xref: /linux/mm/page-writeback.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  * mm/page-writeback.c.
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to writing back dirty pages at the
7  * address_space level.
8  *
9  * 10Apr2002	akpm@zip.com.au
10  *		Initial version
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
32 
33 /*
34  * The maximum number of pages to writeout in a single bdflush/kupdate
35  * operation.  We do this so we don't hold I_LOCK against an inode for
36  * enormous amounts of time, which would block a userspace task which has
37  * been forced to throttle against that inode.  Also, the code reevaluates
38  * the dirty each time it has written this many pages.
39  */
40 #define MAX_WRITEBACK_PAGES	1024
41 
42 /*
43  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44  * will look to see if it needs to force writeback or throttling.
45  */
46 static long ratelimit_pages = 32;
47 
48 static long total_pages;	/* The total number of pages in the machine. */
49 static int dirty_exceeded __cacheline_aligned_in_smp;	/* Dirty mem may be over limit */
50 
51 /*
52  * When balance_dirty_pages decides that the caller needs to perform some
53  * non-background writeback, this is how many pages it will attempt to write.
54  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55  * large amounts of I/O are submitted.
56  */
57 static inline long sync_writeback_pages(void)
58 {
59 	return ratelimit_pages + ratelimit_pages / 2;
60 }
61 
62 /* The following parameters are exported via /proc/sys/vm */
63 
64 /*
65  * Start background writeback (via pdflush) at this percentage
66  */
67 int dirty_background_ratio = 10;
68 
69 /*
70  * The generator of dirty data starts writeback at this percentage
71  */
72 int vm_dirty_ratio = 40;
73 
74 /*
75  * The interval between `kupdate'-style writebacks, in jiffies
76  */
77 int dirty_writeback_interval = 5 * HZ;
78 
79 /*
80  * The longest number of jiffies for which data is allowed to remain dirty
81  */
82 int dirty_expire_interval = 30 * HZ;
83 
84 /*
85  * Flag that makes the machine dump writes/reads and block dirtyings.
86  */
87 int block_dump;
88 
89 /*
90  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
91  * a full sync is triggered after this time elapses without any disk activity.
92  */
93 int laptop_mode;
94 
95 EXPORT_SYMBOL(laptop_mode);
96 
97 /* End of sysctl-exported parameters */
98 
99 
100 static void background_writeout(unsigned long _min_pages);
101 
102 struct writeback_state
103 {
104 	unsigned long nr_dirty;
105 	unsigned long nr_unstable;
106 	unsigned long nr_mapped;
107 	unsigned long nr_writeback;
108 };
109 
110 static void get_writeback_state(struct writeback_state *wbs)
111 {
112 	wbs->nr_dirty = read_page_state(nr_dirty);
113 	wbs->nr_unstable = read_page_state(nr_unstable);
114 	wbs->nr_mapped = read_page_state(nr_mapped);
115 	wbs->nr_writeback = read_page_state(nr_writeback);
116 }
117 
118 /*
119  * Work out the current dirty-memory clamping and background writeout
120  * thresholds.
121  *
122  * The main aim here is to lower them aggressively if there is a lot of mapped
123  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
124  * pages.  It is better to clamp down on writers than to start swapping, and
125  * performing lots of scanning.
126  *
127  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
128  *
129  * We don't permit the clamping level to fall below 5% - that is getting rather
130  * excessive.
131  *
132  * We make sure that the background writeout level is below the adjusted
133  * clamping level.
134  */
135 static void
136 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
137 		struct address_space *mapping)
138 {
139 	int background_ratio;		/* Percentages */
140 	int dirty_ratio;
141 	int unmapped_ratio;
142 	long background;
143 	long dirty;
144 	unsigned long available_memory = total_pages;
145 	struct task_struct *tsk;
146 
147 	get_writeback_state(wbs);
148 
149 #ifdef CONFIG_HIGHMEM
150 	/*
151 	 * If this mapping can only allocate from low memory,
152 	 * we exclude high memory from our count.
153 	 */
154 	if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
155 		available_memory -= totalhigh_pages;
156 #endif
157 
158 
159 	unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
160 
161 	dirty_ratio = vm_dirty_ratio;
162 	if (dirty_ratio > unmapped_ratio / 2)
163 		dirty_ratio = unmapped_ratio / 2;
164 
165 	if (dirty_ratio < 5)
166 		dirty_ratio = 5;
167 
168 	background_ratio = dirty_background_ratio;
169 	if (background_ratio >= dirty_ratio)
170 		background_ratio = dirty_ratio / 2;
171 
172 	background = (background_ratio * available_memory) / 100;
173 	dirty = (dirty_ratio * available_memory) / 100;
174 	tsk = current;
175 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
176 		background += background / 4;
177 		dirty += dirty / 4;
178 	}
179 	*pbackground = background;
180 	*pdirty = dirty;
181 }
182 
183 /*
184  * balance_dirty_pages() must be called by processes which are generating dirty
185  * data.  It looks at the number of dirty pages in the machine and will force
186  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
187  * If we're over `background_thresh' then pdflush is woken to perform some
188  * writeout.
189  */
190 static void balance_dirty_pages(struct address_space *mapping)
191 {
192 	struct writeback_state wbs;
193 	long nr_reclaimable;
194 	long background_thresh;
195 	long dirty_thresh;
196 	unsigned long pages_written = 0;
197 	unsigned long write_chunk = sync_writeback_pages();
198 
199 	struct backing_dev_info *bdi = mapping->backing_dev_info;
200 
201 	for (;;) {
202 		struct writeback_control wbc = {
203 			.bdi		= bdi,
204 			.sync_mode	= WB_SYNC_NONE,
205 			.older_than_this = NULL,
206 			.nr_to_write	= write_chunk,
207 		};
208 
209 		get_dirty_limits(&wbs, &background_thresh,
210 					&dirty_thresh, mapping);
211 		nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
212 		if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
213 			break;
214 
215 		if (!dirty_exceeded)
216 			dirty_exceeded = 1;
217 
218 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
219 		 * Unstable writes are a feature of certain networked
220 		 * filesystems (i.e. NFS) in which data may have been
221 		 * written to the server's write cache, but has not yet
222 		 * been flushed to permanent storage.
223 		 */
224 		if (nr_reclaimable) {
225 			writeback_inodes(&wbc);
226 			get_dirty_limits(&wbs, &background_thresh,
227 					&dirty_thresh, mapping);
228 			nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
229 			if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
230 				break;
231 			pages_written += write_chunk - wbc.nr_to_write;
232 			if (pages_written >= write_chunk)
233 				break;		/* We've done our duty */
234 		}
235 		blk_congestion_wait(WRITE, HZ/10);
236 	}
237 
238 	if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded)
239 		dirty_exceeded = 0;
240 
241 	if (writeback_in_progress(bdi))
242 		return;		/* pdflush is already working this queue */
243 
244 	/*
245 	 * In laptop mode, we wait until hitting the higher threshold before
246 	 * starting background writeout, and then write out all the way down
247 	 * to the lower threshold.  So slow writers cause minimal disk activity.
248 	 *
249 	 * In normal mode, we start background writeout at the lower
250 	 * background_thresh, to keep the amount of dirty memory low.
251 	 */
252 	if ((laptop_mode && pages_written) ||
253 	     (!laptop_mode && (nr_reclaimable > background_thresh)))
254 		pdflush_operation(background_writeout, 0);
255 }
256 
257 /**
258  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
259  * @mapping: address_space which was dirtied
260  * @nr_pages_dirtied: number of pages which the caller has just dirtied
261  *
262  * Processes which are dirtying memory should call in here once for each page
263  * which was newly dirtied.  The function will periodically check the system's
264  * dirty state and will initiate writeback if needed.
265  *
266  * On really big machines, get_writeback_state is expensive, so try to avoid
267  * calling it too often (ratelimiting).  But once we're over the dirty memory
268  * limit we decrease the ratelimiting by a lot, to prevent individual processes
269  * from overshooting the limit by (ratelimit_pages) each.
270  */
271 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
272 					unsigned long nr_pages_dirtied)
273 {
274 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
275 	unsigned long ratelimit;
276 	unsigned long *p;
277 
278 	ratelimit = ratelimit_pages;
279 	if (dirty_exceeded)
280 		ratelimit = 8;
281 
282 	/*
283 	 * Check the rate limiting. Also, we do not want to throttle real-time
284 	 * tasks in balance_dirty_pages(). Period.
285 	 */
286 	preempt_disable();
287 	p =  &__get_cpu_var(ratelimits);
288 	*p += nr_pages_dirtied;
289 	if (unlikely(*p >= ratelimit)) {
290 		*p = 0;
291 		preempt_enable();
292 		balance_dirty_pages(mapping);
293 		return;
294 	}
295 	preempt_enable();
296 }
297 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
298 
299 void throttle_vm_writeout(void)
300 {
301 	struct writeback_state wbs;
302 	long background_thresh;
303 	long dirty_thresh;
304 
305         for ( ; ; ) {
306 		get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
307 
308                 /*
309                  * Boost the allowable dirty threshold a bit for page
310                  * allocators so they don't get DoS'ed by heavy writers
311                  */
312                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
313 
314                 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
315                         break;
316                 blk_congestion_wait(WRITE, HZ/10);
317         }
318 }
319 
320 
321 /*
322  * writeback at least _min_pages, and keep writing until the amount of dirty
323  * memory is less than the background threshold, or until we're all clean.
324  */
325 static void background_writeout(unsigned long _min_pages)
326 {
327 	long min_pages = _min_pages;
328 	struct writeback_control wbc = {
329 		.bdi		= NULL,
330 		.sync_mode	= WB_SYNC_NONE,
331 		.older_than_this = NULL,
332 		.nr_to_write	= 0,
333 		.nonblocking	= 1,
334 	};
335 
336 	for ( ; ; ) {
337 		struct writeback_state wbs;
338 		long background_thresh;
339 		long dirty_thresh;
340 
341 		get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
342 		if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
343 				&& min_pages <= 0)
344 			break;
345 		wbc.encountered_congestion = 0;
346 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
347 		wbc.pages_skipped = 0;
348 		writeback_inodes(&wbc);
349 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
350 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
351 			/* Wrote less than expected */
352 			blk_congestion_wait(WRITE, HZ/10);
353 			if (!wbc.encountered_congestion)
354 				break;
355 		}
356 	}
357 }
358 
359 /*
360  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
361  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
362  * -1 if all pdflush threads were busy.
363  */
364 int wakeup_pdflush(long nr_pages)
365 {
366 	if (nr_pages == 0) {
367 		struct writeback_state wbs;
368 
369 		get_writeback_state(&wbs);
370 		nr_pages = wbs.nr_dirty + wbs.nr_unstable;
371 	}
372 	return pdflush_operation(background_writeout, nr_pages);
373 }
374 
375 static void wb_timer_fn(unsigned long unused);
376 static void laptop_timer_fn(unsigned long unused);
377 
378 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
379 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
380 
381 /*
382  * Periodic writeback of "old" data.
383  *
384  * Define "old": the first time one of an inode's pages is dirtied, we mark the
385  * dirtying-time in the inode's address_space.  So this periodic writeback code
386  * just walks the superblock inode list, writing back any inodes which are
387  * older than a specific point in time.
388  *
389  * Try to run once per dirty_writeback_interval.  But if a writeback event
390  * takes longer than a dirty_writeback_interval interval, then leave a
391  * one-second gap.
392  *
393  * older_than_this takes precedence over nr_to_write.  So we'll only write back
394  * all dirty pages if they are all attached to "old" mappings.
395  */
396 static void wb_kupdate(unsigned long arg)
397 {
398 	unsigned long oldest_jif;
399 	unsigned long start_jif;
400 	unsigned long next_jif;
401 	long nr_to_write;
402 	struct writeback_state wbs;
403 	struct writeback_control wbc = {
404 		.bdi		= NULL,
405 		.sync_mode	= WB_SYNC_NONE,
406 		.older_than_this = &oldest_jif,
407 		.nr_to_write	= 0,
408 		.nonblocking	= 1,
409 		.for_kupdate	= 1,
410 	};
411 
412 	sync_supers();
413 
414 	get_writeback_state(&wbs);
415 	oldest_jif = jiffies - dirty_expire_interval;
416 	start_jif = jiffies;
417 	next_jif = start_jif + dirty_writeback_interval;
418 	nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
419 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
420 	while (nr_to_write > 0) {
421 		wbc.encountered_congestion = 0;
422 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
423 		writeback_inodes(&wbc);
424 		if (wbc.nr_to_write > 0) {
425 			if (wbc.encountered_congestion)
426 				blk_congestion_wait(WRITE, HZ/10);
427 			else
428 				break;	/* All the old data is written */
429 		}
430 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
431 	}
432 	if (time_before(next_jif, jiffies + HZ))
433 		next_jif = jiffies + HZ;
434 	if (dirty_writeback_interval)
435 		mod_timer(&wb_timer, next_jif);
436 }
437 
438 /*
439  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
440  */
441 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
442 		struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
443 {
444 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
445 	if (dirty_writeback_interval) {
446 		mod_timer(&wb_timer,
447 			jiffies + dirty_writeback_interval);
448 		} else {
449 		del_timer(&wb_timer);
450 	}
451 	return 0;
452 }
453 
454 static void wb_timer_fn(unsigned long unused)
455 {
456 	if (pdflush_operation(wb_kupdate, 0) < 0)
457 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
458 }
459 
460 static void laptop_flush(unsigned long unused)
461 {
462 	sys_sync();
463 }
464 
465 static void laptop_timer_fn(unsigned long unused)
466 {
467 	pdflush_operation(laptop_flush, 0);
468 }
469 
470 /*
471  * We've spun up the disk and we're in laptop mode: schedule writeback
472  * of all dirty data a few seconds from now.  If the flush is already scheduled
473  * then push it back - the user is still using the disk.
474  */
475 void laptop_io_completion(void)
476 {
477 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
478 }
479 
480 /*
481  * We're in laptop mode and we've just synced. The sync's writes will have
482  * caused another writeback to be scheduled by laptop_io_completion.
483  * Nothing needs to be written back anymore, so we unschedule the writeback.
484  */
485 void laptop_sync_completion(void)
486 {
487 	del_timer(&laptop_mode_wb_timer);
488 }
489 
490 /*
491  * If ratelimit_pages is too high then we can get into dirty-data overload
492  * if a large number of processes all perform writes at the same time.
493  * If it is too low then SMP machines will call the (expensive)
494  * get_writeback_state too often.
495  *
496  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
497  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
498  * thresholds before writeback cuts in.
499  *
500  * But the limit should not be set too high.  Because it also controls the
501  * amount of memory which the balance_dirty_pages() caller has to write back.
502  * If this is too large then the caller will block on the IO queue all the
503  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
504  * will write six megabyte chunks, max.
505  */
506 
507 static void set_ratelimit(void)
508 {
509 	ratelimit_pages = total_pages / (num_online_cpus() * 32);
510 	if (ratelimit_pages < 16)
511 		ratelimit_pages = 16;
512 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
513 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
514 }
515 
516 static int
517 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
518 {
519 	set_ratelimit();
520 	return 0;
521 }
522 
523 static struct notifier_block ratelimit_nb = {
524 	.notifier_call	= ratelimit_handler,
525 	.next		= NULL,
526 };
527 
528 /*
529  * If the machine has a large highmem:lowmem ratio then scale back the default
530  * dirty memory thresholds: allowing too much dirty highmem pins an excessive
531  * number of buffer_heads.
532  */
533 void __init page_writeback_init(void)
534 {
535 	long buffer_pages = nr_free_buffer_pages();
536 	long correction;
537 
538 	total_pages = nr_free_pagecache_pages();
539 
540 	correction = (100 * 4 * buffer_pages) / total_pages;
541 
542 	if (correction < 100) {
543 		dirty_background_ratio *= correction;
544 		dirty_background_ratio /= 100;
545 		vm_dirty_ratio *= correction;
546 		vm_dirty_ratio /= 100;
547 
548 		if (dirty_background_ratio <= 0)
549 			dirty_background_ratio = 1;
550 		if (vm_dirty_ratio <= 0)
551 			vm_dirty_ratio = 1;
552 	}
553 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
554 	set_ratelimit();
555 	register_cpu_notifier(&ratelimit_nb);
556 }
557 
558 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
559 {
560 	int ret;
561 
562 	if (wbc->nr_to_write <= 0)
563 		return 0;
564 	wbc->for_writepages = 1;
565 	if (mapping->a_ops->writepages)
566 		ret =  mapping->a_ops->writepages(mapping, wbc);
567 	else
568 		ret = generic_writepages(mapping, wbc);
569 	wbc->for_writepages = 0;
570 	return ret;
571 }
572 
573 /**
574  * write_one_page - write out a single page and optionally wait on I/O
575  *
576  * @page: the page to write
577  * @wait: if true, wait on writeout
578  *
579  * The page must be locked by the caller and will be unlocked upon return.
580  *
581  * write_one_page() returns a negative error code if I/O failed.
582  */
583 int write_one_page(struct page *page, int wait)
584 {
585 	struct address_space *mapping = page->mapping;
586 	int ret = 0;
587 	struct writeback_control wbc = {
588 		.sync_mode = WB_SYNC_ALL,
589 		.nr_to_write = 1,
590 	};
591 
592 	BUG_ON(!PageLocked(page));
593 
594 	if (wait)
595 		wait_on_page_writeback(page);
596 
597 	if (clear_page_dirty_for_io(page)) {
598 		page_cache_get(page);
599 		ret = mapping->a_ops->writepage(page, &wbc);
600 		if (ret == 0 && wait) {
601 			wait_on_page_writeback(page);
602 			if (PageError(page))
603 				ret = -EIO;
604 		}
605 		page_cache_release(page);
606 	} else {
607 		unlock_page(page);
608 	}
609 	return ret;
610 }
611 EXPORT_SYMBOL(write_one_page);
612 
613 /*
614  * For address_spaces which do not use buffers.  Just tag the page as dirty in
615  * its radix tree.
616  *
617  * This is also used when a single buffer is being dirtied: we want to set the
618  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
619  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
620  *
621  * Most callers have locked the page, which pins the address_space in memory.
622  * But zap_pte_range() does not lock the page, however in that case the
623  * mapping is pinned by the vma's ->vm_file reference.
624  *
625  * We take care to handle the case where the page was truncated from the
626  * mapping by re-checking page_mapping() insode tree_lock.
627  */
628 int __set_page_dirty_nobuffers(struct page *page)
629 {
630 	if (!TestSetPageDirty(page)) {
631 		struct address_space *mapping = page_mapping(page);
632 		struct address_space *mapping2;
633 
634 		if (mapping) {
635 			write_lock_irq(&mapping->tree_lock);
636 			mapping2 = page_mapping(page);
637 			if (mapping2) { /* Race with truncate? */
638 				BUG_ON(mapping2 != mapping);
639 				if (mapping_cap_account_dirty(mapping))
640 					inc_page_state(nr_dirty);
641 				radix_tree_tag_set(&mapping->page_tree,
642 					page_index(page), PAGECACHE_TAG_DIRTY);
643 			}
644 			write_unlock_irq(&mapping->tree_lock);
645 			if (mapping->host) {
646 				/* !PageAnon && !swapper_space */
647 				__mark_inode_dirty(mapping->host,
648 							I_DIRTY_PAGES);
649 			}
650 		}
651 		return 1;
652 	}
653 	return 0;
654 }
655 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
656 
657 /*
658  * When a writepage implementation decides that it doesn't want to write this
659  * page for some reason, it should redirty the locked page via
660  * redirty_page_for_writepage() and it should then unlock the page and return 0
661  */
662 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
663 {
664 	wbc->pages_skipped++;
665 	return __set_page_dirty_nobuffers(page);
666 }
667 EXPORT_SYMBOL(redirty_page_for_writepage);
668 
669 /*
670  * If the mapping doesn't provide a set_page_dirty a_op, then
671  * just fall through and assume that it wants buffer_heads.
672  */
673 int fastcall set_page_dirty(struct page *page)
674 {
675 	struct address_space *mapping = page_mapping(page);
676 
677 	if (likely(mapping)) {
678 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
679 		if (spd)
680 			return (*spd)(page);
681 		return __set_page_dirty_buffers(page);
682 	}
683 	if (!PageDirty(page)) {
684 		if (!TestSetPageDirty(page))
685 			return 1;
686 	}
687 	return 0;
688 }
689 EXPORT_SYMBOL(set_page_dirty);
690 
691 /*
692  * set_page_dirty() is racy if the caller has no reference against
693  * page->mapping->host, and if the page is unlocked.  This is because another
694  * CPU could truncate the page off the mapping and then free the mapping.
695  *
696  * Usually, the page _is_ locked, or the caller is a user-space process which
697  * holds a reference on the inode by having an open file.
698  *
699  * In other cases, the page should be locked before running set_page_dirty().
700  */
701 int set_page_dirty_lock(struct page *page)
702 {
703 	int ret;
704 
705 	lock_page(page);
706 	ret = set_page_dirty(page);
707 	unlock_page(page);
708 	return ret;
709 }
710 EXPORT_SYMBOL(set_page_dirty_lock);
711 
712 /*
713  * Clear a page's dirty flag, while caring for dirty memory accounting.
714  * Returns true if the page was previously dirty.
715  */
716 int test_clear_page_dirty(struct page *page)
717 {
718 	struct address_space *mapping = page_mapping(page);
719 	unsigned long flags;
720 
721 	if (mapping) {
722 		write_lock_irqsave(&mapping->tree_lock, flags);
723 		if (TestClearPageDirty(page)) {
724 			radix_tree_tag_clear(&mapping->page_tree,
725 						page_index(page),
726 						PAGECACHE_TAG_DIRTY);
727 			write_unlock_irqrestore(&mapping->tree_lock, flags);
728 			if (mapping_cap_account_dirty(mapping))
729 				dec_page_state(nr_dirty);
730 			return 1;
731 		}
732 		write_unlock_irqrestore(&mapping->tree_lock, flags);
733 		return 0;
734 	}
735 	return TestClearPageDirty(page);
736 }
737 EXPORT_SYMBOL(test_clear_page_dirty);
738 
739 /*
740  * Clear a page's dirty flag, while caring for dirty memory accounting.
741  * Returns true if the page was previously dirty.
742  *
743  * This is for preparing to put the page under writeout.  We leave the page
744  * tagged as dirty in the radix tree so that a concurrent write-for-sync
745  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
746  * implementation will run either set_page_writeback() or set_page_dirty(),
747  * at which stage we bring the page's dirty flag and radix-tree dirty tag
748  * back into sync.
749  *
750  * This incoherency between the page's dirty flag and radix-tree tag is
751  * unfortunate, but it only exists while the page is locked.
752  */
753 int clear_page_dirty_for_io(struct page *page)
754 {
755 	struct address_space *mapping = page_mapping(page);
756 
757 	if (mapping) {
758 		if (TestClearPageDirty(page)) {
759 			if (mapping_cap_account_dirty(mapping))
760 				dec_page_state(nr_dirty);
761 			return 1;
762 		}
763 		return 0;
764 	}
765 	return TestClearPageDirty(page);
766 }
767 EXPORT_SYMBOL(clear_page_dirty_for_io);
768 
769 int test_clear_page_writeback(struct page *page)
770 {
771 	struct address_space *mapping = page_mapping(page);
772 	int ret;
773 
774 	if (mapping) {
775 		unsigned long flags;
776 
777 		write_lock_irqsave(&mapping->tree_lock, flags);
778 		ret = TestClearPageWriteback(page);
779 		if (ret)
780 			radix_tree_tag_clear(&mapping->page_tree,
781 						page_index(page),
782 						PAGECACHE_TAG_WRITEBACK);
783 		write_unlock_irqrestore(&mapping->tree_lock, flags);
784 	} else {
785 		ret = TestClearPageWriteback(page);
786 	}
787 	return ret;
788 }
789 
790 int test_set_page_writeback(struct page *page)
791 {
792 	struct address_space *mapping = page_mapping(page);
793 	int ret;
794 
795 	if (mapping) {
796 		unsigned long flags;
797 
798 		write_lock_irqsave(&mapping->tree_lock, flags);
799 		ret = TestSetPageWriteback(page);
800 		if (!ret)
801 			radix_tree_tag_set(&mapping->page_tree,
802 						page_index(page),
803 						PAGECACHE_TAG_WRITEBACK);
804 		if (!PageDirty(page))
805 			radix_tree_tag_clear(&mapping->page_tree,
806 						page_index(page),
807 						PAGECACHE_TAG_DIRTY);
808 		write_unlock_irqrestore(&mapping->tree_lock, flags);
809 	} else {
810 		ret = TestSetPageWriteback(page);
811 	}
812 	return ret;
813 
814 }
815 EXPORT_SYMBOL(test_set_page_writeback);
816 
817 /*
818  * Return true if any of the pages in the mapping are marged with the
819  * passed tag.
820  */
821 int mapping_tagged(struct address_space *mapping, int tag)
822 {
823 	unsigned long flags;
824 	int ret;
825 
826 	read_lock_irqsave(&mapping->tree_lock, flags);
827 	ret = radix_tree_tagged(&mapping->page_tree, tag);
828 	read_unlock_irqrestore(&mapping->tree_lock, flags);
829 	return ret;
830 }
831 EXPORT_SYMBOL(mapping_tagged);
832