIONS 256
193     #endif
194   #endif
195 
196   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
197   static int __meminitdata nr_nodemap_entries;
198   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
199   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
200   static unsigned long __initdata required_kernelcore;
201   static unsigned long __initdata required_movablecore;
202   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
203 
204   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
205   int movable_zone;
206   EXPORT_SYMBOL(movable_zone);
207 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
208 
209 #if MAX_NUMNODES > 1
210 int nr_node_ids __read_mostly = MAX_NUMNODES;
211 int nr_online_nodes __read_mostly = 1;
212 EXPORT_SYMBOL(nr_node_ids);
213 EXPORT_SYMBOL(nr_online_nodes);
214 #endif
215 
216 int page_group_by_mobility_disabled __read_mostly;
217 
218 static void set_pageblock_migratetype(struct page *page, int migratetype)
219 {
220 
221 	if (unlikely(page_group_by_mobility_disabled))
222 		migratetype = MIGRATE_UNMOVABLE;
223 
224 	set_pageblock_flags_group(page, (unsigned long)migratetype,
225 					PB_migrate, PB_migrate_end);
226 }
227 
228 bool oom_killer_disabled __read_mostly;
229 
230 #ifdef CONFIG_DEBUG_VM
231 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
232 {
233 	int ret = 0;
234 	unsigned seq;
235 	unsigned long pfn = page_to_pfn(page);
236 
237 	do {
238 		seq = zone_span_seqbegin(zone);
239 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
240 			ret = 1;
241 		else if (pfn < zone->zone_start_pfn)
242 			ret = 1;
243 	} while (zone_span_seqretry(zone, seq));
244 
245 	return ret;
246 }
247 
248 static int page_is_consistent(struct zone *zone, struct page *page)
249 {
250 	if (!pfn_valid_within(page_to_pfn(page)))
251 		return 0;
252 	if (zone != page_zone(page))
253 		return 0;
254 
255 	return 1;
256 }
257 /*
258  * Temporary debugging check for pages not lying within a given zone.
259  */
260 static int bad_range(struct zone *zone, struct page *page)
261 {
262 	if (page_outside_zone_boundaries(zone, page))
263 		return 1;
264 	if (!page_is_consistent(zone, page))
265 		return 1;
266 
267 	return 0;
268 }
269 #else
270 static inline int bad_range(struct zone *zone, struct page *page)
271 {
272 	return 0;
273 }
274 #endif
275 
276 static void bad_page(struct page *page)
277 {
278 	static unsigned long resume;
279 	static unsigned long nr_shown;
280 	static unsigned long nr_unshown;
281 
282 	/* Don't complain about poisoned pages */
283 	if (PageHWPoison(page)) {
284 		__ClearPageBuddy(page);
285 		return;
286 	}
287 
288 	/*
289 	 * Allow a burst of 60 reports, then keep quiet for that minute;
290 	 * or allow a steady drip of one report per second.
291 	 */
292 	if (nr_shown == 60) {
293 		if (time_before(jiffies, resume)) {
294 			nr_unshown++;
295 			goto out;
296 		}
297 		if (nr_unshown) {
298 			printk(KERN_ALERT
299 			      "BUG: Bad page state: %lu messages suppressed\n",
300 				nr_unshown);
301 			nr_unshown = 0;
302 		}
303 		nr_shown = 0;
304 	}
305 	if (nr_shown++ == 0)
306 		resume = jiffies + 60 * HZ;
307 
308 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
309 		current->comm, page_to_pfn(page));
310 	dump_page(page);
311 
312 	dump_stack();
313 out:
314 	/* Leave bad fields for debug, except PageBuddy could make trouble */
315 	__ClearPageBuddy(page);
316 	add_taint(TAINT_BAD_PAGE);
317 }
318 
319 /*
320  * Higher-order pages are called "compound pages".  They are structured thusly:
321  *
322  * The first PAGE_SIZE page is called the "head page".
323  *
324  * The remaining PAGE_SIZE pages are called "tail pages".
325  *
326  * All pages have PG_compound set.  All pages have their ->private pointing at
327  * the head page (even the head page has this).
328  *
329  * The first tail page's ->lru.next holds the address of the compound page's
330  * put_page() function.  Its ->lru.prev holds the order of allocation.
331  * This usage means that zero-order pages may not be compound.
332  */
333 
334 static void free_compound_page(struct page *page)
335 {
336 	__free_pages_ok(page, compound_order(page));
337 }
338 
339 void prep_compound_page(struct page *page, unsigned long order)
340 {
341 	int i;
342 	int nr_pages = 1 << order;
343 
344 	set_compound_page_dtor(page, free_compound_page);
345 	set_compound_order(page, order);
346 	__SetPageHead(page);
347 	for (i = 1; i < nr_pages; i++) {
348 		struct page *p = page + i;
349 
350 		__SetPageTail(p);
351 		p->first_page = page;
352 	}
353 }
354 
355 static int destroy_compound_page(struct page *page, unsigned long order)
356 {
357 	int i;
358 	int nr_pages = 1 << order;
359 	int bad = 0;
360 
361 	if (unlikely(compound_order(page) != order) ||
362 	    unlikely(!PageHead(page))) {
363 		bad_page(page);
364 		bad++;
365 	}
366 
367 	__ClearPageHead(page);
368 
369 	for (i = 1; i < nr_pages; i++) {
370 		struct page *p = page + i;
371 
372 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
373 			bad_page(page);
374 			bad++;
375 		}
376 		__ClearPageTail(p);
377 	}
378 
379 	return bad;
380 }
381 
382 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
383 {
384 	int i;
385 
386 	/*
387 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
388 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
389 	 */
390 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
391 	for (i = 0; i < (1 << order); i++)
392 		clear_highpage(page + i);
393 }
394 
395 static inline void set_page_order(struct page *page, int order)
396 {
397 	set_page_private(page, order);
398 	__SetPageBuddy(page);
399 }
400 
401 static inline void rmv_page_order(struct page *page)
402 {
403 	__ClearPageBuddy(page);
404 	set_page_private(page, 0);
405 }
406 
407 /*
408  * Locate the struct page for both the matching buddy in our
409  * pair (buddy1) and the combined O(n+1) page they form (page).
410  *
411  * 1) Any buddy B1 will have an order O twin B2 which satisfies
412  * the following equation:
413  *     B2 = B1 ^ (1 << O)
414  * For example, if the starting buddy (buddy2) is #8 its order
415  * 1 buddy is #10:
416  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
417  *
418  * 2) Any buddy B will have an order O+1 parent P which
419  * satisfies the following equation:
420  *     P = B & ~(1 << O)
421  *
422  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
423  */
424 static inline struct page *
425 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
426 {
427 	unsigned long buddy_idx = page_idx ^ (1 << order);
428 
429 	return page + (buddy_idx - page_idx);
430 }
431 
432 static inline unsigned long
433 __find_combined_index(unsigned long page_idx, unsigned int order)
434 {
435 	return (page_idx & ~(1 << order));
436 }
437 
438 /*
439  * This function checks whether a page is free && is the buddy
440  * we can do coalesce a page and its buddy if
441  * (a) the buddy is not in a hole &&
442  * (b) the buddy is in the buddy system &&
443  * (c) a page and its buddy have the same order &&
444  * (d) a page and its buddy are in the same zone.
445  *
446  * For recording whether a page is in the buddy system, we use PG_buddy.
447  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
448  *
449  * For recording page's order, we use page_private(page).
450  */
451 static inline int page_is_buddy(struct page *page, struct page *buddy,
452 								int order)
453 {
454 	if (!pfn_valid_within(page_to_pfn(buddy)))
455 		return 0;
456 
457 	if (page_zone_id(page) != page_zone_id(buddy))
458 		return 0;
459 
460 	if (PageBuddy(buddy) && page_order(buddy) == order) {
461 		VM_BUG_ON(page_count(buddy) != 0);
462 		return 1;
463 	}
464 	return 0;
465 }
466 
467 /*
468  * Freeing function for a buddy system allocator.
469  *
470  * The concept of a buddy system is to maintain direct-mapped table
471  * (containing bit values) for memory blocks of various "orders".
472  * The bottom level table contains the map for the smallest allocatable
473  * units of memory (here, pages), and each level above it describes
474  * pairs of units from the levels below, hence, "buddies".
475  * At a high level, all that happens here is marking the table entry
476  * at the bottom level available, and propagating the changes upward
477  * as necessary, plus some accounting needed to play nicely with other
478  * parts of the VM system.
479  * At each level, we keep a list of pages, which are heads of continuous
480  * free pages of length of (1 << order) and marked with PG_buddy. Page's
481  * order is recorded in page_private(page) field.
482  * So when we are allocating or freeing one, we can derive the state of the
483  * other.  That is, if we allocate a small block, and both were
484  * free, the remainder of the region must be split into blocks.
485  * If a block is freed, and its buddy is also free, then this
486  * triggers coalescing into a block of larger size.
487  *
488  * -- wli
489  */
490 
491 static inline void __free_one_page(struct page *page,
492 		struct zone *zone, unsigned int order,
493 		int migratetype)
494 {
495 	unsigned long page_idx;
496 	unsigned long combined_idx;
497 	struct page *buddy;
498 
499 	if (unlikely(PageCompound(page)))
500 		if (unlikely(destroy_compound_page(page, order)))
501 			return;
502 
503 	VM_BUG_ON(migratetype == -1);
504 
505 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
506 
507 	VM_BUG_ON(page_idx & ((1 << order) - 1));
508 	VM_BUG_ON(bad_range(zone, page));
509 
510 	while (order < MAX_ORDER-1) {
511 		buddy = __page_find_buddy(page, page_idx, order);
512 		if (!page_is_buddy(page, buddy, order))
513 			break;
514 
515 		/* Our buddy is free, merge with it and move up one order. */
516 		list_del(&buddy->lru);
517 		zone->free_area[order].nr_free--;
518 		rmv_page_order(buddy);
519 		combined_idx = __find_combined_index(page_idx, order);
520 		page = page + (combined_idx - page_idx);
521 		page_idx = combined_idx;
522 		order++;
523 	}
524 	set_page_order(page, order);
525 
526 	/*
527 	 * If this is not the largest possible page, check if the buddy
528 	 * of the next-highest order is free. If it is, it's possible
529 	 * that pages are being freed that will coalesce soon. In case,
530 	 * that is happening, add the free page to the tail of the list
531 	 * so it's less likely to be used soon and more likely to be merged
532 	 * as a higher order page
533 	 */
534 	if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
535 		struct page *higher_page, *higher_buddy;
536 		combined_idx = __find_combined_index(page_idx, order);
537 		higher_page = page + combined_idx - page_idx;
538 		higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
539 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
540 			list_add_tail(&page->lru,
541 				&zone->free_area[order].free_list[migratetype]);
542 			goto out;
543 		}
544 	}
545 
546 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
547 out:
548 	zone->free_area[order].nr_free++;
549 }
550 
551 /*
552  * free_page_mlock() -- clean up attempts to free and mlocked() page.
553  * Page should not be on lru, so no need to fix that up.
554  * free_pages_check() will verify...
555  */
556 static inline void free_page_mlock(struct page *page)
557 {
558 	__dec_zone_page_state(page, NR_MLOCK);
559 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
560 }
561 
562 static inline int free_pages_check(struct page *page)
563 {
564 	if (unlikely(page_mapcount(page) |
565 		(page->mapping != NULL)  |
566 		(atomic_read(&page->_count) != 0) |
567 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
568 		bad_page(page);
569 		return 1;
570 	}
571 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
572 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
573 	return 0;
574 }
575 
576 /*
577  * Frees a number of pages from the PCP lists
578  * Assumes all pages on list are in same zone, and of same order.
579  * count is the number of pages to free.
580  *
581  * If the zone was previously in an "all pages pinned" state then look to
582  * see if this freeing clears that state.
583  *
584  * And clear the zone's pages_scanned counter, to hold off the "all pages are
585  * pinned" detection logic.
586  */
587 static void free_pcppages_bulk(struct zone *zone, int count,
588 					struct per_cpu_pages *pcp)
589 {
590 	int migratetype = 0;
591 	int batch_free = 0;
592 	int to_free = count;
593 
594 	spin_lock(&zone->lock);
595 	zone->all_unreclaimable = 0;
596 	zone->pages_scanned = 0;
597 
598 	while (to_free) {
599 		struct page *page;
600 		struct list_head *list;
601 
602 		/*
603 		 * Remove pages from lists in a round-robin fashion. A
604 		 * batch_free count is maintained that is incremented when an
605 		 * empty list is encountered.  This is so more pages are freed
606 		 * off fuller lists instead of spinning excessively around empty
607 		 * lists
608 		 */
609 		do {
610 			batch_free++;
611 			if (++migratetype == MIGRATE_PCPTYPES)
612 				migratetype = 0;
613 			list = &pcp->lists[migratetype];
614 		} while (list_empty(list));
615 
616 		do {
617 			page = list_entry(list->prev, struct page, lru);
618 			/* must delete as __free_one_page list manipulates */
619 			list_del(&page->lru);
620 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
621 			__free_one_page(page, zone, 0, page_private(page));
622 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
623 		} while (--to_free && --batch_free && !list_empty(list));
624 	}
625 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
626 	spin_unlock(&zone->lock);
627 }
628 
629 static void free_one_page(struct zone *zone, struct page *page, int order,
630 				int migratetype)
631 {
632 	spin_lock(&zone->lock);
633 	zone->all_unreclaimable = 0;
634 	zone->pages_scanned = 0;
635 
636 	__free_one_page(page, zone, order, migratetype);
637 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
638 	spin_unlock(&zone->lock);
639 }
640 
641 static bool free_pages_prepare(struct page *page, unsigned int order)
642 {
643 	int i;
644 	int bad = 0;
645 
646 	trace_mm_page_free_direct(page, order);
647 	kmemcheck_free_shadow(page, order);
648 
649 	for (i = 0; i < (1 << order); i++) {
650 		struct page *pg = page + i;
651 
652 		if (PageAnon(pg))
653 			pg->mapping = NULL;
654 		bad += free_pages_check(pg);
655 	}
656 	if (bad)
657 		return false;
658 
659 	if (!PageHighMem(page)) {
660 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
661 		debug_check_no_obj_freed(page_address(page),
662 					   PAGE_SIZE << order);
663 	}
664 	arch_free_page(page, order);
665 	kernel_map_pages(page, 1 << order, 0);
666 
667 	return true;
668 }
669 
670 static void __free_pages_ok(struct page *page, unsigned int order)
671 {
672 	unsigned long flags;
673 	int wasMlocked = __TestClearPageMlocked(page);
674 
675 	if (!free_pages_prepare(page, order))
676 		return;
677 
678 	local_irq_save(flags);
679 	if (unlikely(wasMlocked))
680 		free_page_mlock(page);
681 	__count_vm_events(PGFREE, 1 << order);
682 	free_one_page(page_zone(page), page, order,
683 					get_pageblock_migratetype(page));
684 	local_irq_restore(flags);
685 }
686 
687 /*
688  * permit the bootmem allocator to evade page validation on high-order frees
689  */
690 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
691 {
692 	if (order == 0) {
693 		__ClearPageReserved(page);
694 		set_page_count(page, 0);
695 		set_page_refcounted(page);
696 		__free_page(page);
697 	} else {
698 		int loop;
699 
700 		prefetchw(page);
701 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
702 			struct page *p = &page[loop];
703 
704 			if (loop + 1 < BITS_PER_LONG)
705 				prefetchw(p + 1);
706 			__ClearPageReserved(p);
707 			set_page_count(p, 0);
708 		}
709 
710 		set_page_refcounted(page);
711 		__free_pages(page, order);
712 	}
713 }
714 
715 
716 /*
717  * The order of subdivision here is critical for the IO subsystem.
718  * Please do not alter this order without good reasons and regression
719  * testing. Specifically, as large blocks of memory are subdivided,
720  * the order in which smaller blocks are delivered depends on the order
721  * they're subdivided in this function. This is the primary factor
722  * influencing the order in which pages are delivered to the IO
723  * subsystem according to empirical testing, and this is also justified
724  * by considering the behavior of a buddy system containing a single
725  * large block of memory acted on by a series of small allocations.
726  * This behavior is a critical factor in sglist merging's success.
727  *
728  * -- wli
729  */
730 static inline void expand(struct zone *zone, struct page *page,
731 	int low, int high, struct free_area *area,
732 	int migratetype)
733 {
734 	unsigned long size = 1 << high;
735 
736 	while (high > low) {
737 		area--;
738 		high--;
739 		size >>= 1;
740 		VM_BUG_ON(bad_range(zone, &page[size]));
741 		list_add(&page[size].lru, &area->free_list[migratetype]);
742 		area->nr_free++;
743 		set_page_order(&page[size], high);
744 	}
745 }
746 
747 /*
748  * This page is about to be returned from the page allocator
749  */
750 static inline int check_new_page(struct page *page)
751 {
752 	if (unlikely(page_mapcount(page) |
753 		(page->mapping != NULL)  |
754 		(atomic_read(&page->_count) != 0)  |
755 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
756 		bad_page(page);
757 		return 1;
758 	}
759 	return 0;
760 }
761 
762 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
763 {
764 	int i;
765 
766 	for (i = 0; i < (1 << order); i++) {
767 		struct page *p = page + i;
768 		if (unlikely(check_new_page(p)))
769 			return 1;
770 	}
771 
772 	set_page_private(page, 0);
773 	set_page_refcounted(page);
774 
775 	arch_alloc_page(page, order);
776 	kernel_map_pages(page, 1 << order, 1);
777 
778 	if (gfp_flags & __GFP_ZERO)
779 		prep_zero_page(page, order, gfp_flags);
780 
781 	if (order && (gfp_flags & __GFP_COMP))
782 		prep_compound_page(page, order);
783 
784 	return 0;
785 }
786 
787 /*
788  * Go through the free lists for the given migratetype and remove
789  * the smallest available page from the freelists
790  */
791 static inline
792 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
793 						int migratetype)
794 {
795 	unsigned int current_order;
796 	struct free_area * area;
797 	struct page *page;
798 
799 	/* Find a page of the appropriate size in the preferred list */
800 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
801 		area = &(zone->free_area[current_order]);
802 		if (list_empty(&area->free_list[migratetype]))
803 			continue;
804 
805 		page = list_entry(area->free_list[migratetype].next,
806 							struct page, lru);
807 		list_del(&page->lru);
808 		rmv_page_order(page);
809 		area->nr_free--;
810 		expand(zone, page, order, current_order, area, migratetype);
811 		return page;
812 	}
813 
814 	return NULL;
815 }
816 
817 
818 /*
819  * This array describes the order lists are fallen back to when
820  * the free lists for the desirable migrate type are depleted
821  */
822 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
823 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
824 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
825 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
826 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
827 };
828 
829 /*
830  * Move the free pages in a range to the free lists of the requested type.
831  * Note that start_page and end_pages are not aligned on a pageblock
832  * boundary. If alignment is required, use move_freepages_block()
833  */
834 static int move_freepages(struct zone *zone,
835 			  struct page *start_page, struct page *end_page,
836 			  int migratetype)
837 {
838 	struct page *page;
839 	unsigned long order;
840 	int pages_moved = 0;
841 
842 #ifndef CONFIG_HOLES_IN_ZONE
843 	/*
844 	 * page_zone is not safe to call in this context when
845 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
846 	 * anyway as we check zone boundaries in move_freepages_block().
847 	 * Remove at a later date when no bug reports exist related to
848 	 * grouping pages by mobility
849 	 */
850 	BUG_ON(page_zone(start_page) != page_zone(end_page));
851 #endif
852 
853 	for (page = start_page; page <= end_page;) {
854 		/* Make sure we are not inadvertently changing nodes */
855 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
856 
857 		if (!pfn_valid_within(page_to_pfn(page))) {
858 			page++;
859 			continue;
860 		}
861 
862 		if (!PageBuddy(page)) {
863 			page++;
864 			continue;
865 		}
866 
867 		order = page_order(page);
868 		list_del(&page->lru);
869 		list_add(&page->lru,
870 			&zone->free_area[order].free_list[migratetype]);
871 		page += 1 << order;
872 		pages_moved += 1 << order;
873 	}
874 
875 	return pages_moved;
876 }
877 
878 static int move_freepages_block(struct zone *zone, struct page *page,
879 				int migratetype)
880 {
881 	unsigned long start_pfn, end_pfn;
882 	struct page *start_page, *end_page;
883 
884 	start_pfn = page_to_pfn(page);
885 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
886 	start_page = pfn_to_page(start_pfn);
887 	end_page = start_page + pageblock_nr_pages - 1;
888 	end_pfn = start_pfn + pageblock_nr_pages - 1;
889 
890 	/* Do not cross zone boundaries */
891 	if (start_pfn < zone->zone_start_pfn)
892 		start_page = page;
893 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
894 		return 0;
895 
896 	return move_freepages(zone, start_page, end_page, migratetype);
897 }
898 
899 static void change_pageblock_range(struct page *pageblock_page,
900 					int start_order, int migratetype)
901 {
902 	int nr_pageblocks = 1 << (start_order - pageblock_order);
903 
904 	while (nr_pageblocks--) {
905 		set_pageblock_migratetype(pageblock_page, migratetype);
906 		pageblock_page += pageblock_nr_pages;
907 	}
908 }
909 
910 /* Remove an element from the buddy allocator from the fallback list */
911 static inline struct page *
912 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
913 {
914 	struct free_area * area;
915 	int current_order;
916 	struct page *page;
917 	int migratetype, i;
918 
919 	/* Find the largest possible block of pages in the other list */
920 	for (current_order = MAX_ORDER-1; current_order >= order;
921 						--current_order) {
922 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
923 			migratetype = fallbacks[start_migratetype][i];
924 
925 			/* MIGRATE_RESERVE handled later if necessary */
926 			if (migratetype == MIGRATE_RESERVE)
927 				continue;
928 
929 			area = &(zone->free_area[current_order]);
930 			if (list_empty(&area->free_list[migratetype]))
931 				continue;
932 
933 			page = list_entry(area->free_list[migratetype].next,
934 					struct page, lru);
935 			area->nr_free--;
936 
937 			/*
938 			 * If breaking a large block of pages, move all free
939 			 * pages to the preferred allocation list. If falling
940 			 * back for a reclaimable kernel allocation, be more
941 			 * agressive about taking ownership of free pages
942 			 */
943 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
944 					start_migratetype == MIGRATE_RECLAIMABLE ||
945 					page_group_by_mobility_disabled) {
946 				unsigned long pages;
947 				pages = move_freepages_block(zone, page,
948 								start_migratetype);
949 
950 				/* Claim the whole block if over half of it is free */
951 				if (pages >= (1 << (pageblock_order-1)) ||
952 						page_group_by_mobility_disabled)
953 					set_pageblock_migratetype(page,
954 								start_migratetype);
955 
956 				migratetype = start_migratetype;
957 			}
958 
959 			/* Remove the page from the freelists */
960 			list_del(&page->lru);
961 			rmv_page_order(page);
962 
963 			/* Take ownership for orders >= pageblock_order */
964 			if (current_order >= pageblock_order)
965 				change_pageblock_range(page, current_order,
966 							start_migratetype);
967 
968 			expand(zone, page, order, current_order, area, migratetype);
969 
970 			trace_mm_page_alloc_extfrag(page, order, current_order,
971 				start_migratetype, migratetype);
972 
973 			return page;
974 		}
975 	}
976 
977 	return NULL;
978 }
979 
980 /*
981  * Do the hard work of removing an element from the buddy allocator.
982  * Call me with the zone->lock already held.
983  */
984 static struct page *__rmqueue(struct zone *zone, unsigned int order,
985 						int migratetype)
986 {
987 	struct page *page;
988 
989 retry_reserve:
990 	page = __rmqueue_smallest(zone, order, migratetype);
991 
992 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
993 		page = __rmqueue_fallback(zone, order, migratetype);
994 
995 		/*
996 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
997 		 * is used because __rmqueue_smallest is an inline function
998 		 * and we want just one call site
999 		 */
1000 		if (!page) {
1001 			migratetype = MIGRATE_RESERVE;
1002 			goto retry_reserve;
1003 		}
1004 	}
1005 
1006 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1007 	return page;
1008 }
1009 
1010 /*
1011  * Obtain a specified number of elements from the buddy allocator, all under
1012  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1013  * Returns the number of new pages which were placed at *list.
1014  */
1015 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1016 			unsigned long count, struct list_head *list,
1017 			int migratetype, int cold)
1018 {
1019 	int i;
1020 
1021 	spin_lock(&zone->lock);
1022 	for (i = 0; i < count; ++i) {
1023 		struct page *page = __rmqueue(zone, order, migratetype);
1024 		if (unlikely(page == NULL))
1025 			break;
1026 
1027 		/*
1028 		 * Split buddy pages returned by expand() are received here
1029 		 * in physical page order. The page is added to the callers and
1030 		 * list and the list head then moves forward. From the callers
1031 		 * perspective, the linked list is ordered by page number in
1032 		 * some conditions. This is useful for IO devices that can
1033 		 * merge IO requests if the physical pages are ordered
1034 		 * properly.
1035 		 */
1036 		if (likely(cold == 0))
1037 			list_add(&page->lru, list);
1038 		else
1039 			list_add_tail(&page->lru, list);
1040 		set_page_private(page, migratetype);
1041 		list = &page->lru;
1042 	}
1043 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1044 	spin_unlock(&zone->lock);
1045 	return i;
1046 }
1047 
1048 #ifdef CONFIG_NUMA
1049 /*
1050  * Called from the vmstat counter updater to drain pagesets of this
1051  * currently executing processor on remote nodes after they have
1052  * expired.
1053  *
1054  * Note that this function must be called with the thread pinned to
1055  * a single processor.
1056  */
1057 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1058 {
1059 	unsigned long flags;
1060 	int to_drain;
1061 
1062 	local_irq_save(flags);
1063 	if (pcp->count >= pcp->batch)
1064 		to_drain = pcp->batch;
1065 	else
1066 		to_drain = pcp->count;
1067 	free_pcppages_bulk(zone, to_drain, pcp);
1068 	pcp->count -= to_drain;
1069 	local_irq_restore(flags);
1070 }
1071 #endif
1072 
1073 /*
1074  * Drain pages of the indicated processor.
1075  *
1076  * The processor must either be the current processor and the
1077  * thread pinned to the current processor or a processor that
1078  * is not online.
1079  */
1080 static void drain_pages(unsigned int cpu)
1081 {
1082 	unsigned long flags;
1083 	struct zone *zone;
1084 
1085 	for_each_populated_zone(zone) {
1086 		struct per_cpu_pageset *pset;
1087 		struct per_cpu_pages *pcp;
1088 
1089 		local_irq_save(flags);
1090 		pset = per_cpu_ptr(zone->pageset, cpu);
1091 
1092 		pcp = &pset->pcp;
1093 		free_pcppages_bulk(zone, pcp->count, pcp);
1094 		pcp->count = 0;
1095 		local_irq_restore(flags);
1096 	}
1097 }
1098 
1099 /*
1100  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1101  */
1102 void drain_local_pages(void *arg)
1103 {
1104 	drain_pages(smp_processor_id());
1105 }
1106 
1107 /*
1108  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1109  */
1110 void drain_all_pages(void)
1111 {
1112 	on_each_cpu(drain_local_pages, NULL, 1);
1113 }
1114 
1115 #ifdef CONFIG_HIBERNATION
1116 
1117 void mark_free_pages(struct zone *zone)
1118 {
1119 	unsigned long pfn, max_zone_pfn;
1120 	unsigned long flags;
1121 	int order, t;
1122 	struct list_head *curr;
1123 
1124 	if (!zone->spanned_pages)
1125 		return;
1126 
1127 	spin_lock_irqsave(&zone->lock, flags);
1128 
1129 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1130 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1131 		if (pfn_valid(pfn)) {
1132 			struct page *page = pfn_to_page(pfn);
1133 
1134 			if (!swsusp_page_is_forbidden(page))
1135 				swsusp_unset_page_free(page);
1136 		}
1137 
1138 	for_each_migratetype_order(order, t) {
1139 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1140 			unsigned long i;
1141 
1142 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1143 			for (i = 0; i < (1UL << order); i++)
1144 				swsusp_set_page_free(pfn_to_page(pfn + i));
1145 		}
1146 	}
1147 	spin_unlock_irqrestore(&zone->lock, flags);
1148 }
1149 #endif /* CONFIG_PM */
1150 
1151 /*
1152  * Free a 0-order page
1153  * cold == 1 ? free a cold page : free a hot page
1154  */
1155 void free_hot_cold_page(struct page *page, int cold)
1156 {
1157 	struct zone *zone = page_zone(page);
1158 	struct per_cpu_pages *pcp;
1159 	unsigned long flags;
1160 	int migratetype;
1161 	int wasMlocked = __TestClearPageMlocked(page);
1162 
1163 	if (!free_pages_prepare(page, 0))
1164 		return;
1165 
1166 	migratetype = get_pageblock_migratetype(page);
1167 	set_page_private(page, migratetype);
1168 	local_irq_save(flags);
1169 	if (unlikely(wasMlocked))
1170 		free_page_mlock(page);
1171 	__count_vm_event(PGFREE);
1172 
1173 	/*
1174 	 * We only track unmovable, reclaimable and movable on pcp lists.
1175 	 * Free ISOLATE pages back to the allocator because they are being
1176 	 * offlined but treat RESERVE as movable pages so we can get those
1177 	 * areas back if necessary. Otherwise, we may have to free
1178 	 * excessively into the page allocator
1179 	 */
1180 	if (migratetype >= MIGRATE_PCPTYPES) {
1181 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1182 			free_one_page(zone, page, 0, migratetype);
1183 			goto out;
1184 		}
1185 		migratetype = MIGRATE_MOVABLE;
1186 	}
1187 
1188 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1189 	if (cold)
1190 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1191 	else
1192 		list_add(&page->lru, &pcp->lists[migratetype]);
1193 	pcp->count++;
1194 	if (pcp->count >= pcp->high) {
1195 		free_pcppages_bulk(zone, pcp->batch, pcp);
1196 		pcp->count -= pcp->batch;
1197 	}
1198 
1199 out:
1200 	local_irq_restore(flags);
1201 }
1202 
1203 /*
1204  * split_page takes a non-compound higher-order page, and splits it into
1205  * n (1<<order) sub-pages: page[0..n]
1206  * Each sub-page must be freed individually.
1207  *
1208  * Note: this is probably too low level an operation for use in drivers.
1209  * Please consult with lkml before using this in your driver.
1210  */
1211 void split_page(struct page *page, unsigned int order)
1212 {
1213 	int i;
1214 
1215 	VM_BUG_ON(PageCompound(page));
1216 	VM_BUG_ON(!page_count(page));
1217 
1218 #ifdef CONFIG_KMEMCHECK
1219 	/*
1220 	 * Split shadow pages too, because free(page[0]) would
1221 	 * otherwise free the whole shadow.
1222 	 */
1223 	if (kmemcheck_page_is_tracked(page))
1224 		split_page(virt_to_page(page[0].shadow), order);
1225 #endif
1226 
1227 	for (i = 1; i < (1 << order); i++)
1228 		set_page_refcounted(page + i);
1229 }
1230 
1231 /*
1232  * Similar to split_page except the page is already free. As this is only
1233  * being used for migration, the migratetype of the block also changes.
1234  * As this is called with interrupts disabled, the caller is responsible
1235  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1236  * are enabled.
1237  *
1238  * Note: this is probably too low level an operation for use in drivers.
1239  * Please consult with lkml before using this in your driver.
1240  */
1241 int split_free_page(struct page *page)
1242 {
1243 	unsigned int order;
1244 	unsigned long watermark;
1245 	struct zone *zone;
1246 
1247 	BUG_ON(!PageBuddy(page));
1248 
1249 	zone = page_zone(page);
1250 	order = page_order(page);
1251 
1252 	/* Obey watermarks as if the page was being allocated */
1253 	watermark = low_wmark_pages(zone) + (1 << order);
1254 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1255 		return 0;
1256 
1257 	/* Remove page from free list */
1258 	list_del(&page->lru);
1259 	zone->free_area[order].nr_free--;
1260 	rmv_page_order(page);
1261 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1262 
1263 	/* Split into individual pages */
1264 	set_page_refcounted(page);
1265 	split_page(page, order);
1266 
1267 	if (order >= pageblock_order - 1) {
1268 		struct page *endpage = page + (1 << order) - 1;
1269 		for (; page < endpage; page += pageblock_nr_pages)
1270 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1271 	}
1272 
1273 	return 1 << order;
1274 }
1275 
1276 /*
1277  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1278  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1279  * or two.
1280  */
1281 static inline
1282 struct page *buffered_rmqueue(struct zone *preferred_zone,
1283 			struct zone *zone, int order, gfp_t gfp_flags,
1284 			int migratetype)
1285 {
1286 	unsigned long flags;
1287 	struct page *page;
1288 	int cold = !!(gfp_flags & __GFP_COLD);
1289 
1290 again:
1291 	if (likely(order == 0)) {
1292 		struct per_cpu_pages *pcp;
1293 		struct list_head *list;
1294 
1295 		local_irq_save(flags);
1296 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1297 		list = &pcp->lists[migratetype];
1298 		if (list_empty(list)) {
1299 			pcp->count += rmqueue_bulk(zone, 0,
1300 					pcp->batch, list,
1301 					migratetype, cold);
1302 			if (unlikely(list_empty(list)))
1303 				goto failed;
1304 		}
1305 
1306 		if (cold)
1307 			page = list_entry(list->prev, struct page, lru);
1308 		else
1309 			page = list_entry(list->next, struct page, lru);
1310 
1311 		list_del(&page->lru);
1312 		pcp->count--;
1313 	} else {
1314 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1315 			/*
1316 			 * __GFP_NOFAIL is not to be used in new code.
1317 			 *
1318 			 * All __GFP_NOFAIL callers should be fixed so that they
1319 			 * properly detect and handle allocation failures.
1320 			 *
1321 			 * We most definitely don't want callers attempting to
1322 			 * allocate greater than order-1 page units with
1323 			 * __GFP_NOFAIL.
1324 			 */
1325 			WARN_ON_ONCE(order > 1);
1326 		}
1327 		spin_lock_irqsave(&zone->lock, flags);
1328 		page = __rmqueue(zone, order, migratetype);
1329 		spin_unlock(&zone->lock);
1330 		if (!page)
1331 			goto failed;
1332 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1333 	}
1334 
1335 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1336 	zone_statistics(preferred_zone, zone);
1337 	local_irq_restore(flags);
1338 
1339 	VM_BUG_ON(bad_range(zone, page));
1340 	if (prep_new_page(page, order, gfp_flags))
1341 		goto again;
1342 	return page;
1343 
1344 failed:
1345 	local_irq_restore(flags);
1346 	return NULL;
1347 }
1348 
1349 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1350 #define ALLOC_WMARK_MIN		WMARK_MIN
1351 #define ALLOC_WMARK_LOW		WMARK_LOW
1352 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1353 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1354 
1355 /* Mask to get the watermark bits */
1356 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1357 
1358 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1359 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1360 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1361 
1362 #ifdef CONFIG_FAIL_PAGE_ALLOC
1363 
1364 static struct fail_page_alloc_attr {
1365 	struct fault_attr attr;
1366 
1367 	u32 ignore_gfp_highmem;
1368 	u32 ignore_gfp_wait;
1369 	u32 min_order;
1370 
1371 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1372 
1373 	struct dentry *ignore_gfp_highmem_file;
1374 	struct dentry *ignore_gfp_wait_file;
1375 	struct dentry *min_order_file;
1376 
1377 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1378 
1379 } fail_page_alloc = {
1380 	.attr = FAULT_ATTR_INITIALIZER,
1381 	.ignore_gfp_wait = 1,
1382 	.ignore_gfp_highmem = 1,
1383 	.min_order = 1,
1384 };
1385 
1386 static int __init setup_fail_page_alloc(char *str)
1387 {
1388 	return setup_fault_attr(&fail_page_alloc.attr, str);
1389 }
1390 __setup("fail_page_alloc=", setup_fail_page_alloc);
1391 
1392 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1393 {
1394 	if (order < fail_page_alloc.min_order)
1395 		return 0;
1396 	if (gfp_mask & __GFP_NOFAIL)
1397 		return 0;
1398 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1399 		return 0;
1400 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1401 		return 0;
1402 
1403 	return should_fail(&fail_page_alloc.attr, 1 << order);
1404 }
1405 
1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407 
1408 static int __init fail_page_alloc_debugfs(void)
1409 {
1410 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1411 	struct dentry *dir;
1412 	int err;
1413 
1414 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1415 				       "fail_page_alloc");
1416 	if (err)
1417 		return err;
1418 	dir = fail_page_alloc.attr.dentries.dir;
1419 
1420 	fail_page_alloc.ignore_gfp_wait_file =
1421 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1422 				      &fail_page_alloc.ignore_gfp_wait);
1423 
1424 	fail_page_alloc.ignore_gfp_highmem_file =
1425 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1426 				      &fail_page_alloc.ignore_gfp_highmem);
1427 	fail_page_alloc.min_order_file =
1428 		debugfs_create_u32("min-order", mode, dir,
1429 				   &fail_page_alloc.min_order);
1430 
1431 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1432             !fail_page_alloc.ignore_gfp_highmem_file ||
1433             !fail_page_alloc.min_order_file) {
1434 		err = -ENOMEM;
1435 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1436 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1437 		debugfs_remove(fail_page_alloc.min_order_file);
1438 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1439 	}
1440 
1441 	return err;
1442 }
1443 
1444 late_initcall(fail_page_alloc_debugfs);
1445 
1446 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1447 
1448 #else /* CONFIG_FAIL_PAGE_ALLOC */
1449 
1450 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1451 {
1452 	return 0;
1453 }
1454 
1455 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1456 
1457 /*
1458  * Return 1 if free pages are above 'mark'. This takes into account the order
1459  * of the allocation.
1460  */
1461 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1462 		      int classzone_idx, int alloc_flags)
1463 {
1464 	/* free_pages my go negative - that's OK */
1465 	long min = mark;
1466 	long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1467 	int o;
1468 
1469 	if (alloc_flags & ALLOC_HIGH)
1470 		min -= min / 2;
1471 	if (alloc_flags & ALLOC_HARDER)
1472 		min -= min / 4;
1473 
1474 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1475 		return 0;
1476 	for (o = 0; o < order; o++) {
1477 		/* At the next order, this order's pages become unavailable */
1478 		free_pages -= z->free_area[o].nr_free << o;
1479 
1480 		/* Require fewer higher order pages to be free */
1481 		min >>= 1;
1482 
1483 		if (free_pages <= min)
1484 			return 0;
1485 	}
1486 	return 1;
1487 }
1488 
1489 #ifdef CONFIG_NUMA
1490 /*
1491  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1492  * skip over zones that are not allowed by the cpuset, or that have
1493  * been recently (in last second) found to be nearly full.  See further
1494  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1495  * that have to skip over a lot of full or unallowed zones.
1496  *
1497  * If the zonelist cache is present in the passed in zonelist, then
1498  * returns a pointer to the allowed node mask (either the current
1499  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1500  *
1501  * If the zonelist cache is not available for this zonelist, does
1502  * nothing and returns NULL.
1503  *
1504  * If the fullzones BITMAP in the zonelist cache is stale (more than
1505  * a second since last zap'd) then we zap it out (clear its bits.)
1506  *
1507  * We hold off even calling zlc_setup, until after we've checked the
1508  * first zone in the zonelist, on the theory that most allocations will
1509  * be satisfied from that first zone, so best to examine that zone as
1510  * quickly as we can.
1511  */
1512 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1513 {
1514 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1515 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1516 
1517 	zlc = zonelist->zlcache_ptr;
1518 	if (!zlc)
1519 		return NULL;
1520 
1521 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1522 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1523 		zlc->last_full_zap = jiffies;
1524 	}
1525 
1526 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1527 					&cpuset_current_mems_allowed :
1528 					&node_states[N_HIGH_MEMORY];
1529 	return allowednodes;
1530 }
1531 
1532 /*
1533  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1534  * if it is worth looking at further for free memory:
1535  *  1) Check that the zone isn't thought to be full (doesn't have its
1536  *     bit set in the zonelist_cache fullzones BITMAP).
1537  *  2) Check that the zones node (obtained from the zonelist_cache
1538  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1539  * Return true (non-zero) if zone is worth looking at further, or
1540  * else return false (zero) if it is not.
1541  *
1542  * This check -ignores- the distinction between various watermarks,
1543  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1544  * found to be full for any variation of these watermarks, it will
1545  * be considered full for up to one second by all requests, unless
1546  * we are so low on memory on all allowed nodes that we are forced
1547  * into the second scan of the zonelist.
1548  *
1549  * In the second scan we ignore this zonelist cache and exactly
1550  * apply the watermarks to all zones, even it is slower to do so.
1551  * We are low on memory in the second scan, and should leave no stone
1552  * unturned looking for a free page.
1553  */
1554 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1555 						nodemask_t *allowednodes)
1556 {
1557 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1558 	int i;				/* index of *z in zonelist zones */
1559 	int n;				/* node that zone *z is on */
1560 
1561 	zlc = zonelist->zlcache_ptr;
1562 	if (!zlc)
1563 		return 1;
1564 
1565 	i = z - zonelist->_zonerefs;
1566 	n = zlc->z_to_n[i];
1567 
1568 	/* This zone is worth trying if it is allowed but not full */
1569 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1570 }
1571 
1572 /*
1573  * Given 'z' scanning a zonelist, set the corresponding bit in
1574  * zlc->fullzones, so that subsequent attempts to allocate a page
1575  * from that zone don't waste time re-examining it.
1576  */
1577 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1578 {
1579 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1580 	int i;				/* index of *z in zonelist zones */
1581 
1582 	zlc = zonelist->zlcache_ptr;
1583 	if (!zlc)
1584 		return;
1585 
1586 	i = z - zonelist->_zonerefs;
1587 
1588 	set_bit(i, zlc->fullzones);
1589 }
1590 
1591 #else	/* CONFIG_NUMA */
1592 
1593 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1594 {
1595 	return NULL;
1596 }
1597 
1598 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1599 				nodemask_t *allowednodes)
1600 {
1601 	return 1;
1602 }
1603 
1604 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1605 {
1606 }
1607 #endif	/* CONFIG_NUMA */
1608 
1609 /*
1610  * get_page_from_freelist goes through the zonelist trying to allocate
1611  * a page.
1612  */
1613 static struct page *
1614 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1615 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1616 		struct zone *preferred_zone, int migratetype)
1617 {
1618 	struct zoneref *z;
1619 	struct page *page = NULL;
1620 	int classzone_idx;
1621 	struct zone *zone;
1622 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1623 	int zlc_active = 0;		/* set if using zonelist_cache */
1624 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1625 
1626 	classzone_idx = zone_idx(preferred_zone);
1627 zonelist_scan:
1628 	/*
1629 	 * Scan zonelist, looking for a zone with enough free.
1630 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1631 	 */
1632 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1633 						high_zoneidx, nodemask) {
1634 		if (NUMA_BUILD && zlc_active &&
1635 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1636 				continue;
1637 		if ((alloc_flags & ALLOC_CPUSET) &&
1638 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1639 				goto try_next_zone;
1640 
1641 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1642 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1643 			unsigned long mark;
1644 			int ret;
1645 
1646 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1647 			if (zone_watermark_ok(zone, order, mark,
1648 				    classzone_idx, alloc_flags))
1649 				goto try_this_zone;
1650 
1651 			if (zone_reclaim_mode == 0)
1652 				goto this_zone_full;
1653 
1654 			ret = zone_reclaim(zone, gfp_mask, order);
1655 			switch (ret) {
1656 			case ZONE_RECLAIM_NOSCAN:
1657 				/* did not scan */
1658 				goto try_next_zone;
1659 			case ZONE_RECLAIM_FULL:
1660 				/* scanned but unreclaimable */
1661 				goto this_zone_full;
1662 			default:
1663 				/* did we reclaim enough */
1664 				if (!zone_watermark_ok(zone, order, mark,
1665 						classzone_idx, alloc_flags))
1666 					goto this_zone_full;
1667 			}
1668 		}
1669 
1670 try_this_zone:
1671 		page = buffered_rmqueue(preferred_zone, zone, order,
1672 						gfp_mask, migratetype);
1673 		if (page)
1674 			break;
1675 this_zone_full:
1676 		if (NUMA_BUILD)
1677 			zlc_mark_zone_full(zonelist, z);
1678 try_next_zone:
1679 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1680 			/*
1681 			 * we do zlc_setup after the first zone is tried but only
1682 			 * if there are multiple nodes make it worthwhile
1683 			 */
1684 			allowednodes = zlc_setup(zonelist, alloc_flags);
1685 			zlc_active = 1;
1686 			did_zlc_setup = 1;
1687 		}
1688 	}
1689 
1690 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1691 		/* Disable zlc cache for second zonelist scan */
1692 		zlc_active = 0;
1693 		goto zonelist_scan;
1694 	}
1695 	return page;
1696 }
1697 
1698 static inline int
1699 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1700 				unsigned long pages_reclaimed)
1701 {
1702 	/* Do not loop if specifically requested */
1703 	if (gfp_mask & __GFP_NORETRY)
1704 		return 0;
1705 
1706 	/*
1707 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1708 	 * means __GFP_NOFAIL, but that may not be true in other
1709 	 * implementations.
1710 	 */
1711 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1712 		return 1;
1713 
1714 	/*
1715 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1716 	 * specified, then we retry until we no longer reclaim any pages
1717 	 * (above), or we've reclaimed an order of pages at least as
1718 	 * large as the allocation's order. In both cases, if the
1719 	 * allocation still fails, we stop retrying.
1720 	 */
1721 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1722 		return 1;
1723 
1724 	/*
1725 	 * Don't let big-order allocations loop unless the caller
1726 	 * explicitly requests that.
1727 	 */
1728 	if (gfp_mask & __GFP_NOFAIL)
1729 		return 1;
1730 
1731 	return 0;
1732 }
1733 
1734 static inline struct page *
1735 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1736 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1737 	nodemask_t *nodemask, struct zone *preferred_zone,
1738 	int migratetype)
1739 {
1740 	struct page *page;
1741 
1742 	/* Acquire the OOM killer lock for the zones in zonelist */
1743 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1744 		schedule_timeout_uninterruptible(1);
1745 		return NULL;
1746 	}
1747 
1748 	/*
1749 	 * Go through the zonelist yet one more time, keep very high watermark
1750 	 * here, this is only to catch a parallel oom killing, we must fail if
1751 	 * we're still under heavy pressure.
1752 	 */
1753 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1754 		order, zonelist, high_zoneidx,
1755 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1756 		preferred_zone, migratetype);
1757 	if (page)
1758 		goto out;
1759 
1760 	if (!(gfp_mask & __GFP_NOFAIL)) {
1761 		/* The OOM killer will not help higher order allocs */
1762 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1763 			goto out;
1764 		/* The OOM killer does not needlessly kill tasks for lowmem */
1765 		if (high_zoneidx < ZONE_NORMAL)
1766 			goto out;
1767 		/*
1768 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1769 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1770 		 * The caller should handle page allocation failure by itself if
1771 		 * it specifies __GFP_THISNODE.
1772 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1773 		 */
1774 		if (gfp_mask & __GFP_THISNODE)
1775 			goto out;
1776 	}
1777 	/* Exhausted what can be done so it's blamo time */
1778 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1779 
1780 out:
1781 	clear_zonelist_oom(zonelist, gfp_mask);
1782 	return page;
1783 }
1784 
1785 #ifdef CONFIG_COMPACTION
1786 /* Try memory compaction for high-order allocations before reclaim */
1787 static struct page *
1788 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1789 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1790 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1791 	int migratetype, unsigned long *did_some_progress)
1792 {
1793 	struct page *page;
1794 
1795 	if (!order || compaction_deferred(preferred_zone))
1796 		return NULL;
1797 
1798 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1799 								nodemask);
1800 	if (*did_some_progress != COMPACT_SKIPPED) {
1801 
1802 		/* Page migration frees to the PCP lists but we want merging */
1803 		drain_pages(get_cpu());
1804 		put_cpu();
1805 
1806 		page = get_page_from_freelist(gfp_mask, nodemask,
1807 				order, zonelist, high_zoneidx,
1808 				alloc_flags, preferred_zone,
1809 				migratetype);
1810 		if (page) {
1811 			preferred_zone->compact_considered = 0;
1812 			preferred_zone->compact_defer_shift = 0;
1813 			count_vm_event(COMPACTSUCCESS);
1814 			return page;
1815 		}
1816 
1817 		/*
1818 		 * It's bad if compaction run occurs and fails.
1819 		 * The most likely reason is that pages exist,
1820 		 * but not enough to satisfy watermarks.
1821 		 */
1822 		count_vm_event(COMPACTFAIL);
1823 		defer_compaction(preferred_zone);
1824 
1825 		cond_resched();
1826 	}
1827 
1828 	return NULL;
1829 }
1830 #else
1831 static inline struct page *
1832 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1833 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1834 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1835 	int migratetype, unsigned long *did_some_progress)
1836 {
1837 	return NULL;
1838 }
1839 #endif /* CONFIG_COMPACTION */
1840 
1841 /* The really slow allocator path where we enter direct reclaim */
1842 static inline struct page *
1843 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1844 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1845 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1846 	int migratetype, unsigned long *did_some_progress)
1847 {
1848 	struct page *page = NULL;
1849 	struct reclaim_state reclaim_state;
1850 	struct task_struct *p = current;
1851 	bool drained = false;
1852 
1853 	cond_resched();
1854 
1855 	/* We now go into synchronous reclaim */
1856 	cpuset_memory_pressure_bump();
1857 	p->flags |= PF_MEMALLOC;
1858 	lockdep_set_current_reclaim_state(gfp_mask);
1859 	reclaim_state.reclaimed_slab = 0;
1860 	p->reclaim_state = &reclaim_state;
1861 
1862 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1863 
1864 	p->reclaim_state = NULL;
1865 	lockdep_clear_current_reclaim_state();
1866 	p->flags &= ~PF_MEMALLOC;
1867 
1868 	cond_resched();
1869 
1870 	if (unlikely(!(*did_some_progress)))
1871 		return NULL;
1872 
1873 retry:
1874 	page = get_page_from_freelist(gfp_mask, nodemask, order,
1875 					zonelist, high_zoneidx,
1876 					alloc_flags, preferred_zone,
1877 					migratetype);
1878 
1879 	/*
1880 	 * If an allocation failed after direct reclaim, it could be because
1881 	 * pages are pinned on the per-cpu lists. Drain them and try again
1882 	 */
1883 	if (!page && !drained) {
1884 		drain_all_pages();
1885 		drained = true;
1886 		goto retry;
1887 	}
1888 
1889 	return page;
1890 }
1891 
1892 /*
1893  * This is called in the allocator slow-path if the allocation request is of
1894  * sufficient urgency to ignore watermarks and take other desperate measures
1895  */
1896 static inline struct page *
1897 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1898 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1899 	nodemask_t *nodemask, struct zone *preferred_zone,
1900 	int migratetype)
1901 {
1902 	struct page *page;
1903 
1904 	do {
1905 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1906 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1907 			preferred_zone, migratetype);
1908 
1909 		if (!page && gfp_mask & __GFP_NOFAIL)
1910 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1911 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1912 
1913 	return page;
1914 }
1915 
1916 static inline
1917 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1918 						enum zone_type high_zoneidx)
1919 {
1920 	struct zoneref *z;
1921 	struct zone *zone;
1922 
1923 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1924 		wakeup_kswapd(zone, order);
1925 }
1926 
1927 static inline int
1928 gfp_to_alloc_flags(gfp_t gfp_mask)
1929 {
1930 	struct task_struct *p = current;
1931 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1932 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1933 
1934 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1935 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1936 
1937 	/*
1938 	 * The caller may dip into page reserves a bit more if the caller
1939 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1940 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1941 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1942 	 */
1943 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1944 
1945 	if (!wait) {
1946 		alloc_flags |= ALLOC_HARDER;
1947 		/*
1948 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1949 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1950 		 */
1951 		alloc_flags &= ~ALLOC_CPUSET;
1952 	} else if (unlikely(rt_task(p)) && !in_interrupt())
1953 		alloc_flags |= ALLOC_HARDER;
1954 
1955 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1956 		if (!in_interrupt() &&
1957 		    ((p->flags & PF_MEMALLOC) ||
1958 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1959 			alloc_flags |= ALLOC_NO_WATERMARKS;
1960 	}
1961 
1962 	return alloc_flags;
1963 }
1964 
1965 static inline struct page *
1966 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1967 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1968 	nodemask_t *nodemask, struct zone *preferred_zone,
1969 	int migratetype)
1970 {
1971 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1972 	struct page *page = NULL;
1973 	int alloc_flags;
1974 	unsigned long pages_reclaimed = 0;
1975 	unsigned long did_some_progress;
1976 	struct task_struct *p = current;
1977 
1978 	/*
1979 	 * In the slowpath, we sanity check order to avoid ever trying to
1980 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1981 	 * be using allocators in order of preference for an area that is
1982 	 * too large.
1983 	 */
1984 	if (order >= MAX_ORDER) {
1985 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1986 		return NULL;
1987 	}
1988 
1989 	/*
1990 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1991 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1992 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1993 	 * using a larger set of nodes after it has established that the
1994 	 * allowed per node queues are empty and that nodes are
1995 	 * over allocated.
1996 	 */
1997 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1998 		goto nopage;
1999 
2000 restart:
2001 	wake_all_kswapd(order, zonelist, high_zoneidx);
2002 
2003 	/*
2004 	 * OK, we're below the kswapd watermark and have kicked background
2005 	 * reclaim. Now things get more complex, so set up alloc_flags according
2006 	 * to how we want to proceed.
2007 	 */
2008 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2009 
2010 	/* This is the last chance, in general, before the goto nopage. */
2011 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2012 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2013 			preferred_zone, migratetype);
2014 	if (page)
2015 		goto got_pg;
2016 
2017 rebalance:
2018 	/* Allocate without watermarks if the context allows */
2019 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2020 		page = __alloc_pages_high_priority(gfp_mask, order,
2021 				zonelist, high_zoneidx, nodemask,
2022 				preferred_zone, migratetype);
2023 		if (page)
2024 			goto got_pg;
2025 	}
2026 
2027 	/* Atomic allocations - we can't balance anything */
2028 	if (!wait)
2029 		goto nopage;
2030 
2031 	/* Avoid recursion of direct reclaim */
2032 	if (p->flags & PF_MEMALLOC)
2033 		goto nopage;
2034 
2035 	/* Avoid allocations with no watermarks from looping endlessly */
2036 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2037 		goto nopage;
2038 
2039 	/* Try direct compaction */
2040 	page = __alloc_pages_direct_compact(gfp_mask, order,
2041 					zonelist, high_zoneidx,
2042 					nodemask,
2043 					alloc_flags, preferred_zone,
2044 					migratetype, &did_some_progress);
2045 	if (page)
2046 		goto got_pg;
2047 
2048 	/* Try direct reclaim and then allocating */
2049 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2050 					zonelist, high_zoneidx,
2051 					nodemask,
2052 					alloc_flags, preferred_zone,
2053 					migratetype, &did_some_progress);
2054 	if (page)
2055 		goto got_pg;
2056 
2057 	/*
2058 	 * If we failed to make any progress reclaiming, then we are
2059 	 * running out of options and have to consider going OOM
2060 	 */
2061 	if (!did_some_progress) {
2062 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2063 			if (oom_killer_disabled)
2064 				goto nopage;
2065 			page = __alloc_pages_may_oom(gfp_mask, order,
2066 					zonelist, high_zoneidx,
2067 					nodemask, preferred_zone,
2068 					migratetype);
2069 			if (page)
2070 				goto got_pg;
2071 
2072 			if (!(gfp_mask & __GFP_NOFAIL)) {
2073 				/*
2074 				 * The oom killer is not called for high-order
2075 				 * allocations that may fail, so if no progress
2076 				 * is being made, there are no other options and
2077 				 * retrying is unlikely to help.
2078 				 */
2079 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2080 					goto nopage;
2081 				/*
2082 				 * The oom killer is not called for lowmem
2083 				 * allocations to prevent needlessly killing
2084 				 * innocent tasks.
2085 				 */
2086 				if (high_zoneidx < ZONE_NORMAL)
2087 					goto nopage;
2088 			}
2089 
2090 			goto restart;
2091 		}
2092 	}
2093 
2094 	/* Check if we should retry the allocation */
2095 	pages_reclaimed += did_some_progress;
2096 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2097 		/* Wait for some write requests to complete then retry */
2098 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2099 		goto rebalance;
2100 	}
2101 
2102 nopage:
2103 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2104 		printk(KERN_WARNING "%s: page allocation failure."
2105 			" order:%d, mode:0x%x\n",
2106 			p->comm, order, gfp_mask);
2107 		dump_stack();
2108 		show_mem();
2109 	}
2110 	return page;
2111 got_pg:
2112 	if (kmemcheck_enabled)
2113 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2114 	return page;
2115 
2116 }
2117 
2118 /*
2119  * This is the 'heart' of the zoned buddy allocator.
2120  */
2121 struct page *
2122 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2123 			struct zonelist *zonelist, nodemask_t *nodemask)
2124 {
2125 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2126 	struct zone *preferred_zone;
2127 	struct page *page;
2128 	int migratetype = allocflags_to_migratetype(gfp_mask);
2129 
2130 	gfp_mask &= gfp_allowed_mask;
2131 
2132 	lockdep_trace_alloc(gfp_mask);
2133 
2134 	might_sleep_if(gfp_mask & __GFP_WAIT);
2135 
2136 	if (should_fail_alloc_page(gfp_mask, order))
2137 		return NULL;
2138 
2139 	/*
2140 	 * Check the zones suitable for the gfp_mask contain at least one
2141 	 * valid zone. It's possible to have an empty zonelist as a result
2142 	 * of GFP_THISNODE and a memoryless node
2143 	 */
2144 	if (unlikely(!zonelist->_zonerefs->zone))
2145 		return NULL;
2146 
2147 	get_mems_allowed();
2148 	/* The preferred zone is used for statistics later */
2149 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2150 	if (!preferred_zone) {
2151 		put_mems_allowed();
2152 		return NULL;
2153 	}
2154 
2155 	/* First allocation attempt */
2156 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2157 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2158 			preferred_zone, migratetype);
2159 	if (unlikely(!page))
2160 		page = __alloc_pages_slowpath(gfp_mask, order,
2161 				zonelist, high_zoneidx, nodemask,
2162 				preferred_zone, migratetype);
2163 	put_mems_allowed();
2164 
2165 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2166 	return page;
2167 }
2168 EXPORT_SYMBOL(__alloc_pages_nodemask);
2169 
2170 /*
2171  * Common helper functions.
2172  */
2173 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2174 {
2175 	struct page *page;
2176 
2177 	/*
2178 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2179 	 * a highmem page
2180 	 */
2181 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2182 
2183 	page = alloc_pages(gfp_mask, order);
2184 	if (!page)
2185 		return 0;
2186 	return (unsigned long) page_address(page);
2187 }
2188 EXPORT_SYMBOL(__get_free_pages);
2189 
2190 unsigned long get_zeroed_page(gfp_t gfp_mask)
2191 {
2192 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2193 }
2194 EXPORT_SYMBOL(get_zeroed_page);
2195 
2196 void __pagevec_free(struct pagevec *pvec)
2197 {
2198 	int i = pagevec_count(pvec);
2199 
2200 	while (--i >= 0) {
2201 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2202 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2203 	}
2204 }
2205 
2206 void __free_pages(struct page *page, unsigned int order)
2207 {
2208 	if (put_page_testzero(page)) {
2209 		if (order == 0)
2210 			free_hot_cold_page(page, 0);
2211 		else
2212 			__free_pages_ok(page, order);
2213 	}
2214 }
2215 
2216 EXPORT_SYMBOL(__free_pages);
2217 
2218 void free_pages(unsigned long addr, unsigned int order)
2219 {
2220 	if (addr != 0) {
2221 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2222 		__free_pages(virt_to_page((void *)addr), order);
2223 	}
2224 }
2225 
2226 EXPORT_SYMBOL(free_pages);
2227 
2228 /**
2229  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2230  * @size: the number of bytes to allocate
2231  * @gfp_mask: GFP flags for the allocation
2232  *
2233  * This function is similar to alloc_pages(), except that it allocates the
2234  * minimum number of pages to satisfy the request.  alloc_pages() can only
2235  * allocate memory in power-of-two pages.
2236  *
2237  * This function is also limited by MAX_ORDER.
2238  *
2239  * Memory allocated by this function must be released by free_pages_exact().
2240  */
2241 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2242 {
2243 	unsigned int order = get_order(size);
2244 	unsigned long addr;
2245 
2246 	addr = __get_free_pages(gfp_mask, order);
2247 	if (addr) {
2248 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2249 		unsigned long used = addr + PAGE_ALIGN(size);
2250 
2251 		split_page(virt_to_page((void *)addr), order);
2252 		while (used < alloc_end) {
2253 			free_page(used);
2254 			used += PAGE_SIZE;
2255 		}
2256 	}
2257 
2258 	return (void *)addr;
2259 }
2260 EXPORT_SYMBOL(alloc_pages_exact);
2261 
2262 /**
2263  * free_pages_exact - release memory allocated via alloc_pages_exact()
2264  * @virt: the value returned by alloc_pages_exact.
2265  * @size: size of allocation, same value as passed to alloc_pages_exact().
2266  *
2267  * Release the memory allocated by a previous call to alloc_pages_exact.
2268  */
2269 void free_pages_exact(void *virt, size_t size)
2270 {
2271 	unsigned long addr = (unsigned long)virt;
2272 	unsigned long end = addr + PAGE_ALIGN(size);
2273 
2274 	while (addr < end) {
2275 		free_page(addr);
2276 		addr += PAGE_SIZE;
2277 	}
2278 }
2279 EXPORT_SYMBOL(free_pages_exact);
2280 
2281 static unsigned int nr_free_zone_pages(int offset)
2282 {
2283 	struct zoneref *z;
2284 	struct zone *zone;
2285 
2286 	/* Just pick one node, since fallback list is circular */
2287 	unsigned int sum = 0;
2288 
2289 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2290 
2291 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2292 		unsigned long size = zone->present_pages;
2293 		unsigned long high = high_wmark_pages(zone);
2294 		if (size > high)
2295 			sum += size - high;
2296 	}
2297 
2298 	return sum;
2299 }
2300 
2301 /*
2302  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2303  */
2304 unsigned int nr_free_buffer_pages(void)
2305 {
2306 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2307 }
2308 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2309 
2310 /*
2311  * Amount of free RAM allocatable within all zones
2312  */
2313 unsigned int nr_free_pagecache_pages(void)
2314 {
2315 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2316 }
2317 
2318 static inline void show_node(struct zone *zone)
2319 {
2320 	if (NUMA_BUILD)
2321 		printk("Node %d ", zone_to_nid(zone));
2322 }
2323 
2324 void si_meminfo(struct sysinfo *val)
2325 {
2326 	val->totalram = totalram_pages;
2327 	val->sharedram = 0;
2328 	val->freeram = global_page_state(NR_FREE_PAGES);
2329 	val->bufferram = nr_blockdev_pages();
2330 	val->totalhigh = totalhigh_pages;
2331 	val->freehigh = nr_free_highpages();
2332 	val->mem_unit = PAGE_SIZE;
2333 }
2334 
2335 EXPORT_SYMBOL(si_meminfo);
2336 
2337 #ifdef CONFIG_NUMA
2338 void si_meminfo_node(struct sysinfo *val, int nid)
2339 {
2340 	pg_data_t *pgdat = NODE_DATA(nid);
2341 
2342 	val->totalram = pgdat->node_present_pages;
2343 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2344 #ifdef CONFIG_HIGHMEM
2345 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2346 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2347 			NR_FREE_PAGES);
2348 #else
2349 	val->totalhigh = 0;
2350 	val->freehigh = 0;
2351 #endif
2352 	val->mem_unit = PAGE_SIZE;
2353 }
2354 #endif
2355 
2356 #define K(x) ((x) << (PAGE_SHIFT-10))
2357 
2358 /*
2359  * Show free area list (used inside shift_scroll-lock stuff)
2360  * We also calculate the percentage fragmentation. We do this by counting the
2361  * memory on each free list with the exception of the first item on the list.
2362  */
2363 void show_free_areas(void)
2364 {
2365 	int cpu;
2366 	struct zone *zone;
2367 
2368 	for_each_populated_zone(zone) {
2369 		show_node(zone);
2370 		printk("%s per-cpu:\n", zone->name);
2371 
2372 		for_each_online_cpu(cpu) {
2373 			struct per_cpu_pageset *pageset;
2374 
2375 			pageset = per_cpu_ptr(zone->pageset, cpu);
2376 
2377 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2378 			       cpu, pageset->pcp.high,
2379 			       pageset->pcp.batch, pageset->pcp.count);
2380 		}
2381 	}
2382 
2383 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2384 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2385 		" unevictable:%lu"
2386 		" dirty:%lu writeback:%lu unstable:%lu\n"
2387 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2388 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2389 		global_page_state(NR_ACTIVE_ANON),
2390 		global_page_state(NR_INACTIVE_ANON),
2391 		global_page_state(NR_ISOLATED_ANON),
2392 		global_page_state(NR_ACTIVE_FILE),
2393 		global_page_state(NR_INACTIVE_FILE),
2394 		global_page_state(NR_ISOLATED_FILE),
2395 		global_page_state(NR_UNEVICTABLE),
2396 		global_page_state(NR_FILE_DIRTY),
2397 		global_page_state(NR_WRITEBACK),
2398 		global_page_state(NR_UNSTABLE_NFS),
2399 		global_page_state(NR_FREE_PAGES),
2400 		global_page_state(NR_SLAB_RECLAIMABLE),
2401 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2402 		global_page_state(NR_FILE_MAPPED),
2403 		global_page_state(NR_SHMEM),
2404 		global_page_state(NR_PAGETABLE),
2405 		global_page_state(NR_BOUNCE));
2406 
2407 	for_each_populated_zone(zone) {
2408 		int i;
2409 
2410 		show_node(zone);
2411 		printk("%s"
2412 			" free:%lukB"
2413 			" min:%lukB"
2414 			" low:%lukB"
2415 			" high:%lukB"
2416 			" active_anon:%lukB"
2417 			" inactive_anon:%lukB"
2418 			" active_file:%lukB"
2419 			" inactive_file:%lukB"
2420 			" unevictable:%lukB"
2421 			" isolated(anon):%lukB"
2422 			" isolated(file):%lukB"
2423 			" present:%lukB"
2424 			" mlocked:%lukB"
2425 			" dirty:%lukB"
2426 			" writeback:%lukB"
2427 			" mapped:%lukB"
2428 			" shmem:%lukB"
2429 			" slab_reclaimable:%lukB"
2430 			" slab_unreclaimable:%lukB"
2431 			" kernel_stack:%lukB"
2432 			" pagetables:%lukB"
2433 			" unstable:%lukB"
2434 			" bounce:%lukB"
2435 			" writeback_tmp:%lukB"
2436 			" pages_scanned:%lu"
2437 			" all_unreclaimable? %s"
2438 			"\n",
2439 			zone->name,
2440 			K(zone_nr_free_pages(zone)),
2441 			K(min_wmark_pages(zone)),
2442 			K(low_wmark_pages(zone)),
2443 			K(high_wmark_pages(zone)),
2444 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2445 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2446 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2447 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2448 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2449 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2450 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2451 			K(zone->present_pages),
2452 			K(zone_page_state(zone, NR_MLOCK)),
2453 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2454 			K(zone_page_state(zone, NR_WRITEBACK)),
2455 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2456 			K(zone_page_state(zone, NR_SHMEM)),
2457 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2458 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2459 			zone_page_state(zone, NR_KERNEL_STACK) *
2460 				THREAD_SIZE / 1024,
2461 			K(zone_page_state(zone, NR_PAGETABLE)),
2462 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2463 			K(zone_page_state(zone, NR_BOUNCE)),
2464 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2465 			zone->pages_scanned,
2466 			(zone->all_unreclaimable ? "yes" : "no")
2467 			);
2468 		printk("lowmem_reserve[]:");
2469 		for (i = 0; i < MAX_NR_ZONES; i++)
2470 			printk(" %lu", zone->lowmem_reserve[i]);
2471 		printk("\n");
2472 	}
2473 
2474 	for_each_populated_zone(zone) {
2475  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2476 
2477 		show_node(zone);
2478 		printk("%s: ", zone->name);
2479 
2480 		spin_lock_irqsave(&zone->lock, flags);
2481 		for (order = 0; order < MAX_ORDER; order++) {
2482 			nr[order] = zone->free_area[order].nr_free;
2483 			total += nr[order] << order;
2484 		}
2485 		spin_unlock_irqrestore(&zone->lock, flags);
2486 		for (order = 0; order < MAX_ORDER; order++)
2487 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2488 		printk("= %lukB\n", K(total));
2489 	}
2490 
2491 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2492 
2493 	show_swap_cache_info();
2494 }
2495 
2496 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2497 {
2498 	zoneref->zone = zone;
2499 	zoneref->zone_idx = zone_idx(zone);
2500 }
2501 
2502 /*
2503  * Builds allocation fallback zone lists.
2504  *
2505  * Add all populated zones of a node to the zonelist.
2506  */
2507 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2508 				int nr_zones, enum zone_type zone_type)
2509 {
2510 	struct zone *zone;
2511 
2512 	BUG_ON(zone_type >= MAX_NR_ZONES);
2513 	zone_type++;
2514 
2515 	do {
2516 		zone_type--;
2517 		zone = pgdat->node_zones + zone_type;
2518 		if (populated_zone(zone)) {
2519 			zoneref_set_zone(zone,
2520 				&zonelist->_zonerefs[nr_zones++]);
2521 			check_highest_zone(zone_type);
2522 		}
2523 
2524 	} while (zone_type);
2525 	return nr_zones;
2526 }
2527 
2528 
2529 /*
2530  *  zonelist_order:
2531  *  0 = automatic detection of better ordering.
2532  *  1 = order by ([node] distance, -zonetype)
2533  *  2 = order by (-zonetype, [node] distance)
2534  *
2535  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2536  *  the same zonelist. So only NUMA can configure this param.
2537  */
2538 #define ZONELIST_ORDER_DEFAULT  0
2539 #define ZONELIST_ORDER_NODE     1
2540 #define ZONELIST_ORDER_ZONE     2
2541 
2542 /* zonelist order in the kernel.
2543  * set_zonelist_order() will set this to NODE or ZONE.
2544  */
2545 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2546 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2547 
2548 
2549 #ifdef CONFIG_NUMA
2550 /* The value user specified ....changed by config */
2551 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2552 /* string for sysctl */
2553 #define NUMA_ZONELIST_ORDER_LEN	16
2554 char numa_zonelist_order[16] = "default";
2555 
2556 /*
2557  * interface for configure zonelist ordering.
2558  * command line option "numa_zonelist_order"
2559  *	= "[dD]efault	- default, automatic configuration.
2560  *	= "[nN]ode 	- order by node locality, then by zone within node
2561  *	= "[zZ]one      - order by zone, then by locality within zone
2562  */
2563 
2564 static int __parse_numa_zonelist_order(char *s)
2565 {
2566 	if (*s == 'd' || *s == 'D') {
2567 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2568 	} else if (*s == 'n' || *s == 'N') {
2569 		user_zonelist_order = ZONELIST_ORDER_NODE;
2570 	} else if (*s == 'z' || *s == 'Z') {
2571 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2572 	} else {
2573 		printk(KERN_WARNING
2574 			"Ignoring invalid numa_zonelist_order value:  "
2575 			"%s\n", s);
2576 		return -EINVAL;
2577 	}
2578 	return 0;
2579 }
2580 
2581 static __init int setup_numa_zonelist_order(char *s)
2582 {
2583 	if (s)
2584 		return __parse_numa_zonelist_order(s);
2585 	return 0;
2586 }
2587 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2588 
2589 /*
2590  * sysctl handler for numa_zonelist_order
2591  */
2592 int numa_zonelist_order_handler(ctl_table *table, int write,
2593 		void __user *buffer, size_t *length,
2594 		loff_t *ppos)
2595 {
2596 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2597 	int ret;
2598 	static DEFINE_MUTEX(zl_order_mutex);
2599 
2600 	mutex_lock(&zl_order_mutex);
2601 	if (write)
2602 		strcpy(saved_string, (char*)table->data);
2603 	ret = proc_dostring(table, write, buffer, length, ppos);
2604 	if (ret)
2605 		goto out;
2606 	if (write) {
2607 		int oldval = user_zonelist_order;
2608 		if (__parse_numa_zonelist_order((char*)table->data)) {
2609 			/*
2610 			 * bogus value.  restore saved string
2611 			 */
2612 			strncpy((char*)table->data, saved_string,
2613 				NUMA_ZONELIST_ORDER_LEN);
2614 			user_zonelist_order = oldval;
2615 		} else if (oldval != user_zonelist_order) {
2616 			mutex_lock(&zonelists_mutex);
2617 			build_all_zonelists(NULL);
2618 			mutex_unlock(&zonelists_mutex);
2619 		}
2620 	}
2621 out:
2622 	mutex_unlock(&zl_order_mutex);
2623 	return ret;
2624 }
2625 
2626 
2627 #define MAX_NODE_LOAD (nr_online_nodes)
2628 static int node_load[MAX_NUMNODES];
2629 
2630 /**
2631  * find_next_best_node - find the next node that should appear in a given node's fallback list
2632  * @node: node whose fallback list we're appending
2633  * @used_node_mask: nodemask_t of already used nodes
2634  *
2635  * We use a number of factors to determine which is the next node that should
2636  * appear on a given node's fallback list.  The node should not have appeared
2637  * already in @node's fallback list, and it should be the next closest node
2638  * according to the distance array (which contains arbitrary distance values
2639  * from each node to each node in the system), and should also prefer nodes
2640  * with no CPUs, since presumably they'll have very little allocation pressure
2641  * on them otherwise.
2642  * It returns -1 if no node is found.
2643  */
2644 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2645 {
2646 	int n, val;
2647 	int min_val = INT_MAX;
2648 	int best_node = -1;
2649 	const struct cpumask *tmp = cpumask_of_node(0);
2650 
2651 	/* Use the local node if we haven't already */
2652 	if (!node_isset(node, *used_node_mask)) {
2653 		node_set(node, *used_node_mask);
2654 		return node;
2655 	}
2656 
2657 	for_each_node_state(n, N_HIGH_MEMORY) {
2658 
2659 		/* Don't want a node to appear more than once */
2660 		if (node_isset(n, *used_node_mask))
2661 			continue;
2662 
2663 		/* Use the distance array to find the distance */
2664 		val = node_distance(node, n);
2665 
2666 		/* Penalize nodes under us ("prefer the next node") */
2667 		val += (n < node);
2668 
2669 		/* Give preference to headless and unused nodes */
2670 		tmp = cpumask_of_node(n);
2671 		if (!cpumask_empty(tmp))
2672 			val += PENALTY_FOR_NODE_WITH_CPUS;
2673 
2674 		/* Slight preference for less loaded node */
2675 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2676 		val += node_load[n];
2677 
2678 		if (val < min_val) {
2679 			min_val = val;
2680 			best_node = n;
2681 		}
2682 	}
2683 
2684 	if (best_node >= 0)
2685 		node_set(best_node, *used_node_mask);
2686 
2687 	return best_node;
2688 }
2689 
2690 
2691 /*
2692  * Build zonelists ordered by node and zones within node.
2693  * This results in maximum locality--normal zone overflows into local
2694  * DMA zone, if any--but risks exhausting DMA zone.
2695  */
2696 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2697 {
2698 	int j;
2699 	struct zonelist *zonelist;
2700 
2701 	zonelist = &pgdat->node_zonelists[0];
2702 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2703 		;
2704 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2705 							MAX_NR_ZONES - 1);
2706 	zonelist->_zonerefs[j].zone = NULL;
2707 	zonelist->_zonerefs[j].zone_idx = 0;
2708 }
2709 
2710 /*
2711  * Build gfp_thisnode zonelists
2712  */
2713 static void build_thisnode_zonelists(pg_data_t *pgdat)
2714 {
2715 	int j;
2716 	struct zonelist *zonelist;
2717 
2718 	zonelist = &pgdat->node_zonelists[1];
2719 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2720 	zonelist->_zonerefs[j].zone = NULL;
2721 	zonelist->_zonerefs[j].zone_idx = 0;
2722 }
2723 
2724 /*
2725  * Build zonelists ordered by zone and nodes within zones.
2726  * This results in conserving DMA zone[s] until all Normal memory is
2727  * exhausted, but results in overflowing to remote node while memory
2728  * may still exist in local DMA zone.
2729  */
2730 static int node_order[MAX_NUMNODES];
2731 
2732 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2733 {
2734 	int pos, j, node;
2735 	int zone_type;		/* needs to be signed */
2736 	struct zone *z;
2737 	struct zonelist *zonelist;
2738 
2739 	zonelist = &pgdat->node_zonelists[0];
2740 	pos = 0;
2741 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2742 		for (j = 0; j < nr_nodes; j++) {
2743 			node = node_order[j];
2744 			z = &NODE_DATA(node)->node_zones[zone_type];
2745 			if (populated_zone(z)) {
2746 				zoneref_set_zone(z,
2747 					&zonelist->_zonerefs[pos++]);
2748 				check_highest_zone(zone_type);
2749 			}
2750 		}
2751 	}
2752 	zonelist->_zonerefs[pos].zone = NULL;
2753 	zonelist->_zonerefs[pos].zone_idx = 0;
2754 }
2755 
2756 static int default_zonelist_order(void)
2757 {
2758 	int nid, zone_type;
2759 	unsigned long low_kmem_size,total_size;
2760 	struct zone *z;
2761 	int average_size;
2762 	/*
2763          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2764 	 * If they are really small and used heavily, the system can fall
2765 	 * into OOM very easily.
2766 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2767 	 */
2768 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2769 	low_kmem_size = 0;
2770 	total_size = 0;
2771 	for_each_online_node(nid) {
2772 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2773 			z = &NODE_DATA(nid)->node_zones[zone_type];
2774 			if (populated_zone(z)) {
2775 				if (zone_type < ZONE_NORMAL)
2776 					low_kmem_size += z->present_pages;
2777 				total_size += z->present_pages;
2778 			} else if (zone_type == ZONE_NORMAL) {
2779 				/*
2780 				 * If any node has only lowmem, then node order
2781 				 * is preferred to allow kernel allocations
2782 				 * locally; otherwise, they can easily infringe
2783 				 * on other nodes when there is an abundance of
2784 				 * lowmem available to allocate from.
2785 				 */
2786 				return ZONELIST_ORDER_NODE;
2787 			}
2788 		}
2789 	}
2790 	if (!low_kmem_size ||  /* there are no DMA area. */
2791 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2792 		return ZONELIST_ORDER_NODE;
2793 	/*
2794 	 * look into each node's config.
2795   	 * If there is a node whose DMA/DMA32 memory is very big area on
2796  	 * local memory, NODE_ORDER may be suitable.
2797          */
2798 	average_size = total_size /
2799 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2800 	for_each_online_node(nid) {
2801 		low_kmem_size = 0;
2802 		total_size = 0;
2803 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2804 			z = &NODE_DATA(nid)->node_zones[zone_type];
2805 			if (populated_zone(z)) {
2806 				if (zone_type < ZONE_NORMAL)
2807 					low_kmem_size += z->present_pages;
2808 				total_size += z->present_pages;
2809 			}
2810 		}
2811 		if (low_kmem_size &&
2812 		    total_size > average_size && /* ignore small node */
2813 		    low_kmem_size > total_size * 70/100)
2814 			return ZONELIST_ORDER_NODE;
2815 	}
2816 	return ZONELIST_ORDER_ZONE;
2817 }
2818 
2819 static void set_zonelist_order(void)
2820 {
2821 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2822 		current_zonelist_order = default_zonelist_order();
2823 	else
2824 		current_zonelist_order = user_zonelist_order;
2825 }
2826 
2827 static void build_zonelists(pg_data_t *pgdat)
2828 {
2829 	int j, node, load;
2830 	enum zone_type i;
2831 	nodemask_t used_mask;
2832 	int local_node, prev_node;
2833 	struct zonelist *zonelist;
2834 	int order = current_zonelist_order;
2835 
2836 	/* initialize zonelists */
2837 	for (i = 0; i < MAX_ZONELISTS; i++) {
2838 		zonelist = pgdat->node_zonelists + i;
2839 		zonelist->_zonerefs[0].zone = NULL;
2840 		zonelist->_zonerefs[0].zone_idx = 0;
2841 	}
2842 
2843 	/* NUMA-aware ordering of nodes */
2844 	local_node = pgdat->node_id;
2845 	load = nr_online_nodes;
2846 	prev_node = local_node;
2847 	nodes_clear(used_mask);
2848 
2849 	memset(node_order, 0, sizeof(node_order));
2850 	j = 0;
2851 
2852 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2853 		int distance = node_distance(local_node, node);
2854 
2855 		/*
2856 		 * If another node is sufficiently far away then it is better
2857 		 * to reclaim pages in a zone before going off node.
2858 		 */
2859 		if (distance > RECLAIM_DISTANCE)
2860 			zone_reclaim_mode = 1;
2861 
2862 		/*
2863 		 * We don't want to pressure a particular node.
2864 		 * So adding penalty to the first node in same
2865 		 * distance group to make it round-robin.
2866 		 */
2867 		if (distance != node_distance(local_node, prev_node))
2868 			node_load[node] = load;
2869 
2870 		prev_node = node;
2871 		load--;
2872 		if (order == ZONELIST_ORDER_NODE)
2873 			build_zonelists_in_node_order(pgdat, node);
2874 		else
2875 			node_order[j++] = node;	/* remember order */
2876 	}
2877 
2878 	if (order == ZONELIST_ORDER_ZONE) {
2879 		/* calculate node order -- i.e., DMA last! */
2880 		build_zonelists_in_zone_order(pgdat, j);
2881 	}
2882 
2883 	build_thisnode_zonelists(pgdat);
2884 }
2885 
2886 /* Construct the zonelist performance cache - see further mmzone.h */
2887 static void build_zonelist_cache(pg_data_t *pgdat)
2888 {
2889 	struct zonelist *zonelist;
2890 	struct zonelist_cache *zlc;
2891 	struct zoneref *z;
2892 
2893 	zonelist = &pgdat->node_zonelists[0];
2894 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2895 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2896 	for (z = zonelist->_zonerefs; z->zone; z++)
2897 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2898 }
2899 
2900 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2901 /*
2902  * Return node id of node used for "local" allocations.
2903  * I.e., first node id of first zone in arg node's generic zonelist.
2904  * Used for initializing percpu 'numa_mem', which is used primarily
2905  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2906  */
2907 int local_memory_node(int node)
2908 {
2909 	struct zone *zone;
2910 
2911 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2912 				   gfp_zone(GFP_KERNEL),
2913 				   NULL,
2914 				   &zone);
2915 	return zone->node;
2916 }
2917 #endif
2918 
2919 #else	/* CONFIG_NUMA */
2920 
2921 static void set_zonelist_order(void)
2922 {
2923 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2924 }
2925 
2926 static void build_zonelists(pg_data_t *pgdat)
2927 {
2928 	int node, local_node;
2929 	enum zone_type j;
2930 	struct zonelist *zonelist;
2931 
2932 	local_node = pgdat->node_id;
2933 
2934 	zonelist = &pgdat->node_zonelists[0];
2935 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2936 
2937 	/*
2938 	 * Now we build the zonelist so that it contains the zones
2939 	 * of all the other nodes.
2940 	 * We don't want to pressure a particular node, so when
2941 	 * building the zones for node N, we make sure that the
2942 	 * zones coming right after the local ones are those from
2943 	 * node N+1 (modulo N)
2944 	 */
2945 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2946 		if (!node_online(node))
2947 			continue;
2948 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2949 							MAX_NR_ZONES - 1);
2950 	}
2951 	for (node = 0; node < local_node; node++) {
2952 		if (!node_online(node))
2953 			continue;
2954 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2955 							MAX_NR_ZONES - 1);
2956 	}
2957 
2958 	zonelist->_zonerefs[j].zone = NULL;
2959 	zonelist->_zonerefs[j].zone_idx = 0;
2960 }
2961 
2962 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2963 static void build_zonelist_cache(pg_data_t *pgdat)
2964 {
2965 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2966 }
2967 
2968 #endif	/* CONFIG_NUMA */
2969 
2970 /*
2971  * Boot pageset table. One per cpu which is going to be used for all
2972  * zones and all nodes. The parameters will be set in such a way
2973  * that an item put on a list will immediately be handed over to
2974  * the buddy list. This is safe since pageset manipulation is done
2975  * with interrupts disabled.
2976  *
2977  * The boot_pagesets must be kept even after bootup is complete for
2978  * unused processors and/or zones. They do play a role for bootstrapping
2979  * hotplugged processors.
2980  *
2981  * zoneinfo_show() and maybe other functions do
2982  * not check if the processor is online before following the pageset pointer.
2983  * Other parts of the kernel may not check if the zone is available.
2984  */
2985 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2986 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2987 static void setup_zone_pageset(struct zone *zone);
2988 
2989 /*
2990  * Global mutex to protect against size modification of zonelists
2991  * as well as to serialize pageset setup for the new populated zone.
2992  */
2993 DEFINE_MUTEX(zonelists_mutex);
2994 
2995 /* return values int ....just for stop_machine() */
2996 static __init_refok int __build_all_zonelists(void *data)
2997 {
2998 	int nid;
2999 	int cpu;
3000 
3001 #ifdef CONFIG_NUMA
3002 	memset(node_load, 0, sizeof(node_load));
3003 #endif
3004 	for_each_online_node(nid) {
3005 		pg_data_t *pgdat = NODE_DATA(nid);
3006 
3007 		build_zonelists(pgdat);
3008 		build_zonelist_cache(pgdat);
3009 	}
3010 
3011 #ifdef CONFIG_MEMORY_HOTPLUG
3012 	/* Setup real pagesets for the new zone */
3013 	if (data) {
3014 		struct zone *zone = data;
3015 		setup_zone_pageset(zone);
3016 	}
3017 #endif
3018 
3019 	/*
3020 	 * Initialize the boot_pagesets that are going to be used
3021 	 * for bootstrapping processors. The real pagesets for
3022 	 * each zone will be allocated later when the per cpu
3023 	 * allocator is available.
3024 	 *
3025 	 * boot_pagesets are used also for bootstrapping offline
3026 	 * cpus if the system is already booted because the pagesets
3027 	 * are needed to initialize allocators on a specific cpu too.
3028 	 * F.e. the percpu allocator needs the page allocator which
3029 	 * needs the percpu allocator in order to allocate its pagesets
3030 	 * (a chicken-egg dilemma).
3031 	 */
3032 	for_each_possible_cpu(cpu) {
3033 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3034 
3035 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3036 		/*
3037 		 * We now know the "local memory node" for each node--
3038 		 * i.e., the node of the first zone in the generic zonelist.
3039 		 * Set up numa_mem percpu variable for on-line cpus.  During
3040 		 * boot, only the boot cpu should be on-line;  we'll init the
3041 		 * secondary cpus' numa_mem as they come on-line.  During
3042 		 * node/memory hotplug, we'll fixup all on-line cpus.
3043 		 */
3044 		if (cpu_online(cpu))
3045 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3046 #endif
3047 	}
3048 
3049 	return 0;
3050 }
3051 
3052 /*
3053  * Called with zonelists_mutex held always
3054  * unless system_state == SYSTEM_BOOTING.
3055  */
3056 void build_all_zonelists(void *data)
3057 {
3058 	set_zonelist_order();
3059 
3060 	if (system_state == SYSTEM_BOOTING) {
3061 		__build_all_zonelists(NULL);
3062 		mminit_verify_zonelist();
3063 		cpuset_init_current_mems_allowed();
3064 	} else {
3065 		/* we have to stop all cpus to guarantee there is no user
3066 		   of zonelist */
3067 		stop_machine(__build_all_zonelists, data, NULL);
3068 		/* cpuset refresh routine should be here */
3069 	}
3070 	vm_total_pages = nr_free_pagecache_pages();
3071 	/*
3072 	 * Disable grouping by mobility if the number of pages in the
3073 	 * system is too low to allow the mechanism to work. It would be
3074 	 * more accurate, but expensive to check per-zone. This check is
3075 	 * made on memory-hotadd so a system can start with mobility
3076 	 * disabled and enable it later
3077 	 */
3078 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3079 		page_group_by_mobility_disabled = 1;
3080 	else
3081 		page_group_by_mobility_disabled = 0;
3082 
3083 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3084 		"Total pages: %ld\n",
3085 			nr_online_nodes,
3086 			zonelist_order_name[current_zonelist_order],
3087 			page_group_by_mobility_disabled ? "off" : "on",
3088 			vm_total_pages);
3089 #ifdef CONFIG_NUMA
3090 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3091 #endif
3092 }
3093 
3094 /*
3095  * Helper functions to size the waitqueue hash table.
3096  * Essentially these want to choose hash table sizes sufficiently
3097  * large so that collisions trying to wait on pages are rare.
3098  * But in fact, the number of active page waitqueues on typical
3099  * systems is ridiculously low, less than 200. So this is even
3100  * conservative, even though it seems large.
3101  *
3102  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3103  * waitqueues, i.e. the size of the waitq table given the number of pages.
3104  */
3105 #define PAGES_PER_WAITQUEUE	256
3106 
3107 #ifndef CONFIG_MEMORY_HOTPLUG
3108 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3109 {
3110 	unsigned long size = 1;
3111 
3112 	pages /= PAGES_PER_WAITQUEUE;
3113 
3114 	while (size < pages)
3115 		size <<= 1;
3116 
3117 	/*
3118 	 * Once we have dozens or even hundreds of threads sleeping
3119 	 * on IO we've got bigger problems than wait queue collision.
3120 	 * Limit the size of the wait table to a reasonable size.
3121 	 */
3122 	size = min(size, 4096UL);
3123 
3124 	return max(size, 4UL);
3125 }
3126 #else
3127 /*
3128  * A zone's size might be changed by hot-add, so it is not possible to determine
3129  * a suitable size for its wait_table.  So we use the maximum size now.
3130  *
3131  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3132  *
3133  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3134  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3135  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3136  *
3137  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3138  * or more by the traditional way. (See above).  It equals:
3139  *
3140  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3141  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3142  *    powerpc (64K page size)             : =  (32G +16M)byte.
3143  */
3144 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3145 {
3146 	return 4096UL;
3147 }
3148 #endif
3149 
3150 /*
3151  * This is an integer logarithm so that shifts can be used later
3152  * to extract the more random high bits from the multiplicative
3153  * hash function before the remainder is taken.
3154  */
3155 static inline unsigned long wait_table_bits(unsigned long size)
3156 {
3157 	return ffz(~size);
3158 }
3159 
3160 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3161 
3162 /*
3163  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3164  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3165  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3166  * higher will lead to a bigger reserve which will get freed as contiguous
3167  * blocks as reclaim kicks in
3168  */
3169 static void setup_zone_migrate_reserve(struct zone *zone)
3170 {
3171 	unsigned long start_pfn, pfn, end_pfn;
3172 	struct page *page;
3173 	unsigned long block_migratetype;
3174 	int reserve;
3175 
3176 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3177 	start_pfn = zone->zone_start_pfn;
3178 	end_pfn = start_pfn + zone->spanned_pages;
3179 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3180 							pageblock_order;
3181 
3182 	/*
3183 	 * Reserve blocks are generally in place to help high-order atomic
3184 	 * allocations that are short-lived. A min_free_kbytes value that
3185 	 * would result in more than 2 reserve blocks for atomic allocations
3186 	 * is assumed to be in place to help anti-fragmentation for the
3187 	 * future allocation of hugepages at runtime.
3188 	 */
3189 	reserve = min(2, reserve);
3190 
3191 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3192 		if (!pfn_valid(pfn))
3193 			continue;
3194 		page = pfn_to_page(pfn);
3195 
3196 		/* Watch out for overlapping nodes */
3197 		if (page_to_nid(page) != zone_to_nid(zone))
3198 			continue;
3199 
3200 		/* Blocks with reserved pages will never free, skip them. */
3201 		if (PageReserved(page))
3202 			continue;
3203 
3204 		block_migratetype = get_pageblock_migratetype(page);
3205 
3206 		/* If this block is reserved, account for it */
3207 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3208 			reserve--;
3209 			continue;
3210 		}
3211 
3212 		/* Suitable for reserving if this block is movable */
3213 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3214 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3215 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3216 			reserve--;
3217 			continue;
3218 		}
3219 
3220 		/*
3221 		 * If the reserve is met and this is a previous reserved block,
3222 		 * take it back
3223 		 */
3224 		if (block_migratetype == MIGRATE_RESERVE) {
3225 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3226 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3227 		}
3228 	}
3229 }
3230 
3231 /*
3232  * Initially all pages are reserved - free ones are freed
3233  * up by free_all_bootmem() once the early boot process is
3234  * done. Non-atomic initialization, single-pass.
3235  */
3236 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3237 		unsigned long start_pfn, enum memmap_context context)
3238 {
3239 	struct page *page;
3240 	unsigned long end_pfn = start_pfn + size;
3241 	unsigned long pfn;
3242 	struct zone *z;
3243 
3244 	if (highest_memmap_pfn < end_pfn - 1)
3245 		highest_memmap_pfn = end_pfn - 1;
3246 
3247 	z = &NODE_DATA(nid)->node_zones[zone];
3248 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3249 		/*
3250 		 * There can be holes in boot-time mem_map[]s
3251 		 * handed to this function.  They do not
3252 		 * exist on hotplugged memory.
3253 		 */
3254 		if (context == MEMMAP_EARLY) {
3255 			if (!early_pfn_valid(pfn))
3256 				continue;
3257 			if (!early_pfn_in_nid(pfn, nid))
3258 				continue;
3259 		}
3260 		page = pfn_to_page(pfn);
3261 		set_page_links(page, zone, nid, pfn);
3262 		mminit_verify_page_links(page, zone, nid, pfn);
3263 		init_page_count(page);
3264 		reset_page_mapcount(page);
3265 		SetPageReserved(page);
3266 		/*
3267 		 * Mark the block movable so that blocks are reserved for
3268 		 * movable at startup. This will force kernel allocations
3269 		 * to reserve their blocks rather than leaking throughout
3270 		 * the address space during boot when many long-lived
3271 		 * kernel allocations are made. Later some blocks near
3272 		 * the start are marked MIGRATE_RESERVE by
3273 		 * setup_zone_migrate_reserve()
3274 		 *
3275 		 * bitmap is created for zone's valid pfn range. but memmap
3276 		 * can be created for invalid pages (for alignment)
3277 		 * check here not to call set_pageblock_migratetype() against
3278 		 * pfn out of zone.
3279 		 */
3280 		if ((z->zone_start_pfn <= pfn)
3281 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3282 		    && !(pfn & (pageblock_nr_pages - 1)))
3283 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3284 
3285 		INIT_LIST_HEAD(&page->lru);
3286 #ifdef WANT_PAGE_VIRTUAL
3287 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3288 		if (!is_highmem_idx(zone))
3289 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3290 #endif
3291 	}
3292 }
3293 
3294 static void __meminit zone_init_free_lists(struct zone *zone)
3295 {
3296 	int order, t;
3297 	for_each_migratetype_order(order, t) {
3298 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3299 		zone->free_area[order].nr_free = 0;
3300 	}
3301 }
3302 
3303 #ifndef __HAVE_ARCH_MEMMAP_INIT
3304 #define memmap_init(size, nid, zone, start_pfn) \
3305 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3306 #endif
3307 
3308 static int zone_batchsize(struct zone *zone)
3309 {
3310 #ifdef CONFIG_MMU
3311 	int batch;
3312 
3313 	/*
3314 	 * The per-cpu-pages pools are set to around 1000th of the
3315 	 * size of the zone.  But no more than 1/2 of a meg.
3316 	 *
3317 	 * OK, so we don't know how big the cache is.  So guess.
3318 	 */
3319 	batch = zone->present_pages / 1024;
3320 	if (batch * PAGE_SIZE > 512 * 1024)
3321 		batch = (512 * 1024) / PAGE_SIZE;
3322 	batch /= 4;		/* We effectively *= 4 below */
3323 	if (batch < 1)
3324 		batch = 1;
3325 
3326 	/*
3327 	 * Clamp the batch to a 2^n - 1 value. Having a power
3328 	 * of 2 value was found to be more likely to have
3329 	 * suboptimal cache aliasing properties in some cases.
3330 	 *
3331 	 * For example if 2 tasks are alternately allocating
3332 	 * batches of pages, one task can end up with a lot
3333 	 * of pages of one half of the possible page colors
3334 	 * and the other with pages of the other colors.
3335 	 */
3336 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3337 
3338 	return batch;
3339 
3340 #else
3341 	/* The deferral and batching of frees should be suppressed under NOMMU
3342 	 * conditions.
3343 	 *
3344 	 * The problem is that NOMMU needs to be able to allocate large chunks
3345 	 * of contiguous memory as there's no hardware page translation to
3346 	 * assemble apparent contiguous memory from discontiguous pages.
3347 	 *
3348 	 * Queueing large contiguous runs of pages for batching, however,
3349 	 * causes the pages to actually be freed in smaller chunks.  As there
3350 	 * can be a significant delay between the individual batches being
3351 	 * recycled, this leads to the once large chunks of space being
3352 	 * fragmented and becoming unavailable for high-order allocations.
3353 	 */
3354 	return 0;
3355 #endif
3356 }
3357 
3358 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3359 {
3360 	struct per_cpu_pages *pcp;
3361 	int migratetype;
3362 
3363 	memset(p, 0, sizeof(*p));
3364 
3365 	pcp = &p->pcp;
3366 	pcp->count = 0;
3367 	pcp->high = 6 * batch;
3368 	pcp->batch = max(1UL, 1 * batch);
3369 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3370 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3371 }
3372 
3373 /*
3374  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3375  * to the value high for the pageset p.
3376  */
3377 
3378 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3379 				unsigned long high)
3380 {
3381 	struct per_cpu_pages *pcp;
3382 
3383 	pcp = &p->pcp;
3384 	pcp->high = high;
3385 	pcp->batch = max(1UL, high/4);
3386 	if ((high/4) > (PAGE_SHIFT * 8))
3387 		pcp->batch = PAGE_SHIFT * 8;
3388 }
3389 
3390 static __meminit void setup_zone_pageset(struct zone *zone)
3391 {
3392 	int cpu;
3393 
3394 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3395 
3396 	for_each_possible_cpu(cpu) {
3397 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3398 
3399 		setup_pageset(pcp, zone_batchsize(zone));
3400 
3401 		if (percpu_pagelist_fraction)
3402 			setup_pagelist_highmark(pcp,
3403 				(zone->present_pages /
3404 					percpu_pagelist_fraction));
3405 	}
3406 }
3407 
3408 /*
3409  * Allocate per cpu pagesets and initialize them.
3410  * Before this call only boot pagesets were available.
3411  */
3412 void __init setup_per_cpu_pageset(void)
3413 {
3414 	struct zone *zone;
3415 
3416 	for_each_populated_zone(zone)
3417 		setup_zone_pageset(zone);
3418 }
3419 
3420 static noinline __init_refok
3421 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3422 {
3423 	int i;
3424 	struct pglist_data *pgdat = zone->zone_pgdat;
3425 	size_t alloc_size;
3426 
3427 	/*
3428 	 * The per-page waitqueue mechanism uses hashed waitqueues
3429 	 * per zone.
3430 	 */
3431 	zone->wait_table_hash_nr_entries =
3432 		 wait_table_hash_nr_entries(zone_size_pages);
3433 	zone->wait_table_bits =
3434 		wait_table_bits(zone->wait_table_hash_nr_entries);
3435 	alloc_size = zone->wait_table_hash_nr_entries
3436 					* sizeof(wait_queue_head_t);
3437 
3438 	if (!slab_is_available()) {
3439 		zone->wait_table = (wait_queue_head_t *)
3440 			alloc_bootmem_node(pgdat, alloc_size);
3441 	} else {
3442 		/*
3443 		 * This case means that a zone whose size was 0 gets new memory
3444 		 * via memory hot-add.
3445 		 * But it may be the case that a new node was hot-added.  In
3446 		 * this case vmalloc() will not be able to use this new node's
3447 		 * memory - this wait_table must be initialized to use this new
3448 		 * node itself as well.
3449 		 * To use this new node's memory, further consideration will be
3450 		 * necessary.
3451 		 */
3452 		zone->wait_table = vmalloc(alloc_size);
3453 	}
3454 	if (!zone->wait_table)
3455 		return -ENOMEM;
3456 
3457 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3458 		init_waitqueue_head(zone->wait_table + i);
3459 
3460 	return 0;
3461 }
3462 
3463 static int __zone_pcp_update(void *data)
3464 {
3465 	struct zone *zone = data;
3466 	int cpu;
3467 	unsigned long batch = zone_batchsize(zone), flags;
3468 
3469 	for_each_possible_cpu(cpu) {
3470 		struct per_cpu_pageset *pset;
3471 		struct per_cpu_pages *pcp;
3472 
3473 		pset = per_cpu_ptr(zone->pageset, cpu);
3474 		pcp = &pset->pcp;
3475 
3476 		local_irq_save(flags);
3477 		free_pcppages_bulk(zone, pcp->count, pcp);
3478 		setup_pageset(pset, batch);
3479 		local_irq_restore(flags);
3480 	}
3481 	return 0;
3482 }
3483 
3484 void zone_pcp_update(struct zone *zone)
3485 {
3486 	stop_machine(__zone_pcp_update, zone, NULL);
3487 }
3488 
3489 static __meminit void zone_pcp_init(struct zone *zone)
3490 {
3491 	/*
3492 	 * per cpu subsystem is not up at this point. The following code
3493 	 * relies on the ability of the linker to provide the
3494 	 * offset of a (static) per cpu variable into the per cpu area.
3495 	 */
3496 	zone->pageset = &boot_pageset;
3497 
3498 	if (zone->present_pages)
3499 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3500 			zone->name, zone->present_pages,
3501 					 zone_batchsize(zone));
3502 }
3503 
3504 __meminit int init_currently_empty_zone(struct zone *zone,
3505 					unsigned long zone_start_pfn,
3506 					unsigned long size,
3507 					enum memmap_context context)
3508 {
3509 	struct pglist_data *pgdat = zone->zone_pgdat;
3510 	int ret;
3511 	ret = zone_wait_table_init(zone, size);
3512 	if (ret)
3513 		return ret;
3514 	pgdat->nr_zones = zone_idx(zone) + 1;
3515 
3516 	zone->zone_start_pfn = zone_start_pfn;
3517 
3518 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3519 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3520 			pgdat->node_id,
3521 			(unsigned long)zone_idx(zone),
3522 			zone_start_pfn, (zone_start_pfn + size));
3523 
3524 	zone_init_free_lists(zone);
3525 
3526 	return 0;
3527 }
3528 
3529 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3530 /*
3531  * Basic iterator support. Return the first range of PFNs for a node
3532  * Note: nid == MAX_NUMNODES returns first region regardless of node
3533  */
3534 static int __meminit first_active_region_index_in_nid(int nid)
3535 {
3536 	int i;
3537 
3538 	for (i = 0; i < nr_nodemap_entries; i++)
3539 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3540 			return i;
3541 
3542 	return -1;
3543 }
3544 
3545 /*
3546  * Basic iterator support. Return the next active range of PFNs for a node
3547  * Note: nid == MAX_NUMNODES returns next region regardless of node
3548  */
3549 static int __meminit next_active_region_index_in_nid(int index, int nid)
3550 {
3551 	for (index = index + 1; index < nr_nodemap_entries; index++)
3552 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3553 			return index;
3554 
3555 	return -1;
3556 }
3557 
3558 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3559 /*
3560  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3561  * Architectures may implement their own version but if add_active_range()
3562  * was used and there are no special requirements, this is a convenient
3563  * alternative
3564  */
3565 int __meminit __early_pfn_to_nid(unsigned long pfn)
3566 {
3567 	int i;
3568 
3569 	for (i = 0; i < nr_nodemap_entries; i++) {
3570 		unsigned long start_pfn = early_node_map[i].start_pfn;
3571 		unsigned long end_pfn = early_node_map[i].end_pfn;
3572 
3573 		if (start_pfn <= pfn && pfn < end_pfn)
3574 			return early_node_map[i].nid;
3575 	}
3576 	/* This is a memory hole */
3577 	return -1;
3578 }
3579 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3580 
3581 int __meminit early_pfn_to_nid(unsigned long pfn)
3582 {
3583 	int nid;
3584 
3585 	nid = __early_pfn_to_nid(pfn);
3586 	if (nid >= 0)
3587 		return nid;
3588 	/* just returns 0 */
3589 	return 0;
3590 }
3591 
3592 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3593 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3594 {
3595 	int nid;
3596 
3597 	nid = __early_pfn_to_nid(pfn);
3598 	if (nid >= 0 && nid != node)
3599 		return false;
3600 	return true;
3601 }
3602 #endif
3603 
3604 /* Basic iterator support to walk early_node_map[] */
3605 #define for_each_active_range_index_in_nid(i, nid) \
3606 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3607 				i = next_active_region_index_in_nid(i, nid))
3608 
3609 /**
3610  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3611  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3612  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3613  *
3614  * If an architecture guarantees that all ranges registered with
3615  * add_active_ranges() contain no holes and may be freed, this
3616  * this function may be used instead of calling free_bootmem() manually.
3617  */
3618 void __init free_bootmem_with_active_regions(int nid,
3619 						unsigned long max_low_pfn)
3620 {
3621 	int i;
3622 
3623 	for_each_active_range_index_in_nid(i, nid) {
3624 		unsigned long size_pages = 0;
3625 		unsigned long end_pfn = early_node_map[i].end_pfn;
3626 
3627 		if (early_node_map[i].start_pfn >= max_low_pfn)
3628 			continue;
3629 
3630 		if (end_pfn > max_low_pfn)
3631 			end_pfn = max_low_pfn;
3632 
3633 		size_pages = end_pfn - early_node_map[i].start_pfn;
3634 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3635 				PFN_PHYS(early_node_map[i].start_pfn),
3636 				size_pages << PAGE_SHIFT);
3637 	}
3638 }
3639 
3640 #ifdef CONFIG_HAVE_MEMBLOCK
3641 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3642 					u64 goal, u64 limit)
3643 {
3644 	int i;
3645 
3646 	/* Need to go over early_node_map to find out good range for node */
3647 	for_each_active_range_index_in_nid(i, nid) {
3648 		u64 addr;
3649 		u64 ei_start, ei_last;
3650 		u64 final_start, final_end;
3651 
3652 		ei_last = early_node_map[i].end_pfn;
3653 		ei_last <<= PAGE_SHIFT;
3654 		ei_start = early_node_map[i].start_pfn;
3655 		ei_start <<= PAGE_SHIFT;
3656 
3657 		final_start = max(ei_start, goal);
3658 		final_end = min(ei_last, limit);
3659 
3660 		if (final_start >= final_end)
3661 			continue;
3662 
3663 		addr = memblock_find_in_range(final_start, final_end, size, align);
3664 
3665 		if (addr == MEMBLOCK_ERROR)
3666 			continue;
3667 
3668 		return addr;
3669 	}
3670 
3671 	return MEMBLOCK_ERROR;
3672 }
3673 #endif
3674 
3675 int __init add_from_early_node_map(struct range *range, int az,
3676 				   int nr_range, int nid)
3677 {
3678 	int i;
3679 	u64 start, end;
3680 
3681 	/* need to go over early_node_map to find out good range for node */
3682 	for_each_active_range_index_in_nid(i, nid) {
3683 		start = early_node_map[i].start_pfn;
3684 		end = early_node_map[i].end_pfn;
3685 		nr_range = add_range(range, az, nr_range, start, end);
3686 	}
3687 	return nr_range;
3688 }
3689 
3690 #ifdef CONFIG_NO_BOOTMEM
3691 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3692 					u64 goal, u64 limit)
3693 {
3694 	void *ptr;
3695 	u64 addr;
3696 
3697 	if (limit > memblock.current_limit)
3698 		limit = memblock.current_limit;
3699 
3700 	addr = find_memory_core_early(nid, size, align, goal, limit);
3701 
3702 	if (addr == MEMBLOCK_ERROR)
3703 		return NULL;
3704 
3705 	ptr = phys_to_virt(addr);
3706 	memset(ptr, 0, size);
3707 	memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3708 	/*
3709 	 * The min_count is set to 0 so that bootmem allocated blocks
3710 	 * are never reported as leaks.
3711 	 */
3712 	kmemleak_alloc(ptr, size, 0, 0);
3713 	return ptr;
3714 }
3715 #endif
3716 
3717 
3718 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3719 {
3720 	int i;
3721 	int ret;
3722 
3723 	for_each_active_range_index_in_nid(i, nid) {
3724 		ret = work_fn(early_node_map[i].start_pfn,
3725 			      early_node_map[i].end_pfn, data);
3726 		if (ret)
3727 			break;
3728 	}
3729 }
3730 /**
3731  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3732  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3733  *
3734  * If an architecture guarantees that all ranges registered with
3735  * add_active_ranges() contain no holes and may be freed, this
3736  * function may be used instead of calling memory_present() manually.
3737  */
3738 void __init sparse_memory_present_with_active_regions(int nid)
3739 {
3740 	int i;
3741 
3742 	for_each_active_range_index_in_nid(i, nid)
3743 		memory_present(early_node_map[i].nid,
3744 				early_node_map[i].start_pfn,
3745 				early_node_map[i].end_pfn);
3746 }
3747 
3748 /**
3749  * get_pfn_range_for_nid - Return the start and end page frames for a node
3750  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3751  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3752  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3753  *
3754  * It returns the start and end page frame of a node based on information
3755  * provided by an arch calling add_active_range(). If called for a node
3756  * with no available memory, a warning is printed and the start and end
3757  * PFNs will be 0.
3758  */
3759 void __meminit get_pfn_range_for_nid(unsigned int nid,
3760 			unsigned long *start_pfn, unsigned long *end_pfn)
3761 {
3762 	int i;
3763 	*start_pfn = -1UL;
3764 	*end_pfn = 0;
3765 
3766 	for_each_active_range_index_in_nid(i, nid) {
3767 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3768 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3769 	}
3770 
3771 	if (*start_pfn == -1UL)
3772 		*start_pfn = 0;
3773 }
3774 
3775 /*
3776  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3777  * assumption is made that zones within a node are ordered in monotonic
3778  * increasing memory addresses so that the "highest" populated zone is used
3779  */
3780 static void __init find_usable_zone_for_movable(void)
3781 {
3782 	int zone_index;
3783 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3784 		if (zone_index == ZONE_MOVABLE)
3785 			continue;
3786 
3787 		if (arch_zone_highest_possible_pfn[zone_index] >
3788 				arch_zone_lowest_possible_pfn[zone_index])
3789 			break;
3790 	}
3791 
3792 	VM_BUG_ON(zone_index == -1);
3793 	movable_zone = zone_index;
3794 }
3795 
3796 /*
3797  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3798  * because it is sized independant of architecture. Unlike the other zones,
3799  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3800  * in each node depending on the size of each node and how evenly kernelcore
3801  * is distributed. This helper function adjusts the zone ranges
3802  * provided by the architecture for a given node by using the end of the
3803  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3804  * zones within a node are in order of monotonic increases memory addresses
3805  */
3806 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3807 					unsigned long zone_type,
3808 					unsigned long node_start_pfn,
3809 					unsigned long node_end_pfn,
3810 					unsigned long *zone_start_pfn,
3811 					unsigned long *zone_end_pfn)
3812 {
3813 	/* Only adjust if ZONE_MOVABLE is on this node */
3814 	if (zone_movable_pfn[nid]) {
3815 		/* Size ZONE_MOVABLE */
3816 		if (zone_type == ZONE_MOVABLE) {
3817 			*zone_start_pfn = zone_movable_pfn[nid];
3818 			*zone_end_pfn = min(node_end_pfn,
3819 				arch_zone_highest_possible_pfn[movable_zone]);
3820 
3821 		/* Adjust for ZONE_MOVABLE starting within this range */
3822 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3823 				*zone_end_pfn > zone_movable_pfn[nid]) {
3824 			*zone_end_pfn = zone_movable_pfn[nid];
3825 
3826 		/* Check if this whole range is within ZONE_MOVABLE */
3827 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3828 			*zone_start_pfn = *zone_end_pfn;
3829 	}
3830 }
3831 
3832 /*
3833  * Return the number of pages a zone spans in a node, including holes
3834  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3835  */
3836 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3837 					unsigned long zone_type,
3838 					unsigned long *ignored)
3839 {
3840 	unsigned long node_start_pfn, node_end_pfn;
3841 	unsigned long zone_start_pfn, zone_end_pfn;
3842 
3843 	/* Get the start and end of the node and zone */
3844 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3845 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3846 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3847 	adjust_zone_range_for_zone_movable(nid, zone_type,
3848 				node_start_pfn, node_end_pfn,
3849 				&zone_start_pfn, &zone_end_pfn);
3850 
3851 	/* Check that this node has pages within the zone's required range */
3852 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3853 		return 0;
3854 
3855 	/* Move the zone boundaries inside the node if necessary */
3856 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3857 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3858 
3859 	/* Return the spanned pages */
3860 	return zone_end_pfn - zone_start_pfn;
3861 }
3862 
3863 /*
3864  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3865  * then all holes in the requested range will be accounted for.
3866  */
3867 unsigned long __meminit __absent_pages_in_range(int nid,
3868 				unsigned long range_start_pfn,
3869 				unsigned long range_end_pfn)
3870 {
3871 	int i = 0;
3872 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3873 	unsigned long start_pfn;
3874 
3875 	/* Find the end_pfn of the first active range of pfns in the node */
3876 	i = first_active_region_index_in_nid(nid);
3877 	if (i == -1)
3878 		return 0;
3879 
3880 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3881 
3882 	/* Account for ranges before physical memory on this node */
3883 	if (early_node_map[i].start_pfn > range_start_pfn)
3884 		hole_pages = prev_end_pfn - range_start_pfn;
3885 
3886 	/* Find all holes for the zone within the node */
3887 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3888 
3889 		/* No need to continue if prev_end_pfn is outside the zone */
3890 		if (prev_end_pfn >= range_end_pfn)
3891 			break;
3892 
3893 		/* Make sure the end of the zone is not within the hole */
3894 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3895 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3896 
3897 		/* Update the hole size cound and move on */
3898 		if (start_pfn > range_start_pfn) {
3899 			BUG_ON(prev_end_pfn > start_pfn);
3900 			hole_pages += start_pfn - prev_end_pfn;
3901 		}
3902 		prev_end_pfn = early_node_map[i].end_pfn;
3903 	}
3904 
3905 	/* Account for ranges past physical memory on this node */
3906 	if (range_end_pfn > prev_end_pfn)
3907 		hole_pages += range_end_pfn -
3908 				max(range_start_pfn, prev_end_pfn);
3909 
3910 	return hole_pages;
3911 }
3912 
3913 /**
3914  * absent_pages_in_range - Return number of page frames in holes within a range
3915  * @start_pfn: The start PFN to start searching for holes
3916  * @end_pfn: The end PFN to stop searching for holes
3917  *
3918  * It returns the number of pages frames in memory holes within a range.
3919  */
3920 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3921 							unsigned long end_pfn)
3922 {
3923 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3924 }
3925 
3926 /* Return the number of page frames in holes in a zone on a node */
3927 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3928 					unsigned long zone_type,
3929 					unsigned long *ignored)
3930 {
3931 	unsigned long node_start_pfn, node_end_pfn;
3932 	unsigned long zone_start_pfn, zone_end_pfn;
3933 
3934 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3935 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3936 							node_start_pfn);
3937 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3938 							node_end_pfn);
3939 
3940 	adjust_zone_range_for_zone_movable(nid, zone_type,
3941 			node_start_pfn, node_end_pfn,
3942 			&zone_start_pfn, &zone_end_pfn);
3943 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3944 }
3945 
3946 #else
3947 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3948 					unsigned long zone_type,
3949 					unsigned long *zones_size)
3950 {
3951 	return zones_size[zone_type];
3952 }
3953 
3954 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3955 						unsigned long zone_type,
3956 						unsigned long *zholes_size)
3957 {
3958 	if (!zholes_size)
3959 		return 0;
3960 
3961 	return zholes_size[zone_type];
3962 }
3963 
3964 #endif
3965 
3966 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3967 		unsigned long *zones_size, unsigned long *zholes_size)
3968 {
3969 	unsigned long realtotalpages, totalpages = 0;
3970 	enum zone_type i;
3971 
3972 	for (i = 0; i < MAX_NR_ZONES; i++)
3973 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3974 								zones_size);
3975 	pgdat->node_spanned_pages = totalpages;
3976 
3977 	realtotalpages = totalpages;
3978 	for (i = 0; i < MAX_NR_ZONES; i++)
3979 		realtotalpages -=
3980 			zone_absent_pages_in_node(pgdat->node_id, i,
3981 								zholes_size);
3982 	pgdat->node_present_pages = realtotalpages;
3983 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3984 							realtotalpages);
3985 }
3986 
3987 #ifndef CONFIG_SPARSEMEM
3988 /*
3989  * Calculate the size of the zone->blockflags rounded to an unsigned long
3990  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3991  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3992  * round what is now in bits to nearest long in bits, then return it in
3993  * bytes.
3994  */
3995 static unsigned long __init usemap_size(unsigned long zonesize)
3996 {
3997 	unsigned long usemapsize;
3998 
3999 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4000 	usemapsize = usemapsize >> pageblock_order;
4001 	usemapsize *= NR_PAGEBLOCK_BITS;
4002 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4003 
4004 	return usemapsize / 8;
4005 }
4006 
4007 static void __init setup_usemap(struct pglist_data *pgdat,
4008 				struct zone *zone, unsigned long zonesize)
4009 {
4010 	unsigned long usemapsize = usemap_size(zonesize);
4011 	zone->pageblock_flags = NULL;
4012 	if (usemapsize)
4013 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
4014 }
4015 #else
4016 static void inline setup_usemap(struct pglist_data *pgdat,
4017 				struct zone *zone, unsigned long zonesize) {}
4018 #endif /* CONFIG_SPARSEMEM */
4019 
4020 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4021 
4022 /* Return a sensible default order for the pageblock size. */
4023 static inline int pageblock_default_order(void)
4024 {
4025 	if (HPAGE_SHIFT > PAGE_SHIFT)
4026 		return HUGETLB_PAGE_ORDER;
4027 
4028 	return MAX_ORDER-1;
4029 }
4030 
4031 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4032 static inline void __init set_pageblock_order(unsigned int order)
4033 {
4034 	/* Check that pageblock_nr_pages has not already been setup */
4035 	if (pageblock_order)
4036 		return;
4037 
4038 	/*
4039 	 * Assume the largest contiguous order of interest is a huge page.
4040 	 * This value may be variable depending on boot parameters on IA64
4041 	 */
4042 	pageblock_order = order;
4043 }
4044 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4045 
4046 /*
4047  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4048  * and pageblock_default_order() are unused as pageblock_order is set
4049  * at compile-time. See include/linux/pageblock-flags.h for the values of
4050  * pageblock_order based on the kernel config
4051  */
4052 static inline int pageblock_default_order(unsigned int order)
4053 {
4054 	return MAX_ORDER-1;
4055 }
4056 #define set_pageblock_order(x)	do {} while (0)
4057 
4058 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4059 
4060 /*
4061  * Set up the zone data structures:
4062  *   - mark all pages reserved
4063  *   - mark all memory queues empty
4064  *   - clear the memory bitmaps
4065  */
4066 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4067 		unsigned long *zones_size, unsigned long *zholes_size)
4068 {
4069 	enum zone_type j;
4070 	int nid = pgdat->node_id;
4071 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4072 	int ret;
4073 
4074 	pgdat_resize_init(pgdat);
4075 	pgdat->nr_zones = 0;
4076 	init_waitqueue_head(&pgdat->kswapd_wait);
4077 	pgdat->kswapd_max_order = 0;
4078 	pgdat_page_cgroup_init(pgdat);
4079 
4080 	for (j = 0; j < MAX_NR_ZONES; j++) {
4081 		struct zone *zone = pgdat->node_zones + j;
4082 		unsigned long size, realsize, memmap_pages;
4083 		enum lru_list l;
4084 
4085 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4086 		realsize = size - zone_absent_pages_in_node(nid, j,
4087 								zholes_size);
4088 
4089 		/*
4090 		 * Adjust realsize so that it accounts for how much memory
4091 		 * is used by this zone for memmap. This affects the watermark
4092 		 * and per-cpu initialisations
4093 		 */
4094 		memmap_pages =
4095 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4096 		if (realsize >= memmap_pages) {
4097 			realsize -= memmap_pages;
4098 			if (memmap_pages)
4099 				printk(KERN_DEBUG
4100 				       "  %s zone: %lu pages used for memmap\n",
4101 				       zone_names[j], memmap_pages);
4102 		} else
4103 			printk(KERN_WARNING
4104 				"  %s zone: %lu pages exceeds realsize %lu\n",
4105 				zone_names[j], memmap_pages, realsize);
4106 
4107 		/* Account for reserved pages */
4108 		if (j == 0 && realsize > dma_reserve) {
4109 			realsize -= dma_reserve;
4110 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4111 					zone_names[0], dma_reserve);
4112 		}
4113 
4114 		if (!is_highmem_idx(j))
4115 			nr_kernel_pages += realsize;
4116 		nr_all_pages += realsize;
4117 
4118 		zone->spanned_pages = size;
4119 		zone->present_pages = realsize;
4120 #ifdef CONFIG_NUMA
4121 		zone->node = nid;
4122 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4123 						/ 100;
4124 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4125 #endif
4126 		zone->name = zone_names[j];
4127 		spin_lock_init(&zone->lock);
4128 		spin_lock_init(&zone->lru_lock);
4129 		zone_seqlock_init(zone);
4130 		zone->zone_pgdat = pgdat;
4131 
4132 		zone_pcp_init(zone);
4133 		for_each_lru(l) {
4134 			INIT_LIST_HEAD(&zone->lru[l].list);
4135 			zone->reclaim_stat.nr_saved_scan[l] = 0;
4136 		}
4137 		zone->reclaim_stat.recent_rotated[0] = 0;
4138 		zone->reclaim_stat.recent_rotated[1] = 0;
4139 		zone->reclaim_stat.recent_scanned[0] = 0;
4140 		zone->reclaim_stat.recent_scanned[1] = 0;
4141 		zap_zone_vm_stats(zone);
4142 		zone->flags = 0;
4143 		if (!size)
4144 			continue;
4145 
4146 		set_pageblock_order(pageblock_default_order());
4147 		setup_usemap(pgdat, zone, size);
4148 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4149 						size, MEMMAP_EARLY);
4150 		BUG_ON(ret);
4151 		memmap_init(size, nid, j, zone_start_pfn);
4152 		zone_start_pfn += size;
4153 	}
4154 }
4155 
4156 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4157 {
4158 	/* Skip empty nodes */
4159 	if (!pgdat->node_spanned_pages)
4160 		return;
4161 
4162 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4163 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4164 	if (!pgdat->node_mem_map) {
4165 		unsigned long size, start, end;
4166 		struct page *map;
4167 
4168 		/*
4169 		 * The zone's endpoints aren't required to be MAX_ORDER
4170 		 * aligned but the node_mem_map endpoints must be in order
4171 		 * for the buddy allocator to function correctly.
4172 		 */
4173 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4174 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4175 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4176 		size =  (end - start) * sizeof(struct page);
4177 		map = alloc_remap(pgdat->node_id, size);
4178 		if (!map)
4179 			map = alloc_bootmem_node(pgdat, size);
4180 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4181 	}
4182 #ifndef CONFIG_NEED_MULTIPLE_NODES
4183 	/*
4184 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4185 	 */
4186 	if (pgdat == NODE_DATA(0)) {
4187 		mem_map = NODE_DATA(0)->node_mem_map;
4188 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4189 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4190 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4191 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4192 	}
4193 #endif
4194 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4195 }
4196 
4197 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4198 		unsigned long node_start_pfn, unsigned long *zholes_size)
4199 {
4200 	pg_data_t *pgdat = NODE_DATA(nid);
4201 
4202 	pgdat->node_id = nid;
4203 	pgdat->node_start_pfn = node_start_pfn;
4204 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4205 
4206 	alloc_node_mem_map(pgdat);
4207 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4208 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4209 		nid, (unsigned long)pgdat,
4210 		(unsigned long)pgdat->node_mem_map);
4211 #endif
4212 
4213 	free_area_init_core(pgdat, zones_size, zholes_size);
4214 }
4215 
4216 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4217 
4218 #if MAX_NUMNODES > 1
4219 /*
4220  * Figure out the number of possible node ids.
4221  */
4222 static void __init setup_nr_node_ids(void)
4223 {
4224 	unsigned int node;
4225 	unsigned int highest = 0;
4226 
4227 	for_each_node_mask(node, node_possible_map)
4228 		highest = node;
4229 	nr_node_ids = highest + 1;
4230 }
4231 #else
4232 static inline void setup_nr_node_ids(void)
4233 {
4234 }
4235 #endif
4236 
4237 /**
4238  * add_active_range - Register a range of PFNs backed by physical memory
4239  * @nid: The node ID the range resides on
4240  * @start_pfn: The start PFN of the available physical memory
4241  * @end_pfn: The end PFN of the available physical memory
4242  *
4243  * These ranges are stored in an early_node_map[] and later used by
4244  * free_area_init_nodes() to calculate zone sizes and holes. If the
4245  * range spans a memory hole, it is up to the architecture to ensure
4246  * the memory is not freed by the bootmem allocator. If possible
4247  * the range being registered will be merged with existing ranges.
4248  */
4249 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4250 						unsigned long end_pfn)
4251 {
4252 	int i;
4253 
4254 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4255 			"Entering add_active_range(%d, %#lx, %#lx) "
4256 			"%d entries of %d used\n",
4257 			nid, start_pfn, end_pfn,
4258 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4259 
4260 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4261 
4262 	/* Merge with existing active regions if possible */
4263 	for (i = 0; i < nr_nodemap_entries; i++) {
4264 		if (early_node_map[i].nid != nid)
4265 			continue;
4266 
4267 		/* Skip if an existing region covers this new one */
4268 		if (start_pfn >= early_node_map[i].start_pfn &&
4269 				end_pfn <= early_node_map[i].end_pfn)
4270 			return;
4271 
4272 		/* Merge forward if suitable */
4273 		if (start_pfn <= early_node_map[i].end_pfn &&
4274 				end_pfn > early_node_map[i].end_pfn) {
4275 			early_node_map[i].end_pfn = end_pfn;
4276 			return;
4277 		}
4278 
4279 		/* Merge backward if suitable */
4280 		if (start_pfn < early_node_map[i].start_pfn &&
4281 				end_pfn >= early_node_map[i].start_pfn) {
4282 			early_node_map[i].start_pfn = start_pfn;
4283 			return;
4284 		}
4285 	}
4286 
4287 	/* Check that early_node_map is large enough */
4288 	if (i >= MAX_ACTIVE_REGIONS) {
4289 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4290 							MAX_ACTIVE_REGIONS);
4291 		return;
4292 	}
4293 
4294 	early_node_map[i].nid = nid;
4295 	early_node_map[i].start_pfn = start_pfn;
4296 	early_node_map[i].end_pfn = end_pfn;
4297 	nr_nodemap_entries = i + 1;
4298 }
4299 
4300 /**
4301  * remove_active_range - Shrink an existing registered range of PFNs
4302  * @nid: The node id the range is on that should be shrunk
4303  * @start_pfn: The new PFN of the range
4304  * @end_pfn: The new PFN of the range
4305  *
4306  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4307  * The map is kept near the end physical page range that has already been
4308  * registered. This function allows an arch to shrink an existing registered
4309  * range.
4310  */
4311 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4312 				unsigned long end_pfn)
4313 {
4314 	int i, j;
4315 	int removed = 0;
4316 
4317 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4318 			  nid, start_pfn, end_pfn);
4319 
4320 	/* Find the old active region end and shrink */
4321 	for_each_active_range_index_in_nid(i, nid) {
4322 		if (early_node_map[i].start_pfn >= start_pfn &&
4323 		    early_node_map[i].end_pfn <= end_pfn) {
4324 			/* clear it */
4325 			early_node_map[i].start_pfn = 0;
4326 			early_node_map[i].end_pfn = 0;
4327 			removed = 1;
4328 			continue;
4329 		}
4330 		if (early_node_map[i].start_pfn < start_pfn &&
4331 		    early_node_map[i].end_pfn > start_pfn) {
4332 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4333 			early_node_map[i].end_pfn = start_pfn;
4334 			if (temp_end_pfn > end_pfn)
4335 				add_active_range(nid, end_pfn, temp_end_pfn);
4336 			continue;
4337 		}
4338 		if (early_node_map[i].start_pfn >= start_pfn &&
4339 		    early_node_map[i].end_pfn > end_pfn &&
4340 		    early_node_map[i].start_pfn < end_pfn) {
4341 			early_node_map[i].start_pfn = end_pfn;
4342 			continue;
4343 		}
4344 	}
4345 
4346 	if (!removed)
4347 		return;
4348 
4349 	/* remove the blank ones */
4350 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4351 		if (early_node_map[i].nid != nid)
4352 			continue;
4353 		if (early_node_map[i].end_pfn)
4354 			continue;
4355 		/* we found it, get rid of it */
4356 		for (j = i; j < nr_nodemap_entries - 1; j++)
4357 			memcpy(&early_node_map[j], &early_node_map[j+1],
4358 				sizeof(early_node_map[j]));
4359 		j = nr_nodemap_entries - 1;
4360 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4361 		nr_nodemap_entries--;
4362 	}
4363 }
4364 
4365 /**
4366  * remove_all_active_ranges - Remove all currently registered regions
4367  *
4368  * During discovery, it may be found that a table like SRAT is invalid
4369  * and an alternative discovery method must be used. This function removes
4370  * all currently registered regions.
4371  */
4372 void __init remove_all_active_ranges(void)
4373 {
4374 	memset(early_node_map, 0, sizeof(early_node_map));
4375 	nr_nodemap_entries = 0;
4376 }
4377 
4378 /* Compare two active node_active_regions */
4379 static int __init cmp_node_active_region(const void *a, const void *b)
4380 {
4381 	struct node_active_region *arange = (struct node_active_region *)a;
4382 	struct node_active_region *brange = (struct node_active_region *)b;
4383 
4384 	/* Done this way to avoid overflows */
4385 	if (arange->start_pfn > brange->start_pfn)
4386 		return 1;
4387 	if (arange->start_pfn < brange->start_pfn)
4388 		return -1;
4389 
4390 	return 0;
4391 }
4392 
4393 /* sort the node_map by start_pfn */
4394 void __init sort_node_map(void)
4395 {
4396 	sort(early_node_map, (size_t)nr_nodemap_entries,
4397 			sizeof(struct node_active_region),
4398 			cmp_node_active_region, NULL);
4399 }
4400 
4401 /* Find the lowest pfn for a node */
4402 static unsigned long __init find_min_pfn_for_node(int nid)
4403 {
4404 	int i;
4405 	unsigned long min_pfn = ULONG_MAX;
4406 
4407 	/* Assuming a sorted map, the first range found has the starting pfn */
4408 	for_each_active_range_index_in_nid(i, nid)
4409 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4410 
4411 	if (min_pfn == ULONG_MAX) {
4412 		printk(KERN_WARNING
4413 			"Could not find start_pfn for node %d\n", nid);
4414 		return 0;
4415 	}
4416 
4417 	return min_pfn;
4418 }
4419 
4420 /**
4421  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4422  *
4423  * It returns the minimum PFN based on information provided via
4424  * add_active_range().
4425  */
4426 unsigned long __init find_min_pfn_with_active_regions(void)
4427 {
4428 	return find_min_pfn_for_node(MAX_NUMNODES);
4429 }
4430 
4431 /*
4432  * early_calculate_totalpages()
4433  * Sum pages in active regions for movable zone.
4434  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4435  */
4436 static unsigned long __init early_calculate_totalpages(void)
4437 {
4438 	int i;
4439 	unsigned long totalpages = 0;
4440 
4441 	for (i = 0; i < nr_nodemap_entries; i++) {
4442 		unsigned long pages = early_node_map[i].end_pfn -
4443 						early_node_map[i].start_pfn;
4444 		totalpages += pages;
4445 		if (pages)
4446 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4447 	}
4448   	return totalpages;
4449 }
4450 
4451 /*
4452  * Find the PFN the Movable zone begins in each node. Kernel memory
4453  * is spread evenly between nodes as long as the nodes have enough
4454  * memory. When they don't, some nodes will have more kernelcore than
4455  * others
4456  */
4457 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4458 {
4459 	int i, nid;
4460 	unsigned long usable_startpfn;
4461 	unsigned long kernelcore_node, kernelcore_remaining;
4462 	/* save the state before borrow the nodemask */
4463 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4464 	unsigned long totalpages = early_calculate_totalpages();
4465 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4466 
4467 	/*
4468 	 * If movablecore was specified, calculate what size of
4469 	 * kernelcore that corresponds so that memory usable for
4470 	 * any allocation type is evenly spread. If both kernelcore
4471 	 * and movablecore are specified, then the value of kernelcore
4472 	 * will be used for required_kernelcore if it's greater than
4473 	 * what movablecore would have allowed.
4474 	 */
4475 	if (required_movablecore) {
4476 		unsigned long corepages;
4477 
4478 		/*
4479 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4480 		 * was requested by the user
4481 		 */
4482 		required_movablecore =
4483 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4484 		corepages = totalpages - required_movablecore;
4485 
4486 		required_kernelcore = max(required_kernelcore, corepages);
4487 	}
4488 
4489 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4490 	if (!required_kernelcore)
4491 		goto out;
4492 
4493 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4494 	find_usable_zone_for_movable();
4495 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4496 
4497 restart:
4498 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4499 	kernelcore_node = required_kernelcore / usable_nodes;
4500 	for_each_node_state(nid, N_HIGH_MEMORY) {
4501 		/*
4502 		 * Recalculate kernelcore_node if the division per node
4503 		 * now exceeds what is necessary to satisfy the requested
4504 		 * amount of memory for the kernel
4505 		 */
4506 		if (required_kernelcore < kernelcore_node)
4507 			kernelcore_node = required_kernelcore / usable_nodes;
4508 
4509 		/*
4510 		 * As the map is walked, we track how much memory is usable
4511 		 * by the kernel using kernelcore_remaining. When it is
4512 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4513 		 */
4514 		kernelcore_remaining = kernelcore_node;
4515 
4516 		/* Go through each range of PFNs within this node */
4517 		for_each_active_range_index_in_nid(i, nid) {
4518 			unsigned long start_pfn, end_pfn;
4519 			unsigned long size_pages;
4520 
4521 			start_pfn = max(early_node_map[i].start_pfn,
4522 						zone_movable_pfn[nid]);
4523 			end_pfn = early_node_map[i].end_pfn;
4524 			if (start_pfn >= end_pfn)
4525 				continue;
4526 
4527 			/* Account for what is only usable for kernelcore */
4528 			if (start_pfn < usable_startpfn) {
4529 				unsigned long kernel_pages;
4530 				kernel_pages = min(end_pfn, usable_startpfn)
4531 								- start_pfn;
4532 
4533 				kernelcore_remaining -= min(kernel_pages,
4534 							kernelcore_remaining);
4535 				required_kernelcore -= min(kernel_pages,
4536 							required_kernelcore);
4537 
4538 				/* Continue if range is now fully accounted */
4539 				if (end_pfn <= usable_startpfn) {
4540 
4541 					/*
4542 					 * Push zone_movable_pfn to the end so
4543 					 * that if we have to rebalance
4544 					 * kernelcore across nodes, we will
4545 					 * not double account here
4546 					 */
4547 					zone_movable_pfn[nid] = end_pfn;
4548 					continue;
4549 				}
4550 				start_pfn = usable_startpfn;
4551 			}
4552 
4553 			/*
4554 			 * The usable PFN range for ZONE_MOVABLE is from
4555 			 * start_pfn->end_pfn. Calculate size_pages as the
4556 			 * number of pages used as kernelcore
4557 			 */
4558 			size_pages = end_pfn - start_pfn;
4559 			if (size_pages > kernelcore_remaining)
4560 				size_pages = kernelcore_remaining;
4561 			zone_movable_pfn[nid] = start_pfn + size_pages;
4562 
4563 			/*
4564 			 * Some kernelcore has been met, update counts and
4565 			 * break if the kernelcore for this node has been
4566 			 * satisified
4567 			 */
4568 			required_kernelcore -= min(required_kernelcore,
4569 								size_pages);
4570 			kernelcore_remaining -= size_pages;
4571 			if (!kernelcore_remaining)
4572 				break;
4573 		}
4574 	}
4575 
4576 	/*
4577 	 * If there is still required_kernelcore, we do another pass with one
4578 	 * less node in the count. This will push zone_movable_pfn[nid] further
4579 	 * along on the nodes that still have memory until kernelcore is
4580 	 * satisified
4581 	 */
4582 	usable_nodes--;
4583 	if (usable_nodes && required_kernelcore > usable_nodes)
4584 		goto restart;
4585 
4586 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4587 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4588 		zone_movable_pfn[nid] =
4589 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4590 
4591 out:
4592 	/* restore the node_state */
4593 	node_states[N_HIGH_MEMORY] = saved_node_state;
4594 }
4595 
4596 /* Any regular memory on that node ? */
4597 static void check_for_regular_memory(pg_data_t *pgdat)
4598 {
4599 #ifdef CONFIG_HIGHMEM
4600 	enum zone_type zone_type;
4601 
4602 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4603 		struct zone *zone = &pgdat->node_zones[zone_type];
4604 		if (zone->present_pages)
4605 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4606 	}
4607 #endif
4608 }
4609 
4610 /**
4611  * free_area_init_nodes - Initialise all pg_data_t and zone data
4612  * @max_zone_pfn: an array of max PFNs for each zone
4613  *
4614  * This will call free_area_init_node() for each active node in the system.
4615  * Using the page ranges provided by add_active_range(), the size of each
4616  * zone in each node and their holes is calculated. If the maximum PFN
4617  * between two adjacent zones match, it is assumed that the zone is empty.
4618  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4619  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4620  * starts where the previous one ended. For example, ZONE_DMA32 starts
4621  * at arch_max_dma_pfn.
4622  */
4623 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4624 {
4625 	unsigned long nid;
4626 	int i;
4627 
4628 	/* Sort early_node_map as initialisation assumes it is sorted */
4629 	sort_node_map();
4630 
4631 	/* Record where the zone boundaries are */
4632 	memset(arch_zone_lowest_possible_pfn, 0,
4633 				sizeof(arch_zone_lowest_possible_pfn));
4634 	memset(arch_zone_highest_possible_pfn, 0,
4635 				sizeof(arch_zone_highest_possible_pfn));
4636 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4637 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4638 	for (i = 1; i < MAX_NR_ZONES; i++) {
4639 		if (i == ZONE_MOVABLE)
4640 			continue;
4641 		arch_zone_lowest_possible_pfn[i] =
4642 			arch_zone_highest_possible_pfn[i-1];
4643 		arch_zone_highest_possible_pfn[i] =
4644 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4645 	}
4646 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4647 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4648 
4649 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4650 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4651 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4652 
4653 	/* Print out the zone ranges */
4654 	printk("Zone PFN ranges:\n");
4655 	for (i = 0; i < MAX_NR_ZONES; i++) {
4656 		if (i == ZONE_MOVABLE)
4657 			continue;
4658 		printk("  %-8s ", zone_names[i]);
4659 		if (arch_zone_lowest_possible_pfn[i] ==
4660 				arch_zone_highest_possible_pfn[i])
4661 			printk("empty\n");
4662 		else
4663 			printk("%0#10lx -> %0#10lx\n",
4664 				arch_zone_lowest_possible_pfn[i],
4665 				arch_zone_highest_possible_pfn[i]);
4666 	}
4667 
4668 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4669 	printk("Movable zone start PFN for each node\n");
4670 	for (i = 0; i < MAX_NUMNODES; i++) {
4671 		if (zone_movable_pfn[i])
4672 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4673 	}
4674 
4675 	/* Print out the early_node_map[] */
4676 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4677 	for (i = 0; i < nr_nodemap_entries; i++)
4678 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4679 						early_node_map[i].start_pfn,
4680 						early_node_map[i].end_pfn);
4681 
4682 	/* Initialise every node */
4683 	mminit_verify_pageflags_layout();
4684 	setup_nr_node_ids();
4685 	for_each_online_node(nid) {
4686 		pg_data_t *pgdat = NODE_DATA(nid);
4687 		free_area_init_node(nid, NULL,
4688 				find_min_pfn_for_node(nid), NULL);
4689 
4690 		/* Any memory on that node */
4691 		if (pgdat->node_present_pages)
4692 			node_set_state(nid, N_HIGH_MEMORY);
4693 		check_for_regular_memory(pgdat);
4694 	}
4695 }
4696 
4697 static int __init cmdline_parse_core(char *p, unsigned long *core)
4698 {
4699 	unsigned long long coremem;
4700 	if (!p)
4701 		return -EINVAL;
4702 
4703 	coremem = memparse(p, &p);
4704 	*core = coremem >> PAGE_SHIFT;
4705 
4706 	/* Paranoid check that UL is enough for the coremem value */
4707 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4708 
4709 	return 0;
4710 }
4711 
4712 /*
4713  * kernelcore=size sets the amount of memory for use for allocations that
4714  * cannot be reclaimed or migrated.
4715  */
4716 static int __init cmdline_parse_kernelcore(char *p)
4717 {
4718 	return cmdline_parse_core(p, &required_kernelcore);
4719 }
4720 
4721 /*
4722  * movablecore=size sets the amount of memory for use for allocations that
4723  * can be reclaimed or migrated.
4724  */
4725 static int __init cmdline_parse_movablecore(char *p)
4726 {
4727 	return cmdline_parse_core(p, &required_movablecore);
4728 }
4729 
4730 early_param("kernelcore", cmdline_parse_kernelcore);
4731 early_param("movablecore", cmdline_parse_movablecore);
4732 
4733 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4734 
4735 /**
4736  * set_dma_reserve - set the specified number of pages reserved in the first zone
4737  * @new_dma_reserve: The number of pages to mark reserved
4738  *
4739  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4740  * In the DMA zone, a significant percentage may be consumed by kernel image
4741  * and other unfreeable allocations which can skew the watermarks badly. This
4742  * function may optionally be used to account for unfreeable pages in the
4743  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4744  * smaller per-cpu batchsize.
4745  */
4746 void __init set_dma_reserve(unsigned long new_dma_reserve)
4747 {
4748 	dma_reserve = new_dma_reserve;
4749 }
4750 
4751 #ifndef CONFIG_NEED_MULTIPLE_NODES
4752 struct pglist_data __refdata contig_page_data = {
4753 #ifndef CONFIG_NO_BOOTMEM
4754  .bdata = &bootmem_node_data[0]
4755 #endif
4756  };
4757 EXPORT_SYMBOL(contig_page_data);
4758 #endif
4759 
4760 void __init free_area_init(unsigned long *zones_size)
4761 {
4762 	free_area_init_node(0, zones_size,
4763 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4764 }
4765 
4766 static int page_alloc_cpu_notify(struct notifier_block *self,
4767 				 unsigned long action, void *hcpu)
4768 {
4769 	int cpu = (unsigned long)hcpu;
4770 
4771 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4772 		drain_pages(cpu);
4773 
4774 		/*
4775 		 * Spill the event counters of the dead processor
4776 		 * into the current processors event counters.
4777 		 * This artificially elevates the count of the current
4778 		 * processor.
4779 		 */
4780 		vm_events_fold_cpu(cpu);
4781 
4782 		/*
4783 		 * Zero the differential counters of the dead processor
4784 		 * so that the vm statistics are consistent.
4785 		 *
4786 		 * This is only okay since the processor is dead and cannot
4787 		 * race with what we are doing.
4788 		 */
4789 		refresh_cpu_vm_stats(cpu);
4790 	}
4791 	return NOTIFY_OK;
4792 }
4793 
4794 void __init page_alloc_init(void)
4795 {
4796 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4797 }
4798 
4799 /*
4800  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4801  *	or min_free_kbytes changes.
4802  */
4803 static void calculate_totalreserve_pages(void)
4804 {
4805 	struct pglist_data *pgdat;
4806 	unsigned long reserve_pages = 0;
4807 	enum zone_type i, j;
4808 
4809 	for_each_online_pgdat(pgdat) {
4810 		for (i = 0; i < MAX_NR_ZONES; i++) {
4811 			struct zone *zone = pgdat->node_zones + i;
4812 			unsigned long max = 0;
4813 
4814 			/* Find valid and maximum lowmem_reserve in the zone */
4815 			for (j = i; j < MAX_NR_ZONES; j++) {
4816 				if (zone->lowmem_reserve[j] > max)
4817 					max = zone->lowmem_reserve[j];
4818 			}
4819 
4820 			/* we treat the high watermark as reserved pages. */
4821 			max += high_wmark_pages(zone);
4822 
4823 			if (max > zone->present_pages)
4824 				max = zone->present_pages;
4825 			reserve_pages += max;
4826 		}
4827 	}
4828 	totalreserve_pages = reserve_pages;
4829 }
4830 
4831 /*
4832  * setup_per_zone_lowmem_reserve - called whenever
4833  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4834  *	has a correct pages reserved value, so an adequate number of
4835  *	pages are left in the zone after a successful __alloc_pages().
4836  */
4837 static void setup_per_zone_lowmem_reserve(void)
4838 {
4839 	struct pglist_data *pgdat;
4840 	enum zone_type j, idx;
4841 
4842 	for_each_online_pgdat(pgdat) {
4843 		for (j = 0; j < MAX_NR_ZONES; j++) {
4844 			struct zone *zone = pgdat->node_zones + j;
4845 			unsigned long present_pages = zone->present_pages;
4846 
4847 			zone->lowmem_reserve[j] = 0;
4848 
4849 			idx = j;
4850 			while (idx) {
4851 				struct zone *lower_zone;
4852 
4853 				idx--;
4854 
4855 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4856 					sysctl_lowmem_reserve_ratio[idx] = 1;
4857 
4858 				lower_zone = pgdat->node_zones + idx;
4859 				lower_zone->lowmem_reserve[j] = present_pages /
4860 					sysctl_lowmem_reserve_ratio[idx];
4861 				present_pages += lower_zone->present_pages;
4862 			}
4863 		}
4864 	}
4865 
4866 	/* update totalreserve_pages */
4867 	calculate_totalreserve_pages();
4868 }
4869 
4870 /**
4871  * setup_per_zone_wmarks - called when min_free_kbytes changes
4872  * or when memory is hot-{added|removed}
4873  *
4874  * Ensures that the watermark[min,low,high] values for each zone are set
4875  * correctly with respect to min_free_kbytes.
4876  */
4877 void setup_per_zone_wmarks(void)
4878 {
4879 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4880 	unsigned long lowmem_pages = 0;
4881 	struct zone *zone;
4882 	unsigned long flags;
4883 
4884 	/* Calculate total number of !ZONE_HIGHMEM pages */
4885 	for_each_zone(zone) {
4886 		if (!is_highmem(zone))
4887 			lowmem_pages += zone->present_pages;
4888 	}
4889 
4890 	for_each_zone(zone) {
4891 		u64 tmp;
4892 
4893 		spin_lock_irqsave(&zone->lock, flags);
4894 		tmp = (u64)pages_min * zone->present_pages;
4895 		do_div(tmp, lowmem_pages);
4896 		if (is_highmem(zone)) {
4897 			/*
4898 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4899 			 * need highmem pages, so cap pages_min to a small
4900 			 * value here.
4901 			 *
4902 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4903 			 * deltas controls asynch page reclaim, and so should
4904 			 * not be capped for highmem.
4905 			 */
4906 			int min_pages;
4907 
4908 			min_pages = zone->present_pages / 1024;
4909 			if (min_pages < SWAP_CLUSTER_MAX)
4910 				min_pages = SWAP_CLUSTER_MAX;
4911 			if (min_pages > 128)
4912 				min_pages = 128;
4913 			zone->watermark[WMARK_MIN] = min_pages;
4914 		} else {
4915 			/*
4916 			 * If it's a lowmem zone, reserve a number of pages
4917 			 * proportionate to the zone's size.
4918 			 */
4919 			zone->watermark[WMARK_MIN] = tmp;
4920 		}
4921 
4922 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4923 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4924 		setup_zone_migrate_reserve(zone);
4925 		spin_unlock_irqrestore(&zone->lock, flags);
4926 	}
4927 
4928 	/* update totalreserve_pages */
4929 	calculate_totalreserve_pages();
4930 }
4931 
4932 /*
4933  * The inactive anon list should be small enough that the VM never has to
4934  * do too much work, but large enough that each inactive page has a chance
4935  * to be referenced again before it is swapped out.
4936  *
4937  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4938  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4939  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4940  * the anonymous pages are kept on the inactive list.
4941  *
4942  * total     target    max
4943  * memory    ratio     inactive anon
4944  * -------------------------------------
4945  *   10MB       1         5MB
4946  *  100MB       1        50MB
4947  *    1GB       3       250MB
4948  *   10GB      10       0.9GB
4949  *  100GB      31         3GB
4950  *    1TB     101        10GB
4951  *   10TB     320        32GB
4952  */
4953 void calculate_zone_inactive_ratio(struct zone *zone)
4954 {
4955 	unsigned int gb, ratio;
4956 
4957 	/* Zone size in gigabytes */
4958 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4959 	if (gb)
4960 		ratio = int_sqrt(10 * gb);
4961 	else
4962 		ratio = 1;
4963 
4964 	zone->inactive_ratio = ratio;
4965 }
4966 
4967 static void __init setup_per_zone_inactive_ratio(void)
4968 {
4969 	struct zone *zone;
4970 
4971 	for_each_zone(zone)
4972 		calculate_zone_inactive_ratio(zone);
4973 }
4974 
4975 /*
4976  * Initialise min_free_kbytes.
4977  *
4978  * For small machines we want it small (128k min).  For large machines
4979  * we want it large (64MB max).  But it is not linear, because network
4980  * bandwidth does not increase linearly with machine size.  We use
4981  *
4982  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4983  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4984  *
4985  * which yields
4986  *
4987  * 16MB:	512k
4988  * 32MB:	724k
4989  * 64MB:	1024k
4990  * 128MB:	1448k
4991  * 256MB:	2048k
4992  * 512MB:	2896k
4993  * 1024MB:	4096k
4994  * 2048MB:	5792k
4995  * 4096MB:	8192k
4996  * 8192MB:	11584k
4997  * 16384MB:	16384k
4998  */
4999 static int __init init_per_zone_wmark_min(void)
5000 {
5001 	unsigned long lowmem_kbytes;
5002 
5003 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5004 
5005 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5006 	if (min_free_kbytes < 128)
5007 		min_free_kbytes = 128;
5008 	if (min_free_kbytes > 65536)
5009 		min_free_kbytes = 65536;
5010 	setup_per_zone_wmarks();
5011 	setup_per_zone_lowmem_reserve();
5012 	setup_per_zone_inactive_ratio();
5013 	return 0;
5014 }
5015 module_init(init_per_zone_wmark_min)
5016 
5017 /*
5018  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5019  *	that we can call two helper functions whenever min_free_kbytes
5020  *	changes.
5021  */
5022 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5023 	void __user *buffer, size_t *length, loff_t *ppos)
5024 {
5025 	proc_dointvec(table, write, buffer, length, ppos);
5026 	if (write)
5027 		setup_per_zone_wmarks();
5028 	return 0;
5029 }
5030 
5031 #ifdef CONFIG_NUMA
5032 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5033 	void __user *buffer, size_t *length, loff_t *ppos)
5034 {
5035 	struct zone *zone;
5036 	int rc;
5037 
5038 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5039 	if (rc)
5040 		return rc;
5041 
5042 	for_each_zone(zone)
5043 		zone->min_unmapped_pages = (zone->present_pages *
5044 				sysctl_min_unmapped_ratio) / 100;
5045 	return 0;
5046 }
5047 
5048 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5049 	void __user *buffer, size_t *length, loff_t *ppos)
5050 {
5051 	struct zone *zone;
5052 	int rc;
5053 
5054 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5055 	if (rc)
5056 		return rc;
5057 
5058 	for_each_zone(zone)
5059 		zone->min_slab_pages = (zone->present_pages *
5060 				sysctl_min_slab_ratio) / 100;
5061 	return 0;
5062 }
5063 #endif
5064 
5065 /*
5066  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5067  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5068  *	whenever sysctl_lowmem_reserve_ratio changes.
5069  *
5070  * The reserve ratio obviously has absolutely no relation with the
5071  * minimum watermarks. The lowmem reserve ratio can only make sense
5072  * if in function of the boot time zone sizes.
5073  */
5074 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5075 	void __user *buffer, size_t *length, loff_t *ppos)
5076 {
5077 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5078 	setup_per_zone_lowmem_reserve();
5079 	return 0;
5080 }
5081 
5082 /*
5083  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5084  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5085  * can have before it gets flushed back to buddy allocator.
5086  */
5087 
5088 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5089 	void __user *buffer, size_t *length, loff_t *ppos)
5090 {
5091 	struct zone *zone;
5092 	unsigned int cpu;
5093 	int ret;
5094 
5095 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5096 	if (!write || (ret == -EINVAL))
5097 		return ret;
5098 	for_each_populated_zone(zone) {
5099 		for_each_possible_cpu(cpu) {
5100 			unsigned long  high;
5101 			high = zone->present_pages / percpu_pagelist_fraction;
5102 			setup_pagelist_highmark(
5103 				per_cpu_ptr(zone->pageset, cpu), high);
5104 		}
5105 	}
5106 	return 0;
5107 }
5108 
5109 int hashdist = HASHDIST_DEFAULT;
5110 
5111 #ifdef CONFIG_NUMA
5112 static int __init set_hashdist(char *str)
5113 {
5114 	if (!str)
5115 		return 0;
5116 	hashdist = simple_strtoul(str, &str, 0);
5117 	return 1;
5118 }
5119 __setup("hashdist=", set_hashdist);
5120 #endif
5121 
5122 /*
5123  * allocate a large system hash table from bootmem
5124  * - it is assumed that the hash table must contain an exact power-of-2
5125  *   quantity of entries
5126  * - limit is the number of hash buckets, not the total allocation size
5127  */
5128 void *__init alloc_large_system_hash(const char *tablename,
5129 				     unsigned long bucketsize,
5130 				     unsigned long numentries,
5131 				     int scale,
5132 				     int flags,
5133 				     unsigned int *_hash_shift,
5134 				     unsigned int *_hash_mask,
5135 				     unsigned long limit)
5136 {
5137 	unsigned long long max = limit;
5138 	unsigned long log2qty, size;
5139 	void *table = NULL;
5140 
5141 	/* allow the kernel cmdline to have a say */
5142 	if (!numentries) {
5143 		/* round applicable memory size up to nearest megabyte */
5144 		numentries = nr_kernel_pages;
5145 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5146 		numentries >>= 20 - PAGE_SHIFT;
5147 		numentries <<= 20 - PAGE_SHIFT;
5148 
5149 		/* limit to 1 bucket per 2^scale bytes of low memory */
5150 		if (scale > PAGE_SHIFT)
5151 			numentries >>= (scale - PAGE_SHIFT);
5152 		else
5153 			numentries <<= (PAGE_SHIFT - scale);
5154 
5155 		/* Make sure we've got at least a 0-order allocation.. */
5156 		if (unlikely(flags & HASH_SMALL)) {
5157 			/* Makes no sense without HASH_EARLY */
5158 			WARN_ON(!(flags & HASH_EARLY));
5159 			if (!(numentries >> *_hash_shift)) {
5160 				numentries = 1UL << *_hash_shift;
5161 				BUG_ON(!numentries);
5162 			}
5163 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5164 			numentries = PAGE_SIZE / bucketsize;
5165 	}
5166 	numentries = roundup_pow_of_two(numentries);
5167 
5168 	/* limit allocation size to 1/16 total memory by default */
5169 	if (max == 0) {
5170 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5171 		do_div(max, bucketsize);
5172 	}
5173 
5174 	if (numentries > max)
5175 		numentries = max;
5176 
5177 	log2qty = ilog2(numentries);
5178 
5179 	do {
5180 		size = bucketsize << log2qty;
5181 		if (flags & HASH_EARLY)
5182 			table = alloc_bootmem_nopanic(size);
5183 		else if (hashdist)
5184 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5185 		else {
5186 			/*
5187 			 * If bucketsize is not a power-of-two, we may free
5188 			 * some pages at the end of hash table which
5189 			 * alloc_pages_exact() automatically does
5190 			 */
5191 			if (get_order(size) < MAX_ORDER) {
5192 				table = alloc_pages_exact(size, GFP_ATOMIC);
5193 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5194 			}
5195 		}
5196 	} while (!table && size > PAGE_SIZE && --log2qty);
5197 
5198 	if (!table)
5199 		panic("Failed to allocate %s hash table\n", tablename);
5200 
5201 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5202 	       tablename,
5203 	       (1UL << log2qty),
5204 	       ilog2(size) - PAGE_SHIFT,
5205 	       size);
5206 
5207 	if (_hash_shift)
5208 		*_hash_shift = log2qty;
5209 	if (_hash_mask)
5210 		*_hash_mask = (1 << log2qty) - 1;
5211 
5212 	return table;
5213 }
5214 
5215 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5216 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5217 							unsigned long pfn)
5218 {
5219 #ifdef CONFIG_SPARSEMEM
5220 	return __pfn_to_section(pfn)->pageblock_flags;
5221 #else
5222 	return zone->pageblock_flags;
5223 #endif /* CONFIG_SPARSEMEM */
5224 }
5225 
5226 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5227 {
5228 #ifdef CONFIG_SPARSEMEM
5229 	pfn &= (PAGES_PER_SECTION-1);
5230 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5231 #else
5232 	pfn = pfn - zone->zone_start_pfn;
5233 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5234 #endif /* CONFIG_SPARSEMEM */
5235 }
5236 
5237 /**
5238  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5239  * @page: The page within the block of interest
5240  * @start_bitidx: The first bit of interest to retrieve
5241  * @end_bitidx: The last bit of interest
5242  * returns pageblock_bits flags
5243  */
5244 unsigned long get_pageblock_flags_group(struct page *page,
5245 					int start_bitidx, int end_bitidx)
5246 {
5247 	struct zone *zone;
5248 	unsigned long *bitmap;
5249 	unsigned long pfn, bitidx;
5250 	unsigned long flags = 0;
5251 	unsigned long value = 1;
5252 
5253 	zone = page_zone(page);
5254 	pfn = page_to_pfn(page);
5255 	bitmap = get_pageblock_bitmap(zone, pfn);
5256 	bitidx = pfn_to_bitidx(zone, pfn);
5257 
5258 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5259 		if (test_bit(bitidx + start_bitidx, bitmap))
5260 			flags |= value;
5261 
5262 	return flags;
5263 }
5264 
5265 /**
5266  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5267  * @page: The page within the block of interest
5268  * @start_bitidx: The first bit of interest
5269  * @end_bitidx: The last bit of interest
5270  * @flags: The flags to set
5271  */
5272 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5273 					int start_bitidx, int end_bitidx)
5274 {
5275 	struct zone *zone;
5276 	unsigned long *bitmap;
5277 	unsigned long pfn, bitidx;
5278 	unsigned long value = 1;
5279 
5280 	zone = page_zone(page);
5281 	pfn = page_to_pfn(page);
5282 	bitmap = get_pageblock_bitmap(zone, pfn);
5283 	bitidx = pfn_to_bitidx(zone, pfn);
5284 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5285 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5286 
5287 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5288 		if (flags & value)
5289 			__set_bit(bitidx + start_bitidx, bitmap);
5290 		else
5291 			__clear_bit(bitidx + start_bitidx, bitmap);
5292 }
5293 
5294 /*
5295  * This is designed as sub function...plz see page_isolation.c also.
5296  * set/clear page block's type to be ISOLATE.
5297  * page allocater never alloc memory from ISOLATE block.
5298  */
5299 
5300 int set_migratetype_isolate(struct page *page)
5301 {
5302 	struct zone *zone;
5303 	struct page *curr_page;
5304 	unsigned long flags, pfn, iter;
5305 	unsigned long immobile = 0;
5306 	struct memory_isolate_notify arg;
5307 	int notifier_ret;
5308 	int ret = -EBUSY;
5309 	int zone_idx;
5310 
5311 	zone = page_zone(page);
5312 	zone_idx = zone_idx(zone);
5313 
5314 	spin_lock_irqsave(&zone->lock, flags);
5315 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5316 	    zone_idx == ZONE_MOVABLE) {
5317 		ret = 0;
5318 		goto out;
5319 	}
5320 
5321 	pfn = page_to_pfn(page);
5322 	arg.start_pfn = pfn;
5323 	arg.nr_pages = pageblock_nr_pages;
5324 	arg.pages_found = 0;
5325 
5326 	/*
5327 	 * It may be possible to isolate a pageblock even if the
5328 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5329 	 * notifier chain is used by balloon drivers to return the
5330 	 * number of pages in a range that are held by the balloon
5331 	 * driver to shrink memory. If all the pages are accounted for
5332 	 * by balloons, are free, or on the LRU, isolation can continue.
5333 	 * Later, for example, when memory hotplug notifier runs, these
5334 	 * pages reported as "can be isolated" should be isolated(freed)
5335 	 * by the balloon driver through the memory notifier chain.
5336 	 */
5337 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5338 	notifier_ret = notifier_to_errno(notifier_ret);
5339 	if (notifier_ret || !arg.pages_found)
5340 		goto out;
5341 
5342 	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5343 		if (!pfn_valid_within(pfn))
5344 			continue;
5345 
5346 		curr_page = pfn_to_page(iter);
5347 		if (!page_count(curr_page) || PageLRU(curr_page))
5348 			continue;
5349 
5350 		immobile++;
5351 	}
5352 
5353 	if (arg.pages_found == immobile)
5354 		ret = 0;
5355 
5356 out:
5357 	if (!ret) {
5358 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5359 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5360 	}
5361 
5362 	spin_unlock_irqrestore(&zone->lock, flags);
5363 	if (!ret)
5364 		drain_all_pages();
5365 	return ret;
5366 }
5367 
5368 void unset_migratetype_isolate(struct page *page)
5369 {
5370 	struct zone *zone;
5371 	unsigned long flags;
5372 	zone = page_zone(page);
5373 	spin_lock_irqsave(&zone->lock, flags);
5374 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5375 		goto out;
5376 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5377 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5378 out:
5379 	spin_unlock_irqrestore(&zone->lock, flags);
5380 }
5381 
5382 #ifdef CONFIG_MEMORY_HOTREMOVE
5383 /*
5384  * All pages in the range must be isolated before calling this.
5385  */
5386 void
5387 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5388 {
5389 	struct page *page;
5390 	struct zone *zone;
5391 	int order, i;
5392 	unsigned long pfn;
5393 	unsigned long flags;
5394 	/* find the first valid pfn */
5395 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5396 		if (pfn_valid(pfn))
5397 			break;
5398 	if (pfn == end_pfn)
5399 		return;
5400 	zone = page_zone(pfn_to_page(pfn));
5401 	spin_lock_irqsave(&zone->lock, flags);
5402 	pfn = start_pfn;
5403 	while (pfn < end_pfn) {
5404 		if (!pfn_valid(pfn)) {
5405 			pfn++;
5406 			continue;
5407 		}
5408 		page = pfn_to_page(pfn);
5409 		BUG_ON(page_count(page));
5410 		BUG_ON(!PageBuddy(page));
5411 		order = page_order(page);
5412 #ifdef CONFIG_DEBUG_VM
5413 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5414 		       pfn, 1 << order, end_pfn);
5415 #endif
5416 		list_del(&page->lru);
5417 		rmv_page_order(page);
5418 		zone->free_area[order].nr_free--;
5419 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5420 				      - (1UL << order));
5421 		for (i = 0; i < (1 << order); i++)
5422 			SetPageReserved((page+i));
5423 		pfn += (1 << order);
5424 	}
5425 	spin_unlock_irqrestore(&zone->lock, flags);
5426 }
5427 #endif
5428 
5429 #ifdef CONFIG_MEMORY_FAILURE
5430 bool is_free_buddy_page(struct page *page)
5431 {
5432 	struct zone *zone = page_zone(page);
5433 	unsigned long pfn = page_to_pfn(page);
5434 	unsigned long flags;
5435 	int order;
5436 
5437 	spin_lock_irqsave(&zone->lock, flags);
5438 	for (order = 0; order < MAX_ORDER; order++) {
5439 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5440 
5441 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5442 			break;
5443 	}
5444 	spin_unlock_irqrestore(&zone->lock, flags);
5445 
5446 	return order < MAX_ORDER;
5447 }
5448 #endif
5449 
5450 static struct trace_print_flags pageflag_names[] = {
5451 	{1UL << PG_locked,		"locked"	},
5452 	{1UL << PG_error,		"error"		},
5453 	{1UL << PG_referenced,		"referenced"	},
5454 	{1UL << PG_uptodate,		"uptodate"	},
5455 	{1UL << PG_dirty,		"dirty"		},
5456 	{1UL << PG_lru,			"lru"		},
5457 	{1UL << PG_active,		"active"	},
5458 	{1UL << PG_slab,		"slab"		},
5459 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5460 	{1UL << PG_arch_1,		"arch_1"	},
5461 	{1UL << PG_reserved,		"reserved"	},
5462 	{1UL << PG_private,		"private"	},
5463 	{1UL << PG_private_2,		"private_2"	},
5464 	{1UL << PG_writeback,		"writeback"	},
5465 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5466 	{1UL << PG_head,		"head"		},
5467 	{1UL << PG_tail,		"tail"		},
5468 #else
5469 	{1UL << PG_compound,		"compound"	},
5470 #endif
5471 	{1UL << PG_swapcache,		"swapcache"	},
5472 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5473 	{1UL << PG_reclaim,		"reclaim"	},
5474 	{1UL << PG_buddy,		"buddy"		},
5475 	{1UL << PG_swapbacked,		"swapbacked"	},
5476 	{1UL << PG_unevictable,		"unevictable"	},
5477 #ifdef CONFIG_MMU
5478 	{1UL << PG_mlocked,		"mlocked"	},
5479 #endif
5480 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5481 	{1UL << PG_uncached,		"uncached"	},
5482 #endif
5483 #ifdef CONFIG_MEMORY_FAILURE
5484 	{1UL << PG_hwpoison,		"hwpoison"	},
5485 #endif
5486 	{-1UL,				NULL		},
5487 };
5488 
5489 static void dump_page_flags(unsigned long flags)
5490 {
5491 	const char *delim = "";
5492 	unsigned long mask;
5493 	int i;
5494 
5495 	printk(KERN_ALERT "page flags: %#lx(", flags);
5496 
5497 	/* remove zone id */
5498 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5499 
5500 	for (i = 0; pageflag_names[i].name && flags; i++) {
5501 
5502 		mask = pageflag_names[i].mask;
5503 		if ((flags & mask) != mask)
5504 			continue;
5505 
5506 		flags &= ~mask;
5507 		printk("%s%s", delim, pageflag_names[i].name);
5508 		delim = "|";
5509 	}
5510 
5511 	/* check for left over flags */
5512 	if (flags)
5513 		printk("%s%#lx", delim, flags);
5514 
5515 	printk(")\n");
5516 }
5517 
5518 void dump_page(struct page *page)
5519 {
5520 	printk(KERN_ALERT
5521 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5522 		page, page_count(page), page_mapcount(page),
5523 		page->mapping, page->index);
5524 	dump_page_flags(page->flags);
5525 }
5526