xref: /linux/mm/page_alloc.c (revision 040f404b731207935ed644b14bcc2bb8b8488d00)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
93 
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97 
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100  * On SMP, spin_trylock is sufficient protection.
101  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102  */
103 #define pcp_trylock_prepare(flags)	do { } while (0)
104 #define pcp_trylock_finish(flag)	do { } while (0)
105 #else
106 
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
109 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
110 #endif
111 
112 /*
113  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114  * a migration causing the wrong PCP to be locked and remote memory being
115  * potentially allocated, pin the task to the CPU for the lookup+lock.
116  * preempt_disable is used on !RT because it is faster than migrate_disable.
117  * migrate_disable is used on RT because otherwise RT spinlock usage is
118  * interfered with and a high priority task cannot preempt the allocator.
119  */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin()		preempt_disable()
122 #define pcpu_task_unpin()	preempt_enable()
123 #else
124 #define pcpu_task_pin()		migrate_disable()
125 #define pcpu_task_unpin()	migrate_enable()
126 #endif
127 
128 /*
129  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130  * Return value should be used with equivalent unlock helper.
131  */
132 #define pcpu_spin_lock(type, member, ptr)				\
133 ({									\
134 	type *_ret;							\
135 	pcpu_task_pin();						\
136 	_ret = this_cpu_ptr(ptr);					\
137 	spin_lock(&_ret->member);					\
138 	_ret;								\
139 })
140 
141 #define pcpu_spin_trylock(type, member, ptr)				\
142 ({									\
143 	type *_ret;							\
144 	pcpu_task_pin();						\
145 	_ret = this_cpu_ptr(ptr);					\
146 	if (!spin_trylock(&_ret->member)) {				\
147 		pcpu_task_unpin();					\
148 		_ret = NULL;						\
149 	}								\
150 	_ret;								\
151 })
152 
153 #define pcpu_spin_unlock(member, ptr)					\
154 ({									\
155 	spin_unlock(&ptr->member);					\
156 	pcpu_task_unpin();						\
157 })
158 
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr)						\
161 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_trylock(ptr)						\
164 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165 
166 #define pcp_spin_unlock(ptr)						\
167 	pcpu_spin_unlock(lock, ptr)
168 
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173 
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175 
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181  * defined in <linux/topology.h>.
182  */
183 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186 
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188 
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193 
194 /*
195  * Array of node states.
196  */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 	[N_POSSIBLE] = NODE_MASK_ALL,
199 	[N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 	[N_MEMORY] = { { [0] = 1UL } },
206 	[N_CPU] = { { [0] = 1UL } },
207 #endif	/* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210 
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212 
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216 
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 			    fpi_t fpi_flags);
219 
220 /*
221  * results with 256, 32 in the lowmem_reserve sysctl:
222  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223  *	1G machine -> (16M dma, 784M normal, 224M high)
224  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227  *
228  * TBD: should special case ZONE_DMA32 machines here - in those we normally
229  * don't need any ZONE_NORMAL reservation
230  */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 	[ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	[ZONE_DMA32] = 256,
237 #endif
238 	[ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 	[ZONE_HIGHMEM] = 0,
241 #endif
242 	[ZONE_MOVABLE] = 0,
243 };
244 
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 	 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 	 "DMA32",
251 #endif
252 	 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 	 "HighMem",
255 #endif
256 	 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 	 "Device",
259 #endif
260 };
261 
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 	"Unmovable",
264 	"Movable",
265 	"Reclaimable",
266 	"HighAtomic",
267 #ifdef CONFIG_CMA
268 	"CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 	"Isolate",
272 #endif
273 };
274 
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 int defrag_mode;
280 
281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 int movable_zone;
283 EXPORT_SYMBOL(movable_zone);
284 
285 #if MAX_NUMNODES > 1
286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
287 unsigned int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291 
292 static bool page_contains_unaccepted(struct page *page, unsigned int order);
293 static bool cond_accept_memory(struct zone *zone, unsigned int order,
294 			       int alloc_flags);
295 static bool __free_unaccepted(struct page *page);
296 
297 int page_group_by_mobility_disabled __read_mostly;
298 
299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
300 /*
301  * During boot we initialize deferred pages on-demand, as needed, but once
302  * page_alloc_init_late() has finished, the deferred pages are all initialized,
303  * and we can permanently disable that path.
304  */
305 DEFINE_STATIC_KEY_TRUE(deferred_pages);
306 
307 static inline bool deferred_pages_enabled(void)
308 {
309 	return static_branch_unlikely(&deferred_pages);
310 }
311 
312 /*
313  * deferred_grow_zone() is __init, but it is called from
314  * get_page_from_freelist() during early boot until deferred_pages permanently
315  * disables this call. This is why we have refdata wrapper to avoid warning,
316  * and to ensure that the function body gets unloaded.
317  */
318 static bool __ref
319 _deferred_grow_zone(struct zone *zone, unsigned int order)
320 {
321 	return deferred_grow_zone(zone, order);
322 }
323 #else
324 static inline bool deferred_pages_enabled(void)
325 {
326 	return false;
327 }
328 
329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
330 {
331 	return false;
332 }
333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
334 
335 /* Return a pointer to the bitmap storing bits affecting a block of pages */
336 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
337 							unsigned long pfn)
338 {
339 #ifdef CONFIG_SPARSEMEM
340 	return section_to_usemap(__pfn_to_section(pfn));
341 #else
342 	return page_zone(page)->pageblock_flags;
343 #endif /* CONFIG_SPARSEMEM */
344 }
345 
346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
347 {
348 #ifdef CONFIG_SPARSEMEM
349 	pfn &= (PAGES_PER_SECTION-1);
350 #else
351 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
352 #endif /* CONFIG_SPARSEMEM */
353 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
354 }
355 
356 /**
357  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
358  * @page: The page within the block of interest
359  * @pfn: The target page frame number
360  * @mask: mask of bits that the caller is interested in
361  *
362  * Return: pageblock_bits flags
363  */
364 unsigned long get_pfnblock_flags_mask(const struct page *page,
365 					unsigned long pfn, unsigned long mask)
366 {
367 	unsigned long *bitmap;
368 	unsigned long bitidx, word_bitidx;
369 	unsigned long word;
370 
371 	bitmap = get_pageblock_bitmap(page, pfn);
372 	bitidx = pfn_to_bitidx(page, pfn);
373 	word_bitidx = bitidx / BITS_PER_LONG;
374 	bitidx &= (BITS_PER_LONG-1);
375 	/*
376 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
377 	 * a consistent read of the memory array, so that results, even though
378 	 * racy, are not corrupted.
379 	 */
380 	word = READ_ONCE(bitmap[word_bitidx]);
381 	return (word >> bitidx) & mask;
382 }
383 
384 static __always_inline int get_pfnblock_migratetype(const struct page *page,
385 					unsigned long pfn)
386 {
387 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
388 }
389 
390 /**
391  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
392  * @page: The page within the block of interest
393  * @flags: The flags to set
394  * @pfn: The target page frame number
395  * @mask: mask of bits that the caller is interested in
396  */
397 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
398 					unsigned long pfn,
399 					unsigned long mask)
400 {
401 	unsigned long *bitmap;
402 	unsigned long bitidx, word_bitidx;
403 	unsigned long word;
404 
405 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
406 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
407 
408 	bitmap = get_pageblock_bitmap(page, pfn);
409 	bitidx = pfn_to_bitidx(page, pfn);
410 	word_bitidx = bitidx / BITS_PER_LONG;
411 	bitidx &= (BITS_PER_LONG-1);
412 
413 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
414 
415 	mask <<= bitidx;
416 	flags <<= bitidx;
417 
418 	word = READ_ONCE(bitmap[word_bitidx]);
419 	do {
420 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
421 }
422 
423 void set_pageblock_migratetype(struct page *page, int migratetype)
424 {
425 	if (unlikely(page_group_by_mobility_disabled &&
426 		     migratetype < MIGRATE_PCPTYPES))
427 		migratetype = MIGRATE_UNMOVABLE;
428 
429 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
430 				page_to_pfn(page), MIGRATETYPE_MASK);
431 }
432 
433 #ifdef CONFIG_DEBUG_VM
434 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
435 {
436 	int ret;
437 	unsigned seq;
438 	unsigned long pfn = page_to_pfn(page);
439 	unsigned long sp, start_pfn;
440 
441 	do {
442 		seq = zone_span_seqbegin(zone);
443 		start_pfn = zone->zone_start_pfn;
444 		sp = zone->spanned_pages;
445 		ret = !zone_spans_pfn(zone, pfn);
446 	} while (zone_span_seqretry(zone, seq));
447 
448 	if (ret)
449 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
450 			pfn, zone_to_nid(zone), zone->name,
451 			start_pfn, start_pfn + sp);
452 
453 	return ret;
454 }
455 
456 /*
457  * Temporary debugging check for pages not lying within a given zone.
458  */
459 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
460 {
461 	if (page_outside_zone_boundaries(zone, page))
462 		return true;
463 	if (zone != page_zone(page))
464 		return true;
465 
466 	return false;
467 }
468 #else
469 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
470 {
471 	return false;
472 }
473 #endif
474 
475 static void bad_page(struct page *page, const char *reason)
476 {
477 	static unsigned long resume;
478 	static unsigned long nr_shown;
479 	static unsigned long nr_unshown;
480 
481 	/*
482 	 * Allow a burst of 60 reports, then keep quiet for that minute;
483 	 * or allow a steady drip of one report per second.
484 	 */
485 	if (nr_shown == 60) {
486 		if (time_before(jiffies, resume)) {
487 			nr_unshown++;
488 			goto out;
489 		}
490 		if (nr_unshown) {
491 			pr_alert(
492 			      "BUG: Bad page state: %lu messages suppressed\n",
493 				nr_unshown);
494 			nr_unshown = 0;
495 		}
496 		nr_shown = 0;
497 	}
498 	if (nr_shown++ == 0)
499 		resume = jiffies + 60 * HZ;
500 
501 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
502 		current->comm, page_to_pfn(page));
503 	dump_page(page, reason);
504 
505 	print_modules();
506 	dump_stack();
507 out:
508 	/* Leave bad fields for debug, except PageBuddy could make trouble */
509 	if (PageBuddy(page))
510 		__ClearPageBuddy(page);
511 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
512 }
513 
514 static inline unsigned int order_to_pindex(int migratetype, int order)
515 {
516 
517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
518 	bool movable;
519 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
520 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
521 
522 		movable = migratetype == MIGRATE_MOVABLE;
523 
524 		return NR_LOWORDER_PCP_LISTS + movable;
525 	}
526 #else
527 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
528 #endif
529 
530 	return (MIGRATE_PCPTYPES * order) + migratetype;
531 }
532 
533 static inline int pindex_to_order(unsigned int pindex)
534 {
535 	int order = pindex / MIGRATE_PCPTYPES;
536 
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 	if (pindex >= NR_LOWORDER_PCP_LISTS)
539 		order = HPAGE_PMD_ORDER;
540 #else
541 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
542 #endif
543 
544 	return order;
545 }
546 
547 static inline bool pcp_allowed_order(unsigned int order)
548 {
549 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
550 		return true;
551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 	if (order == HPAGE_PMD_ORDER)
553 		return true;
554 #endif
555 	return false;
556 }
557 
558 /*
559  * Higher-order pages are called "compound pages".  They are structured thusly:
560  *
561  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
562  *
563  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
564  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
565  *
566  * The first tail page's ->compound_order holds the order of allocation.
567  * This usage means that zero-order pages may not be compound.
568  */
569 
570 void prep_compound_page(struct page *page, unsigned int order)
571 {
572 	int i;
573 	int nr_pages = 1 << order;
574 
575 	__SetPageHead(page);
576 	for (i = 1; i < nr_pages; i++)
577 		prep_compound_tail(page, i);
578 
579 	prep_compound_head(page, order);
580 }
581 
582 static inline void set_buddy_order(struct page *page, unsigned int order)
583 {
584 	set_page_private(page, order);
585 	__SetPageBuddy(page);
586 }
587 
588 #ifdef CONFIG_COMPACTION
589 static inline struct capture_control *task_capc(struct zone *zone)
590 {
591 	struct capture_control *capc = current->capture_control;
592 
593 	return unlikely(capc) &&
594 		!(current->flags & PF_KTHREAD) &&
595 		!capc->page &&
596 		capc->cc->zone == zone ? capc : NULL;
597 }
598 
599 static inline bool
600 compaction_capture(struct capture_control *capc, struct page *page,
601 		   int order, int migratetype)
602 {
603 	if (!capc || order != capc->cc->order)
604 		return false;
605 
606 	/* Do not accidentally pollute CMA or isolated regions*/
607 	if (is_migrate_cma(migratetype) ||
608 	    is_migrate_isolate(migratetype))
609 		return false;
610 
611 	/*
612 	 * Do not let lower order allocations pollute a movable pageblock
613 	 * unless compaction is also requesting movable pages.
614 	 * This might let an unmovable request use a reclaimable pageblock
615 	 * and vice-versa but no more than normal fallback logic which can
616 	 * have trouble finding a high-order free page.
617 	 */
618 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
619 	    capc->cc->migratetype != MIGRATE_MOVABLE)
620 		return false;
621 
622 	if (migratetype != capc->cc->migratetype)
623 		trace_mm_page_alloc_extfrag(page, capc->cc->order, order,
624 					    capc->cc->migratetype, migratetype);
625 
626 	capc->page = page;
627 	return true;
628 }
629 
630 #else
631 static inline struct capture_control *task_capc(struct zone *zone)
632 {
633 	return NULL;
634 }
635 
636 static inline bool
637 compaction_capture(struct capture_control *capc, struct page *page,
638 		   int order, int migratetype)
639 {
640 	return false;
641 }
642 #endif /* CONFIG_COMPACTION */
643 
644 static inline void account_freepages(struct zone *zone, int nr_pages,
645 				     int migratetype)
646 {
647 	lockdep_assert_held(&zone->lock);
648 
649 	if (is_migrate_isolate(migratetype))
650 		return;
651 
652 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
653 
654 	if (is_migrate_cma(migratetype))
655 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
656 	else if (is_migrate_highatomic(migratetype))
657 		WRITE_ONCE(zone->nr_free_highatomic,
658 			   zone->nr_free_highatomic + nr_pages);
659 }
660 
661 /* Used for pages not on another list */
662 static inline void __add_to_free_list(struct page *page, struct zone *zone,
663 				      unsigned int order, int migratetype,
664 				      bool tail)
665 {
666 	struct free_area *area = &zone->free_area[order];
667 	int nr_pages = 1 << order;
668 
669 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
670 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
671 		     get_pageblock_migratetype(page), migratetype, nr_pages);
672 
673 	if (tail)
674 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
675 	else
676 		list_add(&page->buddy_list, &area->free_list[migratetype]);
677 	area->nr_free++;
678 
679 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
680 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
681 }
682 
683 /*
684  * Used for pages which are on another list. Move the pages to the tail
685  * of the list - so the moved pages won't immediately be considered for
686  * allocation again (e.g., optimization for memory onlining).
687  */
688 static inline void move_to_free_list(struct page *page, struct zone *zone,
689 				     unsigned int order, int old_mt, int new_mt)
690 {
691 	struct free_area *area = &zone->free_area[order];
692 	int nr_pages = 1 << order;
693 
694 	/* Free page moving can fail, so it happens before the type update */
695 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
696 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
697 		     get_pageblock_migratetype(page), old_mt, nr_pages);
698 
699 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
700 
701 	account_freepages(zone, -nr_pages, old_mt);
702 	account_freepages(zone, nr_pages, new_mt);
703 
704 	if (order >= pageblock_order &&
705 	    is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) {
706 		if (!is_migrate_isolate(old_mt))
707 			nr_pages = -nr_pages;
708 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages);
709 	}
710 }
711 
712 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
713 					     unsigned int order, int migratetype)
714 {
715 	int nr_pages = 1 << order;
716 
717         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
718 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
719 		     get_pageblock_migratetype(page), migratetype, nr_pages);
720 
721 	/* clear reported state and update reported page count */
722 	if (page_reported(page))
723 		__ClearPageReported(page);
724 
725 	list_del(&page->buddy_list);
726 	__ClearPageBuddy(page);
727 	set_page_private(page, 0);
728 	zone->free_area[order].nr_free--;
729 
730 	if (order >= pageblock_order && !is_migrate_isolate(migratetype))
731 		__mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages);
732 }
733 
734 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
735 					   unsigned int order, int migratetype)
736 {
737 	__del_page_from_free_list(page, zone, order, migratetype);
738 	account_freepages(zone, -(1 << order), migratetype);
739 }
740 
741 static inline struct page *get_page_from_free_area(struct free_area *area,
742 					    int migratetype)
743 {
744 	return list_first_entry_or_null(&area->free_list[migratetype],
745 					struct page, buddy_list);
746 }
747 
748 /*
749  * If this is less than the 2nd largest possible page, check if the buddy
750  * of the next-higher order is free. If it is, it's possible
751  * that pages are being freed that will coalesce soon. In case,
752  * that is happening, add the free page to the tail of the list
753  * so it's less likely to be used soon and more likely to be merged
754  * as a 2-level higher order page
755  */
756 static inline bool
757 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
758 		   struct page *page, unsigned int order)
759 {
760 	unsigned long higher_page_pfn;
761 	struct page *higher_page;
762 
763 	if (order >= MAX_PAGE_ORDER - 1)
764 		return false;
765 
766 	higher_page_pfn = buddy_pfn & pfn;
767 	higher_page = page + (higher_page_pfn - pfn);
768 
769 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
770 			NULL) != NULL;
771 }
772 
773 /*
774  * Freeing function for a buddy system allocator.
775  *
776  * The concept of a buddy system is to maintain direct-mapped table
777  * (containing bit values) for memory blocks of various "orders".
778  * The bottom level table contains the map for the smallest allocatable
779  * units of memory (here, pages), and each level above it describes
780  * pairs of units from the levels below, hence, "buddies".
781  * At a high level, all that happens here is marking the table entry
782  * at the bottom level available, and propagating the changes upward
783  * as necessary, plus some accounting needed to play nicely with other
784  * parts of the VM system.
785  * At each level, we keep a list of pages, which are heads of continuous
786  * free pages of length of (1 << order) and marked with PageBuddy.
787  * Page's order is recorded in page_private(page) field.
788  * So when we are allocating or freeing one, we can derive the state of the
789  * other.  That is, if we allocate a small block, and both were
790  * free, the remainder of the region must be split into blocks.
791  * If a block is freed, and its buddy is also free, then this
792  * triggers coalescing into a block of larger size.
793  *
794  * -- nyc
795  */
796 
797 static inline void __free_one_page(struct page *page,
798 		unsigned long pfn,
799 		struct zone *zone, unsigned int order,
800 		int migratetype, fpi_t fpi_flags)
801 {
802 	struct capture_control *capc = task_capc(zone);
803 	unsigned long buddy_pfn = 0;
804 	unsigned long combined_pfn;
805 	struct page *buddy;
806 	bool to_tail;
807 
808 	VM_BUG_ON(!zone_is_initialized(zone));
809 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
810 
811 	VM_BUG_ON(migratetype == -1);
812 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
813 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
814 
815 	account_freepages(zone, 1 << order, migratetype);
816 
817 	while (order < MAX_PAGE_ORDER) {
818 		int buddy_mt = migratetype;
819 
820 		if (compaction_capture(capc, page, order, migratetype)) {
821 			account_freepages(zone, -(1 << order), migratetype);
822 			return;
823 		}
824 
825 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
826 		if (!buddy)
827 			goto done_merging;
828 
829 		if (unlikely(order >= pageblock_order)) {
830 			/*
831 			 * We want to prevent merge between freepages on pageblock
832 			 * without fallbacks and normal pageblock. Without this,
833 			 * pageblock isolation could cause incorrect freepage or CMA
834 			 * accounting or HIGHATOMIC accounting.
835 			 */
836 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
837 
838 			if (migratetype != buddy_mt &&
839 			    (!migratetype_is_mergeable(migratetype) ||
840 			     !migratetype_is_mergeable(buddy_mt)))
841 				goto done_merging;
842 		}
843 
844 		/*
845 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 		 * merge with it and move up one order.
847 		 */
848 		if (page_is_guard(buddy))
849 			clear_page_guard(zone, buddy, order);
850 		else
851 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
852 
853 		if (unlikely(buddy_mt != migratetype)) {
854 			/*
855 			 * Match buddy type. This ensures that an
856 			 * expand() down the line puts the sub-blocks
857 			 * on the right freelists.
858 			 */
859 			set_pageblock_migratetype(buddy, migratetype);
860 		}
861 
862 		combined_pfn = buddy_pfn & pfn;
863 		page = page + (combined_pfn - pfn);
864 		pfn = combined_pfn;
865 		order++;
866 	}
867 
868 done_merging:
869 	set_buddy_order(page, order);
870 
871 	if (fpi_flags & FPI_TO_TAIL)
872 		to_tail = true;
873 	else if (is_shuffle_order(order))
874 		to_tail = shuffle_pick_tail();
875 	else
876 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
877 
878 	__add_to_free_list(page, zone, order, migratetype, to_tail);
879 
880 	/* Notify page reporting subsystem of freed page */
881 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
882 		page_reporting_notify_free(order);
883 }
884 
885 /*
886  * A bad page could be due to a number of fields. Instead of multiple branches,
887  * try and check multiple fields with one check. The caller must do a detailed
888  * check if necessary.
889  */
890 static inline bool page_expected_state(struct page *page,
891 					unsigned long check_flags)
892 {
893 	if (unlikely(atomic_read(&page->_mapcount) != -1))
894 		return false;
895 
896 	if (unlikely((unsigned long)page->mapping |
897 			page_ref_count(page) |
898 #ifdef CONFIG_MEMCG
899 			page->memcg_data |
900 #endif
901 #ifdef CONFIG_PAGE_POOL
902 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
903 #endif
904 			(page->flags & check_flags)))
905 		return false;
906 
907 	return true;
908 }
909 
910 static const char *page_bad_reason(struct page *page, unsigned long flags)
911 {
912 	const char *bad_reason = NULL;
913 
914 	if (unlikely(atomic_read(&page->_mapcount) != -1))
915 		bad_reason = "nonzero mapcount";
916 	if (unlikely(page->mapping != NULL))
917 		bad_reason = "non-NULL mapping";
918 	if (unlikely(page_ref_count(page) != 0))
919 		bad_reason = "nonzero _refcount";
920 	if (unlikely(page->flags & flags)) {
921 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
922 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
923 		else
924 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 	}
926 #ifdef CONFIG_MEMCG
927 	if (unlikely(page->memcg_data))
928 		bad_reason = "page still charged to cgroup";
929 #endif
930 #ifdef CONFIG_PAGE_POOL
931 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
932 		bad_reason = "page_pool leak";
933 #endif
934 	return bad_reason;
935 }
936 
937 static inline bool free_page_is_bad(struct page *page)
938 {
939 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
940 		return false;
941 
942 	/* Something has gone sideways, find it */
943 	bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
944 	return true;
945 }
946 
947 static inline bool is_check_pages_enabled(void)
948 {
949 	return static_branch_unlikely(&check_pages_enabled);
950 }
951 
952 static int free_tail_page_prepare(struct page *head_page, struct page *page)
953 {
954 	struct folio *folio = (struct folio *)head_page;
955 	int ret = 1;
956 
957 	/*
958 	 * We rely page->lru.next never has bit 0 set, unless the page
959 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
960 	 */
961 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
962 
963 	if (!is_check_pages_enabled()) {
964 		ret = 0;
965 		goto out;
966 	}
967 	switch (page - head_page) {
968 	case 1:
969 		/* the first tail page: these may be in place of ->mapping */
970 		if (unlikely(folio_large_mapcount(folio))) {
971 			bad_page(page, "nonzero large_mapcount");
972 			goto out;
973 		}
974 		if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) &&
975 		    unlikely(atomic_read(&folio->_nr_pages_mapped))) {
976 			bad_page(page, "nonzero nr_pages_mapped");
977 			goto out;
978 		}
979 		if (IS_ENABLED(CONFIG_MM_ID)) {
980 			if (unlikely(folio->_mm_id_mapcount[0] != -1)) {
981 				bad_page(page, "nonzero mm mapcount 0");
982 				goto out;
983 			}
984 			if (unlikely(folio->_mm_id_mapcount[1] != -1)) {
985 				bad_page(page, "nonzero mm mapcount 1");
986 				goto out;
987 			}
988 		}
989 		if (IS_ENABLED(CONFIG_64BIT)) {
990 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
991 				bad_page(page, "nonzero entire_mapcount");
992 				goto out;
993 			}
994 			if (unlikely(atomic_read(&folio->_pincount))) {
995 				bad_page(page, "nonzero pincount");
996 				goto out;
997 			}
998 		}
999 		break;
1000 	case 2:
1001 		/* the second tail page: deferred_list overlaps ->mapping */
1002 		if (unlikely(!list_empty(&folio->_deferred_list))) {
1003 			bad_page(page, "on deferred list");
1004 			goto out;
1005 		}
1006 		if (!IS_ENABLED(CONFIG_64BIT)) {
1007 			if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) {
1008 				bad_page(page, "nonzero entire_mapcount");
1009 				goto out;
1010 			}
1011 			if (unlikely(atomic_read(&folio->_pincount))) {
1012 				bad_page(page, "nonzero pincount");
1013 				goto out;
1014 			}
1015 		}
1016 		break;
1017 	case 3:
1018 		/* the third tail page: hugetlb specifics overlap ->mappings */
1019 		if (IS_ENABLED(CONFIG_HUGETLB_PAGE))
1020 			break;
1021 		fallthrough;
1022 	default:
1023 		if (page->mapping != TAIL_MAPPING) {
1024 			bad_page(page, "corrupted mapping in tail page");
1025 			goto out;
1026 		}
1027 		break;
1028 	}
1029 	if (unlikely(!PageTail(page))) {
1030 		bad_page(page, "PageTail not set");
1031 		goto out;
1032 	}
1033 	if (unlikely(compound_head(page) != head_page)) {
1034 		bad_page(page, "compound_head not consistent");
1035 		goto out;
1036 	}
1037 	ret = 0;
1038 out:
1039 	page->mapping = NULL;
1040 	clear_compound_head(page);
1041 	return ret;
1042 }
1043 
1044 /*
1045  * Skip KASAN memory poisoning when either:
1046  *
1047  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1048  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1049  *    using page tags instead (see below).
1050  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1051  *    that error detection is disabled for accesses via the page address.
1052  *
1053  * Pages will have match-all tags in the following circumstances:
1054  *
1055  * 1. Pages are being initialized for the first time, including during deferred
1056  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1057  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1058  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1059  * 3. The allocation was excluded from being checked due to sampling,
1060  *    see the call to kasan_unpoison_pages.
1061  *
1062  * Poisoning pages during deferred memory init will greatly lengthen the
1063  * process and cause problem in large memory systems as the deferred pages
1064  * initialization is done with interrupt disabled.
1065  *
1066  * Assuming that there will be no reference to those newly initialized
1067  * pages before they are ever allocated, this should have no effect on
1068  * KASAN memory tracking as the poison will be properly inserted at page
1069  * allocation time. The only corner case is when pages are allocated by
1070  * on-demand allocation and then freed again before the deferred pages
1071  * initialization is done, but this is not likely to happen.
1072  */
1073 static inline bool should_skip_kasan_poison(struct page *page)
1074 {
1075 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1076 		return deferred_pages_enabled();
1077 
1078 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1079 }
1080 
1081 static void kernel_init_pages(struct page *page, int numpages)
1082 {
1083 	int i;
1084 
1085 	/* s390's use of memset() could override KASAN redzones. */
1086 	kasan_disable_current();
1087 	for (i = 0; i < numpages; i++)
1088 		clear_highpage_kasan_tagged(page + i);
1089 	kasan_enable_current();
1090 }
1091 
1092 #ifdef CONFIG_MEM_ALLOC_PROFILING
1093 
1094 /* Should be called only if mem_alloc_profiling_enabled() */
1095 void __clear_page_tag_ref(struct page *page)
1096 {
1097 	union pgtag_ref_handle handle;
1098 	union codetag_ref ref;
1099 
1100 	if (get_page_tag_ref(page, &ref, &handle)) {
1101 		set_codetag_empty(&ref);
1102 		update_page_tag_ref(handle, &ref);
1103 		put_page_tag_ref(handle);
1104 	}
1105 }
1106 
1107 /* Should be called only if mem_alloc_profiling_enabled() */
1108 static noinline
1109 void __pgalloc_tag_add(struct page *page, struct task_struct *task,
1110 		       unsigned int nr)
1111 {
1112 	union pgtag_ref_handle handle;
1113 	union codetag_ref ref;
1114 
1115 	if (get_page_tag_ref(page, &ref, &handle)) {
1116 		alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr);
1117 		update_page_tag_ref(handle, &ref);
1118 		put_page_tag_ref(handle);
1119 	}
1120 }
1121 
1122 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1123 				   unsigned int nr)
1124 {
1125 	if (mem_alloc_profiling_enabled())
1126 		__pgalloc_tag_add(page, task, nr);
1127 }
1128 
1129 /* Should be called only if mem_alloc_profiling_enabled() */
1130 static noinline
1131 void __pgalloc_tag_sub(struct page *page, unsigned int nr)
1132 {
1133 	union pgtag_ref_handle handle;
1134 	union codetag_ref ref;
1135 
1136 	if (get_page_tag_ref(page, &ref, &handle)) {
1137 		alloc_tag_sub(&ref, PAGE_SIZE * nr);
1138 		update_page_tag_ref(handle, &ref);
1139 		put_page_tag_ref(handle);
1140 	}
1141 }
1142 
1143 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr)
1144 {
1145 	if (mem_alloc_profiling_enabled())
1146 		__pgalloc_tag_sub(page, nr);
1147 }
1148 
1149 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */
1150 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr)
1151 {
1152 	if (tag)
1153 		this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr);
1154 }
1155 
1156 #else /* CONFIG_MEM_ALLOC_PROFILING */
1157 
1158 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task,
1159 				   unsigned int nr) {}
1160 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {}
1161 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {}
1162 
1163 #endif /* CONFIG_MEM_ALLOC_PROFILING */
1164 
1165 __always_inline bool free_pages_prepare(struct page *page,
1166 			unsigned int order)
1167 {
1168 	int bad = 0;
1169 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1170 	bool init = want_init_on_free();
1171 	bool compound = PageCompound(page);
1172 	struct folio *folio = page_folio(page);
1173 
1174 	VM_BUG_ON_PAGE(PageTail(page), page);
1175 
1176 	trace_mm_page_free(page, order);
1177 	kmsan_free_page(page, order);
1178 
1179 	if (memcg_kmem_online() && PageMemcgKmem(page))
1180 		__memcg_kmem_uncharge_page(page, order);
1181 
1182 	/*
1183 	 * In rare cases, when truncation or holepunching raced with
1184 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1185 	 * found set here.  This does not indicate a problem, unless
1186 	 * "unevictable_pgs_cleared" appears worryingly large.
1187 	 */
1188 	if (unlikely(folio_test_mlocked(folio))) {
1189 		long nr_pages = folio_nr_pages(folio);
1190 
1191 		__folio_clear_mlocked(folio);
1192 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1193 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1194 	}
1195 
1196 	if (unlikely(PageHWPoison(page)) && !order) {
1197 		/* Do not let hwpoison pages hit pcplists/buddy */
1198 		reset_page_owner(page, order);
1199 		page_table_check_free(page, order);
1200 		pgalloc_tag_sub(page, 1 << order);
1201 
1202 		/*
1203 		 * The page is isolated and accounted for.
1204 		 * Mark the codetag as empty to avoid accounting error
1205 		 * when the page is freed by unpoison_memory().
1206 		 */
1207 		clear_page_tag_ref(page);
1208 		return false;
1209 	}
1210 
1211 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1212 
1213 	/*
1214 	 * Check tail pages before head page information is cleared to
1215 	 * avoid checking PageCompound for order-0 pages.
1216 	 */
1217 	if (unlikely(order)) {
1218 		int i;
1219 
1220 		if (compound) {
1221 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1222 #ifdef NR_PAGES_IN_LARGE_FOLIO
1223 			folio->_nr_pages = 0;
1224 #endif
1225 		}
1226 		for (i = 1; i < (1 << order); i++) {
1227 			if (compound)
1228 				bad += free_tail_page_prepare(page, page + i);
1229 			if (is_check_pages_enabled()) {
1230 				if (free_page_is_bad(page + i)) {
1231 					bad++;
1232 					continue;
1233 				}
1234 			}
1235 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1236 		}
1237 	}
1238 	if (PageMappingFlags(page)) {
1239 		if (PageAnon(page))
1240 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1241 		page->mapping = NULL;
1242 	}
1243 	if (is_check_pages_enabled()) {
1244 		if (free_page_is_bad(page))
1245 			bad++;
1246 		if (bad)
1247 			return false;
1248 	}
1249 
1250 	page_cpupid_reset_last(page);
1251 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1252 	reset_page_owner(page, order);
1253 	page_table_check_free(page, order);
1254 	pgalloc_tag_sub(page, 1 << order);
1255 
1256 	if (!PageHighMem(page)) {
1257 		debug_check_no_locks_freed(page_address(page),
1258 					   PAGE_SIZE << order);
1259 		debug_check_no_obj_freed(page_address(page),
1260 					   PAGE_SIZE << order);
1261 	}
1262 
1263 	kernel_poison_pages(page, 1 << order);
1264 
1265 	/*
1266 	 * As memory initialization might be integrated into KASAN,
1267 	 * KASAN poisoning and memory initialization code must be
1268 	 * kept together to avoid discrepancies in behavior.
1269 	 *
1270 	 * With hardware tag-based KASAN, memory tags must be set before the
1271 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1272 	 */
1273 	if (!skip_kasan_poison) {
1274 		kasan_poison_pages(page, order, init);
1275 
1276 		/* Memory is already initialized if KASAN did it internally. */
1277 		if (kasan_has_integrated_init())
1278 			init = false;
1279 	}
1280 	if (init)
1281 		kernel_init_pages(page, 1 << order);
1282 
1283 	/*
1284 	 * arch_free_page() can make the page's contents inaccessible.  s390
1285 	 * does this.  So nothing which can access the page's contents should
1286 	 * happen after this.
1287 	 */
1288 	arch_free_page(page, order);
1289 
1290 	debug_pagealloc_unmap_pages(page, 1 << order);
1291 
1292 	return true;
1293 }
1294 
1295 /*
1296  * Frees a number of pages from the PCP lists
1297  * Assumes all pages on list are in same zone.
1298  * count is the number of pages to free.
1299  */
1300 static void free_pcppages_bulk(struct zone *zone, int count,
1301 					struct per_cpu_pages *pcp,
1302 					int pindex)
1303 {
1304 	unsigned long flags;
1305 	unsigned int order;
1306 	struct page *page;
1307 
1308 	/*
1309 	 * Ensure proper count is passed which otherwise would stuck in the
1310 	 * below while (list_empty(list)) loop.
1311 	 */
1312 	count = min(pcp->count, count);
1313 
1314 	/* Ensure requested pindex is drained first. */
1315 	pindex = pindex - 1;
1316 
1317 	spin_lock_irqsave(&zone->lock, flags);
1318 
1319 	while (count > 0) {
1320 		struct list_head *list;
1321 		int nr_pages;
1322 
1323 		/* Remove pages from lists in a round-robin fashion. */
1324 		do {
1325 			if (++pindex > NR_PCP_LISTS - 1)
1326 				pindex = 0;
1327 			list = &pcp->lists[pindex];
1328 		} while (list_empty(list));
1329 
1330 		order = pindex_to_order(pindex);
1331 		nr_pages = 1 << order;
1332 		do {
1333 			unsigned long pfn;
1334 			int mt;
1335 
1336 			page = list_last_entry(list, struct page, pcp_list);
1337 			pfn = page_to_pfn(page);
1338 			mt = get_pfnblock_migratetype(page, pfn);
1339 
1340 			/* must delete to avoid corrupting pcp list */
1341 			list_del(&page->pcp_list);
1342 			count -= nr_pages;
1343 			pcp->count -= nr_pages;
1344 
1345 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1346 			trace_mm_page_pcpu_drain(page, order, mt);
1347 		} while (count > 0 && !list_empty(list));
1348 	}
1349 
1350 	spin_unlock_irqrestore(&zone->lock, flags);
1351 }
1352 
1353 /* Split a multi-block free page into its individual pageblocks. */
1354 static void split_large_buddy(struct zone *zone, struct page *page,
1355 			      unsigned long pfn, int order, fpi_t fpi)
1356 {
1357 	unsigned long end = pfn + (1 << order);
1358 
1359 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1360 	/* Caller removed page from freelist, buddy info cleared! */
1361 	VM_WARN_ON_ONCE(PageBuddy(page));
1362 
1363 	if (order > pageblock_order)
1364 		order = pageblock_order;
1365 
1366 	do {
1367 		int mt = get_pfnblock_migratetype(page, pfn);
1368 
1369 		__free_one_page(page, pfn, zone, order, mt, fpi);
1370 		pfn += 1 << order;
1371 		if (pfn == end)
1372 			break;
1373 		page = pfn_to_page(pfn);
1374 	} while (1);
1375 }
1376 
1377 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1378 				   unsigned int order)
1379 {
1380 	/* Remember the order */
1381 	page->order = order;
1382 	/* Add the page to the free list */
1383 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1384 }
1385 
1386 static void free_one_page(struct zone *zone, struct page *page,
1387 			  unsigned long pfn, unsigned int order,
1388 			  fpi_t fpi_flags)
1389 {
1390 	struct llist_head *llhead;
1391 	unsigned long flags;
1392 
1393 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1394 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
1395 			add_page_to_zone_llist(zone, page, order);
1396 			return;
1397 		}
1398 	} else {
1399 		spin_lock_irqsave(&zone->lock, flags);
1400 	}
1401 
1402 	/* The lock succeeded. Process deferred pages. */
1403 	llhead = &zone->trylock_free_pages;
1404 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1405 		struct llist_node *llnode;
1406 		struct page *p, *tmp;
1407 
1408 		llnode = llist_del_all(llhead);
1409 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1410 			unsigned int p_order = p->order;
1411 
1412 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1413 			__count_vm_events(PGFREE, 1 << p_order);
1414 		}
1415 	}
1416 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1417 	spin_unlock_irqrestore(&zone->lock, flags);
1418 
1419 	__count_vm_events(PGFREE, 1 << order);
1420 }
1421 
1422 static void __free_pages_ok(struct page *page, unsigned int order,
1423 			    fpi_t fpi_flags)
1424 {
1425 	unsigned long pfn = page_to_pfn(page);
1426 	struct zone *zone = page_zone(page);
1427 
1428 	if (free_pages_prepare(page, order))
1429 		free_one_page(zone, page, pfn, order, fpi_flags);
1430 }
1431 
1432 void __meminit __free_pages_core(struct page *page, unsigned int order,
1433 		enum meminit_context context)
1434 {
1435 	unsigned int nr_pages = 1 << order;
1436 	struct page *p = page;
1437 	unsigned int loop;
1438 
1439 	/*
1440 	 * When initializing the memmap, __init_single_page() sets the refcount
1441 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1442 	 * refcount of all involved pages to 0.
1443 	 *
1444 	 * Note that hotplugged memory pages are initialized to PageOffline().
1445 	 * Pages freed from memblock might be marked as reserved.
1446 	 */
1447 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1448 	    unlikely(context == MEMINIT_HOTPLUG)) {
1449 		for (loop = 0; loop < nr_pages; loop++, p++) {
1450 			VM_WARN_ON_ONCE(PageReserved(p));
1451 			__ClearPageOffline(p);
1452 			set_page_count(p, 0);
1453 		}
1454 
1455 		adjust_managed_page_count(page, nr_pages);
1456 	} else {
1457 		for (loop = 0; loop < nr_pages; loop++, p++) {
1458 			__ClearPageReserved(p);
1459 			set_page_count(p, 0);
1460 		}
1461 
1462 		/* memblock adjusts totalram_pages() manually. */
1463 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1464 	}
1465 
1466 	if (page_contains_unaccepted(page, order)) {
1467 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1468 			return;
1469 
1470 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1471 	}
1472 
1473 	/*
1474 	 * Bypass PCP and place fresh pages right to the tail, primarily
1475 	 * relevant for memory onlining.
1476 	 */
1477 	__free_pages_ok(page, order, FPI_TO_TAIL);
1478 }
1479 
1480 /*
1481  * Check that the whole (or subset of) a pageblock given by the interval of
1482  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1483  * with the migration of free compaction scanner.
1484  *
1485  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1486  *
1487  * It's possible on some configurations to have a setup like node0 node1 node0
1488  * i.e. it's possible that all pages within a zones range of pages do not
1489  * belong to a single zone. We assume that a border between node0 and node1
1490  * can occur within a single pageblock, but not a node0 node1 node0
1491  * interleaving within a single pageblock. It is therefore sufficient to check
1492  * the first and last page of a pageblock and avoid checking each individual
1493  * page in a pageblock.
1494  *
1495  * Note: the function may return non-NULL struct page even for a page block
1496  * which contains a memory hole (i.e. there is no physical memory for a subset
1497  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1498  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1499  * even though the start pfn is online and valid. This should be safe most of
1500  * the time because struct pages are still initialized via init_unavailable_range()
1501  * and pfn walkers shouldn't touch any physical memory range for which they do
1502  * not recognize any specific metadata in struct pages.
1503  */
1504 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1505 				     unsigned long end_pfn, struct zone *zone)
1506 {
1507 	struct page *start_page;
1508 	struct page *end_page;
1509 
1510 	/* end_pfn is one past the range we are checking */
1511 	end_pfn--;
1512 
1513 	if (!pfn_valid(end_pfn))
1514 		return NULL;
1515 
1516 	start_page = pfn_to_online_page(start_pfn);
1517 	if (!start_page)
1518 		return NULL;
1519 
1520 	if (page_zone(start_page) != zone)
1521 		return NULL;
1522 
1523 	end_page = pfn_to_page(end_pfn);
1524 
1525 	/* This gives a shorter code than deriving page_zone(end_page) */
1526 	if (page_zone_id(start_page) != page_zone_id(end_page))
1527 		return NULL;
1528 
1529 	return start_page;
1530 }
1531 
1532 /*
1533  * The order of subdivision here is critical for the IO subsystem.
1534  * Please do not alter this order without good reasons and regression
1535  * testing. Specifically, as large blocks of memory are subdivided,
1536  * the order in which smaller blocks are delivered depends on the order
1537  * they're subdivided in this function. This is the primary factor
1538  * influencing the order in which pages are delivered to the IO
1539  * subsystem according to empirical testing, and this is also justified
1540  * by considering the behavior of a buddy system containing a single
1541  * large block of memory acted on by a series of small allocations.
1542  * This behavior is a critical factor in sglist merging's success.
1543  *
1544  * -- nyc
1545  */
1546 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1547 				  int high, int migratetype)
1548 {
1549 	unsigned int size = 1 << high;
1550 	unsigned int nr_added = 0;
1551 
1552 	while (high > low) {
1553 		high--;
1554 		size >>= 1;
1555 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1556 
1557 		/*
1558 		 * Mark as guard pages (or page), that will allow to
1559 		 * merge back to allocator when buddy will be freed.
1560 		 * Corresponding page table entries will not be touched,
1561 		 * pages will stay not present in virtual address space
1562 		 */
1563 		if (set_page_guard(zone, &page[size], high))
1564 			continue;
1565 
1566 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1567 		set_buddy_order(&page[size], high);
1568 		nr_added += size;
1569 	}
1570 
1571 	return nr_added;
1572 }
1573 
1574 static __always_inline void page_del_and_expand(struct zone *zone,
1575 						struct page *page, int low,
1576 						int high, int migratetype)
1577 {
1578 	int nr_pages = 1 << high;
1579 
1580 	__del_page_from_free_list(page, zone, high, migratetype);
1581 	nr_pages -= expand(zone, page, low, high, migratetype);
1582 	account_freepages(zone, -nr_pages, migratetype);
1583 }
1584 
1585 static void check_new_page_bad(struct page *page)
1586 {
1587 	if (unlikely(PageHWPoison(page))) {
1588 		/* Don't complain about hwpoisoned pages */
1589 		if (PageBuddy(page))
1590 			__ClearPageBuddy(page);
1591 		return;
1592 	}
1593 
1594 	bad_page(page,
1595 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1596 }
1597 
1598 /*
1599  * This page is about to be returned from the page allocator
1600  */
1601 static bool check_new_page(struct page *page)
1602 {
1603 	if (likely(page_expected_state(page,
1604 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1605 		return false;
1606 
1607 	check_new_page_bad(page);
1608 	return true;
1609 }
1610 
1611 static inline bool check_new_pages(struct page *page, unsigned int order)
1612 {
1613 	if (is_check_pages_enabled()) {
1614 		for (int i = 0; i < (1 << order); i++) {
1615 			struct page *p = page + i;
1616 
1617 			if (check_new_page(p))
1618 				return true;
1619 		}
1620 	}
1621 
1622 	return false;
1623 }
1624 
1625 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1626 {
1627 	/* Don't skip if a software KASAN mode is enabled. */
1628 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1629 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1630 		return false;
1631 
1632 	/* Skip, if hardware tag-based KASAN is not enabled. */
1633 	if (!kasan_hw_tags_enabled())
1634 		return true;
1635 
1636 	/*
1637 	 * With hardware tag-based KASAN enabled, skip if this has been
1638 	 * requested via __GFP_SKIP_KASAN.
1639 	 */
1640 	return flags & __GFP_SKIP_KASAN;
1641 }
1642 
1643 static inline bool should_skip_init(gfp_t flags)
1644 {
1645 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1646 	if (!kasan_hw_tags_enabled())
1647 		return false;
1648 
1649 	/* For hardware tag-based KASAN, skip if requested. */
1650 	return (flags & __GFP_SKIP_ZERO);
1651 }
1652 
1653 inline void post_alloc_hook(struct page *page, unsigned int order,
1654 				gfp_t gfp_flags)
1655 {
1656 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1657 			!should_skip_init(gfp_flags);
1658 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1659 	int i;
1660 
1661 	set_page_private(page, 0);
1662 
1663 	arch_alloc_page(page, order);
1664 	debug_pagealloc_map_pages(page, 1 << order);
1665 
1666 	/*
1667 	 * Page unpoisoning must happen before memory initialization.
1668 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1669 	 * allocations and the page unpoisoning code will complain.
1670 	 */
1671 	kernel_unpoison_pages(page, 1 << order);
1672 
1673 	/*
1674 	 * As memory initialization might be integrated into KASAN,
1675 	 * KASAN unpoisoning and memory initializion code must be
1676 	 * kept together to avoid discrepancies in behavior.
1677 	 */
1678 
1679 	/*
1680 	 * If memory tags should be zeroed
1681 	 * (which happens only when memory should be initialized as well).
1682 	 */
1683 	if (zero_tags) {
1684 		/* Initialize both memory and memory tags. */
1685 		for (i = 0; i != 1 << order; ++i)
1686 			tag_clear_highpage(page + i);
1687 
1688 		/* Take note that memory was initialized by the loop above. */
1689 		init = false;
1690 	}
1691 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1692 	    kasan_unpoison_pages(page, order, init)) {
1693 		/* Take note that memory was initialized by KASAN. */
1694 		if (kasan_has_integrated_init())
1695 			init = false;
1696 	} else {
1697 		/*
1698 		 * If memory tags have not been set by KASAN, reset the page
1699 		 * tags to ensure page_address() dereferencing does not fault.
1700 		 */
1701 		for (i = 0; i != 1 << order; ++i)
1702 			page_kasan_tag_reset(page + i);
1703 	}
1704 	/* If memory is still not initialized, initialize it now. */
1705 	if (init)
1706 		kernel_init_pages(page, 1 << order);
1707 
1708 	set_page_owner(page, order, gfp_flags);
1709 	page_table_check_alloc(page, order);
1710 	pgalloc_tag_add(page, current, 1 << order);
1711 }
1712 
1713 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1714 							unsigned int alloc_flags)
1715 {
1716 	post_alloc_hook(page, order, gfp_flags);
1717 
1718 	if (order && (gfp_flags & __GFP_COMP))
1719 		prep_compound_page(page, order);
1720 
1721 	/*
1722 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1723 	 * allocate the page. The expectation is that the caller is taking
1724 	 * steps that will free more memory. The caller should avoid the page
1725 	 * being used for !PFMEMALLOC purposes.
1726 	 */
1727 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1728 		set_page_pfmemalloc(page);
1729 	else
1730 		clear_page_pfmemalloc(page);
1731 }
1732 
1733 /*
1734  * Go through the free lists for the given migratetype and remove
1735  * the smallest available page from the freelists
1736  */
1737 static __always_inline
1738 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1739 						int migratetype)
1740 {
1741 	unsigned int current_order;
1742 	struct free_area *area;
1743 	struct page *page;
1744 
1745 	/* Find a page of the appropriate size in the preferred list */
1746 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1747 		area = &(zone->free_area[current_order]);
1748 		page = get_page_from_free_area(area, migratetype);
1749 		if (!page)
1750 			continue;
1751 
1752 		page_del_and_expand(zone, page, order, current_order,
1753 				    migratetype);
1754 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1755 				pcp_allowed_order(order) &&
1756 				migratetype < MIGRATE_PCPTYPES);
1757 		return page;
1758 	}
1759 
1760 	return NULL;
1761 }
1762 
1763 
1764 /*
1765  * This array describes the order lists are fallen back to when
1766  * the free lists for the desirable migrate type are depleted
1767  *
1768  * The other migratetypes do not have fallbacks.
1769  */
1770 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1771 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1772 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1773 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1774 };
1775 
1776 #ifdef CONFIG_CMA
1777 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1778 					unsigned int order)
1779 {
1780 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1781 }
1782 #else
1783 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1784 					unsigned int order) { return NULL; }
1785 #endif
1786 
1787 /*
1788  * Change the type of a block and move all its free pages to that
1789  * type's freelist.
1790  */
1791 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1792 				  int old_mt, int new_mt)
1793 {
1794 	struct page *page;
1795 	unsigned long pfn, end_pfn;
1796 	unsigned int order;
1797 	int pages_moved = 0;
1798 
1799 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1800 	end_pfn = pageblock_end_pfn(start_pfn);
1801 
1802 	for (pfn = start_pfn; pfn < end_pfn;) {
1803 		page = pfn_to_page(pfn);
1804 		if (!PageBuddy(page)) {
1805 			pfn++;
1806 			continue;
1807 		}
1808 
1809 		/* Make sure we are not inadvertently changing nodes */
1810 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1811 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1812 
1813 		order = buddy_order(page);
1814 
1815 		move_to_free_list(page, zone, order, old_mt, new_mt);
1816 
1817 		pfn += 1 << order;
1818 		pages_moved += 1 << order;
1819 	}
1820 
1821 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1822 
1823 	return pages_moved;
1824 }
1825 
1826 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1827 				      unsigned long *start_pfn,
1828 				      int *num_free, int *num_movable)
1829 {
1830 	unsigned long pfn, start, end;
1831 
1832 	pfn = page_to_pfn(page);
1833 	start = pageblock_start_pfn(pfn);
1834 	end = pageblock_end_pfn(pfn);
1835 
1836 	/*
1837 	 * The caller only has the lock for @zone, don't touch ranges
1838 	 * that straddle into other zones. While we could move part of
1839 	 * the range that's inside the zone, this call is usually
1840 	 * accompanied by other operations such as migratetype updates
1841 	 * which also should be locked.
1842 	 */
1843 	if (!zone_spans_pfn(zone, start))
1844 		return false;
1845 	if (!zone_spans_pfn(zone, end - 1))
1846 		return false;
1847 
1848 	*start_pfn = start;
1849 
1850 	if (num_free) {
1851 		*num_free = 0;
1852 		*num_movable = 0;
1853 		for (pfn = start; pfn < end;) {
1854 			page = pfn_to_page(pfn);
1855 			if (PageBuddy(page)) {
1856 				int nr = 1 << buddy_order(page);
1857 
1858 				*num_free += nr;
1859 				pfn += nr;
1860 				continue;
1861 			}
1862 			/*
1863 			 * We assume that pages that could be isolated for
1864 			 * migration are movable. But we don't actually try
1865 			 * isolating, as that would be expensive.
1866 			 */
1867 			if (PageLRU(page) || __PageMovable(page))
1868 				(*num_movable)++;
1869 			pfn++;
1870 		}
1871 	}
1872 
1873 	return true;
1874 }
1875 
1876 static int move_freepages_block(struct zone *zone, struct page *page,
1877 				int old_mt, int new_mt)
1878 {
1879 	unsigned long start_pfn;
1880 
1881 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1882 		return -1;
1883 
1884 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1885 }
1886 
1887 #ifdef CONFIG_MEMORY_ISOLATION
1888 /* Look for a buddy that straddles start_pfn */
1889 static unsigned long find_large_buddy(unsigned long start_pfn)
1890 {
1891 	int order = 0;
1892 	struct page *page;
1893 	unsigned long pfn = start_pfn;
1894 
1895 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1896 		/* Nothing found */
1897 		if (++order > MAX_PAGE_ORDER)
1898 			return start_pfn;
1899 		pfn &= ~0UL << order;
1900 	}
1901 
1902 	/*
1903 	 * Found a preceding buddy, but does it straddle?
1904 	 */
1905 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1906 		return pfn;
1907 
1908 	/* Nothing found */
1909 	return start_pfn;
1910 }
1911 
1912 /**
1913  * move_freepages_block_isolate - move free pages in block for page isolation
1914  * @zone: the zone
1915  * @page: the pageblock page
1916  * @migratetype: migratetype to set on the pageblock
1917  *
1918  * This is similar to move_freepages_block(), but handles the special
1919  * case encountered in page isolation, where the block of interest
1920  * might be part of a larger buddy spanning multiple pageblocks.
1921  *
1922  * Unlike the regular page allocator path, which moves pages while
1923  * stealing buddies off the freelist, page isolation is interested in
1924  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1925  *
1926  * This function handles that. Straddling buddies are split into
1927  * individual pageblocks. Only the block of interest is moved.
1928  *
1929  * Returns %true if pages could be moved, %false otherwise.
1930  */
1931 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1932 				  int migratetype)
1933 {
1934 	unsigned long start_pfn, pfn;
1935 
1936 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1937 		return false;
1938 
1939 	/* No splits needed if buddies can't span multiple blocks */
1940 	if (pageblock_order == MAX_PAGE_ORDER)
1941 		goto move;
1942 
1943 	/* We're a tail block in a larger buddy */
1944 	pfn = find_large_buddy(start_pfn);
1945 	if (pfn != start_pfn) {
1946 		struct page *buddy = pfn_to_page(pfn);
1947 		int order = buddy_order(buddy);
1948 
1949 		del_page_from_free_list(buddy, zone, order,
1950 					get_pfnblock_migratetype(buddy, pfn));
1951 		set_pageblock_migratetype(page, migratetype);
1952 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1953 		return true;
1954 	}
1955 
1956 	/* We're the starting block of a larger buddy */
1957 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1958 		int order = buddy_order(page);
1959 
1960 		del_page_from_free_list(page, zone, order,
1961 					get_pfnblock_migratetype(page, pfn));
1962 		set_pageblock_migratetype(page, migratetype);
1963 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1964 		return true;
1965 	}
1966 move:
1967 	__move_freepages_block(zone, start_pfn,
1968 			       get_pfnblock_migratetype(page, start_pfn),
1969 			       migratetype);
1970 	return true;
1971 }
1972 #endif /* CONFIG_MEMORY_ISOLATION */
1973 
1974 static void change_pageblock_range(struct page *pageblock_page,
1975 					int start_order, int migratetype)
1976 {
1977 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1978 
1979 	while (nr_pageblocks--) {
1980 		set_pageblock_migratetype(pageblock_page, migratetype);
1981 		pageblock_page += pageblock_nr_pages;
1982 	}
1983 }
1984 
1985 static inline bool boost_watermark(struct zone *zone)
1986 {
1987 	unsigned long max_boost;
1988 
1989 	if (!watermark_boost_factor)
1990 		return false;
1991 	/*
1992 	 * Don't bother in zones that are unlikely to produce results.
1993 	 * On small machines, including kdump capture kernels running
1994 	 * in a small area, boosting the watermark can cause an out of
1995 	 * memory situation immediately.
1996 	 */
1997 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1998 		return false;
1999 
2000 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2001 			watermark_boost_factor, 10000);
2002 
2003 	/*
2004 	 * high watermark may be uninitialised if fragmentation occurs
2005 	 * very early in boot so do not boost. We do not fall
2006 	 * through and boost by pageblock_nr_pages as failing
2007 	 * allocations that early means that reclaim is not going
2008 	 * to help and it may even be impossible to reclaim the
2009 	 * boosted watermark resulting in a hang.
2010 	 */
2011 	if (!max_boost)
2012 		return false;
2013 
2014 	max_boost = max(pageblock_nr_pages, max_boost);
2015 
2016 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2017 		max_boost);
2018 
2019 	return true;
2020 }
2021 
2022 /*
2023  * When we are falling back to another migratetype during allocation, should we
2024  * try to claim an entire block to satisfy further allocations, instead of
2025  * polluting multiple pageblocks?
2026  */
2027 static bool should_try_claim_block(unsigned int order, int start_mt)
2028 {
2029 	/*
2030 	 * Leaving this order check is intended, although there is
2031 	 * relaxed order check in next check. The reason is that
2032 	 * we can actually claim the whole pageblock if this condition met,
2033 	 * but, below check doesn't guarantee it and that is just heuristic
2034 	 * so could be changed anytime.
2035 	 */
2036 	if (order >= pageblock_order)
2037 		return true;
2038 
2039 	/*
2040 	 * Above a certain threshold, always try to claim, as it's likely there
2041 	 * will be more free pages in the pageblock.
2042 	 */
2043 	if (order >= pageblock_order / 2)
2044 		return true;
2045 
2046 	/*
2047 	 * Unmovable/reclaimable allocations would cause permanent
2048 	 * fragmentations if they fell back to allocating from a movable block
2049 	 * (polluting it), so we try to claim the whole block regardless of the
2050 	 * allocation size. Later movable allocations can always steal from this
2051 	 * block, which is less problematic.
2052 	 */
2053 	if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE)
2054 		return true;
2055 
2056 	if (page_group_by_mobility_disabled)
2057 		return true;
2058 
2059 	/*
2060 	 * Movable pages won't cause permanent fragmentation, so when you alloc
2061 	 * small pages, we just need to temporarily steal unmovable or
2062 	 * reclaimable pages that are closest to the request size. After a
2063 	 * while, memory compaction may occur to form large contiguous pages,
2064 	 * and the next movable allocation may not need to steal.
2065 	 */
2066 	return false;
2067 }
2068 
2069 /*
2070  * Check whether there is a suitable fallback freepage with requested order.
2071  * If claimable is true, this function returns fallback_mt only if
2072  * we would do this whole-block claiming. This would help to reduce
2073  * fragmentation due to mixed migratetype pages in one pageblock.
2074  */
2075 int find_suitable_fallback(struct free_area *area, unsigned int order,
2076 			   int migratetype, bool claimable)
2077 {
2078 	int i;
2079 
2080 	if (claimable && !should_try_claim_block(order, migratetype))
2081 		return -2;
2082 
2083 	if (area->nr_free == 0)
2084 		return -1;
2085 
2086 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2087 		int fallback_mt = fallbacks[migratetype][i];
2088 
2089 		if (!free_area_empty(area, fallback_mt))
2090 			return fallback_mt;
2091 	}
2092 
2093 	return -1;
2094 }
2095 
2096 /*
2097  * This function implements actual block claiming behaviour. If order is large
2098  * enough, we can claim the whole pageblock for the requested migratetype. If
2099  * not, we check the pageblock for constituent pages; if at least half of the
2100  * pages are free or compatible, we can still claim the whole block, so pages
2101  * freed in the future will be put on the correct free list.
2102  */
2103 static struct page *
2104 try_to_claim_block(struct zone *zone, struct page *page,
2105 		   int current_order, int order, int start_type,
2106 		   int block_type, unsigned int alloc_flags)
2107 {
2108 	int free_pages, movable_pages, alike_pages;
2109 	unsigned long start_pfn;
2110 
2111 	/* Take ownership for orders >= pageblock_order */
2112 	if (current_order >= pageblock_order) {
2113 		unsigned int nr_added;
2114 
2115 		del_page_from_free_list(page, zone, current_order, block_type);
2116 		change_pageblock_range(page, current_order, start_type);
2117 		nr_added = expand(zone, page, order, current_order, start_type);
2118 		account_freepages(zone, nr_added, start_type);
2119 		return page;
2120 	}
2121 
2122 	/*
2123 	 * Boost watermarks to increase reclaim pressure to reduce the
2124 	 * likelihood of future fallbacks. Wake kswapd now as the node
2125 	 * may be balanced overall and kswapd will not wake naturally.
2126 	 */
2127 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2128 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2129 
2130 	/* moving whole block can fail due to zone boundary conditions */
2131 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
2132 				       &movable_pages))
2133 		return NULL;
2134 
2135 	/*
2136 	 * Determine how many pages are compatible with our allocation.
2137 	 * For movable allocation, it's the number of movable pages which
2138 	 * we just obtained. For other types it's a bit more tricky.
2139 	 */
2140 	if (start_type == MIGRATE_MOVABLE) {
2141 		alike_pages = movable_pages;
2142 	} else {
2143 		/*
2144 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2145 		 * to MOVABLE pageblock, consider all non-movable pages as
2146 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2147 		 * vice versa, be conservative since we can't distinguish the
2148 		 * exact migratetype of non-movable pages.
2149 		 */
2150 		if (block_type == MIGRATE_MOVABLE)
2151 			alike_pages = pageblock_nr_pages
2152 						- (free_pages + movable_pages);
2153 		else
2154 			alike_pages = 0;
2155 	}
2156 	/*
2157 	 * If a sufficient number of pages in the block are either free or of
2158 	 * compatible migratability as our allocation, claim the whole block.
2159 	 */
2160 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2161 			page_group_by_mobility_disabled) {
2162 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2163 		return __rmqueue_smallest(zone, order, start_type);
2164 	}
2165 
2166 	return NULL;
2167 }
2168 
2169 /*
2170  * Try to allocate from some fallback migratetype by claiming the entire block,
2171  * i.e. converting it to the allocation's start migratetype.
2172  *
2173  * The use of signed ints for order and current_order is a deliberate
2174  * deviation from the rest of this file, to make the for loop
2175  * condition simpler.
2176  */
2177 static __always_inline struct page *
2178 __rmqueue_claim(struct zone *zone, int order, int start_migratetype,
2179 						unsigned int alloc_flags)
2180 {
2181 	struct free_area *area;
2182 	int current_order;
2183 	int min_order = order;
2184 	struct page *page;
2185 	int fallback_mt;
2186 
2187 	/*
2188 	 * Do not steal pages from freelists belonging to other pageblocks
2189 	 * i.e. orders < pageblock_order. If there are no local zones free,
2190 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2191 	 */
2192 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2193 		min_order = pageblock_order;
2194 
2195 	/*
2196 	 * Find the largest available free page in the other list. This roughly
2197 	 * approximates finding the pageblock with the most free pages, which
2198 	 * would be too costly to do exactly.
2199 	 */
2200 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2201 				--current_order) {
2202 		area = &(zone->free_area[current_order]);
2203 		fallback_mt = find_suitable_fallback(area, current_order,
2204 						     start_migratetype, true);
2205 
2206 		/* No block in that order */
2207 		if (fallback_mt == -1)
2208 			continue;
2209 
2210 		/* Advanced into orders too low to claim, abort */
2211 		if (fallback_mt == -2)
2212 			break;
2213 
2214 		page = get_page_from_free_area(area, fallback_mt);
2215 		page = try_to_claim_block(zone, page, current_order, order,
2216 					  start_migratetype, fallback_mt,
2217 					  alloc_flags);
2218 		if (page) {
2219 			trace_mm_page_alloc_extfrag(page, order, current_order,
2220 						    start_migratetype, fallback_mt);
2221 			return page;
2222 		}
2223 	}
2224 
2225 	return NULL;
2226 }
2227 
2228 /*
2229  * Try to steal a single page from some fallback migratetype. Leave the rest of
2230  * the block as its current migratetype, potentially causing fragmentation.
2231  */
2232 static __always_inline struct page *
2233 __rmqueue_steal(struct zone *zone, int order, int start_migratetype)
2234 {
2235 	struct free_area *area;
2236 	int current_order;
2237 	struct page *page;
2238 	int fallback_mt;
2239 
2240 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2241 		area = &(zone->free_area[current_order]);
2242 		fallback_mt = find_suitable_fallback(area, current_order,
2243 						     start_migratetype, false);
2244 		if (fallback_mt == -1)
2245 			continue;
2246 
2247 		page = get_page_from_free_area(area, fallback_mt);
2248 		page_del_and_expand(zone, page, order, current_order, fallback_mt);
2249 		trace_mm_page_alloc_extfrag(page, order, current_order,
2250 					    start_migratetype, fallback_mt);
2251 		return page;
2252 	}
2253 
2254 	return NULL;
2255 }
2256 
2257 enum rmqueue_mode {
2258 	RMQUEUE_NORMAL,
2259 	RMQUEUE_CMA,
2260 	RMQUEUE_CLAIM,
2261 	RMQUEUE_STEAL,
2262 };
2263 
2264 /*
2265  * Do the hard work of removing an element from the buddy allocator.
2266  * Call me with the zone->lock already held.
2267  */
2268 static __always_inline struct page *
2269 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2270 	  unsigned int alloc_flags, enum rmqueue_mode *mode)
2271 {
2272 	struct page *page;
2273 
2274 	if (IS_ENABLED(CONFIG_CMA)) {
2275 		/*
2276 		 * Balance movable allocations between regular and CMA areas by
2277 		 * allocating from CMA when over half of the zone's free memory
2278 		 * is in the CMA area.
2279 		 */
2280 		if (alloc_flags & ALLOC_CMA &&
2281 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2282 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2283 			page = __rmqueue_cma_fallback(zone, order);
2284 			if (page)
2285 				return page;
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * First try the freelists of the requested migratetype, then try
2291 	 * fallbacks modes with increasing levels of fragmentation risk.
2292 	 *
2293 	 * The fallback logic is expensive and rmqueue_bulk() calls in
2294 	 * a loop with the zone->lock held, meaning the freelists are
2295 	 * not subject to any outside changes. Remember in *mode where
2296 	 * we found pay dirt, to save us the search on the next call.
2297 	 */
2298 	switch (*mode) {
2299 	case RMQUEUE_NORMAL:
2300 		page = __rmqueue_smallest(zone, order, migratetype);
2301 		if (page)
2302 			return page;
2303 		fallthrough;
2304 	case RMQUEUE_CMA:
2305 		if (alloc_flags & ALLOC_CMA) {
2306 			page = __rmqueue_cma_fallback(zone, order);
2307 			if (page) {
2308 				*mode = RMQUEUE_CMA;
2309 				return page;
2310 			}
2311 		}
2312 		fallthrough;
2313 	case RMQUEUE_CLAIM:
2314 		page = __rmqueue_claim(zone, order, migratetype, alloc_flags);
2315 		if (page) {
2316 			/* Replenished preferred freelist, back to normal mode. */
2317 			*mode = RMQUEUE_NORMAL;
2318 			return page;
2319 		}
2320 		fallthrough;
2321 	case RMQUEUE_STEAL:
2322 		if (!(alloc_flags & ALLOC_NOFRAGMENT)) {
2323 			page = __rmqueue_steal(zone, order, migratetype);
2324 			if (page) {
2325 				*mode = RMQUEUE_STEAL;
2326 				return page;
2327 			}
2328 		}
2329 	}
2330 	return NULL;
2331 }
2332 
2333 /*
2334  * Obtain a specified number of elements from the buddy allocator, all under
2335  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2336  * Returns the number of new pages which were placed at *list.
2337  */
2338 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2339 			unsigned long count, struct list_head *list,
2340 			int migratetype, unsigned int alloc_flags)
2341 {
2342 	enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2343 	unsigned long flags;
2344 	int i;
2345 
2346 	if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2347 		if (!spin_trylock_irqsave(&zone->lock, flags))
2348 			return 0;
2349 	} else {
2350 		spin_lock_irqsave(&zone->lock, flags);
2351 	}
2352 	for (i = 0; i < count; ++i) {
2353 		struct page *page = __rmqueue(zone, order, migratetype,
2354 					      alloc_flags, &rmqm);
2355 		if (unlikely(page == NULL))
2356 			break;
2357 
2358 		/*
2359 		 * Split buddy pages returned by expand() are received here in
2360 		 * physical page order. The page is added to the tail of
2361 		 * caller's list. From the callers perspective, the linked list
2362 		 * is ordered by page number under some conditions. This is
2363 		 * useful for IO devices that can forward direction from the
2364 		 * head, thus also in the physical page order. This is useful
2365 		 * for IO devices that can merge IO requests if the physical
2366 		 * pages are ordered properly.
2367 		 */
2368 		list_add_tail(&page->pcp_list, list);
2369 	}
2370 	spin_unlock_irqrestore(&zone->lock, flags);
2371 
2372 	return i;
2373 }
2374 
2375 /*
2376  * Called from the vmstat counter updater to decay the PCP high.
2377  * Return whether there are addition works to do.
2378  */
2379 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2380 {
2381 	int high_min, to_drain, batch;
2382 	int todo = 0;
2383 
2384 	high_min = READ_ONCE(pcp->high_min);
2385 	batch = READ_ONCE(pcp->batch);
2386 	/*
2387 	 * Decrease pcp->high periodically to try to free possible
2388 	 * idle PCP pages.  And, avoid to free too many pages to
2389 	 * control latency.  This caps pcp->high decrement too.
2390 	 */
2391 	if (pcp->high > high_min) {
2392 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2393 				 pcp->high - (pcp->high >> 3), high_min);
2394 		if (pcp->high > high_min)
2395 			todo++;
2396 	}
2397 
2398 	to_drain = pcp->count - pcp->high;
2399 	if (to_drain > 0) {
2400 		spin_lock(&pcp->lock);
2401 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2402 		spin_unlock(&pcp->lock);
2403 		todo++;
2404 	}
2405 
2406 	return todo;
2407 }
2408 
2409 #ifdef CONFIG_NUMA
2410 /*
2411  * Called from the vmstat counter updater to drain pagesets of this
2412  * currently executing processor on remote nodes after they have
2413  * expired.
2414  */
2415 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2416 {
2417 	int to_drain, batch;
2418 
2419 	batch = READ_ONCE(pcp->batch);
2420 	to_drain = min(pcp->count, batch);
2421 	if (to_drain > 0) {
2422 		spin_lock(&pcp->lock);
2423 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2424 		spin_unlock(&pcp->lock);
2425 	}
2426 }
2427 #endif
2428 
2429 /*
2430  * Drain pcplists of the indicated processor and zone.
2431  */
2432 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2433 {
2434 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2435 	int count;
2436 
2437 	do {
2438 		spin_lock(&pcp->lock);
2439 		count = pcp->count;
2440 		if (count) {
2441 			int to_drain = min(count,
2442 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2443 
2444 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2445 			count -= to_drain;
2446 		}
2447 		spin_unlock(&pcp->lock);
2448 	} while (count);
2449 }
2450 
2451 /*
2452  * Drain pcplists of all zones on the indicated processor.
2453  */
2454 static void drain_pages(unsigned int cpu)
2455 {
2456 	struct zone *zone;
2457 
2458 	for_each_populated_zone(zone) {
2459 		drain_pages_zone(cpu, zone);
2460 	}
2461 }
2462 
2463 /*
2464  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2465  */
2466 void drain_local_pages(struct zone *zone)
2467 {
2468 	int cpu = smp_processor_id();
2469 
2470 	if (zone)
2471 		drain_pages_zone(cpu, zone);
2472 	else
2473 		drain_pages(cpu);
2474 }
2475 
2476 /*
2477  * The implementation of drain_all_pages(), exposing an extra parameter to
2478  * drain on all cpus.
2479  *
2480  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2481  * not empty. The check for non-emptiness can however race with a free to
2482  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2483  * that need the guarantee that every CPU has drained can disable the
2484  * optimizing racy check.
2485  */
2486 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2487 {
2488 	int cpu;
2489 
2490 	/*
2491 	 * Allocate in the BSS so we won't require allocation in
2492 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2493 	 */
2494 	static cpumask_t cpus_with_pcps;
2495 
2496 	/*
2497 	 * Do not drain if one is already in progress unless it's specific to
2498 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2499 	 * the drain to be complete when the call returns.
2500 	 */
2501 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2502 		if (!zone)
2503 			return;
2504 		mutex_lock(&pcpu_drain_mutex);
2505 	}
2506 
2507 	/*
2508 	 * We don't care about racing with CPU hotplug event
2509 	 * as offline notification will cause the notified
2510 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2511 	 * disables preemption as part of its processing
2512 	 */
2513 	for_each_online_cpu(cpu) {
2514 		struct per_cpu_pages *pcp;
2515 		struct zone *z;
2516 		bool has_pcps = false;
2517 
2518 		if (force_all_cpus) {
2519 			/*
2520 			 * The pcp.count check is racy, some callers need a
2521 			 * guarantee that no cpu is missed.
2522 			 */
2523 			has_pcps = true;
2524 		} else if (zone) {
2525 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2526 			if (pcp->count)
2527 				has_pcps = true;
2528 		} else {
2529 			for_each_populated_zone(z) {
2530 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2531 				if (pcp->count) {
2532 					has_pcps = true;
2533 					break;
2534 				}
2535 			}
2536 		}
2537 
2538 		if (has_pcps)
2539 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2540 		else
2541 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2542 	}
2543 
2544 	for_each_cpu(cpu, &cpus_with_pcps) {
2545 		if (zone)
2546 			drain_pages_zone(cpu, zone);
2547 		else
2548 			drain_pages(cpu);
2549 	}
2550 
2551 	mutex_unlock(&pcpu_drain_mutex);
2552 }
2553 
2554 /*
2555  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2556  *
2557  * When zone parameter is non-NULL, spill just the single zone's pages.
2558  */
2559 void drain_all_pages(struct zone *zone)
2560 {
2561 	__drain_all_pages(zone, false);
2562 }
2563 
2564 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2565 {
2566 	int min_nr_free, max_nr_free;
2567 
2568 	/* Free as much as possible if batch freeing high-order pages. */
2569 	if (unlikely(free_high))
2570 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2571 
2572 	/* Check for PCP disabled or boot pageset */
2573 	if (unlikely(high < batch))
2574 		return 1;
2575 
2576 	/* Leave at least pcp->batch pages on the list */
2577 	min_nr_free = batch;
2578 	max_nr_free = high - batch;
2579 
2580 	/*
2581 	 * Increase the batch number to the number of the consecutive
2582 	 * freed pages to reduce zone lock contention.
2583 	 */
2584 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2585 
2586 	return batch;
2587 }
2588 
2589 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2590 		       int batch, bool free_high)
2591 {
2592 	int high, high_min, high_max;
2593 
2594 	high_min = READ_ONCE(pcp->high_min);
2595 	high_max = READ_ONCE(pcp->high_max);
2596 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2597 
2598 	if (unlikely(!high))
2599 		return 0;
2600 
2601 	if (unlikely(free_high)) {
2602 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2603 				high_min);
2604 		return 0;
2605 	}
2606 
2607 	/*
2608 	 * If reclaim is active, limit the number of pages that can be
2609 	 * stored on pcp lists
2610 	 */
2611 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2612 		int free_count = max_t(int, pcp->free_count, batch);
2613 
2614 		pcp->high = max(high - free_count, high_min);
2615 		return min(batch << 2, pcp->high);
2616 	}
2617 
2618 	if (high_min == high_max)
2619 		return high;
2620 
2621 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2622 		int free_count = max_t(int, pcp->free_count, batch);
2623 
2624 		pcp->high = max(high - free_count, high_min);
2625 		high = max(pcp->count, high_min);
2626 	} else if (pcp->count >= high) {
2627 		int need_high = pcp->free_count + batch;
2628 
2629 		/* pcp->high should be large enough to hold batch freed pages */
2630 		if (pcp->high < need_high)
2631 			pcp->high = clamp(need_high, high_min, high_max);
2632 	}
2633 
2634 	return high;
2635 }
2636 
2637 static void free_frozen_page_commit(struct zone *zone,
2638 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2639 		unsigned int order, fpi_t fpi_flags)
2640 {
2641 	int high, batch;
2642 	int pindex;
2643 	bool free_high = false;
2644 
2645 	/*
2646 	 * On freeing, reduce the number of pages that are batch allocated.
2647 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2648 	 * allocations.
2649 	 */
2650 	pcp->alloc_factor >>= 1;
2651 	__count_vm_events(PGFREE, 1 << order);
2652 	pindex = order_to_pindex(migratetype, order);
2653 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2654 	pcp->count += 1 << order;
2655 
2656 	batch = READ_ONCE(pcp->batch);
2657 	/*
2658 	 * As high-order pages other than THP's stored on PCP can contribute
2659 	 * to fragmentation, limit the number stored when PCP is heavily
2660 	 * freeing without allocation. The remainder after bulk freeing
2661 	 * stops will be drained from vmstat refresh context.
2662 	 */
2663 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2664 		free_high = (pcp->free_count >= batch &&
2665 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2666 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2667 			      pcp->count >= batch));
2668 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2669 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2670 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2671 	}
2672 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2673 		pcp->free_count += (1 << order);
2674 
2675 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2676 		/*
2677 		 * Do not attempt to take a zone lock. Let pcp->count get
2678 		 * over high mark temporarily.
2679 		 */
2680 		return;
2681 	}
2682 	high = nr_pcp_high(pcp, zone, batch, free_high);
2683 	if (pcp->count >= high) {
2684 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2685 				   pcp, pindex);
2686 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2687 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2688 				      ZONE_MOVABLE, 0))
2689 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2690 	}
2691 }
2692 
2693 /*
2694  * Free a pcp page
2695  */
2696 static void __free_frozen_pages(struct page *page, unsigned int order,
2697 				fpi_t fpi_flags)
2698 {
2699 	unsigned long __maybe_unused UP_flags;
2700 	struct per_cpu_pages *pcp;
2701 	struct zone *zone;
2702 	unsigned long pfn = page_to_pfn(page);
2703 	int migratetype;
2704 
2705 	if (!pcp_allowed_order(order)) {
2706 		__free_pages_ok(page, order, fpi_flags);
2707 		return;
2708 	}
2709 
2710 	if (!free_pages_prepare(page, order))
2711 		return;
2712 
2713 	/*
2714 	 * We only track unmovable, reclaimable and movable on pcp lists.
2715 	 * Place ISOLATE pages on the isolated list because they are being
2716 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2717 	 * get those areas back if necessary. Otherwise, we may have to free
2718 	 * excessively into the page allocator
2719 	 */
2720 	zone = page_zone(page);
2721 	migratetype = get_pfnblock_migratetype(page, pfn);
2722 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2723 		if (unlikely(is_migrate_isolate(migratetype))) {
2724 			free_one_page(zone, page, pfn, order, fpi_flags);
2725 			return;
2726 		}
2727 		migratetype = MIGRATE_MOVABLE;
2728 	}
2729 
2730 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2731 		     && (in_nmi() || in_hardirq()))) {
2732 		add_page_to_zone_llist(zone, page, order);
2733 		return;
2734 	}
2735 	pcp_trylock_prepare(UP_flags);
2736 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2737 	if (pcp) {
2738 		free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2739 		pcp_spin_unlock(pcp);
2740 	} else {
2741 		free_one_page(zone, page, pfn, order, fpi_flags);
2742 	}
2743 	pcp_trylock_finish(UP_flags);
2744 }
2745 
2746 void free_frozen_pages(struct page *page, unsigned int order)
2747 {
2748 	__free_frozen_pages(page, order, FPI_NONE);
2749 }
2750 
2751 /*
2752  * Free a batch of folios
2753  */
2754 void free_unref_folios(struct folio_batch *folios)
2755 {
2756 	unsigned long __maybe_unused UP_flags;
2757 	struct per_cpu_pages *pcp = NULL;
2758 	struct zone *locked_zone = NULL;
2759 	int i, j;
2760 
2761 	/* Prepare folios for freeing */
2762 	for (i = 0, j = 0; i < folios->nr; i++) {
2763 		struct folio *folio = folios->folios[i];
2764 		unsigned long pfn = folio_pfn(folio);
2765 		unsigned int order = folio_order(folio);
2766 
2767 		if (!free_pages_prepare(&folio->page, order))
2768 			continue;
2769 		/*
2770 		 * Free orders not handled on the PCP directly to the
2771 		 * allocator.
2772 		 */
2773 		if (!pcp_allowed_order(order)) {
2774 			free_one_page(folio_zone(folio), &folio->page,
2775 				      pfn, order, FPI_NONE);
2776 			continue;
2777 		}
2778 		folio->private = (void *)(unsigned long)order;
2779 		if (j != i)
2780 			folios->folios[j] = folio;
2781 		j++;
2782 	}
2783 	folios->nr = j;
2784 
2785 	for (i = 0; i < folios->nr; i++) {
2786 		struct folio *folio = folios->folios[i];
2787 		struct zone *zone = folio_zone(folio);
2788 		unsigned long pfn = folio_pfn(folio);
2789 		unsigned int order = (unsigned long)folio->private;
2790 		int migratetype;
2791 
2792 		folio->private = NULL;
2793 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2794 
2795 		/* Different zone requires a different pcp lock */
2796 		if (zone != locked_zone ||
2797 		    is_migrate_isolate(migratetype)) {
2798 			if (pcp) {
2799 				pcp_spin_unlock(pcp);
2800 				pcp_trylock_finish(UP_flags);
2801 				locked_zone = NULL;
2802 				pcp = NULL;
2803 			}
2804 
2805 			/*
2806 			 * Free isolated pages directly to the
2807 			 * allocator, see comment in free_frozen_pages.
2808 			 */
2809 			if (is_migrate_isolate(migratetype)) {
2810 				free_one_page(zone, &folio->page, pfn,
2811 					      order, FPI_NONE);
2812 				continue;
2813 			}
2814 
2815 			/*
2816 			 * trylock is necessary as folios may be getting freed
2817 			 * from IRQ or SoftIRQ context after an IO completion.
2818 			 */
2819 			pcp_trylock_prepare(UP_flags);
2820 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2821 			if (unlikely(!pcp)) {
2822 				pcp_trylock_finish(UP_flags);
2823 				free_one_page(zone, &folio->page, pfn,
2824 					      order, FPI_NONE);
2825 				continue;
2826 			}
2827 			locked_zone = zone;
2828 		}
2829 
2830 		/*
2831 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2832 		 * to the MIGRATE_MOVABLE pcp list.
2833 		 */
2834 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2835 			migratetype = MIGRATE_MOVABLE;
2836 
2837 		trace_mm_page_free_batched(&folio->page);
2838 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2839 					order, FPI_NONE);
2840 	}
2841 
2842 	if (pcp) {
2843 		pcp_spin_unlock(pcp);
2844 		pcp_trylock_finish(UP_flags);
2845 	}
2846 	folio_batch_reinit(folios);
2847 }
2848 
2849 /*
2850  * split_page takes a non-compound higher-order page, and splits it into
2851  * n (1<<order) sub-pages: page[0..n]
2852  * Each sub-page must be freed individually.
2853  *
2854  * Note: this is probably too low level an operation for use in drivers.
2855  * Please consult with lkml before using this in your driver.
2856  */
2857 void split_page(struct page *page, unsigned int order)
2858 {
2859 	int i;
2860 
2861 	VM_BUG_ON_PAGE(PageCompound(page), page);
2862 	VM_BUG_ON_PAGE(!page_count(page), page);
2863 
2864 	for (i = 1; i < (1 << order); i++)
2865 		set_page_refcounted(page + i);
2866 	split_page_owner(page, order, 0);
2867 	pgalloc_tag_split(page_folio(page), order, 0);
2868 	split_page_memcg(page, order);
2869 }
2870 EXPORT_SYMBOL_GPL(split_page);
2871 
2872 int __isolate_free_page(struct page *page, unsigned int order)
2873 {
2874 	struct zone *zone = page_zone(page);
2875 	int mt = get_pageblock_migratetype(page);
2876 
2877 	if (!is_migrate_isolate(mt)) {
2878 		unsigned long watermark;
2879 		/*
2880 		 * Obey watermarks as if the page was being allocated. We can
2881 		 * emulate a high-order watermark check with a raised order-0
2882 		 * watermark, because we already know our high-order page
2883 		 * exists.
2884 		 */
2885 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2886 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2887 			return 0;
2888 	}
2889 
2890 	del_page_from_free_list(page, zone, order, mt);
2891 
2892 	/*
2893 	 * Set the pageblock if the isolated page is at least half of a
2894 	 * pageblock
2895 	 */
2896 	if (order >= pageblock_order - 1) {
2897 		struct page *endpage = page + (1 << order) - 1;
2898 		for (; page < endpage; page += pageblock_nr_pages) {
2899 			int mt = get_pageblock_migratetype(page);
2900 			/*
2901 			 * Only change normal pageblocks (i.e., they can merge
2902 			 * with others)
2903 			 */
2904 			if (migratetype_is_mergeable(mt))
2905 				move_freepages_block(zone, page, mt,
2906 						     MIGRATE_MOVABLE);
2907 		}
2908 	}
2909 
2910 	return 1UL << order;
2911 }
2912 
2913 /**
2914  * __putback_isolated_page - Return a now-isolated page back where we got it
2915  * @page: Page that was isolated
2916  * @order: Order of the isolated page
2917  * @mt: The page's pageblock's migratetype
2918  *
2919  * This function is meant to return a page pulled from the free lists via
2920  * __isolate_free_page back to the free lists they were pulled from.
2921  */
2922 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2923 {
2924 	struct zone *zone = page_zone(page);
2925 
2926 	/* zone lock should be held when this function is called */
2927 	lockdep_assert_held(&zone->lock);
2928 
2929 	/* Return isolated page to tail of freelist. */
2930 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2931 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2932 }
2933 
2934 /*
2935  * Update NUMA hit/miss statistics
2936  */
2937 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2938 				   long nr_account)
2939 {
2940 #ifdef CONFIG_NUMA
2941 	enum numa_stat_item local_stat = NUMA_LOCAL;
2942 
2943 	/* skip numa counters update if numa stats is disabled */
2944 	if (!static_branch_likely(&vm_numa_stat_key))
2945 		return;
2946 
2947 	if (zone_to_nid(z) != numa_node_id())
2948 		local_stat = NUMA_OTHER;
2949 
2950 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2951 		__count_numa_events(z, NUMA_HIT, nr_account);
2952 	else {
2953 		__count_numa_events(z, NUMA_MISS, nr_account);
2954 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2955 	}
2956 	__count_numa_events(z, local_stat, nr_account);
2957 #endif
2958 }
2959 
2960 static __always_inline
2961 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2962 			   unsigned int order, unsigned int alloc_flags,
2963 			   int migratetype)
2964 {
2965 	struct page *page;
2966 	unsigned long flags;
2967 
2968 	do {
2969 		page = NULL;
2970 		if (unlikely(alloc_flags & ALLOC_TRYLOCK)) {
2971 			if (!spin_trylock_irqsave(&zone->lock, flags))
2972 				return NULL;
2973 		} else {
2974 			spin_lock_irqsave(&zone->lock, flags);
2975 		}
2976 		if (alloc_flags & ALLOC_HIGHATOMIC)
2977 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2978 		if (!page) {
2979 			enum rmqueue_mode rmqm = RMQUEUE_NORMAL;
2980 
2981 			page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm);
2982 
2983 			/*
2984 			 * If the allocation fails, allow OOM handling and
2985 			 * order-0 (atomic) allocs access to HIGHATOMIC
2986 			 * reserves as failing now is worse than failing a
2987 			 * high-order atomic allocation in the future.
2988 			 */
2989 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2990 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2991 
2992 			if (!page) {
2993 				spin_unlock_irqrestore(&zone->lock, flags);
2994 				return NULL;
2995 			}
2996 		}
2997 		spin_unlock_irqrestore(&zone->lock, flags);
2998 	} while (check_new_pages(page, order));
2999 
3000 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3001 	zone_statistics(preferred_zone, zone, 1);
3002 
3003 	return page;
3004 }
3005 
3006 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3007 {
3008 	int high, base_batch, batch, max_nr_alloc;
3009 	int high_max, high_min;
3010 
3011 	base_batch = READ_ONCE(pcp->batch);
3012 	high_min = READ_ONCE(pcp->high_min);
3013 	high_max = READ_ONCE(pcp->high_max);
3014 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3015 
3016 	/* Check for PCP disabled or boot pageset */
3017 	if (unlikely(high < base_batch))
3018 		return 1;
3019 
3020 	if (order)
3021 		batch = base_batch;
3022 	else
3023 		batch = (base_batch << pcp->alloc_factor);
3024 
3025 	/*
3026 	 * If we had larger pcp->high, we could avoid to allocate from
3027 	 * zone.
3028 	 */
3029 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3030 		high = pcp->high = min(high + batch, high_max);
3031 
3032 	if (!order) {
3033 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3034 		/*
3035 		 * Double the number of pages allocated each time there is
3036 		 * subsequent allocation of order-0 pages without any freeing.
3037 		 */
3038 		if (batch <= max_nr_alloc &&
3039 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3040 			pcp->alloc_factor++;
3041 		batch = min(batch, max_nr_alloc);
3042 	}
3043 
3044 	/*
3045 	 * Scale batch relative to order if batch implies free pages
3046 	 * can be stored on the PCP. Batch can be 1 for small zones or
3047 	 * for boot pagesets which should never store free pages as
3048 	 * the pages may belong to arbitrary zones.
3049 	 */
3050 	if (batch > 1)
3051 		batch = max(batch >> order, 2);
3052 
3053 	return batch;
3054 }
3055 
3056 /* Remove page from the per-cpu list, caller must protect the list */
3057 static inline
3058 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3059 			int migratetype,
3060 			unsigned int alloc_flags,
3061 			struct per_cpu_pages *pcp,
3062 			struct list_head *list)
3063 {
3064 	struct page *page;
3065 
3066 	do {
3067 		if (list_empty(list)) {
3068 			int batch = nr_pcp_alloc(pcp, zone, order);
3069 			int alloced;
3070 
3071 			alloced = rmqueue_bulk(zone, order,
3072 					batch, list,
3073 					migratetype, alloc_flags);
3074 
3075 			pcp->count += alloced << order;
3076 			if (unlikely(list_empty(list)))
3077 				return NULL;
3078 		}
3079 
3080 		page = list_first_entry(list, struct page, pcp_list);
3081 		list_del(&page->pcp_list);
3082 		pcp->count -= 1 << order;
3083 	} while (check_new_pages(page, order));
3084 
3085 	return page;
3086 }
3087 
3088 /* Lock and remove page from the per-cpu list */
3089 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3090 			struct zone *zone, unsigned int order,
3091 			int migratetype, unsigned int alloc_flags)
3092 {
3093 	struct per_cpu_pages *pcp;
3094 	struct list_head *list;
3095 	struct page *page;
3096 	unsigned long __maybe_unused UP_flags;
3097 
3098 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3099 	pcp_trylock_prepare(UP_flags);
3100 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3101 	if (!pcp) {
3102 		pcp_trylock_finish(UP_flags);
3103 		return NULL;
3104 	}
3105 
3106 	/*
3107 	 * On allocation, reduce the number of pages that are batch freed.
3108 	 * See nr_pcp_free() where free_factor is increased for subsequent
3109 	 * frees.
3110 	 */
3111 	pcp->free_count >>= 1;
3112 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3113 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3114 	pcp_spin_unlock(pcp);
3115 	pcp_trylock_finish(UP_flags);
3116 	if (page) {
3117 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3118 		zone_statistics(preferred_zone, zone, 1);
3119 	}
3120 	return page;
3121 }
3122 
3123 /*
3124  * Allocate a page from the given zone.
3125  * Use pcplists for THP or "cheap" high-order allocations.
3126  */
3127 
3128 /*
3129  * Do not instrument rmqueue() with KMSAN. This function may call
3130  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3131  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3132  * may call rmqueue() again, which will result in a deadlock.
3133  */
3134 __no_sanitize_memory
3135 static inline
3136 struct page *rmqueue(struct zone *preferred_zone,
3137 			struct zone *zone, unsigned int order,
3138 			gfp_t gfp_flags, unsigned int alloc_flags,
3139 			int migratetype)
3140 {
3141 	struct page *page;
3142 
3143 	if (likely(pcp_allowed_order(order))) {
3144 		page = rmqueue_pcplist(preferred_zone, zone, order,
3145 				       migratetype, alloc_flags);
3146 		if (likely(page))
3147 			goto out;
3148 	}
3149 
3150 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3151 							migratetype);
3152 
3153 out:
3154 	/* Separate test+clear to avoid unnecessary atomics */
3155 	if ((alloc_flags & ALLOC_KSWAPD) &&
3156 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3157 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3158 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3159 	}
3160 
3161 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3162 	return page;
3163 }
3164 
3165 /*
3166  * Reserve the pageblock(s) surrounding an allocation request for
3167  * exclusive use of high-order atomic allocations if there are no
3168  * empty page blocks that contain a page with a suitable order
3169  */
3170 static void reserve_highatomic_pageblock(struct page *page, int order,
3171 					 struct zone *zone)
3172 {
3173 	int mt;
3174 	unsigned long max_managed, flags;
3175 
3176 	/*
3177 	 * The number reserved as: minimum is 1 pageblock, maximum is
3178 	 * roughly 1% of a zone. But if 1% of a zone falls below a
3179 	 * pageblock size, then don't reserve any pageblocks.
3180 	 * Check is race-prone but harmless.
3181 	 */
3182 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
3183 		return;
3184 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
3185 	if (zone->nr_reserved_highatomic >= max_managed)
3186 		return;
3187 
3188 	spin_lock_irqsave(&zone->lock, flags);
3189 
3190 	/* Recheck the nr_reserved_highatomic limit under the lock */
3191 	if (zone->nr_reserved_highatomic >= max_managed)
3192 		goto out_unlock;
3193 
3194 	/* Yoink! */
3195 	mt = get_pageblock_migratetype(page);
3196 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
3197 	if (!migratetype_is_mergeable(mt))
3198 		goto out_unlock;
3199 
3200 	if (order < pageblock_order) {
3201 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
3202 			goto out_unlock;
3203 		zone->nr_reserved_highatomic += pageblock_nr_pages;
3204 	} else {
3205 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
3206 		zone->nr_reserved_highatomic += 1 << order;
3207 	}
3208 
3209 out_unlock:
3210 	spin_unlock_irqrestore(&zone->lock, flags);
3211 }
3212 
3213 /*
3214  * Used when an allocation is about to fail under memory pressure. This
3215  * potentially hurts the reliability of high-order allocations when under
3216  * intense memory pressure but failed atomic allocations should be easier
3217  * to recover from than an OOM.
3218  *
3219  * If @force is true, try to unreserve pageblocks even though highatomic
3220  * pageblock is exhausted.
3221  */
3222 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
3223 						bool force)
3224 {
3225 	struct zonelist *zonelist = ac->zonelist;
3226 	unsigned long flags;
3227 	struct zoneref *z;
3228 	struct zone *zone;
3229 	struct page *page;
3230 	int order;
3231 	int ret;
3232 
3233 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
3234 								ac->nodemask) {
3235 		/*
3236 		 * Preserve at least one pageblock unless memory pressure
3237 		 * is really high.
3238 		 */
3239 		if (!force && zone->nr_reserved_highatomic <=
3240 					pageblock_nr_pages)
3241 			continue;
3242 
3243 		spin_lock_irqsave(&zone->lock, flags);
3244 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
3245 			struct free_area *area = &(zone->free_area[order]);
3246 			unsigned long size;
3247 
3248 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
3249 			if (!page)
3250 				continue;
3251 
3252 			size = max(pageblock_nr_pages, 1UL << order);
3253 			/*
3254 			 * It should never happen but changes to
3255 			 * locking could inadvertently allow a per-cpu
3256 			 * drain to add pages to MIGRATE_HIGHATOMIC
3257 			 * while unreserving so be safe and watch for
3258 			 * underflows.
3259 			 */
3260 			if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic))
3261 				size = zone->nr_reserved_highatomic;
3262 			zone->nr_reserved_highatomic -= size;
3263 
3264 			/*
3265 			 * Convert to ac->migratetype and avoid the normal
3266 			 * pageblock stealing heuristics. Minimally, the caller
3267 			 * is doing the work and needs the pages. More
3268 			 * importantly, if the block was always converted to
3269 			 * MIGRATE_UNMOVABLE or another type then the number
3270 			 * of pageblocks that cannot be completely freed
3271 			 * may increase.
3272 			 */
3273 			if (order < pageblock_order)
3274 				ret = move_freepages_block(zone, page,
3275 							   MIGRATE_HIGHATOMIC,
3276 							   ac->migratetype);
3277 			else {
3278 				move_to_free_list(page, zone, order,
3279 						  MIGRATE_HIGHATOMIC,
3280 						  ac->migratetype);
3281 				change_pageblock_range(page, order,
3282 						       ac->migratetype);
3283 				ret = 1;
3284 			}
3285 			/*
3286 			 * Reserving the block(s) already succeeded,
3287 			 * so this should not fail on zone boundaries.
3288 			 */
3289 			WARN_ON_ONCE(ret == -1);
3290 			if (ret > 0) {
3291 				spin_unlock_irqrestore(&zone->lock, flags);
3292 				return ret;
3293 			}
3294 		}
3295 		spin_unlock_irqrestore(&zone->lock, flags);
3296 	}
3297 
3298 	return false;
3299 }
3300 
3301 static inline long __zone_watermark_unusable_free(struct zone *z,
3302 				unsigned int order, unsigned int alloc_flags)
3303 {
3304 	long unusable_free = (1 << order) - 1;
3305 
3306 	/*
3307 	 * If the caller does not have rights to reserves below the min
3308 	 * watermark then subtract the free pages reserved for highatomic.
3309 	 */
3310 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3311 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3312 
3313 #ifdef CONFIG_CMA
3314 	/* If allocation can't use CMA areas don't use free CMA pages */
3315 	if (!(alloc_flags & ALLOC_CMA))
3316 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3317 #endif
3318 
3319 	return unusable_free;
3320 }
3321 
3322 /*
3323  * Return true if free base pages are above 'mark'. For high-order checks it
3324  * will return true of the order-0 watermark is reached and there is at least
3325  * one free page of a suitable size. Checking now avoids taking the zone lock
3326  * to check in the allocation paths if no pages are free.
3327  */
3328 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3329 			 int highest_zoneidx, unsigned int alloc_flags,
3330 			 long free_pages)
3331 {
3332 	long min = mark;
3333 	int o;
3334 
3335 	/* free_pages may go negative - that's OK */
3336 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3337 
3338 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3339 		/*
3340 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3341 		 * as OOM.
3342 		 */
3343 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3344 			min -= min / 2;
3345 
3346 			/*
3347 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3348 			 * access more reserves than just __GFP_HIGH. Other
3349 			 * non-blocking allocations requests such as GFP_NOWAIT
3350 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3351 			 * access to the min reserve.
3352 			 */
3353 			if (alloc_flags & ALLOC_NON_BLOCK)
3354 				min -= min / 4;
3355 		}
3356 
3357 		/*
3358 		 * OOM victims can try even harder than the normal reserve
3359 		 * users on the grounds that it's definitely going to be in
3360 		 * the exit path shortly and free memory. Any allocation it
3361 		 * makes during the free path will be small and short-lived.
3362 		 */
3363 		if (alloc_flags & ALLOC_OOM)
3364 			min -= min / 2;
3365 	}
3366 
3367 	/*
3368 	 * Check watermarks for an order-0 allocation request. If these
3369 	 * are not met, then a high-order request also cannot go ahead
3370 	 * even if a suitable page happened to be free.
3371 	 */
3372 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3373 		return false;
3374 
3375 	/* If this is an order-0 request then the watermark is fine */
3376 	if (!order)
3377 		return true;
3378 
3379 	/* For a high-order request, check at least one suitable page is free */
3380 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3381 		struct free_area *area = &z->free_area[o];
3382 		int mt;
3383 
3384 		if (!area->nr_free)
3385 			continue;
3386 
3387 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3388 			if (!free_area_empty(area, mt))
3389 				return true;
3390 		}
3391 
3392 #ifdef CONFIG_CMA
3393 		if ((alloc_flags & ALLOC_CMA) &&
3394 		    !free_area_empty(area, MIGRATE_CMA)) {
3395 			return true;
3396 		}
3397 #endif
3398 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3399 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3400 			return true;
3401 		}
3402 	}
3403 	return false;
3404 }
3405 
3406 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3407 		      int highest_zoneidx, unsigned int alloc_flags)
3408 {
3409 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3410 					zone_page_state(z, NR_FREE_PAGES));
3411 }
3412 
3413 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3414 				unsigned long mark, int highest_zoneidx,
3415 				unsigned int alloc_flags, gfp_t gfp_mask)
3416 {
3417 	long free_pages;
3418 
3419 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3420 
3421 	/*
3422 	 * Fast check for order-0 only. If this fails then the reserves
3423 	 * need to be calculated.
3424 	 */
3425 	if (!order) {
3426 		long usable_free;
3427 		long reserved;
3428 
3429 		usable_free = free_pages;
3430 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3431 
3432 		/* reserved may over estimate high-atomic reserves. */
3433 		usable_free -= min(usable_free, reserved);
3434 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3435 			return true;
3436 	}
3437 
3438 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3439 					free_pages))
3440 		return true;
3441 
3442 	/*
3443 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3444 	 * when checking the min watermark. The min watermark is the
3445 	 * point where boosting is ignored so that kswapd is woken up
3446 	 * when below the low watermark.
3447 	 */
3448 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3449 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3450 		mark = z->_watermark[WMARK_MIN];
3451 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3452 					alloc_flags, free_pages);
3453 	}
3454 
3455 	return false;
3456 }
3457 
3458 #ifdef CONFIG_NUMA
3459 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3460 
3461 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3462 {
3463 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3464 				node_reclaim_distance;
3465 }
3466 #else	/* CONFIG_NUMA */
3467 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3468 {
3469 	return true;
3470 }
3471 #endif	/* CONFIG_NUMA */
3472 
3473 /*
3474  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3475  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3476  * premature use of a lower zone may cause lowmem pressure problems that
3477  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3478  * probably too small. It only makes sense to spread allocations to avoid
3479  * fragmentation between the Normal and DMA32 zones.
3480  */
3481 static inline unsigned int
3482 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3483 {
3484 	unsigned int alloc_flags;
3485 
3486 	/*
3487 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3488 	 * to save a branch.
3489 	 */
3490 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3491 
3492 	if (defrag_mode) {
3493 		alloc_flags |= ALLOC_NOFRAGMENT;
3494 		return alloc_flags;
3495 	}
3496 
3497 #ifdef CONFIG_ZONE_DMA32
3498 	if (!zone)
3499 		return alloc_flags;
3500 
3501 	if (zone_idx(zone) != ZONE_NORMAL)
3502 		return alloc_flags;
3503 
3504 	/*
3505 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3506 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3507 	 * on UMA that if Normal is populated then so is DMA32.
3508 	 */
3509 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3510 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3511 		return alloc_flags;
3512 
3513 	alloc_flags |= ALLOC_NOFRAGMENT;
3514 #endif /* CONFIG_ZONE_DMA32 */
3515 	return alloc_flags;
3516 }
3517 
3518 /* Must be called after current_gfp_context() which can change gfp_mask */
3519 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3520 						  unsigned int alloc_flags)
3521 {
3522 #ifdef CONFIG_CMA
3523 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3524 		alloc_flags |= ALLOC_CMA;
3525 #endif
3526 	return alloc_flags;
3527 }
3528 
3529 /*
3530  * get_page_from_freelist goes through the zonelist trying to allocate
3531  * a page.
3532  */
3533 static struct page *
3534 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3535 						const struct alloc_context *ac)
3536 {
3537 	struct zoneref *z;
3538 	struct zone *zone;
3539 	struct pglist_data *last_pgdat = NULL;
3540 	bool last_pgdat_dirty_ok = false;
3541 	bool no_fallback;
3542 
3543 retry:
3544 	/*
3545 	 * Scan zonelist, looking for a zone with enough free.
3546 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3547 	 */
3548 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3549 	z = ac->preferred_zoneref;
3550 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3551 					ac->nodemask) {
3552 		struct page *page;
3553 		unsigned long mark;
3554 
3555 		if (cpusets_enabled() &&
3556 			(alloc_flags & ALLOC_CPUSET) &&
3557 			!__cpuset_zone_allowed(zone, gfp_mask))
3558 				continue;
3559 		/*
3560 		 * When allocating a page cache page for writing, we
3561 		 * want to get it from a node that is within its dirty
3562 		 * limit, such that no single node holds more than its
3563 		 * proportional share of globally allowed dirty pages.
3564 		 * The dirty limits take into account the node's
3565 		 * lowmem reserves and high watermark so that kswapd
3566 		 * should be able to balance it without having to
3567 		 * write pages from its LRU list.
3568 		 *
3569 		 * XXX: For now, allow allocations to potentially
3570 		 * exceed the per-node dirty limit in the slowpath
3571 		 * (spread_dirty_pages unset) before going into reclaim,
3572 		 * which is important when on a NUMA setup the allowed
3573 		 * nodes are together not big enough to reach the
3574 		 * global limit.  The proper fix for these situations
3575 		 * will require awareness of nodes in the
3576 		 * dirty-throttling and the flusher threads.
3577 		 */
3578 		if (ac->spread_dirty_pages) {
3579 			if (last_pgdat != zone->zone_pgdat) {
3580 				last_pgdat = zone->zone_pgdat;
3581 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3582 			}
3583 
3584 			if (!last_pgdat_dirty_ok)
3585 				continue;
3586 		}
3587 
3588 		if (no_fallback && !defrag_mode && nr_online_nodes > 1 &&
3589 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3590 			int local_nid;
3591 
3592 			/*
3593 			 * If moving to a remote node, retry but allow
3594 			 * fragmenting fallbacks. Locality is more important
3595 			 * than fragmentation avoidance.
3596 			 */
3597 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3598 			if (zone_to_nid(zone) != local_nid) {
3599 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3600 				goto retry;
3601 			}
3602 		}
3603 
3604 		cond_accept_memory(zone, order, alloc_flags);
3605 
3606 		/*
3607 		 * Detect whether the number of free pages is below high
3608 		 * watermark.  If so, we will decrease pcp->high and free
3609 		 * PCP pages in free path to reduce the possibility of
3610 		 * premature page reclaiming.  Detection is done here to
3611 		 * avoid to do that in hotter free path.
3612 		 */
3613 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3614 			goto check_alloc_wmark;
3615 
3616 		mark = high_wmark_pages(zone);
3617 		if (zone_watermark_fast(zone, order, mark,
3618 					ac->highest_zoneidx, alloc_flags,
3619 					gfp_mask))
3620 			goto try_this_zone;
3621 		else
3622 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3623 
3624 check_alloc_wmark:
3625 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3626 		if (!zone_watermark_fast(zone, order, mark,
3627 				       ac->highest_zoneidx, alloc_flags,
3628 				       gfp_mask)) {
3629 			int ret;
3630 
3631 			if (cond_accept_memory(zone, order, alloc_flags))
3632 				goto try_this_zone;
3633 
3634 			/*
3635 			 * Watermark failed for this zone, but see if we can
3636 			 * grow this zone if it contains deferred pages.
3637 			 */
3638 			if (deferred_pages_enabled()) {
3639 				if (_deferred_grow_zone(zone, order))
3640 					goto try_this_zone;
3641 			}
3642 			/* Checked here to keep the fast path fast */
3643 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3644 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3645 				goto try_this_zone;
3646 
3647 			if (!node_reclaim_enabled() ||
3648 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3649 				continue;
3650 
3651 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3652 			switch (ret) {
3653 			case NODE_RECLAIM_NOSCAN:
3654 				/* did not scan */
3655 				continue;
3656 			case NODE_RECLAIM_FULL:
3657 				/* scanned but unreclaimable */
3658 				continue;
3659 			default:
3660 				/* did we reclaim enough */
3661 				if (zone_watermark_ok(zone, order, mark,
3662 					ac->highest_zoneidx, alloc_flags))
3663 					goto try_this_zone;
3664 
3665 				continue;
3666 			}
3667 		}
3668 
3669 try_this_zone:
3670 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3671 				gfp_mask, alloc_flags, ac->migratetype);
3672 		if (page) {
3673 			prep_new_page(page, order, gfp_mask, alloc_flags);
3674 
3675 			/*
3676 			 * If this is a high-order atomic allocation then check
3677 			 * if the pageblock should be reserved for the future
3678 			 */
3679 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3680 				reserve_highatomic_pageblock(page, order, zone);
3681 
3682 			return page;
3683 		} else {
3684 			if (cond_accept_memory(zone, order, alloc_flags))
3685 				goto try_this_zone;
3686 
3687 			/* Try again if zone has deferred pages */
3688 			if (deferred_pages_enabled()) {
3689 				if (_deferred_grow_zone(zone, order))
3690 					goto try_this_zone;
3691 			}
3692 		}
3693 	}
3694 
3695 	/*
3696 	 * It's possible on a UMA machine to get through all zones that are
3697 	 * fragmented. If avoiding fragmentation, reset and try again.
3698 	 */
3699 	if (no_fallback && !defrag_mode) {
3700 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3701 		goto retry;
3702 	}
3703 
3704 	return NULL;
3705 }
3706 
3707 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3708 {
3709 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3710 
3711 	/*
3712 	 * This documents exceptions given to allocations in certain
3713 	 * contexts that are allowed to allocate outside current's set
3714 	 * of allowed nodes.
3715 	 */
3716 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3717 		if (tsk_is_oom_victim(current) ||
3718 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3719 			filter &= ~SHOW_MEM_FILTER_NODES;
3720 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3721 		filter &= ~SHOW_MEM_FILTER_NODES;
3722 
3723 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3724 }
3725 
3726 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3727 {
3728 	struct va_format vaf;
3729 	va_list args;
3730 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3731 
3732 	if ((gfp_mask & __GFP_NOWARN) ||
3733 	     !__ratelimit(&nopage_rs) ||
3734 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3735 		return;
3736 
3737 	va_start(args, fmt);
3738 	vaf.fmt = fmt;
3739 	vaf.va = &args;
3740 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3741 			current->comm, &vaf, gfp_mask, &gfp_mask,
3742 			nodemask_pr_args(nodemask));
3743 	va_end(args);
3744 
3745 	cpuset_print_current_mems_allowed();
3746 	pr_cont("\n");
3747 	dump_stack();
3748 	warn_alloc_show_mem(gfp_mask, nodemask);
3749 }
3750 
3751 static inline struct page *
3752 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3753 			      unsigned int alloc_flags,
3754 			      const struct alloc_context *ac)
3755 {
3756 	struct page *page;
3757 
3758 	page = get_page_from_freelist(gfp_mask, order,
3759 			alloc_flags|ALLOC_CPUSET, ac);
3760 	/*
3761 	 * fallback to ignore cpuset restriction if our nodes
3762 	 * are depleted
3763 	 */
3764 	if (!page)
3765 		page = get_page_from_freelist(gfp_mask, order,
3766 				alloc_flags, ac);
3767 	return page;
3768 }
3769 
3770 static inline struct page *
3771 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3772 	const struct alloc_context *ac, unsigned long *did_some_progress)
3773 {
3774 	struct oom_control oc = {
3775 		.zonelist = ac->zonelist,
3776 		.nodemask = ac->nodemask,
3777 		.memcg = NULL,
3778 		.gfp_mask = gfp_mask,
3779 		.order = order,
3780 	};
3781 	struct page *page;
3782 
3783 	*did_some_progress = 0;
3784 
3785 	/*
3786 	 * Acquire the oom lock.  If that fails, somebody else is
3787 	 * making progress for us.
3788 	 */
3789 	if (!mutex_trylock(&oom_lock)) {
3790 		*did_some_progress = 1;
3791 		schedule_timeout_uninterruptible(1);
3792 		return NULL;
3793 	}
3794 
3795 	/*
3796 	 * Go through the zonelist yet one more time, keep very high watermark
3797 	 * here, this is only to catch a parallel oom killing, we must fail if
3798 	 * we're still under heavy pressure. But make sure that this reclaim
3799 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3800 	 * allocation which will never fail due to oom_lock already held.
3801 	 */
3802 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3803 				      ~__GFP_DIRECT_RECLAIM, order,
3804 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3805 	if (page)
3806 		goto out;
3807 
3808 	/* Coredumps can quickly deplete all memory reserves */
3809 	if (current->flags & PF_DUMPCORE)
3810 		goto out;
3811 	/* The OOM killer will not help higher order allocs */
3812 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3813 		goto out;
3814 	/*
3815 	 * We have already exhausted all our reclaim opportunities without any
3816 	 * success so it is time to admit defeat. We will skip the OOM killer
3817 	 * because it is very likely that the caller has a more reasonable
3818 	 * fallback than shooting a random task.
3819 	 *
3820 	 * The OOM killer may not free memory on a specific node.
3821 	 */
3822 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3823 		goto out;
3824 	/* The OOM killer does not needlessly kill tasks for lowmem */
3825 	if (ac->highest_zoneidx < ZONE_NORMAL)
3826 		goto out;
3827 	if (pm_suspended_storage())
3828 		goto out;
3829 	/*
3830 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3831 	 * other request to make a forward progress.
3832 	 * We are in an unfortunate situation where out_of_memory cannot
3833 	 * do much for this context but let's try it to at least get
3834 	 * access to memory reserved if the current task is killed (see
3835 	 * out_of_memory). Once filesystems are ready to handle allocation
3836 	 * failures more gracefully we should just bail out here.
3837 	 */
3838 
3839 	/* Exhausted what can be done so it's blame time */
3840 	if (out_of_memory(&oc) ||
3841 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3842 		*did_some_progress = 1;
3843 
3844 		/*
3845 		 * Help non-failing allocations by giving them access to memory
3846 		 * reserves
3847 		 */
3848 		if (gfp_mask & __GFP_NOFAIL)
3849 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3850 					ALLOC_NO_WATERMARKS, ac);
3851 	}
3852 out:
3853 	mutex_unlock(&oom_lock);
3854 	return page;
3855 }
3856 
3857 /*
3858  * Maximum number of compaction retries with a progress before OOM
3859  * killer is consider as the only way to move forward.
3860  */
3861 #define MAX_COMPACT_RETRIES 16
3862 
3863 #ifdef CONFIG_COMPACTION
3864 /* Try memory compaction for high-order allocations before reclaim */
3865 static struct page *
3866 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3867 		unsigned int alloc_flags, const struct alloc_context *ac,
3868 		enum compact_priority prio, enum compact_result *compact_result)
3869 {
3870 	struct page *page = NULL;
3871 	unsigned long pflags;
3872 	unsigned int noreclaim_flag;
3873 
3874 	if (!order)
3875 		return NULL;
3876 
3877 	psi_memstall_enter(&pflags);
3878 	delayacct_compact_start();
3879 	noreclaim_flag = memalloc_noreclaim_save();
3880 
3881 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3882 								prio, &page);
3883 
3884 	memalloc_noreclaim_restore(noreclaim_flag);
3885 	psi_memstall_leave(&pflags);
3886 	delayacct_compact_end();
3887 
3888 	if (*compact_result == COMPACT_SKIPPED)
3889 		return NULL;
3890 	/*
3891 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3892 	 * count a compaction stall
3893 	 */
3894 	count_vm_event(COMPACTSTALL);
3895 
3896 	/* Prep a captured page if available */
3897 	if (page)
3898 		prep_new_page(page, order, gfp_mask, alloc_flags);
3899 
3900 	/* Try get a page from the freelist if available */
3901 	if (!page)
3902 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3903 
3904 	if (page) {
3905 		struct zone *zone = page_zone(page);
3906 
3907 		zone->compact_blockskip_flush = false;
3908 		compaction_defer_reset(zone, order, true);
3909 		count_vm_event(COMPACTSUCCESS);
3910 		return page;
3911 	}
3912 
3913 	/*
3914 	 * It's bad if compaction run occurs and fails. The most likely reason
3915 	 * is that pages exist, but not enough to satisfy watermarks.
3916 	 */
3917 	count_vm_event(COMPACTFAIL);
3918 
3919 	cond_resched();
3920 
3921 	return NULL;
3922 }
3923 
3924 static inline bool
3925 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3926 		     enum compact_result compact_result,
3927 		     enum compact_priority *compact_priority,
3928 		     int *compaction_retries)
3929 {
3930 	int max_retries = MAX_COMPACT_RETRIES;
3931 	int min_priority;
3932 	bool ret = false;
3933 	int retries = *compaction_retries;
3934 	enum compact_priority priority = *compact_priority;
3935 
3936 	if (!order)
3937 		return false;
3938 
3939 	if (fatal_signal_pending(current))
3940 		return false;
3941 
3942 	/*
3943 	 * Compaction was skipped due to a lack of free order-0
3944 	 * migration targets. Continue if reclaim can help.
3945 	 */
3946 	if (compact_result == COMPACT_SKIPPED) {
3947 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3948 		goto out;
3949 	}
3950 
3951 	/*
3952 	 * Compaction managed to coalesce some page blocks, but the
3953 	 * allocation failed presumably due to a race. Retry some.
3954 	 */
3955 	if (compact_result == COMPACT_SUCCESS) {
3956 		/*
3957 		 * !costly requests are much more important than
3958 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3959 		 * facto nofail and invoke OOM killer to move on while
3960 		 * costly can fail and users are ready to cope with
3961 		 * that. 1/4 retries is rather arbitrary but we would
3962 		 * need much more detailed feedback from compaction to
3963 		 * make a better decision.
3964 		 */
3965 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3966 			max_retries /= 4;
3967 
3968 		if (++(*compaction_retries) <= max_retries) {
3969 			ret = true;
3970 			goto out;
3971 		}
3972 	}
3973 
3974 	/*
3975 	 * Compaction failed. Retry with increasing priority.
3976 	 */
3977 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3978 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3979 
3980 	if (*compact_priority > min_priority) {
3981 		(*compact_priority)--;
3982 		*compaction_retries = 0;
3983 		ret = true;
3984 	}
3985 out:
3986 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3987 	return ret;
3988 }
3989 #else
3990 static inline struct page *
3991 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3992 		unsigned int alloc_flags, const struct alloc_context *ac,
3993 		enum compact_priority prio, enum compact_result *compact_result)
3994 {
3995 	*compact_result = COMPACT_SKIPPED;
3996 	return NULL;
3997 }
3998 
3999 static inline bool
4000 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4001 		     enum compact_result compact_result,
4002 		     enum compact_priority *compact_priority,
4003 		     int *compaction_retries)
4004 {
4005 	struct zone *zone;
4006 	struct zoneref *z;
4007 
4008 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4009 		return false;
4010 
4011 	/*
4012 	 * There are setups with compaction disabled which would prefer to loop
4013 	 * inside the allocator rather than hit the oom killer prematurely.
4014 	 * Let's give them a good hope and keep retrying while the order-0
4015 	 * watermarks are OK.
4016 	 */
4017 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4018 				ac->highest_zoneidx, ac->nodemask) {
4019 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4020 					ac->highest_zoneidx, alloc_flags))
4021 			return true;
4022 	}
4023 	return false;
4024 }
4025 #endif /* CONFIG_COMPACTION */
4026 
4027 #ifdef CONFIG_LOCKDEP
4028 static struct lockdep_map __fs_reclaim_map =
4029 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4030 
4031 static bool __need_reclaim(gfp_t gfp_mask)
4032 {
4033 	/* no reclaim without waiting on it */
4034 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4035 		return false;
4036 
4037 	/* this guy won't enter reclaim */
4038 	if (current->flags & PF_MEMALLOC)
4039 		return false;
4040 
4041 	if (gfp_mask & __GFP_NOLOCKDEP)
4042 		return false;
4043 
4044 	return true;
4045 }
4046 
4047 void __fs_reclaim_acquire(unsigned long ip)
4048 {
4049 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4050 }
4051 
4052 void __fs_reclaim_release(unsigned long ip)
4053 {
4054 	lock_release(&__fs_reclaim_map, ip);
4055 }
4056 
4057 void fs_reclaim_acquire(gfp_t gfp_mask)
4058 {
4059 	gfp_mask = current_gfp_context(gfp_mask);
4060 
4061 	if (__need_reclaim(gfp_mask)) {
4062 		if (gfp_mask & __GFP_FS)
4063 			__fs_reclaim_acquire(_RET_IP_);
4064 
4065 #ifdef CONFIG_MMU_NOTIFIER
4066 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4067 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4068 #endif
4069 
4070 	}
4071 }
4072 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4073 
4074 void fs_reclaim_release(gfp_t gfp_mask)
4075 {
4076 	gfp_mask = current_gfp_context(gfp_mask);
4077 
4078 	if (__need_reclaim(gfp_mask)) {
4079 		if (gfp_mask & __GFP_FS)
4080 			__fs_reclaim_release(_RET_IP_);
4081 	}
4082 }
4083 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4084 #endif
4085 
4086 /*
4087  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4088  * have been rebuilt so allocation retries. Reader side does not lock and
4089  * retries the allocation if zonelist changes. Writer side is protected by the
4090  * embedded spin_lock.
4091  */
4092 static DEFINE_SEQLOCK(zonelist_update_seq);
4093 
4094 static unsigned int zonelist_iter_begin(void)
4095 {
4096 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4097 		return read_seqbegin(&zonelist_update_seq);
4098 
4099 	return 0;
4100 }
4101 
4102 static unsigned int check_retry_zonelist(unsigned int seq)
4103 {
4104 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4105 		return read_seqretry(&zonelist_update_seq, seq);
4106 
4107 	return seq;
4108 }
4109 
4110 /* Perform direct synchronous page reclaim */
4111 static unsigned long
4112 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4113 					const struct alloc_context *ac)
4114 {
4115 	unsigned int noreclaim_flag;
4116 	unsigned long progress;
4117 
4118 	cond_resched();
4119 
4120 	/* We now go into synchronous reclaim */
4121 	cpuset_memory_pressure_bump();
4122 	fs_reclaim_acquire(gfp_mask);
4123 	noreclaim_flag = memalloc_noreclaim_save();
4124 
4125 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4126 								ac->nodemask);
4127 
4128 	memalloc_noreclaim_restore(noreclaim_flag);
4129 	fs_reclaim_release(gfp_mask);
4130 
4131 	cond_resched();
4132 
4133 	return progress;
4134 }
4135 
4136 /* The really slow allocator path where we enter direct reclaim */
4137 static inline struct page *
4138 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4139 		unsigned int alloc_flags, const struct alloc_context *ac,
4140 		unsigned long *did_some_progress)
4141 {
4142 	struct page *page = NULL;
4143 	unsigned long pflags;
4144 	bool drained = false;
4145 
4146 	psi_memstall_enter(&pflags);
4147 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4148 	if (unlikely(!(*did_some_progress)))
4149 		goto out;
4150 
4151 retry:
4152 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4153 
4154 	/*
4155 	 * If an allocation failed after direct reclaim, it could be because
4156 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4157 	 * Shrink them and try again
4158 	 */
4159 	if (!page && !drained) {
4160 		unreserve_highatomic_pageblock(ac, false);
4161 		drain_all_pages(NULL);
4162 		drained = true;
4163 		goto retry;
4164 	}
4165 out:
4166 	psi_memstall_leave(&pflags);
4167 
4168 	return page;
4169 }
4170 
4171 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4172 			     const struct alloc_context *ac)
4173 {
4174 	struct zoneref *z;
4175 	struct zone *zone;
4176 	pg_data_t *last_pgdat = NULL;
4177 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4178 	unsigned int reclaim_order;
4179 
4180 	if (defrag_mode)
4181 		reclaim_order = max(order, pageblock_order);
4182 	else
4183 		reclaim_order = order;
4184 
4185 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4186 					ac->nodemask) {
4187 		if (!managed_zone(zone))
4188 			continue;
4189 		if (last_pgdat == zone->zone_pgdat)
4190 			continue;
4191 		wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx);
4192 		last_pgdat = zone->zone_pgdat;
4193 	}
4194 }
4195 
4196 static inline unsigned int
4197 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4198 {
4199 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4200 
4201 	/*
4202 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4203 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4204 	 * to save two branches.
4205 	 */
4206 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4207 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4208 
4209 	/*
4210 	 * The caller may dip into page reserves a bit more if the caller
4211 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4212 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4213 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4214 	 */
4215 	alloc_flags |= (__force int)
4216 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4217 
4218 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4219 		/*
4220 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4221 		 * if it can't schedule.
4222 		 */
4223 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4224 			alloc_flags |= ALLOC_NON_BLOCK;
4225 
4226 			if (order > 0)
4227 				alloc_flags |= ALLOC_HIGHATOMIC;
4228 		}
4229 
4230 		/*
4231 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4232 		 * GFP_ATOMIC) rather than fail, see the comment for
4233 		 * cpuset_node_allowed().
4234 		 */
4235 		if (alloc_flags & ALLOC_MIN_RESERVE)
4236 			alloc_flags &= ~ALLOC_CPUSET;
4237 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4238 		alloc_flags |= ALLOC_MIN_RESERVE;
4239 
4240 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4241 
4242 	if (defrag_mode)
4243 		alloc_flags |= ALLOC_NOFRAGMENT;
4244 
4245 	return alloc_flags;
4246 }
4247 
4248 static bool oom_reserves_allowed(struct task_struct *tsk)
4249 {
4250 	if (!tsk_is_oom_victim(tsk))
4251 		return false;
4252 
4253 	/*
4254 	 * !MMU doesn't have oom reaper so give access to memory reserves
4255 	 * only to the thread with TIF_MEMDIE set
4256 	 */
4257 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4258 		return false;
4259 
4260 	return true;
4261 }
4262 
4263 /*
4264  * Distinguish requests which really need access to full memory
4265  * reserves from oom victims which can live with a portion of it
4266  */
4267 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4268 {
4269 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4270 		return 0;
4271 	if (gfp_mask & __GFP_MEMALLOC)
4272 		return ALLOC_NO_WATERMARKS;
4273 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4274 		return ALLOC_NO_WATERMARKS;
4275 	if (!in_interrupt()) {
4276 		if (current->flags & PF_MEMALLOC)
4277 			return ALLOC_NO_WATERMARKS;
4278 		else if (oom_reserves_allowed(current))
4279 			return ALLOC_OOM;
4280 	}
4281 
4282 	return 0;
4283 }
4284 
4285 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4286 {
4287 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4288 }
4289 
4290 /*
4291  * Checks whether it makes sense to retry the reclaim to make a forward progress
4292  * for the given allocation request.
4293  *
4294  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4295  * without success, or when we couldn't even meet the watermark if we
4296  * reclaimed all remaining pages on the LRU lists.
4297  *
4298  * Returns true if a retry is viable or false to enter the oom path.
4299  */
4300 static inline bool
4301 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4302 		     struct alloc_context *ac, int alloc_flags,
4303 		     bool did_some_progress, int *no_progress_loops)
4304 {
4305 	struct zone *zone;
4306 	struct zoneref *z;
4307 	bool ret = false;
4308 
4309 	/*
4310 	 * Costly allocations might have made a progress but this doesn't mean
4311 	 * their order will become available due to high fragmentation so
4312 	 * always increment the no progress counter for them
4313 	 */
4314 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4315 		*no_progress_loops = 0;
4316 	else
4317 		(*no_progress_loops)++;
4318 
4319 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4320 		goto out;
4321 
4322 
4323 	/*
4324 	 * Keep reclaiming pages while there is a chance this will lead
4325 	 * somewhere.  If none of the target zones can satisfy our allocation
4326 	 * request even if all reclaimable pages are considered then we are
4327 	 * screwed and have to go OOM.
4328 	 */
4329 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4330 				ac->highest_zoneidx, ac->nodemask) {
4331 		unsigned long available;
4332 		unsigned long reclaimable;
4333 		unsigned long min_wmark = min_wmark_pages(zone);
4334 		bool wmark;
4335 
4336 		if (cpusets_enabled() &&
4337 			(alloc_flags & ALLOC_CPUSET) &&
4338 			!__cpuset_zone_allowed(zone, gfp_mask))
4339 				continue;
4340 
4341 		available = reclaimable = zone_reclaimable_pages(zone);
4342 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4343 
4344 		/*
4345 		 * Would the allocation succeed if we reclaimed all
4346 		 * reclaimable pages?
4347 		 */
4348 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4349 				ac->highest_zoneidx, alloc_flags, available);
4350 		trace_reclaim_retry_zone(z, order, reclaimable,
4351 				available, min_wmark, *no_progress_loops, wmark);
4352 		if (wmark) {
4353 			ret = true;
4354 			break;
4355 		}
4356 	}
4357 
4358 	/*
4359 	 * Memory allocation/reclaim might be called from a WQ context and the
4360 	 * current implementation of the WQ concurrency control doesn't
4361 	 * recognize that a particular WQ is congested if the worker thread is
4362 	 * looping without ever sleeping. Therefore we have to do a short sleep
4363 	 * here rather than calling cond_resched().
4364 	 */
4365 	if (current->flags & PF_WQ_WORKER)
4366 		schedule_timeout_uninterruptible(1);
4367 	else
4368 		cond_resched();
4369 out:
4370 	/* Before OOM, exhaust highatomic_reserve */
4371 	if (!ret)
4372 		return unreserve_highatomic_pageblock(ac, true);
4373 
4374 	return ret;
4375 }
4376 
4377 static inline bool
4378 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4379 {
4380 	/*
4381 	 * It's possible that cpuset's mems_allowed and the nodemask from
4382 	 * mempolicy don't intersect. This should be normally dealt with by
4383 	 * policy_nodemask(), but it's possible to race with cpuset update in
4384 	 * such a way the check therein was true, and then it became false
4385 	 * before we got our cpuset_mems_cookie here.
4386 	 * This assumes that for all allocations, ac->nodemask can come only
4387 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4388 	 * when it does not intersect with the cpuset restrictions) or the
4389 	 * caller can deal with a violated nodemask.
4390 	 */
4391 	if (cpusets_enabled() && ac->nodemask &&
4392 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4393 		ac->nodemask = NULL;
4394 		return true;
4395 	}
4396 
4397 	/*
4398 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4399 	 * possible to race with parallel threads in such a way that our
4400 	 * allocation can fail while the mask is being updated. If we are about
4401 	 * to fail, check if the cpuset changed during allocation and if so,
4402 	 * retry.
4403 	 */
4404 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4405 		return true;
4406 
4407 	return false;
4408 }
4409 
4410 static inline struct page *
4411 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4412 						struct alloc_context *ac)
4413 {
4414 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4415 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4416 	bool nofail = gfp_mask & __GFP_NOFAIL;
4417 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4418 	struct page *page = NULL;
4419 	unsigned int alloc_flags;
4420 	unsigned long did_some_progress;
4421 	enum compact_priority compact_priority;
4422 	enum compact_result compact_result;
4423 	int compaction_retries;
4424 	int no_progress_loops;
4425 	unsigned int cpuset_mems_cookie;
4426 	unsigned int zonelist_iter_cookie;
4427 	int reserve_flags;
4428 
4429 	if (unlikely(nofail)) {
4430 		/*
4431 		 * We most definitely don't want callers attempting to
4432 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4433 		 */
4434 		WARN_ON_ONCE(order > 1);
4435 		/*
4436 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4437 		 * otherwise, we may result in lockup.
4438 		 */
4439 		WARN_ON_ONCE(!can_direct_reclaim);
4440 		/*
4441 		 * PF_MEMALLOC request from this context is rather bizarre
4442 		 * because we cannot reclaim anything and only can loop waiting
4443 		 * for somebody to do a work for us.
4444 		 */
4445 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4446 	}
4447 
4448 restart:
4449 	compaction_retries = 0;
4450 	no_progress_loops = 0;
4451 	compact_result = COMPACT_SKIPPED;
4452 	compact_priority = DEF_COMPACT_PRIORITY;
4453 	cpuset_mems_cookie = read_mems_allowed_begin();
4454 	zonelist_iter_cookie = zonelist_iter_begin();
4455 
4456 	/*
4457 	 * The fast path uses conservative alloc_flags to succeed only until
4458 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4459 	 * alloc_flags precisely. So we do that now.
4460 	 */
4461 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4462 
4463 	/*
4464 	 * We need to recalculate the starting point for the zonelist iterator
4465 	 * because we might have used different nodemask in the fast path, or
4466 	 * there was a cpuset modification and we are retrying - otherwise we
4467 	 * could end up iterating over non-eligible zones endlessly.
4468 	 */
4469 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4470 					ac->highest_zoneidx, ac->nodemask);
4471 	if (!zonelist_zone(ac->preferred_zoneref))
4472 		goto nopage;
4473 
4474 	/*
4475 	 * Check for insane configurations where the cpuset doesn't contain
4476 	 * any suitable zone to satisfy the request - e.g. non-movable
4477 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4478 	 */
4479 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4480 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4481 					ac->highest_zoneidx,
4482 					&cpuset_current_mems_allowed);
4483 		if (!zonelist_zone(z))
4484 			goto nopage;
4485 	}
4486 
4487 	if (alloc_flags & ALLOC_KSWAPD)
4488 		wake_all_kswapds(order, gfp_mask, ac);
4489 
4490 	/*
4491 	 * The adjusted alloc_flags might result in immediate success, so try
4492 	 * that first
4493 	 */
4494 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4495 	if (page)
4496 		goto got_pg;
4497 
4498 	/*
4499 	 * For costly allocations, try direct compaction first, as it's likely
4500 	 * that we have enough base pages and don't need to reclaim. For non-
4501 	 * movable high-order allocations, do that as well, as compaction will
4502 	 * try prevent permanent fragmentation by migrating from blocks of the
4503 	 * same migratetype.
4504 	 * Don't try this for allocations that are allowed to ignore
4505 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4506 	 */
4507 	if (can_direct_reclaim && can_compact &&
4508 			(costly_order ||
4509 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4510 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4511 		page = __alloc_pages_direct_compact(gfp_mask, order,
4512 						alloc_flags, ac,
4513 						INIT_COMPACT_PRIORITY,
4514 						&compact_result);
4515 		if (page)
4516 			goto got_pg;
4517 
4518 		/*
4519 		 * Checks for costly allocations with __GFP_NORETRY, which
4520 		 * includes some THP page fault allocations
4521 		 */
4522 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4523 			/*
4524 			 * If allocating entire pageblock(s) and compaction
4525 			 * failed because all zones are below low watermarks
4526 			 * or is prohibited because it recently failed at this
4527 			 * order, fail immediately unless the allocator has
4528 			 * requested compaction and reclaim retry.
4529 			 *
4530 			 * Reclaim is
4531 			 *  - potentially very expensive because zones are far
4532 			 *    below their low watermarks or this is part of very
4533 			 *    bursty high order allocations,
4534 			 *  - not guaranteed to help because isolate_freepages()
4535 			 *    may not iterate over freed pages as part of its
4536 			 *    linear scan, and
4537 			 *  - unlikely to make entire pageblocks free on its
4538 			 *    own.
4539 			 */
4540 			if (compact_result == COMPACT_SKIPPED ||
4541 			    compact_result == COMPACT_DEFERRED)
4542 				goto nopage;
4543 
4544 			/*
4545 			 * Looks like reclaim/compaction is worth trying, but
4546 			 * sync compaction could be very expensive, so keep
4547 			 * using async compaction.
4548 			 */
4549 			compact_priority = INIT_COMPACT_PRIORITY;
4550 		}
4551 	}
4552 
4553 retry:
4554 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4555 	if (alloc_flags & ALLOC_KSWAPD)
4556 		wake_all_kswapds(order, gfp_mask, ac);
4557 
4558 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4559 	if (reserve_flags)
4560 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4561 					  (alloc_flags & ALLOC_KSWAPD);
4562 
4563 	/*
4564 	 * Reset the nodemask and zonelist iterators if memory policies can be
4565 	 * ignored. These allocations are high priority and system rather than
4566 	 * user oriented.
4567 	 */
4568 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4569 		ac->nodemask = NULL;
4570 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4571 					ac->highest_zoneidx, ac->nodemask);
4572 	}
4573 
4574 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4575 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4576 	if (page)
4577 		goto got_pg;
4578 
4579 	/* Caller is not willing to reclaim, we can't balance anything */
4580 	if (!can_direct_reclaim)
4581 		goto nopage;
4582 
4583 	/* Avoid recursion of direct reclaim */
4584 	if (current->flags & PF_MEMALLOC)
4585 		goto nopage;
4586 
4587 	/* Try direct reclaim and then allocating */
4588 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4589 							&did_some_progress);
4590 	if (page)
4591 		goto got_pg;
4592 
4593 	/* Try direct compaction and then allocating */
4594 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4595 					compact_priority, &compact_result);
4596 	if (page)
4597 		goto got_pg;
4598 
4599 	/* Do not loop if specifically requested */
4600 	if (gfp_mask & __GFP_NORETRY)
4601 		goto nopage;
4602 
4603 	/*
4604 	 * Do not retry costly high order allocations unless they are
4605 	 * __GFP_RETRY_MAYFAIL and we can compact
4606 	 */
4607 	if (costly_order && (!can_compact ||
4608 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4609 		goto nopage;
4610 
4611 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4612 				 did_some_progress > 0, &no_progress_loops))
4613 		goto retry;
4614 
4615 	/*
4616 	 * It doesn't make any sense to retry for the compaction if the order-0
4617 	 * reclaim is not able to make any progress because the current
4618 	 * implementation of the compaction depends on the sufficient amount
4619 	 * of free memory (see __compaction_suitable)
4620 	 */
4621 	if (did_some_progress > 0 && can_compact &&
4622 			should_compact_retry(ac, order, alloc_flags,
4623 				compact_result, &compact_priority,
4624 				&compaction_retries))
4625 		goto retry;
4626 
4627 	/* Reclaim/compaction failed to prevent the fallback */
4628 	if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) {
4629 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4630 		goto retry;
4631 	}
4632 
4633 	/*
4634 	 * Deal with possible cpuset update races or zonelist updates to avoid
4635 	 * a unnecessary OOM kill.
4636 	 */
4637 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4638 	    check_retry_zonelist(zonelist_iter_cookie))
4639 		goto restart;
4640 
4641 	/* Reclaim has failed us, start killing things */
4642 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4643 	if (page)
4644 		goto got_pg;
4645 
4646 	/* Avoid allocations with no watermarks from looping endlessly */
4647 	if (tsk_is_oom_victim(current) &&
4648 	    (alloc_flags & ALLOC_OOM ||
4649 	     (gfp_mask & __GFP_NOMEMALLOC)))
4650 		goto nopage;
4651 
4652 	/* Retry as long as the OOM killer is making progress */
4653 	if (did_some_progress) {
4654 		no_progress_loops = 0;
4655 		goto retry;
4656 	}
4657 
4658 nopage:
4659 	/*
4660 	 * Deal with possible cpuset update races or zonelist updates to avoid
4661 	 * a unnecessary OOM kill.
4662 	 */
4663 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4664 	    check_retry_zonelist(zonelist_iter_cookie))
4665 		goto restart;
4666 
4667 	/*
4668 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4669 	 * we always retry
4670 	 */
4671 	if (unlikely(nofail)) {
4672 		/*
4673 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4674 		 * we disregard these unreasonable nofail requests and still
4675 		 * return NULL
4676 		 */
4677 		if (!can_direct_reclaim)
4678 			goto fail;
4679 
4680 		/*
4681 		 * Help non-failing allocations by giving some access to memory
4682 		 * reserves normally used for high priority non-blocking
4683 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4684 		 * could deplete whole memory reserves which would just make
4685 		 * the situation worse.
4686 		 */
4687 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4688 		if (page)
4689 			goto got_pg;
4690 
4691 		cond_resched();
4692 		goto retry;
4693 	}
4694 fail:
4695 	warn_alloc(gfp_mask, ac->nodemask,
4696 			"page allocation failure: order:%u", order);
4697 got_pg:
4698 	return page;
4699 }
4700 
4701 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4702 		int preferred_nid, nodemask_t *nodemask,
4703 		struct alloc_context *ac, gfp_t *alloc_gfp,
4704 		unsigned int *alloc_flags)
4705 {
4706 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4707 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4708 	ac->nodemask = nodemask;
4709 	ac->migratetype = gfp_migratetype(gfp_mask);
4710 
4711 	if (cpusets_enabled()) {
4712 		*alloc_gfp |= __GFP_HARDWALL;
4713 		/*
4714 		 * When we are in the interrupt context, it is irrelevant
4715 		 * to the current task context. It means that any node ok.
4716 		 */
4717 		if (in_task() && !ac->nodemask)
4718 			ac->nodemask = &cpuset_current_mems_allowed;
4719 		else
4720 			*alloc_flags |= ALLOC_CPUSET;
4721 	}
4722 
4723 	might_alloc(gfp_mask);
4724 
4725 	/*
4726 	 * Don't invoke should_fail logic, since it may call
4727 	 * get_random_u32() and printk() which need to spin_lock.
4728 	 */
4729 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4730 	    should_fail_alloc_page(gfp_mask, order))
4731 		return false;
4732 
4733 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4734 
4735 	/* Dirty zone balancing only done in the fast path */
4736 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4737 
4738 	/*
4739 	 * The preferred zone is used for statistics but crucially it is
4740 	 * also used as the starting point for the zonelist iterator. It
4741 	 * may get reset for allocations that ignore memory policies.
4742 	 */
4743 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4744 					ac->highest_zoneidx, ac->nodemask);
4745 
4746 	return true;
4747 }
4748 
4749 /*
4750  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4751  * @gfp: GFP flags for the allocation
4752  * @preferred_nid: The preferred NUMA node ID to allocate from
4753  * @nodemask: Set of nodes to allocate from, may be NULL
4754  * @nr_pages: The number of pages desired in the array
4755  * @page_array: Array to store the pages
4756  *
4757  * This is a batched version of the page allocator that attempts to
4758  * allocate nr_pages quickly. Pages are added to the page_array.
4759  *
4760  * Note that only NULL elements are populated with pages and nr_pages
4761  * is the maximum number of pages that will be stored in the array.
4762  *
4763  * Returns the number of pages in the array.
4764  */
4765 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4766 			nodemask_t *nodemask, int nr_pages,
4767 			struct page **page_array)
4768 {
4769 	struct page *page;
4770 	unsigned long __maybe_unused UP_flags;
4771 	struct zone *zone;
4772 	struct zoneref *z;
4773 	struct per_cpu_pages *pcp;
4774 	struct list_head *pcp_list;
4775 	struct alloc_context ac;
4776 	gfp_t alloc_gfp;
4777 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4778 	int nr_populated = 0, nr_account = 0;
4779 
4780 	/*
4781 	 * Skip populated array elements to determine if any pages need
4782 	 * to be allocated before disabling IRQs.
4783 	 */
4784 	while (nr_populated < nr_pages && page_array[nr_populated])
4785 		nr_populated++;
4786 
4787 	/* No pages requested? */
4788 	if (unlikely(nr_pages <= 0))
4789 		goto out;
4790 
4791 	/* Already populated array? */
4792 	if (unlikely(nr_pages - nr_populated == 0))
4793 		goto out;
4794 
4795 	/* Bulk allocator does not support memcg accounting. */
4796 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4797 		goto failed;
4798 
4799 	/* Use the single page allocator for one page. */
4800 	if (nr_pages - nr_populated == 1)
4801 		goto failed;
4802 
4803 #ifdef CONFIG_PAGE_OWNER
4804 	/*
4805 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4806 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4807 	 * removes much of the performance benefit of bulk allocation so
4808 	 * force the caller to allocate one page at a time as it'll have
4809 	 * similar performance to added complexity to the bulk allocator.
4810 	 */
4811 	if (static_branch_unlikely(&page_owner_inited))
4812 		goto failed;
4813 #endif
4814 
4815 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4816 	gfp &= gfp_allowed_mask;
4817 	alloc_gfp = gfp;
4818 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4819 		goto out;
4820 	gfp = alloc_gfp;
4821 
4822 	/* Find an allowed local zone that meets the low watermark. */
4823 	z = ac.preferred_zoneref;
4824 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4825 		unsigned long mark;
4826 
4827 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4828 		    !__cpuset_zone_allowed(zone, gfp)) {
4829 			continue;
4830 		}
4831 
4832 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4833 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4834 			goto failed;
4835 		}
4836 
4837 		cond_accept_memory(zone, 0, alloc_flags);
4838 retry_this_zone:
4839 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4840 		if (zone_watermark_fast(zone, 0,  mark,
4841 				zonelist_zone_idx(ac.preferred_zoneref),
4842 				alloc_flags, gfp)) {
4843 			break;
4844 		}
4845 
4846 		if (cond_accept_memory(zone, 0, alloc_flags))
4847 			goto retry_this_zone;
4848 
4849 		/* Try again if zone has deferred pages */
4850 		if (deferred_pages_enabled()) {
4851 			if (_deferred_grow_zone(zone, 0))
4852 				goto retry_this_zone;
4853 		}
4854 	}
4855 
4856 	/*
4857 	 * If there are no allowed local zones that meets the watermarks then
4858 	 * try to allocate a single page and reclaim if necessary.
4859 	 */
4860 	if (unlikely(!zone))
4861 		goto failed;
4862 
4863 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4864 	pcp_trylock_prepare(UP_flags);
4865 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4866 	if (!pcp)
4867 		goto failed_irq;
4868 
4869 	/* Attempt the batch allocation */
4870 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4871 	while (nr_populated < nr_pages) {
4872 
4873 		/* Skip existing pages */
4874 		if (page_array[nr_populated]) {
4875 			nr_populated++;
4876 			continue;
4877 		}
4878 
4879 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4880 								pcp, pcp_list);
4881 		if (unlikely(!page)) {
4882 			/* Try and allocate at least one page */
4883 			if (!nr_account) {
4884 				pcp_spin_unlock(pcp);
4885 				goto failed_irq;
4886 			}
4887 			break;
4888 		}
4889 		nr_account++;
4890 
4891 		prep_new_page(page, 0, gfp, 0);
4892 		set_page_refcounted(page);
4893 		page_array[nr_populated++] = page;
4894 	}
4895 
4896 	pcp_spin_unlock(pcp);
4897 	pcp_trylock_finish(UP_flags);
4898 
4899 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4900 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4901 
4902 out:
4903 	return nr_populated;
4904 
4905 failed_irq:
4906 	pcp_trylock_finish(UP_flags);
4907 
4908 failed:
4909 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4910 	if (page)
4911 		page_array[nr_populated++] = page;
4912 	goto out;
4913 }
4914 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4915 
4916 /*
4917  * This is the 'heart' of the zoned buddy allocator.
4918  */
4919 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4920 		int preferred_nid, nodemask_t *nodemask)
4921 {
4922 	struct page *page;
4923 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4924 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4925 	struct alloc_context ac = { };
4926 
4927 	/*
4928 	 * There are several places where we assume that the order value is sane
4929 	 * so bail out early if the request is out of bound.
4930 	 */
4931 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4932 		return NULL;
4933 
4934 	gfp &= gfp_allowed_mask;
4935 	/*
4936 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4937 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4938 	 * from a particular context which has been marked by
4939 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4940 	 * movable zones are not used during allocation.
4941 	 */
4942 	gfp = current_gfp_context(gfp);
4943 	alloc_gfp = gfp;
4944 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4945 			&alloc_gfp, &alloc_flags))
4946 		return NULL;
4947 
4948 	/*
4949 	 * Forbid the first pass from falling back to types that fragment
4950 	 * memory until all local zones are considered.
4951 	 */
4952 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4953 
4954 	/* First allocation attempt */
4955 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4956 	if (likely(page))
4957 		goto out;
4958 
4959 	alloc_gfp = gfp;
4960 	ac.spread_dirty_pages = false;
4961 
4962 	/*
4963 	 * Restore the original nodemask if it was potentially replaced with
4964 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4965 	 */
4966 	ac.nodemask = nodemask;
4967 
4968 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4969 
4970 out:
4971 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4972 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4973 		free_frozen_pages(page, order);
4974 		page = NULL;
4975 	}
4976 
4977 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4978 	kmsan_alloc_page(page, order, alloc_gfp);
4979 
4980 	return page;
4981 }
4982 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4983 
4984 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4985 		int preferred_nid, nodemask_t *nodemask)
4986 {
4987 	struct page *page;
4988 
4989 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
4990 	if (page)
4991 		set_page_refcounted(page);
4992 	return page;
4993 }
4994 EXPORT_SYMBOL(__alloc_pages_noprof);
4995 
4996 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4997 		nodemask_t *nodemask)
4998 {
4999 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
5000 					preferred_nid, nodemask);
5001 	return page_rmappable_folio(page);
5002 }
5003 EXPORT_SYMBOL(__folio_alloc_noprof);
5004 
5005 /*
5006  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5007  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5008  * you need to access high mem.
5009  */
5010 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
5011 {
5012 	struct page *page;
5013 
5014 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
5015 	if (!page)
5016 		return 0;
5017 	return (unsigned long) page_address(page);
5018 }
5019 EXPORT_SYMBOL(get_free_pages_noprof);
5020 
5021 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
5022 {
5023 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
5024 }
5025 EXPORT_SYMBOL(get_zeroed_page_noprof);
5026 
5027 /**
5028  * ___free_pages - Free pages allocated with alloc_pages().
5029  * @page: The page pointer returned from alloc_pages().
5030  * @order: The order of the allocation.
5031  * @fpi_flags: Free Page Internal flags.
5032  *
5033  * This function can free multi-page allocations that are not compound
5034  * pages.  It does not check that the @order passed in matches that of
5035  * the allocation, so it is easy to leak memory.  Freeing more memory
5036  * than was allocated will probably emit a warning.
5037  *
5038  * If the last reference to this page is speculative, it will be released
5039  * by put_page() which only frees the first page of a non-compound
5040  * allocation.  To prevent the remaining pages from being leaked, we free
5041  * the subsequent pages here.  If you want to use the page's reference
5042  * count to decide when to free the allocation, you should allocate a
5043  * compound page, and use put_page() instead of __free_pages().
5044  *
5045  * Context: May be called in interrupt context or while holding a normal
5046  * spinlock, but not in NMI context or while holding a raw spinlock.
5047  */
5048 static void ___free_pages(struct page *page, unsigned int order,
5049 			  fpi_t fpi_flags)
5050 {
5051 	/* get PageHead before we drop reference */
5052 	int head = PageHead(page);
5053 	/* get alloc tag in case the page is released by others */
5054 	struct alloc_tag *tag = pgalloc_tag_get(page);
5055 
5056 	if (put_page_testzero(page))
5057 		__free_frozen_pages(page, order, fpi_flags);
5058 	else if (!head) {
5059 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
5060 		while (order-- > 0)
5061 			__free_frozen_pages(page + (1 << order), order,
5062 					    fpi_flags);
5063 	}
5064 }
5065 void __free_pages(struct page *page, unsigned int order)
5066 {
5067 	___free_pages(page, order, FPI_NONE);
5068 }
5069 EXPORT_SYMBOL(__free_pages);
5070 
5071 /*
5072  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
5073  * page type (not only those that came from try_alloc_pages)
5074  */
5075 void free_pages_nolock(struct page *page, unsigned int order)
5076 {
5077 	___free_pages(page, order, FPI_TRYLOCK);
5078 }
5079 
5080 void free_pages(unsigned long addr, unsigned int order)
5081 {
5082 	if (addr != 0) {
5083 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5084 		__free_pages(virt_to_page((void *)addr), order);
5085 	}
5086 }
5087 
5088 EXPORT_SYMBOL(free_pages);
5089 
5090 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5091 		size_t size)
5092 {
5093 	if (addr) {
5094 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5095 		struct page *page = virt_to_page((void *)addr);
5096 		struct page *last = page + nr;
5097 
5098 		split_page_owner(page, order, 0);
5099 		pgalloc_tag_split(page_folio(page), order, 0);
5100 		split_page_memcg(page, order);
5101 		while (page < --last)
5102 			set_page_refcounted(last);
5103 
5104 		last = page + (1UL << order);
5105 		for (page += nr; page < last; page++)
5106 			__free_pages_ok(page, 0, FPI_TO_TAIL);
5107 	}
5108 	return (void *)addr;
5109 }
5110 
5111 /**
5112  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5113  * @size: the number of bytes to allocate
5114  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5115  *
5116  * This function is similar to alloc_pages(), except that it allocates the
5117  * minimum number of pages to satisfy the request.  alloc_pages() can only
5118  * allocate memory in power-of-two pages.
5119  *
5120  * This function is also limited by MAX_PAGE_ORDER.
5121  *
5122  * Memory allocated by this function must be released by free_pages_exact().
5123  *
5124  * Return: pointer to the allocated area or %NULL in case of error.
5125  */
5126 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
5127 {
5128 	unsigned int order = get_order(size);
5129 	unsigned long addr;
5130 
5131 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5132 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5133 
5134 	addr = get_free_pages_noprof(gfp_mask, order);
5135 	return make_alloc_exact(addr, order, size);
5136 }
5137 EXPORT_SYMBOL(alloc_pages_exact_noprof);
5138 
5139 /**
5140  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5141  *			   pages on a node.
5142  * @nid: the preferred node ID where memory should be allocated
5143  * @size: the number of bytes to allocate
5144  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5145  *
5146  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5147  * back.
5148  *
5149  * Return: pointer to the allocated area or %NULL in case of error.
5150  */
5151 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5152 {
5153 	unsigned int order = get_order(size);
5154 	struct page *p;
5155 
5156 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5157 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5158 
5159 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5160 	if (!p)
5161 		return NULL;
5162 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5163 }
5164 
5165 /**
5166  * free_pages_exact - release memory allocated via alloc_pages_exact()
5167  * @virt: the value returned by alloc_pages_exact.
5168  * @size: size of allocation, same value as passed to alloc_pages_exact().
5169  *
5170  * Release the memory allocated by a previous call to alloc_pages_exact.
5171  */
5172 void free_pages_exact(void *virt, size_t size)
5173 {
5174 	unsigned long addr = (unsigned long)virt;
5175 	unsigned long end = addr + PAGE_ALIGN(size);
5176 
5177 	while (addr < end) {
5178 		free_page(addr);
5179 		addr += PAGE_SIZE;
5180 	}
5181 }
5182 EXPORT_SYMBOL(free_pages_exact);
5183 
5184 /**
5185  * nr_free_zone_pages - count number of pages beyond high watermark
5186  * @offset: The zone index of the highest zone
5187  *
5188  * nr_free_zone_pages() counts the number of pages which are beyond the
5189  * high watermark within all zones at or below a given zone index.  For each
5190  * zone, the number of pages is calculated as:
5191  *
5192  *     nr_free_zone_pages = managed_pages - high_pages
5193  *
5194  * Return: number of pages beyond high watermark.
5195  */
5196 static unsigned long nr_free_zone_pages(int offset)
5197 {
5198 	struct zoneref *z;
5199 	struct zone *zone;
5200 
5201 	/* Just pick one node, since fallback list is circular */
5202 	unsigned long sum = 0;
5203 
5204 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5205 
5206 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5207 		unsigned long size = zone_managed_pages(zone);
5208 		unsigned long high = high_wmark_pages(zone);
5209 		if (size > high)
5210 			sum += size - high;
5211 	}
5212 
5213 	return sum;
5214 }
5215 
5216 /**
5217  * nr_free_buffer_pages - count number of pages beyond high watermark
5218  *
5219  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5220  * watermark within ZONE_DMA and ZONE_NORMAL.
5221  *
5222  * Return: number of pages beyond high watermark within ZONE_DMA and
5223  * ZONE_NORMAL.
5224  */
5225 unsigned long nr_free_buffer_pages(void)
5226 {
5227 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5228 }
5229 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5230 
5231 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5232 {
5233 	zoneref->zone = zone;
5234 	zoneref->zone_idx = zone_idx(zone);
5235 }
5236 
5237 /*
5238  * Builds allocation fallback zone lists.
5239  *
5240  * Add all populated zones of a node to the zonelist.
5241  */
5242 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5243 {
5244 	struct zone *zone;
5245 	enum zone_type zone_type = MAX_NR_ZONES;
5246 	int nr_zones = 0;
5247 
5248 	do {
5249 		zone_type--;
5250 		zone = pgdat->node_zones + zone_type;
5251 		if (populated_zone(zone)) {
5252 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5253 			check_highest_zone(zone_type);
5254 		}
5255 	} while (zone_type);
5256 
5257 	return nr_zones;
5258 }
5259 
5260 #ifdef CONFIG_NUMA
5261 
5262 static int __parse_numa_zonelist_order(char *s)
5263 {
5264 	/*
5265 	 * We used to support different zonelists modes but they turned
5266 	 * out to be just not useful. Let's keep the warning in place
5267 	 * if somebody still use the cmd line parameter so that we do
5268 	 * not fail it silently
5269 	 */
5270 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5271 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5272 		return -EINVAL;
5273 	}
5274 	return 0;
5275 }
5276 
5277 static char numa_zonelist_order[] = "Node";
5278 #define NUMA_ZONELIST_ORDER_LEN	16
5279 /*
5280  * sysctl handler for numa_zonelist_order
5281  */
5282 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5283 		void *buffer, size_t *length, loff_t *ppos)
5284 {
5285 	if (write)
5286 		return __parse_numa_zonelist_order(buffer);
5287 	return proc_dostring(table, write, buffer, length, ppos);
5288 }
5289 
5290 static int node_load[MAX_NUMNODES];
5291 
5292 /**
5293  * find_next_best_node - find the next node that should appear in a given node's fallback list
5294  * @node: node whose fallback list we're appending
5295  * @used_node_mask: nodemask_t of already used nodes
5296  *
5297  * We use a number of factors to determine which is the next node that should
5298  * appear on a given node's fallback list.  The node should not have appeared
5299  * already in @node's fallback list, and it should be the next closest node
5300  * according to the distance array (which contains arbitrary distance values
5301  * from each node to each node in the system), and should also prefer nodes
5302  * with no CPUs, since presumably they'll have very little allocation pressure
5303  * on them otherwise.
5304  *
5305  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5306  */
5307 int find_next_best_node(int node, nodemask_t *used_node_mask)
5308 {
5309 	int n, val;
5310 	int min_val = INT_MAX;
5311 	int best_node = NUMA_NO_NODE;
5312 
5313 	/*
5314 	 * Use the local node if we haven't already, but for memoryless local
5315 	 * node, we should skip it and fall back to other nodes.
5316 	 */
5317 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5318 		node_set(node, *used_node_mask);
5319 		return node;
5320 	}
5321 
5322 	for_each_node_state(n, N_MEMORY) {
5323 
5324 		/* Don't want a node to appear more than once */
5325 		if (node_isset(n, *used_node_mask))
5326 			continue;
5327 
5328 		/* Use the distance array to find the distance */
5329 		val = node_distance(node, n);
5330 
5331 		/* Penalize nodes under us ("prefer the next node") */
5332 		val += (n < node);
5333 
5334 		/* Give preference to headless and unused nodes */
5335 		if (!cpumask_empty(cpumask_of_node(n)))
5336 			val += PENALTY_FOR_NODE_WITH_CPUS;
5337 
5338 		/* Slight preference for less loaded node */
5339 		val *= MAX_NUMNODES;
5340 		val += node_load[n];
5341 
5342 		if (val < min_val) {
5343 			min_val = val;
5344 			best_node = n;
5345 		}
5346 	}
5347 
5348 	if (best_node >= 0)
5349 		node_set(best_node, *used_node_mask);
5350 
5351 	return best_node;
5352 }
5353 
5354 
5355 /*
5356  * Build zonelists ordered by node and zones within node.
5357  * This results in maximum locality--normal zone overflows into local
5358  * DMA zone, if any--but risks exhausting DMA zone.
5359  */
5360 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5361 		unsigned nr_nodes)
5362 {
5363 	struct zoneref *zonerefs;
5364 	int i;
5365 
5366 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5367 
5368 	for (i = 0; i < nr_nodes; i++) {
5369 		int nr_zones;
5370 
5371 		pg_data_t *node = NODE_DATA(node_order[i]);
5372 
5373 		nr_zones = build_zonerefs_node(node, zonerefs);
5374 		zonerefs += nr_zones;
5375 	}
5376 	zonerefs->zone = NULL;
5377 	zonerefs->zone_idx = 0;
5378 }
5379 
5380 /*
5381  * Build __GFP_THISNODE zonelists
5382  */
5383 static void build_thisnode_zonelists(pg_data_t *pgdat)
5384 {
5385 	struct zoneref *zonerefs;
5386 	int nr_zones;
5387 
5388 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5389 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5390 	zonerefs += nr_zones;
5391 	zonerefs->zone = NULL;
5392 	zonerefs->zone_idx = 0;
5393 }
5394 
5395 static void build_zonelists(pg_data_t *pgdat)
5396 {
5397 	static int node_order[MAX_NUMNODES];
5398 	int node, nr_nodes = 0;
5399 	nodemask_t used_mask = NODE_MASK_NONE;
5400 	int local_node, prev_node;
5401 
5402 	/* NUMA-aware ordering of nodes */
5403 	local_node = pgdat->node_id;
5404 	prev_node = local_node;
5405 
5406 	memset(node_order, 0, sizeof(node_order));
5407 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5408 		/*
5409 		 * We don't want to pressure a particular node.
5410 		 * So adding penalty to the first node in same
5411 		 * distance group to make it round-robin.
5412 		 */
5413 		if (node_distance(local_node, node) !=
5414 		    node_distance(local_node, prev_node))
5415 			node_load[node] += 1;
5416 
5417 		node_order[nr_nodes++] = node;
5418 		prev_node = node;
5419 	}
5420 
5421 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5422 	build_thisnode_zonelists(pgdat);
5423 	pr_info("Fallback order for Node %d: ", local_node);
5424 	for (node = 0; node < nr_nodes; node++)
5425 		pr_cont("%d ", node_order[node]);
5426 	pr_cont("\n");
5427 }
5428 
5429 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5430 /*
5431  * Return node id of node used for "local" allocations.
5432  * I.e., first node id of first zone in arg node's generic zonelist.
5433  * Used for initializing percpu 'numa_mem', which is used primarily
5434  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5435  */
5436 int local_memory_node(int node)
5437 {
5438 	struct zoneref *z;
5439 
5440 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5441 				   gfp_zone(GFP_KERNEL),
5442 				   NULL);
5443 	return zonelist_node_idx(z);
5444 }
5445 #endif
5446 
5447 static void setup_min_unmapped_ratio(void);
5448 static void setup_min_slab_ratio(void);
5449 #else	/* CONFIG_NUMA */
5450 
5451 static void build_zonelists(pg_data_t *pgdat)
5452 {
5453 	struct zoneref *zonerefs;
5454 	int nr_zones;
5455 
5456 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5457 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5458 	zonerefs += nr_zones;
5459 
5460 	zonerefs->zone = NULL;
5461 	zonerefs->zone_idx = 0;
5462 }
5463 
5464 #endif	/* CONFIG_NUMA */
5465 
5466 /*
5467  * Boot pageset table. One per cpu which is going to be used for all
5468  * zones and all nodes. The parameters will be set in such a way
5469  * that an item put on a list will immediately be handed over to
5470  * the buddy list. This is safe since pageset manipulation is done
5471  * with interrupts disabled.
5472  *
5473  * The boot_pagesets must be kept even after bootup is complete for
5474  * unused processors and/or zones. They do play a role for bootstrapping
5475  * hotplugged processors.
5476  *
5477  * zoneinfo_show() and maybe other functions do
5478  * not check if the processor is online before following the pageset pointer.
5479  * Other parts of the kernel may not check if the zone is available.
5480  */
5481 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5482 /* These effectively disable the pcplists in the boot pageset completely */
5483 #define BOOT_PAGESET_HIGH	0
5484 #define BOOT_PAGESET_BATCH	1
5485 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5486 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5487 
5488 static void __build_all_zonelists(void *data)
5489 {
5490 	int nid;
5491 	int __maybe_unused cpu;
5492 	pg_data_t *self = data;
5493 	unsigned long flags;
5494 
5495 	/*
5496 	 * The zonelist_update_seq must be acquired with irqsave because the
5497 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5498 	 */
5499 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5500 	/*
5501 	 * Also disable synchronous printk() to prevent any printk() from
5502 	 * trying to hold port->lock, for
5503 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5504 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5505 	 */
5506 	printk_deferred_enter();
5507 
5508 #ifdef CONFIG_NUMA
5509 	memset(node_load, 0, sizeof(node_load));
5510 #endif
5511 
5512 	/*
5513 	 * This node is hotadded and no memory is yet present.   So just
5514 	 * building zonelists is fine - no need to touch other nodes.
5515 	 */
5516 	if (self && !node_online(self->node_id)) {
5517 		build_zonelists(self);
5518 	} else {
5519 		/*
5520 		 * All possible nodes have pgdat preallocated
5521 		 * in free_area_init
5522 		 */
5523 		for_each_node(nid) {
5524 			pg_data_t *pgdat = NODE_DATA(nid);
5525 
5526 			build_zonelists(pgdat);
5527 		}
5528 
5529 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5530 		/*
5531 		 * We now know the "local memory node" for each node--
5532 		 * i.e., the node of the first zone in the generic zonelist.
5533 		 * Set up numa_mem percpu variable for on-line cpus.  During
5534 		 * boot, only the boot cpu should be on-line;  we'll init the
5535 		 * secondary cpus' numa_mem as they come on-line.  During
5536 		 * node/memory hotplug, we'll fixup all on-line cpus.
5537 		 */
5538 		for_each_online_cpu(cpu)
5539 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5540 #endif
5541 	}
5542 
5543 	printk_deferred_exit();
5544 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5545 }
5546 
5547 static noinline void __init
5548 build_all_zonelists_init(void)
5549 {
5550 	int cpu;
5551 
5552 	__build_all_zonelists(NULL);
5553 
5554 	/*
5555 	 * Initialize the boot_pagesets that are going to be used
5556 	 * for bootstrapping processors. The real pagesets for
5557 	 * each zone will be allocated later when the per cpu
5558 	 * allocator is available.
5559 	 *
5560 	 * boot_pagesets are used also for bootstrapping offline
5561 	 * cpus if the system is already booted because the pagesets
5562 	 * are needed to initialize allocators on a specific cpu too.
5563 	 * F.e. the percpu allocator needs the page allocator which
5564 	 * needs the percpu allocator in order to allocate its pagesets
5565 	 * (a chicken-egg dilemma).
5566 	 */
5567 	for_each_possible_cpu(cpu)
5568 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5569 
5570 	mminit_verify_zonelist();
5571 	cpuset_init_current_mems_allowed();
5572 }
5573 
5574 /*
5575  * unless system_state == SYSTEM_BOOTING.
5576  *
5577  * __ref due to call of __init annotated helper build_all_zonelists_init
5578  * [protected by SYSTEM_BOOTING].
5579  */
5580 void __ref build_all_zonelists(pg_data_t *pgdat)
5581 {
5582 	unsigned long vm_total_pages;
5583 
5584 	if (system_state == SYSTEM_BOOTING) {
5585 		build_all_zonelists_init();
5586 	} else {
5587 		__build_all_zonelists(pgdat);
5588 		/* cpuset refresh routine should be here */
5589 	}
5590 	/* Get the number of free pages beyond high watermark in all zones. */
5591 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5592 	/*
5593 	 * Disable grouping by mobility if the number of pages in the
5594 	 * system is too low to allow the mechanism to work. It would be
5595 	 * more accurate, but expensive to check per-zone. This check is
5596 	 * made on memory-hotadd so a system can start with mobility
5597 	 * disabled and enable it later
5598 	 */
5599 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5600 		page_group_by_mobility_disabled = 1;
5601 	else
5602 		page_group_by_mobility_disabled = 0;
5603 
5604 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5605 		nr_online_nodes,
5606 		str_off_on(page_group_by_mobility_disabled),
5607 		vm_total_pages);
5608 #ifdef CONFIG_NUMA
5609 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5610 #endif
5611 }
5612 
5613 static int zone_batchsize(struct zone *zone)
5614 {
5615 #ifdef CONFIG_MMU
5616 	int batch;
5617 
5618 	/*
5619 	 * The number of pages to batch allocate is either ~0.1%
5620 	 * of the zone or 1MB, whichever is smaller. The batch
5621 	 * size is striking a balance between allocation latency
5622 	 * and zone lock contention.
5623 	 */
5624 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5625 	batch /= 4;		/* We effectively *= 4 below */
5626 	if (batch < 1)
5627 		batch = 1;
5628 
5629 	/*
5630 	 * Clamp the batch to a 2^n - 1 value. Having a power
5631 	 * of 2 value was found to be more likely to have
5632 	 * suboptimal cache aliasing properties in some cases.
5633 	 *
5634 	 * For example if 2 tasks are alternately allocating
5635 	 * batches of pages, one task can end up with a lot
5636 	 * of pages of one half of the possible page colors
5637 	 * and the other with pages of the other colors.
5638 	 */
5639 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5640 
5641 	return batch;
5642 
5643 #else
5644 	/* The deferral and batching of frees should be suppressed under NOMMU
5645 	 * conditions.
5646 	 *
5647 	 * The problem is that NOMMU needs to be able to allocate large chunks
5648 	 * of contiguous memory as there's no hardware page translation to
5649 	 * assemble apparent contiguous memory from discontiguous pages.
5650 	 *
5651 	 * Queueing large contiguous runs of pages for batching, however,
5652 	 * causes the pages to actually be freed in smaller chunks.  As there
5653 	 * can be a significant delay between the individual batches being
5654 	 * recycled, this leads to the once large chunks of space being
5655 	 * fragmented and becoming unavailable for high-order allocations.
5656 	 */
5657 	return 0;
5658 #endif
5659 }
5660 
5661 static int percpu_pagelist_high_fraction;
5662 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5663 			 int high_fraction)
5664 {
5665 #ifdef CONFIG_MMU
5666 	int high;
5667 	int nr_split_cpus;
5668 	unsigned long total_pages;
5669 
5670 	if (!high_fraction) {
5671 		/*
5672 		 * By default, the high value of the pcp is based on the zone
5673 		 * low watermark so that if they are full then background
5674 		 * reclaim will not be started prematurely.
5675 		 */
5676 		total_pages = low_wmark_pages(zone);
5677 	} else {
5678 		/*
5679 		 * If percpu_pagelist_high_fraction is configured, the high
5680 		 * value is based on a fraction of the managed pages in the
5681 		 * zone.
5682 		 */
5683 		total_pages = zone_managed_pages(zone) / high_fraction;
5684 	}
5685 
5686 	/*
5687 	 * Split the high value across all online CPUs local to the zone. Note
5688 	 * that early in boot that CPUs may not be online yet and that during
5689 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5690 	 * onlined. For memory nodes that have no CPUs, split the high value
5691 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5692 	 * prematurely due to pages stored on pcp lists.
5693 	 */
5694 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5695 	if (!nr_split_cpus)
5696 		nr_split_cpus = num_online_cpus();
5697 	high = total_pages / nr_split_cpus;
5698 
5699 	/*
5700 	 * Ensure high is at least batch*4. The multiple is based on the
5701 	 * historical relationship between high and batch.
5702 	 */
5703 	high = max(high, batch << 2);
5704 
5705 	return high;
5706 #else
5707 	return 0;
5708 #endif
5709 }
5710 
5711 /*
5712  * pcp->high and pcp->batch values are related and generally batch is lower
5713  * than high. They are also related to pcp->count such that count is lower
5714  * than high, and as soon as it reaches high, the pcplist is flushed.
5715  *
5716  * However, guaranteeing these relations at all times would require e.g. write
5717  * barriers here but also careful usage of read barriers at the read side, and
5718  * thus be prone to error and bad for performance. Thus the update only prevents
5719  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5720  * should ensure they can cope with those fields changing asynchronously, and
5721  * fully trust only the pcp->count field on the local CPU with interrupts
5722  * disabled.
5723  *
5724  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5725  * outside of boot time (or some other assurance that no concurrent updaters
5726  * exist).
5727  */
5728 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5729 			   unsigned long high_max, unsigned long batch)
5730 {
5731 	WRITE_ONCE(pcp->batch, batch);
5732 	WRITE_ONCE(pcp->high_min, high_min);
5733 	WRITE_ONCE(pcp->high_max, high_max);
5734 }
5735 
5736 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5737 {
5738 	int pindex;
5739 
5740 	memset(pcp, 0, sizeof(*pcp));
5741 	memset(pzstats, 0, sizeof(*pzstats));
5742 
5743 	spin_lock_init(&pcp->lock);
5744 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5745 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5746 
5747 	/*
5748 	 * Set batch and high values safe for a boot pageset. A true percpu
5749 	 * pageset's initialization will update them subsequently. Here we don't
5750 	 * need to be as careful as pageset_update() as nobody can access the
5751 	 * pageset yet.
5752 	 */
5753 	pcp->high_min = BOOT_PAGESET_HIGH;
5754 	pcp->high_max = BOOT_PAGESET_HIGH;
5755 	pcp->batch = BOOT_PAGESET_BATCH;
5756 	pcp->free_count = 0;
5757 }
5758 
5759 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5760 					      unsigned long high_max, unsigned long batch)
5761 {
5762 	struct per_cpu_pages *pcp;
5763 	int cpu;
5764 
5765 	for_each_possible_cpu(cpu) {
5766 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5767 		pageset_update(pcp, high_min, high_max, batch);
5768 	}
5769 }
5770 
5771 /*
5772  * Calculate and set new high and batch values for all per-cpu pagesets of a
5773  * zone based on the zone's size.
5774  */
5775 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5776 {
5777 	int new_high_min, new_high_max, new_batch;
5778 
5779 	new_batch = max(1, zone_batchsize(zone));
5780 	if (percpu_pagelist_high_fraction) {
5781 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5782 					     percpu_pagelist_high_fraction);
5783 		/*
5784 		 * PCP high is tuned manually, disable auto-tuning via
5785 		 * setting high_min and high_max to the manual value.
5786 		 */
5787 		new_high_max = new_high_min;
5788 	} else {
5789 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5790 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5791 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5792 	}
5793 
5794 	if (zone->pageset_high_min == new_high_min &&
5795 	    zone->pageset_high_max == new_high_max &&
5796 	    zone->pageset_batch == new_batch)
5797 		return;
5798 
5799 	zone->pageset_high_min = new_high_min;
5800 	zone->pageset_high_max = new_high_max;
5801 	zone->pageset_batch = new_batch;
5802 
5803 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5804 					  new_batch);
5805 }
5806 
5807 void __meminit setup_zone_pageset(struct zone *zone)
5808 {
5809 	int cpu;
5810 
5811 	/* Size may be 0 on !SMP && !NUMA */
5812 	if (sizeof(struct per_cpu_zonestat) > 0)
5813 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5814 
5815 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5816 	for_each_possible_cpu(cpu) {
5817 		struct per_cpu_pages *pcp;
5818 		struct per_cpu_zonestat *pzstats;
5819 
5820 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5821 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5822 		per_cpu_pages_init(pcp, pzstats);
5823 	}
5824 
5825 	zone_set_pageset_high_and_batch(zone, 0);
5826 }
5827 
5828 /*
5829  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5830  * page high values need to be recalculated.
5831  */
5832 static void zone_pcp_update(struct zone *zone, int cpu_online)
5833 {
5834 	mutex_lock(&pcp_batch_high_lock);
5835 	zone_set_pageset_high_and_batch(zone, cpu_online);
5836 	mutex_unlock(&pcp_batch_high_lock);
5837 }
5838 
5839 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5840 {
5841 	struct per_cpu_pages *pcp;
5842 	struct cpu_cacheinfo *cci;
5843 
5844 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5845 	cci = get_cpu_cacheinfo(cpu);
5846 	/*
5847 	 * If data cache slice of CPU is large enough, "pcp->batch"
5848 	 * pages can be preserved in PCP before draining PCP for
5849 	 * consecutive high-order pages freeing without allocation.
5850 	 * This can reduce zone lock contention without hurting
5851 	 * cache-hot pages sharing.
5852 	 */
5853 	spin_lock(&pcp->lock);
5854 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5855 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5856 	else
5857 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5858 	spin_unlock(&pcp->lock);
5859 }
5860 
5861 void setup_pcp_cacheinfo(unsigned int cpu)
5862 {
5863 	struct zone *zone;
5864 
5865 	for_each_populated_zone(zone)
5866 		zone_pcp_update_cacheinfo(zone, cpu);
5867 }
5868 
5869 /*
5870  * Allocate per cpu pagesets and initialize them.
5871  * Before this call only boot pagesets were available.
5872  */
5873 void __init setup_per_cpu_pageset(void)
5874 {
5875 	struct pglist_data *pgdat;
5876 	struct zone *zone;
5877 	int __maybe_unused cpu;
5878 
5879 	for_each_populated_zone(zone)
5880 		setup_zone_pageset(zone);
5881 
5882 #ifdef CONFIG_NUMA
5883 	/*
5884 	 * Unpopulated zones continue using the boot pagesets.
5885 	 * The numa stats for these pagesets need to be reset.
5886 	 * Otherwise, they will end up skewing the stats of
5887 	 * the nodes these zones are associated with.
5888 	 */
5889 	for_each_possible_cpu(cpu) {
5890 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5891 		memset(pzstats->vm_numa_event, 0,
5892 		       sizeof(pzstats->vm_numa_event));
5893 	}
5894 #endif
5895 
5896 	for_each_online_pgdat(pgdat)
5897 		pgdat->per_cpu_nodestats =
5898 			alloc_percpu(struct per_cpu_nodestat);
5899 }
5900 
5901 __meminit void zone_pcp_init(struct zone *zone)
5902 {
5903 	/*
5904 	 * per cpu subsystem is not up at this point. The following code
5905 	 * relies on the ability of the linker to provide the
5906 	 * offset of a (static) per cpu variable into the per cpu area.
5907 	 */
5908 	zone->per_cpu_pageset = &boot_pageset;
5909 	zone->per_cpu_zonestats = &boot_zonestats;
5910 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5911 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5912 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5913 
5914 	if (populated_zone(zone))
5915 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5916 			 zone->present_pages, zone_batchsize(zone));
5917 }
5918 
5919 static void setup_per_zone_lowmem_reserve(void);
5920 
5921 void adjust_managed_page_count(struct page *page, long count)
5922 {
5923 	atomic_long_add(count, &page_zone(page)->managed_pages);
5924 	totalram_pages_add(count);
5925 	setup_per_zone_lowmem_reserve();
5926 }
5927 EXPORT_SYMBOL(adjust_managed_page_count);
5928 
5929 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5930 {
5931 	void *pos;
5932 	unsigned long pages = 0;
5933 
5934 	start = (void *)PAGE_ALIGN((unsigned long)start);
5935 	end = (void *)((unsigned long)end & PAGE_MASK);
5936 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5937 		struct page *page = virt_to_page(pos);
5938 		void *direct_map_addr;
5939 
5940 		/*
5941 		 * 'direct_map_addr' might be different from 'pos'
5942 		 * because some architectures' virt_to_page()
5943 		 * work with aliases.  Getting the direct map
5944 		 * address ensures that we get a _writeable_
5945 		 * alias for the memset().
5946 		 */
5947 		direct_map_addr = page_address(page);
5948 		/*
5949 		 * Perform a kasan-unchecked memset() since this memory
5950 		 * has not been initialized.
5951 		 */
5952 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5953 		if ((unsigned int)poison <= 0xFF)
5954 			memset(direct_map_addr, poison, PAGE_SIZE);
5955 
5956 		free_reserved_page(page);
5957 	}
5958 
5959 	if (pages && s)
5960 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5961 
5962 	return pages;
5963 }
5964 
5965 void free_reserved_page(struct page *page)
5966 {
5967 	clear_page_tag_ref(page);
5968 	ClearPageReserved(page);
5969 	init_page_count(page);
5970 	__free_page(page);
5971 	adjust_managed_page_count(page, 1);
5972 }
5973 EXPORT_SYMBOL(free_reserved_page);
5974 
5975 static int page_alloc_cpu_dead(unsigned int cpu)
5976 {
5977 	struct zone *zone;
5978 
5979 	lru_add_drain_cpu(cpu);
5980 	mlock_drain_remote(cpu);
5981 	drain_pages(cpu);
5982 
5983 	/*
5984 	 * Spill the event counters of the dead processor
5985 	 * into the current processors event counters.
5986 	 * This artificially elevates the count of the current
5987 	 * processor.
5988 	 */
5989 	vm_events_fold_cpu(cpu);
5990 
5991 	/*
5992 	 * Zero the differential counters of the dead processor
5993 	 * so that the vm statistics are consistent.
5994 	 *
5995 	 * This is only okay since the processor is dead and cannot
5996 	 * race with what we are doing.
5997 	 */
5998 	cpu_vm_stats_fold(cpu);
5999 
6000 	for_each_populated_zone(zone)
6001 		zone_pcp_update(zone, 0);
6002 
6003 	return 0;
6004 }
6005 
6006 static int page_alloc_cpu_online(unsigned int cpu)
6007 {
6008 	struct zone *zone;
6009 
6010 	for_each_populated_zone(zone)
6011 		zone_pcp_update(zone, 1);
6012 	return 0;
6013 }
6014 
6015 void __init page_alloc_init_cpuhp(void)
6016 {
6017 	int ret;
6018 
6019 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
6020 					"mm/page_alloc:pcp",
6021 					page_alloc_cpu_online,
6022 					page_alloc_cpu_dead);
6023 	WARN_ON(ret < 0);
6024 }
6025 
6026 /*
6027  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6028  *	or min_free_kbytes changes.
6029  */
6030 static void calculate_totalreserve_pages(void)
6031 {
6032 	struct pglist_data *pgdat;
6033 	unsigned long reserve_pages = 0;
6034 	enum zone_type i, j;
6035 
6036 	for_each_online_pgdat(pgdat) {
6037 
6038 		pgdat->totalreserve_pages = 0;
6039 
6040 		for (i = 0; i < MAX_NR_ZONES; i++) {
6041 			struct zone *zone = pgdat->node_zones + i;
6042 			long max = 0;
6043 			unsigned long managed_pages = zone_managed_pages(zone);
6044 
6045 			/* Find valid and maximum lowmem_reserve in the zone */
6046 			for (j = i; j < MAX_NR_ZONES; j++) {
6047 				if (zone->lowmem_reserve[j] > max)
6048 					max = zone->lowmem_reserve[j];
6049 			}
6050 
6051 			/* we treat the high watermark as reserved pages. */
6052 			max += high_wmark_pages(zone);
6053 
6054 			if (max > managed_pages)
6055 				max = managed_pages;
6056 
6057 			pgdat->totalreserve_pages += max;
6058 
6059 			reserve_pages += max;
6060 		}
6061 	}
6062 	totalreserve_pages = reserve_pages;
6063 	trace_mm_calculate_totalreserve_pages(totalreserve_pages);
6064 }
6065 
6066 /*
6067  * setup_per_zone_lowmem_reserve - called whenever
6068  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6069  *	has a correct pages reserved value, so an adequate number of
6070  *	pages are left in the zone after a successful __alloc_pages().
6071  */
6072 static void setup_per_zone_lowmem_reserve(void)
6073 {
6074 	struct pglist_data *pgdat;
6075 	enum zone_type i, j;
6076 
6077 	for_each_online_pgdat(pgdat) {
6078 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
6079 			struct zone *zone = &pgdat->node_zones[i];
6080 			int ratio = sysctl_lowmem_reserve_ratio[i];
6081 			bool clear = !ratio || !zone_managed_pages(zone);
6082 			unsigned long managed_pages = 0;
6083 
6084 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
6085 				struct zone *upper_zone = &pgdat->node_zones[j];
6086 
6087 				managed_pages += zone_managed_pages(upper_zone);
6088 
6089 				if (clear)
6090 					zone->lowmem_reserve[j] = 0;
6091 				else
6092 					zone->lowmem_reserve[j] = managed_pages / ratio;
6093 				trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone,
6094 								       zone->lowmem_reserve[j]);
6095 			}
6096 		}
6097 	}
6098 
6099 	/* update totalreserve_pages */
6100 	calculate_totalreserve_pages();
6101 }
6102 
6103 static void __setup_per_zone_wmarks(void)
6104 {
6105 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6106 	unsigned long lowmem_pages = 0;
6107 	struct zone *zone;
6108 	unsigned long flags;
6109 
6110 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
6111 	for_each_zone(zone) {
6112 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
6113 			lowmem_pages += zone_managed_pages(zone);
6114 	}
6115 
6116 	for_each_zone(zone) {
6117 		u64 tmp;
6118 
6119 		spin_lock_irqsave(&zone->lock, flags);
6120 		tmp = (u64)pages_min * zone_managed_pages(zone);
6121 		tmp = div64_ul(tmp, lowmem_pages);
6122 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
6123 			/*
6124 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6125 			 * need highmem and movable zones pages, so cap pages_min
6126 			 * to a small  value here.
6127 			 *
6128 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6129 			 * deltas control async page reclaim, and so should
6130 			 * not be capped for highmem and movable zones.
6131 			 */
6132 			unsigned long min_pages;
6133 
6134 			min_pages = zone_managed_pages(zone) / 1024;
6135 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6136 			zone->_watermark[WMARK_MIN] = min_pages;
6137 		} else {
6138 			/*
6139 			 * If it's a lowmem zone, reserve a number of pages
6140 			 * proportionate to the zone's size.
6141 			 */
6142 			zone->_watermark[WMARK_MIN] = tmp;
6143 		}
6144 
6145 		/*
6146 		 * Set the kswapd watermarks distance according to the
6147 		 * scale factor in proportion to available memory, but
6148 		 * ensure a minimum size on small systems.
6149 		 */
6150 		tmp = max_t(u64, tmp >> 2,
6151 			    mult_frac(zone_managed_pages(zone),
6152 				      watermark_scale_factor, 10000));
6153 
6154 		zone->watermark_boost = 0;
6155 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6156 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6157 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6158 		trace_mm_setup_per_zone_wmarks(zone);
6159 
6160 		spin_unlock_irqrestore(&zone->lock, flags);
6161 	}
6162 
6163 	/* update totalreserve_pages */
6164 	calculate_totalreserve_pages();
6165 }
6166 
6167 /**
6168  * setup_per_zone_wmarks - called when min_free_kbytes changes
6169  * or when memory is hot-{added|removed}
6170  *
6171  * Ensures that the watermark[min,low,high] values for each zone are set
6172  * correctly with respect to min_free_kbytes.
6173  */
6174 void setup_per_zone_wmarks(void)
6175 {
6176 	struct zone *zone;
6177 	static DEFINE_SPINLOCK(lock);
6178 
6179 	spin_lock(&lock);
6180 	__setup_per_zone_wmarks();
6181 	spin_unlock(&lock);
6182 
6183 	/*
6184 	 * The watermark size have changed so update the pcpu batch
6185 	 * and high limits or the limits may be inappropriate.
6186 	 */
6187 	for_each_zone(zone)
6188 		zone_pcp_update(zone, 0);
6189 }
6190 
6191 /*
6192  * Initialise min_free_kbytes.
6193  *
6194  * For small machines we want it small (128k min).  For large machines
6195  * we want it large (256MB max).  But it is not linear, because network
6196  * bandwidth does not increase linearly with machine size.  We use
6197  *
6198  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6199  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6200  *
6201  * which yields
6202  *
6203  * 16MB:	512k
6204  * 32MB:	724k
6205  * 64MB:	1024k
6206  * 128MB:	1448k
6207  * 256MB:	2048k
6208  * 512MB:	2896k
6209  * 1024MB:	4096k
6210  * 2048MB:	5792k
6211  * 4096MB:	8192k
6212  * 8192MB:	11584k
6213  * 16384MB:	16384k
6214  */
6215 void calculate_min_free_kbytes(void)
6216 {
6217 	unsigned long lowmem_kbytes;
6218 	int new_min_free_kbytes;
6219 
6220 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6221 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6222 
6223 	if (new_min_free_kbytes > user_min_free_kbytes)
6224 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6225 	else
6226 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6227 				new_min_free_kbytes, user_min_free_kbytes);
6228 
6229 }
6230 
6231 int __meminit init_per_zone_wmark_min(void)
6232 {
6233 	calculate_min_free_kbytes();
6234 	setup_per_zone_wmarks();
6235 	refresh_zone_stat_thresholds();
6236 	setup_per_zone_lowmem_reserve();
6237 
6238 #ifdef CONFIG_NUMA
6239 	setup_min_unmapped_ratio();
6240 	setup_min_slab_ratio();
6241 #endif
6242 
6243 	khugepaged_min_free_kbytes_update();
6244 
6245 	return 0;
6246 }
6247 postcore_initcall(init_per_zone_wmark_min)
6248 
6249 /*
6250  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6251  *	that we can call two helper functions whenever min_free_kbytes
6252  *	changes.
6253  */
6254 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6255 		void *buffer, size_t *length, loff_t *ppos)
6256 {
6257 	int rc;
6258 
6259 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6260 	if (rc)
6261 		return rc;
6262 
6263 	if (write) {
6264 		user_min_free_kbytes = min_free_kbytes;
6265 		setup_per_zone_wmarks();
6266 	}
6267 	return 0;
6268 }
6269 
6270 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6271 		void *buffer, size_t *length, loff_t *ppos)
6272 {
6273 	int rc;
6274 
6275 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6276 	if (rc)
6277 		return rc;
6278 
6279 	if (write)
6280 		setup_per_zone_wmarks();
6281 
6282 	return 0;
6283 }
6284 
6285 #ifdef CONFIG_NUMA
6286 static void setup_min_unmapped_ratio(void)
6287 {
6288 	pg_data_t *pgdat;
6289 	struct zone *zone;
6290 
6291 	for_each_online_pgdat(pgdat)
6292 		pgdat->min_unmapped_pages = 0;
6293 
6294 	for_each_zone(zone)
6295 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6296 						         sysctl_min_unmapped_ratio) / 100;
6297 }
6298 
6299 
6300 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6301 		void *buffer, size_t *length, loff_t *ppos)
6302 {
6303 	int rc;
6304 
6305 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6306 	if (rc)
6307 		return rc;
6308 
6309 	setup_min_unmapped_ratio();
6310 
6311 	return 0;
6312 }
6313 
6314 static void setup_min_slab_ratio(void)
6315 {
6316 	pg_data_t *pgdat;
6317 	struct zone *zone;
6318 
6319 	for_each_online_pgdat(pgdat)
6320 		pgdat->min_slab_pages = 0;
6321 
6322 	for_each_zone(zone)
6323 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6324 						     sysctl_min_slab_ratio) / 100;
6325 }
6326 
6327 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6328 		void *buffer, size_t *length, loff_t *ppos)
6329 {
6330 	int rc;
6331 
6332 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6333 	if (rc)
6334 		return rc;
6335 
6336 	setup_min_slab_ratio();
6337 
6338 	return 0;
6339 }
6340 #endif
6341 
6342 /*
6343  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6344  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6345  *	whenever sysctl_lowmem_reserve_ratio changes.
6346  *
6347  * The reserve ratio obviously has absolutely no relation with the
6348  * minimum watermarks. The lowmem reserve ratio can only make sense
6349  * if in function of the boot time zone sizes.
6350  */
6351 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6352 		int write, void *buffer, size_t *length, loff_t *ppos)
6353 {
6354 	int i;
6355 
6356 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6357 
6358 	for (i = 0; i < MAX_NR_ZONES; i++) {
6359 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6360 			sysctl_lowmem_reserve_ratio[i] = 0;
6361 	}
6362 
6363 	setup_per_zone_lowmem_reserve();
6364 	return 0;
6365 }
6366 
6367 /*
6368  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6369  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6370  * pagelist can have before it gets flushed back to buddy allocator.
6371  */
6372 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6373 		int write, void *buffer, size_t *length, loff_t *ppos)
6374 {
6375 	struct zone *zone;
6376 	int old_percpu_pagelist_high_fraction;
6377 	int ret;
6378 
6379 	mutex_lock(&pcp_batch_high_lock);
6380 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6381 
6382 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6383 	if (!write || ret < 0)
6384 		goto out;
6385 
6386 	/* Sanity checking to avoid pcp imbalance */
6387 	if (percpu_pagelist_high_fraction &&
6388 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6389 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6390 		ret = -EINVAL;
6391 		goto out;
6392 	}
6393 
6394 	/* No change? */
6395 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6396 		goto out;
6397 
6398 	for_each_populated_zone(zone)
6399 		zone_set_pageset_high_and_batch(zone, 0);
6400 out:
6401 	mutex_unlock(&pcp_batch_high_lock);
6402 	return ret;
6403 }
6404 
6405 static const struct ctl_table page_alloc_sysctl_table[] = {
6406 	{
6407 		.procname	= "min_free_kbytes",
6408 		.data		= &min_free_kbytes,
6409 		.maxlen		= sizeof(min_free_kbytes),
6410 		.mode		= 0644,
6411 		.proc_handler	= min_free_kbytes_sysctl_handler,
6412 		.extra1		= SYSCTL_ZERO,
6413 	},
6414 	{
6415 		.procname	= "watermark_boost_factor",
6416 		.data		= &watermark_boost_factor,
6417 		.maxlen		= sizeof(watermark_boost_factor),
6418 		.mode		= 0644,
6419 		.proc_handler	= proc_dointvec_minmax,
6420 		.extra1		= SYSCTL_ZERO,
6421 	},
6422 	{
6423 		.procname	= "watermark_scale_factor",
6424 		.data		= &watermark_scale_factor,
6425 		.maxlen		= sizeof(watermark_scale_factor),
6426 		.mode		= 0644,
6427 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6428 		.extra1		= SYSCTL_ONE,
6429 		.extra2		= SYSCTL_THREE_THOUSAND,
6430 	},
6431 	{
6432 		.procname	= "defrag_mode",
6433 		.data		= &defrag_mode,
6434 		.maxlen		= sizeof(defrag_mode),
6435 		.mode		= 0644,
6436 		.proc_handler	= proc_dointvec_minmax,
6437 		.extra1		= SYSCTL_ZERO,
6438 		.extra2		= SYSCTL_ONE,
6439 	},
6440 	{
6441 		.procname	= "percpu_pagelist_high_fraction",
6442 		.data		= &percpu_pagelist_high_fraction,
6443 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6444 		.mode		= 0644,
6445 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6446 		.extra1		= SYSCTL_ZERO,
6447 	},
6448 	{
6449 		.procname	= "lowmem_reserve_ratio",
6450 		.data		= &sysctl_lowmem_reserve_ratio,
6451 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6452 		.mode		= 0644,
6453 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6454 	},
6455 #ifdef CONFIG_NUMA
6456 	{
6457 		.procname	= "numa_zonelist_order",
6458 		.data		= &numa_zonelist_order,
6459 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6460 		.mode		= 0644,
6461 		.proc_handler	= numa_zonelist_order_handler,
6462 	},
6463 	{
6464 		.procname	= "min_unmapped_ratio",
6465 		.data		= &sysctl_min_unmapped_ratio,
6466 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6467 		.mode		= 0644,
6468 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6469 		.extra1		= SYSCTL_ZERO,
6470 		.extra2		= SYSCTL_ONE_HUNDRED,
6471 	},
6472 	{
6473 		.procname	= "min_slab_ratio",
6474 		.data		= &sysctl_min_slab_ratio,
6475 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6476 		.mode		= 0644,
6477 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6478 		.extra1		= SYSCTL_ZERO,
6479 		.extra2		= SYSCTL_ONE_HUNDRED,
6480 	},
6481 #endif
6482 };
6483 
6484 void __init page_alloc_sysctl_init(void)
6485 {
6486 	register_sysctl_init("vm", page_alloc_sysctl_table);
6487 }
6488 
6489 #ifdef CONFIG_CONTIG_ALLOC
6490 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6491 static void alloc_contig_dump_pages(struct list_head *page_list)
6492 {
6493 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6494 
6495 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6496 		struct page *page;
6497 
6498 		dump_stack();
6499 		list_for_each_entry(page, page_list, lru)
6500 			dump_page(page, "migration failure");
6501 	}
6502 }
6503 
6504 /*
6505  * [start, end) must belong to a single zone.
6506  * @migratetype: using migratetype to filter the type of migration in
6507  *		trace_mm_alloc_contig_migrate_range_info.
6508  */
6509 static int __alloc_contig_migrate_range(struct compact_control *cc,
6510 		unsigned long start, unsigned long end, int migratetype)
6511 {
6512 	/* This function is based on compact_zone() from compaction.c. */
6513 	unsigned int nr_reclaimed;
6514 	unsigned long pfn = start;
6515 	unsigned int tries = 0;
6516 	int ret = 0;
6517 	struct migration_target_control mtc = {
6518 		.nid = zone_to_nid(cc->zone),
6519 		.gfp_mask = cc->gfp_mask,
6520 		.reason = MR_CONTIG_RANGE,
6521 	};
6522 	struct page *page;
6523 	unsigned long total_mapped = 0;
6524 	unsigned long total_migrated = 0;
6525 	unsigned long total_reclaimed = 0;
6526 
6527 	lru_cache_disable();
6528 
6529 	while (pfn < end || !list_empty(&cc->migratepages)) {
6530 		if (fatal_signal_pending(current)) {
6531 			ret = -EINTR;
6532 			break;
6533 		}
6534 
6535 		if (list_empty(&cc->migratepages)) {
6536 			cc->nr_migratepages = 0;
6537 			ret = isolate_migratepages_range(cc, pfn, end);
6538 			if (ret && ret != -EAGAIN)
6539 				break;
6540 			pfn = cc->migrate_pfn;
6541 			tries = 0;
6542 		} else if (++tries == 5) {
6543 			ret = -EBUSY;
6544 			break;
6545 		}
6546 
6547 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6548 							&cc->migratepages);
6549 		cc->nr_migratepages -= nr_reclaimed;
6550 
6551 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6552 			total_reclaimed += nr_reclaimed;
6553 			list_for_each_entry(page, &cc->migratepages, lru) {
6554 				struct folio *folio = page_folio(page);
6555 
6556 				total_mapped += folio_mapped(folio) *
6557 						folio_nr_pages(folio);
6558 			}
6559 		}
6560 
6561 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6562 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6563 
6564 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6565 			total_migrated += cc->nr_migratepages;
6566 
6567 		/*
6568 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6569 		 * to retry again over this error, so do the same here.
6570 		 */
6571 		if (ret == -ENOMEM)
6572 			break;
6573 	}
6574 
6575 	lru_cache_enable();
6576 	if (ret < 0) {
6577 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6578 			alloc_contig_dump_pages(&cc->migratepages);
6579 		putback_movable_pages(&cc->migratepages);
6580 	}
6581 
6582 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6583 						 total_migrated,
6584 						 total_reclaimed,
6585 						 total_mapped);
6586 	return (ret < 0) ? ret : 0;
6587 }
6588 
6589 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6590 {
6591 	int order;
6592 
6593 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6594 		struct page *page, *next;
6595 		int nr_pages = 1 << order;
6596 
6597 		list_for_each_entry_safe(page, next, &list[order], lru) {
6598 			int i;
6599 
6600 			post_alloc_hook(page, order, gfp_mask);
6601 			set_page_refcounted(page);
6602 			if (!order)
6603 				continue;
6604 
6605 			split_page(page, order);
6606 
6607 			/* Add all subpages to the order-0 head, in sequence. */
6608 			list_del(&page->lru);
6609 			for (i = 0; i < nr_pages; i++)
6610 				list_add_tail(&page[i].lru, &list[0]);
6611 		}
6612 	}
6613 }
6614 
6615 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6616 {
6617 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6618 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6619 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6620 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6621 
6622 	/*
6623 	 * We are given the range to allocate; node, mobility and placement
6624 	 * hints are irrelevant at this point. We'll simply ignore them.
6625 	 */
6626 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6627 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6628 
6629 	/*
6630 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6631 	 * selected action flags.
6632 	 */
6633 	if (gfp_mask & ~(reclaim_mask | action_mask))
6634 		return -EINVAL;
6635 
6636 	/*
6637 	 * Flags to control page compaction/migration/reclaim, to free up our
6638 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6639 	 * for them.
6640 	 *
6641 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6642 	 * to not degrade callers.
6643 	 */
6644 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6645 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6646 	return 0;
6647 }
6648 
6649 /**
6650  * alloc_contig_range() -- tries to allocate given range of pages
6651  * @start:	start PFN to allocate
6652  * @end:	one-past-the-last PFN to allocate
6653  * @migratetype:	migratetype of the underlying pageblocks (either
6654  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6655  *			in range must have the same migratetype and it must
6656  *			be either of the two.
6657  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6658  *		action and reclaim modifiers are supported. Reclaim modifiers
6659  *		control allocation behavior during compaction/migration/reclaim.
6660  *
6661  * The PFN range does not have to be pageblock aligned. The PFN range must
6662  * belong to a single zone.
6663  *
6664  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6665  * pageblocks in the range.  Once isolated, the pageblocks should not
6666  * be modified by others.
6667  *
6668  * Return: zero on success or negative error code.  On success all
6669  * pages which PFN is in [start, end) are allocated for the caller and
6670  * need to be freed with free_contig_range().
6671  */
6672 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6673 		       unsigned migratetype, gfp_t gfp_mask)
6674 {
6675 	unsigned long outer_start, outer_end;
6676 	int ret = 0;
6677 
6678 	struct compact_control cc = {
6679 		.nr_migratepages = 0,
6680 		.order = -1,
6681 		.zone = page_zone(pfn_to_page(start)),
6682 		.mode = MIGRATE_SYNC,
6683 		.ignore_skip_hint = true,
6684 		.no_set_skip_hint = true,
6685 		.alloc_contig = true,
6686 	};
6687 	INIT_LIST_HEAD(&cc.migratepages);
6688 
6689 	gfp_mask = current_gfp_context(gfp_mask);
6690 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6691 		return -EINVAL;
6692 
6693 	/*
6694 	 * What we do here is we mark all pageblocks in range as
6695 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6696 	 * have different sizes, and due to the way page allocator
6697 	 * work, start_isolate_page_range() has special handlings for this.
6698 	 *
6699 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6700 	 * migrate the pages from an unaligned range (ie. pages that
6701 	 * we are interested in). This will put all the pages in
6702 	 * range back to page allocator as MIGRATE_ISOLATE.
6703 	 *
6704 	 * When this is done, we take the pages in range from page
6705 	 * allocator removing them from the buddy system.  This way
6706 	 * page allocator will never consider using them.
6707 	 *
6708 	 * This lets us mark the pageblocks back as
6709 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6710 	 * aligned range but not in the unaligned, original range are
6711 	 * put back to page allocator so that buddy can use them.
6712 	 */
6713 
6714 	ret = start_isolate_page_range(start, end, migratetype, 0);
6715 	if (ret)
6716 		goto done;
6717 
6718 	drain_all_pages(cc.zone);
6719 
6720 	/*
6721 	 * In case of -EBUSY, we'd like to know which page causes problem.
6722 	 * So, just fall through. test_pages_isolated() has a tracepoint
6723 	 * which will report the busy page.
6724 	 *
6725 	 * It is possible that busy pages could become available before
6726 	 * the call to test_pages_isolated, and the range will actually be
6727 	 * allocated.  So, if we fall through be sure to clear ret so that
6728 	 * -EBUSY is not accidentally used or returned to caller.
6729 	 */
6730 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6731 	if (ret && ret != -EBUSY)
6732 		goto done;
6733 
6734 	/*
6735 	 * When in-use hugetlb pages are migrated, they may simply be released
6736 	 * back into the free hugepage pool instead of being returned to the
6737 	 * buddy system.  After the migration of in-use huge pages is completed,
6738 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6739 	 * hugepages are properly released to the buddy system.
6740 	 */
6741 	ret = replace_free_hugepage_folios(start, end);
6742 	if (ret)
6743 		goto done;
6744 
6745 	/*
6746 	 * Pages from [start, end) are within a pageblock_nr_pages
6747 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6748 	 * more, all pages in [start, end) are free in page allocator.
6749 	 * What we are going to do is to allocate all pages from
6750 	 * [start, end) (that is remove them from page allocator).
6751 	 *
6752 	 * The only problem is that pages at the beginning and at the
6753 	 * end of interesting range may be not aligned with pages that
6754 	 * page allocator holds, ie. they can be part of higher order
6755 	 * pages.  Because of this, we reserve the bigger range and
6756 	 * once this is done free the pages we are not interested in.
6757 	 *
6758 	 * We don't have to hold zone->lock here because the pages are
6759 	 * isolated thus they won't get removed from buddy.
6760 	 */
6761 	outer_start = find_large_buddy(start);
6762 
6763 	/* Make sure the range is really isolated. */
6764 	if (test_pages_isolated(outer_start, end, 0)) {
6765 		ret = -EBUSY;
6766 		goto done;
6767 	}
6768 
6769 	/* Grab isolated pages from freelists. */
6770 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6771 	if (!outer_end) {
6772 		ret = -EBUSY;
6773 		goto done;
6774 	}
6775 
6776 	if (!(gfp_mask & __GFP_COMP)) {
6777 		split_free_pages(cc.freepages, gfp_mask);
6778 
6779 		/* Free head and tail (if any) */
6780 		if (start != outer_start)
6781 			free_contig_range(outer_start, start - outer_start);
6782 		if (end != outer_end)
6783 			free_contig_range(end, outer_end - end);
6784 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6785 		struct page *head = pfn_to_page(start);
6786 		int order = ilog2(end - start);
6787 
6788 		check_new_pages(head, order);
6789 		prep_new_page(head, order, gfp_mask, 0);
6790 		set_page_refcounted(head);
6791 	} else {
6792 		ret = -EINVAL;
6793 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6794 		     start, end, outer_start, outer_end);
6795 	}
6796 done:
6797 	undo_isolate_page_range(start, end, migratetype);
6798 	return ret;
6799 }
6800 EXPORT_SYMBOL(alloc_contig_range_noprof);
6801 
6802 static int __alloc_contig_pages(unsigned long start_pfn,
6803 				unsigned long nr_pages, gfp_t gfp_mask)
6804 {
6805 	unsigned long end_pfn = start_pfn + nr_pages;
6806 
6807 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6808 				   gfp_mask);
6809 }
6810 
6811 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6812 				   unsigned long nr_pages)
6813 {
6814 	unsigned long i, end_pfn = start_pfn + nr_pages;
6815 	struct page *page;
6816 
6817 	for (i = start_pfn; i < end_pfn; i++) {
6818 		page = pfn_to_online_page(i);
6819 		if (!page)
6820 			return false;
6821 
6822 		if (page_zone(page) != z)
6823 			return false;
6824 
6825 		if (PageReserved(page))
6826 			return false;
6827 
6828 		if (PageHuge(page))
6829 			return false;
6830 	}
6831 	return true;
6832 }
6833 
6834 static bool zone_spans_last_pfn(const struct zone *zone,
6835 				unsigned long start_pfn, unsigned long nr_pages)
6836 {
6837 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6838 
6839 	return zone_spans_pfn(zone, last_pfn);
6840 }
6841 
6842 /**
6843  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6844  * @nr_pages:	Number of contiguous pages to allocate
6845  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6846  *		action and reclaim modifiers are supported. Reclaim modifiers
6847  *		control allocation behavior during compaction/migration/reclaim.
6848  * @nid:	Target node
6849  * @nodemask:	Mask for other possible nodes
6850  *
6851  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6852  * on an applicable zonelist to find a contiguous pfn range which can then be
6853  * tried for allocation with alloc_contig_range(). This routine is intended
6854  * for allocation requests which can not be fulfilled with the buddy allocator.
6855  *
6856  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6857  * power of two, then allocated range is also guaranteed to be aligned to same
6858  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6859  *
6860  * Allocated pages can be freed with free_contig_range() or by manually calling
6861  * __free_page() on each allocated page.
6862  *
6863  * Return: pointer to contiguous pages on success, or NULL if not successful.
6864  */
6865 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6866 				 int nid, nodemask_t *nodemask)
6867 {
6868 	unsigned long ret, pfn, flags;
6869 	struct zonelist *zonelist;
6870 	struct zone *zone;
6871 	struct zoneref *z;
6872 
6873 	zonelist = node_zonelist(nid, gfp_mask);
6874 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6875 					gfp_zone(gfp_mask), nodemask) {
6876 		spin_lock_irqsave(&zone->lock, flags);
6877 
6878 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6879 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6880 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6881 				/*
6882 				 * We release the zone lock here because
6883 				 * alloc_contig_range() will also lock the zone
6884 				 * at some point. If there's an allocation
6885 				 * spinning on this lock, it may win the race
6886 				 * and cause alloc_contig_range() to fail...
6887 				 */
6888 				spin_unlock_irqrestore(&zone->lock, flags);
6889 				ret = __alloc_contig_pages(pfn, nr_pages,
6890 							gfp_mask);
6891 				if (!ret)
6892 					return pfn_to_page(pfn);
6893 				spin_lock_irqsave(&zone->lock, flags);
6894 			}
6895 			pfn += nr_pages;
6896 		}
6897 		spin_unlock_irqrestore(&zone->lock, flags);
6898 	}
6899 	return NULL;
6900 }
6901 #endif /* CONFIG_CONTIG_ALLOC */
6902 
6903 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6904 {
6905 	unsigned long count = 0;
6906 	struct folio *folio = pfn_folio(pfn);
6907 
6908 	if (folio_test_large(folio)) {
6909 		int expected = folio_nr_pages(folio);
6910 
6911 		if (nr_pages == expected)
6912 			folio_put(folio);
6913 		else
6914 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6915 			     pfn, nr_pages, expected);
6916 		return;
6917 	}
6918 
6919 	for (; nr_pages--; pfn++) {
6920 		struct page *page = pfn_to_page(pfn);
6921 
6922 		count += page_count(page) != 1;
6923 		__free_page(page);
6924 	}
6925 	WARN(count != 0, "%lu pages are still in use!\n", count);
6926 }
6927 EXPORT_SYMBOL(free_contig_range);
6928 
6929 /*
6930  * Effectively disable pcplists for the zone by setting the high limit to 0
6931  * and draining all cpus. A concurrent page freeing on another CPU that's about
6932  * to put the page on pcplist will either finish before the drain and the page
6933  * will be drained, or observe the new high limit and skip the pcplist.
6934  *
6935  * Must be paired with a call to zone_pcp_enable().
6936  */
6937 void zone_pcp_disable(struct zone *zone)
6938 {
6939 	mutex_lock(&pcp_batch_high_lock);
6940 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6941 	__drain_all_pages(zone, true);
6942 }
6943 
6944 void zone_pcp_enable(struct zone *zone)
6945 {
6946 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6947 		zone->pageset_high_max, zone->pageset_batch);
6948 	mutex_unlock(&pcp_batch_high_lock);
6949 }
6950 
6951 void zone_pcp_reset(struct zone *zone)
6952 {
6953 	int cpu;
6954 	struct per_cpu_zonestat *pzstats;
6955 
6956 	if (zone->per_cpu_pageset != &boot_pageset) {
6957 		for_each_online_cpu(cpu) {
6958 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6959 			drain_zonestat(zone, pzstats);
6960 		}
6961 		free_percpu(zone->per_cpu_pageset);
6962 		zone->per_cpu_pageset = &boot_pageset;
6963 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6964 			free_percpu(zone->per_cpu_zonestats);
6965 			zone->per_cpu_zonestats = &boot_zonestats;
6966 		}
6967 	}
6968 }
6969 
6970 #ifdef CONFIG_MEMORY_HOTREMOVE
6971 /*
6972  * All pages in the range must be in a single zone, must not contain holes,
6973  * must span full sections, and must be isolated before calling this function.
6974  *
6975  * Returns the number of managed (non-PageOffline()) pages in the range: the
6976  * number of pages for which memory offlining code must adjust managed page
6977  * counters using adjust_managed_page_count().
6978  */
6979 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6980 		unsigned long end_pfn)
6981 {
6982 	unsigned long already_offline = 0, flags;
6983 	unsigned long pfn = start_pfn;
6984 	struct page *page;
6985 	struct zone *zone;
6986 	unsigned int order;
6987 
6988 	offline_mem_sections(pfn, end_pfn);
6989 	zone = page_zone(pfn_to_page(pfn));
6990 	spin_lock_irqsave(&zone->lock, flags);
6991 	while (pfn < end_pfn) {
6992 		page = pfn_to_page(pfn);
6993 		/*
6994 		 * The HWPoisoned page may be not in buddy system, and
6995 		 * page_count() is not 0.
6996 		 */
6997 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6998 			pfn++;
6999 			continue;
7000 		}
7001 		/*
7002 		 * At this point all remaining PageOffline() pages have a
7003 		 * reference count of 0 and can simply be skipped.
7004 		 */
7005 		if (PageOffline(page)) {
7006 			BUG_ON(page_count(page));
7007 			BUG_ON(PageBuddy(page));
7008 			already_offline++;
7009 			pfn++;
7010 			continue;
7011 		}
7012 
7013 		BUG_ON(page_count(page));
7014 		BUG_ON(!PageBuddy(page));
7015 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
7016 		order = buddy_order(page);
7017 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
7018 		pfn += (1 << order);
7019 	}
7020 	spin_unlock_irqrestore(&zone->lock, flags);
7021 
7022 	return end_pfn - start_pfn - already_offline;
7023 }
7024 #endif
7025 
7026 /*
7027  * This function returns a stable result only if called under zone lock.
7028  */
7029 bool is_free_buddy_page(const struct page *page)
7030 {
7031 	unsigned long pfn = page_to_pfn(page);
7032 	unsigned int order;
7033 
7034 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7035 		const struct page *head = page - (pfn & ((1 << order) - 1));
7036 
7037 		if (PageBuddy(head) &&
7038 		    buddy_order_unsafe(head) >= order)
7039 			break;
7040 	}
7041 
7042 	return order <= MAX_PAGE_ORDER;
7043 }
7044 EXPORT_SYMBOL(is_free_buddy_page);
7045 
7046 #ifdef CONFIG_MEMORY_FAILURE
7047 static inline void add_to_free_list(struct page *page, struct zone *zone,
7048 				    unsigned int order, int migratetype,
7049 				    bool tail)
7050 {
7051 	__add_to_free_list(page, zone, order, migratetype, tail);
7052 	account_freepages(zone, 1 << order, migratetype);
7053 }
7054 
7055 /*
7056  * Break down a higher-order page in sub-pages, and keep our target out of
7057  * buddy allocator.
7058  */
7059 static void break_down_buddy_pages(struct zone *zone, struct page *page,
7060 				   struct page *target, int low, int high,
7061 				   int migratetype)
7062 {
7063 	unsigned long size = 1 << high;
7064 	struct page *current_buddy;
7065 
7066 	while (high > low) {
7067 		high--;
7068 		size >>= 1;
7069 
7070 		if (target >= &page[size]) {
7071 			current_buddy = page;
7072 			page = page + size;
7073 		} else {
7074 			current_buddy = page + size;
7075 		}
7076 
7077 		if (set_page_guard(zone, current_buddy, high))
7078 			continue;
7079 
7080 		add_to_free_list(current_buddy, zone, high, migratetype, false);
7081 		set_buddy_order(current_buddy, high);
7082 	}
7083 }
7084 
7085 /*
7086  * Take a page that will be marked as poisoned off the buddy allocator.
7087  */
7088 bool take_page_off_buddy(struct page *page)
7089 {
7090 	struct zone *zone = page_zone(page);
7091 	unsigned long pfn = page_to_pfn(page);
7092 	unsigned long flags;
7093 	unsigned int order;
7094 	bool ret = false;
7095 
7096 	spin_lock_irqsave(&zone->lock, flags);
7097 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
7098 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7099 		int page_order = buddy_order(page_head);
7100 
7101 		if (PageBuddy(page_head) && page_order >= order) {
7102 			unsigned long pfn_head = page_to_pfn(page_head);
7103 			int migratetype = get_pfnblock_migratetype(page_head,
7104 								   pfn_head);
7105 
7106 			del_page_from_free_list(page_head, zone, page_order,
7107 						migratetype);
7108 			break_down_buddy_pages(zone, page_head, page, 0,
7109 						page_order, migratetype);
7110 			SetPageHWPoisonTakenOff(page);
7111 			ret = true;
7112 			break;
7113 		}
7114 		if (page_count(page_head) > 0)
7115 			break;
7116 	}
7117 	spin_unlock_irqrestore(&zone->lock, flags);
7118 	return ret;
7119 }
7120 
7121 /*
7122  * Cancel takeoff done by take_page_off_buddy().
7123  */
7124 bool put_page_back_buddy(struct page *page)
7125 {
7126 	struct zone *zone = page_zone(page);
7127 	unsigned long flags;
7128 	bool ret = false;
7129 
7130 	spin_lock_irqsave(&zone->lock, flags);
7131 	if (put_page_testzero(page)) {
7132 		unsigned long pfn = page_to_pfn(page);
7133 		int migratetype = get_pfnblock_migratetype(page, pfn);
7134 
7135 		ClearPageHWPoisonTakenOff(page);
7136 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
7137 		if (TestClearPageHWPoison(page)) {
7138 			ret = true;
7139 		}
7140 	}
7141 	spin_unlock_irqrestore(&zone->lock, flags);
7142 
7143 	return ret;
7144 }
7145 #endif
7146 
7147 #ifdef CONFIG_ZONE_DMA
7148 bool has_managed_dma(void)
7149 {
7150 	struct pglist_data *pgdat;
7151 
7152 	for_each_online_pgdat(pgdat) {
7153 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
7154 
7155 		if (managed_zone(zone))
7156 			return true;
7157 	}
7158 	return false;
7159 }
7160 #endif /* CONFIG_ZONE_DMA */
7161 
7162 #ifdef CONFIG_UNACCEPTED_MEMORY
7163 
7164 static bool lazy_accept = true;
7165 
7166 static int __init accept_memory_parse(char *p)
7167 {
7168 	if (!strcmp(p, "lazy")) {
7169 		lazy_accept = true;
7170 		return 0;
7171 	} else if (!strcmp(p, "eager")) {
7172 		lazy_accept = false;
7173 		return 0;
7174 	} else {
7175 		return -EINVAL;
7176 	}
7177 }
7178 early_param("accept_memory", accept_memory_parse);
7179 
7180 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7181 {
7182 	phys_addr_t start = page_to_phys(page);
7183 
7184 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7185 }
7186 
7187 static void __accept_page(struct zone *zone, unsigned long *flags,
7188 			  struct page *page)
7189 {
7190 	list_del(&page->lru);
7191 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7192 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7193 	__ClearPageUnaccepted(page);
7194 	spin_unlock_irqrestore(&zone->lock, *flags);
7195 
7196 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7197 
7198 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7199 }
7200 
7201 void accept_page(struct page *page)
7202 {
7203 	struct zone *zone = page_zone(page);
7204 	unsigned long flags;
7205 
7206 	spin_lock_irqsave(&zone->lock, flags);
7207 	if (!PageUnaccepted(page)) {
7208 		spin_unlock_irqrestore(&zone->lock, flags);
7209 		return;
7210 	}
7211 
7212 	/* Unlocks zone->lock */
7213 	__accept_page(zone, &flags, page);
7214 }
7215 
7216 static bool try_to_accept_memory_one(struct zone *zone)
7217 {
7218 	unsigned long flags;
7219 	struct page *page;
7220 
7221 	spin_lock_irqsave(&zone->lock, flags);
7222 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7223 					struct page, lru);
7224 	if (!page) {
7225 		spin_unlock_irqrestore(&zone->lock, flags);
7226 		return false;
7227 	}
7228 
7229 	/* Unlocks zone->lock */
7230 	__accept_page(zone, &flags, page);
7231 
7232 	return true;
7233 }
7234 
7235 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7236 			       int alloc_flags)
7237 {
7238 	long to_accept, wmark;
7239 	bool ret = false;
7240 
7241 	if (list_empty(&zone->unaccepted_pages))
7242 		return false;
7243 
7244 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7245 	if (alloc_flags & ALLOC_TRYLOCK)
7246 		return false;
7247 
7248 	wmark = promo_wmark_pages(zone);
7249 
7250 	/*
7251 	 * Watermarks have not been initialized yet.
7252 	 *
7253 	 * Accepting one MAX_ORDER page to ensure progress.
7254 	 */
7255 	if (!wmark)
7256 		return try_to_accept_memory_one(zone);
7257 
7258 	/* How much to accept to get to promo watermark? */
7259 	to_accept = wmark -
7260 		    (zone_page_state(zone, NR_FREE_PAGES) -
7261 		    __zone_watermark_unusable_free(zone, order, 0) -
7262 		    zone_page_state(zone, NR_UNACCEPTED));
7263 
7264 	while (to_accept > 0) {
7265 		if (!try_to_accept_memory_one(zone))
7266 			break;
7267 		ret = true;
7268 		to_accept -= MAX_ORDER_NR_PAGES;
7269 	}
7270 
7271 	return ret;
7272 }
7273 
7274 static bool __free_unaccepted(struct page *page)
7275 {
7276 	struct zone *zone = page_zone(page);
7277 	unsigned long flags;
7278 
7279 	if (!lazy_accept)
7280 		return false;
7281 
7282 	spin_lock_irqsave(&zone->lock, flags);
7283 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7284 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7285 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7286 	__SetPageUnaccepted(page);
7287 	spin_unlock_irqrestore(&zone->lock, flags);
7288 
7289 	return true;
7290 }
7291 
7292 #else
7293 
7294 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7295 {
7296 	return false;
7297 }
7298 
7299 static bool cond_accept_memory(struct zone *zone, unsigned int order,
7300 			       int alloc_flags)
7301 {
7302 	return false;
7303 }
7304 
7305 static bool __free_unaccepted(struct page *page)
7306 {
7307 	BUILD_BUG();
7308 	return false;
7309 }
7310 
7311 #endif /* CONFIG_UNACCEPTED_MEMORY */
7312 
7313 /**
7314  * try_alloc_pages - opportunistic reentrant allocation from any context
7315  * @nid: node to allocate from
7316  * @order: allocation order size
7317  *
7318  * Allocates pages of a given order from the given node. This is safe to
7319  * call from any context (from atomic, NMI, and also reentrant
7320  * allocator -> tracepoint -> try_alloc_pages_noprof).
7321  * Allocation is best effort and to be expected to fail easily so nobody should
7322  * rely on the success. Failures are not reported via warn_alloc().
7323  * See always fail conditions below.
7324  *
7325  * Return: allocated page or NULL on failure.
7326  */
7327 struct page *try_alloc_pages_noprof(int nid, unsigned int order)
7328 {
7329 	/*
7330 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7331 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7332 	 * is not safe in arbitrary context.
7333 	 *
7334 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7335 	 *
7336 	 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason
7337 	 * to warn. Also warn would trigger printk() which is unsafe from
7338 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7339 	 * since the running context is unknown.
7340 	 *
7341 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7342 	 * is safe in any context. Also zeroing the page is mandatory for
7343 	 * BPF use cases.
7344 	 *
7345 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7346 	 * specify it here to highlight that try_alloc_pages()
7347 	 * doesn't want to deplete reserves.
7348 	 */
7349 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7350 			| __GFP_ACCOUNT;
7351 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7352 	struct alloc_context ac = { };
7353 	struct page *page;
7354 
7355 	/*
7356 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7357 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7358 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7359 	 * mark the task as the owner of another rt_spin_lock which will
7360 	 * confuse PI logic, so return immediately if called form hard IRQ or
7361 	 * NMI.
7362 	 *
7363 	 * Note, irqs_disabled() case is ok. This function can be called
7364 	 * from raw_spin_lock_irqsave region.
7365 	 */
7366 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7367 		return NULL;
7368 	if (!pcp_allowed_order(order))
7369 		return NULL;
7370 
7371 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7372 	if (deferred_pages_enabled())
7373 		return NULL;
7374 
7375 	if (nid == NUMA_NO_NODE)
7376 		nid = numa_node_id();
7377 
7378 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7379 			    &alloc_gfp, &alloc_flags);
7380 
7381 	/*
7382 	 * Best effort allocation from percpu free list.
7383 	 * If it's empty attempt to spin_trylock zone->lock.
7384 	 */
7385 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7386 
7387 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7388 
7389 	if (page)
7390 		set_page_refcounted(page);
7391 
7392 	if (memcg_kmem_online() && page &&
7393 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7394 		free_pages_nolock(page, order);
7395 		page = NULL;
7396 	}
7397 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7398 	kmsan_alloc_page(page, order, alloc_gfp);
7399 	return page;
7400 }
7401