xref: /linux/mm/page_alloc.c (revision 086c6cbcc563c81d55257f9b27e14faf1d0963d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static void accept_page(struct page *page, unsigned int order);
290 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
291 static inline bool has_unaccepted_memory(void);
292 static bool __free_unaccepted(struct page *page);
293 
294 int page_group_by_mobility_disabled __read_mostly;
295 
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /*
298  * During boot we initialize deferred pages on-demand, as needed, but once
299  * page_alloc_init_late() has finished, the deferred pages are all initialized,
300  * and we can permanently disable that path.
301  */
302 DEFINE_STATIC_KEY_TRUE(deferred_pages);
303 
304 static inline bool deferred_pages_enabled(void)
305 {
306 	return static_branch_unlikely(&deferred_pages);
307 }
308 
309 /*
310  * deferred_grow_zone() is __init, but it is called from
311  * get_page_from_freelist() during early boot until deferred_pages permanently
312  * disables this call. This is why we have refdata wrapper to avoid warning,
313  * and to ensure that the function body gets unloaded.
314  */
315 static bool __ref
316 _deferred_grow_zone(struct zone *zone, unsigned int order)
317 {
318 	return deferred_grow_zone(zone, order);
319 }
320 #else
321 static inline bool deferred_pages_enabled(void)
322 {
323 	return false;
324 }
325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
326 
327 /* Return a pointer to the bitmap storing bits affecting a block of pages */
328 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
329 							unsigned long pfn)
330 {
331 #ifdef CONFIG_SPARSEMEM
332 	return section_to_usemap(__pfn_to_section(pfn));
333 #else
334 	return page_zone(page)->pageblock_flags;
335 #endif /* CONFIG_SPARSEMEM */
336 }
337 
338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
339 {
340 #ifdef CONFIG_SPARSEMEM
341 	pfn &= (PAGES_PER_SECTION-1);
342 #else
343 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
344 #endif /* CONFIG_SPARSEMEM */
345 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
346 }
347 
348 /**
349  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
350  * @page: The page within the block of interest
351  * @pfn: The target page frame number
352  * @mask: mask of bits that the caller is interested in
353  *
354  * Return: pageblock_bits flags
355  */
356 unsigned long get_pfnblock_flags_mask(const struct page *page,
357 					unsigned long pfn, unsigned long mask)
358 {
359 	unsigned long *bitmap;
360 	unsigned long bitidx, word_bitidx;
361 	unsigned long word;
362 
363 	bitmap = get_pageblock_bitmap(page, pfn);
364 	bitidx = pfn_to_bitidx(page, pfn);
365 	word_bitidx = bitidx / BITS_PER_LONG;
366 	bitidx &= (BITS_PER_LONG-1);
367 	/*
368 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
369 	 * a consistent read of the memory array, so that results, even though
370 	 * racy, are not corrupted.
371 	 */
372 	word = READ_ONCE(bitmap[word_bitidx]);
373 	return (word >> bitidx) & mask;
374 }
375 
376 static __always_inline int get_pfnblock_migratetype(const struct page *page,
377 					unsigned long pfn)
378 {
379 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
380 }
381 
382 /**
383  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
384  * @page: The page within the block of interest
385  * @flags: The flags to set
386  * @pfn: The target page frame number
387  * @mask: mask of bits that the caller is interested in
388  */
389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
390 					unsigned long pfn,
391 					unsigned long mask)
392 {
393 	unsigned long *bitmap;
394 	unsigned long bitidx, word_bitidx;
395 	unsigned long word;
396 
397 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
398 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
399 
400 	bitmap = get_pageblock_bitmap(page, pfn);
401 	bitidx = pfn_to_bitidx(page, pfn);
402 	word_bitidx = bitidx / BITS_PER_LONG;
403 	bitidx &= (BITS_PER_LONG-1);
404 
405 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
406 
407 	mask <<= bitidx;
408 	flags <<= bitidx;
409 
410 	word = READ_ONCE(bitmap[word_bitidx]);
411 	do {
412 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
413 }
414 
415 void set_pageblock_migratetype(struct page *page, int migratetype)
416 {
417 	if (unlikely(page_group_by_mobility_disabled &&
418 		     migratetype < MIGRATE_PCPTYPES))
419 		migratetype = MIGRATE_UNMOVABLE;
420 
421 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
422 				page_to_pfn(page), MIGRATETYPE_MASK);
423 }
424 
425 #ifdef CONFIG_DEBUG_VM
426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
427 {
428 	int ret;
429 	unsigned seq;
430 	unsigned long pfn = page_to_pfn(page);
431 	unsigned long sp, start_pfn;
432 
433 	do {
434 		seq = zone_span_seqbegin(zone);
435 		start_pfn = zone->zone_start_pfn;
436 		sp = zone->spanned_pages;
437 		ret = !zone_spans_pfn(zone, pfn);
438 	} while (zone_span_seqretry(zone, seq));
439 
440 	if (ret)
441 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
442 			pfn, zone_to_nid(zone), zone->name,
443 			start_pfn, start_pfn + sp);
444 
445 	return ret;
446 }
447 
448 /*
449  * Temporary debugging check for pages not lying within a given zone.
450  */
451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
452 {
453 	if (page_outside_zone_boundaries(zone, page))
454 		return true;
455 	if (zone != page_zone(page))
456 		return true;
457 
458 	return false;
459 }
460 #else
461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
462 {
463 	return false;
464 }
465 #endif
466 
467 static void bad_page(struct page *page, const char *reason)
468 {
469 	static unsigned long resume;
470 	static unsigned long nr_shown;
471 	static unsigned long nr_unshown;
472 
473 	/*
474 	 * Allow a burst of 60 reports, then keep quiet for that minute;
475 	 * or allow a steady drip of one report per second.
476 	 */
477 	if (nr_shown == 60) {
478 		if (time_before(jiffies, resume)) {
479 			nr_unshown++;
480 			goto out;
481 		}
482 		if (nr_unshown) {
483 			pr_alert(
484 			      "BUG: Bad page state: %lu messages suppressed\n",
485 				nr_unshown);
486 			nr_unshown = 0;
487 		}
488 		nr_shown = 0;
489 	}
490 	if (nr_shown++ == 0)
491 		resume = jiffies + 60 * HZ;
492 
493 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
494 		current->comm, page_to_pfn(page));
495 	dump_page(page, reason);
496 
497 	print_modules();
498 	dump_stack();
499 out:
500 	/* Leave bad fields for debug, except PageBuddy could make trouble */
501 	page_mapcount_reset(page); /* remove PageBuddy */
502 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
503 }
504 
505 static inline unsigned int order_to_pindex(int migratetype, int order)
506 {
507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
508 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
509 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
510 		return NR_LOWORDER_PCP_LISTS;
511 	}
512 #else
513 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
514 #endif
515 
516 	return (MIGRATE_PCPTYPES * order) + migratetype;
517 }
518 
519 static inline int pindex_to_order(unsigned int pindex)
520 {
521 	int order = pindex / MIGRATE_PCPTYPES;
522 
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	if (pindex == NR_LOWORDER_PCP_LISTS)
525 		order = HPAGE_PMD_ORDER;
526 #else
527 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
528 #endif
529 
530 	return order;
531 }
532 
533 static inline bool pcp_allowed_order(unsigned int order)
534 {
535 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
536 		return true;
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 	if (order == HPAGE_PMD_ORDER)
539 		return true;
540 #endif
541 	return false;
542 }
543 
544 /*
545  * Higher-order pages are called "compound pages".  They are structured thusly:
546  *
547  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
548  *
549  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
550  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
551  *
552  * The first tail page's ->compound_order holds the order of allocation.
553  * This usage means that zero-order pages may not be compound.
554  */
555 
556 void prep_compound_page(struct page *page, unsigned int order)
557 {
558 	int i;
559 	int nr_pages = 1 << order;
560 
561 	__SetPageHead(page);
562 	for (i = 1; i < nr_pages; i++)
563 		prep_compound_tail(page, i);
564 
565 	prep_compound_head(page, order);
566 }
567 
568 static inline void set_buddy_order(struct page *page, unsigned int order)
569 {
570 	set_page_private(page, order);
571 	__SetPageBuddy(page);
572 }
573 
574 #ifdef CONFIG_COMPACTION
575 static inline struct capture_control *task_capc(struct zone *zone)
576 {
577 	struct capture_control *capc = current->capture_control;
578 
579 	return unlikely(capc) &&
580 		!(current->flags & PF_KTHREAD) &&
581 		!capc->page &&
582 		capc->cc->zone == zone ? capc : NULL;
583 }
584 
585 static inline bool
586 compaction_capture(struct capture_control *capc, struct page *page,
587 		   int order, int migratetype)
588 {
589 	if (!capc || order != capc->cc->order)
590 		return false;
591 
592 	/* Do not accidentally pollute CMA or isolated regions*/
593 	if (is_migrate_cma(migratetype) ||
594 	    is_migrate_isolate(migratetype))
595 		return false;
596 
597 	/*
598 	 * Do not let lower order allocations pollute a movable pageblock
599 	 * unless compaction is also requesting movable pages.
600 	 * This might let an unmovable request use a reclaimable pageblock
601 	 * and vice-versa but no more than normal fallback logic which can
602 	 * have trouble finding a high-order free page.
603 	 */
604 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
605 	    capc->cc->migratetype != MIGRATE_MOVABLE)
606 		return false;
607 
608 	capc->page = page;
609 	return true;
610 }
611 
612 #else
613 static inline struct capture_control *task_capc(struct zone *zone)
614 {
615 	return NULL;
616 }
617 
618 static inline bool
619 compaction_capture(struct capture_control *capc, struct page *page,
620 		   int order, int migratetype)
621 {
622 	return false;
623 }
624 #endif /* CONFIG_COMPACTION */
625 
626 static inline void account_freepages(struct zone *zone, int nr_pages,
627 				     int migratetype)
628 {
629 	if (is_migrate_isolate(migratetype))
630 		return;
631 
632 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
633 
634 	if (is_migrate_cma(migratetype))
635 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
636 }
637 
638 /* Used for pages not on another list */
639 static inline void __add_to_free_list(struct page *page, struct zone *zone,
640 				      unsigned int order, int migratetype,
641 				      bool tail)
642 {
643 	struct free_area *area = &zone->free_area[order];
644 
645 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
646 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
647 		     get_pageblock_migratetype(page), migratetype, 1 << order);
648 
649 	if (tail)
650 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
651 	else
652 		list_add(&page->buddy_list, &area->free_list[migratetype]);
653 	area->nr_free++;
654 }
655 
656 /*
657  * Used for pages which are on another list. Move the pages to the tail
658  * of the list - so the moved pages won't immediately be considered for
659  * allocation again (e.g., optimization for memory onlining).
660  */
661 static inline void move_to_free_list(struct page *page, struct zone *zone,
662 				     unsigned int order, int old_mt, int new_mt)
663 {
664 	struct free_area *area = &zone->free_area[order];
665 
666 	/* Free page moving can fail, so it happens before the type update */
667 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
668 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
669 		     get_pageblock_migratetype(page), old_mt, 1 << order);
670 
671 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
672 
673 	account_freepages(zone, -(1 << order), old_mt);
674 	account_freepages(zone, 1 << order, new_mt);
675 }
676 
677 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
678 					     unsigned int order, int migratetype)
679 {
680         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
681 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
682 		     get_pageblock_migratetype(page), migratetype, 1 << order);
683 
684 	/* clear reported state and update reported page count */
685 	if (page_reported(page))
686 		__ClearPageReported(page);
687 
688 	list_del(&page->buddy_list);
689 	__ClearPageBuddy(page);
690 	set_page_private(page, 0);
691 	zone->free_area[order].nr_free--;
692 }
693 
694 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
695 					   unsigned int order, int migratetype)
696 {
697 	__del_page_from_free_list(page, zone, order, migratetype);
698 	account_freepages(zone, -(1 << order), migratetype);
699 }
700 
701 static inline struct page *get_page_from_free_area(struct free_area *area,
702 					    int migratetype)
703 {
704 	return list_first_entry_or_null(&area->free_list[migratetype],
705 					struct page, buddy_list);
706 }
707 
708 /*
709  * If this is not the largest possible page, check if the buddy
710  * of the next-highest order is free. If it is, it's possible
711  * that pages are being freed that will coalesce soon. In case,
712  * that is happening, add the free page to the tail of the list
713  * so it's less likely to be used soon and more likely to be merged
714  * as a higher order page
715  */
716 static inline bool
717 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
718 		   struct page *page, unsigned int order)
719 {
720 	unsigned long higher_page_pfn;
721 	struct page *higher_page;
722 
723 	if (order >= MAX_PAGE_ORDER - 1)
724 		return false;
725 
726 	higher_page_pfn = buddy_pfn & pfn;
727 	higher_page = page + (higher_page_pfn - pfn);
728 
729 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
730 			NULL) != NULL;
731 }
732 
733 /*
734  * Freeing function for a buddy system allocator.
735  *
736  * The concept of a buddy system is to maintain direct-mapped table
737  * (containing bit values) for memory blocks of various "orders".
738  * The bottom level table contains the map for the smallest allocatable
739  * units of memory (here, pages), and each level above it describes
740  * pairs of units from the levels below, hence, "buddies".
741  * At a high level, all that happens here is marking the table entry
742  * at the bottom level available, and propagating the changes upward
743  * as necessary, plus some accounting needed to play nicely with other
744  * parts of the VM system.
745  * At each level, we keep a list of pages, which are heads of continuous
746  * free pages of length of (1 << order) and marked with PageBuddy.
747  * Page's order is recorded in page_private(page) field.
748  * So when we are allocating or freeing one, we can derive the state of the
749  * other.  That is, if we allocate a small block, and both were
750  * free, the remainder of the region must be split into blocks.
751  * If a block is freed, and its buddy is also free, then this
752  * triggers coalescing into a block of larger size.
753  *
754  * -- nyc
755  */
756 
757 static inline void __free_one_page(struct page *page,
758 		unsigned long pfn,
759 		struct zone *zone, unsigned int order,
760 		int migratetype, fpi_t fpi_flags)
761 {
762 	struct capture_control *capc = task_capc(zone);
763 	unsigned long buddy_pfn = 0;
764 	unsigned long combined_pfn;
765 	struct page *buddy;
766 	bool to_tail;
767 
768 	VM_BUG_ON(!zone_is_initialized(zone));
769 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
770 
771 	VM_BUG_ON(migratetype == -1);
772 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
773 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
774 
775 	account_freepages(zone, 1 << order, migratetype);
776 
777 	while (order < MAX_PAGE_ORDER) {
778 		int buddy_mt = migratetype;
779 
780 		if (compaction_capture(capc, page, order, migratetype)) {
781 			account_freepages(zone, -(1 << order), migratetype);
782 			return;
783 		}
784 
785 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
786 		if (!buddy)
787 			goto done_merging;
788 
789 		if (unlikely(order >= pageblock_order)) {
790 			/*
791 			 * We want to prevent merge between freepages on pageblock
792 			 * without fallbacks and normal pageblock. Without this,
793 			 * pageblock isolation could cause incorrect freepage or CMA
794 			 * accounting or HIGHATOMIC accounting.
795 			 */
796 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
797 
798 			if (migratetype != buddy_mt &&
799 			    (!migratetype_is_mergeable(migratetype) ||
800 			     !migratetype_is_mergeable(buddy_mt)))
801 				goto done_merging;
802 		}
803 
804 		/*
805 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
806 		 * merge with it and move up one order.
807 		 */
808 		if (page_is_guard(buddy))
809 			clear_page_guard(zone, buddy, order);
810 		else
811 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
812 
813 		if (unlikely(buddy_mt != migratetype)) {
814 			/*
815 			 * Match buddy type. This ensures that an
816 			 * expand() down the line puts the sub-blocks
817 			 * on the right freelists.
818 			 */
819 			set_pageblock_migratetype(buddy, migratetype);
820 		}
821 
822 		combined_pfn = buddy_pfn & pfn;
823 		page = page + (combined_pfn - pfn);
824 		pfn = combined_pfn;
825 		order++;
826 	}
827 
828 done_merging:
829 	set_buddy_order(page, order);
830 
831 	if (fpi_flags & FPI_TO_TAIL)
832 		to_tail = true;
833 	else if (is_shuffle_order(order))
834 		to_tail = shuffle_pick_tail();
835 	else
836 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
837 
838 	__add_to_free_list(page, zone, order, migratetype, to_tail);
839 
840 	/* Notify page reporting subsystem of freed page */
841 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 		page_reporting_notify_free(order);
843 }
844 
845 /*
846  * A bad page could be due to a number of fields. Instead of multiple branches,
847  * try and check multiple fields with one check. The caller must do a detailed
848  * check if necessary.
849  */
850 static inline bool page_expected_state(struct page *page,
851 					unsigned long check_flags)
852 {
853 	if (unlikely(atomic_read(&page->_mapcount) != -1))
854 		return false;
855 
856 	if (unlikely((unsigned long)page->mapping |
857 			page_ref_count(page) |
858 #ifdef CONFIG_MEMCG
859 			page->memcg_data |
860 #endif
861 #ifdef CONFIG_PAGE_POOL
862 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
863 #endif
864 			(page->flags & check_flags)))
865 		return false;
866 
867 	return true;
868 }
869 
870 static const char *page_bad_reason(struct page *page, unsigned long flags)
871 {
872 	const char *bad_reason = NULL;
873 
874 	if (unlikely(atomic_read(&page->_mapcount) != -1))
875 		bad_reason = "nonzero mapcount";
876 	if (unlikely(page->mapping != NULL))
877 		bad_reason = "non-NULL mapping";
878 	if (unlikely(page_ref_count(page) != 0))
879 		bad_reason = "nonzero _refcount";
880 	if (unlikely(page->flags & flags)) {
881 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
882 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
883 		else
884 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
885 	}
886 #ifdef CONFIG_MEMCG
887 	if (unlikely(page->memcg_data))
888 		bad_reason = "page still charged to cgroup";
889 #endif
890 #ifdef CONFIG_PAGE_POOL
891 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
892 		bad_reason = "page_pool leak";
893 #endif
894 	return bad_reason;
895 }
896 
897 static void free_page_is_bad_report(struct page *page)
898 {
899 	bad_page(page,
900 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
901 }
902 
903 static inline bool free_page_is_bad(struct page *page)
904 {
905 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
906 		return false;
907 
908 	/* Something has gone sideways, find it */
909 	free_page_is_bad_report(page);
910 	return true;
911 }
912 
913 static inline bool is_check_pages_enabled(void)
914 {
915 	return static_branch_unlikely(&check_pages_enabled);
916 }
917 
918 static int free_tail_page_prepare(struct page *head_page, struct page *page)
919 {
920 	struct folio *folio = (struct folio *)head_page;
921 	int ret = 1;
922 
923 	/*
924 	 * We rely page->lru.next never has bit 0 set, unless the page
925 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
926 	 */
927 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
928 
929 	if (!is_check_pages_enabled()) {
930 		ret = 0;
931 		goto out;
932 	}
933 	switch (page - head_page) {
934 	case 1:
935 		/* the first tail page: these may be in place of ->mapping */
936 		if (unlikely(folio_entire_mapcount(folio))) {
937 			bad_page(page, "nonzero entire_mapcount");
938 			goto out;
939 		}
940 		if (unlikely(folio_large_mapcount(folio))) {
941 			bad_page(page, "nonzero large_mapcount");
942 			goto out;
943 		}
944 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
945 			bad_page(page, "nonzero nr_pages_mapped");
946 			goto out;
947 		}
948 		if (unlikely(atomic_read(&folio->_pincount))) {
949 			bad_page(page, "nonzero pincount");
950 			goto out;
951 		}
952 		break;
953 	case 2:
954 		/* the second tail page: deferred_list overlaps ->mapping */
955 		if (unlikely(!list_empty(&folio->_deferred_list))) {
956 			bad_page(page, "on deferred list");
957 			goto out;
958 		}
959 		break;
960 	default:
961 		if (page->mapping != TAIL_MAPPING) {
962 			bad_page(page, "corrupted mapping in tail page");
963 			goto out;
964 		}
965 		break;
966 	}
967 	if (unlikely(!PageTail(page))) {
968 		bad_page(page, "PageTail not set");
969 		goto out;
970 	}
971 	if (unlikely(compound_head(page) != head_page)) {
972 		bad_page(page, "compound_head not consistent");
973 		goto out;
974 	}
975 	ret = 0;
976 out:
977 	page->mapping = NULL;
978 	clear_compound_head(page);
979 	return ret;
980 }
981 
982 /*
983  * Skip KASAN memory poisoning when either:
984  *
985  * 1. For generic KASAN: deferred memory initialization has not yet completed.
986  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
987  *    using page tags instead (see below).
988  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
989  *    that error detection is disabled for accesses via the page address.
990  *
991  * Pages will have match-all tags in the following circumstances:
992  *
993  * 1. Pages are being initialized for the first time, including during deferred
994  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
995  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
996  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
997  * 3. The allocation was excluded from being checked due to sampling,
998  *    see the call to kasan_unpoison_pages.
999  *
1000  * Poisoning pages during deferred memory init will greatly lengthen the
1001  * process and cause problem in large memory systems as the deferred pages
1002  * initialization is done with interrupt disabled.
1003  *
1004  * Assuming that there will be no reference to those newly initialized
1005  * pages before they are ever allocated, this should have no effect on
1006  * KASAN memory tracking as the poison will be properly inserted at page
1007  * allocation time. The only corner case is when pages are allocated by
1008  * on-demand allocation and then freed again before the deferred pages
1009  * initialization is done, but this is not likely to happen.
1010  */
1011 static inline bool should_skip_kasan_poison(struct page *page)
1012 {
1013 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1014 		return deferred_pages_enabled();
1015 
1016 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1017 }
1018 
1019 void kernel_init_pages(struct page *page, int numpages)
1020 {
1021 	int i;
1022 
1023 	/* s390's use of memset() could override KASAN redzones. */
1024 	kasan_disable_current();
1025 	for (i = 0; i < numpages; i++)
1026 		clear_highpage_kasan_tagged(page + i);
1027 	kasan_enable_current();
1028 }
1029 
1030 __always_inline bool free_pages_prepare(struct page *page,
1031 			unsigned int order)
1032 {
1033 	int bad = 0;
1034 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1035 	bool init = want_init_on_free();
1036 	bool compound = PageCompound(page);
1037 
1038 	VM_BUG_ON_PAGE(PageTail(page), page);
1039 
1040 	trace_mm_page_free(page, order);
1041 	kmsan_free_page(page, order);
1042 
1043 	if (memcg_kmem_online() && PageMemcgKmem(page))
1044 		__memcg_kmem_uncharge_page(page, order);
1045 
1046 	if (unlikely(PageHWPoison(page)) && !order) {
1047 		/* Do not let hwpoison pages hit pcplists/buddy */
1048 		reset_page_owner(page, order);
1049 		page_table_check_free(page, order);
1050 		pgalloc_tag_sub(page, 1 << order);
1051 		return false;
1052 	}
1053 
1054 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1055 
1056 	/*
1057 	 * Check tail pages before head page information is cleared to
1058 	 * avoid checking PageCompound for order-0 pages.
1059 	 */
1060 	if (unlikely(order)) {
1061 		int i;
1062 
1063 		if (compound)
1064 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1065 		for (i = 1; i < (1 << order); i++) {
1066 			if (compound)
1067 				bad += free_tail_page_prepare(page, page + i);
1068 			if (is_check_pages_enabled()) {
1069 				if (free_page_is_bad(page + i)) {
1070 					bad++;
1071 					continue;
1072 				}
1073 			}
1074 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1075 		}
1076 	}
1077 	if (PageMappingFlags(page))
1078 		page->mapping = NULL;
1079 	if (is_check_pages_enabled()) {
1080 		if (free_page_is_bad(page))
1081 			bad++;
1082 		if (bad)
1083 			return false;
1084 	}
1085 
1086 	page_cpupid_reset_last(page);
1087 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1088 	reset_page_owner(page, order);
1089 	page_table_check_free(page, order);
1090 	pgalloc_tag_sub(page, 1 << order);
1091 
1092 	if (!PageHighMem(page)) {
1093 		debug_check_no_locks_freed(page_address(page),
1094 					   PAGE_SIZE << order);
1095 		debug_check_no_obj_freed(page_address(page),
1096 					   PAGE_SIZE << order);
1097 	}
1098 
1099 	kernel_poison_pages(page, 1 << order);
1100 
1101 	/*
1102 	 * As memory initialization might be integrated into KASAN,
1103 	 * KASAN poisoning and memory initialization code must be
1104 	 * kept together to avoid discrepancies in behavior.
1105 	 *
1106 	 * With hardware tag-based KASAN, memory tags must be set before the
1107 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1108 	 */
1109 	if (!skip_kasan_poison) {
1110 		kasan_poison_pages(page, order, init);
1111 
1112 		/* Memory is already initialized if KASAN did it internally. */
1113 		if (kasan_has_integrated_init())
1114 			init = false;
1115 	}
1116 	if (init)
1117 		kernel_init_pages(page, 1 << order);
1118 
1119 	/*
1120 	 * arch_free_page() can make the page's contents inaccessible.  s390
1121 	 * does this.  So nothing which can access the page's contents should
1122 	 * happen after this.
1123 	 */
1124 	arch_free_page(page, order);
1125 
1126 	debug_pagealloc_unmap_pages(page, 1 << order);
1127 
1128 	return true;
1129 }
1130 
1131 /*
1132  * Frees a number of pages from the PCP lists
1133  * Assumes all pages on list are in same zone.
1134  * count is the number of pages to free.
1135  */
1136 static void free_pcppages_bulk(struct zone *zone, int count,
1137 					struct per_cpu_pages *pcp,
1138 					int pindex)
1139 {
1140 	unsigned long flags;
1141 	unsigned int order;
1142 	struct page *page;
1143 
1144 	/*
1145 	 * Ensure proper count is passed which otherwise would stuck in the
1146 	 * below while (list_empty(list)) loop.
1147 	 */
1148 	count = min(pcp->count, count);
1149 
1150 	/* Ensure requested pindex is drained first. */
1151 	pindex = pindex - 1;
1152 
1153 	spin_lock_irqsave(&zone->lock, flags);
1154 
1155 	while (count > 0) {
1156 		struct list_head *list;
1157 		int nr_pages;
1158 
1159 		/* Remove pages from lists in a round-robin fashion. */
1160 		do {
1161 			if (++pindex > NR_PCP_LISTS - 1)
1162 				pindex = 0;
1163 			list = &pcp->lists[pindex];
1164 		} while (list_empty(list));
1165 
1166 		order = pindex_to_order(pindex);
1167 		nr_pages = 1 << order;
1168 		do {
1169 			unsigned long pfn;
1170 			int mt;
1171 
1172 			page = list_last_entry(list, struct page, pcp_list);
1173 			pfn = page_to_pfn(page);
1174 			mt = get_pfnblock_migratetype(page, pfn);
1175 
1176 			/* must delete to avoid corrupting pcp list */
1177 			list_del(&page->pcp_list);
1178 			count -= nr_pages;
1179 			pcp->count -= nr_pages;
1180 
1181 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1182 			trace_mm_page_pcpu_drain(page, order, mt);
1183 		} while (count > 0 && !list_empty(list));
1184 	}
1185 
1186 	spin_unlock_irqrestore(&zone->lock, flags);
1187 }
1188 
1189 static void free_one_page(struct zone *zone, struct page *page,
1190 			  unsigned long pfn, unsigned int order,
1191 			  fpi_t fpi_flags)
1192 {
1193 	unsigned long flags;
1194 	int migratetype;
1195 
1196 	spin_lock_irqsave(&zone->lock, flags);
1197 	migratetype = get_pfnblock_migratetype(page, pfn);
1198 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1199 	spin_unlock_irqrestore(&zone->lock, flags);
1200 }
1201 
1202 static void __free_pages_ok(struct page *page, unsigned int order,
1203 			    fpi_t fpi_flags)
1204 {
1205 	unsigned long pfn = page_to_pfn(page);
1206 	struct zone *zone = page_zone(page);
1207 
1208 	if (!free_pages_prepare(page, order))
1209 		return;
1210 
1211 	free_one_page(zone, page, pfn, order, fpi_flags);
1212 
1213 	__count_vm_events(PGFREE, 1 << order);
1214 }
1215 
1216 void __free_pages_core(struct page *page, unsigned int order)
1217 {
1218 	unsigned int nr_pages = 1 << order;
1219 	struct page *p = page;
1220 	unsigned int loop;
1221 
1222 	/*
1223 	 * When initializing the memmap, __init_single_page() sets the refcount
1224 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1225 	 * refcount of all involved pages to 0.
1226 	 */
1227 	prefetchw(p);
1228 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1229 		prefetchw(p + 1);
1230 		__ClearPageReserved(p);
1231 		set_page_count(p, 0);
1232 	}
1233 	__ClearPageReserved(p);
1234 	set_page_count(p, 0);
1235 
1236 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1237 
1238 	if (page_contains_unaccepted(page, order)) {
1239 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1240 			return;
1241 
1242 		accept_page(page, order);
1243 	}
1244 
1245 	/*
1246 	 * Bypass PCP and place fresh pages right to the tail, primarily
1247 	 * relevant for memory onlining.
1248 	 */
1249 	__free_pages_ok(page, order, FPI_TO_TAIL);
1250 }
1251 
1252 /*
1253  * Check that the whole (or subset of) a pageblock given by the interval of
1254  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1255  * with the migration of free compaction scanner.
1256  *
1257  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1258  *
1259  * It's possible on some configurations to have a setup like node0 node1 node0
1260  * i.e. it's possible that all pages within a zones range of pages do not
1261  * belong to a single zone. We assume that a border between node0 and node1
1262  * can occur within a single pageblock, but not a node0 node1 node0
1263  * interleaving within a single pageblock. It is therefore sufficient to check
1264  * the first and last page of a pageblock and avoid checking each individual
1265  * page in a pageblock.
1266  *
1267  * Note: the function may return non-NULL struct page even for a page block
1268  * which contains a memory hole (i.e. there is no physical memory for a subset
1269  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1270  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1271  * even though the start pfn is online and valid. This should be safe most of
1272  * the time because struct pages are still initialized via init_unavailable_range()
1273  * and pfn walkers shouldn't touch any physical memory range for which they do
1274  * not recognize any specific metadata in struct pages.
1275  */
1276 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1277 				     unsigned long end_pfn, struct zone *zone)
1278 {
1279 	struct page *start_page;
1280 	struct page *end_page;
1281 
1282 	/* end_pfn is one past the range we are checking */
1283 	end_pfn--;
1284 
1285 	if (!pfn_valid(end_pfn))
1286 		return NULL;
1287 
1288 	start_page = pfn_to_online_page(start_pfn);
1289 	if (!start_page)
1290 		return NULL;
1291 
1292 	if (page_zone(start_page) != zone)
1293 		return NULL;
1294 
1295 	end_page = pfn_to_page(end_pfn);
1296 
1297 	/* This gives a shorter code than deriving page_zone(end_page) */
1298 	if (page_zone_id(start_page) != page_zone_id(end_page))
1299 		return NULL;
1300 
1301 	return start_page;
1302 }
1303 
1304 /*
1305  * The order of subdivision here is critical for the IO subsystem.
1306  * Please do not alter this order without good reasons and regression
1307  * testing. Specifically, as large blocks of memory are subdivided,
1308  * the order in which smaller blocks are delivered depends on the order
1309  * they're subdivided in this function. This is the primary factor
1310  * influencing the order in which pages are delivered to the IO
1311  * subsystem according to empirical testing, and this is also justified
1312  * by considering the behavior of a buddy system containing a single
1313  * large block of memory acted on by a series of small allocations.
1314  * This behavior is a critical factor in sglist merging's success.
1315  *
1316  * -- nyc
1317  */
1318 static inline void expand(struct zone *zone, struct page *page,
1319 	int low, int high, int migratetype)
1320 {
1321 	unsigned long size = 1 << high;
1322 	unsigned long nr_added = 0;
1323 
1324 	while (high > low) {
1325 		high--;
1326 		size >>= 1;
1327 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1328 
1329 		/*
1330 		 * Mark as guard pages (or page), that will allow to
1331 		 * merge back to allocator when buddy will be freed.
1332 		 * Corresponding page table entries will not be touched,
1333 		 * pages will stay not present in virtual address space
1334 		 */
1335 		if (set_page_guard(zone, &page[size], high))
1336 			continue;
1337 
1338 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1339 		set_buddy_order(&page[size], high);
1340 		nr_added += size;
1341 	}
1342 	account_freepages(zone, nr_added, migratetype);
1343 }
1344 
1345 static void check_new_page_bad(struct page *page)
1346 {
1347 	if (unlikely(page->flags & __PG_HWPOISON)) {
1348 		/* Don't complain about hwpoisoned pages */
1349 		page_mapcount_reset(page); /* remove PageBuddy */
1350 		return;
1351 	}
1352 
1353 	bad_page(page,
1354 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1355 }
1356 
1357 /*
1358  * This page is about to be returned from the page allocator
1359  */
1360 static bool check_new_page(struct page *page)
1361 {
1362 	if (likely(page_expected_state(page,
1363 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1364 		return false;
1365 
1366 	check_new_page_bad(page);
1367 	return true;
1368 }
1369 
1370 static inline bool check_new_pages(struct page *page, unsigned int order)
1371 {
1372 	if (is_check_pages_enabled()) {
1373 		for (int i = 0; i < (1 << order); i++) {
1374 			struct page *p = page + i;
1375 
1376 			if (check_new_page(p))
1377 				return true;
1378 		}
1379 	}
1380 
1381 	return false;
1382 }
1383 
1384 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1385 {
1386 	/* Don't skip if a software KASAN mode is enabled. */
1387 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1388 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1389 		return false;
1390 
1391 	/* Skip, if hardware tag-based KASAN is not enabled. */
1392 	if (!kasan_hw_tags_enabled())
1393 		return true;
1394 
1395 	/*
1396 	 * With hardware tag-based KASAN enabled, skip if this has been
1397 	 * requested via __GFP_SKIP_KASAN.
1398 	 */
1399 	return flags & __GFP_SKIP_KASAN;
1400 }
1401 
1402 static inline bool should_skip_init(gfp_t flags)
1403 {
1404 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1405 	if (!kasan_hw_tags_enabled())
1406 		return false;
1407 
1408 	/* For hardware tag-based KASAN, skip if requested. */
1409 	return (flags & __GFP_SKIP_ZERO);
1410 }
1411 
1412 inline void post_alloc_hook(struct page *page, unsigned int order,
1413 				gfp_t gfp_flags)
1414 {
1415 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1416 			!should_skip_init(gfp_flags);
1417 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1418 	int i;
1419 
1420 	set_page_private(page, 0);
1421 	set_page_refcounted(page);
1422 
1423 	arch_alloc_page(page, order);
1424 	debug_pagealloc_map_pages(page, 1 << order);
1425 
1426 	/*
1427 	 * Page unpoisoning must happen before memory initialization.
1428 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1429 	 * allocations and the page unpoisoning code will complain.
1430 	 */
1431 	kernel_unpoison_pages(page, 1 << order);
1432 
1433 	/*
1434 	 * As memory initialization might be integrated into KASAN,
1435 	 * KASAN unpoisoning and memory initializion code must be
1436 	 * kept together to avoid discrepancies in behavior.
1437 	 */
1438 
1439 	/*
1440 	 * If memory tags should be zeroed
1441 	 * (which happens only when memory should be initialized as well).
1442 	 */
1443 	if (zero_tags) {
1444 		/* Initialize both memory and memory tags. */
1445 		for (i = 0; i != 1 << order; ++i)
1446 			tag_clear_highpage(page + i);
1447 
1448 		/* Take note that memory was initialized by the loop above. */
1449 		init = false;
1450 	}
1451 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1452 	    kasan_unpoison_pages(page, order, init)) {
1453 		/* Take note that memory was initialized by KASAN. */
1454 		if (kasan_has_integrated_init())
1455 			init = false;
1456 	} else {
1457 		/*
1458 		 * If memory tags have not been set by KASAN, reset the page
1459 		 * tags to ensure page_address() dereferencing does not fault.
1460 		 */
1461 		for (i = 0; i != 1 << order; ++i)
1462 			page_kasan_tag_reset(page + i);
1463 	}
1464 	/* If memory is still not initialized, initialize it now. */
1465 	if (init)
1466 		kernel_init_pages(page, 1 << order);
1467 
1468 	set_page_owner(page, order, gfp_flags);
1469 	page_table_check_alloc(page, order);
1470 	pgalloc_tag_add(page, current, 1 << order);
1471 }
1472 
1473 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1474 							unsigned int alloc_flags)
1475 {
1476 	post_alloc_hook(page, order, gfp_flags);
1477 
1478 	if (order && (gfp_flags & __GFP_COMP))
1479 		prep_compound_page(page, order);
1480 
1481 	/*
1482 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1483 	 * allocate the page. The expectation is that the caller is taking
1484 	 * steps that will free more memory. The caller should avoid the page
1485 	 * being used for !PFMEMALLOC purposes.
1486 	 */
1487 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1488 		set_page_pfmemalloc(page);
1489 	else
1490 		clear_page_pfmemalloc(page);
1491 }
1492 
1493 /*
1494  * Go through the free lists for the given migratetype and remove
1495  * the smallest available page from the freelists
1496  */
1497 static __always_inline
1498 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1499 						int migratetype)
1500 {
1501 	unsigned int current_order;
1502 	struct free_area *area;
1503 	struct page *page;
1504 
1505 	/* Find a page of the appropriate size in the preferred list */
1506 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1507 		area = &(zone->free_area[current_order]);
1508 		page = get_page_from_free_area(area, migratetype);
1509 		if (!page)
1510 			continue;
1511 		del_page_from_free_list(page, zone, current_order, migratetype);
1512 		expand(zone, page, order, current_order, migratetype);
1513 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1514 				pcp_allowed_order(order) &&
1515 				migratetype < MIGRATE_PCPTYPES);
1516 		return page;
1517 	}
1518 
1519 	return NULL;
1520 }
1521 
1522 
1523 /*
1524  * This array describes the order lists are fallen back to when
1525  * the free lists for the desirable migrate type are depleted
1526  *
1527  * The other migratetypes do not have fallbacks.
1528  */
1529 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1530 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1531 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1532 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1533 };
1534 
1535 #ifdef CONFIG_CMA
1536 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1537 					unsigned int order)
1538 {
1539 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1540 }
1541 #else
1542 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1543 					unsigned int order) { return NULL; }
1544 #endif
1545 
1546 /*
1547  * Change the type of a block and move all its free pages to that
1548  * type's freelist.
1549  */
1550 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1551 				  int old_mt, int new_mt)
1552 {
1553 	struct page *page;
1554 	unsigned long pfn, end_pfn;
1555 	unsigned int order;
1556 	int pages_moved = 0;
1557 
1558 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1559 	end_pfn = pageblock_end_pfn(start_pfn);
1560 
1561 	for (pfn = start_pfn; pfn < end_pfn;) {
1562 		page = pfn_to_page(pfn);
1563 		if (!PageBuddy(page)) {
1564 			pfn++;
1565 			continue;
1566 		}
1567 
1568 		/* Make sure we are not inadvertently changing nodes */
1569 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1570 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1571 
1572 		order = buddy_order(page);
1573 
1574 		move_to_free_list(page, zone, order, old_mt, new_mt);
1575 
1576 		pfn += 1 << order;
1577 		pages_moved += 1 << order;
1578 	}
1579 
1580 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1581 
1582 	return pages_moved;
1583 }
1584 
1585 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1586 				      unsigned long *start_pfn,
1587 				      int *num_free, int *num_movable)
1588 {
1589 	unsigned long pfn, start, end;
1590 
1591 	pfn = page_to_pfn(page);
1592 	start = pageblock_start_pfn(pfn);
1593 	end = pageblock_end_pfn(pfn);
1594 
1595 	/*
1596 	 * The caller only has the lock for @zone, don't touch ranges
1597 	 * that straddle into other zones. While we could move part of
1598 	 * the range that's inside the zone, this call is usually
1599 	 * accompanied by other operations such as migratetype updates
1600 	 * which also should be locked.
1601 	 */
1602 	if (!zone_spans_pfn(zone, start))
1603 		return false;
1604 	if (!zone_spans_pfn(zone, end - 1))
1605 		return false;
1606 
1607 	*start_pfn = start;
1608 
1609 	if (num_free) {
1610 		*num_free = 0;
1611 		*num_movable = 0;
1612 		for (pfn = start; pfn < end;) {
1613 			page = pfn_to_page(pfn);
1614 			if (PageBuddy(page)) {
1615 				int nr = 1 << buddy_order(page);
1616 
1617 				*num_free += nr;
1618 				pfn += nr;
1619 				continue;
1620 			}
1621 			/*
1622 			 * We assume that pages that could be isolated for
1623 			 * migration are movable. But we don't actually try
1624 			 * isolating, as that would be expensive.
1625 			 */
1626 			if (PageLRU(page) || __PageMovable(page))
1627 				(*num_movable)++;
1628 			pfn++;
1629 		}
1630 	}
1631 
1632 	return true;
1633 }
1634 
1635 static int move_freepages_block(struct zone *zone, struct page *page,
1636 				int old_mt, int new_mt)
1637 {
1638 	unsigned long start_pfn;
1639 
1640 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1641 		return -1;
1642 
1643 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1644 }
1645 
1646 #ifdef CONFIG_MEMORY_ISOLATION
1647 /* Look for a buddy that straddles start_pfn */
1648 static unsigned long find_large_buddy(unsigned long start_pfn)
1649 {
1650 	int order = 0;
1651 	struct page *page;
1652 	unsigned long pfn = start_pfn;
1653 
1654 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1655 		/* Nothing found */
1656 		if (++order > MAX_PAGE_ORDER)
1657 			return start_pfn;
1658 		pfn &= ~0UL << order;
1659 	}
1660 
1661 	/*
1662 	 * Found a preceding buddy, but does it straddle?
1663 	 */
1664 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1665 		return pfn;
1666 
1667 	/* Nothing found */
1668 	return start_pfn;
1669 }
1670 
1671 /* Split a multi-block free page into its individual pageblocks */
1672 static void split_large_buddy(struct zone *zone, struct page *page,
1673 			      unsigned long pfn, int order)
1674 {
1675 	unsigned long end_pfn = pfn + (1 << order);
1676 
1677 	VM_WARN_ON_ONCE(order <= pageblock_order);
1678 	VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1));
1679 
1680 	/* Caller removed page from freelist, buddy info cleared! */
1681 	VM_WARN_ON_ONCE(PageBuddy(page));
1682 
1683 	while (pfn != end_pfn) {
1684 		int mt = get_pfnblock_migratetype(page, pfn);
1685 
1686 		__free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE);
1687 		pfn += pageblock_nr_pages;
1688 		page = pfn_to_page(pfn);
1689 	}
1690 }
1691 
1692 /**
1693  * move_freepages_block_isolate - move free pages in block for page isolation
1694  * @zone: the zone
1695  * @page: the pageblock page
1696  * @migratetype: migratetype to set on the pageblock
1697  *
1698  * This is similar to move_freepages_block(), but handles the special
1699  * case encountered in page isolation, where the block of interest
1700  * might be part of a larger buddy spanning multiple pageblocks.
1701  *
1702  * Unlike the regular page allocator path, which moves pages while
1703  * stealing buddies off the freelist, page isolation is interested in
1704  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1705  *
1706  * This function handles that. Straddling buddies are split into
1707  * individual pageblocks. Only the block of interest is moved.
1708  *
1709  * Returns %true if pages could be moved, %false otherwise.
1710  */
1711 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1712 				  int migratetype)
1713 {
1714 	unsigned long start_pfn, pfn;
1715 
1716 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1717 		return false;
1718 
1719 	/* No splits needed if buddies can't span multiple blocks */
1720 	if (pageblock_order == MAX_PAGE_ORDER)
1721 		goto move;
1722 
1723 	/* We're a tail block in a larger buddy */
1724 	pfn = find_large_buddy(start_pfn);
1725 	if (pfn != start_pfn) {
1726 		struct page *buddy = pfn_to_page(pfn);
1727 		int order = buddy_order(buddy);
1728 
1729 		del_page_from_free_list(buddy, zone, order,
1730 					get_pfnblock_migratetype(buddy, pfn));
1731 		set_pageblock_migratetype(page, migratetype);
1732 		split_large_buddy(zone, buddy, pfn, order);
1733 		return true;
1734 	}
1735 
1736 	/* We're the starting block of a larger buddy */
1737 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1738 		int order = buddy_order(page);
1739 
1740 		del_page_from_free_list(page, zone, order,
1741 					get_pfnblock_migratetype(page, pfn));
1742 		set_pageblock_migratetype(page, migratetype);
1743 		split_large_buddy(zone, page, pfn, order);
1744 		return true;
1745 	}
1746 move:
1747 	__move_freepages_block(zone, start_pfn,
1748 			       get_pfnblock_migratetype(page, start_pfn),
1749 			       migratetype);
1750 	return true;
1751 }
1752 #endif /* CONFIG_MEMORY_ISOLATION */
1753 
1754 static void change_pageblock_range(struct page *pageblock_page,
1755 					int start_order, int migratetype)
1756 {
1757 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1758 
1759 	while (nr_pageblocks--) {
1760 		set_pageblock_migratetype(pageblock_page, migratetype);
1761 		pageblock_page += pageblock_nr_pages;
1762 	}
1763 }
1764 
1765 /*
1766  * When we are falling back to another migratetype during allocation, try to
1767  * steal extra free pages from the same pageblocks to satisfy further
1768  * allocations, instead of polluting multiple pageblocks.
1769  *
1770  * If we are stealing a relatively large buddy page, it is likely there will
1771  * be more free pages in the pageblock, so try to steal them all. For
1772  * reclaimable and unmovable allocations, we steal regardless of page size,
1773  * as fragmentation caused by those allocations polluting movable pageblocks
1774  * is worse than movable allocations stealing from unmovable and reclaimable
1775  * pageblocks.
1776  */
1777 static bool can_steal_fallback(unsigned int order, int start_mt)
1778 {
1779 	/*
1780 	 * Leaving this order check is intended, although there is
1781 	 * relaxed order check in next check. The reason is that
1782 	 * we can actually steal whole pageblock if this condition met,
1783 	 * but, below check doesn't guarantee it and that is just heuristic
1784 	 * so could be changed anytime.
1785 	 */
1786 	if (order >= pageblock_order)
1787 		return true;
1788 
1789 	if (order >= pageblock_order / 2 ||
1790 		start_mt == MIGRATE_RECLAIMABLE ||
1791 		start_mt == MIGRATE_UNMOVABLE ||
1792 		page_group_by_mobility_disabled)
1793 		return true;
1794 
1795 	return false;
1796 }
1797 
1798 static inline bool boost_watermark(struct zone *zone)
1799 {
1800 	unsigned long max_boost;
1801 
1802 	if (!watermark_boost_factor)
1803 		return false;
1804 	/*
1805 	 * Don't bother in zones that are unlikely to produce results.
1806 	 * On small machines, including kdump capture kernels running
1807 	 * in a small area, boosting the watermark can cause an out of
1808 	 * memory situation immediately.
1809 	 */
1810 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1811 		return false;
1812 
1813 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1814 			watermark_boost_factor, 10000);
1815 
1816 	/*
1817 	 * high watermark may be uninitialised if fragmentation occurs
1818 	 * very early in boot so do not boost. We do not fall
1819 	 * through and boost by pageblock_nr_pages as failing
1820 	 * allocations that early means that reclaim is not going
1821 	 * to help and it may even be impossible to reclaim the
1822 	 * boosted watermark resulting in a hang.
1823 	 */
1824 	if (!max_boost)
1825 		return false;
1826 
1827 	max_boost = max(pageblock_nr_pages, max_boost);
1828 
1829 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1830 		max_boost);
1831 
1832 	return true;
1833 }
1834 
1835 /*
1836  * This function implements actual steal behaviour. If order is large enough, we
1837  * can claim the whole pageblock for the requested migratetype. If not, we check
1838  * the pageblock for constituent pages; if at least half of the pages are free
1839  * or compatible, we can still claim the whole block, so pages freed in the
1840  * future will be put on the correct free list. Otherwise, we isolate exactly
1841  * the order we need from the fallback block and leave its migratetype alone.
1842  */
1843 static struct page *
1844 steal_suitable_fallback(struct zone *zone, struct page *page,
1845 			int current_order, int order, int start_type,
1846 			unsigned int alloc_flags, bool whole_block)
1847 {
1848 	int free_pages, movable_pages, alike_pages;
1849 	unsigned long start_pfn;
1850 	int block_type;
1851 
1852 	block_type = get_pageblock_migratetype(page);
1853 
1854 	/*
1855 	 * This can happen due to races and we want to prevent broken
1856 	 * highatomic accounting.
1857 	 */
1858 	if (is_migrate_highatomic(block_type))
1859 		goto single_page;
1860 
1861 	/* Take ownership for orders >= pageblock_order */
1862 	if (current_order >= pageblock_order) {
1863 		del_page_from_free_list(page, zone, current_order, block_type);
1864 		change_pageblock_range(page, current_order, start_type);
1865 		expand(zone, page, order, current_order, start_type);
1866 		return page;
1867 	}
1868 
1869 	/*
1870 	 * Boost watermarks to increase reclaim pressure to reduce the
1871 	 * likelihood of future fallbacks. Wake kswapd now as the node
1872 	 * may be balanced overall and kswapd will not wake naturally.
1873 	 */
1874 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1875 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1876 
1877 	/* We are not allowed to try stealing from the whole block */
1878 	if (!whole_block)
1879 		goto single_page;
1880 
1881 	/* moving whole block can fail due to zone boundary conditions */
1882 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1883 				       &movable_pages))
1884 		goto single_page;
1885 
1886 	/*
1887 	 * Determine how many pages are compatible with our allocation.
1888 	 * For movable allocation, it's the number of movable pages which
1889 	 * we just obtained. For other types it's a bit more tricky.
1890 	 */
1891 	if (start_type == MIGRATE_MOVABLE) {
1892 		alike_pages = movable_pages;
1893 	} else {
1894 		/*
1895 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1896 		 * to MOVABLE pageblock, consider all non-movable pages as
1897 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1898 		 * vice versa, be conservative since we can't distinguish the
1899 		 * exact migratetype of non-movable pages.
1900 		 */
1901 		if (block_type == MIGRATE_MOVABLE)
1902 			alike_pages = pageblock_nr_pages
1903 						- (free_pages + movable_pages);
1904 		else
1905 			alike_pages = 0;
1906 	}
1907 	/*
1908 	 * If a sufficient number of pages in the block are either free or of
1909 	 * compatible migratability as our allocation, claim the whole block.
1910 	 */
1911 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1912 			page_group_by_mobility_disabled) {
1913 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1914 		return __rmqueue_smallest(zone, order, start_type);
1915 	}
1916 
1917 single_page:
1918 	del_page_from_free_list(page, zone, current_order, block_type);
1919 	expand(zone, page, order, current_order, block_type);
1920 	return page;
1921 }
1922 
1923 /*
1924  * Check whether there is a suitable fallback freepage with requested order.
1925  * If only_stealable is true, this function returns fallback_mt only if
1926  * we can steal other freepages all together. This would help to reduce
1927  * fragmentation due to mixed migratetype pages in one pageblock.
1928  */
1929 int find_suitable_fallback(struct free_area *area, unsigned int order,
1930 			int migratetype, bool only_stealable, bool *can_steal)
1931 {
1932 	int i;
1933 	int fallback_mt;
1934 
1935 	if (area->nr_free == 0)
1936 		return -1;
1937 
1938 	*can_steal = false;
1939 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1940 		fallback_mt = fallbacks[migratetype][i];
1941 		if (free_area_empty(area, fallback_mt))
1942 			continue;
1943 
1944 		if (can_steal_fallback(order, migratetype))
1945 			*can_steal = true;
1946 
1947 		if (!only_stealable)
1948 			return fallback_mt;
1949 
1950 		if (*can_steal)
1951 			return fallback_mt;
1952 	}
1953 
1954 	return -1;
1955 }
1956 
1957 /*
1958  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1959  * there are no empty page blocks that contain a page with a suitable order
1960  */
1961 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1962 {
1963 	int mt;
1964 	unsigned long max_managed, flags;
1965 
1966 	/*
1967 	 * The number reserved as: minimum is 1 pageblock, maximum is
1968 	 * roughly 1% of a zone. But if 1% of a zone falls below a
1969 	 * pageblock size, then don't reserve any pageblocks.
1970 	 * Check is race-prone but harmless.
1971 	 */
1972 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1973 		return;
1974 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1975 	if (zone->nr_reserved_highatomic >= max_managed)
1976 		return;
1977 
1978 	spin_lock_irqsave(&zone->lock, flags);
1979 
1980 	/* Recheck the nr_reserved_highatomic limit under the lock */
1981 	if (zone->nr_reserved_highatomic >= max_managed)
1982 		goto out_unlock;
1983 
1984 	/* Yoink! */
1985 	mt = get_pageblock_migratetype(page);
1986 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1987 	if (migratetype_is_mergeable(mt))
1988 		if (move_freepages_block(zone, page, mt,
1989 					 MIGRATE_HIGHATOMIC) != -1)
1990 			zone->nr_reserved_highatomic += pageblock_nr_pages;
1991 
1992 out_unlock:
1993 	spin_unlock_irqrestore(&zone->lock, flags);
1994 }
1995 
1996 /*
1997  * Used when an allocation is about to fail under memory pressure. This
1998  * potentially hurts the reliability of high-order allocations when under
1999  * intense memory pressure but failed atomic allocations should be easier
2000  * to recover from than an OOM.
2001  *
2002  * If @force is true, try to unreserve a pageblock even though highatomic
2003  * pageblock is exhausted.
2004  */
2005 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2006 						bool force)
2007 {
2008 	struct zonelist *zonelist = ac->zonelist;
2009 	unsigned long flags;
2010 	struct zoneref *z;
2011 	struct zone *zone;
2012 	struct page *page;
2013 	int order;
2014 	int ret;
2015 
2016 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2017 								ac->nodemask) {
2018 		/*
2019 		 * Preserve at least one pageblock unless memory pressure
2020 		 * is really high.
2021 		 */
2022 		if (!force && zone->nr_reserved_highatomic <=
2023 					pageblock_nr_pages)
2024 			continue;
2025 
2026 		spin_lock_irqsave(&zone->lock, flags);
2027 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2028 			struct free_area *area = &(zone->free_area[order]);
2029 			int mt;
2030 
2031 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2032 			if (!page)
2033 				continue;
2034 
2035 			mt = get_pageblock_migratetype(page);
2036 			/*
2037 			 * In page freeing path, migratetype change is racy so
2038 			 * we can counter several free pages in a pageblock
2039 			 * in this loop although we changed the pageblock type
2040 			 * from highatomic to ac->migratetype. So we should
2041 			 * adjust the count once.
2042 			 */
2043 			if (is_migrate_highatomic(mt)) {
2044 				/*
2045 				 * It should never happen but changes to
2046 				 * locking could inadvertently allow a per-cpu
2047 				 * drain to add pages to MIGRATE_HIGHATOMIC
2048 				 * while unreserving so be safe and watch for
2049 				 * underflows.
2050 				 */
2051 				zone->nr_reserved_highatomic -= min(
2052 						pageblock_nr_pages,
2053 						zone->nr_reserved_highatomic);
2054 			}
2055 
2056 			/*
2057 			 * Convert to ac->migratetype and avoid the normal
2058 			 * pageblock stealing heuristics. Minimally, the caller
2059 			 * is doing the work and needs the pages. More
2060 			 * importantly, if the block was always converted to
2061 			 * MIGRATE_UNMOVABLE or another type then the number
2062 			 * of pageblocks that cannot be completely freed
2063 			 * may increase.
2064 			 */
2065 			ret = move_freepages_block(zone, page, mt,
2066 						   ac->migratetype);
2067 			/*
2068 			 * Reserving this block already succeeded, so this should
2069 			 * not fail on zone boundaries.
2070 			 */
2071 			WARN_ON_ONCE(ret == -1);
2072 			if (ret > 0) {
2073 				spin_unlock_irqrestore(&zone->lock, flags);
2074 				return ret;
2075 			}
2076 		}
2077 		spin_unlock_irqrestore(&zone->lock, flags);
2078 	}
2079 
2080 	return false;
2081 }
2082 
2083 /*
2084  * Try finding a free buddy page on the fallback list and put it on the free
2085  * list of requested migratetype, possibly along with other pages from the same
2086  * block, depending on fragmentation avoidance heuristics. Returns true if
2087  * fallback was found so that __rmqueue_smallest() can grab it.
2088  *
2089  * The use of signed ints for order and current_order is a deliberate
2090  * deviation from the rest of this file, to make the for loop
2091  * condition simpler.
2092  */
2093 static __always_inline struct page *
2094 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2095 						unsigned int alloc_flags)
2096 {
2097 	struct free_area *area;
2098 	int current_order;
2099 	int min_order = order;
2100 	struct page *page;
2101 	int fallback_mt;
2102 	bool can_steal;
2103 
2104 	/*
2105 	 * Do not steal pages from freelists belonging to other pageblocks
2106 	 * i.e. orders < pageblock_order. If there are no local zones free,
2107 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2108 	 */
2109 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2110 		min_order = pageblock_order;
2111 
2112 	/*
2113 	 * Find the largest available free page in the other list. This roughly
2114 	 * approximates finding the pageblock with the most free pages, which
2115 	 * would be too costly to do exactly.
2116 	 */
2117 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2118 				--current_order) {
2119 		area = &(zone->free_area[current_order]);
2120 		fallback_mt = find_suitable_fallback(area, current_order,
2121 				start_migratetype, false, &can_steal);
2122 		if (fallback_mt == -1)
2123 			continue;
2124 
2125 		/*
2126 		 * We cannot steal all free pages from the pageblock and the
2127 		 * requested migratetype is movable. In that case it's better to
2128 		 * steal and split the smallest available page instead of the
2129 		 * largest available page, because even if the next movable
2130 		 * allocation falls back into a different pageblock than this
2131 		 * one, it won't cause permanent fragmentation.
2132 		 */
2133 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2134 					&& current_order > order)
2135 			goto find_smallest;
2136 
2137 		goto do_steal;
2138 	}
2139 
2140 	return NULL;
2141 
2142 find_smallest:
2143 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2144 		area = &(zone->free_area[current_order]);
2145 		fallback_mt = find_suitable_fallback(area, current_order,
2146 				start_migratetype, false, &can_steal);
2147 		if (fallback_mt != -1)
2148 			break;
2149 	}
2150 
2151 	/*
2152 	 * This should not happen - we already found a suitable fallback
2153 	 * when looking for the largest page.
2154 	 */
2155 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2156 
2157 do_steal:
2158 	page = get_page_from_free_area(area, fallback_mt);
2159 
2160 	/* take off list, maybe claim block, expand remainder */
2161 	page = steal_suitable_fallback(zone, page, current_order, order,
2162 				       start_migratetype, alloc_flags, can_steal);
2163 
2164 	trace_mm_page_alloc_extfrag(page, order, current_order,
2165 		start_migratetype, fallback_mt);
2166 
2167 	return page;
2168 }
2169 
2170 /*
2171  * Do the hard work of removing an element from the buddy allocator.
2172  * Call me with the zone->lock already held.
2173  */
2174 static __always_inline struct page *
2175 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2176 						unsigned int alloc_flags)
2177 {
2178 	struct page *page;
2179 
2180 	if (IS_ENABLED(CONFIG_CMA)) {
2181 		/*
2182 		 * Balance movable allocations between regular and CMA areas by
2183 		 * allocating from CMA when over half of the zone's free memory
2184 		 * is in the CMA area.
2185 		 */
2186 		if (alloc_flags & ALLOC_CMA &&
2187 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2188 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2189 			page = __rmqueue_cma_fallback(zone, order);
2190 			if (page)
2191 				return page;
2192 		}
2193 	}
2194 
2195 	page = __rmqueue_smallest(zone, order, migratetype);
2196 	if (unlikely(!page)) {
2197 		if (alloc_flags & ALLOC_CMA)
2198 			page = __rmqueue_cma_fallback(zone, order);
2199 
2200 		if (!page)
2201 			page = __rmqueue_fallback(zone, order, migratetype,
2202 						  alloc_flags);
2203 	}
2204 	return page;
2205 }
2206 
2207 /*
2208  * Obtain a specified number of elements from the buddy allocator, all under
2209  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2210  * Returns the number of new pages which were placed at *list.
2211  */
2212 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2213 			unsigned long count, struct list_head *list,
2214 			int migratetype, unsigned int alloc_flags)
2215 {
2216 	unsigned long flags;
2217 	int i;
2218 
2219 	spin_lock_irqsave(&zone->lock, flags);
2220 	for (i = 0; i < count; ++i) {
2221 		struct page *page = __rmqueue(zone, order, migratetype,
2222 								alloc_flags);
2223 		if (unlikely(page == NULL))
2224 			break;
2225 
2226 		/*
2227 		 * Split buddy pages returned by expand() are received here in
2228 		 * physical page order. The page is added to the tail of
2229 		 * caller's list. From the callers perspective, the linked list
2230 		 * is ordered by page number under some conditions. This is
2231 		 * useful for IO devices that can forward direction from the
2232 		 * head, thus also in the physical page order. This is useful
2233 		 * for IO devices that can merge IO requests if the physical
2234 		 * pages are ordered properly.
2235 		 */
2236 		list_add_tail(&page->pcp_list, list);
2237 	}
2238 	spin_unlock_irqrestore(&zone->lock, flags);
2239 
2240 	return i;
2241 }
2242 
2243 /*
2244  * Called from the vmstat counter updater to decay the PCP high.
2245  * Return whether there are addition works to do.
2246  */
2247 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2248 {
2249 	int high_min, to_drain, batch;
2250 	int todo = 0;
2251 
2252 	high_min = READ_ONCE(pcp->high_min);
2253 	batch = READ_ONCE(pcp->batch);
2254 	/*
2255 	 * Decrease pcp->high periodically to try to free possible
2256 	 * idle PCP pages.  And, avoid to free too many pages to
2257 	 * control latency.  This caps pcp->high decrement too.
2258 	 */
2259 	if (pcp->high > high_min) {
2260 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2261 				 pcp->high - (pcp->high >> 3), high_min);
2262 		if (pcp->high > high_min)
2263 			todo++;
2264 	}
2265 
2266 	to_drain = pcp->count - pcp->high;
2267 	if (to_drain > 0) {
2268 		spin_lock(&pcp->lock);
2269 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2270 		spin_unlock(&pcp->lock);
2271 		todo++;
2272 	}
2273 
2274 	return todo;
2275 }
2276 
2277 #ifdef CONFIG_NUMA
2278 /*
2279  * Called from the vmstat counter updater to drain pagesets of this
2280  * currently executing processor on remote nodes after they have
2281  * expired.
2282  */
2283 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2284 {
2285 	int to_drain, batch;
2286 
2287 	batch = READ_ONCE(pcp->batch);
2288 	to_drain = min(pcp->count, batch);
2289 	if (to_drain > 0) {
2290 		spin_lock(&pcp->lock);
2291 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2292 		spin_unlock(&pcp->lock);
2293 	}
2294 }
2295 #endif
2296 
2297 /*
2298  * Drain pcplists of the indicated processor and zone.
2299  */
2300 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2301 {
2302 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2303 	int count = READ_ONCE(pcp->count);
2304 
2305 	while (count) {
2306 		int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2307 		count -= to_drain;
2308 
2309 		spin_lock(&pcp->lock);
2310 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2311 		spin_unlock(&pcp->lock);
2312 	}
2313 }
2314 
2315 /*
2316  * Drain pcplists of all zones on the indicated processor.
2317  */
2318 static void drain_pages(unsigned int cpu)
2319 {
2320 	struct zone *zone;
2321 
2322 	for_each_populated_zone(zone) {
2323 		drain_pages_zone(cpu, zone);
2324 	}
2325 }
2326 
2327 /*
2328  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2329  */
2330 void drain_local_pages(struct zone *zone)
2331 {
2332 	int cpu = smp_processor_id();
2333 
2334 	if (zone)
2335 		drain_pages_zone(cpu, zone);
2336 	else
2337 		drain_pages(cpu);
2338 }
2339 
2340 /*
2341  * The implementation of drain_all_pages(), exposing an extra parameter to
2342  * drain on all cpus.
2343  *
2344  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2345  * not empty. The check for non-emptiness can however race with a free to
2346  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2347  * that need the guarantee that every CPU has drained can disable the
2348  * optimizing racy check.
2349  */
2350 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2351 {
2352 	int cpu;
2353 
2354 	/*
2355 	 * Allocate in the BSS so we won't require allocation in
2356 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2357 	 */
2358 	static cpumask_t cpus_with_pcps;
2359 
2360 	/*
2361 	 * Do not drain if one is already in progress unless it's specific to
2362 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2363 	 * the drain to be complete when the call returns.
2364 	 */
2365 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2366 		if (!zone)
2367 			return;
2368 		mutex_lock(&pcpu_drain_mutex);
2369 	}
2370 
2371 	/*
2372 	 * We don't care about racing with CPU hotplug event
2373 	 * as offline notification will cause the notified
2374 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2375 	 * disables preemption as part of its processing
2376 	 */
2377 	for_each_online_cpu(cpu) {
2378 		struct per_cpu_pages *pcp;
2379 		struct zone *z;
2380 		bool has_pcps = false;
2381 
2382 		if (force_all_cpus) {
2383 			/*
2384 			 * The pcp.count check is racy, some callers need a
2385 			 * guarantee that no cpu is missed.
2386 			 */
2387 			has_pcps = true;
2388 		} else if (zone) {
2389 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2390 			if (pcp->count)
2391 				has_pcps = true;
2392 		} else {
2393 			for_each_populated_zone(z) {
2394 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2395 				if (pcp->count) {
2396 					has_pcps = true;
2397 					break;
2398 				}
2399 			}
2400 		}
2401 
2402 		if (has_pcps)
2403 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2404 		else
2405 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2406 	}
2407 
2408 	for_each_cpu(cpu, &cpus_with_pcps) {
2409 		if (zone)
2410 			drain_pages_zone(cpu, zone);
2411 		else
2412 			drain_pages(cpu);
2413 	}
2414 
2415 	mutex_unlock(&pcpu_drain_mutex);
2416 }
2417 
2418 /*
2419  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2420  *
2421  * When zone parameter is non-NULL, spill just the single zone's pages.
2422  */
2423 void drain_all_pages(struct zone *zone)
2424 {
2425 	__drain_all_pages(zone, false);
2426 }
2427 
2428 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2429 {
2430 	int min_nr_free, max_nr_free;
2431 
2432 	/* Free as much as possible if batch freeing high-order pages. */
2433 	if (unlikely(free_high))
2434 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2435 
2436 	/* Check for PCP disabled or boot pageset */
2437 	if (unlikely(high < batch))
2438 		return 1;
2439 
2440 	/* Leave at least pcp->batch pages on the list */
2441 	min_nr_free = batch;
2442 	max_nr_free = high - batch;
2443 
2444 	/*
2445 	 * Increase the batch number to the number of the consecutive
2446 	 * freed pages to reduce zone lock contention.
2447 	 */
2448 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2449 
2450 	return batch;
2451 }
2452 
2453 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2454 		       int batch, bool free_high)
2455 {
2456 	int high, high_min, high_max;
2457 
2458 	high_min = READ_ONCE(pcp->high_min);
2459 	high_max = READ_ONCE(pcp->high_max);
2460 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2461 
2462 	if (unlikely(!high))
2463 		return 0;
2464 
2465 	if (unlikely(free_high)) {
2466 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2467 				high_min);
2468 		return 0;
2469 	}
2470 
2471 	/*
2472 	 * If reclaim is active, limit the number of pages that can be
2473 	 * stored on pcp lists
2474 	 */
2475 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2476 		int free_count = max_t(int, pcp->free_count, batch);
2477 
2478 		pcp->high = max(high - free_count, high_min);
2479 		return min(batch << 2, pcp->high);
2480 	}
2481 
2482 	if (high_min == high_max)
2483 		return high;
2484 
2485 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2486 		int free_count = max_t(int, pcp->free_count, batch);
2487 
2488 		pcp->high = max(high - free_count, high_min);
2489 		high = max(pcp->count, high_min);
2490 	} else if (pcp->count >= high) {
2491 		int need_high = pcp->free_count + batch;
2492 
2493 		/* pcp->high should be large enough to hold batch freed pages */
2494 		if (pcp->high < need_high)
2495 			pcp->high = clamp(need_high, high_min, high_max);
2496 	}
2497 
2498 	return high;
2499 }
2500 
2501 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2502 				   struct page *page, int migratetype,
2503 				   unsigned int order)
2504 {
2505 	int high, batch;
2506 	int pindex;
2507 	bool free_high = false;
2508 
2509 	/*
2510 	 * On freeing, reduce the number of pages that are batch allocated.
2511 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2512 	 * allocations.
2513 	 */
2514 	pcp->alloc_factor >>= 1;
2515 	__count_vm_events(PGFREE, 1 << order);
2516 	pindex = order_to_pindex(migratetype, order);
2517 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2518 	pcp->count += 1 << order;
2519 
2520 	batch = READ_ONCE(pcp->batch);
2521 	/*
2522 	 * As high-order pages other than THP's stored on PCP can contribute
2523 	 * to fragmentation, limit the number stored when PCP is heavily
2524 	 * freeing without allocation. The remainder after bulk freeing
2525 	 * stops will be drained from vmstat refresh context.
2526 	 */
2527 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2528 		free_high = (pcp->free_count >= batch &&
2529 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2530 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2531 			      pcp->count >= READ_ONCE(batch)));
2532 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2533 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2534 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2535 	}
2536 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2537 		pcp->free_count += (1 << order);
2538 	high = nr_pcp_high(pcp, zone, batch, free_high);
2539 	if (pcp->count >= high) {
2540 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2541 				   pcp, pindex);
2542 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2543 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2544 				      ZONE_MOVABLE, 0))
2545 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2546 	}
2547 }
2548 
2549 /*
2550  * Free a pcp page
2551  */
2552 void free_unref_page(struct page *page, unsigned int order)
2553 {
2554 	unsigned long __maybe_unused UP_flags;
2555 	struct per_cpu_pages *pcp;
2556 	struct zone *zone;
2557 	unsigned long pfn = page_to_pfn(page);
2558 	int migratetype;
2559 
2560 	if (!pcp_allowed_order(order)) {
2561 		__free_pages_ok(page, order, FPI_NONE);
2562 		return;
2563 	}
2564 
2565 	if (!free_pages_prepare(page, order))
2566 		return;
2567 
2568 	/*
2569 	 * We only track unmovable, reclaimable and movable on pcp lists.
2570 	 * Place ISOLATE pages on the isolated list because they are being
2571 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2572 	 * get those areas back if necessary. Otherwise, we may have to free
2573 	 * excessively into the page allocator
2574 	 */
2575 	migratetype = get_pfnblock_migratetype(page, pfn);
2576 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2577 		if (unlikely(is_migrate_isolate(migratetype))) {
2578 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2579 			return;
2580 		}
2581 		migratetype = MIGRATE_MOVABLE;
2582 	}
2583 
2584 	zone = page_zone(page);
2585 	pcp_trylock_prepare(UP_flags);
2586 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2587 	if (pcp) {
2588 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2589 		pcp_spin_unlock(pcp);
2590 	} else {
2591 		free_one_page(zone, page, pfn, order, FPI_NONE);
2592 	}
2593 	pcp_trylock_finish(UP_flags);
2594 }
2595 
2596 /*
2597  * Free a batch of folios
2598  */
2599 void free_unref_folios(struct folio_batch *folios)
2600 {
2601 	unsigned long __maybe_unused UP_flags;
2602 	struct per_cpu_pages *pcp = NULL;
2603 	struct zone *locked_zone = NULL;
2604 	int i, j;
2605 
2606 	/* Prepare folios for freeing */
2607 	for (i = 0, j = 0; i < folios->nr; i++) {
2608 		struct folio *folio = folios->folios[i];
2609 		unsigned long pfn = folio_pfn(folio);
2610 		unsigned int order = folio_order(folio);
2611 
2612 		if (order > 0 && folio_test_large_rmappable(folio))
2613 			folio_undo_large_rmappable(folio);
2614 		if (!free_pages_prepare(&folio->page, order))
2615 			continue;
2616 		/*
2617 		 * Free orders not handled on the PCP directly to the
2618 		 * allocator.
2619 		 */
2620 		if (!pcp_allowed_order(order)) {
2621 			free_one_page(folio_zone(folio), &folio->page,
2622 				      pfn, order, FPI_NONE);
2623 			continue;
2624 		}
2625 		folio->private = (void *)(unsigned long)order;
2626 		if (j != i)
2627 			folios->folios[j] = folio;
2628 		j++;
2629 	}
2630 	folios->nr = j;
2631 
2632 	for (i = 0; i < folios->nr; i++) {
2633 		struct folio *folio = folios->folios[i];
2634 		struct zone *zone = folio_zone(folio);
2635 		unsigned long pfn = folio_pfn(folio);
2636 		unsigned int order = (unsigned long)folio->private;
2637 		int migratetype;
2638 
2639 		folio->private = NULL;
2640 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2641 
2642 		/* Different zone requires a different pcp lock */
2643 		if (zone != locked_zone ||
2644 		    is_migrate_isolate(migratetype)) {
2645 			if (pcp) {
2646 				pcp_spin_unlock(pcp);
2647 				pcp_trylock_finish(UP_flags);
2648 				locked_zone = NULL;
2649 				pcp = NULL;
2650 			}
2651 
2652 			/*
2653 			 * Free isolated pages directly to the
2654 			 * allocator, see comment in free_unref_page.
2655 			 */
2656 			if (is_migrate_isolate(migratetype)) {
2657 				free_one_page(zone, &folio->page, pfn,
2658 					      order, FPI_NONE);
2659 				continue;
2660 			}
2661 
2662 			/*
2663 			 * trylock is necessary as folios may be getting freed
2664 			 * from IRQ or SoftIRQ context after an IO completion.
2665 			 */
2666 			pcp_trylock_prepare(UP_flags);
2667 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2668 			if (unlikely(!pcp)) {
2669 				pcp_trylock_finish(UP_flags);
2670 				free_one_page(zone, &folio->page, pfn,
2671 					      order, FPI_NONE);
2672 				continue;
2673 			}
2674 			locked_zone = zone;
2675 		}
2676 
2677 		/*
2678 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2679 		 * to the MIGRATE_MOVABLE pcp list.
2680 		 */
2681 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2682 			migratetype = MIGRATE_MOVABLE;
2683 
2684 		trace_mm_page_free_batched(&folio->page);
2685 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2686 				order);
2687 	}
2688 
2689 	if (pcp) {
2690 		pcp_spin_unlock(pcp);
2691 		pcp_trylock_finish(UP_flags);
2692 	}
2693 	folio_batch_reinit(folios);
2694 }
2695 
2696 /*
2697  * split_page takes a non-compound higher-order page, and splits it into
2698  * n (1<<order) sub-pages: page[0..n]
2699  * Each sub-page must be freed individually.
2700  *
2701  * Note: this is probably too low level an operation for use in drivers.
2702  * Please consult with lkml before using this in your driver.
2703  */
2704 void split_page(struct page *page, unsigned int order)
2705 {
2706 	int i;
2707 
2708 	VM_BUG_ON_PAGE(PageCompound(page), page);
2709 	VM_BUG_ON_PAGE(!page_count(page), page);
2710 
2711 	for (i = 1; i < (1 << order); i++)
2712 		set_page_refcounted(page + i);
2713 	split_page_owner(page, order, 0);
2714 	pgalloc_tag_split(page, 1 << order);
2715 	split_page_memcg(page, order, 0);
2716 }
2717 EXPORT_SYMBOL_GPL(split_page);
2718 
2719 int __isolate_free_page(struct page *page, unsigned int order)
2720 {
2721 	struct zone *zone = page_zone(page);
2722 	int mt = get_pageblock_migratetype(page);
2723 
2724 	if (!is_migrate_isolate(mt)) {
2725 		unsigned long watermark;
2726 		/*
2727 		 * Obey watermarks as if the page was being allocated. We can
2728 		 * emulate a high-order watermark check with a raised order-0
2729 		 * watermark, because we already know our high-order page
2730 		 * exists.
2731 		 */
2732 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2733 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2734 			return 0;
2735 	}
2736 
2737 	del_page_from_free_list(page, zone, order, mt);
2738 
2739 	/*
2740 	 * Set the pageblock if the isolated page is at least half of a
2741 	 * pageblock
2742 	 */
2743 	if (order >= pageblock_order - 1) {
2744 		struct page *endpage = page + (1 << order) - 1;
2745 		for (; page < endpage; page += pageblock_nr_pages) {
2746 			int mt = get_pageblock_migratetype(page);
2747 			/*
2748 			 * Only change normal pageblocks (i.e., they can merge
2749 			 * with others)
2750 			 */
2751 			if (migratetype_is_mergeable(mt))
2752 				move_freepages_block(zone, page, mt,
2753 						     MIGRATE_MOVABLE);
2754 		}
2755 	}
2756 
2757 	return 1UL << order;
2758 }
2759 
2760 /**
2761  * __putback_isolated_page - Return a now-isolated page back where we got it
2762  * @page: Page that was isolated
2763  * @order: Order of the isolated page
2764  * @mt: The page's pageblock's migratetype
2765  *
2766  * This function is meant to return a page pulled from the free lists via
2767  * __isolate_free_page back to the free lists they were pulled from.
2768  */
2769 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2770 {
2771 	struct zone *zone = page_zone(page);
2772 
2773 	/* zone lock should be held when this function is called */
2774 	lockdep_assert_held(&zone->lock);
2775 
2776 	/* Return isolated page to tail of freelist. */
2777 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2778 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2779 }
2780 
2781 /*
2782  * Update NUMA hit/miss statistics
2783  */
2784 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2785 				   long nr_account)
2786 {
2787 #ifdef CONFIG_NUMA
2788 	enum numa_stat_item local_stat = NUMA_LOCAL;
2789 
2790 	/* skip numa counters update if numa stats is disabled */
2791 	if (!static_branch_likely(&vm_numa_stat_key))
2792 		return;
2793 
2794 	if (zone_to_nid(z) != numa_node_id())
2795 		local_stat = NUMA_OTHER;
2796 
2797 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2798 		__count_numa_events(z, NUMA_HIT, nr_account);
2799 	else {
2800 		__count_numa_events(z, NUMA_MISS, nr_account);
2801 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2802 	}
2803 	__count_numa_events(z, local_stat, nr_account);
2804 #endif
2805 }
2806 
2807 static __always_inline
2808 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2809 			   unsigned int order, unsigned int alloc_flags,
2810 			   int migratetype)
2811 {
2812 	struct page *page;
2813 	unsigned long flags;
2814 
2815 	do {
2816 		page = NULL;
2817 		spin_lock_irqsave(&zone->lock, flags);
2818 		if (alloc_flags & ALLOC_HIGHATOMIC)
2819 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2820 		if (!page) {
2821 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2822 
2823 			/*
2824 			 * If the allocation fails, allow OOM handling access
2825 			 * to HIGHATOMIC reserves as failing now is worse than
2826 			 * failing a high-order atomic allocation in the
2827 			 * future.
2828 			 */
2829 			if (!page && (alloc_flags & ALLOC_OOM))
2830 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2831 
2832 			if (!page) {
2833 				spin_unlock_irqrestore(&zone->lock, flags);
2834 				return NULL;
2835 			}
2836 		}
2837 		spin_unlock_irqrestore(&zone->lock, flags);
2838 	} while (check_new_pages(page, order));
2839 
2840 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2841 	zone_statistics(preferred_zone, zone, 1);
2842 
2843 	return page;
2844 }
2845 
2846 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2847 {
2848 	int high, base_batch, batch, max_nr_alloc;
2849 	int high_max, high_min;
2850 
2851 	base_batch = READ_ONCE(pcp->batch);
2852 	high_min = READ_ONCE(pcp->high_min);
2853 	high_max = READ_ONCE(pcp->high_max);
2854 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2855 
2856 	/* Check for PCP disabled or boot pageset */
2857 	if (unlikely(high < base_batch))
2858 		return 1;
2859 
2860 	if (order)
2861 		batch = base_batch;
2862 	else
2863 		batch = (base_batch << pcp->alloc_factor);
2864 
2865 	/*
2866 	 * If we had larger pcp->high, we could avoid to allocate from
2867 	 * zone.
2868 	 */
2869 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2870 		high = pcp->high = min(high + batch, high_max);
2871 
2872 	if (!order) {
2873 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2874 		/*
2875 		 * Double the number of pages allocated each time there is
2876 		 * subsequent allocation of order-0 pages without any freeing.
2877 		 */
2878 		if (batch <= max_nr_alloc &&
2879 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2880 			pcp->alloc_factor++;
2881 		batch = min(batch, max_nr_alloc);
2882 	}
2883 
2884 	/*
2885 	 * Scale batch relative to order if batch implies free pages
2886 	 * can be stored on the PCP. Batch can be 1 for small zones or
2887 	 * for boot pagesets which should never store free pages as
2888 	 * the pages may belong to arbitrary zones.
2889 	 */
2890 	if (batch > 1)
2891 		batch = max(batch >> order, 2);
2892 
2893 	return batch;
2894 }
2895 
2896 /* Remove page from the per-cpu list, caller must protect the list */
2897 static inline
2898 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2899 			int migratetype,
2900 			unsigned int alloc_flags,
2901 			struct per_cpu_pages *pcp,
2902 			struct list_head *list)
2903 {
2904 	struct page *page;
2905 
2906 	do {
2907 		if (list_empty(list)) {
2908 			int batch = nr_pcp_alloc(pcp, zone, order);
2909 			int alloced;
2910 
2911 			alloced = rmqueue_bulk(zone, order,
2912 					batch, list,
2913 					migratetype, alloc_flags);
2914 
2915 			pcp->count += alloced << order;
2916 			if (unlikely(list_empty(list)))
2917 				return NULL;
2918 		}
2919 
2920 		page = list_first_entry(list, struct page, pcp_list);
2921 		list_del(&page->pcp_list);
2922 		pcp->count -= 1 << order;
2923 	} while (check_new_pages(page, order));
2924 
2925 	return page;
2926 }
2927 
2928 /* Lock and remove page from the per-cpu list */
2929 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2930 			struct zone *zone, unsigned int order,
2931 			int migratetype, unsigned int alloc_flags)
2932 {
2933 	struct per_cpu_pages *pcp;
2934 	struct list_head *list;
2935 	struct page *page;
2936 	unsigned long __maybe_unused UP_flags;
2937 
2938 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2939 	pcp_trylock_prepare(UP_flags);
2940 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2941 	if (!pcp) {
2942 		pcp_trylock_finish(UP_flags);
2943 		return NULL;
2944 	}
2945 
2946 	/*
2947 	 * On allocation, reduce the number of pages that are batch freed.
2948 	 * See nr_pcp_free() where free_factor is increased for subsequent
2949 	 * frees.
2950 	 */
2951 	pcp->free_count >>= 1;
2952 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2953 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2954 	pcp_spin_unlock(pcp);
2955 	pcp_trylock_finish(UP_flags);
2956 	if (page) {
2957 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2958 		zone_statistics(preferred_zone, zone, 1);
2959 	}
2960 	return page;
2961 }
2962 
2963 /*
2964  * Allocate a page from the given zone.
2965  * Use pcplists for THP or "cheap" high-order allocations.
2966  */
2967 
2968 /*
2969  * Do not instrument rmqueue() with KMSAN. This function may call
2970  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2971  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2972  * may call rmqueue() again, which will result in a deadlock.
2973  */
2974 __no_sanitize_memory
2975 static inline
2976 struct page *rmqueue(struct zone *preferred_zone,
2977 			struct zone *zone, unsigned int order,
2978 			gfp_t gfp_flags, unsigned int alloc_flags,
2979 			int migratetype)
2980 {
2981 	struct page *page;
2982 
2983 	/*
2984 	 * We most definitely don't want callers attempting to
2985 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2986 	 */
2987 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2988 
2989 	if (likely(pcp_allowed_order(order))) {
2990 		page = rmqueue_pcplist(preferred_zone, zone, order,
2991 				       migratetype, alloc_flags);
2992 		if (likely(page))
2993 			goto out;
2994 	}
2995 
2996 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2997 							migratetype);
2998 
2999 out:
3000 	/* Separate test+clear to avoid unnecessary atomics */
3001 	if ((alloc_flags & ALLOC_KSWAPD) &&
3002 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3003 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3004 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3005 	}
3006 
3007 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3008 	return page;
3009 }
3010 
3011 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3012 {
3013 	return __should_fail_alloc_page(gfp_mask, order);
3014 }
3015 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3016 
3017 static inline long __zone_watermark_unusable_free(struct zone *z,
3018 				unsigned int order, unsigned int alloc_flags)
3019 {
3020 	long unusable_free = (1 << order) - 1;
3021 
3022 	/*
3023 	 * If the caller does not have rights to reserves below the min
3024 	 * watermark then subtract the high-atomic reserves. This will
3025 	 * over-estimate the size of the atomic reserve but it avoids a search.
3026 	 */
3027 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3028 		unusable_free += z->nr_reserved_highatomic;
3029 
3030 #ifdef CONFIG_CMA
3031 	/* If allocation can't use CMA areas don't use free CMA pages */
3032 	if (!(alloc_flags & ALLOC_CMA))
3033 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3034 #endif
3035 #ifdef CONFIG_UNACCEPTED_MEMORY
3036 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
3037 #endif
3038 
3039 	return unusable_free;
3040 }
3041 
3042 /*
3043  * Return true if free base pages are above 'mark'. For high-order checks it
3044  * will return true of the order-0 watermark is reached and there is at least
3045  * one free page of a suitable size. Checking now avoids taking the zone lock
3046  * to check in the allocation paths if no pages are free.
3047  */
3048 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3049 			 int highest_zoneidx, unsigned int alloc_flags,
3050 			 long free_pages)
3051 {
3052 	long min = mark;
3053 	int o;
3054 
3055 	/* free_pages may go negative - that's OK */
3056 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3057 
3058 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3059 		/*
3060 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3061 		 * as OOM.
3062 		 */
3063 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3064 			min -= min / 2;
3065 
3066 			/*
3067 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3068 			 * access more reserves than just __GFP_HIGH. Other
3069 			 * non-blocking allocations requests such as GFP_NOWAIT
3070 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3071 			 * access to the min reserve.
3072 			 */
3073 			if (alloc_flags & ALLOC_NON_BLOCK)
3074 				min -= min / 4;
3075 		}
3076 
3077 		/*
3078 		 * OOM victims can try even harder than the normal reserve
3079 		 * users on the grounds that it's definitely going to be in
3080 		 * the exit path shortly and free memory. Any allocation it
3081 		 * makes during the free path will be small and short-lived.
3082 		 */
3083 		if (alloc_flags & ALLOC_OOM)
3084 			min -= min / 2;
3085 	}
3086 
3087 	/*
3088 	 * Check watermarks for an order-0 allocation request. If these
3089 	 * are not met, then a high-order request also cannot go ahead
3090 	 * even if a suitable page happened to be free.
3091 	 */
3092 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3093 		return false;
3094 
3095 	/* If this is an order-0 request then the watermark is fine */
3096 	if (!order)
3097 		return true;
3098 
3099 	/* For a high-order request, check at least one suitable page is free */
3100 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3101 		struct free_area *area = &z->free_area[o];
3102 		int mt;
3103 
3104 		if (!area->nr_free)
3105 			continue;
3106 
3107 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3108 			if (!free_area_empty(area, mt))
3109 				return true;
3110 		}
3111 
3112 #ifdef CONFIG_CMA
3113 		if ((alloc_flags & ALLOC_CMA) &&
3114 		    !free_area_empty(area, MIGRATE_CMA)) {
3115 			return true;
3116 		}
3117 #endif
3118 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3119 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3120 			return true;
3121 		}
3122 	}
3123 	return false;
3124 }
3125 
3126 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3127 		      int highest_zoneidx, unsigned int alloc_flags)
3128 {
3129 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3130 					zone_page_state(z, NR_FREE_PAGES));
3131 }
3132 
3133 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3134 				unsigned long mark, int highest_zoneidx,
3135 				unsigned int alloc_flags, gfp_t gfp_mask)
3136 {
3137 	long free_pages;
3138 
3139 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3140 
3141 	/*
3142 	 * Fast check for order-0 only. If this fails then the reserves
3143 	 * need to be calculated.
3144 	 */
3145 	if (!order) {
3146 		long usable_free;
3147 		long reserved;
3148 
3149 		usable_free = free_pages;
3150 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3151 
3152 		/* reserved may over estimate high-atomic reserves. */
3153 		usable_free -= min(usable_free, reserved);
3154 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3155 			return true;
3156 	}
3157 
3158 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3159 					free_pages))
3160 		return true;
3161 
3162 	/*
3163 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3164 	 * when checking the min watermark. The min watermark is the
3165 	 * point where boosting is ignored so that kswapd is woken up
3166 	 * when below the low watermark.
3167 	 */
3168 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3169 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3170 		mark = z->_watermark[WMARK_MIN];
3171 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3172 					alloc_flags, free_pages);
3173 	}
3174 
3175 	return false;
3176 }
3177 
3178 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3179 			unsigned long mark, int highest_zoneidx)
3180 {
3181 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3182 
3183 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3184 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3185 
3186 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3187 								free_pages);
3188 }
3189 
3190 #ifdef CONFIG_NUMA
3191 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3192 
3193 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3194 {
3195 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3196 				node_reclaim_distance;
3197 }
3198 #else	/* CONFIG_NUMA */
3199 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3200 {
3201 	return true;
3202 }
3203 #endif	/* CONFIG_NUMA */
3204 
3205 /*
3206  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3207  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3208  * premature use of a lower zone may cause lowmem pressure problems that
3209  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3210  * probably too small. It only makes sense to spread allocations to avoid
3211  * fragmentation between the Normal and DMA32 zones.
3212  */
3213 static inline unsigned int
3214 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3215 {
3216 	unsigned int alloc_flags;
3217 
3218 	/*
3219 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3220 	 * to save a branch.
3221 	 */
3222 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3223 
3224 #ifdef CONFIG_ZONE_DMA32
3225 	if (!zone)
3226 		return alloc_flags;
3227 
3228 	if (zone_idx(zone) != ZONE_NORMAL)
3229 		return alloc_flags;
3230 
3231 	/*
3232 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3233 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3234 	 * on UMA that if Normal is populated then so is DMA32.
3235 	 */
3236 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3237 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3238 		return alloc_flags;
3239 
3240 	alloc_flags |= ALLOC_NOFRAGMENT;
3241 #endif /* CONFIG_ZONE_DMA32 */
3242 	return alloc_flags;
3243 }
3244 
3245 /* Must be called after current_gfp_context() which can change gfp_mask */
3246 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3247 						  unsigned int alloc_flags)
3248 {
3249 #ifdef CONFIG_CMA
3250 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3251 		alloc_flags |= ALLOC_CMA;
3252 #endif
3253 	return alloc_flags;
3254 }
3255 
3256 /*
3257  * get_page_from_freelist goes through the zonelist trying to allocate
3258  * a page.
3259  */
3260 static struct page *
3261 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3262 						const struct alloc_context *ac)
3263 {
3264 	struct zoneref *z;
3265 	struct zone *zone;
3266 	struct pglist_data *last_pgdat = NULL;
3267 	bool last_pgdat_dirty_ok = false;
3268 	bool no_fallback;
3269 
3270 retry:
3271 	/*
3272 	 * Scan zonelist, looking for a zone with enough free.
3273 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3274 	 */
3275 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3276 	z = ac->preferred_zoneref;
3277 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3278 					ac->nodemask) {
3279 		struct page *page;
3280 		unsigned long mark;
3281 
3282 		if (cpusets_enabled() &&
3283 			(alloc_flags & ALLOC_CPUSET) &&
3284 			!__cpuset_zone_allowed(zone, gfp_mask))
3285 				continue;
3286 		/*
3287 		 * When allocating a page cache page for writing, we
3288 		 * want to get it from a node that is within its dirty
3289 		 * limit, such that no single node holds more than its
3290 		 * proportional share of globally allowed dirty pages.
3291 		 * The dirty limits take into account the node's
3292 		 * lowmem reserves and high watermark so that kswapd
3293 		 * should be able to balance it without having to
3294 		 * write pages from its LRU list.
3295 		 *
3296 		 * XXX: For now, allow allocations to potentially
3297 		 * exceed the per-node dirty limit in the slowpath
3298 		 * (spread_dirty_pages unset) before going into reclaim,
3299 		 * which is important when on a NUMA setup the allowed
3300 		 * nodes are together not big enough to reach the
3301 		 * global limit.  The proper fix for these situations
3302 		 * will require awareness of nodes in the
3303 		 * dirty-throttling and the flusher threads.
3304 		 */
3305 		if (ac->spread_dirty_pages) {
3306 			if (last_pgdat != zone->zone_pgdat) {
3307 				last_pgdat = zone->zone_pgdat;
3308 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3309 			}
3310 
3311 			if (!last_pgdat_dirty_ok)
3312 				continue;
3313 		}
3314 
3315 		if (no_fallback && nr_online_nodes > 1 &&
3316 		    zone != ac->preferred_zoneref->zone) {
3317 			int local_nid;
3318 
3319 			/*
3320 			 * If moving to a remote node, retry but allow
3321 			 * fragmenting fallbacks. Locality is more important
3322 			 * than fragmentation avoidance.
3323 			 */
3324 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3325 			if (zone_to_nid(zone) != local_nid) {
3326 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3327 				goto retry;
3328 			}
3329 		}
3330 
3331 		/*
3332 		 * Detect whether the number of free pages is below high
3333 		 * watermark.  If so, we will decrease pcp->high and free
3334 		 * PCP pages in free path to reduce the possibility of
3335 		 * premature page reclaiming.  Detection is done here to
3336 		 * avoid to do that in hotter free path.
3337 		 */
3338 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3339 			goto check_alloc_wmark;
3340 
3341 		mark = high_wmark_pages(zone);
3342 		if (zone_watermark_fast(zone, order, mark,
3343 					ac->highest_zoneidx, alloc_flags,
3344 					gfp_mask))
3345 			goto try_this_zone;
3346 		else
3347 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3348 
3349 check_alloc_wmark:
3350 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3351 		if (!zone_watermark_fast(zone, order, mark,
3352 				       ac->highest_zoneidx, alloc_flags,
3353 				       gfp_mask)) {
3354 			int ret;
3355 
3356 			if (has_unaccepted_memory()) {
3357 				if (try_to_accept_memory(zone, order))
3358 					goto try_this_zone;
3359 			}
3360 
3361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3362 			/*
3363 			 * Watermark failed for this zone, but see if we can
3364 			 * grow this zone if it contains deferred pages.
3365 			 */
3366 			if (deferred_pages_enabled()) {
3367 				if (_deferred_grow_zone(zone, order))
3368 					goto try_this_zone;
3369 			}
3370 #endif
3371 			/* Checked here to keep the fast path fast */
3372 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3373 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3374 				goto try_this_zone;
3375 
3376 			if (!node_reclaim_enabled() ||
3377 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3378 				continue;
3379 
3380 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3381 			switch (ret) {
3382 			case NODE_RECLAIM_NOSCAN:
3383 				/* did not scan */
3384 				continue;
3385 			case NODE_RECLAIM_FULL:
3386 				/* scanned but unreclaimable */
3387 				continue;
3388 			default:
3389 				/* did we reclaim enough */
3390 				if (zone_watermark_ok(zone, order, mark,
3391 					ac->highest_zoneidx, alloc_flags))
3392 					goto try_this_zone;
3393 
3394 				continue;
3395 			}
3396 		}
3397 
3398 try_this_zone:
3399 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3400 				gfp_mask, alloc_flags, ac->migratetype);
3401 		if (page) {
3402 			prep_new_page(page, order, gfp_mask, alloc_flags);
3403 
3404 			/*
3405 			 * If this is a high-order atomic allocation then check
3406 			 * if the pageblock should be reserved for the future
3407 			 */
3408 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3409 				reserve_highatomic_pageblock(page, zone);
3410 
3411 			return page;
3412 		} else {
3413 			if (has_unaccepted_memory()) {
3414 				if (try_to_accept_memory(zone, order))
3415 					goto try_this_zone;
3416 			}
3417 
3418 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3419 			/* Try again if zone has deferred pages */
3420 			if (deferred_pages_enabled()) {
3421 				if (_deferred_grow_zone(zone, order))
3422 					goto try_this_zone;
3423 			}
3424 #endif
3425 		}
3426 	}
3427 
3428 	/*
3429 	 * It's possible on a UMA machine to get through all zones that are
3430 	 * fragmented. If avoiding fragmentation, reset and try again.
3431 	 */
3432 	if (no_fallback) {
3433 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3434 		goto retry;
3435 	}
3436 
3437 	return NULL;
3438 }
3439 
3440 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3441 {
3442 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3443 
3444 	/*
3445 	 * This documents exceptions given to allocations in certain
3446 	 * contexts that are allowed to allocate outside current's set
3447 	 * of allowed nodes.
3448 	 */
3449 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3450 		if (tsk_is_oom_victim(current) ||
3451 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3452 			filter &= ~SHOW_MEM_FILTER_NODES;
3453 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3454 		filter &= ~SHOW_MEM_FILTER_NODES;
3455 
3456 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3457 }
3458 
3459 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3460 {
3461 	struct va_format vaf;
3462 	va_list args;
3463 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3464 
3465 	if ((gfp_mask & __GFP_NOWARN) ||
3466 	     !__ratelimit(&nopage_rs) ||
3467 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3468 		return;
3469 
3470 	va_start(args, fmt);
3471 	vaf.fmt = fmt;
3472 	vaf.va = &args;
3473 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3474 			current->comm, &vaf, gfp_mask, &gfp_mask,
3475 			nodemask_pr_args(nodemask));
3476 	va_end(args);
3477 
3478 	cpuset_print_current_mems_allowed();
3479 	pr_cont("\n");
3480 	dump_stack();
3481 	warn_alloc_show_mem(gfp_mask, nodemask);
3482 }
3483 
3484 static inline struct page *
3485 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3486 			      unsigned int alloc_flags,
3487 			      const struct alloc_context *ac)
3488 {
3489 	struct page *page;
3490 
3491 	page = get_page_from_freelist(gfp_mask, order,
3492 			alloc_flags|ALLOC_CPUSET, ac);
3493 	/*
3494 	 * fallback to ignore cpuset restriction if our nodes
3495 	 * are depleted
3496 	 */
3497 	if (!page)
3498 		page = get_page_from_freelist(gfp_mask, order,
3499 				alloc_flags, ac);
3500 
3501 	return page;
3502 }
3503 
3504 static inline struct page *
3505 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3506 	const struct alloc_context *ac, unsigned long *did_some_progress)
3507 {
3508 	struct oom_control oc = {
3509 		.zonelist = ac->zonelist,
3510 		.nodemask = ac->nodemask,
3511 		.memcg = NULL,
3512 		.gfp_mask = gfp_mask,
3513 		.order = order,
3514 	};
3515 	struct page *page;
3516 
3517 	*did_some_progress = 0;
3518 
3519 	/*
3520 	 * Acquire the oom lock.  If that fails, somebody else is
3521 	 * making progress for us.
3522 	 */
3523 	if (!mutex_trylock(&oom_lock)) {
3524 		*did_some_progress = 1;
3525 		schedule_timeout_uninterruptible(1);
3526 		return NULL;
3527 	}
3528 
3529 	/*
3530 	 * Go through the zonelist yet one more time, keep very high watermark
3531 	 * here, this is only to catch a parallel oom killing, we must fail if
3532 	 * we're still under heavy pressure. But make sure that this reclaim
3533 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3534 	 * allocation which will never fail due to oom_lock already held.
3535 	 */
3536 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3537 				      ~__GFP_DIRECT_RECLAIM, order,
3538 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3539 	if (page)
3540 		goto out;
3541 
3542 	/* Coredumps can quickly deplete all memory reserves */
3543 	if (current->flags & PF_DUMPCORE)
3544 		goto out;
3545 	/* The OOM killer will not help higher order allocs */
3546 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3547 		goto out;
3548 	/*
3549 	 * We have already exhausted all our reclaim opportunities without any
3550 	 * success so it is time to admit defeat. We will skip the OOM killer
3551 	 * because it is very likely that the caller has a more reasonable
3552 	 * fallback than shooting a random task.
3553 	 *
3554 	 * The OOM killer may not free memory on a specific node.
3555 	 */
3556 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3557 		goto out;
3558 	/* The OOM killer does not needlessly kill tasks for lowmem */
3559 	if (ac->highest_zoneidx < ZONE_NORMAL)
3560 		goto out;
3561 	if (pm_suspended_storage())
3562 		goto out;
3563 	/*
3564 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3565 	 * other request to make a forward progress.
3566 	 * We are in an unfortunate situation where out_of_memory cannot
3567 	 * do much for this context but let's try it to at least get
3568 	 * access to memory reserved if the current task is killed (see
3569 	 * out_of_memory). Once filesystems are ready to handle allocation
3570 	 * failures more gracefully we should just bail out here.
3571 	 */
3572 
3573 	/* Exhausted what can be done so it's blame time */
3574 	if (out_of_memory(&oc) ||
3575 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3576 		*did_some_progress = 1;
3577 
3578 		/*
3579 		 * Help non-failing allocations by giving them access to memory
3580 		 * reserves
3581 		 */
3582 		if (gfp_mask & __GFP_NOFAIL)
3583 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3584 					ALLOC_NO_WATERMARKS, ac);
3585 	}
3586 out:
3587 	mutex_unlock(&oom_lock);
3588 	return page;
3589 }
3590 
3591 /*
3592  * Maximum number of compaction retries with a progress before OOM
3593  * killer is consider as the only way to move forward.
3594  */
3595 #define MAX_COMPACT_RETRIES 16
3596 
3597 #ifdef CONFIG_COMPACTION
3598 /* Try memory compaction for high-order allocations before reclaim */
3599 static struct page *
3600 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3601 		unsigned int alloc_flags, const struct alloc_context *ac,
3602 		enum compact_priority prio, enum compact_result *compact_result)
3603 {
3604 	struct page *page = NULL;
3605 	unsigned long pflags;
3606 	unsigned int noreclaim_flag;
3607 
3608 	if (!order)
3609 		return NULL;
3610 
3611 	psi_memstall_enter(&pflags);
3612 	delayacct_compact_start();
3613 	noreclaim_flag = memalloc_noreclaim_save();
3614 
3615 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3616 								prio, &page);
3617 
3618 	memalloc_noreclaim_restore(noreclaim_flag);
3619 	psi_memstall_leave(&pflags);
3620 	delayacct_compact_end();
3621 
3622 	if (*compact_result == COMPACT_SKIPPED)
3623 		return NULL;
3624 	/*
3625 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3626 	 * count a compaction stall
3627 	 */
3628 	count_vm_event(COMPACTSTALL);
3629 
3630 	/* Prep a captured page if available */
3631 	if (page)
3632 		prep_new_page(page, order, gfp_mask, alloc_flags);
3633 
3634 	/* Try get a page from the freelist if available */
3635 	if (!page)
3636 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3637 
3638 	if (page) {
3639 		struct zone *zone = page_zone(page);
3640 
3641 		zone->compact_blockskip_flush = false;
3642 		compaction_defer_reset(zone, order, true);
3643 		count_vm_event(COMPACTSUCCESS);
3644 		return page;
3645 	}
3646 
3647 	/*
3648 	 * It's bad if compaction run occurs and fails. The most likely reason
3649 	 * is that pages exist, but not enough to satisfy watermarks.
3650 	 */
3651 	count_vm_event(COMPACTFAIL);
3652 
3653 	cond_resched();
3654 
3655 	return NULL;
3656 }
3657 
3658 static inline bool
3659 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3660 		     enum compact_result compact_result,
3661 		     enum compact_priority *compact_priority,
3662 		     int *compaction_retries)
3663 {
3664 	int max_retries = MAX_COMPACT_RETRIES;
3665 	int min_priority;
3666 	bool ret = false;
3667 	int retries = *compaction_retries;
3668 	enum compact_priority priority = *compact_priority;
3669 
3670 	if (!order)
3671 		return false;
3672 
3673 	if (fatal_signal_pending(current))
3674 		return false;
3675 
3676 	/*
3677 	 * Compaction was skipped due to a lack of free order-0
3678 	 * migration targets. Continue if reclaim can help.
3679 	 */
3680 	if (compact_result == COMPACT_SKIPPED) {
3681 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3682 		goto out;
3683 	}
3684 
3685 	/*
3686 	 * Compaction managed to coalesce some page blocks, but the
3687 	 * allocation failed presumably due to a race. Retry some.
3688 	 */
3689 	if (compact_result == COMPACT_SUCCESS) {
3690 		/*
3691 		 * !costly requests are much more important than
3692 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3693 		 * facto nofail and invoke OOM killer to move on while
3694 		 * costly can fail and users are ready to cope with
3695 		 * that. 1/4 retries is rather arbitrary but we would
3696 		 * need much more detailed feedback from compaction to
3697 		 * make a better decision.
3698 		 */
3699 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3700 			max_retries /= 4;
3701 
3702 		if (++(*compaction_retries) <= max_retries) {
3703 			ret = true;
3704 			goto out;
3705 		}
3706 	}
3707 
3708 	/*
3709 	 * Compaction failed. Retry with increasing priority.
3710 	 */
3711 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3712 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3713 
3714 	if (*compact_priority > min_priority) {
3715 		(*compact_priority)--;
3716 		*compaction_retries = 0;
3717 		ret = true;
3718 	}
3719 out:
3720 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3721 	return ret;
3722 }
3723 #else
3724 static inline struct page *
3725 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3726 		unsigned int alloc_flags, const struct alloc_context *ac,
3727 		enum compact_priority prio, enum compact_result *compact_result)
3728 {
3729 	*compact_result = COMPACT_SKIPPED;
3730 	return NULL;
3731 }
3732 
3733 static inline bool
3734 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3735 		     enum compact_result compact_result,
3736 		     enum compact_priority *compact_priority,
3737 		     int *compaction_retries)
3738 {
3739 	struct zone *zone;
3740 	struct zoneref *z;
3741 
3742 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3743 		return false;
3744 
3745 	/*
3746 	 * There are setups with compaction disabled which would prefer to loop
3747 	 * inside the allocator rather than hit the oom killer prematurely.
3748 	 * Let's give them a good hope and keep retrying while the order-0
3749 	 * watermarks are OK.
3750 	 */
3751 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3752 				ac->highest_zoneidx, ac->nodemask) {
3753 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3754 					ac->highest_zoneidx, alloc_flags))
3755 			return true;
3756 	}
3757 	return false;
3758 }
3759 #endif /* CONFIG_COMPACTION */
3760 
3761 #ifdef CONFIG_LOCKDEP
3762 static struct lockdep_map __fs_reclaim_map =
3763 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3764 
3765 static bool __need_reclaim(gfp_t gfp_mask)
3766 {
3767 	/* no reclaim without waiting on it */
3768 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3769 		return false;
3770 
3771 	/* this guy won't enter reclaim */
3772 	if (current->flags & PF_MEMALLOC)
3773 		return false;
3774 
3775 	if (gfp_mask & __GFP_NOLOCKDEP)
3776 		return false;
3777 
3778 	return true;
3779 }
3780 
3781 void __fs_reclaim_acquire(unsigned long ip)
3782 {
3783 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3784 }
3785 
3786 void __fs_reclaim_release(unsigned long ip)
3787 {
3788 	lock_release(&__fs_reclaim_map, ip);
3789 }
3790 
3791 void fs_reclaim_acquire(gfp_t gfp_mask)
3792 {
3793 	gfp_mask = current_gfp_context(gfp_mask);
3794 
3795 	if (__need_reclaim(gfp_mask)) {
3796 		if (gfp_mask & __GFP_FS)
3797 			__fs_reclaim_acquire(_RET_IP_);
3798 
3799 #ifdef CONFIG_MMU_NOTIFIER
3800 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3801 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3802 #endif
3803 
3804 	}
3805 }
3806 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3807 
3808 void fs_reclaim_release(gfp_t gfp_mask)
3809 {
3810 	gfp_mask = current_gfp_context(gfp_mask);
3811 
3812 	if (__need_reclaim(gfp_mask)) {
3813 		if (gfp_mask & __GFP_FS)
3814 			__fs_reclaim_release(_RET_IP_);
3815 	}
3816 }
3817 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3818 #endif
3819 
3820 /*
3821  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3822  * have been rebuilt so allocation retries. Reader side does not lock and
3823  * retries the allocation if zonelist changes. Writer side is protected by the
3824  * embedded spin_lock.
3825  */
3826 static DEFINE_SEQLOCK(zonelist_update_seq);
3827 
3828 static unsigned int zonelist_iter_begin(void)
3829 {
3830 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3831 		return read_seqbegin(&zonelist_update_seq);
3832 
3833 	return 0;
3834 }
3835 
3836 static unsigned int check_retry_zonelist(unsigned int seq)
3837 {
3838 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3839 		return read_seqretry(&zonelist_update_seq, seq);
3840 
3841 	return seq;
3842 }
3843 
3844 /* Perform direct synchronous page reclaim */
3845 static unsigned long
3846 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3847 					const struct alloc_context *ac)
3848 {
3849 	unsigned int noreclaim_flag;
3850 	unsigned long progress;
3851 
3852 	cond_resched();
3853 
3854 	/* We now go into synchronous reclaim */
3855 	cpuset_memory_pressure_bump();
3856 	fs_reclaim_acquire(gfp_mask);
3857 	noreclaim_flag = memalloc_noreclaim_save();
3858 
3859 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3860 								ac->nodemask);
3861 
3862 	memalloc_noreclaim_restore(noreclaim_flag);
3863 	fs_reclaim_release(gfp_mask);
3864 
3865 	cond_resched();
3866 
3867 	return progress;
3868 }
3869 
3870 /* The really slow allocator path where we enter direct reclaim */
3871 static inline struct page *
3872 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3873 		unsigned int alloc_flags, const struct alloc_context *ac,
3874 		unsigned long *did_some_progress)
3875 {
3876 	struct page *page = NULL;
3877 	unsigned long pflags;
3878 	bool drained = false;
3879 
3880 	psi_memstall_enter(&pflags);
3881 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3882 	if (unlikely(!(*did_some_progress)))
3883 		goto out;
3884 
3885 retry:
3886 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3887 
3888 	/*
3889 	 * If an allocation failed after direct reclaim, it could be because
3890 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3891 	 * Shrink them and try again
3892 	 */
3893 	if (!page && !drained) {
3894 		unreserve_highatomic_pageblock(ac, false);
3895 		drain_all_pages(NULL);
3896 		drained = true;
3897 		goto retry;
3898 	}
3899 out:
3900 	psi_memstall_leave(&pflags);
3901 
3902 	return page;
3903 }
3904 
3905 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3906 			     const struct alloc_context *ac)
3907 {
3908 	struct zoneref *z;
3909 	struct zone *zone;
3910 	pg_data_t *last_pgdat = NULL;
3911 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3912 
3913 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3914 					ac->nodemask) {
3915 		if (!managed_zone(zone))
3916 			continue;
3917 		if (last_pgdat != zone->zone_pgdat) {
3918 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3919 			last_pgdat = zone->zone_pgdat;
3920 		}
3921 	}
3922 }
3923 
3924 static inline unsigned int
3925 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3926 {
3927 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3928 
3929 	/*
3930 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3931 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3932 	 * to save two branches.
3933 	 */
3934 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3935 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3936 
3937 	/*
3938 	 * The caller may dip into page reserves a bit more if the caller
3939 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3940 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3941 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3942 	 */
3943 	alloc_flags |= (__force int)
3944 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3945 
3946 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3947 		/*
3948 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3949 		 * if it can't schedule.
3950 		 */
3951 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3952 			alloc_flags |= ALLOC_NON_BLOCK;
3953 
3954 			if (order > 0)
3955 				alloc_flags |= ALLOC_HIGHATOMIC;
3956 		}
3957 
3958 		/*
3959 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3960 		 * GFP_ATOMIC) rather than fail, see the comment for
3961 		 * cpuset_node_allowed().
3962 		 */
3963 		if (alloc_flags & ALLOC_MIN_RESERVE)
3964 			alloc_flags &= ~ALLOC_CPUSET;
3965 	} else if (unlikely(rt_task(current)) && in_task())
3966 		alloc_flags |= ALLOC_MIN_RESERVE;
3967 
3968 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3969 
3970 	return alloc_flags;
3971 }
3972 
3973 static bool oom_reserves_allowed(struct task_struct *tsk)
3974 {
3975 	if (!tsk_is_oom_victim(tsk))
3976 		return false;
3977 
3978 	/*
3979 	 * !MMU doesn't have oom reaper so give access to memory reserves
3980 	 * only to the thread with TIF_MEMDIE set
3981 	 */
3982 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3983 		return false;
3984 
3985 	return true;
3986 }
3987 
3988 /*
3989  * Distinguish requests which really need access to full memory
3990  * reserves from oom victims which can live with a portion of it
3991  */
3992 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3993 {
3994 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3995 		return 0;
3996 	if (gfp_mask & __GFP_MEMALLOC)
3997 		return ALLOC_NO_WATERMARKS;
3998 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3999 		return ALLOC_NO_WATERMARKS;
4000 	if (!in_interrupt()) {
4001 		if (current->flags & PF_MEMALLOC)
4002 			return ALLOC_NO_WATERMARKS;
4003 		else if (oom_reserves_allowed(current))
4004 			return ALLOC_OOM;
4005 	}
4006 
4007 	return 0;
4008 }
4009 
4010 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4011 {
4012 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4013 }
4014 
4015 /*
4016  * Checks whether it makes sense to retry the reclaim to make a forward progress
4017  * for the given allocation request.
4018  *
4019  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4020  * without success, or when we couldn't even meet the watermark if we
4021  * reclaimed all remaining pages on the LRU lists.
4022  *
4023  * Returns true if a retry is viable or false to enter the oom path.
4024  */
4025 static inline bool
4026 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4027 		     struct alloc_context *ac, int alloc_flags,
4028 		     bool did_some_progress, int *no_progress_loops)
4029 {
4030 	struct zone *zone;
4031 	struct zoneref *z;
4032 	bool ret = false;
4033 
4034 	/*
4035 	 * Costly allocations might have made a progress but this doesn't mean
4036 	 * their order will become available due to high fragmentation so
4037 	 * always increment the no progress counter for them
4038 	 */
4039 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4040 		*no_progress_loops = 0;
4041 	else
4042 		(*no_progress_loops)++;
4043 
4044 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4045 		goto out;
4046 
4047 
4048 	/*
4049 	 * Keep reclaiming pages while there is a chance this will lead
4050 	 * somewhere.  If none of the target zones can satisfy our allocation
4051 	 * request even if all reclaimable pages are considered then we are
4052 	 * screwed and have to go OOM.
4053 	 */
4054 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4055 				ac->highest_zoneidx, ac->nodemask) {
4056 		unsigned long available;
4057 		unsigned long reclaimable;
4058 		unsigned long min_wmark = min_wmark_pages(zone);
4059 		bool wmark;
4060 
4061 		available = reclaimable = zone_reclaimable_pages(zone);
4062 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4063 
4064 		/*
4065 		 * Would the allocation succeed if we reclaimed all
4066 		 * reclaimable pages?
4067 		 */
4068 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4069 				ac->highest_zoneidx, alloc_flags, available);
4070 		trace_reclaim_retry_zone(z, order, reclaimable,
4071 				available, min_wmark, *no_progress_loops, wmark);
4072 		if (wmark) {
4073 			ret = true;
4074 			break;
4075 		}
4076 	}
4077 
4078 	/*
4079 	 * Memory allocation/reclaim might be called from a WQ context and the
4080 	 * current implementation of the WQ concurrency control doesn't
4081 	 * recognize that a particular WQ is congested if the worker thread is
4082 	 * looping without ever sleeping. Therefore we have to do a short sleep
4083 	 * here rather than calling cond_resched().
4084 	 */
4085 	if (current->flags & PF_WQ_WORKER)
4086 		schedule_timeout_uninterruptible(1);
4087 	else
4088 		cond_resched();
4089 out:
4090 	/* Before OOM, exhaust highatomic_reserve */
4091 	if (!ret)
4092 		return unreserve_highatomic_pageblock(ac, true);
4093 
4094 	return ret;
4095 }
4096 
4097 static inline bool
4098 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4099 {
4100 	/*
4101 	 * It's possible that cpuset's mems_allowed and the nodemask from
4102 	 * mempolicy don't intersect. This should be normally dealt with by
4103 	 * policy_nodemask(), but it's possible to race with cpuset update in
4104 	 * such a way the check therein was true, and then it became false
4105 	 * before we got our cpuset_mems_cookie here.
4106 	 * This assumes that for all allocations, ac->nodemask can come only
4107 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4108 	 * when it does not intersect with the cpuset restrictions) or the
4109 	 * caller can deal with a violated nodemask.
4110 	 */
4111 	if (cpusets_enabled() && ac->nodemask &&
4112 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4113 		ac->nodemask = NULL;
4114 		return true;
4115 	}
4116 
4117 	/*
4118 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4119 	 * possible to race with parallel threads in such a way that our
4120 	 * allocation can fail while the mask is being updated. If we are about
4121 	 * to fail, check if the cpuset changed during allocation and if so,
4122 	 * retry.
4123 	 */
4124 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4125 		return true;
4126 
4127 	return false;
4128 }
4129 
4130 static inline struct page *
4131 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4132 						struct alloc_context *ac)
4133 {
4134 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4135 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4136 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4137 	struct page *page = NULL;
4138 	unsigned int alloc_flags;
4139 	unsigned long did_some_progress;
4140 	enum compact_priority compact_priority;
4141 	enum compact_result compact_result;
4142 	int compaction_retries;
4143 	int no_progress_loops;
4144 	unsigned int cpuset_mems_cookie;
4145 	unsigned int zonelist_iter_cookie;
4146 	int reserve_flags;
4147 
4148 restart:
4149 	compaction_retries = 0;
4150 	no_progress_loops = 0;
4151 	compact_priority = DEF_COMPACT_PRIORITY;
4152 	cpuset_mems_cookie = read_mems_allowed_begin();
4153 	zonelist_iter_cookie = zonelist_iter_begin();
4154 
4155 	/*
4156 	 * The fast path uses conservative alloc_flags to succeed only until
4157 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4158 	 * alloc_flags precisely. So we do that now.
4159 	 */
4160 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4161 
4162 	/*
4163 	 * We need to recalculate the starting point for the zonelist iterator
4164 	 * because we might have used different nodemask in the fast path, or
4165 	 * there was a cpuset modification and we are retrying - otherwise we
4166 	 * could end up iterating over non-eligible zones endlessly.
4167 	 */
4168 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4169 					ac->highest_zoneidx, ac->nodemask);
4170 	if (!ac->preferred_zoneref->zone)
4171 		goto nopage;
4172 
4173 	/*
4174 	 * Check for insane configurations where the cpuset doesn't contain
4175 	 * any suitable zone to satisfy the request - e.g. non-movable
4176 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4177 	 */
4178 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4179 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4180 					ac->highest_zoneidx,
4181 					&cpuset_current_mems_allowed);
4182 		if (!z->zone)
4183 			goto nopage;
4184 	}
4185 
4186 	if (alloc_flags & ALLOC_KSWAPD)
4187 		wake_all_kswapds(order, gfp_mask, ac);
4188 
4189 	/*
4190 	 * The adjusted alloc_flags might result in immediate success, so try
4191 	 * that first
4192 	 */
4193 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4194 	if (page)
4195 		goto got_pg;
4196 
4197 	/*
4198 	 * For costly allocations, try direct compaction first, as it's likely
4199 	 * that we have enough base pages and don't need to reclaim. For non-
4200 	 * movable high-order allocations, do that as well, as compaction will
4201 	 * try prevent permanent fragmentation by migrating from blocks of the
4202 	 * same migratetype.
4203 	 * Don't try this for allocations that are allowed to ignore
4204 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4205 	 */
4206 	if (can_direct_reclaim && can_compact &&
4207 			(costly_order ||
4208 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4209 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4210 		page = __alloc_pages_direct_compact(gfp_mask, order,
4211 						alloc_flags, ac,
4212 						INIT_COMPACT_PRIORITY,
4213 						&compact_result);
4214 		if (page)
4215 			goto got_pg;
4216 
4217 		/*
4218 		 * Checks for costly allocations with __GFP_NORETRY, which
4219 		 * includes some THP page fault allocations
4220 		 */
4221 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4222 			/*
4223 			 * If allocating entire pageblock(s) and compaction
4224 			 * failed because all zones are below low watermarks
4225 			 * or is prohibited because it recently failed at this
4226 			 * order, fail immediately unless the allocator has
4227 			 * requested compaction and reclaim retry.
4228 			 *
4229 			 * Reclaim is
4230 			 *  - potentially very expensive because zones are far
4231 			 *    below their low watermarks or this is part of very
4232 			 *    bursty high order allocations,
4233 			 *  - not guaranteed to help because isolate_freepages()
4234 			 *    may not iterate over freed pages as part of its
4235 			 *    linear scan, and
4236 			 *  - unlikely to make entire pageblocks free on its
4237 			 *    own.
4238 			 */
4239 			if (compact_result == COMPACT_SKIPPED ||
4240 			    compact_result == COMPACT_DEFERRED)
4241 				goto nopage;
4242 
4243 			/*
4244 			 * Looks like reclaim/compaction is worth trying, but
4245 			 * sync compaction could be very expensive, so keep
4246 			 * using async compaction.
4247 			 */
4248 			compact_priority = INIT_COMPACT_PRIORITY;
4249 		}
4250 	}
4251 
4252 retry:
4253 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4254 	if (alloc_flags & ALLOC_KSWAPD)
4255 		wake_all_kswapds(order, gfp_mask, ac);
4256 
4257 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4258 	if (reserve_flags)
4259 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4260 					  (alloc_flags & ALLOC_KSWAPD);
4261 
4262 	/*
4263 	 * Reset the nodemask and zonelist iterators if memory policies can be
4264 	 * ignored. These allocations are high priority and system rather than
4265 	 * user oriented.
4266 	 */
4267 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4268 		ac->nodemask = NULL;
4269 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4270 					ac->highest_zoneidx, ac->nodemask);
4271 	}
4272 
4273 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4274 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4275 	if (page)
4276 		goto got_pg;
4277 
4278 	/* Caller is not willing to reclaim, we can't balance anything */
4279 	if (!can_direct_reclaim)
4280 		goto nopage;
4281 
4282 	/* Avoid recursion of direct reclaim */
4283 	if (current->flags & PF_MEMALLOC)
4284 		goto nopage;
4285 
4286 	/* Try direct reclaim and then allocating */
4287 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4288 							&did_some_progress);
4289 	if (page)
4290 		goto got_pg;
4291 
4292 	/* Try direct compaction and then allocating */
4293 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4294 					compact_priority, &compact_result);
4295 	if (page)
4296 		goto got_pg;
4297 
4298 	/* Do not loop if specifically requested */
4299 	if (gfp_mask & __GFP_NORETRY)
4300 		goto nopage;
4301 
4302 	/*
4303 	 * Do not retry costly high order allocations unless they are
4304 	 * __GFP_RETRY_MAYFAIL and we can compact
4305 	 */
4306 	if (costly_order && (!can_compact ||
4307 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4308 		goto nopage;
4309 
4310 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4311 				 did_some_progress > 0, &no_progress_loops))
4312 		goto retry;
4313 
4314 	/*
4315 	 * It doesn't make any sense to retry for the compaction if the order-0
4316 	 * reclaim is not able to make any progress because the current
4317 	 * implementation of the compaction depends on the sufficient amount
4318 	 * of free memory (see __compaction_suitable)
4319 	 */
4320 	if (did_some_progress > 0 && can_compact &&
4321 			should_compact_retry(ac, order, alloc_flags,
4322 				compact_result, &compact_priority,
4323 				&compaction_retries))
4324 		goto retry;
4325 
4326 
4327 	/*
4328 	 * Deal with possible cpuset update races or zonelist updates to avoid
4329 	 * a unnecessary OOM kill.
4330 	 */
4331 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4332 	    check_retry_zonelist(zonelist_iter_cookie))
4333 		goto restart;
4334 
4335 	/* Reclaim has failed us, start killing things */
4336 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4337 	if (page)
4338 		goto got_pg;
4339 
4340 	/* Avoid allocations with no watermarks from looping endlessly */
4341 	if (tsk_is_oom_victim(current) &&
4342 	    (alloc_flags & ALLOC_OOM ||
4343 	     (gfp_mask & __GFP_NOMEMALLOC)))
4344 		goto nopage;
4345 
4346 	/* Retry as long as the OOM killer is making progress */
4347 	if (did_some_progress) {
4348 		no_progress_loops = 0;
4349 		goto retry;
4350 	}
4351 
4352 nopage:
4353 	/*
4354 	 * Deal with possible cpuset update races or zonelist updates to avoid
4355 	 * a unnecessary OOM kill.
4356 	 */
4357 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4358 	    check_retry_zonelist(zonelist_iter_cookie))
4359 		goto restart;
4360 
4361 	/*
4362 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4363 	 * we always retry
4364 	 */
4365 	if (gfp_mask & __GFP_NOFAIL) {
4366 		/*
4367 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4368 		 * of any new users that actually require GFP_NOWAIT
4369 		 */
4370 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4371 			goto fail;
4372 
4373 		/*
4374 		 * PF_MEMALLOC request from this context is rather bizarre
4375 		 * because we cannot reclaim anything and only can loop waiting
4376 		 * for somebody to do a work for us
4377 		 */
4378 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4379 
4380 		/*
4381 		 * non failing costly orders are a hard requirement which we
4382 		 * are not prepared for much so let's warn about these users
4383 		 * so that we can identify them and convert them to something
4384 		 * else.
4385 		 */
4386 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4387 
4388 		/*
4389 		 * Help non-failing allocations by giving some access to memory
4390 		 * reserves normally used for high priority non-blocking
4391 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4392 		 * could deplete whole memory reserves which would just make
4393 		 * the situation worse.
4394 		 */
4395 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4396 		if (page)
4397 			goto got_pg;
4398 
4399 		cond_resched();
4400 		goto retry;
4401 	}
4402 fail:
4403 	warn_alloc(gfp_mask, ac->nodemask,
4404 			"page allocation failure: order:%u", order);
4405 got_pg:
4406 	return page;
4407 }
4408 
4409 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4410 		int preferred_nid, nodemask_t *nodemask,
4411 		struct alloc_context *ac, gfp_t *alloc_gfp,
4412 		unsigned int *alloc_flags)
4413 {
4414 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4415 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4416 	ac->nodemask = nodemask;
4417 	ac->migratetype = gfp_migratetype(gfp_mask);
4418 
4419 	if (cpusets_enabled()) {
4420 		*alloc_gfp |= __GFP_HARDWALL;
4421 		/*
4422 		 * When we are in the interrupt context, it is irrelevant
4423 		 * to the current task context. It means that any node ok.
4424 		 */
4425 		if (in_task() && !ac->nodemask)
4426 			ac->nodemask = &cpuset_current_mems_allowed;
4427 		else
4428 			*alloc_flags |= ALLOC_CPUSET;
4429 	}
4430 
4431 	might_alloc(gfp_mask);
4432 
4433 	if (should_fail_alloc_page(gfp_mask, order))
4434 		return false;
4435 
4436 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4437 
4438 	/* Dirty zone balancing only done in the fast path */
4439 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4440 
4441 	/*
4442 	 * The preferred zone is used for statistics but crucially it is
4443 	 * also used as the starting point for the zonelist iterator. It
4444 	 * may get reset for allocations that ignore memory policies.
4445 	 */
4446 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4447 					ac->highest_zoneidx, ac->nodemask);
4448 
4449 	return true;
4450 }
4451 
4452 /*
4453  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4454  * @gfp: GFP flags for the allocation
4455  * @preferred_nid: The preferred NUMA node ID to allocate from
4456  * @nodemask: Set of nodes to allocate from, may be NULL
4457  * @nr_pages: The number of pages desired on the list or array
4458  * @page_list: Optional list to store the allocated pages
4459  * @page_array: Optional array to store the pages
4460  *
4461  * This is a batched version of the page allocator that attempts to
4462  * allocate nr_pages quickly. Pages are added to page_list if page_list
4463  * is not NULL, otherwise it is assumed that the page_array is valid.
4464  *
4465  * For lists, nr_pages is the number of pages that should be allocated.
4466  *
4467  * For arrays, only NULL elements are populated with pages and nr_pages
4468  * is the maximum number of pages that will be stored in the array.
4469  *
4470  * Returns the number of pages on the list or array.
4471  */
4472 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4473 			nodemask_t *nodemask, int nr_pages,
4474 			struct list_head *page_list,
4475 			struct page **page_array)
4476 {
4477 	struct page *page;
4478 	unsigned long __maybe_unused UP_flags;
4479 	struct zone *zone;
4480 	struct zoneref *z;
4481 	struct per_cpu_pages *pcp;
4482 	struct list_head *pcp_list;
4483 	struct alloc_context ac;
4484 	gfp_t alloc_gfp;
4485 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4486 	int nr_populated = 0, nr_account = 0;
4487 
4488 	/*
4489 	 * Skip populated array elements to determine if any pages need
4490 	 * to be allocated before disabling IRQs.
4491 	 */
4492 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4493 		nr_populated++;
4494 
4495 	/* No pages requested? */
4496 	if (unlikely(nr_pages <= 0))
4497 		goto out;
4498 
4499 	/* Already populated array? */
4500 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4501 		goto out;
4502 
4503 	/* Bulk allocator does not support memcg accounting. */
4504 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4505 		goto failed;
4506 
4507 	/* Use the single page allocator for one page. */
4508 	if (nr_pages - nr_populated == 1)
4509 		goto failed;
4510 
4511 #ifdef CONFIG_PAGE_OWNER
4512 	/*
4513 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4514 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4515 	 * removes much of the performance benefit of bulk allocation so
4516 	 * force the caller to allocate one page at a time as it'll have
4517 	 * similar performance to added complexity to the bulk allocator.
4518 	 */
4519 	if (static_branch_unlikely(&page_owner_inited))
4520 		goto failed;
4521 #endif
4522 
4523 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4524 	gfp &= gfp_allowed_mask;
4525 	alloc_gfp = gfp;
4526 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4527 		goto out;
4528 	gfp = alloc_gfp;
4529 
4530 	/* Find an allowed local zone that meets the low watermark. */
4531 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4532 		unsigned long mark;
4533 
4534 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4535 		    !__cpuset_zone_allowed(zone, gfp)) {
4536 			continue;
4537 		}
4538 
4539 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4540 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4541 			goto failed;
4542 		}
4543 
4544 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4545 		if (zone_watermark_fast(zone, 0,  mark,
4546 				zonelist_zone_idx(ac.preferred_zoneref),
4547 				alloc_flags, gfp)) {
4548 			break;
4549 		}
4550 	}
4551 
4552 	/*
4553 	 * If there are no allowed local zones that meets the watermarks then
4554 	 * try to allocate a single page and reclaim if necessary.
4555 	 */
4556 	if (unlikely(!zone))
4557 		goto failed;
4558 
4559 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4560 	pcp_trylock_prepare(UP_flags);
4561 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4562 	if (!pcp)
4563 		goto failed_irq;
4564 
4565 	/* Attempt the batch allocation */
4566 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4567 	while (nr_populated < nr_pages) {
4568 
4569 		/* Skip existing pages */
4570 		if (page_array && page_array[nr_populated]) {
4571 			nr_populated++;
4572 			continue;
4573 		}
4574 
4575 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4576 								pcp, pcp_list);
4577 		if (unlikely(!page)) {
4578 			/* Try and allocate at least one page */
4579 			if (!nr_account) {
4580 				pcp_spin_unlock(pcp);
4581 				goto failed_irq;
4582 			}
4583 			break;
4584 		}
4585 		nr_account++;
4586 
4587 		prep_new_page(page, 0, gfp, 0);
4588 		if (page_list)
4589 			list_add(&page->lru, page_list);
4590 		else
4591 			page_array[nr_populated] = page;
4592 		nr_populated++;
4593 	}
4594 
4595 	pcp_spin_unlock(pcp);
4596 	pcp_trylock_finish(UP_flags);
4597 
4598 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4599 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4600 
4601 out:
4602 	return nr_populated;
4603 
4604 failed_irq:
4605 	pcp_trylock_finish(UP_flags);
4606 
4607 failed:
4608 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4609 	if (page) {
4610 		if (page_list)
4611 			list_add(&page->lru, page_list);
4612 		else
4613 			page_array[nr_populated] = page;
4614 		nr_populated++;
4615 	}
4616 
4617 	goto out;
4618 }
4619 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4620 
4621 /*
4622  * This is the 'heart' of the zoned buddy allocator.
4623  */
4624 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4625 				      int preferred_nid, nodemask_t *nodemask)
4626 {
4627 	struct page *page;
4628 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4629 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4630 	struct alloc_context ac = { };
4631 
4632 	/*
4633 	 * There are several places where we assume that the order value is sane
4634 	 * so bail out early if the request is out of bound.
4635 	 */
4636 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4637 		return NULL;
4638 
4639 	gfp &= gfp_allowed_mask;
4640 	/*
4641 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4642 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4643 	 * from a particular context which has been marked by
4644 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4645 	 * movable zones are not used during allocation.
4646 	 */
4647 	gfp = current_gfp_context(gfp);
4648 	alloc_gfp = gfp;
4649 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4650 			&alloc_gfp, &alloc_flags))
4651 		return NULL;
4652 
4653 	/*
4654 	 * Forbid the first pass from falling back to types that fragment
4655 	 * memory until all local zones are considered.
4656 	 */
4657 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4658 
4659 	/* First allocation attempt */
4660 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4661 	if (likely(page))
4662 		goto out;
4663 
4664 	alloc_gfp = gfp;
4665 	ac.spread_dirty_pages = false;
4666 
4667 	/*
4668 	 * Restore the original nodemask if it was potentially replaced with
4669 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4670 	 */
4671 	ac.nodemask = nodemask;
4672 
4673 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4674 
4675 out:
4676 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4677 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4678 		__free_pages(page, order);
4679 		page = NULL;
4680 	}
4681 
4682 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4683 	kmsan_alloc_page(page, order, alloc_gfp);
4684 
4685 	return page;
4686 }
4687 EXPORT_SYMBOL(__alloc_pages_noprof);
4688 
4689 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4690 		nodemask_t *nodemask)
4691 {
4692 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4693 					preferred_nid, nodemask);
4694 	return page_rmappable_folio(page);
4695 }
4696 EXPORT_SYMBOL(__folio_alloc_noprof);
4697 
4698 /*
4699  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4700  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4701  * you need to access high mem.
4702  */
4703 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4704 {
4705 	struct page *page;
4706 
4707 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4708 	if (!page)
4709 		return 0;
4710 	return (unsigned long) page_address(page);
4711 }
4712 EXPORT_SYMBOL(get_free_pages_noprof);
4713 
4714 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4715 {
4716 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4717 }
4718 EXPORT_SYMBOL(get_zeroed_page_noprof);
4719 
4720 /**
4721  * __free_pages - Free pages allocated with alloc_pages().
4722  * @page: The page pointer returned from alloc_pages().
4723  * @order: The order of the allocation.
4724  *
4725  * This function can free multi-page allocations that are not compound
4726  * pages.  It does not check that the @order passed in matches that of
4727  * the allocation, so it is easy to leak memory.  Freeing more memory
4728  * than was allocated will probably emit a warning.
4729  *
4730  * If the last reference to this page is speculative, it will be released
4731  * by put_page() which only frees the first page of a non-compound
4732  * allocation.  To prevent the remaining pages from being leaked, we free
4733  * the subsequent pages here.  If you want to use the page's reference
4734  * count to decide when to free the allocation, you should allocate a
4735  * compound page, and use put_page() instead of __free_pages().
4736  *
4737  * Context: May be called in interrupt context or while holding a normal
4738  * spinlock, but not in NMI context or while holding a raw spinlock.
4739  */
4740 void __free_pages(struct page *page, unsigned int order)
4741 {
4742 	/* get PageHead before we drop reference */
4743 	int head = PageHead(page);
4744 	struct alloc_tag *tag = pgalloc_tag_get(page);
4745 
4746 	if (put_page_testzero(page))
4747 		free_unref_page(page, order);
4748 	else if (!head) {
4749 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4750 		while (order-- > 0)
4751 			free_unref_page(page + (1 << order), order);
4752 	}
4753 }
4754 EXPORT_SYMBOL(__free_pages);
4755 
4756 void free_pages(unsigned long addr, unsigned int order)
4757 {
4758 	if (addr != 0) {
4759 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4760 		__free_pages(virt_to_page((void *)addr), order);
4761 	}
4762 }
4763 
4764 EXPORT_SYMBOL(free_pages);
4765 
4766 /*
4767  * Page Fragment:
4768  *  An arbitrary-length arbitrary-offset area of memory which resides
4769  *  within a 0 or higher order page.  Multiple fragments within that page
4770  *  are individually refcounted, in the page's reference counter.
4771  *
4772  * The page_frag functions below provide a simple allocation framework for
4773  * page fragments.  This is used by the network stack and network device
4774  * drivers to provide a backing region of memory for use as either an
4775  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4776  */
4777 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4778 					     gfp_t gfp_mask)
4779 {
4780 	struct page *page = NULL;
4781 	gfp_t gfp = gfp_mask;
4782 
4783 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4784 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4785 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4786 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4787 				PAGE_FRAG_CACHE_MAX_ORDER);
4788 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4789 #endif
4790 	if (unlikely(!page))
4791 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4792 
4793 	nc->va = page ? page_address(page) : NULL;
4794 
4795 	return page;
4796 }
4797 
4798 void page_frag_cache_drain(struct page_frag_cache *nc)
4799 {
4800 	if (!nc->va)
4801 		return;
4802 
4803 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4804 	nc->va = NULL;
4805 }
4806 EXPORT_SYMBOL(page_frag_cache_drain);
4807 
4808 void __page_frag_cache_drain(struct page *page, unsigned int count)
4809 {
4810 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4811 
4812 	if (page_ref_sub_and_test(page, count))
4813 		free_unref_page(page, compound_order(page));
4814 }
4815 EXPORT_SYMBOL(__page_frag_cache_drain);
4816 
4817 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4818 			      unsigned int fragsz, gfp_t gfp_mask,
4819 			      unsigned int align_mask)
4820 {
4821 	unsigned int size = PAGE_SIZE;
4822 	struct page *page;
4823 	int offset;
4824 
4825 	if (unlikely(!nc->va)) {
4826 refill:
4827 		page = __page_frag_cache_refill(nc, gfp_mask);
4828 		if (!page)
4829 			return NULL;
4830 
4831 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4832 		/* if size can vary use size else just use PAGE_SIZE */
4833 		size = nc->size;
4834 #endif
4835 		/* Even if we own the page, we do not use atomic_set().
4836 		 * This would break get_page_unless_zero() users.
4837 		 */
4838 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4839 
4840 		/* reset page count bias and offset to start of new frag */
4841 		nc->pfmemalloc = page_is_pfmemalloc(page);
4842 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4843 		nc->offset = size;
4844 	}
4845 
4846 	offset = nc->offset - fragsz;
4847 	if (unlikely(offset < 0)) {
4848 		page = virt_to_page(nc->va);
4849 
4850 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4851 			goto refill;
4852 
4853 		if (unlikely(nc->pfmemalloc)) {
4854 			free_unref_page(page, compound_order(page));
4855 			goto refill;
4856 		}
4857 
4858 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4859 		/* if size can vary use size else just use PAGE_SIZE */
4860 		size = nc->size;
4861 #endif
4862 		/* OK, page count is 0, we can safely set it */
4863 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4864 
4865 		/* reset page count bias and offset to start of new frag */
4866 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4867 		offset = size - fragsz;
4868 		if (unlikely(offset < 0)) {
4869 			/*
4870 			 * The caller is trying to allocate a fragment
4871 			 * with fragsz > PAGE_SIZE but the cache isn't big
4872 			 * enough to satisfy the request, this may
4873 			 * happen in low memory conditions.
4874 			 * We don't release the cache page because
4875 			 * it could make memory pressure worse
4876 			 * so we simply return NULL here.
4877 			 */
4878 			return NULL;
4879 		}
4880 	}
4881 
4882 	nc->pagecnt_bias--;
4883 	offset &= align_mask;
4884 	nc->offset = offset;
4885 
4886 	return nc->va + offset;
4887 }
4888 EXPORT_SYMBOL(__page_frag_alloc_align);
4889 
4890 /*
4891  * Frees a page fragment allocated out of either a compound or order 0 page.
4892  */
4893 void page_frag_free(void *addr)
4894 {
4895 	struct page *page = virt_to_head_page(addr);
4896 
4897 	if (unlikely(put_page_testzero(page)))
4898 		free_unref_page(page, compound_order(page));
4899 }
4900 EXPORT_SYMBOL(page_frag_free);
4901 
4902 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4903 		size_t size)
4904 {
4905 	if (addr) {
4906 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4907 		struct page *page = virt_to_page((void *)addr);
4908 		struct page *last = page + nr;
4909 
4910 		split_page_owner(page, order, 0);
4911 		pgalloc_tag_split(page, 1 << order);
4912 		split_page_memcg(page, order, 0);
4913 		while (page < --last)
4914 			set_page_refcounted(last);
4915 
4916 		last = page + (1UL << order);
4917 		for (page += nr; page < last; page++)
4918 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4919 	}
4920 	return (void *)addr;
4921 }
4922 
4923 /**
4924  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4925  * @size: the number of bytes to allocate
4926  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4927  *
4928  * This function is similar to alloc_pages(), except that it allocates the
4929  * minimum number of pages to satisfy the request.  alloc_pages() can only
4930  * allocate memory in power-of-two pages.
4931  *
4932  * This function is also limited by MAX_PAGE_ORDER.
4933  *
4934  * Memory allocated by this function must be released by free_pages_exact().
4935  *
4936  * Return: pointer to the allocated area or %NULL in case of error.
4937  */
4938 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4939 {
4940 	unsigned int order = get_order(size);
4941 	unsigned long addr;
4942 
4943 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4944 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4945 
4946 	addr = get_free_pages_noprof(gfp_mask, order);
4947 	return make_alloc_exact(addr, order, size);
4948 }
4949 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4950 
4951 /**
4952  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4953  *			   pages on a node.
4954  * @nid: the preferred node ID where memory should be allocated
4955  * @size: the number of bytes to allocate
4956  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4957  *
4958  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4959  * back.
4960  *
4961  * Return: pointer to the allocated area or %NULL in case of error.
4962  */
4963 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4964 {
4965 	unsigned int order = get_order(size);
4966 	struct page *p;
4967 
4968 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4969 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4970 
4971 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4972 	if (!p)
4973 		return NULL;
4974 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4975 }
4976 
4977 /**
4978  * free_pages_exact - release memory allocated via alloc_pages_exact()
4979  * @virt: the value returned by alloc_pages_exact.
4980  * @size: size of allocation, same value as passed to alloc_pages_exact().
4981  *
4982  * Release the memory allocated by a previous call to alloc_pages_exact.
4983  */
4984 void free_pages_exact(void *virt, size_t size)
4985 {
4986 	unsigned long addr = (unsigned long)virt;
4987 	unsigned long end = addr + PAGE_ALIGN(size);
4988 
4989 	while (addr < end) {
4990 		free_page(addr);
4991 		addr += PAGE_SIZE;
4992 	}
4993 }
4994 EXPORT_SYMBOL(free_pages_exact);
4995 
4996 /**
4997  * nr_free_zone_pages - count number of pages beyond high watermark
4998  * @offset: The zone index of the highest zone
4999  *
5000  * nr_free_zone_pages() counts the number of pages which are beyond the
5001  * high watermark within all zones at or below a given zone index.  For each
5002  * zone, the number of pages is calculated as:
5003  *
5004  *     nr_free_zone_pages = managed_pages - high_pages
5005  *
5006  * Return: number of pages beyond high watermark.
5007  */
5008 static unsigned long nr_free_zone_pages(int offset)
5009 {
5010 	struct zoneref *z;
5011 	struct zone *zone;
5012 
5013 	/* Just pick one node, since fallback list is circular */
5014 	unsigned long sum = 0;
5015 
5016 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5017 
5018 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5019 		unsigned long size = zone_managed_pages(zone);
5020 		unsigned long high = high_wmark_pages(zone);
5021 		if (size > high)
5022 			sum += size - high;
5023 	}
5024 
5025 	return sum;
5026 }
5027 
5028 /**
5029  * nr_free_buffer_pages - count number of pages beyond high watermark
5030  *
5031  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5032  * watermark within ZONE_DMA and ZONE_NORMAL.
5033  *
5034  * Return: number of pages beyond high watermark within ZONE_DMA and
5035  * ZONE_NORMAL.
5036  */
5037 unsigned long nr_free_buffer_pages(void)
5038 {
5039 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5040 }
5041 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5042 
5043 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5044 {
5045 	zoneref->zone = zone;
5046 	zoneref->zone_idx = zone_idx(zone);
5047 }
5048 
5049 /*
5050  * Builds allocation fallback zone lists.
5051  *
5052  * Add all populated zones of a node to the zonelist.
5053  */
5054 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5055 {
5056 	struct zone *zone;
5057 	enum zone_type zone_type = MAX_NR_ZONES;
5058 	int nr_zones = 0;
5059 
5060 	do {
5061 		zone_type--;
5062 		zone = pgdat->node_zones + zone_type;
5063 		if (populated_zone(zone)) {
5064 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5065 			check_highest_zone(zone_type);
5066 		}
5067 	} while (zone_type);
5068 
5069 	return nr_zones;
5070 }
5071 
5072 #ifdef CONFIG_NUMA
5073 
5074 static int __parse_numa_zonelist_order(char *s)
5075 {
5076 	/*
5077 	 * We used to support different zonelists modes but they turned
5078 	 * out to be just not useful. Let's keep the warning in place
5079 	 * if somebody still use the cmd line parameter so that we do
5080 	 * not fail it silently
5081 	 */
5082 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5083 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5084 		return -EINVAL;
5085 	}
5086 	return 0;
5087 }
5088 
5089 static char numa_zonelist_order[] = "Node";
5090 #define NUMA_ZONELIST_ORDER_LEN	16
5091 /*
5092  * sysctl handler for numa_zonelist_order
5093  */
5094 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5095 		void *buffer, size_t *length, loff_t *ppos)
5096 {
5097 	if (write)
5098 		return __parse_numa_zonelist_order(buffer);
5099 	return proc_dostring(table, write, buffer, length, ppos);
5100 }
5101 
5102 static int node_load[MAX_NUMNODES];
5103 
5104 /**
5105  * find_next_best_node - find the next node that should appear in a given node's fallback list
5106  * @node: node whose fallback list we're appending
5107  * @used_node_mask: nodemask_t of already used nodes
5108  *
5109  * We use a number of factors to determine which is the next node that should
5110  * appear on a given node's fallback list.  The node should not have appeared
5111  * already in @node's fallback list, and it should be the next closest node
5112  * according to the distance array (which contains arbitrary distance values
5113  * from each node to each node in the system), and should also prefer nodes
5114  * with no CPUs, since presumably they'll have very little allocation pressure
5115  * on them otherwise.
5116  *
5117  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5118  */
5119 int find_next_best_node(int node, nodemask_t *used_node_mask)
5120 {
5121 	int n, val;
5122 	int min_val = INT_MAX;
5123 	int best_node = NUMA_NO_NODE;
5124 
5125 	/*
5126 	 * Use the local node if we haven't already, but for memoryless local
5127 	 * node, we should skip it and fall back to other nodes.
5128 	 */
5129 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5130 		node_set(node, *used_node_mask);
5131 		return node;
5132 	}
5133 
5134 	for_each_node_state(n, N_MEMORY) {
5135 
5136 		/* Don't want a node to appear more than once */
5137 		if (node_isset(n, *used_node_mask))
5138 			continue;
5139 
5140 		/* Use the distance array to find the distance */
5141 		val = node_distance(node, n);
5142 
5143 		/* Penalize nodes under us ("prefer the next node") */
5144 		val += (n < node);
5145 
5146 		/* Give preference to headless and unused nodes */
5147 		if (!cpumask_empty(cpumask_of_node(n)))
5148 			val += PENALTY_FOR_NODE_WITH_CPUS;
5149 
5150 		/* Slight preference for less loaded node */
5151 		val *= MAX_NUMNODES;
5152 		val += node_load[n];
5153 
5154 		if (val < min_val) {
5155 			min_val = val;
5156 			best_node = n;
5157 		}
5158 	}
5159 
5160 	if (best_node >= 0)
5161 		node_set(best_node, *used_node_mask);
5162 
5163 	return best_node;
5164 }
5165 
5166 
5167 /*
5168  * Build zonelists ordered by node and zones within node.
5169  * This results in maximum locality--normal zone overflows into local
5170  * DMA zone, if any--but risks exhausting DMA zone.
5171  */
5172 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5173 		unsigned nr_nodes)
5174 {
5175 	struct zoneref *zonerefs;
5176 	int i;
5177 
5178 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5179 
5180 	for (i = 0; i < nr_nodes; i++) {
5181 		int nr_zones;
5182 
5183 		pg_data_t *node = NODE_DATA(node_order[i]);
5184 
5185 		nr_zones = build_zonerefs_node(node, zonerefs);
5186 		zonerefs += nr_zones;
5187 	}
5188 	zonerefs->zone = NULL;
5189 	zonerefs->zone_idx = 0;
5190 }
5191 
5192 /*
5193  * Build gfp_thisnode zonelists
5194  */
5195 static void build_thisnode_zonelists(pg_data_t *pgdat)
5196 {
5197 	struct zoneref *zonerefs;
5198 	int nr_zones;
5199 
5200 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5201 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5202 	zonerefs += nr_zones;
5203 	zonerefs->zone = NULL;
5204 	zonerefs->zone_idx = 0;
5205 }
5206 
5207 /*
5208  * Build zonelists ordered by zone and nodes within zones.
5209  * This results in conserving DMA zone[s] until all Normal memory is
5210  * exhausted, but results in overflowing to remote node while memory
5211  * may still exist in local DMA zone.
5212  */
5213 
5214 static void build_zonelists(pg_data_t *pgdat)
5215 {
5216 	static int node_order[MAX_NUMNODES];
5217 	int node, nr_nodes = 0;
5218 	nodemask_t used_mask = NODE_MASK_NONE;
5219 	int local_node, prev_node;
5220 
5221 	/* NUMA-aware ordering of nodes */
5222 	local_node = pgdat->node_id;
5223 	prev_node = local_node;
5224 
5225 	memset(node_order, 0, sizeof(node_order));
5226 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5227 		/*
5228 		 * We don't want to pressure a particular node.
5229 		 * So adding penalty to the first node in same
5230 		 * distance group to make it round-robin.
5231 		 */
5232 		if (node_distance(local_node, node) !=
5233 		    node_distance(local_node, prev_node))
5234 			node_load[node] += 1;
5235 
5236 		node_order[nr_nodes++] = node;
5237 		prev_node = node;
5238 	}
5239 
5240 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5241 	build_thisnode_zonelists(pgdat);
5242 	pr_info("Fallback order for Node %d: ", local_node);
5243 	for (node = 0; node < nr_nodes; node++)
5244 		pr_cont("%d ", node_order[node]);
5245 	pr_cont("\n");
5246 }
5247 
5248 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5249 /*
5250  * Return node id of node used for "local" allocations.
5251  * I.e., first node id of first zone in arg node's generic zonelist.
5252  * Used for initializing percpu 'numa_mem', which is used primarily
5253  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5254  */
5255 int local_memory_node(int node)
5256 {
5257 	struct zoneref *z;
5258 
5259 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5260 				   gfp_zone(GFP_KERNEL),
5261 				   NULL);
5262 	return zone_to_nid(z->zone);
5263 }
5264 #endif
5265 
5266 static void setup_min_unmapped_ratio(void);
5267 static void setup_min_slab_ratio(void);
5268 #else	/* CONFIG_NUMA */
5269 
5270 static void build_zonelists(pg_data_t *pgdat)
5271 {
5272 	struct zoneref *zonerefs;
5273 	int nr_zones;
5274 
5275 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5276 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5277 	zonerefs += nr_zones;
5278 
5279 	zonerefs->zone = NULL;
5280 	zonerefs->zone_idx = 0;
5281 }
5282 
5283 #endif	/* CONFIG_NUMA */
5284 
5285 /*
5286  * Boot pageset table. One per cpu which is going to be used for all
5287  * zones and all nodes. The parameters will be set in such a way
5288  * that an item put on a list will immediately be handed over to
5289  * the buddy list. This is safe since pageset manipulation is done
5290  * with interrupts disabled.
5291  *
5292  * The boot_pagesets must be kept even after bootup is complete for
5293  * unused processors and/or zones. They do play a role for bootstrapping
5294  * hotplugged processors.
5295  *
5296  * zoneinfo_show() and maybe other functions do
5297  * not check if the processor is online before following the pageset pointer.
5298  * Other parts of the kernel may not check if the zone is available.
5299  */
5300 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5301 /* These effectively disable the pcplists in the boot pageset completely */
5302 #define BOOT_PAGESET_HIGH	0
5303 #define BOOT_PAGESET_BATCH	1
5304 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5305 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5306 
5307 static void __build_all_zonelists(void *data)
5308 {
5309 	int nid;
5310 	int __maybe_unused cpu;
5311 	pg_data_t *self = data;
5312 	unsigned long flags;
5313 
5314 	/*
5315 	 * The zonelist_update_seq must be acquired with irqsave because the
5316 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5317 	 */
5318 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5319 	/*
5320 	 * Also disable synchronous printk() to prevent any printk() from
5321 	 * trying to hold port->lock, for
5322 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5323 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5324 	 */
5325 	printk_deferred_enter();
5326 
5327 #ifdef CONFIG_NUMA
5328 	memset(node_load, 0, sizeof(node_load));
5329 #endif
5330 
5331 	/*
5332 	 * This node is hotadded and no memory is yet present.   So just
5333 	 * building zonelists is fine - no need to touch other nodes.
5334 	 */
5335 	if (self && !node_online(self->node_id)) {
5336 		build_zonelists(self);
5337 	} else {
5338 		/*
5339 		 * All possible nodes have pgdat preallocated
5340 		 * in free_area_init
5341 		 */
5342 		for_each_node(nid) {
5343 			pg_data_t *pgdat = NODE_DATA(nid);
5344 
5345 			build_zonelists(pgdat);
5346 		}
5347 
5348 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5349 		/*
5350 		 * We now know the "local memory node" for each node--
5351 		 * i.e., the node of the first zone in the generic zonelist.
5352 		 * Set up numa_mem percpu variable for on-line cpus.  During
5353 		 * boot, only the boot cpu should be on-line;  we'll init the
5354 		 * secondary cpus' numa_mem as they come on-line.  During
5355 		 * node/memory hotplug, we'll fixup all on-line cpus.
5356 		 */
5357 		for_each_online_cpu(cpu)
5358 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5359 #endif
5360 	}
5361 
5362 	printk_deferred_exit();
5363 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5364 }
5365 
5366 static noinline void __init
5367 build_all_zonelists_init(void)
5368 {
5369 	int cpu;
5370 
5371 	__build_all_zonelists(NULL);
5372 
5373 	/*
5374 	 * Initialize the boot_pagesets that are going to be used
5375 	 * for bootstrapping processors. The real pagesets for
5376 	 * each zone will be allocated later when the per cpu
5377 	 * allocator is available.
5378 	 *
5379 	 * boot_pagesets are used also for bootstrapping offline
5380 	 * cpus if the system is already booted because the pagesets
5381 	 * are needed to initialize allocators on a specific cpu too.
5382 	 * F.e. the percpu allocator needs the page allocator which
5383 	 * needs the percpu allocator in order to allocate its pagesets
5384 	 * (a chicken-egg dilemma).
5385 	 */
5386 	for_each_possible_cpu(cpu)
5387 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5388 
5389 	mminit_verify_zonelist();
5390 	cpuset_init_current_mems_allowed();
5391 }
5392 
5393 /*
5394  * unless system_state == SYSTEM_BOOTING.
5395  *
5396  * __ref due to call of __init annotated helper build_all_zonelists_init
5397  * [protected by SYSTEM_BOOTING].
5398  */
5399 void __ref build_all_zonelists(pg_data_t *pgdat)
5400 {
5401 	unsigned long vm_total_pages;
5402 
5403 	if (system_state == SYSTEM_BOOTING) {
5404 		build_all_zonelists_init();
5405 	} else {
5406 		__build_all_zonelists(pgdat);
5407 		/* cpuset refresh routine should be here */
5408 	}
5409 	/* Get the number of free pages beyond high watermark in all zones. */
5410 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5411 	/*
5412 	 * Disable grouping by mobility if the number of pages in the
5413 	 * system is too low to allow the mechanism to work. It would be
5414 	 * more accurate, but expensive to check per-zone. This check is
5415 	 * made on memory-hotadd so a system can start with mobility
5416 	 * disabled and enable it later
5417 	 */
5418 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5419 		page_group_by_mobility_disabled = 1;
5420 	else
5421 		page_group_by_mobility_disabled = 0;
5422 
5423 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5424 		nr_online_nodes,
5425 		page_group_by_mobility_disabled ? "off" : "on",
5426 		vm_total_pages);
5427 #ifdef CONFIG_NUMA
5428 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5429 #endif
5430 }
5431 
5432 static int zone_batchsize(struct zone *zone)
5433 {
5434 #ifdef CONFIG_MMU
5435 	int batch;
5436 
5437 	/*
5438 	 * The number of pages to batch allocate is either ~0.1%
5439 	 * of the zone or 1MB, whichever is smaller. The batch
5440 	 * size is striking a balance between allocation latency
5441 	 * and zone lock contention.
5442 	 */
5443 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5444 	batch /= 4;		/* We effectively *= 4 below */
5445 	if (batch < 1)
5446 		batch = 1;
5447 
5448 	/*
5449 	 * Clamp the batch to a 2^n - 1 value. Having a power
5450 	 * of 2 value was found to be more likely to have
5451 	 * suboptimal cache aliasing properties in some cases.
5452 	 *
5453 	 * For example if 2 tasks are alternately allocating
5454 	 * batches of pages, one task can end up with a lot
5455 	 * of pages of one half of the possible page colors
5456 	 * and the other with pages of the other colors.
5457 	 */
5458 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5459 
5460 	return batch;
5461 
5462 #else
5463 	/* The deferral and batching of frees should be suppressed under NOMMU
5464 	 * conditions.
5465 	 *
5466 	 * The problem is that NOMMU needs to be able to allocate large chunks
5467 	 * of contiguous memory as there's no hardware page translation to
5468 	 * assemble apparent contiguous memory from discontiguous pages.
5469 	 *
5470 	 * Queueing large contiguous runs of pages for batching, however,
5471 	 * causes the pages to actually be freed in smaller chunks.  As there
5472 	 * can be a significant delay between the individual batches being
5473 	 * recycled, this leads to the once large chunks of space being
5474 	 * fragmented and becoming unavailable for high-order allocations.
5475 	 */
5476 	return 0;
5477 #endif
5478 }
5479 
5480 static int percpu_pagelist_high_fraction;
5481 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5482 			 int high_fraction)
5483 {
5484 #ifdef CONFIG_MMU
5485 	int high;
5486 	int nr_split_cpus;
5487 	unsigned long total_pages;
5488 
5489 	if (!high_fraction) {
5490 		/*
5491 		 * By default, the high value of the pcp is based on the zone
5492 		 * low watermark so that if they are full then background
5493 		 * reclaim will not be started prematurely.
5494 		 */
5495 		total_pages = low_wmark_pages(zone);
5496 	} else {
5497 		/*
5498 		 * If percpu_pagelist_high_fraction is configured, the high
5499 		 * value is based on a fraction of the managed pages in the
5500 		 * zone.
5501 		 */
5502 		total_pages = zone_managed_pages(zone) / high_fraction;
5503 	}
5504 
5505 	/*
5506 	 * Split the high value across all online CPUs local to the zone. Note
5507 	 * that early in boot that CPUs may not be online yet and that during
5508 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5509 	 * onlined. For memory nodes that have no CPUs, split the high value
5510 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5511 	 * prematurely due to pages stored on pcp lists.
5512 	 */
5513 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5514 	if (!nr_split_cpus)
5515 		nr_split_cpus = num_online_cpus();
5516 	high = total_pages / nr_split_cpus;
5517 
5518 	/*
5519 	 * Ensure high is at least batch*4. The multiple is based on the
5520 	 * historical relationship between high and batch.
5521 	 */
5522 	high = max(high, batch << 2);
5523 
5524 	return high;
5525 #else
5526 	return 0;
5527 #endif
5528 }
5529 
5530 /*
5531  * pcp->high and pcp->batch values are related and generally batch is lower
5532  * than high. They are also related to pcp->count such that count is lower
5533  * than high, and as soon as it reaches high, the pcplist is flushed.
5534  *
5535  * However, guaranteeing these relations at all times would require e.g. write
5536  * barriers here but also careful usage of read barriers at the read side, and
5537  * thus be prone to error and bad for performance. Thus the update only prevents
5538  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5539  * should ensure they can cope with those fields changing asynchronously, and
5540  * fully trust only the pcp->count field on the local CPU with interrupts
5541  * disabled.
5542  *
5543  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5544  * outside of boot time (or some other assurance that no concurrent updaters
5545  * exist).
5546  */
5547 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5548 			   unsigned long high_max, unsigned long batch)
5549 {
5550 	WRITE_ONCE(pcp->batch, batch);
5551 	WRITE_ONCE(pcp->high_min, high_min);
5552 	WRITE_ONCE(pcp->high_max, high_max);
5553 }
5554 
5555 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5556 {
5557 	int pindex;
5558 
5559 	memset(pcp, 0, sizeof(*pcp));
5560 	memset(pzstats, 0, sizeof(*pzstats));
5561 
5562 	spin_lock_init(&pcp->lock);
5563 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5564 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5565 
5566 	/*
5567 	 * Set batch and high values safe for a boot pageset. A true percpu
5568 	 * pageset's initialization will update them subsequently. Here we don't
5569 	 * need to be as careful as pageset_update() as nobody can access the
5570 	 * pageset yet.
5571 	 */
5572 	pcp->high_min = BOOT_PAGESET_HIGH;
5573 	pcp->high_max = BOOT_PAGESET_HIGH;
5574 	pcp->batch = BOOT_PAGESET_BATCH;
5575 	pcp->free_count = 0;
5576 }
5577 
5578 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5579 					      unsigned long high_max, unsigned long batch)
5580 {
5581 	struct per_cpu_pages *pcp;
5582 	int cpu;
5583 
5584 	for_each_possible_cpu(cpu) {
5585 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5586 		pageset_update(pcp, high_min, high_max, batch);
5587 	}
5588 }
5589 
5590 /*
5591  * Calculate and set new high and batch values for all per-cpu pagesets of a
5592  * zone based on the zone's size.
5593  */
5594 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5595 {
5596 	int new_high_min, new_high_max, new_batch;
5597 
5598 	new_batch = max(1, zone_batchsize(zone));
5599 	if (percpu_pagelist_high_fraction) {
5600 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5601 					     percpu_pagelist_high_fraction);
5602 		/*
5603 		 * PCP high is tuned manually, disable auto-tuning via
5604 		 * setting high_min and high_max to the manual value.
5605 		 */
5606 		new_high_max = new_high_min;
5607 	} else {
5608 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5609 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5610 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5611 	}
5612 
5613 	if (zone->pageset_high_min == new_high_min &&
5614 	    zone->pageset_high_max == new_high_max &&
5615 	    zone->pageset_batch == new_batch)
5616 		return;
5617 
5618 	zone->pageset_high_min = new_high_min;
5619 	zone->pageset_high_max = new_high_max;
5620 	zone->pageset_batch = new_batch;
5621 
5622 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5623 					  new_batch);
5624 }
5625 
5626 void __meminit setup_zone_pageset(struct zone *zone)
5627 {
5628 	int cpu;
5629 
5630 	/* Size may be 0 on !SMP && !NUMA */
5631 	if (sizeof(struct per_cpu_zonestat) > 0)
5632 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5633 
5634 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5635 	for_each_possible_cpu(cpu) {
5636 		struct per_cpu_pages *pcp;
5637 		struct per_cpu_zonestat *pzstats;
5638 
5639 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5640 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5641 		per_cpu_pages_init(pcp, pzstats);
5642 	}
5643 
5644 	zone_set_pageset_high_and_batch(zone, 0);
5645 }
5646 
5647 /*
5648  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5649  * page high values need to be recalculated.
5650  */
5651 static void zone_pcp_update(struct zone *zone, int cpu_online)
5652 {
5653 	mutex_lock(&pcp_batch_high_lock);
5654 	zone_set_pageset_high_and_batch(zone, cpu_online);
5655 	mutex_unlock(&pcp_batch_high_lock);
5656 }
5657 
5658 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5659 {
5660 	struct per_cpu_pages *pcp;
5661 	struct cpu_cacheinfo *cci;
5662 
5663 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5664 	cci = get_cpu_cacheinfo(cpu);
5665 	/*
5666 	 * If data cache slice of CPU is large enough, "pcp->batch"
5667 	 * pages can be preserved in PCP before draining PCP for
5668 	 * consecutive high-order pages freeing without allocation.
5669 	 * This can reduce zone lock contention without hurting
5670 	 * cache-hot pages sharing.
5671 	 */
5672 	spin_lock(&pcp->lock);
5673 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5674 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5675 	else
5676 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5677 	spin_unlock(&pcp->lock);
5678 }
5679 
5680 void setup_pcp_cacheinfo(unsigned int cpu)
5681 {
5682 	struct zone *zone;
5683 
5684 	for_each_populated_zone(zone)
5685 		zone_pcp_update_cacheinfo(zone, cpu);
5686 }
5687 
5688 /*
5689  * Allocate per cpu pagesets and initialize them.
5690  * Before this call only boot pagesets were available.
5691  */
5692 void __init setup_per_cpu_pageset(void)
5693 {
5694 	struct pglist_data *pgdat;
5695 	struct zone *zone;
5696 	int __maybe_unused cpu;
5697 
5698 	for_each_populated_zone(zone)
5699 		setup_zone_pageset(zone);
5700 
5701 #ifdef CONFIG_NUMA
5702 	/*
5703 	 * Unpopulated zones continue using the boot pagesets.
5704 	 * The numa stats for these pagesets need to be reset.
5705 	 * Otherwise, they will end up skewing the stats of
5706 	 * the nodes these zones are associated with.
5707 	 */
5708 	for_each_possible_cpu(cpu) {
5709 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5710 		memset(pzstats->vm_numa_event, 0,
5711 		       sizeof(pzstats->vm_numa_event));
5712 	}
5713 #endif
5714 
5715 	for_each_online_pgdat(pgdat)
5716 		pgdat->per_cpu_nodestats =
5717 			alloc_percpu(struct per_cpu_nodestat);
5718 }
5719 
5720 __meminit void zone_pcp_init(struct zone *zone)
5721 {
5722 	/*
5723 	 * per cpu subsystem is not up at this point. The following code
5724 	 * relies on the ability of the linker to provide the
5725 	 * offset of a (static) per cpu variable into the per cpu area.
5726 	 */
5727 	zone->per_cpu_pageset = &boot_pageset;
5728 	zone->per_cpu_zonestats = &boot_zonestats;
5729 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5730 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5731 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5732 
5733 	if (populated_zone(zone))
5734 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5735 			 zone->present_pages, zone_batchsize(zone));
5736 }
5737 
5738 void adjust_managed_page_count(struct page *page, long count)
5739 {
5740 	atomic_long_add(count, &page_zone(page)->managed_pages);
5741 	totalram_pages_add(count);
5742 #ifdef CONFIG_HIGHMEM
5743 	if (PageHighMem(page))
5744 		totalhigh_pages_add(count);
5745 #endif
5746 }
5747 EXPORT_SYMBOL(adjust_managed_page_count);
5748 
5749 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5750 {
5751 	void *pos;
5752 	unsigned long pages = 0;
5753 
5754 	start = (void *)PAGE_ALIGN((unsigned long)start);
5755 	end = (void *)((unsigned long)end & PAGE_MASK);
5756 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5757 		struct page *page = virt_to_page(pos);
5758 		void *direct_map_addr;
5759 
5760 		/*
5761 		 * 'direct_map_addr' might be different from 'pos'
5762 		 * because some architectures' virt_to_page()
5763 		 * work with aliases.  Getting the direct map
5764 		 * address ensures that we get a _writeable_
5765 		 * alias for the memset().
5766 		 */
5767 		direct_map_addr = page_address(page);
5768 		/*
5769 		 * Perform a kasan-unchecked memset() since this memory
5770 		 * has not been initialized.
5771 		 */
5772 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5773 		if ((unsigned int)poison <= 0xFF)
5774 			memset(direct_map_addr, poison, PAGE_SIZE);
5775 
5776 		free_reserved_page(page);
5777 	}
5778 
5779 	if (pages && s)
5780 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5781 
5782 	return pages;
5783 }
5784 
5785 static int page_alloc_cpu_dead(unsigned int cpu)
5786 {
5787 	struct zone *zone;
5788 
5789 	lru_add_drain_cpu(cpu);
5790 	mlock_drain_remote(cpu);
5791 	drain_pages(cpu);
5792 
5793 	/*
5794 	 * Spill the event counters of the dead processor
5795 	 * into the current processors event counters.
5796 	 * This artificially elevates the count of the current
5797 	 * processor.
5798 	 */
5799 	vm_events_fold_cpu(cpu);
5800 
5801 	/*
5802 	 * Zero the differential counters of the dead processor
5803 	 * so that the vm statistics are consistent.
5804 	 *
5805 	 * This is only okay since the processor is dead and cannot
5806 	 * race with what we are doing.
5807 	 */
5808 	cpu_vm_stats_fold(cpu);
5809 
5810 	for_each_populated_zone(zone)
5811 		zone_pcp_update(zone, 0);
5812 
5813 	return 0;
5814 }
5815 
5816 static int page_alloc_cpu_online(unsigned int cpu)
5817 {
5818 	struct zone *zone;
5819 
5820 	for_each_populated_zone(zone)
5821 		zone_pcp_update(zone, 1);
5822 	return 0;
5823 }
5824 
5825 void __init page_alloc_init_cpuhp(void)
5826 {
5827 	int ret;
5828 
5829 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5830 					"mm/page_alloc:pcp",
5831 					page_alloc_cpu_online,
5832 					page_alloc_cpu_dead);
5833 	WARN_ON(ret < 0);
5834 }
5835 
5836 /*
5837  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5838  *	or min_free_kbytes changes.
5839  */
5840 static void calculate_totalreserve_pages(void)
5841 {
5842 	struct pglist_data *pgdat;
5843 	unsigned long reserve_pages = 0;
5844 	enum zone_type i, j;
5845 
5846 	for_each_online_pgdat(pgdat) {
5847 
5848 		pgdat->totalreserve_pages = 0;
5849 
5850 		for (i = 0; i < MAX_NR_ZONES; i++) {
5851 			struct zone *zone = pgdat->node_zones + i;
5852 			long max = 0;
5853 			unsigned long managed_pages = zone_managed_pages(zone);
5854 
5855 			/* Find valid and maximum lowmem_reserve in the zone */
5856 			for (j = i; j < MAX_NR_ZONES; j++) {
5857 				if (zone->lowmem_reserve[j] > max)
5858 					max = zone->lowmem_reserve[j];
5859 			}
5860 
5861 			/* we treat the high watermark as reserved pages. */
5862 			max += high_wmark_pages(zone);
5863 
5864 			if (max > managed_pages)
5865 				max = managed_pages;
5866 
5867 			pgdat->totalreserve_pages += max;
5868 
5869 			reserve_pages += max;
5870 		}
5871 	}
5872 	totalreserve_pages = reserve_pages;
5873 }
5874 
5875 /*
5876  * setup_per_zone_lowmem_reserve - called whenever
5877  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5878  *	has a correct pages reserved value, so an adequate number of
5879  *	pages are left in the zone after a successful __alloc_pages().
5880  */
5881 static void setup_per_zone_lowmem_reserve(void)
5882 {
5883 	struct pglist_data *pgdat;
5884 	enum zone_type i, j;
5885 
5886 	for_each_online_pgdat(pgdat) {
5887 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5888 			struct zone *zone = &pgdat->node_zones[i];
5889 			int ratio = sysctl_lowmem_reserve_ratio[i];
5890 			bool clear = !ratio || !zone_managed_pages(zone);
5891 			unsigned long managed_pages = 0;
5892 
5893 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5894 				struct zone *upper_zone = &pgdat->node_zones[j];
5895 				bool empty = !zone_managed_pages(upper_zone);
5896 
5897 				managed_pages += zone_managed_pages(upper_zone);
5898 
5899 				if (clear || empty)
5900 					zone->lowmem_reserve[j] = 0;
5901 				else
5902 					zone->lowmem_reserve[j] = managed_pages / ratio;
5903 			}
5904 		}
5905 	}
5906 
5907 	/* update totalreserve_pages */
5908 	calculate_totalreserve_pages();
5909 }
5910 
5911 static void __setup_per_zone_wmarks(void)
5912 {
5913 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5914 	unsigned long lowmem_pages = 0;
5915 	struct zone *zone;
5916 	unsigned long flags;
5917 
5918 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5919 	for_each_zone(zone) {
5920 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5921 			lowmem_pages += zone_managed_pages(zone);
5922 	}
5923 
5924 	for_each_zone(zone) {
5925 		u64 tmp;
5926 
5927 		spin_lock_irqsave(&zone->lock, flags);
5928 		tmp = (u64)pages_min * zone_managed_pages(zone);
5929 		tmp = div64_ul(tmp, lowmem_pages);
5930 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5931 			/*
5932 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5933 			 * need highmem and movable zones pages, so cap pages_min
5934 			 * to a small  value here.
5935 			 *
5936 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5937 			 * deltas control async page reclaim, and so should
5938 			 * not be capped for highmem and movable zones.
5939 			 */
5940 			unsigned long min_pages;
5941 
5942 			min_pages = zone_managed_pages(zone) / 1024;
5943 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5944 			zone->_watermark[WMARK_MIN] = min_pages;
5945 		} else {
5946 			/*
5947 			 * If it's a lowmem zone, reserve a number of pages
5948 			 * proportionate to the zone's size.
5949 			 */
5950 			zone->_watermark[WMARK_MIN] = tmp;
5951 		}
5952 
5953 		/*
5954 		 * Set the kswapd watermarks distance according to the
5955 		 * scale factor in proportion to available memory, but
5956 		 * ensure a minimum size on small systems.
5957 		 */
5958 		tmp = max_t(u64, tmp >> 2,
5959 			    mult_frac(zone_managed_pages(zone),
5960 				      watermark_scale_factor, 10000));
5961 
5962 		zone->watermark_boost = 0;
5963 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5964 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5965 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5966 
5967 		spin_unlock_irqrestore(&zone->lock, flags);
5968 	}
5969 
5970 	/* update totalreserve_pages */
5971 	calculate_totalreserve_pages();
5972 }
5973 
5974 /**
5975  * setup_per_zone_wmarks - called when min_free_kbytes changes
5976  * or when memory is hot-{added|removed}
5977  *
5978  * Ensures that the watermark[min,low,high] values for each zone are set
5979  * correctly with respect to min_free_kbytes.
5980  */
5981 void setup_per_zone_wmarks(void)
5982 {
5983 	struct zone *zone;
5984 	static DEFINE_SPINLOCK(lock);
5985 
5986 	spin_lock(&lock);
5987 	__setup_per_zone_wmarks();
5988 	spin_unlock(&lock);
5989 
5990 	/*
5991 	 * The watermark size have changed so update the pcpu batch
5992 	 * and high limits or the limits may be inappropriate.
5993 	 */
5994 	for_each_zone(zone)
5995 		zone_pcp_update(zone, 0);
5996 }
5997 
5998 /*
5999  * Initialise min_free_kbytes.
6000  *
6001  * For small machines we want it small (128k min).  For large machines
6002  * we want it large (256MB max).  But it is not linear, because network
6003  * bandwidth does not increase linearly with machine size.  We use
6004  *
6005  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6006  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6007  *
6008  * which yields
6009  *
6010  * 16MB:	512k
6011  * 32MB:	724k
6012  * 64MB:	1024k
6013  * 128MB:	1448k
6014  * 256MB:	2048k
6015  * 512MB:	2896k
6016  * 1024MB:	4096k
6017  * 2048MB:	5792k
6018  * 4096MB:	8192k
6019  * 8192MB:	11584k
6020  * 16384MB:	16384k
6021  */
6022 void calculate_min_free_kbytes(void)
6023 {
6024 	unsigned long lowmem_kbytes;
6025 	int new_min_free_kbytes;
6026 
6027 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6028 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6029 
6030 	if (new_min_free_kbytes > user_min_free_kbytes)
6031 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6032 	else
6033 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6034 				new_min_free_kbytes, user_min_free_kbytes);
6035 
6036 }
6037 
6038 int __meminit init_per_zone_wmark_min(void)
6039 {
6040 	calculate_min_free_kbytes();
6041 	setup_per_zone_wmarks();
6042 	refresh_zone_stat_thresholds();
6043 	setup_per_zone_lowmem_reserve();
6044 
6045 #ifdef CONFIG_NUMA
6046 	setup_min_unmapped_ratio();
6047 	setup_min_slab_ratio();
6048 #endif
6049 
6050 	khugepaged_min_free_kbytes_update();
6051 
6052 	return 0;
6053 }
6054 postcore_initcall(init_per_zone_wmark_min)
6055 
6056 /*
6057  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6058  *	that we can call two helper functions whenever min_free_kbytes
6059  *	changes.
6060  */
6061 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6062 		void *buffer, size_t *length, loff_t *ppos)
6063 {
6064 	int rc;
6065 
6066 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6067 	if (rc)
6068 		return rc;
6069 
6070 	if (write) {
6071 		user_min_free_kbytes = min_free_kbytes;
6072 		setup_per_zone_wmarks();
6073 	}
6074 	return 0;
6075 }
6076 
6077 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6078 		void *buffer, size_t *length, loff_t *ppos)
6079 {
6080 	int rc;
6081 
6082 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6083 	if (rc)
6084 		return rc;
6085 
6086 	if (write)
6087 		setup_per_zone_wmarks();
6088 
6089 	return 0;
6090 }
6091 
6092 #ifdef CONFIG_NUMA
6093 static void setup_min_unmapped_ratio(void)
6094 {
6095 	pg_data_t *pgdat;
6096 	struct zone *zone;
6097 
6098 	for_each_online_pgdat(pgdat)
6099 		pgdat->min_unmapped_pages = 0;
6100 
6101 	for_each_zone(zone)
6102 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6103 						         sysctl_min_unmapped_ratio) / 100;
6104 }
6105 
6106 
6107 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6108 		void *buffer, size_t *length, loff_t *ppos)
6109 {
6110 	int rc;
6111 
6112 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6113 	if (rc)
6114 		return rc;
6115 
6116 	setup_min_unmapped_ratio();
6117 
6118 	return 0;
6119 }
6120 
6121 static void setup_min_slab_ratio(void)
6122 {
6123 	pg_data_t *pgdat;
6124 	struct zone *zone;
6125 
6126 	for_each_online_pgdat(pgdat)
6127 		pgdat->min_slab_pages = 0;
6128 
6129 	for_each_zone(zone)
6130 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6131 						     sysctl_min_slab_ratio) / 100;
6132 }
6133 
6134 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6135 		void *buffer, size_t *length, loff_t *ppos)
6136 {
6137 	int rc;
6138 
6139 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6140 	if (rc)
6141 		return rc;
6142 
6143 	setup_min_slab_ratio();
6144 
6145 	return 0;
6146 }
6147 #endif
6148 
6149 /*
6150  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6151  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6152  *	whenever sysctl_lowmem_reserve_ratio changes.
6153  *
6154  * The reserve ratio obviously has absolutely no relation with the
6155  * minimum watermarks. The lowmem reserve ratio can only make sense
6156  * if in function of the boot time zone sizes.
6157  */
6158 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6159 		int write, void *buffer, size_t *length, loff_t *ppos)
6160 {
6161 	int i;
6162 
6163 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6164 
6165 	for (i = 0; i < MAX_NR_ZONES; i++) {
6166 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6167 			sysctl_lowmem_reserve_ratio[i] = 0;
6168 	}
6169 
6170 	setup_per_zone_lowmem_reserve();
6171 	return 0;
6172 }
6173 
6174 /*
6175  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6176  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6177  * pagelist can have before it gets flushed back to buddy allocator.
6178  */
6179 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6180 		int write, void *buffer, size_t *length, loff_t *ppos)
6181 {
6182 	struct zone *zone;
6183 	int old_percpu_pagelist_high_fraction;
6184 	int ret;
6185 
6186 	mutex_lock(&pcp_batch_high_lock);
6187 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6188 
6189 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6190 	if (!write || ret < 0)
6191 		goto out;
6192 
6193 	/* Sanity checking to avoid pcp imbalance */
6194 	if (percpu_pagelist_high_fraction &&
6195 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6196 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6197 		ret = -EINVAL;
6198 		goto out;
6199 	}
6200 
6201 	/* No change? */
6202 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6203 		goto out;
6204 
6205 	for_each_populated_zone(zone)
6206 		zone_set_pageset_high_and_batch(zone, 0);
6207 out:
6208 	mutex_unlock(&pcp_batch_high_lock);
6209 	return ret;
6210 }
6211 
6212 static struct ctl_table page_alloc_sysctl_table[] = {
6213 	{
6214 		.procname	= "min_free_kbytes",
6215 		.data		= &min_free_kbytes,
6216 		.maxlen		= sizeof(min_free_kbytes),
6217 		.mode		= 0644,
6218 		.proc_handler	= min_free_kbytes_sysctl_handler,
6219 		.extra1		= SYSCTL_ZERO,
6220 	},
6221 	{
6222 		.procname	= "watermark_boost_factor",
6223 		.data		= &watermark_boost_factor,
6224 		.maxlen		= sizeof(watermark_boost_factor),
6225 		.mode		= 0644,
6226 		.proc_handler	= proc_dointvec_minmax,
6227 		.extra1		= SYSCTL_ZERO,
6228 	},
6229 	{
6230 		.procname	= "watermark_scale_factor",
6231 		.data		= &watermark_scale_factor,
6232 		.maxlen		= sizeof(watermark_scale_factor),
6233 		.mode		= 0644,
6234 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6235 		.extra1		= SYSCTL_ONE,
6236 		.extra2		= SYSCTL_THREE_THOUSAND,
6237 	},
6238 	{
6239 		.procname	= "percpu_pagelist_high_fraction",
6240 		.data		= &percpu_pagelist_high_fraction,
6241 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6242 		.mode		= 0644,
6243 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6244 		.extra1		= SYSCTL_ZERO,
6245 	},
6246 	{
6247 		.procname	= "lowmem_reserve_ratio",
6248 		.data		= &sysctl_lowmem_reserve_ratio,
6249 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6250 		.mode		= 0644,
6251 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6252 	},
6253 #ifdef CONFIG_NUMA
6254 	{
6255 		.procname	= "numa_zonelist_order",
6256 		.data		= &numa_zonelist_order,
6257 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6258 		.mode		= 0644,
6259 		.proc_handler	= numa_zonelist_order_handler,
6260 	},
6261 	{
6262 		.procname	= "min_unmapped_ratio",
6263 		.data		= &sysctl_min_unmapped_ratio,
6264 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6265 		.mode		= 0644,
6266 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6267 		.extra1		= SYSCTL_ZERO,
6268 		.extra2		= SYSCTL_ONE_HUNDRED,
6269 	},
6270 	{
6271 		.procname	= "min_slab_ratio",
6272 		.data		= &sysctl_min_slab_ratio,
6273 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6274 		.mode		= 0644,
6275 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6276 		.extra1		= SYSCTL_ZERO,
6277 		.extra2		= SYSCTL_ONE_HUNDRED,
6278 	},
6279 #endif
6280 };
6281 
6282 void __init page_alloc_sysctl_init(void)
6283 {
6284 	register_sysctl_init("vm", page_alloc_sysctl_table);
6285 }
6286 
6287 #ifdef CONFIG_CONTIG_ALLOC
6288 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6289 static void alloc_contig_dump_pages(struct list_head *page_list)
6290 {
6291 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6292 
6293 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6294 		struct page *page;
6295 
6296 		dump_stack();
6297 		list_for_each_entry(page, page_list, lru)
6298 			dump_page(page, "migration failure");
6299 	}
6300 }
6301 
6302 /*
6303  * [start, end) must belong to a single zone.
6304  * @migratetype: using migratetype to filter the type of migration in
6305  *		trace_mm_alloc_contig_migrate_range_info.
6306  */
6307 int __alloc_contig_migrate_range(struct compact_control *cc,
6308 					unsigned long start, unsigned long end,
6309 					int migratetype)
6310 {
6311 	/* This function is based on compact_zone() from compaction.c. */
6312 	unsigned int nr_reclaimed;
6313 	unsigned long pfn = start;
6314 	unsigned int tries = 0;
6315 	int ret = 0;
6316 	struct migration_target_control mtc = {
6317 		.nid = zone_to_nid(cc->zone),
6318 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6319 		.reason = MR_CONTIG_RANGE,
6320 	};
6321 	struct page *page;
6322 	unsigned long total_mapped = 0;
6323 	unsigned long total_migrated = 0;
6324 	unsigned long total_reclaimed = 0;
6325 
6326 	lru_cache_disable();
6327 
6328 	while (pfn < end || !list_empty(&cc->migratepages)) {
6329 		if (fatal_signal_pending(current)) {
6330 			ret = -EINTR;
6331 			break;
6332 		}
6333 
6334 		if (list_empty(&cc->migratepages)) {
6335 			cc->nr_migratepages = 0;
6336 			ret = isolate_migratepages_range(cc, pfn, end);
6337 			if (ret && ret != -EAGAIN)
6338 				break;
6339 			pfn = cc->migrate_pfn;
6340 			tries = 0;
6341 		} else if (++tries == 5) {
6342 			ret = -EBUSY;
6343 			break;
6344 		}
6345 
6346 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6347 							&cc->migratepages);
6348 		cc->nr_migratepages -= nr_reclaimed;
6349 
6350 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6351 			total_reclaimed += nr_reclaimed;
6352 			list_for_each_entry(page, &cc->migratepages, lru) {
6353 				struct folio *folio = page_folio(page);
6354 
6355 				total_mapped += folio_mapped(folio) *
6356 						folio_nr_pages(folio);
6357 			}
6358 		}
6359 
6360 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6361 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6362 
6363 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6364 			total_migrated += cc->nr_migratepages;
6365 
6366 		/*
6367 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6368 		 * to retry again over this error, so do the same here.
6369 		 */
6370 		if (ret == -ENOMEM)
6371 			break;
6372 	}
6373 
6374 	lru_cache_enable();
6375 	if (ret < 0) {
6376 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6377 			alloc_contig_dump_pages(&cc->migratepages);
6378 		putback_movable_pages(&cc->migratepages);
6379 	}
6380 
6381 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6382 						 total_migrated,
6383 						 total_reclaimed,
6384 						 total_mapped);
6385 	return (ret < 0) ? ret : 0;
6386 }
6387 
6388 /**
6389  * alloc_contig_range() -- tries to allocate given range of pages
6390  * @start:	start PFN to allocate
6391  * @end:	one-past-the-last PFN to allocate
6392  * @migratetype:	migratetype of the underlying pageblocks (either
6393  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6394  *			in range must have the same migratetype and it must
6395  *			be either of the two.
6396  * @gfp_mask:	GFP mask to use during compaction
6397  *
6398  * The PFN range does not have to be pageblock aligned. The PFN range must
6399  * belong to a single zone.
6400  *
6401  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6402  * pageblocks in the range.  Once isolated, the pageblocks should not
6403  * be modified by others.
6404  *
6405  * Return: zero on success or negative error code.  On success all
6406  * pages which PFN is in [start, end) are allocated for the caller and
6407  * need to be freed with free_contig_range().
6408  */
6409 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6410 		       unsigned migratetype, gfp_t gfp_mask)
6411 {
6412 	unsigned long outer_start, outer_end;
6413 	int ret = 0;
6414 
6415 	struct compact_control cc = {
6416 		.nr_migratepages = 0,
6417 		.order = -1,
6418 		.zone = page_zone(pfn_to_page(start)),
6419 		.mode = MIGRATE_SYNC,
6420 		.ignore_skip_hint = true,
6421 		.no_set_skip_hint = true,
6422 		.gfp_mask = current_gfp_context(gfp_mask),
6423 		.alloc_contig = true,
6424 	};
6425 	INIT_LIST_HEAD(&cc.migratepages);
6426 
6427 	/*
6428 	 * What we do here is we mark all pageblocks in range as
6429 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6430 	 * have different sizes, and due to the way page allocator
6431 	 * work, start_isolate_page_range() has special handlings for this.
6432 	 *
6433 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6434 	 * migrate the pages from an unaligned range (ie. pages that
6435 	 * we are interested in). This will put all the pages in
6436 	 * range back to page allocator as MIGRATE_ISOLATE.
6437 	 *
6438 	 * When this is done, we take the pages in range from page
6439 	 * allocator removing them from the buddy system.  This way
6440 	 * page allocator will never consider using them.
6441 	 *
6442 	 * This lets us mark the pageblocks back as
6443 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6444 	 * aligned range but not in the unaligned, original range are
6445 	 * put back to page allocator so that buddy can use them.
6446 	 */
6447 
6448 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6449 	if (ret)
6450 		goto done;
6451 
6452 	drain_all_pages(cc.zone);
6453 
6454 	/*
6455 	 * In case of -EBUSY, we'd like to know which page causes problem.
6456 	 * So, just fall through. test_pages_isolated() has a tracepoint
6457 	 * which will report the busy page.
6458 	 *
6459 	 * It is possible that busy pages could become available before
6460 	 * the call to test_pages_isolated, and the range will actually be
6461 	 * allocated.  So, if we fall through be sure to clear ret so that
6462 	 * -EBUSY is not accidentally used or returned to caller.
6463 	 */
6464 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6465 	if (ret && ret != -EBUSY)
6466 		goto done;
6467 	ret = 0;
6468 
6469 	/*
6470 	 * Pages from [start, end) are within a pageblock_nr_pages
6471 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6472 	 * more, all pages in [start, end) are free in page allocator.
6473 	 * What we are going to do is to allocate all pages from
6474 	 * [start, end) (that is remove them from page allocator).
6475 	 *
6476 	 * The only problem is that pages at the beginning and at the
6477 	 * end of interesting range may be not aligned with pages that
6478 	 * page allocator holds, ie. they can be part of higher order
6479 	 * pages.  Because of this, we reserve the bigger range and
6480 	 * once this is done free the pages we are not interested in.
6481 	 *
6482 	 * We don't have to hold zone->lock here because the pages are
6483 	 * isolated thus they won't get removed from buddy.
6484 	 */
6485 	outer_start = find_large_buddy(start);
6486 
6487 	/* Make sure the range is really isolated. */
6488 	if (test_pages_isolated(outer_start, end, 0)) {
6489 		ret = -EBUSY;
6490 		goto done;
6491 	}
6492 
6493 	/* Grab isolated pages from freelists. */
6494 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6495 	if (!outer_end) {
6496 		ret = -EBUSY;
6497 		goto done;
6498 	}
6499 
6500 	/* Free head and tail (if any) */
6501 	if (start != outer_start)
6502 		free_contig_range(outer_start, start - outer_start);
6503 	if (end != outer_end)
6504 		free_contig_range(end, outer_end - end);
6505 
6506 done:
6507 	undo_isolate_page_range(start, end, migratetype);
6508 	return ret;
6509 }
6510 EXPORT_SYMBOL(alloc_contig_range_noprof);
6511 
6512 static int __alloc_contig_pages(unsigned long start_pfn,
6513 				unsigned long nr_pages, gfp_t gfp_mask)
6514 {
6515 	unsigned long end_pfn = start_pfn + nr_pages;
6516 
6517 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6518 				   gfp_mask);
6519 }
6520 
6521 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6522 				   unsigned long nr_pages)
6523 {
6524 	unsigned long i, end_pfn = start_pfn + nr_pages;
6525 	struct page *page;
6526 
6527 	for (i = start_pfn; i < end_pfn; i++) {
6528 		page = pfn_to_online_page(i);
6529 		if (!page)
6530 			return false;
6531 
6532 		if (page_zone(page) != z)
6533 			return false;
6534 
6535 		if (PageReserved(page))
6536 			return false;
6537 
6538 		if (PageHuge(page))
6539 			return false;
6540 	}
6541 	return true;
6542 }
6543 
6544 static bool zone_spans_last_pfn(const struct zone *zone,
6545 				unsigned long start_pfn, unsigned long nr_pages)
6546 {
6547 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6548 
6549 	return zone_spans_pfn(zone, last_pfn);
6550 }
6551 
6552 /**
6553  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6554  * @nr_pages:	Number of contiguous pages to allocate
6555  * @gfp_mask:	GFP mask to limit search and used during compaction
6556  * @nid:	Target node
6557  * @nodemask:	Mask for other possible nodes
6558  *
6559  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6560  * on an applicable zonelist to find a contiguous pfn range which can then be
6561  * tried for allocation with alloc_contig_range(). This routine is intended
6562  * for allocation requests which can not be fulfilled with the buddy allocator.
6563  *
6564  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6565  * power of two, then allocated range is also guaranteed to be aligned to same
6566  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6567  *
6568  * Allocated pages can be freed with free_contig_range() or by manually calling
6569  * __free_page() on each allocated page.
6570  *
6571  * Return: pointer to contiguous pages on success, or NULL if not successful.
6572  */
6573 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6574 				 int nid, nodemask_t *nodemask)
6575 {
6576 	unsigned long ret, pfn, flags;
6577 	struct zonelist *zonelist;
6578 	struct zone *zone;
6579 	struct zoneref *z;
6580 
6581 	zonelist = node_zonelist(nid, gfp_mask);
6582 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6583 					gfp_zone(gfp_mask), nodemask) {
6584 		spin_lock_irqsave(&zone->lock, flags);
6585 
6586 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6587 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6588 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6589 				/*
6590 				 * We release the zone lock here because
6591 				 * alloc_contig_range() will also lock the zone
6592 				 * at some point. If there's an allocation
6593 				 * spinning on this lock, it may win the race
6594 				 * and cause alloc_contig_range() to fail...
6595 				 */
6596 				spin_unlock_irqrestore(&zone->lock, flags);
6597 				ret = __alloc_contig_pages(pfn, nr_pages,
6598 							gfp_mask);
6599 				if (!ret)
6600 					return pfn_to_page(pfn);
6601 				spin_lock_irqsave(&zone->lock, flags);
6602 			}
6603 			pfn += nr_pages;
6604 		}
6605 		spin_unlock_irqrestore(&zone->lock, flags);
6606 	}
6607 	return NULL;
6608 }
6609 #endif /* CONFIG_CONTIG_ALLOC */
6610 
6611 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6612 {
6613 	unsigned long count = 0;
6614 
6615 	for (; nr_pages--; pfn++) {
6616 		struct page *page = pfn_to_page(pfn);
6617 
6618 		count += page_count(page) != 1;
6619 		__free_page(page);
6620 	}
6621 	WARN(count != 0, "%lu pages are still in use!\n", count);
6622 }
6623 EXPORT_SYMBOL(free_contig_range);
6624 
6625 /*
6626  * Effectively disable pcplists for the zone by setting the high limit to 0
6627  * and draining all cpus. A concurrent page freeing on another CPU that's about
6628  * to put the page on pcplist will either finish before the drain and the page
6629  * will be drained, or observe the new high limit and skip the pcplist.
6630  *
6631  * Must be paired with a call to zone_pcp_enable().
6632  */
6633 void zone_pcp_disable(struct zone *zone)
6634 {
6635 	mutex_lock(&pcp_batch_high_lock);
6636 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6637 	__drain_all_pages(zone, true);
6638 }
6639 
6640 void zone_pcp_enable(struct zone *zone)
6641 {
6642 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6643 		zone->pageset_high_max, zone->pageset_batch);
6644 	mutex_unlock(&pcp_batch_high_lock);
6645 }
6646 
6647 void zone_pcp_reset(struct zone *zone)
6648 {
6649 	int cpu;
6650 	struct per_cpu_zonestat *pzstats;
6651 
6652 	if (zone->per_cpu_pageset != &boot_pageset) {
6653 		for_each_online_cpu(cpu) {
6654 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6655 			drain_zonestat(zone, pzstats);
6656 		}
6657 		free_percpu(zone->per_cpu_pageset);
6658 		zone->per_cpu_pageset = &boot_pageset;
6659 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6660 			free_percpu(zone->per_cpu_zonestats);
6661 			zone->per_cpu_zonestats = &boot_zonestats;
6662 		}
6663 	}
6664 }
6665 
6666 #ifdef CONFIG_MEMORY_HOTREMOVE
6667 /*
6668  * All pages in the range must be in a single zone, must not contain holes,
6669  * must span full sections, and must be isolated before calling this function.
6670  */
6671 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6672 {
6673 	unsigned long pfn = start_pfn;
6674 	struct page *page;
6675 	struct zone *zone;
6676 	unsigned int order;
6677 	unsigned long flags;
6678 
6679 	offline_mem_sections(pfn, end_pfn);
6680 	zone = page_zone(pfn_to_page(pfn));
6681 	spin_lock_irqsave(&zone->lock, flags);
6682 	while (pfn < end_pfn) {
6683 		page = pfn_to_page(pfn);
6684 		/*
6685 		 * The HWPoisoned page may be not in buddy system, and
6686 		 * page_count() is not 0.
6687 		 */
6688 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6689 			pfn++;
6690 			continue;
6691 		}
6692 		/*
6693 		 * At this point all remaining PageOffline() pages have a
6694 		 * reference count of 0 and can simply be skipped.
6695 		 */
6696 		if (PageOffline(page)) {
6697 			BUG_ON(page_count(page));
6698 			BUG_ON(PageBuddy(page));
6699 			pfn++;
6700 			continue;
6701 		}
6702 
6703 		BUG_ON(page_count(page));
6704 		BUG_ON(!PageBuddy(page));
6705 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6706 		order = buddy_order(page);
6707 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6708 		pfn += (1 << order);
6709 	}
6710 	spin_unlock_irqrestore(&zone->lock, flags);
6711 }
6712 #endif
6713 
6714 /*
6715  * This function returns a stable result only if called under zone lock.
6716  */
6717 bool is_free_buddy_page(const struct page *page)
6718 {
6719 	unsigned long pfn = page_to_pfn(page);
6720 	unsigned int order;
6721 
6722 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6723 		const struct page *head = page - (pfn & ((1 << order) - 1));
6724 
6725 		if (PageBuddy(head) &&
6726 		    buddy_order_unsafe(head) >= order)
6727 			break;
6728 	}
6729 
6730 	return order <= MAX_PAGE_ORDER;
6731 }
6732 EXPORT_SYMBOL(is_free_buddy_page);
6733 
6734 #ifdef CONFIG_MEMORY_FAILURE
6735 static inline void add_to_free_list(struct page *page, struct zone *zone,
6736 				    unsigned int order, int migratetype,
6737 				    bool tail)
6738 {
6739 	__add_to_free_list(page, zone, order, migratetype, tail);
6740 	account_freepages(zone, 1 << order, migratetype);
6741 }
6742 
6743 /*
6744  * Break down a higher-order page in sub-pages, and keep our target out of
6745  * buddy allocator.
6746  */
6747 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6748 				   struct page *target, int low, int high,
6749 				   int migratetype)
6750 {
6751 	unsigned long size = 1 << high;
6752 	struct page *current_buddy;
6753 
6754 	while (high > low) {
6755 		high--;
6756 		size >>= 1;
6757 
6758 		if (target >= &page[size]) {
6759 			current_buddy = page;
6760 			page = page + size;
6761 		} else {
6762 			current_buddy = page + size;
6763 		}
6764 
6765 		if (set_page_guard(zone, current_buddy, high))
6766 			continue;
6767 
6768 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6769 		set_buddy_order(current_buddy, high);
6770 	}
6771 }
6772 
6773 /*
6774  * Take a page that will be marked as poisoned off the buddy allocator.
6775  */
6776 bool take_page_off_buddy(struct page *page)
6777 {
6778 	struct zone *zone = page_zone(page);
6779 	unsigned long pfn = page_to_pfn(page);
6780 	unsigned long flags;
6781 	unsigned int order;
6782 	bool ret = false;
6783 
6784 	spin_lock_irqsave(&zone->lock, flags);
6785 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6786 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6787 		int page_order = buddy_order(page_head);
6788 
6789 		if (PageBuddy(page_head) && page_order >= order) {
6790 			unsigned long pfn_head = page_to_pfn(page_head);
6791 			int migratetype = get_pfnblock_migratetype(page_head,
6792 								   pfn_head);
6793 
6794 			del_page_from_free_list(page_head, zone, page_order,
6795 						migratetype);
6796 			break_down_buddy_pages(zone, page_head, page, 0,
6797 						page_order, migratetype);
6798 			SetPageHWPoisonTakenOff(page);
6799 			ret = true;
6800 			break;
6801 		}
6802 		if (page_count(page_head) > 0)
6803 			break;
6804 	}
6805 	spin_unlock_irqrestore(&zone->lock, flags);
6806 	return ret;
6807 }
6808 
6809 /*
6810  * Cancel takeoff done by take_page_off_buddy().
6811  */
6812 bool put_page_back_buddy(struct page *page)
6813 {
6814 	struct zone *zone = page_zone(page);
6815 	unsigned long flags;
6816 	bool ret = false;
6817 
6818 	spin_lock_irqsave(&zone->lock, flags);
6819 	if (put_page_testzero(page)) {
6820 		unsigned long pfn = page_to_pfn(page);
6821 		int migratetype = get_pfnblock_migratetype(page, pfn);
6822 
6823 		ClearPageHWPoisonTakenOff(page);
6824 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6825 		if (TestClearPageHWPoison(page)) {
6826 			ret = true;
6827 		}
6828 	}
6829 	spin_unlock_irqrestore(&zone->lock, flags);
6830 
6831 	return ret;
6832 }
6833 #endif
6834 
6835 #ifdef CONFIG_ZONE_DMA
6836 bool has_managed_dma(void)
6837 {
6838 	struct pglist_data *pgdat;
6839 
6840 	for_each_online_pgdat(pgdat) {
6841 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6842 
6843 		if (managed_zone(zone))
6844 			return true;
6845 	}
6846 	return false;
6847 }
6848 #endif /* CONFIG_ZONE_DMA */
6849 
6850 #ifdef CONFIG_UNACCEPTED_MEMORY
6851 
6852 /* Counts number of zones with unaccepted pages. */
6853 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6854 
6855 static bool lazy_accept = true;
6856 
6857 static int __init accept_memory_parse(char *p)
6858 {
6859 	if (!strcmp(p, "lazy")) {
6860 		lazy_accept = true;
6861 		return 0;
6862 	} else if (!strcmp(p, "eager")) {
6863 		lazy_accept = false;
6864 		return 0;
6865 	} else {
6866 		return -EINVAL;
6867 	}
6868 }
6869 early_param("accept_memory", accept_memory_parse);
6870 
6871 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6872 {
6873 	phys_addr_t start = page_to_phys(page);
6874 	phys_addr_t end = start + (PAGE_SIZE << order);
6875 
6876 	return range_contains_unaccepted_memory(start, end);
6877 }
6878 
6879 static void accept_page(struct page *page, unsigned int order)
6880 {
6881 	phys_addr_t start = page_to_phys(page);
6882 
6883 	accept_memory(start, start + (PAGE_SIZE << order));
6884 }
6885 
6886 static bool try_to_accept_memory_one(struct zone *zone)
6887 {
6888 	unsigned long flags;
6889 	struct page *page;
6890 	bool last;
6891 
6892 	if (list_empty(&zone->unaccepted_pages))
6893 		return false;
6894 
6895 	spin_lock_irqsave(&zone->lock, flags);
6896 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6897 					struct page, lru);
6898 	if (!page) {
6899 		spin_unlock_irqrestore(&zone->lock, flags);
6900 		return false;
6901 	}
6902 
6903 	list_del(&page->lru);
6904 	last = list_empty(&zone->unaccepted_pages);
6905 
6906 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6907 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6908 	spin_unlock_irqrestore(&zone->lock, flags);
6909 
6910 	accept_page(page, MAX_PAGE_ORDER);
6911 
6912 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6913 
6914 	if (last)
6915 		static_branch_dec(&zones_with_unaccepted_pages);
6916 
6917 	return true;
6918 }
6919 
6920 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6921 {
6922 	long to_accept;
6923 	int ret = false;
6924 
6925 	/* How much to accept to get to high watermark? */
6926 	to_accept = high_wmark_pages(zone) -
6927 		    (zone_page_state(zone, NR_FREE_PAGES) -
6928 		    __zone_watermark_unusable_free(zone, order, 0));
6929 
6930 	/* Accept at least one page */
6931 	do {
6932 		if (!try_to_accept_memory_one(zone))
6933 			break;
6934 		ret = true;
6935 		to_accept -= MAX_ORDER_NR_PAGES;
6936 	} while (to_accept > 0);
6937 
6938 	return ret;
6939 }
6940 
6941 static inline bool has_unaccepted_memory(void)
6942 {
6943 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6944 }
6945 
6946 static bool __free_unaccepted(struct page *page)
6947 {
6948 	struct zone *zone = page_zone(page);
6949 	unsigned long flags;
6950 	bool first = false;
6951 
6952 	if (!lazy_accept)
6953 		return false;
6954 
6955 	spin_lock_irqsave(&zone->lock, flags);
6956 	first = list_empty(&zone->unaccepted_pages);
6957 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6958 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6959 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6960 	spin_unlock_irqrestore(&zone->lock, flags);
6961 
6962 	if (first)
6963 		static_branch_inc(&zones_with_unaccepted_pages);
6964 
6965 	return true;
6966 }
6967 
6968 #else
6969 
6970 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6971 {
6972 	return false;
6973 }
6974 
6975 static void accept_page(struct page *page, unsigned int order)
6976 {
6977 }
6978 
6979 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6980 {
6981 	return false;
6982 }
6983 
6984 static inline bool has_unaccepted_memory(void)
6985 {
6986 	return false;
6987 }
6988 
6989 static bool __free_unaccepted(struct page *page)
6990 {
6991 	BUILD_BUG();
6992 	return false;
6993 }
6994 
6995 #endif /* CONFIG_UNACCEPTED_MEMORY */
6996