xref: /linux/mm/page_alloc.c (revision 063246641d4a9e9de84a2466fbad50112faf88dc)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74 
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
78 
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83 
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89  * defined in <linux/topology.h>.
90  */
91 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95 
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99 
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104 
105 /*
106  * Array of node states.
107  */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 	[N_POSSIBLE] = NODE_MASK_ALL,
110 	[N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 #ifdef CONFIG_MOVABLE_NODE
117 	[N_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_CPU] = { { [0] = 1UL } },
120 #endif	/* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123 
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126 
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130 
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133 
134 /*
135  * A cached value of the page's pageblock's migratetype, used when the page is
136  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138  * Also the migratetype set in the page does not necessarily match the pcplist
139  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140  * other index - this ensures that it will be put on the correct CMA freelist.
141  */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 	return page->index;
145 }
146 
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 	page->index = migratetype;
150 }
151 
152 #ifdef CONFIG_PM_SLEEP
153 /*
154  * The following functions are used by the suspend/hibernate code to temporarily
155  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156  * while devices are suspended.  To avoid races with the suspend/hibernate code,
157  * they should always be called with pm_mutex held (gfp_allowed_mask also should
158  * only be modified with pm_mutex held, unless the suspend/hibernate code is
159  * guaranteed not to run in parallel with that modification).
160  */
161 
162 static gfp_t saved_gfp_mask;
163 
164 void pm_restore_gfp_mask(void)
165 {
166 	WARN_ON(!mutex_is_locked(&pm_mutex));
167 	if (saved_gfp_mask) {
168 		gfp_allowed_mask = saved_gfp_mask;
169 		saved_gfp_mask = 0;
170 	}
171 }
172 
173 void pm_restrict_gfp_mask(void)
174 {
175 	WARN_ON(!mutex_is_locked(&pm_mutex));
176 	WARN_ON(saved_gfp_mask);
177 	saved_gfp_mask = gfp_allowed_mask;
178 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180 
181 bool pm_suspended_storage(void)
182 {
183 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 		return false;
185 	return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188 
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192 
193 static void __free_pages_ok(struct page *page, unsigned int order);
194 
195 /*
196  * results with 256, 32 in the lowmem_reserve sysctl:
197  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198  *	1G machine -> (16M dma, 784M normal, 224M high)
199  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202  *
203  * TBD: should special case ZONE_DMA32 machines here - in those we normally
204  * don't need any ZONE_NORMAL reservation
205  */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
208 	 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 	 256,
212 #endif
213 #ifdef CONFIG_HIGHMEM
214 	 32,
215 #endif
216 	 32,
217 };
218 
219 EXPORT_SYMBOL(totalram_pages);
220 
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
223 	 "DMA",
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 	 "DMA32",
227 #endif
228 	 "Normal",
229 #ifdef CONFIG_HIGHMEM
230 	 "HighMem",
231 #endif
232 	 "Movable",
233 #ifdef CONFIG_ZONE_DEVICE
234 	 "Device",
235 #endif
236 };
237 
238 char * const migratetype_names[MIGRATE_TYPES] = {
239 	"Unmovable",
240 	"Movable",
241 	"Reclaimable",
242 	"HighAtomic",
243 #ifdef CONFIG_CMA
244 	"CMA",
245 #endif
246 #ifdef CONFIG_MEMORY_ISOLATION
247 	"Isolate",
248 #endif
249 };
250 
251 compound_page_dtor * const compound_page_dtors[] = {
252 	NULL,
253 	free_compound_page,
254 #ifdef CONFIG_HUGETLB_PAGE
255 	free_huge_page,
256 #endif
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 	free_transhuge_page,
259 #endif
260 };
261 
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
265 
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
269 
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
277 
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 int movable_zone;
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282 
283 #if MAX_NUMNODES > 1
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
288 #endif
289 
290 int page_group_by_mobility_disabled __read_mostly;
291 
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 {
295 	pgdat->first_deferred_pfn = ULONG_MAX;
296 }
297 
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 {
301 	int nid = early_pfn_to_nid(pfn);
302 
303 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 		return true;
305 
306 	return false;
307 }
308 
309 /*
310  * Returns false when the remaining initialisation should be deferred until
311  * later in the boot cycle when it can be parallelised.
312  */
313 static inline bool update_defer_init(pg_data_t *pgdat,
314 				unsigned long pfn, unsigned long zone_end,
315 				unsigned long *nr_initialised)
316 {
317 	unsigned long max_initialise;
318 
319 	/* Always populate low zones for address-contrained allocations */
320 	if (zone_end < pgdat_end_pfn(pgdat))
321 		return true;
322 	/*
323 	 * Initialise at least 2G of a node but also take into account that
324 	 * two large system hashes that can take up 1GB for 0.25TB/node.
325 	 */
326 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
327 		(pgdat->node_spanned_pages >> 8));
328 
329 	(*nr_initialised)++;
330 	if ((*nr_initialised > max_initialise) &&
331 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 		pgdat->first_deferred_pfn = pfn;
333 		return false;
334 	}
335 
336 	return true;
337 }
338 #else
339 static inline void reset_deferred_meminit(pg_data_t *pgdat)
340 {
341 }
342 
343 static inline bool early_page_uninitialised(unsigned long pfn)
344 {
345 	return false;
346 }
347 
348 static inline bool update_defer_init(pg_data_t *pgdat,
349 				unsigned long pfn, unsigned long zone_end,
350 				unsigned long *nr_initialised)
351 {
352 	return true;
353 }
354 #endif
355 
356 /* Return a pointer to the bitmap storing bits affecting a block of pages */
357 static inline unsigned long *get_pageblock_bitmap(struct page *page,
358 							unsigned long pfn)
359 {
360 #ifdef CONFIG_SPARSEMEM
361 	return __pfn_to_section(pfn)->pageblock_flags;
362 #else
363 	return page_zone(page)->pageblock_flags;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366 
367 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 {
369 #ifdef CONFIG_SPARSEMEM
370 	pfn &= (PAGES_PER_SECTION-1);
371 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 #else
373 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
374 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
375 #endif /* CONFIG_SPARSEMEM */
376 }
377 
378 /**
379  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
380  * @page: The page within the block of interest
381  * @pfn: The target page frame number
382  * @end_bitidx: The last bit of interest to retrieve
383  * @mask: mask of bits that the caller is interested in
384  *
385  * Return: pageblock_bits flags
386  */
387 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
388 					unsigned long pfn,
389 					unsigned long end_bitidx,
390 					unsigned long mask)
391 {
392 	unsigned long *bitmap;
393 	unsigned long bitidx, word_bitidx;
394 	unsigned long word;
395 
396 	bitmap = get_pageblock_bitmap(page, pfn);
397 	bitidx = pfn_to_bitidx(page, pfn);
398 	word_bitidx = bitidx / BITS_PER_LONG;
399 	bitidx &= (BITS_PER_LONG-1);
400 
401 	word = bitmap[word_bitidx];
402 	bitidx += end_bitidx;
403 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
404 }
405 
406 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
407 					unsigned long end_bitidx,
408 					unsigned long mask)
409 {
410 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
411 }
412 
413 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 {
415 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
416 }
417 
418 /**
419  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
420  * @page: The page within the block of interest
421  * @flags: The flags to set
422  * @pfn: The target page frame number
423  * @end_bitidx: The last bit of interest
424  * @mask: mask of bits that the caller is interested in
425  */
426 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
427 					unsigned long pfn,
428 					unsigned long end_bitidx,
429 					unsigned long mask)
430 {
431 	unsigned long *bitmap;
432 	unsigned long bitidx, word_bitidx;
433 	unsigned long old_word, word;
434 
435 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436 
437 	bitmap = get_pageblock_bitmap(page, pfn);
438 	bitidx = pfn_to_bitidx(page, pfn);
439 	word_bitidx = bitidx / BITS_PER_LONG;
440 	bitidx &= (BITS_PER_LONG-1);
441 
442 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443 
444 	bitidx += end_bitidx;
445 	mask <<= (BITS_PER_LONG - bitidx - 1);
446 	flags <<= (BITS_PER_LONG - bitidx - 1);
447 
448 	word = READ_ONCE(bitmap[word_bitidx]);
449 	for (;;) {
450 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
451 		if (word == old_word)
452 			break;
453 		word = old_word;
454 	}
455 }
456 
457 void set_pageblock_migratetype(struct page *page, int migratetype)
458 {
459 	if (unlikely(page_group_by_mobility_disabled &&
460 		     migratetype < MIGRATE_PCPTYPES))
461 		migratetype = MIGRATE_UNMOVABLE;
462 
463 	set_pageblock_flags_group(page, (unsigned long)migratetype,
464 					PB_migrate, PB_migrate_end);
465 }
466 
467 #ifdef CONFIG_DEBUG_VM
468 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
469 {
470 	int ret = 0;
471 	unsigned seq;
472 	unsigned long pfn = page_to_pfn(page);
473 	unsigned long sp, start_pfn;
474 
475 	do {
476 		seq = zone_span_seqbegin(zone);
477 		start_pfn = zone->zone_start_pfn;
478 		sp = zone->spanned_pages;
479 		if (!zone_spans_pfn(zone, pfn))
480 			ret = 1;
481 	} while (zone_span_seqretry(zone, seq));
482 
483 	if (ret)
484 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
485 			pfn, zone_to_nid(zone), zone->name,
486 			start_pfn, start_pfn + sp);
487 
488 	return ret;
489 }
490 
491 static int page_is_consistent(struct zone *zone, struct page *page)
492 {
493 	if (!pfn_valid_within(page_to_pfn(page)))
494 		return 0;
495 	if (zone != page_zone(page))
496 		return 0;
497 
498 	return 1;
499 }
500 /*
501  * Temporary debugging check for pages not lying within a given zone.
502  */
503 static int bad_range(struct zone *zone, struct page *page)
504 {
505 	if (page_outside_zone_boundaries(zone, page))
506 		return 1;
507 	if (!page_is_consistent(zone, page))
508 		return 1;
509 
510 	return 0;
511 }
512 #else
513 static inline int bad_range(struct zone *zone, struct page *page)
514 {
515 	return 0;
516 }
517 #endif
518 
519 static void bad_page(struct page *page, const char *reason,
520 		unsigned long bad_flags)
521 {
522 	static unsigned long resume;
523 	static unsigned long nr_shown;
524 	static unsigned long nr_unshown;
525 
526 	/*
527 	 * Allow a burst of 60 reports, then keep quiet for that minute;
528 	 * or allow a steady drip of one report per second.
529 	 */
530 	if (nr_shown == 60) {
531 		if (time_before(jiffies, resume)) {
532 			nr_unshown++;
533 			goto out;
534 		}
535 		if (nr_unshown) {
536 			pr_alert(
537 			      "BUG: Bad page state: %lu messages suppressed\n",
538 				nr_unshown);
539 			nr_unshown = 0;
540 		}
541 		nr_shown = 0;
542 	}
543 	if (nr_shown++ == 0)
544 		resume = jiffies + 60 * HZ;
545 
546 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
547 		current->comm, page_to_pfn(page));
548 	__dump_page(page, reason);
549 	bad_flags &= page->flags;
550 	if (bad_flags)
551 		pr_alert("bad because of flags: %#lx(%pGp)\n",
552 						bad_flags, &bad_flags);
553 	dump_page_owner(page);
554 
555 	print_modules();
556 	dump_stack();
557 out:
558 	/* Leave bad fields for debug, except PageBuddy could make trouble */
559 	page_mapcount_reset(page); /* remove PageBuddy */
560 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562 
563 /*
564  * Higher-order pages are called "compound pages".  They are structured thusly:
565  *
566  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567  *
568  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
569  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570  *
571  * The first tail page's ->compound_dtor holds the offset in array of compound
572  * page destructors. See compound_page_dtors.
573  *
574  * The first tail page's ->compound_order holds the order of allocation.
575  * This usage means that zero-order pages may not be compound.
576  */
577 
578 void free_compound_page(struct page *page)
579 {
580 	__free_pages_ok(page, compound_order(page));
581 }
582 
583 void prep_compound_page(struct page *page, unsigned int order)
584 {
585 	int i;
586 	int nr_pages = 1 << order;
587 
588 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
589 	set_compound_order(page, order);
590 	__SetPageHead(page);
591 	for (i = 1; i < nr_pages; i++) {
592 		struct page *p = page + i;
593 		set_page_count(p, 0);
594 		p->mapping = TAIL_MAPPING;
595 		set_compound_head(p, page);
596 	}
597 	atomic_set(compound_mapcount_ptr(page), -1);
598 }
599 
600 #ifdef CONFIG_DEBUG_PAGEALLOC
601 unsigned int _debug_guardpage_minorder;
602 bool _debug_pagealloc_enabled __read_mostly
603 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
604 EXPORT_SYMBOL(_debug_pagealloc_enabled);
605 bool _debug_guardpage_enabled __read_mostly;
606 
607 static int __init early_debug_pagealloc(char *buf)
608 {
609 	if (!buf)
610 		return -EINVAL;
611 	return kstrtobool(buf, &_debug_pagealloc_enabled);
612 }
613 early_param("debug_pagealloc", early_debug_pagealloc);
614 
615 static bool need_debug_guardpage(void)
616 {
617 	/* If we don't use debug_pagealloc, we don't need guard page */
618 	if (!debug_pagealloc_enabled())
619 		return false;
620 
621 	if (!debug_guardpage_minorder())
622 		return false;
623 
624 	return true;
625 }
626 
627 static void init_debug_guardpage(void)
628 {
629 	if (!debug_pagealloc_enabled())
630 		return;
631 
632 	if (!debug_guardpage_minorder())
633 		return;
634 
635 	_debug_guardpage_enabled = true;
636 }
637 
638 struct page_ext_operations debug_guardpage_ops = {
639 	.need = need_debug_guardpage,
640 	.init = init_debug_guardpage,
641 };
642 
643 static int __init debug_guardpage_minorder_setup(char *buf)
644 {
645 	unsigned long res;
646 
647 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
648 		pr_err("Bad debug_guardpage_minorder value\n");
649 		return 0;
650 	}
651 	_debug_guardpage_minorder = res;
652 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
653 	return 0;
654 }
655 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
656 
657 static inline bool set_page_guard(struct zone *zone, struct page *page,
658 				unsigned int order, int migratetype)
659 {
660 	struct page_ext *page_ext;
661 
662 	if (!debug_guardpage_enabled())
663 		return false;
664 
665 	if (order >= debug_guardpage_minorder())
666 		return false;
667 
668 	page_ext = lookup_page_ext(page);
669 	if (unlikely(!page_ext))
670 		return false;
671 
672 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673 
674 	INIT_LIST_HEAD(&page->lru);
675 	set_page_private(page, order);
676 	/* Guard pages are not available for any usage */
677 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
678 
679 	return true;
680 }
681 
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 				unsigned int order, int migratetype)
684 {
685 	struct page_ext *page_ext;
686 
687 	if (!debug_guardpage_enabled())
688 		return;
689 
690 	page_ext = lookup_page_ext(page);
691 	if (unlikely(!page_ext))
692 		return;
693 
694 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695 
696 	set_page_private(page, 0);
697 	if (!is_migrate_isolate(migratetype))
698 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
699 }
700 #else
701 struct page_ext_operations debug_guardpage_ops;
702 static inline bool set_page_guard(struct zone *zone, struct page *page,
703 			unsigned int order, int migratetype) { return false; }
704 static inline void clear_page_guard(struct zone *zone, struct page *page,
705 				unsigned int order, int migratetype) {}
706 #endif
707 
708 static inline void set_page_order(struct page *page, unsigned int order)
709 {
710 	set_page_private(page, order);
711 	__SetPageBuddy(page);
712 }
713 
714 static inline void rmv_page_order(struct page *page)
715 {
716 	__ClearPageBuddy(page);
717 	set_page_private(page, 0);
718 }
719 
720 /*
721  * This function checks whether a page is free && is the buddy
722  * we can do coalesce a page and its buddy if
723  * (a) the buddy is not in a hole (check before calling!) &&
724  * (b) the buddy is in the buddy system &&
725  * (c) a page and its buddy have the same order &&
726  * (d) a page and its buddy are in the same zone.
727  *
728  * For recording whether a page is in the buddy system, we set ->_mapcount
729  * PAGE_BUDDY_MAPCOUNT_VALUE.
730  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
731  * serialized by zone->lock.
732  *
733  * For recording page's order, we use page_private(page).
734  */
735 static inline int page_is_buddy(struct page *page, struct page *buddy,
736 							unsigned int order)
737 {
738 	if (page_is_guard(buddy) && page_order(buddy) == order) {
739 		if (page_zone_id(page) != page_zone_id(buddy))
740 			return 0;
741 
742 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743 
744 		return 1;
745 	}
746 
747 	if (PageBuddy(buddy) && page_order(buddy) == order) {
748 		/*
749 		 * zone check is done late to avoid uselessly
750 		 * calculating zone/node ids for pages that could
751 		 * never merge.
752 		 */
753 		if (page_zone_id(page) != page_zone_id(buddy))
754 			return 0;
755 
756 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757 
758 		return 1;
759 	}
760 	return 0;
761 }
762 
763 /*
764  * Freeing function for a buddy system allocator.
765  *
766  * The concept of a buddy system is to maintain direct-mapped table
767  * (containing bit values) for memory blocks of various "orders".
768  * The bottom level table contains the map for the smallest allocatable
769  * units of memory (here, pages), and each level above it describes
770  * pairs of units from the levels below, hence, "buddies".
771  * At a high level, all that happens here is marking the table entry
772  * at the bottom level available, and propagating the changes upward
773  * as necessary, plus some accounting needed to play nicely with other
774  * parts of the VM system.
775  * At each level, we keep a list of pages, which are heads of continuous
776  * free pages of length of (1 << order) and marked with _mapcount
777  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
778  * field.
779  * So when we are allocating or freeing one, we can derive the state of the
780  * other.  That is, if we allocate a small block, and both were
781  * free, the remainder of the region must be split into blocks.
782  * If a block is freed, and its buddy is also free, then this
783  * triggers coalescing into a block of larger size.
784  *
785  * -- nyc
786  */
787 
788 static inline void __free_one_page(struct page *page,
789 		unsigned long pfn,
790 		struct zone *zone, unsigned int order,
791 		int migratetype)
792 {
793 	unsigned long combined_pfn;
794 	unsigned long uninitialized_var(buddy_pfn);
795 	struct page *buddy;
796 	unsigned int max_order;
797 
798 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
799 
800 	VM_BUG_ON(!zone_is_initialized(zone));
801 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
802 
803 	VM_BUG_ON(migratetype == -1);
804 	if (likely(!is_migrate_isolate(migratetype)))
805 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
806 
807 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
808 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
809 
810 continue_merging:
811 	while (order < max_order - 1) {
812 		buddy_pfn = __find_buddy_pfn(pfn, order);
813 		buddy = page + (buddy_pfn - pfn);
814 
815 		if (!pfn_valid_within(buddy_pfn))
816 			goto done_merging;
817 		if (!page_is_buddy(page, buddy, order))
818 			goto done_merging;
819 		/*
820 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 		 * merge with it and move up one order.
822 		 */
823 		if (page_is_guard(buddy)) {
824 			clear_page_guard(zone, buddy, order, migratetype);
825 		} else {
826 			list_del(&buddy->lru);
827 			zone->free_area[order].nr_free--;
828 			rmv_page_order(buddy);
829 		}
830 		combined_pfn = buddy_pfn & pfn;
831 		page = page + (combined_pfn - pfn);
832 		pfn = combined_pfn;
833 		order++;
834 	}
835 	if (max_order < MAX_ORDER) {
836 		/* If we are here, it means order is >= pageblock_order.
837 		 * We want to prevent merge between freepages on isolate
838 		 * pageblock and normal pageblock. Without this, pageblock
839 		 * isolation could cause incorrect freepage or CMA accounting.
840 		 *
841 		 * We don't want to hit this code for the more frequent
842 		 * low-order merging.
843 		 */
844 		if (unlikely(has_isolate_pageblock(zone))) {
845 			int buddy_mt;
846 
847 			buddy_pfn = __find_buddy_pfn(pfn, order);
848 			buddy = page + (buddy_pfn - pfn);
849 			buddy_mt = get_pageblock_migratetype(buddy);
850 
851 			if (migratetype != buddy_mt
852 					&& (is_migrate_isolate(migratetype) ||
853 						is_migrate_isolate(buddy_mt)))
854 				goto done_merging;
855 		}
856 		max_order++;
857 		goto continue_merging;
858 	}
859 
860 done_merging:
861 	set_page_order(page, order);
862 
863 	/*
864 	 * If this is not the largest possible page, check if the buddy
865 	 * of the next-highest order is free. If it is, it's possible
866 	 * that pages are being freed that will coalesce soon. In case,
867 	 * that is happening, add the free page to the tail of the list
868 	 * so it's less likely to be used soon and more likely to be merged
869 	 * as a higher order page
870 	 */
871 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
872 		struct page *higher_page, *higher_buddy;
873 		combined_pfn = buddy_pfn & pfn;
874 		higher_page = page + (combined_pfn - pfn);
875 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
876 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
877 		if (pfn_valid_within(buddy_pfn) &&
878 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
879 			list_add_tail(&page->lru,
880 				&zone->free_area[order].free_list[migratetype]);
881 			goto out;
882 		}
883 	}
884 
885 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
886 out:
887 	zone->free_area[order].nr_free++;
888 }
889 
890 /*
891  * A bad page could be due to a number of fields. Instead of multiple branches,
892  * try and check multiple fields with one check. The caller must do a detailed
893  * check if necessary.
894  */
895 static inline bool page_expected_state(struct page *page,
896 					unsigned long check_flags)
897 {
898 	if (unlikely(atomic_read(&page->_mapcount) != -1))
899 		return false;
900 
901 	if (unlikely((unsigned long)page->mapping |
902 			page_ref_count(page) |
903 #ifdef CONFIG_MEMCG
904 			(unsigned long)page->mem_cgroup |
905 #endif
906 			(page->flags & check_flags)))
907 		return false;
908 
909 	return true;
910 }
911 
912 static void free_pages_check_bad(struct page *page)
913 {
914 	const char *bad_reason;
915 	unsigned long bad_flags;
916 
917 	bad_reason = NULL;
918 	bad_flags = 0;
919 
920 	if (unlikely(atomic_read(&page->_mapcount) != -1))
921 		bad_reason = "nonzero mapcount";
922 	if (unlikely(page->mapping != NULL))
923 		bad_reason = "non-NULL mapping";
924 	if (unlikely(page_ref_count(page) != 0))
925 		bad_reason = "nonzero _refcount";
926 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
927 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
928 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
929 	}
930 #ifdef CONFIG_MEMCG
931 	if (unlikely(page->mem_cgroup))
932 		bad_reason = "page still charged to cgroup";
933 #endif
934 	bad_page(page, bad_reason, bad_flags);
935 }
936 
937 static inline int free_pages_check(struct page *page)
938 {
939 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
940 		return 0;
941 
942 	/* Something has gone sideways, find it */
943 	free_pages_check_bad(page);
944 	return 1;
945 }
946 
947 static int free_tail_pages_check(struct page *head_page, struct page *page)
948 {
949 	int ret = 1;
950 
951 	/*
952 	 * We rely page->lru.next never has bit 0 set, unless the page
953 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
954 	 */
955 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
956 
957 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
958 		ret = 0;
959 		goto out;
960 	}
961 	switch (page - head_page) {
962 	case 1:
963 		/* the first tail page: ->mapping is compound_mapcount() */
964 		if (unlikely(compound_mapcount(page))) {
965 			bad_page(page, "nonzero compound_mapcount", 0);
966 			goto out;
967 		}
968 		break;
969 	case 2:
970 		/*
971 		 * the second tail page: ->mapping is
972 		 * page_deferred_list().next -- ignore value.
973 		 */
974 		break;
975 	default:
976 		if (page->mapping != TAIL_MAPPING) {
977 			bad_page(page, "corrupted mapping in tail page", 0);
978 			goto out;
979 		}
980 		break;
981 	}
982 	if (unlikely(!PageTail(page))) {
983 		bad_page(page, "PageTail not set", 0);
984 		goto out;
985 	}
986 	if (unlikely(compound_head(page) != head_page)) {
987 		bad_page(page, "compound_head not consistent", 0);
988 		goto out;
989 	}
990 	ret = 0;
991 out:
992 	page->mapping = NULL;
993 	clear_compound_head(page);
994 	return ret;
995 }
996 
997 static __always_inline bool free_pages_prepare(struct page *page,
998 					unsigned int order, bool check_free)
999 {
1000 	int bad = 0;
1001 
1002 	VM_BUG_ON_PAGE(PageTail(page), page);
1003 
1004 	trace_mm_page_free(page, order);
1005 	kmemcheck_free_shadow(page, order);
1006 
1007 	/*
1008 	 * Check tail pages before head page information is cleared to
1009 	 * avoid checking PageCompound for order-0 pages.
1010 	 */
1011 	if (unlikely(order)) {
1012 		bool compound = PageCompound(page);
1013 		int i;
1014 
1015 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1016 
1017 		if (compound)
1018 			ClearPageDoubleMap(page);
1019 		for (i = 1; i < (1 << order); i++) {
1020 			if (compound)
1021 				bad += free_tail_pages_check(page, page + i);
1022 			if (unlikely(free_pages_check(page + i))) {
1023 				bad++;
1024 				continue;
1025 			}
1026 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1027 		}
1028 	}
1029 	if (PageMappingFlags(page))
1030 		page->mapping = NULL;
1031 	if (memcg_kmem_enabled() && PageKmemcg(page))
1032 		memcg_kmem_uncharge(page, order);
1033 	if (check_free)
1034 		bad += free_pages_check(page);
1035 	if (bad)
1036 		return false;
1037 
1038 	page_cpupid_reset_last(page);
1039 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 	reset_page_owner(page, order);
1041 
1042 	if (!PageHighMem(page)) {
1043 		debug_check_no_locks_freed(page_address(page),
1044 					   PAGE_SIZE << order);
1045 		debug_check_no_obj_freed(page_address(page),
1046 					   PAGE_SIZE << order);
1047 	}
1048 	arch_free_page(page, order);
1049 	kernel_poison_pages(page, 1 << order, 0);
1050 	kernel_map_pages(page, 1 << order, 0);
1051 	kasan_free_pages(page, order);
1052 
1053 	return true;
1054 }
1055 
1056 #ifdef CONFIG_DEBUG_VM
1057 static inline bool free_pcp_prepare(struct page *page)
1058 {
1059 	return free_pages_prepare(page, 0, true);
1060 }
1061 
1062 static inline bool bulkfree_pcp_prepare(struct page *page)
1063 {
1064 	return false;
1065 }
1066 #else
1067 static bool free_pcp_prepare(struct page *page)
1068 {
1069 	return free_pages_prepare(page, 0, false);
1070 }
1071 
1072 static bool bulkfree_pcp_prepare(struct page *page)
1073 {
1074 	return free_pages_check(page);
1075 }
1076 #endif /* CONFIG_DEBUG_VM */
1077 
1078 /*
1079  * Frees a number of pages from the PCP lists
1080  * Assumes all pages on list are in same zone, and of same order.
1081  * count is the number of pages to free.
1082  *
1083  * If the zone was previously in an "all pages pinned" state then look to
1084  * see if this freeing clears that state.
1085  *
1086  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1087  * pinned" detection logic.
1088  */
1089 static void free_pcppages_bulk(struct zone *zone, int count,
1090 					struct per_cpu_pages *pcp)
1091 {
1092 	int migratetype = 0;
1093 	int batch_free = 0;
1094 	bool isolated_pageblocks;
1095 
1096 	spin_lock(&zone->lock);
1097 	isolated_pageblocks = has_isolate_pageblock(zone);
1098 
1099 	while (count) {
1100 		struct page *page;
1101 		struct list_head *list;
1102 
1103 		/*
1104 		 * Remove pages from lists in a round-robin fashion. A
1105 		 * batch_free count is maintained that is incremented when an
1106 		 * empty list is encountered.  This is so more pages are freed
1107 		 * off fuller lists instead of spinning excessively around empty
1108 		 * lists
1109 		 */
1110 		do {
1111 			batch_free++;
1112 			if (++migratetype == MIGRATE_PCPTYPES)
1113 				migratetype = 0;
1114 			list = &pcp->lists[migratetype];
1115 		} while (list_empty(list));
1116 
1117 		/* This is the only non-empty list. Free them all. */
1118 		if (batch_free == MIGRATE_PCPTYPES)
1119 			batch_free = count;
1120 
1121 		do {
1122 			int mt;	/* migratetype of the to-be-freed page */
1123 
1124 			page = list_last_entry(list, struct page, lru);
1125 			/* must delete as __free_one_page list manipulates */
1126 			list_del(&page->lru);
1127 
1128 			mt = get_pcppage_migratetype(page);
1129 			/* MIGRATE_ISOLATE page should not go to pcplists */
1130 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 			/* Pageblock could have been isolated meanwhile */
1132 			if (unlikely(isolated_pageblocks))
1133 				mt = get_pageblock_migratetype(page);
1134 
1135 			if (bulkfree_pcp_prepare(page))
1136 				continue;
1137 
1138 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 			trace_mm_page_pcpu_drain(page, 0, mt);
1140 		} while (--count && --batch_free && !list_empty(list));
1141 	}
1142 	spin_unlock(&zone->lock);
1143 }
1144 
1145 static void free_one_page(struct zone *zone,
1146 				struct page *page, unsigned long pfn,
1147 				unsigned int order,
1148 				int migratetype)
1149 {
1150 	spin_lock(&zone->lock);
1151 	if (unlikely(has_isolate_pageblock(zone) ||
1152 		is_migrate_isolate(migratetype))) {
1153 		migratetype = get_pfnblock_migratetype(page, pfn);
1154 	}
1155 	__free_one_page(page, pfn, zone, order, migratetype);
1156 	spin_unlock(&zone->lock);
1157 }
1158 
1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 				unsigned long zone, int nid)
1161 {
1162 	set_page_links(page, zone, nid, pfn);
1163 	init_page_count(page);
1164 	page_mapcount_reset(page);
1165 	page_cpupid_reset_last(page);
1166 
1167 	INIT_LIST_HEAD(&page->lru);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 	if (!is_highmem_idx(zone))
1171 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1172 #endif
1173 }
1174 
1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 					int nid)
1177 {
1178 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179 }
1180 
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn)
1183 {
1184 	pg_data_t *pgdat;
1185 	int nid, zid;
1186 
1187 	if (!early_page_uninitialised(pfn))
1188 		return;
1189 
1190 	nid = early_pfn_to_nid(pfn);
1191 	pgdat = NODE_DATA(nid);
1192 
1193 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 		struct zone *zone = &pgdat->node_zones[zid];
1195 
1196 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 			break;
1198 	}
1199 	__init_single_pfn(pfn, zid, nid);
1200 }
1201 #else
1202 static inline void init_reserved_page(unsigned long pfn)
1203 {
1204 }
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206 
1207 /*
1208  * Initialised pages do not have PageReserved set. This function is
1209  * called for each range allocated by the bootmem allocator and
1210  * marks the pages PageReserved. The remaining valid pages are later
1211  * sent to the buddy page allocator.
1212  */
1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 {
1215 	unsigned long start_pfn = PFN_DOWN(start);
1216 	unsigned long end_pfn = PFN_UP(end);
1217 
1218 	for (; start_pfn < end_pfn; start_pfn++) {
1219 		if (pfn_valid(start_pfn)) {
1220 			struct page *page = pfn_to_page(start_pfn);
1221 
1222 			init_reserved_page(start_pfn);
1223 
1224 			/* Avoid false-positive PageTail() */
1225 			INIT_LIST_HEAD(&page->lru);
1226 
1227 			SetPageReserved(page);
1228 		}
1229 	}
1230 }
1231 
1232 static void __free_pages_ok(struct page *page, unsigned int order)
1233 {
1234 	unsigned long flags;
1235 	int migratetype;
1236 	unsigned long pfn = page_to_pfn(page);
1237 
1238 	if (!free_pages_prepare(page, order, true))
1239 		return;
1240 
1241 	migratetype = get_pfnblock_migratetype(page, pfn);
1242 	local_irq_save(flags);
1243 	__count_vm_events(PGFREE, 1 << order);
1244 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1245 	local_irq_restore(flags);
1246 }
1247 
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 {
1250 	unsigned int nr_pages = 1 << order;
1251 	struct page *p = page;
1252 	unsigned int loop;
1253 
1254 	prefetchw(p);
1255 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 		prefetchw(p + 1);
1257 		__ClearPageReserved(p);
1258 		set_page_count(p, 0);
1259 	}
1260 	__ClearPageReserved(p);
1261 	set_page_count(p, 0);
1262 
1263 	page_zone(page)->managed_pages += nr_pages;
1264 	set_page_refcounted(page);
1265 	__free_pages(page, order);
1266 }
1267 
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270 
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272 
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 {
1275 	static DEFINE_SPINLOCK(early_pfn_lock);
1276 	int nid;
1277 
1278 	spin_lock(&early_pfn_lock);
1279 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 	if (nid < 0)
1281 		nid = first_online_node;
1282 	spin_unlock(&early_pfn_lock);
1283 
1284 	return nid;
1285 }
1286 #endif
1287 
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 					struct mminit_pfnnid_cache *state)
1291 {
1292 	int nid;
1293 
1294 	nid = __early_pfn_to_nid(pfn, state);
1295 	if (nid >= 0 && nid != node)
1296 		return false;
1297 	return true;
1298 }
1299 
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 {
1303 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304 }
1305 
1306 #else
1307 
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 {
1310 	return true;
1311 }
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 					struct mminit_pfnnid_cache *state)
1314 {
1315 	return true;
1316 }
1317 #endif
1318 
1319 
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 							unsigned int order)
1322 {
1323 	if (early_page_uninitialised(pfn))
1324 		return;
1325 	return __free_pages_boot_core(page, order);
1326 }
1327 
1328 /*
1329  * Check that the whole (or subset of) a pageblock given by the interval of
1330  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331  * with the migration of free compaction scanner. The scanners then need to
1332  * use only pfn_valid_within() check for arches that allow holes within
1333  * pageblocks.
1334  *
1335  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336  *
1337  * It's possible on some configurations to have a setup like node0 node1 node0
1338  * i.e. it's possible that all pages within a zones range of pages do not
1339  * belong to a single zone. We assume that a border between node0 and node1
1340  * can occur within a single pageblock, but not a node0 node1 node0
1341  * interleaving within a single pageblock. It is therefore sufficient to check
1342  * the first and last page of a pageblock and avoid checking each individual
1343  * page in a pageblock.
1344  */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 				     unsigned long end_pfn, struct zone *zone)
1347 {
1348 	struct page *start_page;
1349 	struct page *end_page;
1350 
1351 	/* end_pfn is one past the range we are checking */
1352 	end_pfn--;
1353 
1354 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 		return NULL;
1356 
1357 	start_page = pfn_to_page(start_pfn);
1358 
1359 	if (page_zone(start_page) != zone)
1360 		return NULL;
1361 
1362 	end_page = pfn_to_page(end_pfn);
1363 
1364 	/* This gives a shorter code than deriving page_zone(end_page) */
1365 	if (page_zone_id(start_page) != page_zone_id(end_page))
1366 		return NULL;
1367 
1368 	return start_page;
1369 }
1370 
1371 void set_zone_contiguous(struct zone *zone)
1372 {
1373 	unsigned long block_start_pfn = zone->zone_start_pfn;
1374 	unsigned long block_end_pfn;
1375 
1376 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 	for (; block_start_pfn < zone_end_pfn(zone);
1378 			block_start_pfn = block_end_pfn,
1379 			 block_end_pfn += pageblock_nr_pages) {
1380 
1381 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382 
1383 		if (!__pageblock_pfn_to_page(block_start_pfn,
1384 					     block_end_pfn, zone))
1385 			return;
1386 	}
1387 
1388 	/* We confirm that there is no hole */
1389 	zone->contiguous = true;
1390 }
1391 
1392 void clear_zone_contiguous(struct zone *zone)
1393 {
1394 	zone->contiguous = false;
1395 }
1396 
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 					unsigned long pfn, int nr_pages)
1400 {
1401 	int i;
1402 
1403 	if (!page)
1404 		return;
1405 
1406 	/* Free a large naturally-aligned chunk if possible */
1407 	if (nr_pages == pageblock_nr_pages &&
1408 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 		__free_pages_boot_core(page, pageblock_order);
1411 		return;
1412 	}
1413 
1414 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 		__free_pages_boot_core(page, 0);
1418 	}
1419 }
1420 
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424 
1425 static inline void __init pgdat_init_report_one_done(void)
1426 {
1427 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 		complete(&pgdat_init_all_done_comp);
1429 }
1430 
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1433 {
1434 	pg_data_t *pgdat = data;
1435 	int nid = pgdat->node_id;
1436 	struct mminit_pfnnid_cache nid_init_state = { };
1437 	unsigned long start = jiffies;
1438 	unsigned long nr_pages = 0;
1439 	unsigned long walk_start, walk_end;
1440 	int i, zid;
1441 	struct zone *zone;
1442 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444 
1445 	if (first_init_pfn == ULONG_MAX) {
1446 		pgdat_init_report_one_done();
1447 		return 0;
1448 	}
1449 
1450 	/* Bind memory initialisation thread to a local node if possible */
1451 	if (!cpumask_empty(cpumask))
1452 		set_cpus_allowed_ptr(current, cpumask);
1453 
1454 	/* Sanity check boundaries */
1455 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 	pgdat->first_deferred_pfn = ULONG_MAX;
1458 
1459 	/* Only the highest zone is deferred so find it */
1460 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 		zone = pgdat->node_zones + zid;
1462 		if (first_init_pfn < zone_end_pfn(zone))
1463 			break;
1464 	}
1465 
1466 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 		unsigned long pfn, end_pfn;
1468 		struct page *page = NULL;
1469 		struct page *free_base_page = NULL;
1470 		unsigned long free_base_pfn = 0;
1471 		int nr_to_free = 0;
1472 
1473 		end_pfn = min(walk_end, zone_end_pfn(zone));
1474 		pfn = first_init_pfn;
1475 		if (pfn < walk_start)
1476 			pfn = walk_start;
1477 		if (pfn < zone->zone_start_pfn)
1478 			pfn = zone->zone_start_pfn;
1479 
1480 		for (; pfn < end_pfn; pfn++) {
1481 			if (!pfn_valid_within(pfn))
1482 				goto free_range;
1483 
1484 			/*
1485 			 * Ensure pfn_valid is checked every
1486 			 * pageblock_nr_pages for memory holes
1487 			 */
1488 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 				if (!pfn_valid(pfn)) {
1490 					page = NULL;
1491 					goto free_range;
1492 				}
1493 			}
1494 
1495 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 				page = NULL;
1497 				goto free_range;
1498 			}
1499 
1500 			/* Minimise pfn page lookups and scheduler checks */
1501 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 				page++;
1503 			} else {
1504 				nr_pages += nr_to_free;
1505 				deferred_free_range(free_base_page,
1506 						free_base_pfn, nr_to_free);
1507 				free_base_page = NULL;
1508 				free_base_pfn = nr_to_free = 0;
1509 
1510 				page = pfn_to_page(pfn);
1511 				cond_resched();
1512 			}
1513 
1514 			if (page->flags) {
1515 				VM_BUG_ON(page_zone(page) != zone);
1516 				goto free_range;
1517 			}
1518 
1519 			__init_single_page(page, pfn, zid, nid);
1520 			if (!free_base_page) {
1521 				free_base_page = page;
1522 				free_base_pfn = pfn;
1523 				nr_to_free = 0;
1524 			}
1525 			nr_to_free++;
1526 
1527 			/* Where possible, batch up pages for a single free */
1528 			continue;
1529 free_range:
1530 			/* Free the current block of pages to allocator */
1531 			nr_pages += nr_to_free;
1532 			deferred_free_range(free_base_page, free_base_pfn,
1533 								nr_to_free);
1534 			free_base_page = NULL;
1535 			free_base_pfn = nr_to_free = 0;
1536 		}
1537 		/* Free the last block of pages to allocator */
1538 		nr_pages += nr_to_free;
1539 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540 
1541 		first_init_pfn = max(end_pfn, first_init_pfn);
1542 	}
1543 
1544 	/* Sanity check that the next zone really is unpopulated */
1545 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546 
1547 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 					jiffies_to_msecs(jiffies - start));
1549 
1550 	pgdat_init_report_one_done();
1551 	return 0;
1552 }
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554 
1555 void __init page_alloc_init_late(void)
1556 {
1557 	struct zone *zone;
1558 
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 	int nid;
1561 
1562 	/* There will be num_node_state(N_MEMORY) threads */
1563 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 	for_each_node_state(nid, N_MEMORY) {
1565 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 	}
1567 
1568 	/* Block until all are initialised */
1569 	wait_for_completion(&pgdat_init_all_done_comp);
1570 
1571 	/* Reinit limits that are based on free pages after the kernel is up */
1572 	files_maxfiles_init();
1573 #endif
1574 
1575 	for_each_populated_zone(zone)
1576 		set_zone_contiguous(zone);
1577 }
1578 
1579 #ifdef CONFIG_CMA
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1582 {
1583 	unsigned i = pageblock_nr_pages;
1584 	struct page *p = page;
1585 
1586 	do {
1587 		__ClearPageReserved(p);
1588 		set_page_count(p, 0);
1589 	} while (++p, --i);
1590 
1591 	set_pageblock_migratetype(page, MIGRATE_CMA);
1592 
1593 	if (pageblock_order >= MAX_ORDER) {
1594 		i = pageblock_nr_pages;
1595 		p = page;
1596 		do {
1597 			set_page_refcounted(p);
1598 			__free_pages(p, MAX_ORDER - 1);
1599 			p += MAX_ORDER_NR_PAGES;
1600 		} while (i -= MAX_ORDER_NR_PAGES);
1601 	} else {
1602 		set_page_refcounted(page);
1603 		__free_pages(page, pageblock_order);
1604 	}
1605 
1606 	adjust_managed_page_count(page, pageblock_nr_pages);
1607 }
1608 #endif
1609 
1610 /*
1611  * The order of subdivision here is critical for the IO subsystem.
1612  * Please do not alter this order without good reasons and regression
1613  * testing. Specifically, as large blocks of memory are subdivided,
1614  * the order in which smaller blocks are delivered depends on the order
1615  * they're subdivided in this function. This is the primary factor
1616  * influencing the order in which pages are delivered to the IO
1617  * subsystem according to empirical testing, and this is also justified
1618  * by considering the behavior of a buddy system containing a single
1619  * large block of memory acted on by a series of small allocations.
1620  * This behavior is a critical factor in sglist merging's success.
1621  *
1622  * -- nyc
1623  */
1624 static inline void expand(struct zone *zone, struct page *page,
1625 	int low, int high, struct free_area *area,
1626 	int migratetype)
1627 {
1628 	unsigned long size = 1 << high;
1629 
1630 	while (high > low) {
1631 		area--;
1632 		high--;
1633 		size >>= 1;
1634 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635 
1636 		/*
1637 		 * Mark as guard pages (or page), that will allow to
1638 		 * merge back to allocator when buddy will be freed.
1639 		 * Corresponding page table entries will not be touched,
1640 		 * pages will stay not present in virtual address space
1641 		 */
1642 		if (set_page_guard(zone, &page[size], high, migratetype))
1643 			continue;
1644 
1645 		list_add(&page[size].lru, &area->free_list[migratetype]);
1646 		area->nr_free++;
1647 		set_page_order(&page[size], high);
1648 	}
1649 }
1650 
1651 static void check_new_page_bad(struct page *page)
1652 {
1653 	const char *bad_reason = NULL;
1654 	unsigned long bad_flags = 0;
1655 
1656 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 		bad_reason = "nonzero mapcount";
1658 	if (unlikely(page->mapping != NULL))
1659 		bad_reason = "non-NULL mapping";
1660 	if (unlikely(page_ref_count(page) != 0))
1661 		bad_reason = "nonzero _count";
1662 	if (unlikely(page->flags & __PG_HWPOISON)) {
1663 		bad_reason = "HWPoisoned (hardware-corrupted)";
1664 		bad_flags = __PG_HWPOISON;
1665 		/* Don't complain about hwpoisoned pages */
1666 		page_mapcount_reset(page); /* remove PageBuddy */
1667 		return;
1668 	}
1669 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 	}
1673 #ifdef CONFIG_MEMCG
1674 	if (unlikely(page->mem_cgroup))
1675 		bad_reason = "page still charged to cgroup";
1676 #endif
1677 	bad_page(page, bad_reason, bad_flags);
1678 }
1679 
1680 /*
1681  * This page is about to be returned from the page allocator
1682  */
1683 static inline int check_new_page(struct page *page)
1684 {
1685 	if (likely(page_expected_state(page,
1686 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 		return 0;
1688 
1689 	check_new_page_bad(page);
1690 	return 1;
1691 }
1692 
1693 static inline bool free_pages_prezeroed(void)
1694 {
1695 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 		page_poisoning_enabled();
1697 }
1698 
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1701 {
1702 	return false;
1703 }
1704 
1705 static bool check_new_pcp(struct page *page)
1706 {
1707 	return check_new_page(page);
1708 }
1709 #else
1710 static bool check_pcp_refill(struct page *page)
1711 {
1712 	return check_new_page(page);
1713 }
1714 static bool check_new_pcp(struct page *page)
1715 {
1716 	return false;
1717 }
1718 #endif /* CONFIG_DEBUG_VM */
1719 
1720 static bool check_new_pages(struct page *page, unsigned int order)
1721 {
1722 	int i;
1723 	for (i = 0; i < (1 << order); i++) {
1724 		struct page *p = page + i;
1725 
1726 		if (unlikely(check_new_page(p)))
1727 			return true;
1728 	}
1729 
1730 	return false;
1731 }
1732 
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1734 				gfp_t gfp_flags)
1735 {
1736 	set_page_private(page, 0);
1737 	set_page_refcounted(page);
1738 
1739 	arch_alloc_page(page, order);
1740 	kernel_map_pages(page, 1 << order, 1);
1741 	kernel_poison_pages(page, 1 << order, 1);
1742 	kasan_alloc_pages(page, order);
1743 	set_page_owner(page, order, gfp_flags);
1744 }
1745 
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 							unsigned int alloc_flags)
1748 {
1749 	int i;
1750 
1751 	post_alloc_hook(page, order, gfp_flags);
1752 
1753 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1754 		for (i = 0; i < (1 << order); i++)
1755 			clear_highpage(page + i);
1756 
1757 	if (order && (gfp_flags & __GFP_COMP))
1758 		prep_compound_page(page, order);
1759 
1760 	/*
1761 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1762 	 * allocate the page. The expectation is that the caller is taking
1763 	 * steps that will free more memory. The caller should avoid the page
1764 	 * being used for !PFMEMALLOC purposes.
1765 	 */
1766 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1767 		set_page_pfmemalloc(page);
1768 	else
1769 		clear_page_pfmemalloc(page);
1770 }
1771 
1772 /*
1773  * Go through the free lists for the given migratetype and remove
1774  * the smallest available page from the freelists
1775  */
1776 static inline
1777 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1778 						int migratetype)
1779 {
1780 	unsigned int current_order;
1781 	struct free_area *area;
1782 	struct page *page;
1783 
1784 	/* Find a page of the appropriate size in the preferred list */
1785 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1786 		area = &(zone->free_area[current_order]);
1787 		page = list_first_entry_or_null(&area->free_list[migratetype],
1788 							struct page, lru);
1789 		if (!page)
1790 			continue;
1791 		list_del(&page->lru);
1792 		rmv_page_order(page);
1793 		area->nr_free--;
1794 		expand(zone, page, order, current_order, area, migratetype);
1795 		set_pcppage_migratetype(page, migratetype);
1796 		return page;
1797 	}
1798 
1799 	return NULL;
1800 }
1801 
1802 
1803 /*
1804  * This array describes the order lists are fallen back to when
1805  * the free lists for the desirable migrate type are depleted
1806  */
1807 static int fallbacks[MIGRATE_TYPES][4] = {
1808 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1809 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1810 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1811 #ifdef CONFIG_CMA
1812 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1813 #endif
1814 #ifdef CONFIG_MEMORY_ISOLATION
1815 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1816 #endif
1817 };
1818 
1819 #ifdef CONFIG_CMA
1820 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 					unsigned int order)
1822 {
1823 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1824 }
1825 #else
1826 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 					unsigned int order) { return NULL; }
1828 #endif
1829 
1830 /*
1831  * Move the free pages in a range to the free lists of the requested type.
1832  * Note that start_page and end_pages are not aligned on a pageblock
1833  * boundary. If alignment is required, use move_freepages_block()
1834  */
1835 static int move_freepages(struct zone *zone,
1836 			  struct page *start_page, struct page *end_page,
1837 			  int migratetype, int *num_movable)
1838 {
1839 	struct page *page;
1840 	unsigned int order;
1841 	int pages_moved = 0;
1842 
1843 #ifndef CONFIG_HOLES_IN_ZONE
1844 	/*
1845 	 * page_zone is not safe to call in this context when
1846 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1847 	 * anyway as we check zone boundaries in move_freepages_block().
1848 	 * Remove at a later date when no bug reports exist related to
1849 	 * grouping pages by mobility
1850 	 */
1851 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1852 #endif
1853 
1854 	if (num_movable)
1855 		*num_movable = 0;
1856 
1857 	for (page = start_page; page <= end_page;) {
1858 		if (!pfn_valid_within(page_to_pfn(page))) {
1859 			page++;
1860 			continue;
1861 		}
1862 
1863 		/* Make sure we are not inadvertently changing nodes */
1864 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1865 
1866 		if (!PageBuddy(page)) {
1867 			/*
1868 			 * We assume that pages that could be isolated for
1869 			 * migration are movable. But we don't actually try
1870 			 * isolating, as that would be expensive.
1871 			 */
1872 			if (num_movable &&
1873 					(PageLRU(page) || __PageMovable(page)))
1874 				(*num_movable)++;
1875 
1876 			page++;
1877 			continue;
1878 		}
1879 
1880 		order = page_order(page);
1881 		list_move(&page->lru,
1882 			  &zone->free_area[order].free_list[migratetype]);
1883 		page += 1 << order;
1884 		pages_moved += 1 << order;
1885 	}
1886 
1887 	return pages_moved;
1888 }
1889 
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 				int migratetype, int *num_movable)
1892 {
1893 	unsigned long start_pfn, end_pfn;
1894 	struct page *start_page, *end_page;
1895 
1896 	start_pfn = page_to_pfn(page);
1897 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 	start_page = pfn_to_page(start_pfn);
1899 	end_page = start_page + pageblock_nr_pages - 1;
1900 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1901 
1902 	/* Do not cross zone boundaries */
1903 	if (!zone_spans_pfn(zone, start_pfn))
1904 		start_page = page;
1905 	if (!zone_spans_pfn(zone, end_pfn))
1906 		return 0;
1907 
1908 	return move_freepages(zone, start_page, end_page, migratetype,
1909 								num_movable);
1910 }
1911 
1912 static void change_pageblock_range(struct page *pageblock_page,
1913 					int start_order, int migratetype)
1914 {
1915 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1916 
1917 	while (nr_pageblocks--) {
1918 		set_pageblock_migratetype(pageblock_page, migratetype);
1919 		pageblock_page += pageblock_nr_pages;
1920 	}
1921 }
1922 
1923 /*
1924  * When we are falling back to another migratetype during allocation, try to
1925  * steal extra free pages from the same pageblocks to satisfy further
1926  * allocations, instead of polluting multiple pageblocks.
1927  *
1928  * If we are stealing a relatively large buddy page, it is likely there will
1929  * be more free pages in the pageblock, so try to steal them all. For
1930  * reclaimable and unmovable allocations, we steal regardless of page size,
1931  * as fragmentation caused by those allocations polluting movable pageblocks
1932  * is worse than movable allocations stealing from unmovable and reclaimable
1933  * pageblocks.
1934  */
1935 static bool can_steal_fallback(unsigned int order, int start_mt)
1936 {
1937 	/*
1938 	 * Leaving this order check is intended, although there is
1939 	 * relaxed order check in next check. The reason is that
1940 	 * we can actually steal whole pageblock if this condition met,
1941 	 * but, below check doesn't guarantee it and that is just heuristic
1942 	 * so could be changed anytime.
1943 	 */
1944 	if (order >= pageblock_order)
1945 		return true;
1946 
1947 	if (order >= pageblock_order / 2 ||
1948 		start_mt == MIGRATE_RECLAIMABLE ||
1949 		start_mt == MIGRATE_UNMOVABLE ||
1950 		page_group_by_mobility_disabled)
1951 		return true;
1952 
1953 	return false;
1954 }
1955 
1956 /*
1957  * This function implements actual steal behaviour. If order is large enough,
1958  * we can steal whole pageblock. If not, we first move freepages in this
1959  * pageblock to our migratetype and determine how many already-allocated pages
1960  * are there in the pageblock with a compatible migratetype. If at least half
1961  * of pages are free or compatible, we can change migratetype of the pageblock
1962  * itself, so pages freed in the future will be put on the correct free list.
1963  */
1964 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1965 					int start_type, bool whole_block)
1966 {
1967 	unsigned int current_order = page_order(page);
1968 	struct free_area *area;
1969 	int free_pages, movable_pages, alike_pages;
1970 	int old_block_type;
1971 
1972 	old_block_type = get_pageblock_migratetype(page);
1973 
1974 	/*
1975 	 * This can happen due to races and we want to prevent broken
1976 	 * highatomic accounting.
1977 	 */
1978 	if (is_migrate_highatomic(old_block_type))
1979 		goto single_page;
1980 
1981 	/* Take ownership for orders >= pageblock_order */
1982 	if (current_order >= pageblock_order) {
1983 		change_pageblock_range(page, current_order, start_type);
1984 		goto single_page;
1985 	}
1986 
1987 	/* We are not allowed to try stealing from the whole block */
1988 	if (!whole_block)
1989 		goto single_page;
1990 
1991 	free_pages = move_freepages_block(zone, page, start_type,
1992 						&movable_pages);
1993 	/*
1994 	 * Determine how many pages are compatible with our allocation.
1995 	 * For movable allocation, it's the number of movable pages which
1996 	 * we just obtained. For other types it's a bit more tricky.
1997 	 */
1998 	if (start_type == MIGRATE_MOVABLE) {
1999 		alike_pages = movable_pages;
2000 	} else {
2001 		/*
2002 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2003 		 * to MOVABLE pageblock, consider all non-movable pages as
2004 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2005 		 * vice versa, be conservative since we can't distinguish the
2006 		 * exact migratetype of non-movable pages.
2007 		 */
2008 		if (old_block_type == MIGRATE_MOVABLE)
2009 			alike_pages = pageblock_nr_pages
2010 						- (free_pages + movable_pages);
2011 		else
2012 			alike_pages = 0;
2013 	}
2014 
2015 	/* moving whole block can fail due to zone boundary conditions */
2016 	if (!free_pages)
2017 		goto single_page;
2018 
2019 	/*
2020 	 * If a sufficient number of pages in the block are either free or of
2021 	 * comparable migratability as our allocation, claim the whole block.
2022 	 */
2023 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2024 			page_group_by_mobility_disabled)
2025 		set_pageblock_migratetype(page, start_type);
2026 
2027 	return;
2028 
2029 single_page:
2030 	area = &zone->free_area[current_order];
2031 	list_move(&page->lru, &area->free_list[start_type]);
2032 }
2033 
2034 /*
2035  * Check whether there is a suitable fallback freepage with requested order.
2036  * If only_stealable is true, this function returns fallback_mt only if
2037  * we can steal other freepages all together. This would help to reduce
2038  * fragmentation due to mixed migratetype pages in one pageblock.
2039  */
2040 int find_suitable_fallback(struct free_area *area, unsigned int order,
2041 			int migratetype, bool only_stealable, bool *can_steal)
2042 {
2043 	int i;
2044 	int fallback_mt;
2045 
2046 	if (area->nr_free == 0)
2047 		return -1;
2048 
2049 	*can_steal = false;
2050 	for (i = 0;; i++) {
2051 		fallback_mt = fallbacks[migratetype][i];
2052 		if (fallback_mt == MIGRATE_TYPES)
2053 			break;
2054 
2055 		if (list_empty(&area->free_list[fallback_mt]))
2056 			continue;
2057 
2058 		if (can_steal_fallback(order, migratetype))
2059 			*can_steal = true;
2060 
2061 		if (!only_stealable)
2062 			return fallback_mt;
2063 
2064 		if (*can_steal)
2065 			return fallback_mt;
2066 	}
2067 
2068 	return -1;
2069 }
2070 
2071 /*
2072  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2073  * there are no empty page blocks that contain a page with a suitable order
2074  */
2075 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2076 				unsigned int alloc_order)
2077 {
2078 	int mt;
2079 	unsigned long max_managed, flags;
2080 
2081 	/*
2082 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2083 	 * Check is race-prone but harmless.
2084 	 */
2085 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2086 	if (zone->nr_reserved_highatomic >= max_managed)
2087 		return;
2088 
2089 	spin_lock_irqsave(&zone->lock, flags);
2090 
2091 	/* Recheck the nr_reserved_highatomic limit under the lock */
2092 	if (zone->nr_reserved_highatomic >= max_managed)
2093 		goto out_unlock;
2094 
2095 	/* Yoink! */
2096 	mt = get_pageblock_migratetype(page);
2097 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2098 	    && !is_migrate_cma(mt)) {
2099 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2100 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2101 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2102 	}
2103 
2104 out_unlock:
2105 	spin_unlock_irqrestore(&zone->lock, flags);
2106 }
2107 
2108 /*
2109  * Used when an allocation is about to fail under memory pressure. This
2110  * potentially hurts the reliability of high-order allocations when under
2111  * intense memory pressure but failed atomic allocations should be easier
2112  * to recover from than an OOM.
2113  *
2114  * If @force is true, try to unreserve a pageblock even though highatomic
2115  * pageblock is exhausted.
2116  */
2117 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2118 						bool force)
2119 {
2120 	struct zonelist *zonelist = ac->zonelist;
2121 	unsigned long flags;
2122 	struct zoneref *z;
2123 	struct zone *zone;
2124 	struct page *page;
2125 	int order;
2126 	bool ret;
2127 
2128 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2129 								ac->nodemask) {
2130 		/*
2131 		 * Preserve at least one pageblock unless memory pressure
2132 		 * is really high.
2133 		 */
2134 		if (!force && zone->nr_reserved_highatomic <=
2135 					pageblock_nr_pages)
2136 			continue;
2137 
2138 		spin_lock_irqsave(&zone->lock, flags);
2139 		for (order = 0; order < MAX_ORDER; order++) {
2140 			struct free_area *area = &(zone->free_area[order]);
2141 
2142 			page = list_first_entry_or_null(
2143 					&area->free_list[MIGRATE_HIGHATOMIC],
2144 					struct page, lru);
2145 			if (!page)
2146 				continue;
2147 
2148 			/*
2149 			 * In page freeing path, migratetype change is racy so
2150 			 * we can counter several free pages in a pageblock
2151 			 * in this loop althoug we changed the pageblock type
2152 			 * from highatomic to ac->migratetype. So we should
2153 			 * adjust the count once.
2154 			 */
2155 			if (is_migrate_highatomic_page(page)) {
2156 				/*
2157 				 * It should never happen but changes to
2158 				 * locking could inadvertently allow a per-cpu
2159 				 * drain to add pages to MIGRATE_HIGHATOMIC
2160 				 * while unreserving so be safe and watch for
2161 				 * underflows.
2162 				 */
2163 				zone->nr_reserved_highatomic -= min(
2164 						pageblock_nr_pages,
2165 						zone->nr_reserved_highatomic);
2166 			}
2167 
2168 			/*
2169 			 * Convert to ac->migratetype and avoid the normal
2170 			 * pageblock stealing heuristics. Minimally, the caller
2171 			 * is doing the work and needs the pages. More
2172 			 * importantly, if the block was always converted to
2173 			 * MIGRATE_UNMOVABLE or another type then the number
2174 			 * of pageblocks that cannot be completely freed
2175 			 * may increase.
2176 			 */
2177 			set_pageblock_migratetype(page, ac->migratetype);
2178 			ret = move_freepages_block(zone, page, ac->migratetype,
2179 									NULL);
2180 			if (ret) {
2181 				spin_unlock_irqrestore(&zone->lock, flags);
2182 				return ret;
2183 			}
2184 		}
2185 		spin_unlock_irqrestore(&zone->lock, flags);
2186 	}
2187 
2188 	return false;
2189 }
2190 
2191 /*
2192  * Try finding a free buddy page on the fallback list and put it on the free
2193  * list of requested migratetype, possibly along with other pages from the same
2194  * block, depending on fragmentation avoidance heuristics. Returns true if
2195  * fallback was found so that __rmqueue_smallest() can grab it.
2196  */
2197 static inline bool
2198 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2199 {
2200 	struct free_area *area;
2201 	unsigned int current_order;
2202 	struct page *page;
2203 	int fallback_mt;
2204 	bool can_steal;
2205 
2206 	/* Find the largest possible block of pages in the other list */
2207 	for (current_order = MAX_ORDER-1;
2208 				current_order >= order && current_order <= MAX_ORDER-1;
2209 				--current_order) {
2210 		area = &(zone->free_area[current_order]);
2211 		fallback_mt = find_suitable_fallback(area, current_order,
2212 				start_migratetype, false, &can_steal);
2213 		if (fallback_mt == -1)
2214 			continue;
2215 
2216 		page = list_first_entry(&area->free_list[fallback_mt],
2217 						struct page, lru);
2218 
2219 		steal_suitable_fallback(zone, page, start_migratetype,
2220 								can_steal);
2221 
2222 		trace_mm_page_alloc_extfrag(page, order, current_order,
2223 			start_migratetype, fallback_mt);
2224 
2225 		return true;
2226 	}
2227 
2228 	return false;
2229 }
2230 
2231 /*
2232  * Do the hard work of removing an element from the buddy allocator.
2233  * Call me with the zone->lock already held.
2234  */
2235 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2236 				int migratetype)
2237 {
2238 	struct page *page;
2239 
2240 retry:
2241 	page = __rmqueue_smallest(zone, order, migratetype);
2242 	if (unlikely(!page)) {
2243 		if (migratetype == MIGRATE_MOVABLE)
2244 			page = __rmqueue_cma_fallback(zone, order);
2245 
2246 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2247 			goto retry;
2248 	}
2249 
2250 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2251 	return page;
2252 }
2253 
2254 /*
2255  * Obtain a specified number of elements from the buddy allocator, all under
2256  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2257  * Returns the number of new pages which were placed at *list.
2258  */
2259 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2260 			unsigned long count, struct list_head *list,
2261 			int migratetype, bool cold)
2262 {
2263 	int i, alloced = 0;
2264 
2265 	spin_lock(&zone->lock);
2266 	for (i = 0; i < count; ++i) {
2267 		struct page *page = __rmqueue(zone, order, migratetype);
2268 		if (unlikely(page == NULL))
2269 			break;
2270 
2271 		if (unlikely(check_pcp_refill(page)))
2272 			continue;
2273 
2274 		/*
2275 		 * Split buddy pages returned by expand() are received here
2276 		 * in physical page order. The page is added to the callers and
2277 		 * list and the list head then moves forward. From the callers
2278 		 * perspective, the linked list is ordered by page number in
2279 		 * some conditions. This is useful for IO devices that can
2280 		 * merge IO requests if the physical pages are ordered
2281 		 * properly.
2282 		 */
2283 		if (likely(!cold))
2284 			list_add(&page->lru, list);
2285 		else
2286 			list_add_tail(&page->lru, list);
2287 		list = &page->lru;
2288 		alloced++;
2289 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2290 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2291 					      -(1 << order));
2292 	}
2293 
2294 	/*
2295 	 * i pages were removed from the buddy list even if some leak due
2296 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2297 	 * on i. Do not confuse with 'alloced' which is the number of
2298 	 * pages added to the pcp list.
2299 	 */
2300 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2301 	spin_unlock(&zone->lock);
2302 	return alloced;
2303 }
2304 
2305 #ifdef CONFIG_NUMA
2306 /*
2307  * Called from the vmstat counter updater to drain pagesets of this
2308  * currently executing processor on remote nodes after they have
2309  * expired.
2310  *
2311  * Note that this function must be called with the thread pinned to
2312  * a single processor.
2313  */
2314 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2315 {
2316 	unsigned long flags;
2317 	int to_drain, batch;
2318 
2319 	local_irq_save(flags);
2320 	batch = READ_ONCE(pcp->batch);
2321 	to_drain = min(pcp->count, batch);
2322 	if (to_drain > 0) {
2323 		free_pcppages_bulk(zone, to_drain, pcp);
2324 		pcp->count -= to_drain;
2325 	}
2326 	local_irq_restore(flags);
2327 }
2328 #endif
2329 
2330 /*
2331  * Drain pcplists of the indicated processor and zone.
2332  *
2333  * The processor must either be the current processor and the
2334  * thread pinned to the current processor or a processor that
2335  * is not online.
2336  */
2337 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2338 {
2339 	unsigned long flags;
2340 	struct per_cpu_pageset *pset;
2341 	struct per_cpu_pages *pcp;
2342 
2343 	local_irq_save(flags);
2344 	pset = per_cpu_ptr(zone->pageset, cpu);
2345 
2346 	pcp = &pset->pcp;
2347 	if (pcp->count) {
2348 		free_pcppages_bulk(zone, pcp->count, pcp);
2349 		pcp->count = 0;
2350 	}
2351 	local_irq_restore(flags);
2352 }
2353 
2354 /*
2355  * Drain pcplists of all zones on the indicated processor.
2356  *
2357  * The processor must either be the current processor and the
2358  * thread pinned to the current processor or a processor that
2359  * is not online.
2360  */
2361 static void drain_pages(unsigned int cpu)
2362 {
2363 	struct zone *zone;
2364 
2365 	for_each_populated_zone(zone) {
2366 		drain_pages_zone(cpu, zone);
2367 	}
2368 }
2369 
2370 /*
2371  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2372  *
2373  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2374  * the single zone's pages.
2375  */
2376 void drain_local_pages(struct zone *zone)
2377 {
2378 	int cpu = smp_processor_id();
2379 
2380 	if (zone)
2381 		drain_pages_zone(cpu, zone);
2382 	else
2383 		drain_pages(cpu);
2384 }
2385 
2386 static void drain_local_pages_wq(struct work_struct *work)
2387 {
2388 	/*
2389 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2390 	 * we can race with cpu offline when the WQ can move this from
2391 	 * a cpu pinned worker to an unbound one. We can operate on a different
2392 	 * cpu which is allright but we also have to make sure to not move to
2393 	 * a different one.
2394 	 */
2395 	preempt_disable();
2396 	drain_local_pages(NULL);
2397 	preempt_enable();
2398 }
2399 
2400 /*
2401  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2402  *
2403  * When zone parameter is non-NULL, spill just the single zone's pages.
2404  *
2405  * Note that this can be extremely slow as the draining happens in a workqueue.
2406  */
2407 void drain_all_pages(struct zone *zone)
2408 {
2409 	int cpu;
2410 
2411 	/*
2412 	 * Allocate in the BSS so we wont require allocation in
2413 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2414 	 */
2415 	static cpumask_t cpus_with_pcps;
2416 
2417 	/*
2418 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2419 	 * initialized.
2420 	 */
2421 	if (WARN_ON_ONCE(!mm_percpu_wq))
2422 		return;
2423 
2424 	/* Workqueues cannot recurse */
2425 	if (current->flags & PF_WQ_WORKER)
2426 		return;
2427 
2428 	/*
2429 	 * Do not drain if one is already in progress unless it's specific to
2430 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2431 	 * the drain to be complete when the call returns.
2432 	 */
2433 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2434 		if (!zone)
2435 			return;
2436 		mutex_lock(&pcpu_drain_mutex);
2437 	}
2438 
2439 	/*
2440 	 * We don't care about racing with CPU hotplug event
2441 	 * as offline notification will cause the notified
2442 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2443 	 * disables preemption as part of its processing
2444 	 */
2445 	for_each_online_cpu(cpu) {
2446 		struct per_cpu_pageset *pcp;
2447 		struct zone *z;
2448 		bool has_pcps = false;
2449 
2450 		if (zone) {
2451 			pcp = per_cpu_ptr(zone->pageset, cpu);
2452 			if (pcp->pcp.count)
2453 				has_pcps = true;
2454 		} else {
2455 			for_each_populated_zone(z) {
2456 				pcp = per_cpu_ptr(z->pageset, cpu);
2457 				if (pcp->pcp.count) {
2458 					has_pcps = true;
2459 					break;
2460 				}
2461 			}
2462 		}
2463 
2464 		if (has_pcps)
2465 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2466 		else
2467 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2468 	}
2469 
2470 	for_each_cpu(cpu, &cpus_with_pcps) {
2471 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2472 		INIT_WORK(work, drain_local_pages_wq);
2473 		queue_work_on(cpu, mm_percpu_wq, work);
2474 	}
2475 	for_each_cpu(cpu, &cpus_with_pcps)
2476 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2477 
2478 	mutex_unlock(&pcpu_drain_mutex);
2479 }
2480 
2481 #ifdef CONFIG_HIBERNATION
2482 
2483 void mark_free_pages(struct zone *zone)
2484 {
2485 	unsigned long pfn, max_zone_pfn;
2486 	unsigned long flags;
2487 	unsigned int order, t;
2488 	struct page *page;
2489 
2490 	if (zone_is_empty(zone))
2491 		return;
2492 
2493 	spin_lock_irqsave(&zone->lock, flags);
2494 
2495 	max_zone_pfn = zone_end_pfn(zone);
2496 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2497 		if (pfn_valid(pfn)) {
2498 			page = pfn_to_page(pfn);
2499 
2500 			if (page_zone(page) != zone)
2501 				continue;
2502 
2503 			if (!swsusp_page_is_forbidden(page))
2504 				swsusp_unset_page_free(page);
2505 		}
2506 
2507 	for_each_migratetype_order(order, t) {
2508 		list_for_each_entry(page,
2509 				&zone->free_area[order].free_list[t], lru) {
2510 			unsigned long i;
2511 
2512 			pfn = page_to_pfn(page);
2513 			for (i = 0; i < (1UL << order); i++)
2514 				swsusp_set_page_free(pfn_to_page(pfn + i));
2515 		}
2516 	}
2517 	spin_unlock_irqrestore(&zone->lock, flags);
2518 }
2519 #endif /* CONFIG_PM */
2520 
2521 /*
2522  * Free a 0-order page
2523  * cold == true ? free a cold page : free a hot page
2524  */
2525 void free_hot_cold_page(struct page *page, bool cold)
2526 {
2527 	struct zone *zone = page_zone(page);
2528 	struct per_cpu_pages *pcp;
2529 	unsigned long flags;
2530 	unsigned long pfn = page_to_pfn(page);
2531 	int migratetype;
2532 
2533 	if (!free_pcp_prepare(page))
2534 		return;
2535 
2536 	migratetype = get_pfnblock_migratetype(page, pfn);
2537 	set_pcppage_migratetype(page, migratetype);
2538 	local_irq_save(flags);
2539 	__count_vm_event(PGFREE);
2540 
2541 	/*
2542 	 * We only track unmovable, reclaimable and movable on pcp lists.
2543 	 * Free ISOLATE pages back to the allocator because they are being
2544 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2545 	 * areas back if necessary. Otherwise, we may have to free
2546 	 * excessively into the page allocator
2547 	 */
2548 	if (migratetype >= MIGRATE_PCPTYPES) {
2549 		if (unlikely(is_migrate_isolate(migratetype))) {
2550 			free_one_page(zone, page, pfn, 0, migratetype);
2551 			goto out;
2552 		}
2553 		migratetype = MIGRATE_MOVABLE;
2554 	}
2555 
2556 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2557 	if (!cold)
2558 		list_add(&page->lru, &pcp->lists[migratetype]);
2559 	else
2560 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2561 	pcp->count++;
2562 	if (pcp->count >= pcp->high) {
2563 		unsigned long batch = READ_ONCE(pcp->batch);
2564 		free_pcppages_bulk(zone, batch, pcp);
2565 		pcp->count -= batch;
2566 	}
2567 
2568 out:
2569 	local_irq_restore(flags);
2570 }
2571 
2572 /*
2573  * Free a list of 0-order pages
2574  */
2575 void free_hot_cold_page_list(struct list_head *list, bool cold)
2576 {
2577 	struct page *page, *next;
2578 
2579 	list_for_each_entry_safe(page, next, list, lru) {
2580 		trace_mm_page_free_batched(page, cold);
2581 		free_hot_cold_page(page, cold);
2582 	}
2583 }
2584 
2585 /*
2586  * split_page takes a non-compound higher-order page, and splits it into
2587  * n (1<<order) sub-pages: page[0..n]
2588  * Each sub-page must be freed individually.
2589  *
2590  * Note: this is probably too low level an operation for use in drivers.
2591  * Please consult with lkml before using this in your driver.
2592  */
2593 void split_page(struct page *page, unsigned int order)
2594 {
2595 	int i;
2596 
2597 	VM_BUG_ON_PAGE(PageCompound(page), page);
2598 	VM_BUG_ON_PAGE(!page_count(page), page);
2599 
2600 #ifdef CONFIG_KMEMCHECK
2601 	/*
2602 	 * Split shadow pages too, because free(page[0]) would
2603 	 * otherwise free the whole shadow.
2604 	 */
2605 	if (kmemcheck_page_is_tracked(page))
2606 		split_page(virt_to_page(page[0].shadow), order);
2607 #endif
2608 
2609 	for (i = 1; i < (1 << order); i++)
2610 		set_page_refcounted(page + i);
2611 	split_page_owner(page, order);
2612 }
2613 EXPORT_SYMBOL_GPL(split_page);
2614 
2615 int __isolate_free_page(struct page *page, unsigned int order)
2616 {
2617 	unsigned long watermark;
2618 	struct zone *zone;
2619 	int mt;
2620 
2621 	BUG_ON(!PageBuddy(page));
2622 
2623 	zone = page_zone(page);
2624 	mt = get_pageblock_migratetype(page);
2625 
2626 	if (!is_migrate_isolate(mt)) {
2627 		/*
2628 		 * Obey watermarks as if the page was being allocated. We can
2629 		 * emulate a high-order watermark check with a raised order-0
2630 		 * watermark, because we already know our high-order page
2631 		 * exists.
2632 		 */
2633 		watermark = min_wmark_pages(zone) + (1UL << order);
2634 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2635 			return 0;
2636 
2637 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2638 	}
2639 
2640 	/* Remove page from free list */
2641 	list_del(&page->lru);
2642 	zone->free_area[order].nr_free--;
2643 	rmv_page_order(page);
2644 
2645 	/*
2646 	 * Set the pageblock if the isolated page is at least half of a
2647 	 * pageblock
2648 	 */
2649 	if (order >= pageblock_order - 1) {
2650 		struct page *endpage = page + (1 << order) - 1;
2651 		for (; page < endpage; page += pageblock_nr_pages) {
2652 			int mt = get_pageblock_migratetype(page);
2653 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2654 			    && !is_migrate_highatomic(mt))
2655 				set_pageblock_migratetype(page,
2656 							  MIGRATE_MOVABLE);
2657 		}
2658 	}
2659 
2660 
2661 	return 1UL << order;
2662 }
2663 
2664 /*
2665  * Update NUMA hit/miss statistics
2666  *
2667  * Must be called with interrupts disabled.
2668  */
2669 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2670 {
2671 #ifdef CONFIG_NUMA
2672 	enum zone_stat_item local_stat = NUMA_LOCAL;
2673 
2674 	if (z->node != numa_node_id())
2675 		local_stat = NUMA_OTHER;
2676 
2677 	if (z->node == preferred_zone->node)
2678 		__inc_zone_state(z, NUMA_HIT);
2679 	else {
2680 		__inc_zone_state(z, NUMA_MISS);
2681 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2682 	}
2683 	__inc_zone_state(z, local_stat);
2684 #endif
2685 }
2686 
2687 /* Remove page from the per-cpu list, caller must protect the list */
2688 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2689 			bool cold, struct per_cpu_pages *pcp,
2690 			struct list_head *list)
2691 {
2692 	struct page *page;
2693 
2694 	do {
2695 		if (list_empty(list)) {
2696 			pcp->count += rmqueue_bulk(zone, 0,
2697 					pcp->batch, list,
2698 					migratetype, cold);
2699 			if (unlikely(list_empty(list)))
2700 				return NULL;
2701 		}
2702 
2703 		if (cold)
2704 			page = list_last_entry(list, struct page, lru);
2705 		else
2706 			page = list_first_entry(list, struct page, lru);
2707 
2708 		list_del(&page->lru);
2709 		pcp->count--;
2710 	} while (check_new_pcp(page));
2711 
2712 	return page;
2713 }
2714 
2715 /* Lock and remove page from the per-cpu list */
2716 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2717 			struct zone *zone, unsigned int order,
2718 			gfp_t gfp_flags, int migratetype)
2719 {
2720 	struct per_cpu_pages *pcp;
2721 	struct list_head *list;
2722 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2723 	struct page *page;
2724 	unsigned long flags;
2725 
2726 	local_irq_save(flags);
2727 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2728 	list = &pcp->lists[migratetype];
2729 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2730 	if (page) {
2731 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2732 		zone_statistics(preferred_zone, zone);
2733 	}
2734 	local_irq_restore(flags);
2735 	return page;
2736 }
2737 
2738 /*
2739  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2740  */
2741 static inline
2742 struct page *rmqueue(struct zone *preferred_zone,
2743 			struct zone *zone, unsigned int order,
2744 			gfp_t gfp_flags, unsigned int alloc_flags,
2745 			int migratetype)
2746 {
2747 	unsigned long flags;
2748 	struct page *page;
2749 
2750 	if (likely(order == 0)) {
2751 		page = rmqueue_pcplist(preferred_zone, zone, order,
2752 				gfp_flags, migratetype);
2753 		goto out;
2754 	}
2755 
2756 	/*
2757 	 * We most definitely don't want callers attempting to
2758 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2759 	 */
2760 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2761 	spin_lock_irqsave(&zone->lock, flags);
2762 
2763 	do {
2764 		page = NULL;
2765 		if (alloc_flags & ALLOC_HARDER) {
2766 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2767 			if (page)
2768 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2769 		}
2770 		if (!page)
2771 			page = __rmqueue(zone, order, migratetype);
2772 	} while (page && check_new_pages(page, order));
2773 	spin_unlock(&zone->lock);
2774 	if (!page)
2775 		goto failed;
2776 	__mod_zone_freepage_state(zone, -(1 << order),
2777 				  get_pcppage_migratetype(page));
2778 
2779 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2780 	zone_statistics(preferred_zone, zone);
2781 	local_irq_restore(flags);
2782 
2783 out:
2784 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2785 	return page;
2786 
2787 failed:
2788 	local_irq_restore(flags);
2789 	return NULL;
2790 }
2791 
2792 #ifdef CONFIG_FAIL_PAGE_ALLOC
2793 
2794 static struct {
2795 	struct fault_attr attr;
2796 
2797 	bool ignore_gfp_highmem;
2798 	bool ignore_gfp_reclaim;
2799 	u32 min_order;
2800 } fail_page_alloc = {
2801 	.attr = FAULT_ATTR_INITIALIZER,
2802 	.ignore_gfp_reclaim = true,
2803 	.ignore_gfp_highmem = true,
2804 	.min_order = 1,
2805 };
2806 
2807 static int __init setup_fail_page_alloc(char *str)
2808 {
2809 	return setup_fault_attr(&fail_page_alloc.attr, str);
2810 }
2811 __setup("fail_page_alloc=", setup_fail_page_alloc);
2812 
2813 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2814 {
2815 	if (order < fail_page_alloc.min_order)
2816 		return false;
2817 	if (gfp_mask & __GFP_NOFAIL)
2818 		return false;
2819 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2820 		return false;
2821 	if (fail_page_alloc.ignore_gfp_reclaim &&
2822 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2823 		return false;
2824 
2825 	return should_fail(&fail_page_alloc.attr, 1 << order);
2826 }
2827 
2828 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2829 
2830 static int __init fail_page_alloc_debugfs(void)
2831 {
2832 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2833 	struct dentry *dir;
2834 
2835 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2836 					&fail_page_alloc.attr);
2837 	if (IS_ERR(dir))
2838 		return PTR_ERR(dir);
2839 
2840 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2841 				&fail_page_alloc.ignore_gfp_reclaim))
2842 		goto fail;
2843 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2844 				&fail_page_alloc.ignore_gfp_highmem))
2845 		goto fail;
2846 	if (!debugfs_create_u32("min-order", mode, dir,
2847 				&fail_page_alloc.min_order))
2848 		goto fail;
2849 
2850 	return 0;
2851 fail:
2852 	debugfs_remove_recursive(dir);
2853 
2854 	return -ENOMEM;
2855 }
2856 
2857 late_initcall(fail_page_alloc_debugfs);
2858 
2859 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2860 
2861 #else /* CONFIG_FAIL_PAGE_ALLOC */
2862 
2863 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2864 {
2865 	return false;
2866 }
2867 
2868 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2869 
2870 /*
2871  * Return true if free base pages are above 'mark'. For high-order checks it
2872  * will return true of the order-0 watermark is reached and there is at least
2873  * one free page of a suitable size. Checking now avoids taking the zone lock
2874  * to check in the allocation paths if no pages are free.
2875  */
2876 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2877 			 int classzone_idx, unsigned int alloc_flags,
2878 			 long free_pages)
2879 {
2880 	long min = mark;
2881 	int o;
2882 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2883 
2884 	/* free_pages may go negative - that's OK */
2885 	free_pages -= (1 << order) - 1;
2886 
2887 	if (alloc_flags & ALLOC_HIGH)
2888 		min -= min / 2;
2889 
2890 	/*
2891 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2892 	 * the high-atomic reserves. This will over-estimate the size of the
2893 	 * atomic reserve but it avoids a search.
2894 	 */
2895 	if (likely(!alloc_harder))
2896 		free_pages -= z->nr_reserved_highatomic;
2897 	else
2898 		min -= min / 4;
2899 
2900 #ifdef CONFIG_CMA
2901 	/* If allocation can't use CMA areas don't use free CMA pages */
2902 	if (!(alloc_flags & ALLOC_CMA))
2903 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2904 #endif
2905 
2906 	/*
2907 	 * Check watermarks for an order-0 allocation request. If these
2908 	 * are not met, then a high-order request also cannot go ahead
2909 	 * even if a suitable page happened to be free.
2910 	 */
2911 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2912 		return false;
2913 
2914 	/* If this is an order-0 request then the watermark is fine */
2915 	if (!order)
2916 		return true;
2917 
2918 	/* For a high-order request, check at least one suitable page is free */
2919 	for (o = order; o < MAX_ORDER; o++) {
2920 		struct free_area *area = &z->free_area[o];
2921 		int mt;
2922 
2923 		if (!area->nr_free)
2924 			continue;
2925 
2926 		if (alloc_harder)
2927 			return true;
2928 
2929 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2930 			if (!list_empty(&area->free_list[mt]))
2931 				return true;
2932 		}
2933 
2934 #ifdef CONFIG_CMA
2935 		if ((alloc_flags & ALLOC_CMA) &&
2936 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2937 			return true;
2938 		}
2939 #endif
2940 	}
2941 	return false;
2942 }
2943 
2944 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2945 		      int classzone_idx, unsigned int alloc_flags)
2946 {
2947 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2948 					zone_page_state(z, NR_FREE_PAGES));
2949 }
2950 
2951 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2952 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2953 {
2954 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2955 	long cma_pages = 0;
2956 
2957 #ifdef CONFIG_CMA
2958 	/* If allocation can't use CMA areas don't use free CMA pages */
2959 	if (!(alloc_flags & ALLOC_CMA))
2960 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2961 #endif
2962 
2963 	/*
2964 	 * Fast check for order-0 only. If this fails then the reserves
2965 	 * need to be calculated. There is a corner case where the check
2966 	 * passes but only the high-order atomic reserve are free. If
2967 	 * the caller is !atomic then it'll uselessly search the free
2968 	 * list. That corner case is then slower but it is harmless.
2969 	 */
2970 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2971 		return true;
2972 
2973 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2974 					free_pages);
2975 }
2976 
2977 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2978 			unsigned long mark, int classzone_idx)
2979 {
2980 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2981 
2982 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2983 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2984 
2985 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2986 								free_pages);
2987 }
2988 
2989 #ifdef CONFIG_NUMA
2990 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2991 {
2992 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2993 				RECLAIM_DISTANCE;
2994 }
2995 #else	/* CONFIG_NUMA */
2996 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2997 {
2998 	return true;
2999 }
3000 #endif	/* CONFIG_NUMA */
3001 
3002 /*
3003  * get_page_from_freelist goes through the zonelist trying to allocate
3004  * a page.
3005  */
3006 static struct page *
3007 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3008 						const struct alloc_context *ac)
3009 {
3010 	struct zoneref *z = ac->preferred_zoneref;
3011 	struct zone *zone;
3012 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3013 
3014 	/*
3015 	 * Scan zonelist, looking for a zone with enough free.
3016 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3017 	 */
3018 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3019 								ac->nodemask) {
3020 		struct page *page;
3021 		unsigned long mark;
3022 
3023 		if (cpusets_enabled() &&
3024 			(alloc_flags & ALLOC_CPUSET) &&
3025 			!__cpuset_zone_allowed(zone, gfp_mask))
3026 				continue;
3027 		/*
3028 		 * When allocating a page cache page for writing, we
3029 		 * want to get it from a node that is within its dirty
3030 		 * limit, such that no single node holds more than its
3031 		 * proportional share of globally allowed dirty pages.
3032 		 * The dirty limits take into account the node's
3033 		 * lowmem reserves and high watermark so that kswapd
3034 		 * should be able to balance it without having to
3035 		 * write pages from its LRU list.
3036 		 *
3037 		 * XXX: For now, allow allocations to potentially
3038 		 * exceed the per-node dirty limit in the slowpath
3039 		 * (spread_dirty_pages unset) before going into reclaim,
3040 		 * which is important when on a NUMA setup the allowed
3041 		 * nodes are together not big enough to reach the
3042 		 * global limit.  The proper fix for these situations
3043 		 * will require awareness of nodes in the
3044 		 * dirty-throttling and the flusher threads.
3045 		 */
3046 		if (ac->spread_dirty_pages) {
3047 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3048 				continue;
3049 
3050 			if (!node_dirty_ok(zone->zone_pgdat)) {
3051 				last_pgdat_dirty_limit = zone->zone_pgdat;
3052 				continue;
3053 			}
3054 		}
3055 
3056 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3057 		if (!zone_watermark_fast(zone, order, mark,
3058 				       ac_classzone_idx(ac), alloc_flags)) {
3059 			int ret;
3060 
3061 			/* Checked here to keep the fast path fast */
3062 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3063 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3064 				goto try_this_zone;
3065 
3066 			if (node_reclaim_mode == 0 ||
3067 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3068 				continue;
3069 
3070 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3071 			switch (ret) {
3072 			case NODE_RECLAIM_NOSCAN:
3073 				/* did not scan */
3074 				continue;
3075 			case NODE_RECLAIM_FULL:
3076 				/* scanned but unreclaimable */
3077 				continue;
3078 			default:
3079 				/* did we reclaim enough */
3080 				if (zone_watermark_ok(zone, order, mark,
3081 						ac_classzone_idx(ac), alloc_flags))
3082 					goto try_this_zone;
3083 
3084 				continue;
3085 			}
3086 		}
3087 
3088 try_this_zone:
3089 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3090 				gfp_mask, alloc_flags, ac->migratetype);
3091 		if (page) {
3092 			prep_new_page(page, order, gfp_mask, alloc_flags);
3093 
3094 			/*
3095 			 * If this is a high-order atomic allocation then check
3096 			 * if the pageblock should be reserved for the future
3097 			 */
3098 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3099 				reserve_highatomic_pageblock(page, zone, order);
3100 
3101 			return page;
3102 		}
3103 	}
3104 
3105 	return NULL;
3106 }
3107 
3108 /*
3109  * Large machines with many possible nodes should not always dump per-node
3110  * meminfo in irq context.
3111  */
3112 static inline bool should_suppress_show_mem(void)
3113 {
3114 	bool ret = false;
3115 
3116 #if NODES_SHIFT > 8
3117 	ret = in_interrupt();
3118 #endif
3119 	return ret;
3120 }
3121 
3122 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3123 {
3124 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3125 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3126 
3127 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3128 		return;
3129 
3130 	/*
3131 	 * This documents exceptions given to allocations in certain
3132 	 * contexts that are allowed to allocate outside current's set
3133 	 * of allowed nodes.
3134 	 */
3135 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3136 		if (test_thread_flag(TIF_MEMDIE) ||
3137 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3138 			filter &= ~SHOW_MEM_FILTER_NODES;
3139 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3140 		filter &= ~SHOW_MEM_FILTER_NODES;
3141 
3142 	show_mem(filter, nodemask);
3143 }
3144 
3145 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3146 {
3147 	struct va_format vaf;
3148 	va_list args;
3149 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3150 				      DEFAULT_RATELIMIT_BURST);
3151 
3152 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3153 		return;
3154 
3155 	pr_warn("%s: ", current->comm);
3156 
3157 	va_start(args, fmt);
3158 	vaf.fmt = fmt;
3159 	vaf.va = &args;
3160 	pr_cont("%pV", &vaf);
3161 	va_end(args);
3162 
3163 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3164 	if (nodemask)
3165 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3166 	else
3167 		pr_cont("(null)\n");
3168 
3169 	cpuset_print_current_mems_allowed();
3170 
3171 	dump_stack();
3172 	warn_alloc_show_mem(gfp_mask, nodemask);
3173 }
3174 
3175 static inline struct page *
3176 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3177 			      unsigned int alloc_flags,
3178 			      const struct alloc_context *ac)
3179 {
3180 	struct page *page;
3181 
3182 	page = get_page_from_freelist(gfp_mask, order,
3183 			alloc_flags|ALLOC_CPUSET, ac);
3184 	/*
3185 	 * fallback to ignore cpuset restriction if our nodes
3186 	 * are depleted
3187 	 */
3188 	if (!page)
3189 		page = get_page_from_freelist(gfp_mask, order,
3190 				alloc_flags, ac);
3191 
3192 	return page;
3193 }
3194 
3195 static inline struct page *
3196 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3197 	const struct alloc_context *ac, unsigned long *did_some_progress)
3198 {
3199 	struct oom_control oc = {
3200 		.zonelist = ac->zonelist,
3201 		.nodemask = ac->nodemask,
3202 		.memcg = NULL,
3203 		.gfp_mask = gfp_mask,
3204 		.order = order,
3205 	};
3206 	struct page *page;
3207 
3208 	*did_some_progress = 0;
3209 
3210 	/*
3211 	 * Acquire the oom lock.  If that fails, somebody else is
3212 	 * making progress for us.
3213 	 */
3214 	if (!mutex_trylock(&oom_lock)) {
3215 		*did_some_progress = 1;
3216 		schedule_timeout_uninterruptible(1);
3217 		return NULL;
3218 	}
3219 
3220 	/*
3221 	 * Go through the zonelist yet one more time, keep very high watermark
3222 	 * here, this is only to catch a parallel oom killing, we must fail if
3223 	 * we're still under heavy pressure.
3224 	 */
3225 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3226 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3227 	if (page)
3228 		goto out;
3229 
3230 	/* Coredumps can quickly deplete all memory reserves */
3231 	if (current->flags & PF_DUMPCORE)
3232 		goto out;
3233 	/* The OOM killer will not help higher order allocs */
3234 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3235 		goto out;
3236 	/* The OOM killer does not needlessly kill tasks for lowmem */
3237 	if (ac->high_zoneidx < ZONE_NORMAL)
3238 		goto out;
3239 	if (pm_suspended_storage())
3240 		goto out;
3241 	/*
3242 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3243 	 * other request to make a forward progress.
3244 	 * We are in an unfortunate situation where out_of_memory cannot
3245 	 * do much for this context but let's try it to at least get
3246 	 * access to memory reserved if the current task is killed (see
3247 	 * out_of_memory). Once filesystems are ready to handle allocation
3248 	 * failures more gracefully we should just bail out here.
3249 	 */
3250 
3251 	/* The OOM killer may not free memory on a specific node */
3252 	if (gfp_mask & __GFP_THISNODE)
3253 		goto out;
3254 
3255 	/* Exhausted what can be done so it's blamo time */
3256 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3257 		*did_some_progress = 1;
3258 
3259 		/*
3260 		 * Help non-failing allocations by giving them access to memory
3261 		 * reserves
3262 		 */
3263 		if (gfp_mask & __GFP_NOFAIL)
3264 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3265 					ALLOC_NO_WATERMARKS, ac);
3266 	}
3267 out:
3268 	mutex_unlock(&oom_lock);
3269 	return page;
3270 }
3271 
3272 /*
3273  * Maximum number of compaction retries wit a progress before OOM
3274  * killer is consider as the only way to move forward.
3275  */
3276 #define MAX_COMPACT_RETRIES 16
3277 
3278 #ifdef CONFIG_COMPACTION
3279 /* Try memory compaction for high-order allocations before reclaim */
3280 static struct page *
3281 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3282 		unsigned int alloc_flags, const struct alloc_context *ac,
3283 		enum compact_priority prio, enum compact_result *compact_result)
3284 {
3285 	struct page *page;
3286 
3287 	if (!order)
3288 		return NULL;
3289 
3290 	current->flags |= PF_MEMALLOC;
3291 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3292 									prio);
3293 	current->flags &= ~PF_MEMALLOC;
3294 
3295 	if (*compact_result <= COMPACT_INACTIVE)
3296 		return NULL;
3297 
3298 	/*
3299 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3300 	 * count a compaction stall
3301 	 */
3302 	count_vm_event(COMPACTSTALL);
3303 
3304 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3305 
3306 	if (page) {
3307 		struct zone *zone = page_zone(page);
3308 
3309 		zone->compact_blockskip_flush = false;
3310 		compaction_defer_reset(zone, order, true);
3311 		count_vm_event(COMPACTSUCCESS);
3312 		return page;
3313 	}
3314 
3315 	/*
3316 	 * It's bad if compaction run occurs and fails. The most likely reason
3317 	 * is that pages exist, but not enough to satisfy watermarks.
3318 	 */
3319 	count_vm_event(COMPACTFAIL);
3320 
3321 	cond_resched();
3322 
3323 	return NULL;
3324 }
3325 
3326 static inline bool
3327 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3328 		     enum compact_result compact_result,
3329 		     enum compact_priority *compact_priority,
3330 		     int *compaction_retries)
3331 {
3332 	int max_retries = MAX_COMPACT_RETRIES;
3333 	int min_priority;
3334 	bool ret = false;
3335 	int retries = *compaction_retries;
3336 	enum compact_priority priority = *compact_priority;
3337 
3338 	if (!order)
3339 		return false;
3340 
3341 	if (compaction_made_progress(compact_result))
3342 		(*compaction_retries)++;
3343 
3344 	/*
3345 	 * compaction considers all the zone as desperately out of memory
3346 	 * so it doesn't really make much sense to retry except when the
3347 	 * failure could be caused by insufficient priority
3348 	 */
3349 	if (compaction_failed(compact_result))
3350 		goto check_priority;
3351 
3352 	/*
3353 	 * make sure the compaction wasn't deferred or didn't bail out early
3354 	 * due to locks contention before we declare that we should give up.
3355 	 * But do not retry if the given zonelist is not suitable for
3356 	 * compaction.
3357 	 */
3358 	if (compaction_withdrawn(compact_result)) {
3359 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3360 		goto out;
3361 	}
3362 
3363 	/*
3364 	 * !costly requests are much more important than __GFP_REPEAT
3365 	 * costly ones because they are de facto nofail and invoke OOM
3366 	 * killer to move on while costly can fail and users are ready
3367 	 * to cope with that. 1/4 retries is rather arbitrary but we
3368 	 * would need much more detailed feedback from compaction to
3369 	 * make a better decision.
3370 	 */
3371 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3372 		max_retries /= 4;
3373 	if (*compaction_retries <= max_retries) {
3374 		ret = true;
3375 		goto out;
3376 	}
3377 
3378 	/*
3379 	 * Make sure there are attempts at the highest priority if we exhausted
3380 	 * all retries or failed at the lower priorities.
3381 	 */
3382 check_priority:
3383 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3384 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3385 
3386 	if (*compact_priority > min_priority) {
3387 		(*compact_priority)--;
3388 		*compaction_retries = 0;
3389 		ret = true;
3390 	}
3391 out:
3392 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3393 	return ret;
3394 }
3395 #else
3396 static inline struct page *
3397 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3398 		unsigned int alloc_flags, const struct alloc_context *ac,
3399 		enum compact_priority prio, enum compact_result *compact_result)
3400 {
3401 	*compact_result = COMPACT_SKIPPED;
3402 	return NULL;
3403 }
3404 
3405 static inline bool
3406 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3407 		     enum compact_result compact_result,
3408 		     enum compact_priority *compact_priority,
3409 		     int *compaction_retries)
3410 {
3411 	struct zone *zone;
3412 	struct zoneref *z;
3413 
3414 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3415 		return false;
3416 
3417 	/*
3418 	 * There are setups with compaction disabled which would prefer to loop
3419 	 * inside the allocator rather than hit the oom killer prematurely.
3420 	 * Let's give them a good hope and keep retrying while the order-0
3421 	 * watermarks are OK.
3422 	 */
3423 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3424 					ac->nodemask) {
3425 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3426 					ac_classzone_idx(ac), alloc_flags))
3427 			return true;
3428 	}
3429 	return false;
3430 }
3431 #endif /* CONFIG_COMPACTION */
3432 
3433 /* Perform direct synchronous page reclaim */
3434 static int
3435 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3436 					const struct alloc_context *ac)
3437 {
3438 	struct reclaim_state reclaim_state;
3439 	int progress;
3440 
3441 	cond_resched();
3442 
3443 	/* We now go into synchronous reclaim */
3444 	cpuset_memory_pressure_bump();
3445 	current->flags |= PF_MEMALLOC;
3446 	lockdep_set_current_reclaim_state(gfp_mask);
3447 	reclaim_state.reclaimed_slab = 0;
3448 	current->reclaim_state = &reclaim_state;
3449 
3450 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3451 								ac->nodemask);
3452 
3453 	current->reclaim_state = NULL;
3454 	lockdep_clear_current_reclaim_state();
3455 	current->flags &= ~PF_MEMALLOC;
3456 
3457 	cond_resched();
3458 
3459 	return progress;
3460 }
3461 
3462 /* The really slow allocator path where we enter direct reclaim */
3463 static inline struct page *
3464 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3465 		unsigned int alloc_flags, const struct alloc_context *ac,
3466 		unsigned long *did_some_progress)
3467 {
3468 	struct page *page = NULL;
3469 	bool drained = false;
3470 
3471 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3472 	if (unlikely(!(*did_some_progress)))
3473 		return NULL;
3474 
3475 retry:
3476 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3477 
3478 	/*
3479 	 * If an allocation failed after direct reclaim, it could be because
3480 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3481 	 * Shrink them them and try again
3482 	 */
3483 	if (!page && !drained) {
3484 		unreserve_highatomic_pageblock(ac, false);
3485 		drain_all_pages(NULL);
3486 		drained = true;
3487 		goto retry;
3488 	}
3489 
3490 	return page;
3491 }
3492 
3493 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3494 {
3495 	struct zoneref *z;
3496 	struct zone *zone;
3497 	pg_data_t *last_pgdat = NULL;
3498 
3499 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3500 					ac->high_zoneidx, ac->nodemask) {
3501 		if (last_pgdat != zone->zone_pgdat)
3502 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3503 		last_pgdat = zone->zone_pgdat;
3504 	}
3505 }
3506 
3507 static inline unsigned int
3508 gfp_to_alloc_flags(gfp_t gfp_mask)
3509 {
3510 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3511 
3512 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3513 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3514 
3515 	/*
3516 	 * The caller may dip into page reserves a bit more if the caller
3517 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3518 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3519 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3520 	 */
3521 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3522 
3523 	if (gfp_mask & __GFP_ATOMIC) {
3524 		/*
3525 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3526 		 * if it can't schedule.
3527 		 */
3528 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3529 			alloc_flags |= ALLOC_HARDER;
3530 		/*
3531 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3532 		 * comment for __cpuset_node_allowed().
3533 		 */
3534 		alloc_flags &= ~ALLOC_CPUSET;
3535 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3536 		alloc_flags |= ALLOC_HARDER;
3537 
3538 #ifdef CONFIG_CMA
3539 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3540 		alloc_flags |= ALLOC_CMA;
3541 #endif
3542 	return alloc_flags;
3543 }
3544 
3545 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3546 {
3547 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3548 		return false;
3549 
3550 	if (gfp_mask & __GFP_MEMALLOC)
3551 		return true;
3552 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3553 		return true;
3554 	if (!in_interrupt() &&
3555 			((current->flags & PF_MEMALLOC) ||
3556 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3557 		return true;
3558 
3559 	return false;
3560 }
3561 
3562 /*
3563  * Checks whether it makes sense to retry the reclaim to make a forward progress
3564  * for the given allocation request.
3565  *
3566  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3567  * without success, or when we couldn't even meet the watermark if we
3568  * reclaimed all remaining pages on the LRU lists.
3569  *
3570  * Returns true if a retry is viable or false to enter the oom path.
3571  */
3572 static inline bool
3573 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3574 		     struct alloc_context *ac, int alloc_flags,
3575 		     bool did_some_progress, int *no_progress_loops)
3576 {
3577 	struct zone *zone;
3578 	struct zoneref *z;
3579 
3580 	/*
3581 	 * Costly allocations might have made a progress but this doesn't mean
3582 	 * their order will become available due to high fragmentation so
3583 	 * always increment the no progress counter for them
3584 	 */
3585 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3586 		*no_progress_loops = 0;
3587 	else
3588 		(*no_progress_loops)++;
3589 
3590 	/*
3591 	 * Make sure we converge to OOM if we cannot make any progress
3592 	 * several times in the row.
3593 	 */
3594 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3595 		/* Before OOM, exhaust highatomic_reserve */
3596 		return unreserve_highatomic_pageblock(ac, true);
3597 	}
3598 
3599 	/*
3600 	 * Keep reclaiming pages while there is a chance this will lead
3601 	 * somewhere.  If none of the target zones can satisfy our allocation
3602 	 * request even if all reclaimable pages are considered then we are
3603 	 * screwed and have to go OOM.
3604 	 */
3605 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3606 					ac->nodemask) {
3607 		unsigned long available;
3608 		unsigned long reclaimable;
3609 		unsigned long min_wmark = min_wmark_pages(zone);
3610 		bool wmark;
3611 
3612 		available = reclaimable = zone_reclaimable_pages(zone);
3613 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3614 
3615 		/*
3616 		 * Would the allocation succeed if we reclaimed all
3617 		 * reclaimable pages?
3618 		 */
3619 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3620 				ac_classzone_idx(ac), alloc_flags, available);
3621 		trace_reclaim_retry_zone(z, order, reclaimable,
3622 				available, min_wmark, *no_progress_loops, wmark);
3623 		if (wmark) {
3624 			/*
3625 			 * If we didn't make any progress and have a lot of
3626 			 * dirty + writeback pages then we should wait for
3627 			 * an IO to complete to slow down the reclaim and
3628 			 * prevent from pre mature OOM
3629 			 */
3630 			if (!did_some_progress) {
3631 				unsigned long write_pending;
3632 
3633 				write_pending = zone_page_state_snapshot(zone,
3634 							NR_ZONE_WRITE_PENDING);
3635 
3636 				if (2 * write_pending > reclaimable) {
3637 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3638 					return true;
3639 				}
3640 			}
3641 
3642 			/*
3643 			 * Memory allocation/reclaim might be called from a WQ
3644 			 * context and the current implementation of the WQ
3645 			 * concurrency control doesn't recognize that
3646 			 * a particular WQ is congested if the worker thread is
3647 			 * looping without ever sleeping. Therefore we have to
3648 			 * do a short sleep here rather than calling
3649 			 * cond_resched().
3650 			 */
3651 			if (current->flags & PF_WQ_WORKER)
3652 				schedule_timeout_uninterruptible(1);
3653 			else
3654 				cond_resched();
3655 
3656 			return true;
3657 		}
3658 	}
3659 
3660 	return false;
3661 }
3662 
3663 static inline struct page *
3664 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3665 						struct alloc_context *ac)
3666 {
3667 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3668 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3669 	struct page *page = NULL;
3670 	unsigned int alloc_flags;
3671 	unsigned long did_some_progress;
3672 	enum compact_priority compact_priority;
3673 	enum compact_result compact_result;
3674 	int compaction_retries;
3675 	int no_progress_loops;
3676 	unsigned long alloc_start = jiffies;
3677 	unsigned int stall_timeout = 10 * HZ;
3678 	unsigned int cpuset_mems_cookie;
3679 
3680 	/*
3681 	 * In the slowpath, we sanity check order to avoid ever trying to
3682 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3683 	 * be using allocators in order of preference for an area that is
3684 	 * too large.
3685 	 */
3686 	if (order >= MAX_ORDER) {
3687 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3688 		return NULL;
3689 	}
3690 
3691 	/*
3692 	 * We also sanity check to catch abuse of atomic reserves being used by
3693 	 * callers that are not in atomic context.
3694 	 */
3695 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3696 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3697 		gfp_mask &= ~__GFP_ATOMIC;
3698 
3699 retry_cpuset:
3700 	compaction_retries = 0;
3701 	no_progress_loops = 0;
3702 	compact_priority = DEF_COMPACT_PRIORITY;
3703 	cpuset_mems_cookie = read_mems_allowed_begin();
3704 
3705 	/*
3706 	 * The fast path uses conservative alloc_flags to succeed only until
3707 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3708 	 * alloc_flags precisely. So we do that now.
3709 	 */
3710 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3711 
3712 	/*
3713 	 * We need to recalculate the starting point for the zonelist iterator
3714 	 * because we might have used different nodemask in the fast path, or
3715 	 * there was a cpuset modification and we are retrying - otherwise we
3716 	 * could end up iterating over non-eligible zones endlessly.
3717 	 */
3718 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3719 					ac->high_zoneidx, ac->nodemask);
3720 	if (!ac->preferred_zoneref->zone)
3721 		goto nopage;
3722 
3723 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3724 		wake_all_kswapds(order, ac);
3725 
3726 	/*
3727 	 * The adjusted alloc_flags might result in immediate success, so try
3728 	 * that first
3729 	 */
3730 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3731 	if (page)
3732 		goto got_pg;
3733 
3734 	/*
3735 	 * For costly allocations, try direct compaction first, as it's likely
3736 	 * that we have enough base pages and don't need to reclaim. For non-
3737 	 * movable high-order allocations, do that as well, as compaction will
3738 	 * try prevent permanent fragmentation by migrating from blocks of the
3739 	 * same migratetype.
3740 	 * Don't try this for allocations that are allowed to ignore
3741 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3742 	 */
3743 	if (can_direct_reclaim &&
3744 			(costly_order ||
3745 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3746 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3747 		page = __alloc_pages_direct_compact(gfp_mask, order,
3748 						alloc_flags, ac,
3749 						INIT_COMPACT_PRIORITY,
3750 						&compact_result);
3751 		if (page)
3752 			goto got_pg;
3753 
3754 		/*
3755 		 * Checks for costly allocations with __GFP_NORETRY, which
3756 		 * includes THP page fault allocations
3757 		 */
3758 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3759 			/*
3760 			 * If compaction is deferred for high-order allocations,
3761 			 * it is because sync compaction recently failed. If
3762 			 * this is the case and the caller requested a THP
3763 			 * allocation, we do not want to heavily disrupt the
3764 			 * system, so we fail the allocation instead of entering
3765 			 * direct reclaim.
3766 			 */
3767 			if (compact_result == COMPACT_DEFERRED)
3768 				goto nopage;
3769 
3770 			/*
3771 			 * Looks like reclaim/compaction is worth trying, but
3772 			 * sync compaction could be very expensive, so keep
3773 			 * using async compaction.
3774 			 */
3775 			compact_priority = INIT_COMPACT_PRIORITY;
3776 		}
3777 	}
3778 
3779 retry:
3780 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3781 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3782 		wake_all_kswapds(order, ac);
3783 
3784 	if (gfp_pfmemalloc_allowed(gfp_mask))
3785 		alloc_flags = ALLOC_NO_WATERMARKS;
3786 
3787 	/*
3788 	 * Reset the zonelist iterators if memory policies can be ignored.
3789 	 * These allocations are high priority and system rather than user
3790 	 * orientated.
3791 	 */
3792 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3793 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3794 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3795 					ac->high_zoneidx, ac->nodemask);
3796 	}
3797 
3798 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3799 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3800 	if (page)
3801 		goto got_pg;
3802 
3803 	/* Caller is not willing to reclaim, we can't balance anything */
3804 	if (!can_direct_reclaim)
3805 		goto nopage;
3806 
3807 	/* Make sure we know about allocations which stall for too long */
3808 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3809 		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3810 			"page allocation stalls for %ums, order:%u",
3811 			jiffies_to_msecs(jiffies-alloc_start), order);
3812 		stall_timeout += 10 * HZ;
3813 	}
3814 
3815 	/* Avoid recursion of direct reclaim */
3816 	if (current->flags & PF_MEMALLOC)
3817 		goto nopage;
3818 
3819 	/* Try direct reclaim and then allocating */
3820 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3821 							&did_some_progress);
3822 	if (page)
3823 		goto got_pg;
3824 
3825 	/* Try direct compaction and then allocating */
3826 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3827 					compact_priority, &compact_result);
3828 	if (page)
3829 		goto got_pg;
3830 
3831 	/* Do not loop if specifically requested */
3832 	if (gfp_mask & __GFP_NORETRY)
3833 		goto nopage;
3834 
3835 	/*
3836 	 * Do not retry costly high order allocations unless they are
3837 	 * __GFP_REPEAT
3838 	 */
3839 	if (costly_order && !(gfp_mask & __GFP_REPEAT))
3840 		goto nopage;
3841 
3842 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3843 				 did_some_progress > 0, &no_progress_loops))
3844 		goto retry;
3845 
3846 	/*
3847 	 * It doesn't make any sense to retry for the compaction if the order-0
3848 	 * reclaim is not able to make any progress because the current
3849 	 * implementation of the compaction depends on the sufficient amount
3850 	 * of free memory (see __compaction_suitable)
3851 	 */
3852 	if (did_some_progress > 0 &&
3853 			should_compact_retry(ac, order, alloc_flags,
3854 				compact_result, &compact_priority,
3855 				&compaction_retries))
3856 		goto retry;
3857 
3858 	/*
3859 	 * It's possible we raced with cpuset update so the OOM would be
3860 	 * premature (see below the nopage: label for full explanation).
3861 	 */
3862 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3863 		goto retry_cpuset;
3864 
3865 	/* Reclaim has failed us, start killing things */
3866 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3867 	if (page)
3868 		goto got_pg;
3869 
3870 	/* Avoid allocations with no watermarks from looping endlessly */
3871 	if (test_thread_flag(TIF_MEMDIE))
3872 		goto nopage;
3873 
3874 	/* Retry as long as the OOM killer is making progress */
3875 	if (did_some_progress) {
3876 		no_progress_loops = 0;
3877 		goto retry;
3878 	}
3879 
3880 nopage:
3881 	/*
3882 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3883 	 * possible to race with parallel threads in such a way that our
3884 	 * allocation can fail while the mask is being updated. If we are about
3885 	 * to fail, check if the cpuset changed during allocation and if so,
3886 	 * retry.
3887 	 */
3888 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3889 		goto retry_cpuset;
3890 
3891 	/*
3892 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3893 	 * we always retry
3894 	 */
3895 	if (gfp_mask & __GFP_NOFAIL) {
3896 		/*
3897 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3898 		 * of any new users that actually require GFP_NOWAIT
3899 		 */
3900 		if (WARN_ON_ONCE(!can_direct_reclaim))
3901 			goto fail;
3902 
3903 		/*
3904 		 * PF_MEMALLOC request from this context is rather bizarre
3905 		 * because we cannot reclaim anything and only can loop waiting
3906 		 * for somebody to do a work for us
3907 		 */
3908 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3909 
3910 		/*
3911 		 * non failing costly orders are a hard requirement which we
3912 		 * are not prepared for much so let's warn about these users
3913 		 * so that we can identify them and convert them to something
3914 		 * else.
3915 		 */
3916 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3917 
3918 		/*
3919 		 * Help non-failing allocations by giving them access to memory
3920 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
3921 		 * could deplete whole memory reserves which would just make
3922 		 * the situation worse
3923 		 */
3924 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3925 		if (page)
3926 			goto got_pg;
3927 
3928 		cond_resched();
3929 		goto retry;
3930 	}
3931 fail:
3932 	warn_alloc(gfp_mask, ac->nodemask,
3933 			"page allocation failure: order:%u", order);
3934 got_pg:
3935 	return page;
3936 }
3937 
3938 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3939 		struct zonelist *zonelist, nodemask_t *nodemask,
3940 		struct alloc_context *ac, gfp_t *alloc_mask,
3941 		unsigned int *alloc_flags)
3942 {
3943 	ac->high_zoneidx = gfp_zone(gfp_mask);
3944 	ac->zonelist = zonelist;
3945 	ac->nodemask = nodemask;
3946 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3947 
3948 	if (cpusets_enabled()) {
3949 		*alloc_mask |= __GFP_HARDWALL;
3950 		if (!ac->nodemask)
3951 			ac->nodemask = &cpuset_current_mems_allowed;
3952 		else
3953 			*alloc_flags |= ALLOC_CPUSET;
3954 	}
3955 
3956 	lockdep_trace_alloc(gfp_mask);
3957 
3958 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3959 
3960 	if (should_fail_alloc_page(gfp_mask, order))
3961 		return false;
3962 
3963 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3964 		*alloc_flags |= ALLOC_CMA;
3965 
3966 	return true;
3967 }
3968 
3969 /* Determine whether to spread dirty pages and what the first usable zone */
3970 static inline void finalise_ac(gfp_t gfp_mask,
3971 		unsigned int order, struct alloc_context *ac)
3972 {
3973 	/* Dirty zone balancing only done in the fast path */
3974 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3975 
3976 	/*
3977 	 * The preferred zone is used for statistics but crucially it is
3978 	 * also used as the starting point for the zonelist iterator. It
3979 	 * may get reset for allocations that ignore memory policies.
3980 	 */
3981 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3982 					ac->high_zoneidx, ac->nodemask);
3983 }
3984 
3985 /*
3986  * This is the 'heart' of the zoned buddy allocator.
3987  */
3988 struct page *
3989 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3990 			struct zonelist *zonelist, nodemask_t *nodemask)
3991 {
3992 	struct page *page;
3993 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3994 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3995 	struct alloc_context ac = { };
3996 
3997 	gfp_mask &= gfp_allowed_mask;
3998 	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3999 		return NULL;
4000 
4001 	finalise_ac(gfp_mask, order, &ac);
4002 
4003 	/* First allocation attempt */
4004 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4005 	if (likely(page))
4006 		goto out;
4007 
4008 	/*
4009 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4010 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4011 	 * from a particular context which has been marked by
4012 	 * memalloc_no{fs,io}_{save,restore}.
4013 	 */
4014 	alloc_mask = current_gfp_context(gfp_mask);
4015 	ac.spread_dirty_pages = false;
4016 
4017 	/*
4018 	 * Restore the original nodemask if it was potentially replaced with
4019 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4020 	 */
4021 	if (unlikely(ac.nodemask != nodemask))
4022 		ac.nodemask = nodemask;
4023 
4024 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4025 
4026 out:
4027 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4028 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4029 		__free_pages(page, order);
4030 		page = NULL;
4031 	}
4032 
4033 	if (kmemcheck_enabled && page)
4034 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4035 
4036 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4037 
4038 	return page;
4039 }
4040 EXPORT_SYMBOL(__alloc_pages_nodemask);
4041 
4042 /*
4043  * Common helper functions.
4044  */
4045 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4046 {
4047 	struct page *page;
4048 
4049 	/*
4050 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4051 	 * a highmem page
4052 	 */
4053 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4054 
4055 	page = alloc_pages(gfp_mask, order);
4056 	if (!page)
4057 		return 0;
4058 	return (unsigned long) page_address(page);
4059 }
4060 EXPORT_SYMBOL(__get_free_pages);
4061 
4062 unsigned long get_zeroed_page(gfp_t gfp_mask)
4063 {
4064 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4065 }
4066 EXPORT_SYMBOL(get_zeroed_page);
4067 
4068 void __free_pages(struct page *page, unsigned int order)
4069 {
4070 	if (put_page_testzero(page)) {
4071 		if (order == 0)
4072 			free_hot_cold_page(page, false);
4073 		else
4074 			__free_pages_ok(page, order);
4075 	}
4076 }
4077 
4078 EXPORT_SYMBOL(__free_pages);
4079 
4080 void free_pages(unsigned long addr, unsigned int order)
4081 {
4082 	if (addr != 0) {
4083 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4084 		__free_pages(virt_to_page((void *)addr), order);
4085 	}
4086 }
4087 
4088 EXPORT_SYMBOL(free_pages);
4089 
4090 /*
4091  * Page Fragment:
4092  *  An arbitrary-length arbitrary-offset area of memory which resides
4093  *  within a 0 or higher order page.  Multiple fragments within that page
4094  *  are individually refcounted, in the page's reference counter.
4095  *
4096  * The page_frag functions below provide a simple allocation framework for
4097  * page fragments.  This is used by the network stack and network device
4098  * drivers to provide a backing region of memory for use as either an
4099  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4100  */
4101 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4102 					     gfp_t gfp_mask)
4103 {
4104 	struct page *page = NULL;
4105 	gfp_t gfp = gfp_mask;
4106 
4107 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4108 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4109 		    __GFP_NOMEMALLOC;
4110 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4111 				PAGE_FRAG_CACHE_MAX_ORDER);
4112 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4113 #endif
4114 	if (unlikely(!page))
4115 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4116 
4117 	nc->va = page ? page_address(page) : NULL;
4118 
4119 	return page;
4120 }
4121 
4122 void __page_frag_cache_drain(struct page *page, unsigned int count)
4123 {
4124 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4125 
4126 	if (page_ref_sub_and_test(page, count)) {
4127 		unsigned int order = compound_order(page);
4128 
4129 		if (order == 0)
4130 			free_hot_cold_page(page, false);
4131 		else
4132 			__free_pages_ok(page, order);
4133 	}
4134 }
4135 EXPORT_SYMBOL(__page_frag_cache_drain);
4136 
4137 void *page_frag_alloc(struct page_frag_cache *nc,
4138 		      unsigned int fragsz, gfp_t gfp_mask)
4139 {
4140 	unsigned int size = PAGE_SIZE;
4141 	struct page *page;
4142 	int offset;
4143 
4144 	if (unlikely(!nc->va)) {
4145 refill:
4146 		page = __page_frag_cache_refill(nc, gfp_mask);
4147 		if (!page)
4148 			return NULL;
4149 
4150 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4151 		/* if size can vary use size else just use PAGE_SIZE */
4152 		size = nc->size;
4153 #endif
4154 		/* Even if we own the page, we do not use atomic_set().
4155 		 * This would break get_page_unless_zero() users.
4156 		 */
4157 		page_ref_add(page, size - 1);
4158 
4159 		/* reset page count bias and offset to start of new frag */
4160 		nc->pfmemalloc = page_is_pfmemalloc(page);
4161 		nc->pagecnt_bias = size;
4162 		nc->offset = size;
4163 	}
4164 
4165 	offset = nc->offset - fragsz;
4166 	if (unlikely(offset < 0)) {
4167 		page = virt_to_page(nc->va);
4168 
4169 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4170 			goto refill;
4171 
4172 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4173 		/* if size can vary use size else just use PAGE_SIZE */
4174 		size = nc->size;
4175 #endif
4176 		/* OK, page count is 0, we can safely set it */
4177 		set_page_count(page, size);
4178 
4179 		/* reset page count bias and offset to start of new frag */
4180 		nc->pagecnt_bias = size;
4181 		offset = size - fragsz;
4182 	}
4183 
4184 	nc->pagecnt_bias--;
4185 	nc->offset = offset;
4186 
4187 	return nc->va + offset;
4188 }
4189 EXPORT_SYMBOL(page_frag_alloc);
4190 
4191 /*
4192  * Frees a page fragment allocated out of either a compound or order 0 page.
4193  */
4194 void page_frag_free(void *addr)
4195 {
4196 	struct page *page = virt_to_head_page(addr);
4197 
4198 	if (unlikely(put_page_testzero(page)))
4199 		__free_pages_ok(page, compound_order(page));
4200 }
4201 EXPORT_SYMBOL(page_frag_free);
4202 
4203 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4204 		size_t size)
4205 {
4206 	if (addr) {
4207 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4208 		unsigned long used = addr + PAGE_ALIGN(size);
4209 
4210 		split_page(virt_to_page((void *)addr), order);
4211 		while (used < alloc_end) {
4212 			free_page(used);
4213 			used += PAGE_SIZE;
4214 		}
4215 	}
4216 	return (void *)addr;
4217 }
4218 
4219 /**
4220  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4221  * @size: the number of bytes to allocate
4222  * @gfp_mask: GFP flags for the allocation
4223  *
4224  * This function is similar to alloc_pages(), except that it allocates the
4225  * minimum number of pages to satisfy the request.  alloc_pages() can only
4226  * allocate memory in power-of-two pages.
4227  *
4228  * This function is also limited by MAX_ORDER.
4229  *
4230  * Memory allocated by this function must be released by free_pages_exact().
4231  */
4232 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4233 {
4234 	unsigned int order = get_order(size);
4235 	unsigned long addr;
4236 
4237 	addr = __get_free_pages(gfp_mask, order);
4238 	return make_alloc_exact(addr, order, size);
4239 }
4240 EXPORT_SYMBOL(alloc_pages_exact);
4241 
4242 /**
4243  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4244  *			   pages on a node.
4245  * @nid: the preferred node ID where memory should be allocated
4246  * @size: the number of bytes to allocate
4247  * @gfp_mask: GFP flags for the allocation
4248  *
4249  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4250  * back.
4251  */
4252 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4253 {
4254 	unsigned int order = get_order(size);
4255 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4256 	if (!p)
4257 		return NULL;
4258 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4259 }
4260 
4261 /**
4262  * free_pages_exact - release memory allocated via alloc_pages_exact()
4263  * @virt: the value returned by alloc_pages_exact.
4264  * @size: size of allocation, same value as passed to alloc_pages_exact().
4265  *
4266  * Release the memory allocated by a previous call to alloc_pages_exact.
4267  */
4268 void free_pages_exact(void *virt, size_t size)
4269 {
4270 	unsigned long addr = (unsigned long)virt;
4271 	unsigned long end = addr + PAGE_ALIGN(size);
4272 
4273 	while (addr < end) {
4274 		free_page(addr);
4275 		addr += PAGE_SIZE;
4276 	}
4277 }
4278 EXPORT_SYMBOL(free_pages_exact);
4279 
4280 /**
4281  * nr_free_zone_pages - count number of pages beyond high watermark
4282  * @offset: The zone index of the highest zone
4283  *
4284  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4285  * high watermark within all zones at or below a given zone index.  For each
4286  * zone, the number of pages is calculated as:
4287  *
4288  *     nr_free_zone_pages = managed_pages - high_pages
4289  */
4290 static unsigned long nr_free_zone_pages(int offset)
4291 {
4292 	struct zoneref *z;
4293 	struct zone *zone;
4294 
4295 	/* Just pick one node, since fallback list is circular */
4296 	unsigned long sum = 0;
4297 
4298 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4299 
4300 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4301 		unsigned long size = zone->managed_pages;
4302 		unsigned long high = high_wmark_pages(zone);
4303 		if (size > high)
4304 			sum += size - high;
4305 	}
4306 
4307 	return sum;
4308 }
4309 
4310 /**
4311  * nr_free_buffer_pages - count number of pages beyond high watermark
4312  *
4313  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4314  * watermark within ZONE_DMA and ZONE_NORMAL.
4315  */
4316 unsigned long nr_free_buffer_pages(void)
4317 {
4318 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4319 }
4320 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4321 
4322 /**
4323  * nr_free_pagecache_pages - count number of pages beyond high watermark
4324  *
4325  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4326  * high watermark within all zones.
4327  */
4328 unsigned long nr_free_pagecache_pages(void)
4329 {
4330 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4331 }
4332 
4333 static inline void show_node(struct zone *zone)
4334 {
4335 	if (IS_ENABLED(CONFIG_NUMA))
4336 		printk("Node %d ", zone_to_nid(zone));
4337 }
4338 
4339 long si_mem_available(void)
4340 {
4341 	long available;
4342 	unsigned long pagecache;
4343 	unsigned long wmark_low = 0;
4344 	unsigned long pages[NR_LRU_LISTS];
4345 	struct zone *zone;
4346 	int lru;
4347 
4348 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4349 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4350 
4351 	for_each_zone(zone)
4352 		wmark_low += zone->watermark[WMARK_LOW];
4353 
4354 	/*
4355 	 * Estimate the amount of memory available for userspace allocations,
4356 	 * without causing swapping.
4357 	 */
4358 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4359 
4360 	/*
4361 	 * Not all the page cache can be freed, otherwise the system will
4362 	 * start swapping. Assume at least half of the page cache, or the
4363 	 * low watermark worth of cache, needs to stay.
4364 	 */
4365 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4366 	pagecache -= min(pagecache / 2, wmark_low);
4367 	available += pagecache;
4368 
4369 	/*
4370 	 * Part of the reclaimable slab consists of items that are in use,
4371 	 * and cannot be freed. Cap this estimate at the low watermark.
4372 	 */
4373 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4374 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4375 
4376 	if (available < 0)
4377 		available = 0;
4378 	return available;
4379 }
4380 EXPORT_SYMBOL_GPL(si_mem_available);
4381 
4382 void si_meminfo(struct sysinfo *val)
4383 {
4384 	val->totalram = totalram_pages;
4385 	val->sharedram = global_node_page_state(NR_SHMEM);
4386 	val->freeram = global_page_state(NR_FREE_PAGES);
4387 	val->bufferram = nr_blockdev_pages();
4388 	val->totalhigh = totalhigh_pages;
4389 	val->freehigh = nr_free_highpages();
4390 	val->mem_unit = PAGE_SIZE;
4391 }
4392 
4393 EXPORT_SYMBOL(si_meminfo);
4394 
4395 #ifdef CONFIG_NUMA
4396 void si_meminfo_node(struct sysinfo *val, int nid)
4397 {
4398 	int zone_type;		/* needs to be signed */
4399 	unsigned long managed_pages = 0;
4400 	unsigned long managed_highpages = 0;
4401 	unsigned long free_highpages = 0;
4402 	pg_data_t *pgdat = NODE_DATA(nid);
4403 
4404 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4405 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4406 	val->totalram = managed_pages;
4407 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4408 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4409 #ifdef CONFIG_HIGHMEM
4410 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4411 		struct zone *zone = &pgdat->node_zones[zone_type];
4412 
4413 		if (is_highmem(zone)) {
4414 			managed_highpages += zone->managed_pages;
4415 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4416 		}
4417 	}
4418 	val->totalhigh = managed_highpages;
4419 	val->freehigh = free_highpages;
4420 #else
4421 	val->totalhigh = managed_highpages;
4422 	val->freehigh = free_highpages;
4423 #endif
4424 	val->mem_unit = PAGE_SIZE;
4425 }
4426 #endif
4427 
4428 /*
4429  * Determine whether the node should be displayed or not, depending on whether
4430  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4431  */
4432 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4433 {
4434 	if (!(flags & SHOW_MEM_FILTER_NODES))
4435 		return false;
4436 
4437 	/*
4438 	 * no node mask - aka implicit memory numa policy. Do not bother with
4439 	 * the synchronization - read_mems_allowed_begin - because we do not
4440 	 * have to be precise here.
4441 	 */
4442 	if (!nodemask)
4443 		nodemask = &cpuset_current_mems_allowed;
4444 
4445 	return !node_isset(nid, *nodemask);
4446 }
4447 
4448 #define K(x) ((x) << (PAGE_SHIFT-10))
4449 
4450 static void show_migration_types(unsigned char type)
4451 {
4452 	static const char types[MIGRATE_TYPES] = {
4453 		[MIGRATE_UNMOVABLE]	= 'U',
4454 		[MIGRATE_MOVABLE]	= 'M',
4455 		[MIGRATE_RECLAIMABLE]	= 'E',
4456 		[MIGRATE_HIGHATOMIC]	= 'H',
4457 #ifdef CONFIG_CMA
4458 		[MIGRATE_CMA]		= 'C',
4459 #endif
4460 #ifdef CONFIG_MEMORY_ISOLATION
4461 		[MIGRATE_ISOLATE]	= 'I',
4462 #endif
4463 	};
4464 	char tmp[MIGRATE_TYPES + 1];
4465 	char *p = tmp;
4466 	int i;
4467 
4468 	for (i = 0; i < MIGRATE_TYPES; i++) {
4469 		if (type & (1 << i))
4470 			*p++ = types[i];
4471 	}
4472 
4473 	*p = '\0';
4474 	printk(KERN_CONT "(%s) ", tmp);
4475 }
4476 
4477 /*
4478  * Show free area list (used inside shift_scroll-lock stuff)
4479  * We also calculate the percentage fragmentation. We do this by counting the
4480  * memory on each free list with the exception of the first item on the list.
4481  *
4482  * Bits in @filter:
4483  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4484  *   cpuset.
4485  */
4486 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4487 {
4488 	unsigned long free_pcp = 0;
4489 	int cpu;
4490 	struct zone *zone;
4491 	pg_data_t *pgdat;
4492 
4493 	for_each_populated_zone(zone) {
4494 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4495 			continue;
4496 
4497 		for_each_online_cpu(cpu)
4498 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4499 	}
4500 
4501 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4502 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4503 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4504 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4505 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4506 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4507 		global_node_page_state(NR_ACTIVE_ANON),
4508 		global_node_page_state(NR_INACTIVE_ANON),
4509 		global_node_page_state(NR_ISOLATED_ANON),
4510 		global_node_page_state(NR_ACTIVE_FILE),
4511 		global_node_page_state(NR_INACTIVE_FILE),
4512 		global_node_page_state(NR_ISOLATED_FILE),
4513 		global_node_page_state(NR_UNEVICTABLE),
4514 		global_node_page_state(NR_FILE_DIRTY),
4515 		global_node_page_state(NR_WRITEBACK),
4516 		global_node_page_state(NR_UNSTABLE_NFS),
4517 		global_page_state(NR_SLAB_RECLAIMABLE),
4518 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4519 		global_node_page_state(NR_FILE_MAPPED),
4520 		global_node_page_state(NR_SHMEM),
4521 		global_page_state(NR_PAGETABLE),
4522 		global_page_state(NR_BOUNCE),
4523 		global_page_state(NR_FREE_PAGES),
4524 		free_pcp,
4525 		global_page_state(NR_FREE_CMA_PAGES));
4526 
4527 	for_each_online_pgdat(pgdat) {
4528 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4529 			continue;
4530 
4531 		printk("Node %d"
4532 			" active_anon:%lukB"
4533 			" inactive_anon:%lukB"
4534 			" active_file:%lukB"
4535 			" inactive_file:%lukB"
4536 			" unevictable:%lukB"
4537 			" isolated(anon):%lukB"
4538 			" isolated(file):%lukB"
4539 			" mapped:%lukB"
4540 			" dirty:%lukB"
4541 			" writeback:%lukB"
4542 			" shmem:%lukB"
4543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4544 			" shmem_thp: %lukB"
4545 			" shmem_pmdmapped: %lukB"
4546 			" anon_thp: %lukB"
4547 #endif
4548 			" writeback_tmp:%lukB"
4549 			" unstable:%lukB"
4550 			" all_unreclaimable? %s"
4551 			"\n",
4552 			pgdat->node_id,
4553 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4554 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4555 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4556 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4557 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4558 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4559 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4560 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4561 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4562 			K(node_page_state(pgdat, NR_WRITEBACK)),
4563 			K(node_page_state(pgdat, NR_SHMEM)),
4564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4565 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4566 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4567 					* HPAGE_PMD_NR),
4568 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4569 #endif
4570 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4571 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4572 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4573 				"yes" : "no");
4574 	}
4575 
4576 	for_each_populated_zone(zone) {
4577 		int i;
4578 
4579 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4580 			continue;
4581 
4582 		free_pcp = 0;
4583 		for_each_online_cpu(cpu)
4584 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4585 
4586 		show_node(zone);
4587 		printk(KERN_CONT
4588 			"%s"
4589 			" free:%lukB"
4590 			" min:%lukB"
4591 			" low:%lukB"
4592 			" high:%lukB"
4593 			" active_anon:%lukB"
4594 			" inactive_anon:%lukB"
4595 			" active_file:%lukB"
4596 			" inactive_file:%lukB"
4597 			" unevictable:%lukB"
4598 			" writepending:%lukB"
4599 			" present:%lukB"
4600 			" managed:%lukB"
4601 			" mlocked:%lukB"
4602 			" slab_reclaimable:%lukB"
4603 			" slab_unreclaimable:%lukB"
4604 			" kernel_stack:%lukB"
4605 			" pagetables:%lukB"
4606 			" bounce:%lukB"
4607 			" free_pcp:%lukB"
4608 			" local_pcp:%ukB"
4609 			" free_cma:%lukB"
4610 			"\n",
4611 			zone->name,
4612 			K(zone_page_state(zone, NR_FREE_PAGES)),
4613 			K(min_wmark_pages(zone)),
4614 			K(low_wmark_pages(zone)),
4615 			K(high_wmark_pages(zone)),
4616 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4617 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4618 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4619 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4620 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4621 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4622 			K(zone->present_pages),
4623 			K(zone->managed_pages),
4624 			K(zone_page_state(zone, NR_MLOCK)),
4625 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4626 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4627 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4628 			K(zone_page_state(zone, NR_PAGETABLE)),
4629 			K(zone_page_state(zone, NR_BOUNCE)),
4630 			K(free_pcp),
4631 			K(this_cpu_read(zone->pageset->pcp.count)),
4632 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4633 		printk("lowmem_reserve[]:");
4634 		for (i = 0; i < MAX_NR_ZONES; i++)
4635 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4636 		printk(KERN_CONT "\n");
4637 	}
4638 
4639 	for_each_populated_zone(zone) {
4640 		unsigned int order;
4641 		unsigned long nr[MAX_ORDER], flags, total = 0;
4642 		unsigned char types[MAX_ORDER];
4643 
4644 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4645 			continue;
4646 		show_node(zone);
4647 		printk(KERN_CONT "%s: ", zone->name);
4648 
4649 		spin_lock_irqsave(&zone->lock, flags);
4650 		for (order = 0; order < MAX_ORDER; order++) {
4651 			struct free_area *area = &zone->free_area[order];
4652 			int type;
4653 
4654 			nr[order] = area->nr_free;
4655 			total += nr[order] << order;
4656 
4657 			types[order] = 0;
4658 			for (type = 0; type < MIGRATE_TYPES; type++) {
4659 				if (!list_empty(&area->free_list[type]))
4660 					types[order] |= 1 << type;
4661 			}
4662 		}
4663 		spin_unlock_irqrestore(&zone->lock, flags);
4664 		for (order = 0; order < MAX_ORDER; order++) {
4665 			printk(KERN_CONT "%lu*%lukB ",
4666 			       nr[order], K(1UL) << order);
4667 			if (nr[order])
4668 				show_migration_types(types[order]);
4669 		}
4670 		printk(KERN_CONT "= %lukB\n", K(total));
4671 	}
4672 
4673 	hugetlb_show_meminfo();
4674 
4675 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4676 
4677 	show_swap_cache_info();
4678 }
4679 
4680 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4681 {
4682 	zoneref->zone = zone;
4683 	zoneref->zone_idx = zone_idx(zone);
4684 }
4685 
4686 /*
4687  * Builds allocation fallback zone lists.
4688  *
4689  * Add all populated zones of a node to the zonelist.
4690  */
4691 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4692 				int nr_zones)
4693 {
4694 	struct zone *zone;
4695 	enum zone_type zone_type = MAX_NR_ZONES;
4696 
4697 	do {
4698 		zone_type--;
4699 		zone = pgdat->node_zones + zone_type;
4700 		if (managed_zone(zone)) {
4701 			zoneref_set_zone(zone,
4702 				&zonelist->_zonerefs[nr_zones++]);
4703 			check_highest_zone(zone_type);
4704 		}
4705 	} while (zone_type);
4706 
4707 	return nr_zones;
4708 }
4709 
4710 
4711 /*
4712  *  zonelist_order:
4713  *  0 = automatic detection of better ordering.
4714  *  1 = order by ([node] distance, -zonetype)
4715  *  2 = order by (-zonetype, [node] distance)
4716  *
4717  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4718  *  the same zonelist. So only NUMA can configure this param.
4719  */
4720 #define ZONELIST_ORDER_DEFAULT  0
4721 #define ZONELIST_ORDER_NODE     1
4722 #define ZONELIST_ORDER_ZONE     2
4723 
4724 /* zonelist order in the kernel.
4725  * set_zonelist_order() will set this to NODE or ZONE.
4726  */
4727 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4728 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4729 
4730 
4731 #ifdef CONFIG_NUMA
4732 /* The value user specified ....changed by config */
4733 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4734 /* string for sysctl */
4735 #define NUMA_ZONELIST_ORDER_LEN	16
4736 char numa_zonelist_order[16] = "default";
4737 
4738 /*
4739  * interface for configure zonelist ordering.
4740  * command line option "numa_zonelist_order"
4741  *	= "[dD]efault	- default, automatic configuration.
4742  *	= "[nN]ode 	- order by node locality, then by zone within node
4743  *	= "[zZ]one      - order by zone, then by locality within zone
4744  */
4745 
4746 static int __parse_numa_zonelist_order(char *s)
4747 {
4748 	if (*s == 'd' || *s == 'D') {
4749 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4750 	} else if (*s == 'n' || *s == 'N') {
4751 		user_zonelist_order = ZONELIST_ORDER_NODE;
4752 	} else if (*s == 'z' || *s == 'Z') {
4753 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4754 	} else {
4755 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4756 		return -EINVAL;
4757 	}
4758 	return 0;
4759 }
4760 
4761 static __init int setup_numa_zonelist_order(char *s)
4762 {
4763 	int ret;
4764 
4765 	if (!s)
4766 		return 0;
4767 
4768 	ret = __parse_numa_zonelist_order(s);
4769 	if (ret == 0)
4770 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4771 
4772 	return ret;
4773 }
4774 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4775 
4776 /*
4777  * sysctl handler for numa_zonelist_order
4778  */
4779 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4780 		void __user *buffer, size_t *length,
4781 		loff_t *ppos)
4782 {
4783 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4784 	int ret;
4785 	static DEFINE_MUTEX(zl_order_mutex);
4786 
4787 	mutex_lock(&zl_order_mutex);
4788 	if (write) {
4789 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4790 			ret = -EINVAL;
4791 			goto out;
4792 		}
4793 		strcpy(saved_string, (char *)table->data);
4794 	}
4795 	ret = proc_dostring(table, write, buffer, length, ppos);
4796 	if (ret)
4797 		goto out;
4798 	if (write) {
4799 		int oldval = user_zonelist_order;
4800 
4801 		ret = __parse_numa_zonelist_order((char *)table->data);
4802 		if (ret) {
4803 			/*
4804 			 * bogus value.  restore saved string
4805 			 */
4806 			strncpy((char *)table->data, saved_string,
4807 				NUMA_ZONELIST_ORDER_LEN);
4808 			user_zonelist_order = oldval;
4809 		} else if (oldval != user_zonelist_order) {
4810 			mutex_lock(&zonelists_mutex);
4811 			build_all_zonelists(NULL, NULL);
4812 			mutex_unlock(&zonelists_mutex);
4813 		}
4814 	}
4815 out:
4816 	mutex_unlock(&zl_order_mutex);
4817 	return ret;
4818 }
4819 
4820 
4821 #define MAX_NODE_LOAD (nr_online_nodes)
4822 static int node_load[MAX_NUMNODES];
4823 
4824 /**
4825  * find_next_best_node - find the next node that should appear in a given node's fallback list
4826  * @node: node whose fallback list we're appending
4827  * @used_node_mask: nodemask_t of already used nodes
4828  *
4829  * We use a number of factors to determine which is the next node that should
4830  * appear on a given node's fallback list.  The node should not have appeared
4831  * already in @node's fallback list, and it should be the next closest node
4832  * according to the distance array (which contains arbitrary distance values
4833  * from each node to each node in the system), and should also prefer nodes
4834  * with no CPUs, since presumably they'll have very little allocation pressure
4835  * on them otherwise.
4836  * It returns -1 if no node is found.
4837  */
4838 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4839 {
4840 	int n, val;
4841 	int min_val = INT_MAX;
4842 	int best_node = NUMA_NO_NODE;
4843 	const struct cpumask *tmp = cpumask_of_node(0);
4844 
4845 	/* Use the local node if we haven't already */
4846 	if (!node_isset(node, *used_node_mask)) {
4847 		node_set(node, *used_node_mask);
4848 		return node;
4849 	}
4850 
4851 	for_each_node_state(n, N_MEMORY) {
4852 
4853 		/* Don't want a node to appear more than once */
4854 		if (node_isset(n, *used_node_mask))
4855 			continue;
4856 
4857 		/* Use the distance array to find the distance */
4858 		val = node_distance(node, n);
4859 
4860 		/* Penalize nodes under us ("prefer the next node") */
4861 		val += (n < node);
4862 
4863 		/* Give preference to headless and unused nodes */
4864 		tmp = cpumask_of_node(n);
4865 		if (!cpumask_empty(tmp))
4866 			val += PENALTY_FOR_NODE_WITH_CPUS;
4867 
4868 		/* Slight preference for less loaded node */
4869 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4870 		val += node_load[n];
4871 
4872 		if (val < min_val) {
4873 			min_val = val;
4874 			best_node = n;
4875 		}
4876 	}
4877 
4878 	if (best_node >= 0)
4879 		node_set(best_node, *used_node_mask);
4880 
4881 	return best_node;
4882 }
4883 
4884 
4885 /*
4886  * Build zonelists ordered by node and zones within node.
4887  * This results in maximum locality--normal zone overflows into local
4888  * DMA zone, if any--but risks exhausting DMA zone.
4889  */
4890 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4891 {
4892 	int j;
4893 	struct zonelist *zonelist;
4894 
4895 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4896 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4897 		;
4898 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4899 	zonelist->_zonerefs[j].zone = NULL;
4900 	zonelist->_zonerefs[j].zone_idx = 0;
4901 }
4902 
4903 /*
4904  * Build gfp_thisnode zonelists
4905  */
4906 static void build_thisnode_zonelists(pg_data_t *pgdat)
4907 {
4908 	int j;
4909 	struct zonelist *zonelist;
4910 
4911 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4912 	j = build_zonelists_node(pgdat, zonelist, 0);
4913 	zonelist->_zonerefs[j].zone = NULL;
4914 	zonelist->_zonerefs[j].zone_idx = 0;
4915 }
4916 
4917 /*
4918  * Build zonelists ordered by zone and nodes within zones.
4919  * This results in conserving DMA zone[s] until all Normal memory is
4920  * exhausted, but results in overflowing to remote node while memory
4921  * may still exist in local DMA zone.
4922  */
4923 static int node_order[MAX_NUMNODES];
4924 
4925 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4926 {
4927 	int pos, j, node;
4928 	int zone_type;		/* needs to be signed */
4929 	struct zone *z;
4930 	struct zonelist *zonelist;
4931 
4932 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4933 	pos = 0;
4934 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4935 		for (j = 0; j < nr_nodes; j++) {
4936 			node = node_order[j];
4937 			z = &NODE_DATA(node)->node_zones[zone_type];
4938 			if (managed_zone(z)) {
4939 				zoneref_set_zone(z,
4940 					&zonelist->_zonerefs[pos++]);
4941 				check_highest_zone(zone_type);
4942 			}
4943 		}
4944 	}
4945 	zonelist->_zonerefs[pos].zone = NULL;
4946 	zonelist->_zonerefs[pos].zone_idx = 0;
4947 }
4948 
4949 #if defined(CONFIG_64BIT)
4950 /*
4951  * Devices that require DMA32/DMA are relatively rare and do not justify a
4952  * penalty to every machine in case the specialised case applies. Default
4953  * to Node-ordering on 64-bit NUMA machines
4954  */
4955 static int default_zonelist_order(void)
4956 {
4957 	return ZONELIST_ORDER_NODE;
4958 }
4959 #else
4960 /*
4961  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4962  * by the kernel. If processes running on node 0 deplete the low memory zone
4963  * then reclaim will occur more frequency increasing stalls and potentially
4964  * be easier to OOM if a large percentage of the zone is under writeback or
4965  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4966  * Hence, default to zone ordering on 32-bit.
4967  */
4968 static int default_zonelist_order(void)
4969 {
4970 	return ZONELIST_ORDER_ZONE;
4971 }
4972 #endif /* CONFIG_64BIT */
4973 
4974 static void set_zonelist_order(void)
4975 {
4976 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4977 		current_zonelist_order = default_zonelist_order();
4978 	else
4979 		current_zonelist_order = user_zonelist_order;
4980 }
4981 
4982 static void build_zonelists(pg_data_t *pgdat)
4983 {
4984 	int i, node, load;
4985 	nodemask_t used_mask;
4986 	int local_node, prev_node;
4987 	struct zonelist *zonelist;
4988 	unsigned int order = current_zonelist_order;
4989 
4990 	/* initialize zonelists */
4991 	for (i = 0; i < MAX_ZONELISTS; i++) {
4992 		zonelist = pgdat->node_zonelists + i;
4993 		zonelist->_zonerefs[0].zone = NULL;
4994 		zonelist->_zonerefs[0].zone_idx = 0;
4995 	}
4996 
4997 	/* NUMA-aware ordering of nodes */
4998 	local_node = pgdat->node_id;
4999 	load = nr_online_nodes;
5000 	prev_node = local_node;
5001 	nodes_clear(used_mask);
5002 
5003 	memset(node_order, 0, sizeof(node_order));
5004 	i = 0;
5005 
5006 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5007 		/*
5008 		 * We don't want to pressure a particular node.
5009 		 * So adding penalty to the first node in same
5010 		 * distance group to make it round-robin.
5011 		 */
5012 		if (node_distance(local_node, node) !=
5013 		    node_distance(local_node, prev_node))
5014 			node_load[node] = load;
5015 
5016 		prev_node = node;
5017 		load--;
5018 		if (order == ZONELIST_ORDER_NODE)
5019 			build_zonelists_in_node_order(pgdat, node);
5020 		else
5021 			node_order[i++] = node;	/* remember order */
5022 	}
5023 
5024 	if (order == ZONELIST_ORDER_ZONE) {
5025 		/* calculate node order -- i.e., DMA last! */
5026 		build_zonelists_in_zone_order(pgdat, i);
5027 	}
5028 
5029 	build_thisnode_zonelists(pgdat);
5030 }
5031 
5032 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5033 /*
5034  * Return node id of node used for "local" allocations.
5035  * I.e., first node id of first zone in arg node's generic zonelist.
5036  * Used for initializing percpu 'numa_mem', which is used primarily
5037  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5038  */
5039 int local_memory_node(int node)
5040 {
5041 	struct zoneref *z;
5042 
5043 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5044 				   gfp_zone(GFP_KERNEL),
5045 				   NULL);
5046 	return z->zone->node;
5047 }
5048 #endif
5049 
5050 static void setup_min_unmapped_ratio(void);
5051 static void setup_min_slab_ratio(void);
5052 #else	/* CONFIG_NUMA */
5053 
5054 static void set_zonelist_order(void)
5055 {
5056 	current_zonelist_order = ZONELIST_ORDER_ZONE;
5057 }
5058 
5059 static void build_zonelists(pg_data_t *pgdat)
5060 {
5061 	int node, local_node;
5062 	enum zone_type j;
5063 	struct zonelist *zonelist;
5064 
5065 	local_node = pgdat->node_id;
5066 
5067 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5068 	j = build_zonelists_node(pgdat, zonelist, 0);
5069 
5070 	/*
5071 	 * Now we build the zonelist so that it contains the zones
5072 	 * of all the other nodes.
5073 	 * We don't want to pressure a particular node, so when
5074 	 * building the zones for node N, we make sure that the
5075 	 * zones coming right after the local ones are those from
5076 	 * node N+1 (modulo N)
5077 	 */
5078 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5079 		if (!node_online(node))
5080 			continue;
5081 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5082 	}
5083 	for (node = 0; node < local_node; node++) {
5084 		if (!node_online(node))
5085 			continue;
5086 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5087 	}
5088 
5089 	zonelist->_zonerefs[j].zone = NULL;
5090 	zonelist->_zonerefs[j].zone_idx = 0;
5091 }
5092 
5093 #endif	/* CONFIG_NUMA */
5094 
5095 /*
5096  * Boot pageset table. One per cpu which is going to be used for all
5097  * zones and all nodes. The parameters will be set in such a way
5098  * that an item put on a list will immediately be handed over to
5099  * the buddy list. This is safe since pageset manipulation is done
5100  * with interrupts disabled.
5101  *
5102  * The boot_pagesets must be kept even after bootup is complete for
5103  * unused processors and/or zones. They do play a role for bootstrapping
5104  * hotplugged processors.
5105  *
5106  * zoneinfo_show() and maybe other functions do
5107  * not check if the processor is online before following the pageset pointer.
5108  * Other parts of the kernel may not check if the zone is available.
5109  */
5110 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5111 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5112 static void setup_zone_pageset(struct zone *zone);
5113 
5114 /*
5115  * Global mutex to protect against size modification of zonelists
5116  * as well as to serialize pageset setup for the new populated zone.
5117  */
5118 DEFINE_MUTEX(zonelists_mutex);
5119 
5120 /* return values int ....just for stop_machine() */
5121 static int __build_all_zonelists(void *data)
5122 {
5123 	int nid;
5124 	int cpu;
5125 	pg_data_t *self = data;
5126 
5127 #ifdef CONFIG_NUMA
5128 	memset(node_load, 0, sizeof(node_load));
5129 #endif
5130 
5131 	if (self && !node_online(self->node_id)) {
5132 		build_zonelists(self);
5133 	}
5134 
5135 	for_each_online_node(nid) {
5136 		pg_data_t *pgdat = NODE_DATA(nid);
5137 
5138 		build_zonelists(pgdat);
5139 	}
5140 
5141 	/*
5142 	 * Initialize the boot_pagesets that are going to be used
5143 	 * for bootstrapping processors. The real pagesets for
5144 	 * each zone will be allocated later when the per cpu
5145 	 * allocator is available.
5146 	 *
5147 	 * boot_pagesets are used also for bootstrapping offline
5148 	 * cpus if the system is already booted because the pagesets
5149 	 * are needed to initialize allocators on a specific cpu too.
5150 	 * F.e. the percpu allocator needs the page allocator which
5151 	 * needs the percpu allocator in order to allocate its pagesets
5152 	 * (a chicken-egg dilemma).
5153 	 */
5154 	for_each_possible_cpu(cpu) {
5155 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5156 
5157 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5158 		/*
5159 		 * We now know the "local memory node" for each node--
5160 		 * i.e., the node of the first zone in the generic zonelist.
5161 		 * Set up numa_mem percpu variable for on-line cpus.  During
5162 		 * boot, only the boot cpu should be on-line;  we'll init the
5163 		 * secondary cpus' numa_mem as they come on-line.  During
5164 		 * node/memory hotplug, we'll fixup all on-line cpus.
5165 		 */
5166 		if (cpu_online(cpu))
5167 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5168 #endif
5169 	}
5170 
5171 	return 0;
5172 }
5173 
5174 static noinline void __init
5175 build_all_zonelists_init(void)
5176 {
5177 	__build_all_zonelists(NULL);
5178 	mminit_verify_zonelist();
5179 	cpuset_init_current_mems_allowed();
5180 }
5181 
5182 /*
5183  * Called with zonelists_mutex held always
5184  * unless system_state == SYSTEM_BOOTING.
5185  *
5186  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5187  * [we're only called with non-NULL zone through __meminit paths] and
5188  * (2) call of __init annotated helper build_all_zonelists_init
5189  * [protected by SYSTEM_BOOTING].
5190  */
5191 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5192 {
5193 	set_zonelist_order();
5194 
5195 	if (system_state == SYSTEM_BOOTING) {
5196 		build_all_zonelists_init();
5197 	} else {
5198 #ifdef CONFIG_MEMORY_HOTPLUG
5199 		if (zone)
5200 			setup_zone_pageset(zone);
5201 #endif
5202 		/* we have to stop all cpus to guarantee there is no user
5203 		   of zonelist */
5204 		stop_machine(__build_all_zonelists, pgdat, NULL);
5205 		/* cpuset refresh routine should be here */
5206 	}
5207 	vm_total_pages = nr_free_pagecache_pages();
5208 	/*
5209 	 * Disable grouping by mobility if the number of pages in the
5210 	 * system is too low to allow the mechanism to work. It would be
5211 	 * more accurate, but expensive to check per-zone. This check is
5212 	 * made on memory-hotadd so a system can start with mobility
5213 	 * disabled and enable it later
5214 	 */
5215 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5216 		page_group_by_mobility_disabled = 1;
5217 	else
5218 		page_group_by_mobility_disabled = 0;
5219 
5220 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5221 		nr_online_nodes,
5222 		zonelist_order_name[current_zonelist_order],
5223 		page_group_by_mobility_disabled ? "off" : "on",
5224 		vm_total_pages);
5225 #ifdef CONFIG_NUMA
5226 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5227 #endif
5228 }
5229 
5230 /*
5231  * Initially all pages are reserved - free ones are freed
5232  * up by free_all_bootmem() once the early boot process is
5233  * done. Non-atomic initialization, single-pass.
5234  */
5235 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5236 		unsigned long start_pfn, enum memmap_context context)
5237 {
5238 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5239 	unsigned long end_pfn = start_pfn + size;
5240 	pg_data_t *pgdat = NODE_DATA(nid);
5241 	unsigned long pfn;
5242 	unsigned long nr_initialised = 0;
5243 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5244 	struct memblock_region *r = NULL, *tmp;
5245 #endif
5246 
5247 	if (highest_memmap_pfn < end_pfn - 1)
5248 		highest_memmap_pfn = end_pfn - 1;
5249 
5250 	/*
5251 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5252 	 * memory
5253 	 */
5254 	if (altmap && start_pfn == altmap->base_pfn)
5255 		start_pfn += altmap->reserve;
5256 
5257 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5258 		/*
5259 		 * There can be holes in boot-time mem_map[]s handed to this
5260 		 * function.  They do not exist on hotplugged memory.
5261 		 */
5262 		if (context != MEMMAP_EARLY)
5263 			goto not_early;
5264 
5265 		if (!early_pfn_valid(pfn)) {
5266 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5267 			/*
5268 			 * Skip to the pfn preceding the next valid one (or
5269 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5270 			 * on our next iteration of the loop.
5271 			 */
5272 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5273 #endif
5274 			continue;
5275 		}
5276 		if (!early_pfn_in_nid(pfn, nid))
5277 			continue;
5278 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5279 			break;
5280 
5281 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5282 		/*
5283 		 * Check given memblock attribute by firmware which can affect
5284 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5285 		 * mirrored, it's an overlapped memmap init. skip it.
5286 		 */
5287 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5288 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5289 				for_each_memblock(memory, tmp)
5290 					if (pfn < memblock_region_memory_end_pfn(tmp))
5291 						break;
5292 				r = tmp;
5293 			}
5294 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5295 			    memblock_is_mirror(r)) {
5296 				/* already initialized as NORMAL */
5297 				pfn = memblock_region_memory_end_pfn(r);
5298 				continue;
5299 			}
5300 		}
5301 #endif
5302 
5303 not_early:
5304 		/*
5305 		 * Mark the block movable so that blocks are reserved for
5306 		 * movable at startup. This will force kernel allocations
5307 		 * to reserve their blocks rather than leaking throughout
5308 		 * the address space during boot when many long-lived
5309 		 * kernel allocations are made.
5310 		 *
5311 		 * bitmap is created for zone's valid pfn range. but memmap
5312 		 * can be created for invalid pages (for alignment)
5313 		 * check here not to call set_pageblock_migratetype() against
5314 		 * pfn out of zone.
5315 		 */
5316 		if (!(pfn & (pageblock_nr_pages - 1))) {
5317 			struct page *page = pfn_to_page(pfn);
5318 
5319 			__init_single_page(page, pfn, zone, nid);
5320 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5321 		} else {
5322 			__init_single_pfn(pfn, zone, nid);
5323 		}
5324 	}
5325 }
5326 
5327 static void __meminit zone_init_free_lists(struct zone *zone)
5328 {
5329 	unsigned int order, t;
5330 	for_each_migratetype_order(order, t) {
5331 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5332 		zone->free_area[order].nr_free = 0;
5333 	}
5334 }
5335 
5336 #ifndef __HAVE_ARCH_MEMMAP_INIT
5337 #define memmap_init(size, nid, zone, start_pfn) \
5338 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5339 #endif
5340 
5341 static int zone_batchsize(struct zone *zone)
5342 {
5343 #ifdef CONFIG_MMU
5344 	int batch;
5345 
5346 	/*
5347 	 * The per-cpu-pages pools are set to around 1000th of the
5348 	 * size of the zone.  But no more than 1/2 of a meg.
5349 	 *
5350 	 * OK, so we don't know how big the cache is.  So guess.
5351 	 */
5352 	batch = zone->managed_pages / 1024;
5353 	if (batch * PAGE_SIZE > 512 * 1024)
5354 		batch = (512 * 1024) / PAGE_SIZE;
5355 	batch /= 4;		/* We effectively *= 4 below */
5356 	if (batch < 1)
5357 		batch = 1;
5358 
5359 	/*
5360 	 * Clamp the batch to a 2^n - 1 value. Having a power
5361 	 * of 2 value was found to be more likely to have
5362 	 * suboptimal cache aliasing properties in some cases.
5363 	 *
5364 	 * For example if 2 tasks are alternately allocating
5365 	 * batches of pages, one task can end up with a lot
5366 	 * of pages of one half of the possible page colors
5367 	 * and the other with pages of the other colors.
5368 	 */
5369 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5370 
5371 	return batch;
5372 
5373 #else
5374 	/* The deferral and batching of frees should be suppressed under NOMMU
5375 	 * conditions.
5376 	 *
5377 	 * The problem is that NOMMU needs to be able to allocate large chunks
5378 	 * of contiguous memory as there's no hardware page translation to
5379 	 * assemble apparent contiguous memory from discontiguous pages.
5380 	 *
5381 	 * Queueing large contiguous runs of pages for batching, however,
5382 	 * causes the pages to actually be freed in smaller chunks.  As there
5383 	 * can be a significant delay between the individual batches being
5384 	 * recycled, this leads to the once large chunks of space being
5385 	 * fragmented and becoming unavailable for high-order allocations.
5386 	 */
5387 	return 0;
5388 #endif
5389 }
5390 
5391 /*
5392  * pcp->high and pcp->batch values are related and dependent on one another:
5393  * ->batch must never be higher then ->high.
5394  * The following function updates them in a safe manner without read side
5395  * locking.
5396  *
5397  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5398  * those fields changing asynchronously (acording the the above rule).
5399  *
5400  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5401  * outside of boot time (or some other assurance that no concurrent updaters
5402  * exist).
5403  */
5404 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5405 		unsigned long batch)
5406 {
5407        /* start with a fail safe value for batch */
5408 	pcp->batch = 1;
5409 	smp_wmb();
5410 
5411        /* Update high, then batch, in order */
5412 	pcp->high = high;
5413 	smp_wmb();
5414 
5415 	pcp->batch = batch;
5416 }
5417 
5418 /* a companion to pageset_set_high() */
5419 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5420 {
5421 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5422 }
5423 
5424 static void pageset_init(struct per_cpu_pageset *p)
5425 {
5426 	struct per_cpu_pages *pcp;
5427 	int migratetype;
5428 
5429 	memset(p, 0, sizeof(*p));
5430 
5431 	pcp = &p->pcp;
5432 	pcp->count = 0;
5433 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5434 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5435 }
5436 
5437 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5438 {
5439 	pageset_init(p);
5440 	pageset_set_batch(p, batch);
5441 }
5442 
5443 /*
5444  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5445  * to the value high for the pageset p.
5446  */
5447 static void pageset_set_high(struct per_cpu_pageset *p,
5448 				unsigned long high)
5449 {
5450 	unsigned long batch = max(1UL, high / 4);
5451 	if ((high / 4) > (PAGE_SHIFT * 8))
5452 		batch = PAGE_SHIFT * 8;
5453 
5454 	pageset_update(&p->pcp, high, batch);
5455 }
5456 
5457 static void pageset_set_high_and_batch(struct zone *zone,
5458 				       struct per_cpu_pageset *pcp)
5459 {
5460 	if (percpu_pagelist_fraction)
5461 		pageset_set_high(pcp,
5462 			(zone->managed_pages /
5463 				percpu_pagelist_fraction));
5464 	else
5465 		pageset_set_batch(pcp, zone_batchsize(zone));
5466 }
5467 
5468 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5469 {
5470 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5471 
5472 	pageset_init(pcp);
5473 	pageset_set_high_and_batch(zone, pcp);
5474 }
5475 
5476 static void __meminit setup_zone_pageset(struct zone *zone)
5477 {
5478 	int cpu;
5479 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5480 	for_each_possible_cpu(cpu)
5481 		zone_pageset_init(zone, cpu);
5482 }
5483 
5484 /*
5485  * Allocate per cpu pagesets and initialize them.
5486  * Before this call only boot pagesets were available.
5487  */
5488 void __init setup_per_cpu_pageset(void)
5489 {
5490 	struct pglist_data *pgdat;
5491 	struct zone *zone;
5492 
5493 	for_each_populated_zone(zone)
5494 		setup_zone_pageset(zone);
5495 
5496 	for_each_online_pgdat(pgdat)
5497 		pgdat->per_cpu_nodestats =
5498 			alloc_percpu(struct per_cpu_nodestat);
5499 }
5500 
5501 static __meminit void zone_pcp_init(struct zone *zone)
5502 {
5503 	/*
5504 	 * per cpu subsystem is not up at this point. The following code
5505 	 * relies on the ability of the linker to provide the
5506 	 * offset of a (static) per cpu variable into the per cpu area.
5507 	 */
5508 	zone->pageset = &boot_pageset;
5509 
5510 	if (populated_zone(zone))
5511 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5512 			zone->name, zone->present_pages,
5513 					 zone_batchsize(zone));
5514 }
5515 
5516 int __meminit init_currently_empty_zone(struct zone *zone,
5517 					unsigned long zone_start_pfn,
5518 					unsigned long size)
5519 {
5520 	struct pglist_data *pgdat = zone->zone_pgdat;
5521 
5522 	pgdat->nr_zones = zone_idx(zone) + 1;
5523 
5524 	zone->zone_start_pfn = zone_start_pfn;
5525 
5526 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5527 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5528 			pgdat->node_id,
5529 			(unsigned long)zone_idx(zone),
5530 			zone_start_pfn, (zone_start_pfn + size));
5531 
5532 	zone_init_free_lists(zone);
5533 	zone->initialized = 1;
5534 
5535 	return 0;
5536 }
5537 
5538 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5539 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5540 
5541 /*
5542  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5543  */
5544 int __meminit __early_pfn_to_nid(unsigned long pfn,
5545 					struct mminit_pfnnid_cache *state)
5546 {
5547 	unsigned long start_pfn, end_pfn;
5548 	int nid;
5549 
5550 	if (state->last_start <= pfn && pfn < state->last_end)
5551 		return state->last_nid;
5552 
5553 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5554 	if (nid != -1) {
5555 		state->last_start = start_pfn;
5556 		state->last_end = end_pfn;
5557 		state->last_nid = nid;
5558 	}
5559 
5560 	return nid;
5561 }
5562 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5563 
5564 /**
5565  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5566  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5567  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5568  *
5569  * If an architecture guarantees that all ranges registered contain no holes
5570  * and may be freed, this this function may be used instead of calling
5571  * memblock_free_early_nid() manually.
5572  */
5573 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5574 {
5575 	unsigned long start_pfn, end_pfn;
5576 	int i, this_nid;
5577 
5578 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5579 		start_pfn = min(start_pfn, max_low_pfn);
5580 		end_pfn = min(end_pfn, max_low_pfn);
5581 
5582 		if (start_pfn < end_pfn)
5583 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5584 					(end_pfn - start_pfn) << PAGE_SHIFT,
5585 					this_nid);
5586 	}
5587 }
5588 
5589 /**
5590  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5591  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5592  *
5593  * If an architecture guarantees that all ranges registered contain no holes and may
5594  * be freed, this function may be used instead of calling memory_present() manually.
5595  */
5596 void __init sparse_memory_present_with_active_regions(int nid)
5597 {
5598 	unsigned long start_pfn, end_pfn;
5599 	int i, this_nid;
5600 
5601 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5602 		memory_present(this_nid, start_pfn, end_pfn);
5603 }
5604 
5605 /**
5606  * get_pfn_range_for_nid - Return the start and end page frames for a node
5607  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5608  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5609  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5610  *
5611  * It returns the start and end page frame of a node based on information
5612  * provided by memblock_set_node(). If called for a node
5613  * with no available memory, a warning is printed and the start and end
5614  * PFNs will be 0.
5615  */
5616 void __meminit get_pfn_range_for_nid(unsigned int nid,
5617 			unsigned long *start_pfn, unsigned long *end_pfn)
5618 {
5619 	unsigned long this_start_pfn, this_end_pfn;
5620 	int i;
5621 
5622 	*start_pfn = -1UL;
5623 	*end_pfn = 0;
5624 
5625 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5626 		*start_pfn = min(*start_pfn, this_start_pfn);
5627 		*end_pfn = max(*end_pfn, this_end_pfn);
5628 	}
5629 
5630 	if (*start_pfn == -1UL)
5631 		*start_pfn = 0;
5632 }
5633 
5634 /*
5635  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5636  * assumption is made that zones within a node are ordered in monotonic
5637  * increasing memory addresses so that the "highest" populated zone is used
5638  */
5639 static void __init find_usable_zone_for_movable(void)
5640 {
5641 	int zone_index;
5642 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5643 		if (zone_index == ZONE_MOVABLE)
5644 			continue;
5645 
5646 		if (arch_zone_highest_possible_pfn[zone_index] >
5647 				arch_zone_lowest_possible_pfn[zone_index])
5648 			break;
5649 	}
5650 
5651 	VM_BUG_ON(zone_index == -1);
5652 	movable_zone = zone_index;
5653 }
5654 
5655 /*
5656  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5657  * because it is sized independent of architecture. Unlike the other zones,
5658  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5659  * in each node depending on the size of each node and how evenly kernelcore
5660  * is distributed. This helper function adjusts the zone ranges
5661  * provided by the architecture for a given node by using the end of the
5662  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5663  * zones within a node are in order of monotonic increases memory addresses
5664  */
5665 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5666 					unsigned long zone_type,
5667 					unsigned long node_start_pfn,
5668 					unsigned long node_end_pfn,
5669 					unsigned long *zone_start_pfn,
5670 					unsigned long *zone_end_pfn)
5671 {
5672 	/* Only adjust if ZONE_MOVABLE is on this node */
5673 	if (zone_movable_pfn[nid]) {
5674 		/* Size ZONE_MOVABLE */
5675 		if (zone_type == ZONE_MOVABLE) {
5676 			*zone_start_pfn = zone_movable_pfn[nid];
5677 			*zone_end_pfn = min(node_end_pfn,
5678 				arch_zone_highest_possible_pfn[movable_zone]);
5679 
5680 		/* Adjust for ZONE_MOVABLE starting within this range */
5681 		} else if (!mirrored_kernelcore &&
5682 			*zone_start_pfn < zone_movable_pfn[nid] &&
5683 			*zone_end_pfn > zone_movable_pfn[nid]) {
5684 			*zone_end_pfn = zone_movable_pfn[nid];
5685 
5686 		/* Check if this whole range is within ZONE_MOVABLE */
5687 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5688 			*zone_start_pfn = *zone_end_pfn;
5689 	}
5690 }
5691 
5692 /*
5693  * Return the number of pages a zone spans in a node, including holes
5694  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5695  */
5696 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5697 					unsigned long zone_type,
5698 					unsigned long node_start_pfn,
5699 					unsigned long node_end_pfn,
5700 					unsigned long *zone_start_pfn,
5701 					unsigned long *zone_end_pfn,
5702 					unsigned long *ignored)
5703 {
5704 	/* When hotadd a new node from cpu_up(), the node should be empty */
5705 	if (!node_start_pfn && !node_end_pfn)
5706 		return 0;
5707 
5708 	/* Get the start and end of the zone */
5709 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5710 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5711 	adjust_zone_range_for_zone_movable(nid, zone_type,
5712 				node_start_pfn, node_end_pfn,
5713 				zone_start_pfn, zone_end_pfn);
5714 
5715 	/* Check that this node has pages within the zone's required range */
5716 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5717 		return 0;
5718 
5719 	/* Move the zone boundaries inside the node if necessary */
5720 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5721 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5722 
5723 	/* Return the spanned pages */
5724 	return *zone_end_pfn - *zone_start_pfn;
5725 }
5726 
5727 /*
5728  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5729  * then all holes in the requested range will be accounted for.
5730  */
5731 unsigned long __meminit __absent_pages_in_range(int nid,
5732 				unsigned long range_start_pfn,
5733 				unsigned long range_end_pfn)
5734 {
5735 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5736 	unsigned long start_pfn, end_pfn;
5737 	int i;
5738 
5739 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5740 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5741 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5742 		nr_absent -= end_pfn - start_pfn;
5743 	}
5744 	return nr_absent;
5745 }
5746 
5747 /**
5748  * absent_pages_in_range - Return number of page frames in holes within a range
5749  * @start_pfn: The start PFN to start searching for holes
5750  * @end_pfn: The end PFN to stop searching for holes
5751  *
5752  * It returns the number of pages frames in memory holes within a range.
5753  */
5754 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5755 							unsigned long end_pfn)
5756 {
5757 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5758 }
5759 
5760 /* Return the number of page frames in holes in a zone on a node */
5761 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5762 					unsigned long zone_type,
5763 					unsigned long node_start_pfn,
5764 					unsigned long node_end_pfn,
5765 					unsigned long *ignored)
5766 {
5767 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5768 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5769 	unsigned long zone_start_pfn, zone_end_pfn;
5770 	unsigned long nr_absent;
5771 
5772 	/* When hotadd a new node from cpu_up(), the node should be empty */
5773 	if (!node_start_pfn && !node_end_pfn)
5774 		return 0;
5775 
5776 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5777 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5778 
5779 	adjust_zone_range_for_zone_movable(nid, zone_type,
5780 			node_start_pfn, node_end_pfn,
5781 			&zone_start_pfn, &zone_end_pfn);
5782 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5783 
5784 	/*
5785 	 * ZONE_MOVABLE handling.
5786 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5787 	 * and vice versa.
5788 	 */
5789 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5790 		unsigned long start_pfn, end_pfn;
5791 		struct memblock_region *r;
5792 
5793 		for_each_memblock(memory, r) {
5794 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5795 					  zone_start_pfn, zone_end_pfn);
5796 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5797 					zone_start_pfn, zone_end_pfn);
5798 
5799 			if (zone_type == ZONE_MOVABLE &&
5800 			    memblock_is_mirror(r))
5801 				nr_absent += end_pfn - start_pfn;
5802 
5803 			if (zone_type == ZONE_NORMAL &&
5804 			    !memblock_is_mirror(r))
5805 				nr_absent += end_pfn - start_pfn;
5806 		}
5807 	}
5808 
5809 	return nr_absent;
5810 }
5811 
5812 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5813 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5814 					unsigned long zone_type,
5815 					unsigned long node_start_pfn,
5816 					unsigned long node_end_pfn,
5817 					unsigned long *zone_start_pfn,
5818 					unsigned long *zone_end_pfn,
5819 					unsigned long *zones_size)
5820 {
5821 	unsigned int zone;
5822 
5823 	*zone_start_pfn = node_start_pfn;
5824 	for (zone = 0; zone < zone_type; zone++)
5825 		*zone_start_pfn += zones_size[zone];
5826 
5827 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5828 
5829 	return zones_size[zone_type];
5830 }
5831 
5832 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5833 						unsigned long zone_type,
5834 						unsigned long node_start_pfn,
5835 						unsigned long node_end_pfn,
5836 						unsigned long *zholes_size)
5837 {
5838 	if (!zholes_size)
5839 		return 0;
5840 
5841 	return zholes_size[zone_type];
5842 }
5843 
5844 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5845 
5846 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5847 						unsigned long node_start_pfn,
5848 						unsigned long node_end_pfn,
5849 						unsigned long *zones_size,
5850 						unsigned long *zholes_size)
5851 {
5852 	unsigned long realtotalpages = 0, totalpages = 0;
5853 	enum zone_type i;
5854 
5855 	for (i = 0; i < MAX_NR_ZONES; i++) {
5856 		struct zone *zone = pgdat->node_zones + i;
5857 		unsigned long zone_start_pfn, zone_end_pfn;
5858 		unsigned long size, real_size;
5859 
5860 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5861 						  node_start_pfn,
5862 						  node_end_pfn,
5863 						  &zone_start_pfn,
5864 						  &zone_end_pfn,
5865 						  zones_size);
5866 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5867 						  node_start_pfn, node_end_pfn,
5868 						  zholes_size);
5869 		if (size)
5870 			zone->zone_start_pfn = zone_start_pfn;
5871 		else
5872 			zone->zone_start_pfn = 0;
5873 		zone->spanned_pages = size;
5874 		zone->present_pages = real_size;
5875 
5876 		totalpages += size;
5877 		realtotalpages += real_size;
5878 	}
5879 
5880 	pgdat->node_spanned_pages = totalpages;
5881 	pgdat->node_present_pages = realtotalpages;
5882 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5883 							realtotalpages);
5884 }
5885 
5886 #ifndef CONFIG_SPARSEMEM
5887 /*
5888  * Calculate the size of the zone->blockflags rounded to an unsigned long
5889  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5890  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5891  * round what is now in bits to nearest long in bits, then return it in
5892  * bytes.
5893  */
5894 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5895 {
5896 	unsigned long usemapsize;
5897 
5898 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5899 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5900 	usemapsize = usemapsize >> pageblock_order;
5901 	usemapsize *= NR_PAGEBLOCK_BITS;
5902 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5903 
5904 	return usemapsize / 8;
5905 }
5906 
5907 static void __init setup_usemap(struct pglist_data *pgdat,
5908 				struct zone *zone,
5909 				unsigned long zone_start_pfn,
5910 				unsigned long zonesize)
5911 {
5912 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5913 	zone->pageblock_flags = NULL;
5914 	if (usemapsize)
5915 		zone->pageblock_flags =
5916 			memblock_virt_alloc_node_nopanic(usemapsize,
5917 							 pgdat->node_id);
5918 }
5919 #else
5920 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5921 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5922 #endif /* CONFIG_SPARSEMEM */
5923 
5924 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5925 
5926 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5927 void __paginginit set_pageblock_order(void)
5928 {
5929 	unsigned int order;
5930 
5931 	/* Check that pageblock_nr_pages has not already been setup */
5932 	if (pageblock_order)
5933 		return;
5934 
5935 	if (HPAGE_SHIFT > PAGE_SHIFT)
5936 		order = HUGETLB_PAGE_ORDER;
5937 	else
5938 		order = MAX_ORDER - 1;
5939 
5940 	/*
5941 	 * Assume the largest contiguous order of interest is a huge page.
5942 	 * This value may be variable depending on boot parameters on IA64 and
5943 	 * powerpc.
5944 	 */
5945 	pageblock_order = order;
5946 }
5947 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5948 
5949 /*
5950  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5951  * is unused as pageblock_order is set at compile-time. See
5952  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5953  * the kernel config
5954  */
5955 void __paginginit set_pageblock_order(void)
5956 {
5957 }
5958 
5959 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5960 
5961 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5962 						   unsigned long present_pages)
5963 {
5964 	unsigned long pages = spanned_pages;
5965 
5966 	/*
5967 	 * Provide a more accurate estimation if there are holes within
5968 	 * the zone and SPARSEMEM is in use. If there are holes within the
5969 	 * zone, each populated memory region may cost us one or two extra
5970 	 * memmap pages due to alignment because memmap pages for each
5971 	 * populated regions may not be naturally aligned on page boundary.
5972 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5973 	 */
5974 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5975 	    IS_ENABLED(CONFIG_SPARSEMEM))
5976 		pages = present_pages;
5977 
5978 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5979 }
5980 
5981 /*
5982  * Set up the zone data structures:
5983  *   - mark all pages reserved
5984  *   - mark all memory queues empty
5985  *   - clear the memory bitmaps
5986  *
5987  * NOTE: pgdat should get zeroed by caller.
5988  */
5989 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5990 {
5991 	enum zone_type j;
5992 	int nid = pgdat->node_id;
5993 	int ret;
5994 
5995 	pgdat_resize_init(pgdat);
5996 #ifdef CONFIG_NUMA_BALANCING
5997 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5998 	pgdat->numabalancing_migrate_nr_pages = 0;
5999 	pgdat->numabalancing_migrate_next_window = jiffies;
6000 #endif
6001 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6002 	spin_lock_init(&pgdat->split_queue_lock);
6003 	INIT_LIST_HEAD(&pgdat->split_queue);
6004 	pgdat->split_queue_len = 0;
6005 #endif
6006 	init_waitqueue_head(&pgdat->kswapd_wait);
6007 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6008 #ifdef CONFIG_COMPACTION
6009 	init_waitqueue_head(&pgdat->kcompactd_wait);
6010 #endif
6011 	pgdat_page_ext_init(pgdat);
6012 	spin_lock_init(&pgdat->lru_lock);
6013 	lruvec_init(node_lruvec(pgdat));
6014 
6015 	for (j = 0; j < MAX_NR_ZONES; j++) {
6016 		struct zone *zone = pgdat->node_zones + j;
6017 		unsigned long size, realsize, freesize, memmap_pages;
6018 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6019 
6020 		size = zone->spanned_pages;
6021 		realsize = freesize = zone->present_pages;
6022 
6023 		/*
6024 		 * Adjust freesize so that it accounts for how much memory
6025 		 * is used by this zone for memmap. This affects the watermark
6026 		 * and per-cpu initialisations
6027 		 */
6028 		memmap_pages = calc_memmap_size(size, realsize);
6029 		if (!is_highmem_idx(j)) {
6030 			if (freesize >= memmap_pages) {
6031 				freesize -= memmap_pages;
6032 				if (memmap_pages)
6033 					printk(KERN_DEBUG
6034 					       "  %s zone: %lu pages used for memmap\n",
6035 					       zone_names[j], memmap_pages);
6036 			} else
6037 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6038 					zone_names[j], memmap_pages, freesize);
6039 		}
6040 
6041 		/* Account for reserved pages */
6042 		if (j == 0 && freesize > dma_reserve) {
6043 			freesize -= dma_reserve;
6044 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6045 					zone_names[0], dma_reserve);
6046 		}
6047 
6048 		if (!is_highmem_idx(j))
6049 			nr_kernel_pages += freesize;
6050 		/* Charge for highmem memmap if there are enough kernel pages */
6051 		else if (nr_kernel_pages > memmap_pages * 2)
6052 			nr_kernel_pages -= memmap_pages;
6053 		nr_all_pages += freesize;
6054 
6055 		/*
6056 		 * Set an approximate value for lowmem here, it will be adjusted
6057 		 * when the bootmem allocator frees pages into the buddy system.
6058 		 * And all highmem pages will be managed by the buddy system.
6059 		 */
6060 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6061 #ifdef CONFIG_NUMA
6062 		zone->node = nid;
6063 #endif
6064 		zone->name = zone_names[j];
6065 		zone->zone_pgdat = pgdat;
6066 		spin_lock_init(&zone->lock);
6067 		zone_seqlock_init(zone);
6068 		zone_pcp_init(zone);
6069 
6070 		if (!size)
6071 			continue;
6072 
6073 		set_pageblock_order();
6074 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6075 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6076 		BUG_ON(ret);
6077 		memmap_init(size, nid, j, zone_start_pfn);
6078 	}
6079 }
6080 
6081 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6082 {
6083 	unsigned long __maybe_unused start = 0;
6084 	unsigned long __maybe_unused offset = 0;
6085 
6086 	/* Skip empty nodes */
6087 	if (!pgdat->node_spanned_pages)
6088 		return;
6089 
6090 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6091 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6092 	offset = pgdat->node_start_pfn - start;
6093 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6094 	if (!pgdat->node_mem_map) {
6095 		unsigned long size, end;
6096 		struct page *map;
6097 
6098 		/*
6099 		 * The zone's endpoints aren't required to be MAX_ORDER
6100 		 * aligned but the node_mem_map endpoints must be in order
6101 		 * for the buddy allocator to function correctly.
6102 		 */
6103 		end = pgdat_end_pfn(pgdat);
6104 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6105 		size =  (end - start) * sizeof(struct page);
6106 		map = alloc_remap(pgdat->node_id, size);
6107 		if (!map)
6108 			map = memblock_virt_alloc_node_nopanic(size,
6109 							       pgdat->node_id);
6110 		pgdat->node_mem_map = map + offset;
6111 	}
6112 #ifndef CONFIG_NEED_MULTIPLE_NODES
6113 	/*
6114 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6115 	 */
6116 	if (pgdat == NODE_DATA(0)) {
6117 		mem_map = NODE_DATA(0)->node_mem_map;
6118 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6119 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6120 			mem_map -= offset;
6121 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6122 	}
6123 #endif
6124 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6125 }
6126 
6127 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6128 		unsigned long node_start_pfn, unsigned long *zholes_size)
6129 {
6130 	pg_data_t *pgdat = NODE_DATA(nid);
6131 	unsigned long start_pfn = 0;
6132 	unsigned long end_pfn = 0;
6133 
6134 	/* pg_data_t should be reset to zero when it's allocated */
6135 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6136 
6137 	reset_deferred_meminit(pgdat);
6138 	pgdat->node_id = nid;
6139 	pgdat->node_start_pfn = node_start_pfn;
6140 	pgdat->per_cpu_nodestats = NULL;
6141 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6142 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6143 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6144 		(u64)start_pfn << PAGE_SHIFT,
6145 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6146 #else
6147 	start_pfn = node_start_pfn;
6148 #endif
6149 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6150 				  zones_size, zholes_size);
6151 
6152 	alloc_node_mem_map(pgdat);
6153 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6154 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6155 		nid, (unsigned long)pgdat,
6156 		(unsigned long)pgdat->node_mem_map);
6157 #endif
6158 
6159 	free_area_init_core(pgdat);
6160 }
6161 
6162 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6163 
6164 #if MAX_NUMNODES > 1
6165 /*
6166  * Figure out the number of possible node ids.
6167  */
6168 void __init setup_nr_node_ids(void)
6169 {
6170 	unsigned int highest;
6171 
6172 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6173 	nr_node_ids = highest + 1;
6174 }
6175 #endif
6176 
6177 /**
6178  * node_map_pfn_alignment - determine the maximum internode alignment
6179  *
6180  * This function should be called after node map is populated and sorted.
6181  * It calculates the maximum power of two alignment which can distinguish
6182  * all the nodes.
6183  *
6184  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6185  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6186  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6187  * shifted, 1GiB is enough and this function will indicate so.
6188  *
6189  * This is used to test whether pfn -> nid mapping of the chosen memory
6190  * model has fine enough granularity to avoid incorrect mapping for the
6191  * populated node map.
6192  *
6193  * Returns the determined alignment in pfn's.  0 if there is no alignment
6194  * requirement (single node).
6195  */
6196 unsigned long __init node_map_pfn_alignment(void)
6197 {
6198 	unsigned long accl_mask = 0, last_end = 0;
6199 	unsigned long start, end, mask;
6200 	int last_nid = -1;
6201 	int i, nid;
6202 
6203 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6204 		if (!start || last_nid < 0 || last_nid == nid) {
6205 			last_nid = nid;
6206 			last_end = end;
6207 			continue;
6208 		}
6209 
6210 		/*
6211 		 * Start with a mask granular enough to pin-point to the
6212 		 * start pfn and tick off bits one-by-one until it becomes
6213 		 * too coarse to separate the current node from the last.
6214 		 */
6215 		mask = ~((1 << __ffs(start)) - 1);
6216 		while (mask && last_end <= (start & (mask << 1)))
6217 			mask <<= 1;
6218 
6219 		/* accumulate all internode masks */
6220 		accl_mask |= mask;
6221 	}
6222 
6223 	/* convert mask to number of pages */
6224 	return ~accl_mask + 1;
6225 }
6226 
6227 /* Find the lowest pfn for a node */
6228 static unsigned long __init find_min_pfn_for_node(int nid)
6229 {
6230 	unsigned long min_pfn = ULONG_MAX;
6231 	unsigned long start_pfn;
6232 	int i;
6233 
6234 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6235 		min_pfn = min(min_pfn, start_pfn);
6236 
6237 	if (min_pfn == ULONG_MAX) {
6238 		pr_warn("Could not find start_pfn for node %d\n", nid);
6239 		return 0;
6240 	}
6241 
6242 	return min_pfn;
6243 }
6244 
6245 /**
6246  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6247  *
6248  * It returns the minimum PFN based on information provided via
6249  * memblock_set_node().
6250  */
6251 unsigned long __init find_min_pfn_with_active_regions(void)
6252 {
6253 	return find_min_pfn_for_node(MAX_NUMNODES);
6254 }
6255 
6256 /*
6257  * early_calculate_totalpages()
6258  * Sum pages in active regions for movable zone.
6259  * Populate N_MEMORY for calculating usable_nodes.
6260  */
6261 static unsigned long __init early_calculate_totalpages(void)
6262 {
6263 	unsigned long totalpages = 0;
6264 	unsigned long start_pfn, end_pfn;
6265 	int i, nid;
6266 
6267 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6268 		unsigned long pages = end_pfn - start_pfn;
6269 
6270 		totalpages += pages;
6271 		if (pages)
6272 			node_set_state(nid, N_MEMORY);
6273 	}
6274 	return totalpages;
6275 }
6276 
6277 /*
6278  * Find the PFN the Movable zone begins in each node. Kernel memory
6279  * is spread evenly between nodes as long as the nodes have enough
6280  * memory. When they don't, some nodes will have more kernelcore than
6281  * others
6282  */
6283 static void __init find_zone_movable_pfns_for_nodes(void)
6284 {
6285 	int i, nid;
6286 	unsigned long usable_startpfn;
6287 	unsigned long kernelcore_node, kernelcore_remaining;
6288 	/* save the state before borrow the nodemask */
6289 	nodemask_t saved_node_state = node_states[N_MEMORY];
6290 	unsigned long totalpages = early_calculate_totalpages();
6291 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6292 	struct memblock_region *r;
6293 
6294 	/* Need to find movable_zone earlier when movable_node is specified. */
6295 	find_usable_zone_for_movable();
6296 
6297 	/*
6298 	 * If movable_node is specified, ignore kernelcore and movablecore
6299 	 * options.
6300 	 */
6301 	if (movable_node_is_enabled()) {
6302 		for_each_memblock(memory, r) {
6303 			if (!memblock_is_hotpluggable(r))
6304 				continue;
6305 
6306 			nid = r->nid;
6307 
6308 			usable_startpfn = PFN_DOWN(r->base);
6309 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6310 				min(usable_startpfn, zone_movable_pfn[nid]) :
6311 				usable_startpfn;
6312 		}
6313 
6314 		goto out2;
6315 	}
6316 
6317 	/*
6318 	 * If kernelcore=mirror is specified, ignore movablecore option
6319 	 */
6320 	if (mirrored_kernelcore) {
6321 		bool mem_below_4gb_not_mirrored = false;
6322 
6323 		for_each_memblock(memory, r) {
6324 			if (memblock_is_mirror(r))
6325 				continue;
6326 
6327 			nid = r->nid;
6328 
6329 			usable_startpfn = memblock_region_memory_base_pfn(r);
6330 
6331 			if (usable_startpfn < 0x100000) {
6332 				mem_below_4gb_not_mirrored = true;
6333 				continue;
6334 			}
6335 
6336 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6337 				min(usable_startpfn, zone_movable_pfn[nid]) :
6338 				usable_startpfn;
6339 		}
6340 
6341 		if (mem_below_4gb_not_mirrored)
6342 			pr_warn("This configuration results in unmirrored kernel memory.");
6343 
6344 		goto out2;
6345 	}
6346 
6347 	/*
6348 	 * If movablecore=nn[KMG] was specified, calculate what size of
6349 	 * kernelcore that corresponds so that memory usable for
6350 	 * any allocation type is evenly spread. If both kernelcore
6351 	 * and movablecore are specified, then the value of kernelcore
6352 	 * will be used for required_kernelcore if it's greater than
6353 	 * what movablecore would have allowed.
6354 	 */
6355 	if (required_movablecore) {
6356 		unsigned long corepages;
6357 
6358 		/*
6359 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6360 		 * was requested by the user
6361 		 */
6362 		required_movablecore =
6363 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6364 		required_movablecore = min(totalpages, required_movablecore);
6365 		corepages = totalpages - required_movablecore;
6366 
6367 		required_kernelcore = max(required_kernelcore, corepages);
6368 	}
6369 
6370 	/*
6371 	 * If kernelcore was not specified or kernelcore size is larger
6372 	 * than totalpages, there is no ZONE_MOVABLE.
6373 	 */
6374 	if (!required_kernelcore || required_kernelcore >= totalpages)
6375 		goto out;
6376 
6377 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6378 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6379 
6380 restart:
6381 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6382 	kernelcore_node = required_kernelcore / usable_nodes;
6383 	for_each_node_state(nid, N_MEMORY) {
6384 		unsigned long start_pfn, end_pfn;
6385 
6386 		/*
6387 		 * Recalculate kernelcore_node if the division per node
6388 		 * now exceeds what is necessary to satisfy the requested
6389 		 * amount of memory for the kernel
6390 		 */
6391 		if (required_kernelcore < kernelcore_node)
6392 			kernelcore_node = required_kernelcore / usable_nodes;
6393 
6394 		/*
6395 		 * As the map is walked, we track how much memory is usable
6396 		 * by the kernel using kernelcore_remaining. When it is
6397 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6398 		 */
6399 		kernelcore_remaining = kernelcore_node;
6400 
6401 		/* Go through each range of PFNs within this node */
6402 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6403 			unsigned long size_pages;
6404 
6405 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6406 			if (start_pfn >= end_pfn)
6407 				continue;
6408 
6409 			/* Account for what is only usable for kernelcore */
6410 			if (start_pfn < usable_startpfn) {
6411 				unsigned long kernel_pages;
6412 				kernel_pages = min(end_pfn, usable_startpfn)
6413 								- start_pfn;
6414 
6415 				kernelcore_remaining -= min(kernel_pages,
6416 							kernelcore_remaining);
6417 				required_kernelcore -= min(kernel_pages,
6418 							required_kernelcore);
6419 
6420 				/* Continue if range is now fully accounted */
6421 				if (end_pfn <= usable_startpfn) {
6422 
6423 					/*
6424 					 * Push zone_movable_pfn to the end so
6425 					 * that if we have to rebalance
6426 					 * kernelcore across nodes, we will
6427 					 * not double account here
6428 					 */
6429 					zone_movable_pfn[nid] = end_pfn;
6430 					continue;
6431 				}
6432 				start_pfn = usable_startpfn;
6433 			}
6434 
6435 			/*
6436 			 * The usable PFN range for ZONE_MOVABLE is from
6437 			 * start_pfn->end_pfn. Calculate size_pages as the
6438 			 * number of pages used as kernelcore
6439 			 */
6440 			size_pages = end_pfn - start_pfn;
6441 			if (size_pages > kernelcore_remaining)
6442 				size_pages = kernelcore_remaining;
6443 			zone_movable_pfn[nid] = start_pfn + size_pages;
6444 
6445 			/*
6446 			 * Some kernelcore has been met, update counts and
6447 			 * break if the kernelcore for this node has been
6448 			 * satisfied
6449 			 */
6450 			required_kernelcore -= min(required_kernelcore,
6451 								size_pages);
6452 			kernelcore_remaining -= size_pages;
6453 			if (!kernelcore_remaining)
6454 				break;
6455 		}
6456 	}
6457 
6458 	/*
6459 	 * If there is still required_kernelcore, we do another pass with one
6460 	 * less node in the count. This will push zone_movable_pfn[nid] further
6461 	 * along on the nodes that still have memory until kernelcore is
6462 	 * satisfied
6463 	 */
6464 	usable_nodes--;
6465 	if (usable_nodes && required_kernelcore > usable_nodes)
6466 		goto restart;
6467 
6468 out2:
6469 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6470 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6471 		zone_movable_pfn[nid] =
6472 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6473 
6474 out:
6475 	/* restore the node_state */
6476 	node_states[N_MEMORY] = saved_node_state;
6477 }
6478 
6479 /* Any regular or high memory on that node ? */
6480 static void check_for_memory(pg_data_t *pgdat, int nid)
6481 {
6482 	enum zone_type zone_type;
6483 
6484 	if (N_MEMORY == N_NORMAL_MEMORY)
6485 		return;
6486 
6487 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6488 		struct zone *zone = &pgdat->node_zones[zone_type];
6489 		if (populated_zone(zone)) {
6490 			node_set_state(nid, N_HIGH_MEMORY);
6491 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6492 			    zone_type <= ZONE_NORMAL)
6493 				node_set_state(nid, N_NORMAL_MEMORY);
6494 			break;
6495 		}
6496 	}
6497 }
6498 
6499 /**
6500  * free_area_init_nodes - Initialise all pg_data_t and zone data
6501  * @max_zone_pfn: an array of max PFNs for each zone
6502  *
6503  * This will call free_area_init_node() for each active node in the system.
6504  * Using the page ranges provided by memblock_set_node(), the size of each
6505  * zone in each node and their holes is calculated. If the maximum PFN
6506  * between two adjacent zones match, it is assumed that the zone is empty.
6507  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6508  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6509  * starts where the previous one ended. For example, ZONE_DMA32 starts
6510  * at arch_max_dma_pfn.
6511  */
6512 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6513 {
6514 	unsigned long start_pfn, end_pfn;
6515 	int i, nid;
6516 
6517 	/* Record where the zone boundaries are */
6518 	memset(arch_zone_lowest_possible_pfn, 0,
6519 				sizeof(arch_zone_lowest_possible_pfn));
6520 	memset(arch_zone_highest_possible_pfn, 0,
6521 				sizeof(arch_zone_highest_possible_pfn));
6522 
6523 	start_pfn = find_min_pfn_with_active_regions();
6524 
6525 	for (i = 0; i < MAX_NR_ZONES; i++) {
6526 		if (i == ZONE_MOVABLE)
6527 			continue;
6528 
6529 		end_pfn = max(max_zone_pfn[i], start_pfn);
6530 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6531 		arch_zone_highest_possible_pfn[i] = end_pfn;
6532 
6533 		start_pfn = end_pfn;
6534 	}
6535 
6536 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6537 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6538 	find_zone_movable_pfns_for_nodes();
6539 
6540 	/* Print out the zone ranges */
6541 	pr_info("Zone ranges:\n");
6542 	for (i = 0; i < MAX_NR_ZONES; i++) {
6543 		if (i == ZONE_MOVABLE)
6544 			continue;
6545 		pr_info("  %-8s ", zone_names[i]);
6546 		if (arch_zone_lowest_possible_pfn[i] ==
6547 				arch_zone_highest_possible_pfn[i])
6548 			pr_cont("empty\n");
6549 		else
6550 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6551 				(u64)arch_zone_lowest_possible_pfn[i]
6552 					<< PAGE_SHIFT,
6553 				((u64)arch_zone_highest_possible_pfn[i]
6554 					<< PAGE_SHIFT) - 1);
6555 	}
6556 
6557 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6558 	pr_info("Movable zone start for each node\n");
6559 	for (i = 0; i < MAX_NUMNODES; i++) {
6560 		if (zone_movable_pfn[i])
6561 			pr_info("  Node %d: %#018Lx\n", i,
6562 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6563 	}
6564 
6565 	/* Print out the early node map */
6566 	pr_info("Early memory node ranges\n");
6567 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6568 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6569 			(u64)start_pfn << PAGE_SHIFT,
6570 			((u64)end_pfn << PAGE_SHIFT) - 1);
6571 
6572 	/* Initialise every node */
6573 	mminit_verify_pageflags_layout();
6574 	setup_nr_node_ids();
6575 	for_each_online_node(nid) {
6576 		pg_data_t *pgdat = NODE_DATA(nid);
6577 		free_area_init_node(nid, NULL,
6578 				find_min_pfn_for_node(nid), NULL);
6579 
6580 		/* Any memory on that node */
6581 		if (pgdat->node_present_pages)
6582 			node_set_state(nid, N_MEMORY);
6583 		check_for_memory(pgdat, nid);
6584 	}
6585 }
6586 
6587 static int __init cmdline_parse_core(char *p, unsigned long *core)
6588 {
6589 	unsigned long long coremem;
6590 	if (!p)
6591 		return -EINVAL;
6592 
6593 	coremem = memparse(p, &p);
6594 	*core = coremem >> PAGE_SHIFT;
6595 
6596 	/* Paranoid check that UL is enough for the coremem value */
6597 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6598 
6599 	return 0;
6600 }
6601 
6602 /*
6603  * kernelcore=size sets the amount of memory for use for allocations that
6604  * cannot be reclaimed or migrated.
6605  */
6606 static int __init cmdline_parse_kernelcore(char *p)
6607 {
6608 	/* parse kernelcore=mirror */
6609 	if (parse_option_str(p, "mirror")) {
6610 		mirrored_kernelcore = true;
6611 		return 0;
6612 	}
6613 
6614 	return cmdline_parse_core(p, &required_kernelcore);
6615 }
6616 
6617 /*
6618  * movablecore=size sets the amount of memory for use for allocations that
6619  * can be reclaimed or migrated.
6620  */
6621 static int __init cmdline_parse_movablecore(char *p)
6622 {
6623 	return cmdline_parse_core(p, &required_movablecore);
6624 }
6625 
6626 early_param("kernelcore", cmdline_parse_kernelcore);
6627 early_param("movablecore", cmdline_parse_movablecore);
6628 
6629 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6630 
6631 void adjust_managed_page_count(struct page *page, long count)
6632 {
6633 	spin_lock(&managed_page_count_lock);
6634 	page_zone(page)->managed_pages += count;
6635 	totalram_pages += count;
6636 #ifdef CONFIG_HIGHMEM
6637 	if (PageHighMem(page))
6638 		totalhigh_pages += count;
6639 #endif
6640 	spin_unlock(&managed_page_count_lock);
6641 }
6642 EXPORT_SYMBOL(adjust_managed_page_count);
6643 
6644 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6645 {
6646 	void *pos;
6647 	unsigned long pages = 0;
6648 
6649 	start = (void *)PAGE_ALIGN((unsigned long)start);
6650 	end = (void *)((unsigned long)end & PAGE_MASK);
6651 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6652 		if ((unsigned int)poison <= 0xFF)
6653 			memset(pos, poison, PAGE_SIZE);
6654 		free_reserved_page(virt_to_page(pos));
6655 	}
6656 
6657 	if (pages && s)
6658 		pr_info("Freeing %s memory: %ldK\n",
6659 			s, pages << (PAGE_SHIFT - 10));
6660 
6661 	return pages;
6662 }
6663 EXPORT_SYMBOL(free_reserved_area);
6664 
6665 #ifdef	CONFIG_HIGHMEM
6666 void free_highmem_page(struct page *page)
6667 {
6668 	__free_reserved_page(page);
6669 	totalram_pages++;
6670 	page_zone(page)->managed_pages++;
6671 	totalhigh_pages++;
6672 }
6673 #endif
6674 
6675 
6676 void __init mem_init_print_info(const char *str)
6677 {
6678 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6679 	unsigned long init_code_size, init_data_size;
6680 
6681 	physpages = get_num_physpages();
6682 	codesize = _etext - _stext;
6683 	datasize = _edata - _sdata;
6684 	rosize = __end_rodata - __start_rodata;
6685 	bss_size = __bss_stop - __bss_start;
6686 	init_data_size = __init_end - __init_begin;
6687 	init_code_size = _einittext - _sinittext;
6688 
6689 	/*
6690 	 * Detect special cases and adjust section sizes accordingly:
6691 	 * 1) .init.* may be embedded into .data sections
6692 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6693 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6694 	 * 3) .rodata.* may be embedded into .text or .data sections.
6695 	 */
6696 #define adj_init_size(start, end, size, pos, adj) \
6697 	do { \
6698 		if (start <= pos && pos < end && size > adj) \
6699 			size -= adj; \
6700 	} while (0)
6701 
6702 	adj_init_size(__init_begin, __init_end, init_data_size,
6703 		     _sinittext, init_code_size);
6704 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6705 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6706 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6707 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6708 
6709 #undef	adj_init_size
6710 
6711 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6712 #ifdef	CONFIG_HIGHMEM
6713 		", %luK highmem"
6714 #endif
6715 		"%s%s)\n",
6716 		nr_free_pages() << (PAGE_SHIFT - 10),
6717 		physpages << (PAGE_SHIFT - 10),
6718 		codesize >> 10, datasize >> 10, rosize >> 10,
6719 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6720 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6721 		totalcma_pages << (PAGE_SHIFT - 10),
6722 #ifdef	CONFIG_HIGHMEM
6723 		totalhigh_pages << (PAGE_SHIFT - 10),
6724 #endif
6725 		str ? ", " : "", str ? str : "");
6726 }
6727 
6728 /**
6729  * set_dma_reserve - set the specified number of pages reserved in the first zone
6730  * @new_dma_reserve: The number of pages to mark reserved
6731  *
6732  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6733  * In the DMA zone, a significant percentage may be consumed by kernel image
6734  * and other unfreeable allocations which can skew the watermarks badly. This
6735  * function may optionally be used to account for unfreeable pages in the
6736  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6737  * smaller per-cpu batchsize.
6738  */
6739 void __init set_dma_reserve(unsigned long new_dma_reserve)
6740 {
6741 	dma_reserve = new_dma_reserve;
6742 }
6743 
6744 void __init free_area_init(unsigned long *zones_size)
6745 {
6746 	free_area_init_node(0, zones_size,
6747 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6748 }
6749 
6750 static int page_alloc_cpu_dead(unsigned int cpu)
6751 {
6752 
6753 	lru_add_drain_cpu(cpu);
6754 	drain_pages(cpu);
6755 
6756 	/*
6757 	 * Spill the event counters of the dead processor
6758 	 * into the current processors event counters.
6759 	 * This artificially elevates the count of the current
6760 	 * processor.
6761 	 */
6762 	vm_events_fold_cpu(cpu);
6763 
6764 	/*
6765 	 * Zero the differential counters of the dead processor
6766 	 * so that the vm statistics are consistent.
6767 	 *
6768 	 * This is only okay since the processor is dead and cannot
6769 	 * race with what we are doing.
6770 	 */
6771 	cpu_vm_stats_fold(cpu);
6772 	return 0;
6773 }
6774 
6775 void __init page_alloc_init(void)
6776 {
6777 	int ret;
6778 
6779 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6780 					"mm/page_alloc:dead", NULL,
6781 					page_alloc_cpu_dead);
6782 	WARN_ON(ret < 0);
6783 }
6784 
6785 /*
6786  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6787  *	or min_free_kbytes changes.
6788  */
6789 static void calculate_totalreserve_pages(void)
6790 {
6791 	struct pglist_data *pgdat;
6792 	unsigned long reserve_pages = 0;
6793 	enum zone_type i, j;
6794 
6795 	for_each_online_pgdat(pgdat) {
6796 
6797 		pgdat->totalreserve_pages = 0;
6798 
6799 		for (i = 0; i < MAX_NR_ZONES; i++) {
6800 			struct zone *zone = pgdat->node_zones + i;
6801 			long max = 0;
6802 
6803 			/* Find valid and maximum lowmem_reserve in the zone */
6804 			for (j = i; j < MAX_NR_ZONES; j++) {
6805 				if (zone->lowmem_reserve[j] > max)
6806 					max = zone->lowmem_reserve[j];
6807 			}
6808 
6809 			/* we treat the high watermark as reserved pages. */
6810 			max += high_wmark_pages(zone);
6811 
6812 			if (max > zone->managed_pages)
6813 				max = zone->managed_pages;
6814 
6815 			pgdat->totalreserve_pages += max;
6816 
6817 			reserve_pages += max;
6818 		}
6819 	}
6820 	totalreserve_pages = reserve_pages;
6821 }
6822 
6823 /*
6824  * setup_per_zone_lowmem_reserve - called whenever
6825  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6826  *	has a correct pages reserved value, so an adequate number of
6827  *	pages are left in the zone after a successful __alloc_pages().
6828  */
6829 static void setup_per_zone_lowmem_reserve(void)
6830 {
6831 	struct pglist_data *pgdat;
6832 	enum zone_type j, idx;
6833 
6834 	for_each_online_pgdat(pgdat) {
6835 		for (j = 0; j < MAX_NR_ZONES; j++) {
6836 			struct zone *zone = pgdat->node_zones + j;
6837 			unsigned long managed_pages = zone->managed_pages;
6838 
6839 			zone->lowmem_reserve[j] = 0;
6840 
6841 			idx = j;
6842 			while (idx) {
6843 				struct zone *lower_zone;
6844 
6845 				idx--;
6846 
6847 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6848 					sysctl_lowmem_reserve_ratio[idx] = 1;
6849 
6850 				lower_zone = pgdat->node_zones + idx;
6851 				lower_zone->lowmem_reserve[j] = managed_pages /
6852 					sysctl_lowmem_reserve_ratio[idx];
6853 				managed_pages += lower_zone->managed_pages;
6854 			}
6855 		}
6856 	}
6857 
6858 	/* update totalreserve_pages */
6859 	calculate_totalreserve_pages();
6860 }
6861 
6862 static void __setup_per_zone_wmarks(void)
6863 {
6864 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6865 	unsigned long lowmem_pages = 0;
6866 	struct zone *zone;
6867 	unsigned long flags;
6868 
6869 	/* Calculate total number of !ZONE_HIGHMEM pages */
6870 	for_each_zone(zone) {
6871 		if (!is_highmem(zone))
6872 			lowmem_pages += zone->managed_pages;
6873 	}
6874 
6875 	for_each_zone(zone) {
6876 		u64 tmp;
6877 
6878 		spin_lock_irqsave(&zone->lock, flags);
6879 		tmp = (u64)pages_min * zone->managed_pages;
6880 		do_div(tmp, lowmem_pages);
6881 		if (is_highmem(zone)) {
6882 			/*
6883 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6884 			 * need highmem pages, so cap pages_min to a small
6885 			 * value here.
6886 			 *
6887 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6888 			 * deltas control asynch page reclaim, and so should
6889 			 * not be capped for highmem.
6890 			 */
6891 			unsigned long min_pages;
6892 
6893 			min_pages = zone->managed_pages / 1024;
6894 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6895 			zone->watermark[WMARK_MIN] = min_pages;
6896 		} else {
6897 			/*
6898 			 * If it's a lowmem zone, reserve a number of pages
6899 			 * proportionate to the zone's size.
6900 			 */
6901 			zone->watermark[WMARK_MIN] = tmp;
6902 		}
6903 
6904 		/*
6905 		 * Set the kswapd watermarks distance according to the
6906 		 * scale factor in proportion to available memory, but
6907 		 * ensure a minimum size on small systems.
6908 		 */
6909 		tmp = max_t(u64, tmp >> 2,
6910 			    mult_frac(zone->managed_pages,
6911 				      watermark_scale_factor, 10000));
6912 
6913 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6914 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6915 
6916 		spin_unlock_irqrestore(&zone->lock, flags);
6917 	}
6918 
6919 	/* update totalreserve_pages */
6920 	calculate_totalreserve_pages();
6921 }
6922 
6923 /**
6924  * setup_per_zone_wmarks - called when min_free_kbytes changes
6925  * or when memory is hot-{added|removed}
6926  *
6927  * Ensures that the watermark[min,low,high] values for each zone are set
6928  * correctly with respect to min_free_kbytes.
6929  */
6930 void setup_per_zone_wmarks(void)
6931 {
6932 	mutex_lock(&zonelists_mutex);
6933 	__setup_per_zone_wmarks();
6934 	mutex_unlock(&zonelists_mutex);
6935 }
6936 
6937 /*
6938  * Initialise min_free_kbytes.
6939  *
6940  * For small machines we want it small (128k min).  For large machines
6941  * we want it large (64MB max).  But it is not linear, because network
6942  * bandwidth does not increase linearly with machine size.  We use
6943  *
6944  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6945  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6946  *
6947  * which yields
6948  *
6949  * 16MB:	512k
6950  * 32MB:	724k
6951  * 64MB:	1024k
6952  * 128MB:	1448k
6953  * 256MB:	2048k
6954  * 512MB:	2896k
6955  * 1024MB:	4096k
6956  * 2048MB:	5792k
6957  * 4096MB:	8192k
6958  * 8192MB:	11584k
6959  * 16384MB:	16384k
6960  */
6961 int __meminit init_per_zone_wmark_min(void)
6962 {
6963 	unsigned long lowmem_kbytes;
6964 	int new_min_free_kbytes;
6965 
6966 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6967 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6968 
6969 	if (new_min_free_kbytes > user_min_free_kbytes) {
6970 		min_free_kbytes = new_min_free_kbytes;
6971 		if (min_free_kbytes < 128)
6972 			min_free_kbytes = 128;
6973 		if (min_free_kbytes > 65536)
6974 			min_free_kbytes = 65536;
6975 	} else {
6976 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6977 				new_min_free_kbytes, user_min_free_kbytes);
6978 	}
6979 	setup_per_zone_wmarks();
6980 	refresh_zone_stat_thresholds();
6981 	setup_per_zone_lowmem_reserve();
6982 
6983 #ifdef CONFIG_NUMA
6984 	setup_min_unmapped_ratio();
6985 	setup_min_slab_ratio();
6986 #endif
6987 
6988 	return 0;
6989 }
6990 core_initcall(init_per_zone_wmark_min)
6991 
6992 /*
6993  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6994  *	that we can call two helper functions whenever min_free_kbytes
6995  *	changes.
6996  */
6997 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6998 	void __user *buffer, size_t *length, loff_t *ppos)
6999 {
7000 	int rc;
7001 
7002 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7003 	if (rc)
7004 		return rc;
7005 
7006 	if (write) {
7007 		user_min_free_kbytes = min_free_kbytes;
7008 		setup_per_zone_wmarks();
7009 	}
7010 	return 0;
7011 }
7012 
7013 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7014 	void __user *buffer, size_t *length, loff_t *ppos)
7015 {
7016 	int rc;
7017 
7018 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7019 	if (rc)
7020 		return rc;
7021 
7022 	if (write)
7023 		setup_per_zone_wmarks();
7024 
7025 	return 0;
7026 }
7027 
7028 #ifdef CONFIG_NUMA
7029 static void setup_min_unmapped_ratio(void)
7030 {
7031 	pg_data_t *pgdat;
7032 	struct zone *zone;
7033 
7034 	for_each_online_pgdat(pgdat)
7035 		pgdat->min_unmapped_pages = 0;
7036 
7037 	for_each_zone(zone)
7038 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7039 				sysctl_min_unmapped_ratio) / 100;
7040 }
7041 
7042 
7043 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7044 	void __user *buffer, size_t *length, loff_t *ppos)
7045 {
7046 	int rc;
7047 
7048 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7049 	if (rc)
7050 		return rc;
7051 
7052 	setup_min_unmapped_ratio();
7053 
7054 	return 0;
7055 }
7056 
7057 static void setup_min_slab_ratio(void)
7058 {
7059 	pg_data_t *pgdat;
7060 	struct zone *zone;
7061 
7062 	for_each_online_pgdat(pgdat)
7063 		pgdat->min_slab_pages = 0;
7064 
7065 	for_each_zone(zone)
7066 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7067 				sysctl_min_slab_ratio) / 100;
7068 }
7069 
7070 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7071 	void __user *buffer, size_t *length, loff_t *ppos)
7072 {
7073 	int rc;
7074 
7075 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7076 	if (rc)
7077 		return rc;
7078 
7079 	setup_min_slab_ratio();
7080 
7081 	return 0;
7082 }
7083 #endif
7084 
7085 /*
7086  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7087  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7088  *	whenever sysctl_lowmem_reserve_ratio changes.
7089  *
7090  * The reserve ratio obviously has absolutely no relation with the
7091  * minimum watermarks. The lowmem reserve ratio can only make sense
7092  * if in function of the boot time zone sizes.
7093  */
7094 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7095 	void __user *buffer, size_t *length, loff_t *ppos)
7096 {
7097 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7098 	setup_per_zone_lowmem_reserve();
7099 	return 0;
7100 }
7101 
7102 /*
7103  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7104  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7105  * pagelist can have before it gets flushed back to buddy allocator.
7106  */
7107 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7108 	void __user *buffer, size_t *length, loff_t *ppos)
7109 {
7110 	struct zone *zone;
7111 	int old_percpu_pagelist_fraction;
7112 	int ret;
7113 
7114 	mutex_lock(&pcp_batch_high_lock);
7115 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7116 
7117 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7118 	if (!write || ret < 0)
7119 		goto out;
7120 
7121 	/* Sanity checking to avoid pcp imbalance */
7122 	if (percpu_pagelist_fraction &&
7123 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7124 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7125 		ret = -EINVAL;
7126 		goto out;
7127 	}
7128 
7129 	/* No change? */
7130 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7131 		goto out;
7132 
7133 	for_each_populated_zone(zone) {
7134 		unsigned int cpu;
7135 
7136 		for_each_possible_cpu(cpu)
7137 			pageset_set_high_and_batch(zone,
7138 					per_cpu_ptr(zone->pageset, cpu));
7139 	}
7140 out:
7141 	mutex_unlock(&pcp_batch_high_lock);
7142 	return ret;
7143 }
7144 
7145 #ifdef CONFIG_NUMA
7146 int hashdist = HASHDIST_DEFAULT;
7147 
7148 static int __init set_hashdist(char *str)
7149 {
7150 	if (!str)
7151 		return 0;
7152 	hashdist = simple_strtoul(str, &str, 0);
7153 	return 1;
7154 }
7155 __setup("hashdist=", set_hashdist);
7156 #endif
7157 
7158 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7159 /*
7160  * Returns the number of pages that arch has reserved but
7161  * is not known to alloc_large_system_hash().
7162  */
7163 static unsigned long __init arch_reserved_kernel_pages(void)
7164 {
7165 	return 0;
7166 }
7167 #endif
7168 
7169 /*
7170  * allocate a large system hash table from bootmem
7171  * - it is assumed that the hash table must contain an exact power-of-2
7172  *   quantity of entries
7173  * - limit is the number of hash buckets, not the total allocation size
7174  */
7175 void *__init alloc_large_system_hash(const char *tablename,
7176 				     unsigned long bucketsize,
7177 				     unsigned long numentries,
7178 				     int scale,
7179 				     int flags,
7180 				     unsigned int *_hash_shift,
7181 				     unsigned int *_hash_mask,
7182 				     unsigned long low_limit,
7183 				     unsigned long high_limit)
7184 {
7185 	unsigned long long max = high_limit;
7186 	unsigned long log2qty, size;
7187 	void *table = NULL;
7188 
7189 	/* allow the kernel cmdline to have a say */
7190 	if (!numentries) {
7191 		/* round applicable memory size up to nearest megabyte */
7192 		numentries = nr_kernel_pages;
7193 		numentries -= arch_reserved_kernel_pages();
7194 
7195 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7196 		if (PAGE_SHIFT < 20)
7197 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7198 
7199 		/* limit to 1 bucket per 2^scale bytes of low memory */
7200 		if (scale > PAGE_SHIFT)
7201 			numentries >>= (scale - PAGE_SHIFT);
7202 		else
7203 			numentries <<= (PAGE_SHIFT - scale);
7204 
7205 		/* Make sure we've got at least a 0-order allocation.. */
7206 		if (unlikely(flags & HASH_SMALL)) {
7207 			/* Makes no sense without HASH_EARLY */
7208 			WARN_ON(!(flags & HASH_EARLY));
7209 			if (!(numentries >> *_hash_shift)) {
7210 				numentries = 1UL << *_hash_shift;
7211 				BUG_ON(!numentries);
7212 			}
7213 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7214 			numentries = PAGE_SIZE / bucketsize;
7215 	}
7216 	numentries = roundup_pow_of_two(numentries);
7217 
7218 	/* limit allocation size to 1/16 total memory by default */
7219 	if (max == 0) {
7220 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7221 		do_div(max, bucketsize);
7222 	}
7223 	max = min(max, 0x80000000ULL);
7224 
7225 	if (numentries < low_limit)
7226 		numentries = low_limit;
7227 	if (numentries > max)
7228 		numentries = max;
7229 
7230 	log2qty = ilog2(numentries);
7231 
7232 	do {
7233 		size = bucketsize << log2qty;
7234 		if (flags & HASH_EARLY)
7235 			table = memblock_virt_alloc_nopanic(size, 0);
7236 		else if (hashdist)
7237 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7238 		else {
7239 			/*
7240 			 * If bucketsize is not a power-of-two, we may free
7241 			 * some pages at the end of hash table which
7242 			 * alloc_pages_exact() automatically does
7243 			 */
7244 			if (get_order(size) < MAX_ORDER) {
7245 				table = alloc_pages_exact(size, GFP_ATOMIC);
7246 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7247 			}
7248 		}
7249 	} while (!table && size > PAGE_SIZE && --log2qty);
7250 
7251 	if (!table)
7252 		panic("Failed to allocate %s hash table\n", tablename);
7253 
7254 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7255 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7256 
7257 	if (_hash_shift)
7258 		*_hash_shift = log2qty;
7259 	if (_hash_mask)
7260 		*_hash_mask = (1 << log2qty) - 1;
7261 
7262 	return table;
7263 }
7264 
7265 /*
7266  * This function checks whether pageblock includes unmovable pages or not.
7267  * If @count is not zero, it is okay to include less @count unmovable pages
7268  *
7269  * PageLRU check without isolation or lru_lock could race so that
7270  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7271  * check without lock_page also may miss some movable non-lru pages at
7272  * race condition. So you can't expect this function should be exact.
7273  */
7274 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7275 			 bool skip_hwpoisoned_pages)
7276 {
7277 	unsigned long pfn, iter, found;
7278 	int mt;
7279 
7280 	/*
7281 	 * For avoiding noise data, lru_add_drain_all() should be called
7282 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7283 	 */
7284 	if (zone_idx(zone) == ZONE_MOVABLE)
7285 		return false;
7286 	mt = get_pageblock_migratetype(page);
7287 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7288 		return false;
7289 
7290 	pfn = page_to_pfn(page);
7291 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7292 		unsigned long check = pfn + iter;
7293 
7294 		if (!pfn_valid_within(check))
7295 			continue;
7296 
7297 		page = pfn_to_page(check);
7298 
7299 		/*
7300 		 * Hugepages are not in LRU lists, but they're movable.
7301 		 * We need not scan over tail pages bacause we don't
7302 		 * handle each tail page individually in migration.
7303 		 */
7304 		if (PageHuge(page)) {
7305 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7306 			continue;
7307 		}
7308 
7309 		/*
7310 		 * We can't use page_count without pin a page
7311 		 * because another CPU can free compound page.
7312 		 * This check already skips compound tails of THP
7313 		 * because their page->_refcount is zero at all time.
7314 		 */
7315 		if (!page_ref_count(page)) {
7316 			if (PageBuddy(page))
7317 				iter += (1 << page_order(page)) - 1;
7318 			continue;
7319 		}
7320 
7321 		/*
7322 		 * The HWPoisoned page may be not in buddy system, and
7323 		 * page_count() is not 0.
7324 		 */
7325 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7326 			continue;
7327 
7328 		if (__PageMovable(page))
7329 			continue;
7330 
7331 		if (!PageLRU(page))
7332 			found++;
7333 		/*
7334 		 * If there are RECLAIMABLE pages, we need to check
7335 		 * it.  But now, memory offline itself doesn't call
7336 		 * shrink_node_slabs() and it still to be fixed.
7337 		 */
7338 		/*
7339 		 * If the page is not RAM, page_count()should be 0.
7340 		 * we don't need more check. This is an _used_ not-movable page.
7341 		 *
7342 		 * The problematic thing here is PG_reserved pages. PG_reserved
7343 		 * is set to both of a memory hole page and a _used_ kernel
7344 		 * page at boot.
7345 		 */
7346 		if (found > count)
7347 			return true;
7348 	}
7349 	return false;
7350 }
7351 
7352 bool is_pageblock_removable_nolock(struct page *page)
7353 {
7354 	struct zone *zone;
7355 	unsigned long pfn;
7356 
7357 	/*
7358 	 * We have to be careful here because we are iterating over memory
7359 	 * sections which are not zone aware so we might end up outside of
7360 	 * the zone but still within the section.
7361 	 * We have to take care about the node as well. If the node is offline
7362 	 * its NODE_DATA will be NULL - see page_zone.
7363 	 */
7364 	if (!node_online(page_to_nid(page)))
7365 		return false;
7366 
7367 	zone = page_zone(page);
7368 	pfn = page_to_pfn(page);
7369 	if (!zone_spans_pfn(zone, pfn))
7370 		return false;
7371 
7372 	return !has_unmovable_pages(zone, page, 0, true);
7373 }
7374 
7375 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7376 
7377 static unsigned long pfn_max_align_down(unsigned long pfn)
7378 {
7379 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7380 			     pageblock_nr_pages) - 1);
7381 }
7382 
7383 static unsigned long pfn_max_align_up(unsigned long pfn)
7384 {
7385 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7386 				pageblock_nr_pages));
7387 }
7388 
7389 /* [start, end) must belong to a single zone. */
7390 static int __alloc_contig_migrate_range(struct compact_control *cc,
7391 					unsigned long start, unsigned long end)
7392 {
7393 	/* This function is based on compact_zone() from compaction.c. */
7394 	unsigned long nr_reclaimed;
7395 	unsigned long pfn = start;
7396 	unsigned int tries = 0;
7397 	int ret = 0;
7398 
7399 	migrate_prep();
7400 
7401 	while (pfn < end || !list_empty(&cc->migratepages)) {
7402 		if (fatal_signal_pending(current)) {
7403 			ret = -EINTR;
7404 			break;
7405 		}
7406 
7407 		if (list_empty(&cc->migratepages)) {
7408 			cc->nr_migratepages = 0;
7409 			pfn = isolate_migratepages_range(cc, pfn, end);
7410 			if (!pfn) {
7411 				ret = -EINTR;
7412 				break;
7413 			}
7414 			tries = 0;
7415 		} else if (++tries == 5) {
7416 			ret = ret < 0 ? ret : -EBUSY;
7417 			break;
7418 		}
7419 
7420 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7421 							&cc->migratepages);
7422 		cc->nr_migratepages -= nr_reclaimed;
7423 
7424 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7425 				    NULL, 0, cc->mode, MR_CMA);
7426 	}
7427 	if (ret < 0) {
7428 		putback_movable_pages(&cc->migratepages);
7429 		return ret;
7430 	}
7431 	return 0;
7432 }
7433 
7434 /**
7435  * alloc_contig_range() -- tries to allocate given range of pages
7436  * @start:	start PFN to allocate
7437  * @end:	one-past-the-last PFN to allocate
7438  * @migratetype:	migratetype of the underlaying pageblocks (either
7439  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7440  *			in range must have the same migratetype and it must
7441  *			be either of the two.
7442  * @gfp_mask:	GFP mask to use during compaction
7443  *
7444  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7445  * aligned, however it's the caller's responsibility to guarantee that
7446  * we are the only thread that changes migrate type of pageblocks the
7447  * pages fall in.
7448  *
7449  * The PFN range must belong to a single zone.
7450  *
7451  * Returns zero on success or negative error code.  On success all
7452  * pages which PFN is in [start, end) are allocated for the caller and
7453  * need to be freed with free_contig_range().
7454  */
7455 int alloc_contig_range(unsigned long start, unsigned long end,
7456 		       unsigned migratetype, gfp_t gfp_mask)
7457 {
7458 	unsigned long outer_start, outer_end;
7459 	unsigned int order;
7460 	int ret = 0;
7461 
7462 	struct compact_control cc = {
7463 		.nr_migratepages = 0,
7464 		.order = -1,
7465 		.zone = page_zone(pfn_to_page(start)),
7466 		.mode = MIGRATE_SYNC,
7467 		.ignore_skip_hint = true,
7468 		.gfp_mask = current_gfp_context(gfp_mask),
7469 	};
7470 	INIT_LIST_HEAD(&cc.migratepages);
7471 
7472 	/*
7473 	 * What we do here is we mark all pageblocks in range as
7474 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7475 	 * have different sizes, and due to the way page allocator
7476 	 * work, we align the range to biggest of the two pages so
7477 	 * that page allocator won't try to merge buddies from
7478 	 * different pageblocks and change MIGRATE_ISOLATE to some
7479 	 * other migration type.
7480 	 *
7481 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7482 	 * migrate the pages from an unaligned range (ie. pages that
7483 	 * we are interested in).  This will put all the pages in
7484 	 * range back to page allocator as MIGRATE_ISOLATE.
7485 	 *
7486 	 * When this is done, we take the pages in range from page
7487 	 * allocator removing them from the buddy system.  This way
7488 	 * page allocator will never consider using them.
7489 	 *
7490 	 * This lets us mark the pageblocks back as
7491 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7492 	 * aligned range but not in the unaligned, original range are
7493 	 * put back to page allocator so that buddy can use them.
7494 	 */
7495 
7496 	ret = start_isolate_page_range(pfn_max_align_down(start),
7497 				       pfn_max_align_up(end), migratetype,
7498 				       false);
7499 	if (ret)
7500 		return ret;
7501 
7502 	/*
7503 	 * In case of -EBUSY, we'd like to know which page causes problem.
7504 	 * So, just fall through. We will check it in test_pages_isolated().
7505 	 */
7506 	ret = __alloc_contig_migrate_range(&cc, start, end);
7507 	if (ret && ret != -EBUSY)
7508 		goto done;
7509 
7510 	/*
7511 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7512 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7513 	 * more, all pages in [start, end) are free in page allocator.
7514 	 * What we are going to do is to allocate all pages from
7515 	 * [start, end) (that is remove them from page allocator).
7516 	 *
7517 	 * The only problem is that pages at the beginning and at the
7518 	 * end of interesting range may be not aligned with pages that
7519 	 * page allocator holds, ie. they can be part of higher order
7520 	 * pages.  Because of this, we reserve the bigger range and
7521 	 * once this is done free the pages we are not interested in.
7522 	 *
7523 	 * We don't have to hold zone->lock here because the pages are
7524 	 * isolated thus they won't get removed from buddy.
7525 	 */
7526 
7527 	lru_add_drain_all();
7528 	drain_all_pages(cc.zone);
7529 
7530 	order = 0;
7531 	outer_start = start;
7532 	while (!PageBuddy(pfn_to_page(outer_start))) {
7533 		if (++order >= MAX_ORDER) {
7534 			outer_start = start;
7535 			break;
7536 		}
7537 		outer_start &= ~0UL << order;
7538 	}
7539 
7540 	if (outer_start != start) {
7541 		order = page_order(pfn_to_page(outer_start));
7542 
7543 		/*
7544 		 * outer_start page could be small order buddy page and
7545 		 * it doesn't include start page. Adjust outer_start
7546 		 * in this case to report failed page properly
7547 		 * on tracepoint in test_pages_isolated()
7548 		 */
7549 		if (outer_start + (1UL << order) <= start)
7550 			outer_start = start;
7551 	}
7552 
7553 	/* Make sure the range is really isolated. */
7554 	if (test_pages_isolated(outer_start, end, false)) {
7555 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7556 			__func__, outer_start, end);
7557 		ret = -EBUSY;
7558 		goto done;
7559 	}
7560 
7561 	/* Grab isolated pages from freelists. */
7562 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7563 	if (!outer_end) {
7564 		ret = -EBUSY;
7565 		goto done;
7566 	}
7567 
7568 	/* Free head and tail (if any) */
7569 	if (start != outer_start)
7570 		free_contig_range(outer_start, start - outer_start);
7571 	if (end != outer_end)
7572 		free_contig_range(end, outer_end - end);
7573 
7574 done:
7575 	undo_isolate_page_range(pfn_max_align_down(start),
7576 				pfn_max_align_up(end), migratetype);
7577 	return ret;
7578 }
7579 
7580 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7581 {
7582 	unsigned int count = 0;
7583 
7584 	for (; nr_pages--; pfn++) {
7585 		struct page *page = pfn_to_page(pfn);
7586 
7587 		count += page_count(page) != 1;
7588 		__free_page(page);
7589 	}
7590 	WARN(count != 0, "%d pages are still in use!\n", count);
7591 }
7592 #endif
7593 
7594 #ifdef CONFIG_MEMORY_HOTPLUG
7595 /*
7596  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7597  * page high values need to be recalulated.
7598  */
7599 void __meminit zone_pcp_update(struct zone *zone)
7600 {
7601 	unsigned cpu;
7602 	mutex_lock(&pcp_batch_high_lock);
7603 	for_each_possible_cpu(cpu)
7604 		pageset_set_high_and_batch(zone,
7605 				per_cpu_ptr(zone->pageset, cpu));
7606 	mutex_unlock(&pcp_batch_high_lock);
7607 }
7608 #endif
7609 
7610 void zone_pcp_reset(struct zone *zone)
7611 {
7612 	unsigned long flags;
7613 	int cpu;
7614 	struct per_cpu_pageset *pset;
7615 
7616 	/* avoid races with drain_pages()  */
7617 	local_irq_save(flags);
7618 	if (zone->pageset != &boot_pageset) {
7619 		for_each_online_cpu(cpu) {
7620 			pset = per_cpu_ptr(zone->pageset, cpu);
7621 			drain_zonestat(zone, pset);
7622 		}
7623 		free_percpu(zone->pageset);
7624 		zone->pageset = &boot_pageset;
7625 	}
7626 	local_irq_restore(flags);
7627 }
7628 
7629 #ifdef CONFIG_MEMORY_HOTREMOVE
7630 /*
7631  * All pages in the range must be in a single zone and isolated
7632  * before calling this.
7633  */
7634 void
7635 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7636 {
7637 	struct page *page;
7638 	struct zone *zone;
7639 	unsigned int order, i;
7640 	unsigned long pfn;
7641 	unsigned long flags;
7642 	/* find the first valid pfn */
7643 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7644 		if (pfn_valid(pfn))
7645 			break;
7646 	if (pfn == end_pfn)
7647 		return;
7648 	zone = page_zone(pfn_to_page(pfn));
7649 	spin_lock_irqsave(&zone->lock, flags);
7650 	pfn = start_pfn;
7651 	while (pfn < end_pfn) {
7652 		if (!pfn_valid(pfn)) {
7653 			pfn++;
7654 			continue;
7655 		}
7656 		page = pfn_to_page(pfn);
7657 		/*
7658 		 * The HWPoisoned page may be not in buddy system, and
7659 		 * page_count() is not 0.
7660 		 */
7661 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7662 			pfn++;
7663 			SetPageReserved(page);
7664 			continue;
7665 		}
7666 
7667 		BUG_ON(page_count(page));
7668 		BUG_ON(!PageBuddy(page));
7669 		order = page_order(page);
7670 #ifdef CONFIG_DEBUG_VM
7671 		pr_info("remove from free list %lx %d %lx\n",
7672 			pfn, 1 << order, end_pfn);
7673 #endif
7674 		list_del(&page->lru);
7675 		rmv_page_order(page);
7676 		zone->free_area[order].nr_free--;
7677 		for (i = 0; i < (1 << order); i++)
7678 			SetPageReserved((page+i));
7679 		pfn += (1 << order);
7680 	}
7681 	spin_unlock_irqrestore(&zone->lock, flags);
7682 }
7683 #endif
7684 
7685 bool is_free_buddy_page(struct page *page)
7686 {
7687 	struct zone *zone = page_zone(page);
7688 	unsigned long pfn = page_to_pfn(page);
7689 	unsigned long flags;
7690 	unsigned int order;
7691 
7692 	spin_lock_irqsave(&zone->lock, flags);
7693 	for (order = 0; order < MAX_ORDER; order++) {
7694 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7695 
7696 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7697 			break;
7698 	}
7699 	spin_unlock_irqrestore(&zone->lock, flags);
7700 
7701 	return order < MAX_ORDER;
7702 }
7703