xref: /linux/mm/page-writeback.c (revision ff877ea80efa2015b6263766f78ee42c2a1b32f9)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	akpm@zip.com.au
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * The maximum number of pages to writeout in a single bdflush/kupdate
40  * operation.  We do this so we don't hold I_SYNC against an inode for
41  * enormous amounts of time, which would block a userspace task which has
42  * been forced to throttle against that inode.  Also, the code reevaluates
43  * the dirty each time it has written this many pages.
44  */
45 #define MAX_WRITEBACK_PAGES	1024
46 
47 /*
48  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49  * will look to see if it needs to force writeback or throttling.
50  */
51 static long ratelimit_pages = 32;
52 
53 /*
54  * When balance_dirty_pages decides that the caller needs to perform some
55  * non-background writeback, this is how many pages it will attempt to write.
56  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57  * large amounts of I/O are submitted.
58  */
59 static inline long sync_writeback_pages(void)
60 {
61 	return ratelimit_pages + ratelimit_pages / 2;
62 }
63 
64 /* The following parameters are exported via /proc/sys/vm */
65 
66 /*
67  * Start background writeback (via pdflush) at this percentage
68  */
69 int dirty_background_ratio = 5;
70 
71 /*
72  * free highmem will not be subtracted from the total free memory
73  * for calculating free ratios if vm_highmem_is_dirtyable is true
74  */
75 int vm_highmem_is_dirtyable;
76 
77 /*
78  * The generator of dirty data starts writeback at this percentage
79  */
80 int vm_dirty_ratio = 10;
81 
82 /*
83  * The interval between `kupdate'-style writebacks, in jiffies
84  */
85 int dirty_writeback_interval = 5 * HZ;
86 
87 /*
88  * The longest number of jiffies for which data is allowed to remain dirty
89  */
90 int dirty_expire_interval = 30 * HZ;
91 
92 /*
93  * Flag that makes the machine dump writes/reads and block dirtyings.
94  */
95 int block_dump;
96 
97 /*
98  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99  * a full sync is triggered after this time elapses without any disk activity.
100  */
101 int laptop_mode;
102 
103 EXPORT_SYMBOL(laptop_mode);
104 
105 /* End of sysctl-exported parameters */
106 
107 
108 static void background_writeout(unsigned long _min_pages);
109 
110 /*
111  * Scale the writeback cache size proportional to the relative writeout speeds.
112  *
113  * We do this by keeping a floating proportion between BDIs, based on page
114  * writeback completions [end_page_writeback()]. Those devices that write out
115  * pages fastest will get the larger share, while the slower will get a smaller
116  * share.
117  *
118  * We use page writeout completions because we are interested in getting rid of
119  * dirty pages. Having them written out is the primary goal.
120  *
121  * We introduce a concept of time, a period over which we measure these events,
122  * because demand can/will vary over time. The length of this period itself is
123  * measured in page writeback completions.
124  *
125  */
126 static struct prop_descriptor vm_completions;
127 static struct prop_descriptor vm_dirties;
128 
129 /*
130  * couple the period to the dirty_ratio:
131  *
132  *   period/2 ~ roundup_pow_of_two(dirty limit)
133  */
134 static int calc_period_shift(void)
135 {
136 	unsigned long dirty_total;
137 
138 	dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
139 	return 2 + ilog2(dirty_total - 1);
140 }
141 
142 /*
143  * update the period when the dirty ratio changes.
144  */
145 int dirty_ratio_handler(struct ctl_table *table, int write,
146 		struct file *filp, void __user *buffer, size_t *lenp,
147 		loff_t *ppos)
148 {
149 	int old_ratio = vm_dirty_ratio;
150 	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
151 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
152 		int shift = calc_period_shift();
153 		prop_change_shift(&vm_completions, shift);
154 		prop_change_shift(&vm_dirties, shift);
155 	}
156 	return ret;
157 }
158 
159 /*
160  * Increment the BDI's writeout completion count and the global writeout
161  * completion count. Called from test_clear_page_writeback().
162  */
163 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
164 {
165 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
166 			      bdi->max_prop_frac);
167 }
168 
169 void bdi_writeout_inc(struct backing_dev_info *bdi)
170 {
171 	unsigned long flags;
172 
173 	local_irq_save(flags);
174 	__bdi_writeout_inc(bdi);
175 	local_irq_restore(flags);
176 }
177 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
178 
179 static inline void task_dirty_inc(struct task_struct *tsk)
180 {
181 	prop_inc_single(&vm_dirties, &tsk->dirties);
182 }
183 
184 /*
185  * Obtain an accurate fraction of the BDI's portion.
186  */
187 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
188 		long *numerator, long *denominator)
189 {
190 	if (bdi_cap_writeback_dirty(bdi)) {
191 		prop_fraction_percpu(&vm_completions, &bdi->completions,
192 				numerator, denominator);
193 	} else {
194 		*numerator = 0;
195 		*denominator = 1;
196 	}
197 }
198 
199 /*
200  * Clip the earned share of dirty pages to that which is actually available.
201  * This avoids exceeding the total dirty_limit when the floating averages
202  * fluctuate too quickly.
203  */
204 static void
205 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
206 {
207 	long avail_dirty;
208 
209 	avail_dirty = dirty -
210 		(global_page_state(NR_FILE_DIRTY) +
211 		 global_page_state(NR_WRITEBACK) +
212 		 global_page_state(NR_UNSTABLE_NFS) +
213 		 global_page_state(NR_WRITEBACK_TEMP));
214 
215 	if (avail_dirty < 0)
216 		avail_dirty = 0;
217 
218 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
219 		bdi_stat(bdi, BDI_WRITEBACK);
220 
221 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
222 }
223 
224 static inline void task_dirties_fraction(struct task_struct *tsk,
225 		long *numerator, long *denominator)
226 {
227 	prop_fraction_single(&vm_dirties, &tsk->dirties,
228 				numerator, denominator);
229 }
230 
231 /*
232  * scale the dirty limit
233  *
234  * task specific dirty limit:
235  *
236  *   dirty -= (dirty/8) * p_{t}
237  */
238 static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
239 {
240 	long numerator, denominator;
241 	long dirty = *pdirty;
242 	u64 inv = dirty >> 3;
243 
244 	task_dirties_fraction(tsk, &numerator, &denominator);
245 	inv *= numerator;
246 	do_div(inv, denominator);
247 
248 	dirty -= inv;
249 	if (dirty < *pdirty/2)
250 		dirty = *pdirty/2;
251 
252 	*pdirty = dirty;
253 }
254 
255 /*
256  *
257  */
258 static DEFINE_SPINLOCK(bdi_lock);
259 static unsigned int bdi_min_ratio;
260 
261 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
262 {
263 	int ret = 0;
264 	unsigned long flags;
265 
266 	spin_lock_irqsave(&bdi_lock, flags);
267 	if (min_ratio > bdi->max_ratio) {
268 		ret = -EINVAL;
269 	} else {
270 		min_ratio -= bdi->min_ratio;
271 		if (bdi_min_ratio + min_ratio < 100) {
272 			bdi_min_ratio += min_ratio;
273 			bdi->min_ratio += min_ratio;
274 		} else {
275 			ret = -EINVAL;
276 		}
277 	}
278 	spin_unlock_irqrestore(&bdi_lock, flags);
279 
280 	return ret;
281 }
282 
283 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
284 {
285 	unsigned long flags;
286 	int ret = 0;
287 
288 	if (max_ratio > 100)
289 		return -EINVAL;
290 
291 	spin_lock_irqsave(&bdi_lock, flags);
292 	if (bdi->min_ratio > max_ratio) {
293 		ret = -EINVAL;
294 	} else {
295 		bdi->max_ratio = max_ratio;
296 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
297 	}
298 	spin_unlock_irqrestore(&bdi_lock, flags);
299 
300 	return ret;
301 }
302 EXPORT_SYMBOL(bdi_set_max_ratio);
303 
304 /*
305  * Work out the current dirty-memory clamping and background writeout
306  * thresholds.
307  *
308  * The main aim here is to lower them aggressively if there is a lot of mapped
309  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
310  * pages.  It is better to clamp down on writers than to start swapping, and
311  * performing lots of scanning.
312  *
313  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
314  *
315  * We don't permit the clamping level to fall below 5% - that is getting rather
316  * excessive.
317  *
318  * We make sure that the background writeout level is below the adjusted
319  * clamping level.
320  */
321 
322 static unsigned long highmem_dirtyable_memory(unsigned long total)
323 {
324 #ifdef CONFIG_HIGHMEM
325 	int node;
326 	unsigned long x = 0;
327 
328 	for_each_node_state(node, N_HIGH_MEMORY) {
329 		struct zone *z =
330 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
331 
332 		x += zone_page_state(z, NR_FREE_PAGES)
333 			+ zone_page_state(z, NR_INACTIVE)
334 			+ zone_page_state(z, NR_ACTIVE);
335 	}
336 	/*
337 	 * Make sure that the number of highmem pages is never larger
338 	 * than the number of the total dirtyable memory. This can only
339 	 * occur in very strange VM situations but we want to make sure
340 	 * that this does not occur.
341 	 */
342 	return min(x, total);
343 #else
344 	return 0;
345 #endif
346 }
347 
348 /**
349  * determine_dirtyable_memory - amount of memory that may be used
350  *
351  * Returns the numebr of pages that can currently be freed and used
352  * by the kernel for direct mappings.
353  */
354 unsigned long determine_dirtyable_memory(void)
355 {
356 	unsigned long x;
357 
358 	x = global_page_state(NR_FREE_PAGES)
359 		+ global_page_state(NR_INACTIVE)
360 		+ global_page_state(NR_ACTIVE);
361 
362 	if (!vm_highmem_is_dirtyable)
363 		x -= highmem_dirtyable_memory(x);
364 
365 	return x + 1;	/* Ensure that we never return 0 */
366 }
367 
368 void
369 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
370 		 struct backing_dev_info *bdi)
371 {
372 	int background_ratio;		/* Percentages */
373 	int dirty_ratio;
374 	long background;
375 	long dirty;
376 	unsigned long available_memory = determine_dirtyable_memory();
377 	struct task_struct *tsk;
378 
379 	dirty_ratio = vm_dirty_ratio;
380 	if (dirty_ratio < 5)
381 		dirty_ratio = 5;
382 
383 	background_ratio = dirty_background_ratio;
384 	if (background_ratio >= dirty_ratio)
385 		background_ratio = dirty_ratio / 2;
386 
387 	background = (background_ratio * available_memory) / 100;
388 	dirty = (dirty_ratio * available_memory) / 100;
389 	tsk = current;
390 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
391 		background += background / 4;
392 		dirty += dirty / 4;
393 	}
394 	*pbackground = background;
395 	*pdirty = dirty;
396 
397 	if (bdi) {
398 		u64 bdi_dirty;
399 		long numerator, denominator;
400 
401 		/*
402 		 * Calculate this BDI's share of the dirty ratio.
403 		 */
404 		bdi_writeout_fraction(bdi, &numerator, &denominator);
405 
406 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
407 		bdi_dirty *= numerator;
408 		do_div(bdi_dirty, denominator);
409 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
410 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
411 			bdi_dirty = dirty * bdi->max_ratio / 100;
412 
413 		*pbdi_dirty = bdi_dirty;
414 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
415 		task_dirty_limit(current, pbdi_dirty);
416 	}
417 }
418 
419 /*
420  * balance_dirty_pages() must be called by processes which are generating dirty
421  * data.  It looks at the number of dirty pages in the machine and will force
422  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
423  * If we're over `background_thresh' then pdflush is woken to perform some
424  * writeout.
425  */
426 static void balance_dirty_pages(struct address_space *mapping)
427 {
428 	long nr_reclaimable, bdi_nr_reclaimable;
429 	long nr_writeback, bdi_nr_writeback;
430 	long background_thresh;
431 	long dirty_thresh;
432 	long bdi_thresh;
433 	unsigned long pages_written = 0;
434 	unsigned long write_chunk = sync_writeback_pages();
435 
436 	struct backing_dev_info *bdi = mapping->backing_dev_info;
437 
438 	for (;;) {
439 		struct writeback_control wbc = {
440 			.bdi		= bdi,
441 			.sync_mode	= WB_SYNC_NONE,
442 			.older_than_this = NULL,
443 			.nr_to_write	= write_chunk,
444 			.range_cyclic	= 1,
445 		};
446 
447 		get_dirty_limits(&background_thresh, &dirty_thresh,
448 				&bdi_thresh, bdi);
449 
450 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
451 					global_page_state(NR_UNSTABLE_NFS);
452 		nr_writeback = global_page_state(NR_WRITEBACK);
453 
454 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
455 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
456 
457 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
458 			break;
459 
460 		/*
461 		 * Throttle it only when the background writeback cannot
462 		 * catch-up. This avoids (excessively) small writeouts
463 		 * when the bdi limits are ramping up.
464 		 */
465 		if (nr_reclaimable + nr_writeback <
466 				(background_thresh + dirty_thresh) / 2)
467 			break;
468 
469 		if (!bdi->dirty_exceeded)
470 			bdi->dirty_exceeded = 1;
471 
472 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
473 		 * Unstable writes are a feature of certain networked
474 		 * filesystems (i.e. NFS) in which data may have been
475 		 * written to the server's write cache, but has not yet
476 		 * been flushed to permanent storage.
477 		 */
478 		if (bdi_nr_reclaimable) {
479 			writeback_inodes(&wbc);
480 			pages_written += write_chunk - wbc.nr_to_write;
481 			get_dirty_limits(&background_thresh, &dirty_thresh,
482 				       &bdi_thresh, bdi);
483 		}
484 
485 		/*
486 		 * In order to avoid the stacked BDI deadlock we need
487 		 * to ensure we accurately count the 'dirty' pages when
488 		 * the threshold is low.
489 		 *
490 		 * Otherwise it would be possible to get thresh+n pages
491 		 * reported dirty, even though there are thresh-m pages
492 		 * actually dirty; with m+n sitting in the percpu
493 		 * deltas.
494 		 */
495 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
496 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
497 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
498 		} else if (bdi_nr_reclaimable) {
499 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
500 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
501 		}
502 
503 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
504 			break;
505 		if (pages_written >= write_chunk)
506 			break;		/* We've done our duty */
507 
508 		congestion_wait(WRITE, HZ/10);
509 	}
510 
511 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
512 			bdi->dirty_exceeded)
513 		bdi->dirty_exceeded = 0;
514 
515 	if (writeback_in_progress(bdi))
516 		return;		/* pdflush is already working this queue */
517 
518 	/*
519 	 * In laptop mode, we wait until hitting the higher threshold before
520 	 * starting background writeout, and then write out all the way down
521 	 * to the lower threshold.  So slow writers cause minimal disk activity.
522 	 *
523 	 * In normal mode, we start background writeout at the lower
524 	 * background_thresh, to keep the amount of dirty memory low.
525 	 */
526 	if ((laptop_mode && pages_written) ||
527 			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
528 					  + global_page_state(NR_UNSTABLE_NFS)
529 					  > background_thresh)))
530 		pdflush_operation(background_writeout, 0);
531 }
532 
533 void set_page_dirty_balance(struct page *page, int page_mkwrite)
534 {
535 	if (set_page_dirty(page) || page_mkwrite) {
536 		struct address_space *mapping = page_mapping(page);
537 
538 		if (mapping)
539 			balance_dirty_pages_ratelimited(mapping);
540 	}
541 }
542 
543 /**
544  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
545  * @mapping: address_space which was dirtied
546  * @nr_pages_dirtied: number of pages which the caller has just dirtied
547  *
548  * Processes which are dirtying memory should call in here once for each page
549  * which was newly dirtied.  The function will periodically check the system's
550  * dirty state and will initiate writeback if needed.
551  *
552  * On really big machines, get_writeback_state is expensive, so try to avoid
553  * calling it too often (ratelimiting).  But once we're over the dirty memory
554  * limit we decrease the ratelimiting by a lot, to prevent individual processes
555  * from overshooting the limit by (ratelimit_pages) each.
556  */
557 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
558 					unsigned long nr_pages_dirtied)
559 {
560 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
561 	unsigned long ratelimit;
562 	unsigned long *p;
563 
564 	ratelimit = ratelimit_pages;
565 	if (mapping->backing_dev_info->dirty_exceeded)
566 		ratelimit = 8;
567 
568 	/*
569 	 * Check the rate limiting. Also, we do not want to throttle real-time
570 	 * tasks in balance_dirty_pages(). Period.
571 	 */
572 	preempt_disable();
573 	p =  &__get_cpu_var(ratelimits);
574 	*p += nr_pages_dirtied;
575 	if (unlikely(*p >= ratelimit)) {
576 		*p = 0;
577 		preempt_enable();
578 		balance_dirty_pages(mapping);
579 		return;
580 	}
581 	preempt_enable();
582 }
583 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
584 
585 void throttle_vm_writeout(gfp_t gfp_mask)
586 {
587 	long background_thresh;
588 	long dirty_thresh;
589 
590         for ( ; ; ) {
591 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
592 
593                 /*
594                  * Boost the allowable dirty threshold a bit for page
595                  * allocators so they don't get DoS'ed by heavy writers
596                  */
597                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
598 
599                 if (global_page_state(NR_UNSTABLE_NFS) +
600 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
601                         	break;
602                 congestion_wait(WRITE, HZ/10);
603 
604 		/*
605 		 * The caller might hold locks which can prevent IO completion
606 		 * or progress in the filesystem.  So we cannot just sit here
607 		 * waiting for IO to complete.
608 		 */
609 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
610 			break;
611         }
612 }
613 
614 /*
615  * writeback at least _min_pages, and keep writing until the amount of dirty
616  * memory is less than the background threshold, or until we're all clean.
617  */
618 static void background_writeout(unsigned long _min_pages)
619 {
620 	long min_pages = _min_pages;
621 	struct writeback_control wbc = {
622 		.bdi		= NULL,
623 		.sync_mode	= WB_SYNC_NONE,
624 		.older_than_this = NULL,
625 		.nr_to_write	= 0,
626 		.nonblocking	= 1,
627 		.range_cyclic	= 1,
628 	};
629 
630 	for ( ; ; ) {
631 		long background_thresh;
632 		long dirty_thresh;
633 
634 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
635 		if (global_page_state(NR_FILE_DIRTY) +
636 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
637 				&& min_pages <= 0)
638 			break;
639 		wbc.more_io = 0;
640 		wbc.encountered_congestion = 0;
641 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
642 		wbc.pages_skipped = 0;
643 		writeback_inodes(&wbc);
644 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
645 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
646 			/* Wrote less than expected */
647 			if (wbc.encountered_congestion || wbc.more_io)
648 				congestion_wait(WRITE, HZ/10);
649 			else
650 				break;
651 		}
652 	}
653 }
654 
655 /*
656  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
657  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
658  * -1 if all pdflush threads were busy.
659  */
660 int wakeup_pdflush(long nr_pages)
661 {
662 	if (nr_pages == 0)
663 		nr_pages = global_page_state(NR_FILE_DIRTY) +
664 				global_page_state(NR_UNSTABLE_NFS);
665 	return pdflush_operation(background_writeout, nr_pages);
666 }
667 
668 static void wb_timer_fn(unsigned long unused);
669 static void laptop_timer_fn(unsigned long unused);
670 
671 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
672 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
673 
674 /*
675  * Periodic writeback of "old" data.
676  *
677  * Define "old": the first time one of an inode's pages is dirtied, we mark the
678  * dirtying-time in the inode's address_space.  So this periodic writeback code
679  * just walks the superblock inode list, writing back any inodes which are
680  * older than a specific point in time.
681  *
682  * Try to run once per dirty_writeback_interval.  But if a writeback event
683  * takes longer than a dirty_writeback_interval interval, then leave a
684  * one-second gap.
685  *
686  * older_than_this takes precedence over nr_to_write.  So we'll only write back
687  * all dirty pages if they are all attached to "old" mappings.
688  */
689 static void wb_kupdate(unsigned long arg)
690 {
691 	unsigned long oldest_jif;
692 	unsigned long start_jif;
693 	unsigned long next_jif;
694 	long nr_to_write;
695 	struct writeback_control wbc = {
696 		.bdi		= NULL,
697 		.sync_mode	= WB_SYNC_NONE,
698 		.older_than_this = &oldest_jif,
699 		.nr_to_write	= 0,
700 		.nonblocking	= 1,
701 		.for_kupdate	= 1,
702 		.range_cyclic	= 1,
703 	};
704 
705 	sync_supers();
706 
707 	oldest_jif = jiffies - dirty_expire_interval;
708 	start_jif = jiffies;
709 	next_jif = start_jif + dirty_writeback_interval;
710 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
711 			global_page_state(NR_UNSTABLE_NFS) +
712 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
713 	while (nr_to_write > 0) {
714 		wbc.more_io = 0;
715 		wbc.encountered_congestion = 0;
716 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
717 		writeback_inodes(&wbc);
718 		if (wbc.nr_to_write > 0) {
719 			if (wbc.encountered_congestion || wbc.more_io)
720 				congestion_wait(WRITE, HZ/10);
721 			else
722 				break;	/* All the old data is written */
723 		}
724 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
725 	}
726 	if (time_before(next_jif, jiffies + HZ))
727 		next_jif = jiffies + HZ;
728 	if (dirty_writeback_interval)
729 		mod_timer(&wb_timer, next_jif);
730 }
731 
732 /*
733  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
734  */
735 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
736 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
737 {
738 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
739 	if (dirty_writeback_interval)
740 		mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
741 	else
742 		del_timer(&wb_timer);
743 	return 0;
744 }
745 
746 static void wb_timer_fn(unsigned long unused)
747 {
748 	if (pdflush_operation(wb_kupdate, 0) < 0)
749 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
750 }
751 
752 static void laptop_flush(unsigned long unused)
753 {
754 	sys_sync();
755 }
756 
757 static void laptop_timer_fn(unsigned long unused)
758 {
759 	pdflush_operation(laptop_flush, 0);
760 }
761 
762 /*
763  * We've spun up the disk and we're in laptop mode: schedule writeback
764  * of all dirty data a few seconds from now.  If the flush is already scheduled
765  * then push it back - the user is still using the disk.
766  */
767 void laptop_io_completion(void)
768 {
769 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
770 }
771 
772 /*
773  * We're in laptop mode and we've just synced. The sync's writes will have
774  * caused another writeback to be scheduled by laptop_io_completion.
775  * Nothing needs to be written back anymore, so we unschedule the writeback.
776  */
777 void laptop_sync_completion(void)
778 {
779 	del_timer(&laptop_mode_wb_timer);
780 }
781 
782 /*
783  * If ratelimit_pages is too high then we can get into dirty-data overload
784  * if a large number of processes all perform writes at the same time.
785  * If it is too low then SMP machines will call the (expensive)
786  * get_writeback_state too often.
787  *
788  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
789  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
790  * thresholds before writeback cuts in.
791  *
792  * But the limit should not be set too high.  Because it also controls the
793  * amount of memory which the balance_dirty_pages() caller has to write back.
794  * If this is too large then the caller will block on the IO queue all the
795  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
796  * will write six megabyte chunks, max.
797  */
798 
799 void writeback_set_ratelimit(void)
800 {
801 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
802 	if (ratelimit_pages < 16)
803 		ratelimit_pages = 16;
804 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
805 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
806 }
807 
808 static int __cpuinit
809 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
810 {
811 	writeback_set_ratelimit();
812 	return NOTIFY_DONE;
813 }
814 
815 static struct notifier_block __cpuinitdata ratelimit_nb = {
816 	.notifier_call	= ratelimit_handler,
817 	.next		= NULL,
818 };
819 
820 /*
821  * Called early on to tune the page writeback dirty limits.
822  *
823  * We used to scale dirty pages according to how total memory
824  * related to pages that could be allocated for buffers (by
825  * comparing nr_free_buffer_pages() to vm_total_pages.
826  *
827  * However, that was when we used "dirty_ratio" to scale with
828  * all memory, and we don't do that any more. "dirty_ratio"
829  * is now applied to total non-HIGHPAGE memory (by subtracting
830  * totalhigh_pages from vm_total_pages), and as such we can't
831  * get into the old insane situation any more where we had
832  * large amounts of dirty pages compared to a small amount of
833  * non-HIGHMEM memory.
834  *
835  * But we might still want to scale the dirty_ratio by how
836  * much memory the box has..
837  */
838 void __init page_writeback_init(void)
839 {
840 	int shift;
841 
842 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
843 	writeback_set_ratelimit();
844 	register_cpu_notifier(&ratelimit_nb);
845 
846 	shift = calc_period_shift();
847 	prop_descriptor_init(&vm_completions, shift);
848 	prop_descriptor_init(&vm_dirties, shift);
849 }
850 
851 /**
852  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
853  * @mapping: address space structure to write
854  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
855  * @writepage: function called for each page
856  * @data: data passed to writepage function
857  *
858  * If a page is already under I/O, write_cache_pages() skips it, even
859  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
860  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
861  * and msync() need to guarantee that all the data which was dirty at the time
862  * the call was made get new I/O started against them.  If wbc->sync_mode is
863  * WB_SYNC_ALL then we were called for data integrity and we must wait for
864  * existing IO to complete.
865  */
866 int write_cache_pages(struct address_space *mapping,
867 		      struct writeback_control *wbc, writepage_t writepage,
868 		      void *data)
869 {
870 	struct backing_dev_info *bdi = mapping->backing_dev_info;
871 	int ret = 0;
872 	int done = 0;
873 	struct pagevec pvec;
874 	int nr_pages;
875 	pgoff_t index;
876 	pgoff_t end;		/* Inclusive */
877 	int scanned = 0;
878 	int range_whole = 0;
879 
880 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
881 		wbc->encountered_congestion = 1;
882 		return 0;
883 	}
884 
885 	pagevec_init(&pvec, 0);
886 	if (wbc->range_cyclic) {
887 		index = mapping->writeback_index; /* Start from prev offset */
888 		end = -1;
889 	} else {
890 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
891 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
892 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
893 			range_whole = 1;
894 		scanned = 1;
895 	}
896 retry:
897 	while (!done && (index <= end) &&
898 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
899 					      PAGECACHE_TAG_DIRTY,
900 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
901 		unsigned i;
902 
903 		scanned = 1;
904 		for (i = 0; i < nr_pages; i++) {
905 			struct page *page = pvec.pages[i];
906 
907 			/*
908 			 * At this point we hold neither mapping->tree_lock nor
909 			 * lock on the page itself: the page may be truncated or
910 			 * invalidated (changing page->mapping to NULL), or even
911 			 * swizzled back from swapper_space to tmpfs file
912 			 * mapping
913 			 */
914 			lock_page(page);
915 
916 			if (unlikely(page->mapping != mapping)) {
917 				unlock_page(page);
918 				continue;
919 			}
920 
921 			if (!wbc->range_cyclic && page->index > end) {
922 				done = 1;
923 				unlock_page(page);
924 				continue;
925 			}
926 
927 			if (wbc->sync_mode != WB_SYNC_NONE)
928 				wait_on_page_writeback(page);
929 
930 			if (PageWriteback(page) ||
931 			    !clear_page_dirty_for_io(page)) {
932 				unlock_page(page);
933 				continue;
934 			}
935 
936 			ret = (*writepage)(page, wbc, data);
937 
938 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
939 				unlock_page(page);
940 				ret = 0;
941 			}
942 			if (ret || (--(wbc->nr_to_write) <= 0))
943 				done = 1;
944 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
945 				wbc->encountered_congestion = 1;
946 				done = 1;
947 			}
948 		}
949 		pagevec_release(&pvec);
950 		cond_resched();
951 	}
952 	if (!scanned && !done) {
953 		/*
954 		 * We hit the last page and there is more work to be done: wrap
955 		 * back to the start of the file
956 		 */
957 		scanned = 1;
958 		index = 0;
959 		goto retry;
960 	}
961 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
962 		mapping->writeback_index = index;
963 
964 	if (wbc->range_cont)
965 		wbc->range_start = index << PAGE_CACHE_SHIFT;
966 	return ret;
967 }
968 EXPORT_SYMBOL(write_cache_pages);
969 
970 /*
971  * Function used by generic_writepages to call the real writepage
972  * function and set the mapping flags on error
973  */
974 static int __writepage(struct page *page, struct writeback_control *wbc,
975 		       void *data)
976 {
977 	struct address_space *mapping = data;
978 	int ret = mapping->a_ops->writepage(page, wbc);
979 	mapping_set_error(mapping, ret);
980 	return ret;
981 }
982 
983 /**
984  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
985  * @mapping: address space structure to write
986  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
987  *
988  * This is a library function, which implements the writepages()
989  * address_space_operation.
990  */
991 int generic_writepages(struct address_space *mapping,
992 		       struct writeback_control *wbc)
993 {
994 	/* deal with chardevs and other special file */
995 	if (!mapping->a_ops->writepage)
996 		return 0;
997 
998 	return write_cache_pages(mapping, wbc, __writepage, mapping);
999 }
1000 
1001 EXPORT_SYMBOL(generic_writepages);
1002 
1003 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1004 {
1005 	int ret;
1006 
1007 	if (wbc->nr_to_write <= 0)
1008 		return 0;
1009 	wbc->for_writepages = 1;
1010 	if (mapping->a_ops->writepages)
1011 		ret = mapping->a_ops->writepages(mapping, wbc);
1012 	else
1013 		ret = generic_writepages(mapping, wbc);
1014 	wbc->for_writepages = 0;
1015 	return ret;
1016 }
1017 
1018 /**
1019  * write_one_page - write out a single page and optionally wait on I/O
1020  * @page: the page to write
1021  * @wait: if true, wait on writeout
1022  *
1023  * The page must be locked by the caller and will be unlocked upon return.
1024  *
1025  * write_one_page() returns a negative error code if I/O failed.
1026  */
1027 int write_one_page(struct page *page, int wait)
1028 {
1029 	struct address_space *mapping = page->mapping;
1030 	int ret = 0;
1031 	struct writeback_control wbc = {
1032 		.sync_mode = WB_SYNC_ALL,
1033 		.nr_to_write = 1,
1034 	};
1035 
1036 	BUG_ON(!PageLocked(page));
1037 
1038 	if (wait)
1039 		wait_on_page_writeback(page);
1040 
1041 	if (clear_page_dirty_for_io(page)) {
1042 		page_cache_get(page);
1043 		ret = mapping->a_ops->writepage(page, &wbc);
1044 		if (ret == 0 && wait) {
1045 			wait_on_page_writeback(page);
1046 			if (PageError(page))
1047 				ret = -EIO;
1048 		}
1049 		page_cache_release(page);
1050 	} else {
1051 		unlock_page(page);
1052 	}
1053 	return ret;
1054 }
1055 EXPORT_SYMBOL(write_one_page);
1056 
1057 /*
1058  * For address_spaces which do not use buffers nor write back.
1059  */
1060 int __set_page_dirty_no_writeback(struct page *page)
1061 {
1062 	if (!PageDirty(page))
1063 		SetPageDirty(page);
1064 	return 0;
1065 }
1066 
1067 /*
1068  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1069  * its radix tree.
1070  *
1071  * This is also used when a single buffer is being dirtied: we want to set the
1072  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1073  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1074  *
1075  * Most callers have locked the page, which pins the address_space in memory.
1076  * But zap_pte_range() does not lock the page, however in that case the
1077  * mapping is pinned by the vma's ->vm_file reference.
1078  *
1079  * We take care to handle the case where the page was truncated from the
1080  * mapping by re-checking page_mapping() inside tree_lock.
1081  */
1082 int __set_page_dirty_nobuffers(struct page *page)
1083 {
1084 	if (!TestSetPageDirty(page)) {
1085 		struct address_space *mapping = page_mapping(page);
1086 		struct address_space *mapping2;
1087 
1088 		if (!mapping)
1089 			return 1;
1090 
1091 		write_lock_irq(&mapping->tree_lock);
1092 		mapping2 = page_mapping(page);
1093 		if (mapping2) { /* Race with truncate? */
1094 			BUG_ON(mapping2 != mapping);
1095 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1096 			if (mapping_cap_account_dirty(mapping)) {
1097 				__inc_zone_page_state(page, NR_FILE_DIRTY);
1098 				__inc_bdi_stat(mapping->backing_dev_info,
1099 						BDI_RECLAIMABLE);
1100 				task_io_account_write(PAGE_CACHE_SIZE);
1101 			}
1102 			radix_tree_tag_set(&mapping->page_tree,
1103 				page_index(page), PAGECACHE_TAG_DIRTY);
1104 		}
1105 		write_unlock_irq(&mapping->tree_lock);
1106 		if (mapping->host) {
1107 			/* !PageAnon && !swapper_space */
1108 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1109 		}
1110 		return 1;
1111 	}
1112 	return 0;
1113 }
1114 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1115 
1116 /*
1117  * When a writepage implementation decides that it doesn't want to write this
1118  * page for some reason, it should redirty the locked page via
1119  * redirty_page_for_writepage() and it should then unlock the page and return 0
1120  */
1121 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1122 {
1123 	wbc->pages_skipped++;
1124 	return __set_page_dirty_nobuffers(page);
1125 }
1126 EXPORT_SYMBOL(redirty_page_for_writepage);
1127 
1128 /*
1129  * If the mapping doesn't provide a set_page_dirty a_op, then
1130  * just fall through and assume that it wants buffer_heads.
1131  */
1132 static int __set_page_dirty(struct page *page)
1133 {
1134 	struct address_space *mapping = page_mapping(page);
1135 
1136 	if (likely(mapping)) {
1137 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1138 #ifdef CONFIG_BLOCK
1139 		if (!spd)
1140 			spd = __set_page_dirty_buffers;
1141 #endif
1142 		return (*spd)(page);
1143 	}
1144 	if (!PageDirty(page)) {
1145 		if (!TestSetPageDirty(page))
1146 			return 1;
1147 	}
1148 	return 0;
1149 }
1150 
1151 int set_page_dirty(struct page *page)
1152 {
1153 	int ret = __set_page_dirty(page);
1154 	if (ret)
1155 		task_dirty_inc(current);
1156 	return ret;
1157 }
1158 EXPORT_SYMBOL(set_page_dirty);
1159 
1160 /*
1161  * set_page_dirty() is racy if the caller has no reference against
1162  * page->mapping->host, and if the page is unlocked.  This is because another
1163  * CPU could truncate the page off the mapping and then free the mapping.
1164  *
1165  * Usually, the page _is_ locked, or the caller is a user-space process which
1166  * holds a reference on the inode by having an open file.
1167  *
1168  * In other cases, the page should be locked before running set_page_dirty().
1169  */
1170 int set_page_dirty_lock(struct page *page)
1171 {
1172 	int ret;
1173 
1174 	lock_page_nosync(page);
1175 	ret = set_page_dirty(page);
1176 	unlock_page(page);
1177 	return ret;
1178 }
1179 EXPORT_SYMBOL(set_page_dirty_lock);
1180 
1181 /*
1182  * Clear a page's dirty flag, while caring for dirty memory accounting.
1183  * Returns true if the page was previously dirty.
1184  *
1185  * This is for preparing to put the page under writeout.  We leave the page
1186  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1187  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1188  * implementation will run either set_page_writeback() or set_page_dirty(),
1189  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1190  * back into sync.
1191  *
1192  * This incoherency between the page's dirty flag and radix-tree tag is
1193  * unfortunate, but it only exists while the page is locked.
1194  */
1195 int clear_page_dirty_for_io(struct page *page)
1196 {
1197 	struct address_space *mapping = page_mapping(page);
1198 
1199 	BUG_ON(!PageLocked(page));
1200 
1201 	ClearPageReclaim(page);
1202 	if (mapping && mapping_cap_account_dirty(mapping)) {
1203 		/*
1204 		 * Yes, Virginia, this is indeed insane.
1205 		 *
1206 		 * We use this sequence to make sure that
1207 		 *  (a) we account for dirty stats properly
1208 		 *  (b) we tell the low-level filesystem to
1209 		 *      mark the whole page dirty if it was
1210 		 *      dirty in a pagetable. Only to then
1211 		 *  (c) clean the page again and return 1 to
1212 		 *      cause the writeback.
1213 		 *
1214 		 * This way we avoid all nasty races with the
1215 		 * dirty bit in multiple places and clearing
1216 		 * them concurrently from different threads.
1217 		 *
1218 		 * Note! Normally the "set_page_dirty(page)"
1219 		 * has no effect on the actual dirty bit - since
1220 		 * that will already usually be set. But we
1221 		 * need the side effects, and it can help us
1222 		 * avoid races.
1223 		 *
1224 		 * We basically use the page "master dirty bit"
1225 		 * as a serialization point for all the different
1226 		 * threads doing their things.
1227 		 */
1228 		if (page_mkclean(page))
1229 			set_page_dirty(page);
1230 		/*
1231 		 * We carefully synchronise fault handlers against
1232 		 * installing a dirty pte and marking the page dirty
1233 		 * at this point. We do this by having them hold the
1234 		 * page lock at some point after installing their
1235 		 * pte, but before marking the page dirty.
1236 		 * Pages are always locked coming in here, so we get
1237 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1238 		 * for more comments.
1239 		 */
1240 		if (TestClearPageDirty(page)) {
1241 			dec_zone_page_state(page, NR_FILE_DIRTY);
1242 			dec_bdi_stat(mapping->backing_dev_info,
1243 					BDI_RECLAIMABLE);
1244 			return 1;
1245 		}
1246 		return 0;
1247 	}
1248 	return TestClearPageDirty(page);
1249 }
1250 EXPORT_SYMBOL(clear_page_dirty_for_io);
1251 
1252 int test_clear_page_writeback(struct page *page)
1253 {
1254 	struct address_space *mapping = page_mapping(page);
1255 	int ret;
1256 
1257 	if (mapping) {
1258 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1259 		unsigned long flags;
1260 
1261 		write_lock_irqsave(&mapping->tree_lock, flags);
1262 		ret = TestClearPageWriteback(page);
1263 		if (ret) {
1264 			radix_tree_tag_clear(&mapping->page_tree,
1265 						page_index(page),
1266 						PAGECACHE_TAG_WRITEBACK);
1267 			if (bdi_cap_account_writeback(bdi)) {
1268 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1269 				__bdi_writeout_inc(bdi);
1270 			}
1271 		}
1272 		write_unlock_irqrestore(&mapping->tree_lock, flags);
1273 	} else {
1274 		ret = TestClearPageWriteback(page);
1275 	}
1276 	if (ret)
1277 		dec_zone_page_state(page, NR_WRITEBACK);
1278 	return ret;
1279 }
1280 
1281 int test_set_page_writeback(struct page *page)
1282 {
1283 	struct address_space *mapping = page_mapping(page);
1284 	int ret;
1285 
1286 	if (mapping) {
1287 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1288 		unsigned long flags;
1289 
1290 		write_lock_irqsave(&mapping->tree_lock, flags);
1291 		ret = TestSetPageWriteback(page);
1292 		if (!ret) {
1293 			radix_tree_tag_set(&mapping->page_tree,
1294 						page_index(page),
1295 						PAGECACHE_TAG_WRITEBACK);
1296 			if (bdi_cap_account_writeback(bdi))
1297 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1298 		}
1299 		if (!PageDirty(page))
1300 			radix_tree_tag_clear(&mapping->page_tree,
1301 						page_index(page),
1302 						PAGECACHE_TAG_DIRTY);
1303 		write_unlock_irqrestore(&mapping->tree_lock, flags);
1304 	} else {
1305 		ret = TestSetPageWriteback(page);
1306 	}
1307 	if (!ret)
1308 		inc_zone_page_state(page, NR_WRITEBACK);
1309 	return ret;
1310 
1311 }
1312 EXPORT_SYMBOL(test_set_page_writeback);
1313 
1314 /*
1315  * Return true if any of the pages in the mapping are marked with the
1316  * passed tag.
1317  */
1318 int mapping_tagged(struct address_space *mapping, int tag)
1319 {
1320 	int ret;
1321 	rcu_read_lock();
1322 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1323 	rcu_read_unlock();
1324 	return ret;
1325 }
1326 EXPORT_SYMBOL(mapping_tagged);
1327