xref: /linux/mm/page-writeback.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <trace/events/writeback.h>
40 
41 /*
42  * Sleep at most 200ms at a time in balance_dirty_pages().
43  */
44 #define MAX_PAUSE		max(HZ/5, 1)
45 
46 /*
47  * Try to keep balance_dirty_pages() call intervals higher than this many pages
48  * by raising pause time to max_pause when falls below it.
49  */
50 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
51 
52 /*
53  * Estimate write bandwidth at 200ms intervals.
54  */
55 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
56 
57 #define RATELIMIT_CALC_SHIFT	10
58 
59 /*
60  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
61  * will look to see if it needs to force writeback or throttling.
62  */
63 static long ratelimit_pages = 32;
64 
65 /* The following parameters are exported via /proc/sys/vm */
66 
67 /*
68  * Start background writeback (via writeback threads) at this percentage
69  */
70 int dirty_background_ratio = 10;
71 
72 /*
73  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
74  * dirty_background_ratio * the amount of dirtyable memory
75  */
76 unsigned long dirty_background_bytes;
77 
78 /*
79  * free highmem will not be subtracted from the total free memory
80  * for calculating free ratios if vm_highmem_is_dirtyable is true
81  */
82 int vm_highmem_is_dirtyable;
83 
84 /*
85  * The generator of dirty data starts writeback at this percentage
86  */
87 int vm_dirty_ratio = 20;
88 
89 /*
90  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
91  * vm_dirty_ratio * the amount of dirtyable memory
92  */
93 unsigned long vm_dirty_bytes;
94 
95 /*
96  * The interval between `kupdate'-style writebacks
97  */
98 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
99 
100 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
101 
102 /*
103  * The longest time for which data is allowed to remain dirty
104  */
105 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
106 
107 /*
108  * Flag that makes the machine dump writes/reads and block dirtyings.
109  */
110 int block_dump;
111 
112 /*
113  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114  * a full sync is triggered after this time elapses without any disk activity.
115  */
116 int laptop_mode;
117 
118 EXPORT_SYMBOL(laptop_mode);
119 
120 /* End of sysctl-exported parameters */
121 
122 unsigned long global_dirty_limit;
123 
124 /*
125  * Scale the writeback cache size proportional to the relative writeout speeds.
126  *
127  * We do this by keeping a floating proportion between BDIs, based on page
128  * writeback completions [end_page_writeback()]. Those devices that write out
129  * pages fastest will get the larger share, while the slower will get a smaller
130  * share.
131  *
132  * We use page writeout completions because we are interested in getting rid of
133  * dirty pages. Having them written out is the primary goal.
134  *
135  * We introduce a concept of time, a period over which we measure these events,
136  * because demand can/will vary over time. The length of this period itself is
137  * measured in page writeback completions.
138  *
139  */
140 static struct fprop_global writeout_completions;
141 
142 static void writeout_period(unsigned long t);
143 /* Timer for aging of writeout_completions */
144 static struct timer_list writeout_period_timer =
145 		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
146 static unsigned long writeout_period_time = 0;
147 
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154 
155 /*
156  * Work out the current dirty-memory clamping and background writeout
157  * thresholds.
158  *
159  * The main aim here is to lower them aggressively if there is a lot of mapped
160  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
161  * pages.  It is better to clamp down on writers than to start swapping, and
162  * performing lots of scanning.
163  *
164  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
165  *
166  * We don't permit the clamping level to fall below 5% - that is getting rather
167  * excessive.
168  *
169  * We make sure that the background writeout level is below the adjusted
170  * clamping level.
171  */
172 
173 /*
174  * In a memory zone, there is a certain amount of pages we consider
175  * available for the page cache, which is essentially the number of
176  * free and reclaimable pages, minus some zone reserves to protect
177  * lowmem and the ability to uphold the zone's watermarks without
178  * requiring writeback.
179  *
180  * This number of dirtyable pages is the base value of which the
181  * user-configurable dirty ratio is the effictive number of pages that
182  * are allowed to be actually dirtied.  Per individual zone, or
183  * globally by using the sum of dirtyable pages over all zones.
184  *
185  * Because the user is allowed to specify the dirty limit globally as
186  * absolute number of bytes, calculating the per-zone dirty limit can
187  * require translating the configured limit into a percentage of
188  * global dirtyable memory first.
189  */
190 
191 static unsigned long highmem_dirtyable_memory(unsigned long total)
192 {
193 #ifdef CONFIG_HIGHMEM
194 	int node;
195 	unsigned long x = 0;
196 
197 	for_each_node_state(node, N_HIGH_MEMORY) {
198 		struct zone *z =
199 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
200 
201 		x += zone_page_state(z, NR_FREE_PAGES) +
202 		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
203 	}
204 	/*
205 	 * Unreclaimable memory (kernel memory or anonymous memory
206 	 * without swap) can bring down the dirtyable pages below
207 	 * the zone's dirty balance reserve and the above calculation
208 	 * will underflow.  However we still want to add in nodes
209 	 * which are below threshold (negative values) to get a more
210 	 * accurate calculation but make sure that the total never
211 	 * underflows.
212 	 */
213 	if ((long)x < 0)
214 		x = 0;
215 
216 	/*
217 	 * Make sure that the number of highmem pages is never larger
218 	 * than the number of the total dirtyable memory. This can only
219 	 * occur in very strange VM situations but we want to make sure
220 	 * that this does not occur.
221 	 */
222 	return min(x, total);
223 #else
224 	return 0;
225 #endif
226 }
227 
228 /**
229  * global_dirtyable_memory - number of globally dirtyable pages
230  *
231  * Returns the global number of pages potentially available for dirty
232  * page cache.  This is the base value for the global dirty limits.
233  */
234 static unsigned long global_dirtyable_memory(void)
235 {
236 	unsigned long x;
237 
238 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
239 	x -= min(x, dirty_balance_reserve);
240 
241 	if (!vm_highmem_is_dirtyable)
242 		x -= highmem_dirtyable_memory(x);
243 
244 	return x + 1;	/* Ensure that we never return 0 */
245 }
246 
247 /*
248  * global_dirty_limits - background-writeback and dirty-throttling thresholds
249  *
250  * Calculate the dirty thresholds based on sysctl parameters
251  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
252  * - vm.dirty_ratio             or  vm.dirty_bytes
253  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
254  * real-time tasks.
255  */
256 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
257 {
258 	unsigned long background;
259 	unsigned long dirty;
260 	unsigned long uninitialized_var(available_memory);
261 	struct task_struct *tsk;
262 
263 	if (!vm_dirty_bytes || !dirty_background_bytes)
264 		available_memory = global_dirtyable_memory();
265 
266 	if (vm_dirty_bytes)
267 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
268 	else
269 		dirty = (vm_dirty_ratio * available_memory) / 100;
270 
271 	if (dirty_background_bytes)
272 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
273 	else
274 		background = (dirty_background_ratio * available_memory) / 100;
275 
276 	if (background >= dirty)
277 		background = dirty / 2;
278 	tsk = current;
279 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
280 		background += background / 4;
281 		dirty += dirty / 4;
282 	}
283 	*pbackground = background;
284 	*pdirty = dirty;
285 	trace_global_dirty_state(background, dirty);
286 }
287 
288 /**
289  * zone_dirtyable_memory - number of dirtyable pages in a zone
290  * @zone: the zone
291  *
292  * Returns the zone's number of pages potentially available for dirty
293  * page cache.  This is the base value for the per-zone dirty limits.
294  */
295 static unsigned long zone_dirtyable_memory(struct zone *zone)
296 {
297 	/*
298 	 * The effective global number of dirtyable pages may exclude
299 	 * highmem as a big-picture measure to keep the ratio between
300 	 * dirty memory and lowmem reasonable.
301 	 *
302 	 * But this function is purely about the individual zone and a
303 	 * highmem zone can hold its share of dirty pages, so we don't
304 	 * care about vm_highmem_is_dirtyable here.
305 	 */
306 	unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
307 		zone_reclaimable_pages(zone);
308 
309 	/* don't allow this to underflow */
310 	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
311 	return nr_pages;
312 }
313 
314 /**
315  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
316  * @zone: the zone
317  *
318  * Returns the maximum number of dirty pages allowed in a zone, based
319  * on the zone's dirtyable memory.
320  */
321 static unsigned long zone_dirty_limit(struct zone *zone)
322 {
323 	unsigned long zone_memory = zone_dirtyable_memory(zone);
324 	struct task_struct *tsk = current;
325 	unsigned long dirty;
326 
327 	if (vm_dirty_bytes)
328 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
329 			zone_memory / global_dirtyable_memory();
330 	else
331 		dirty = vm_dirty_ratio * zone_memory / 100;
332 
333 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
334 		dirty += dirty / 4;
335 
336 	return dirty;
337 }
338 
339 /**
340  * zone_dirty_ok - tells whether a zone is within its dirty limits
341  * @zone: the zone to check
342  *
343  * Returns %true when the dirty pages in @zone are within the zone's
344  * dirty limit, %false if the limit is exceeded.
345  */
346 bool zone_dirty_ok(struct zone *zone)
347 {
348 	unsigned long limit = zone_dirty_limit(zone);
349 
350 	return zone_page_state(zone, NR_FILE_DIRTY) +
351 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
352 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
353 }
354 
355 int dirty_background_ratio_handler(struct ctl_table *table, int write,
356 		void __user *buffer, size_t *lenp,
357 		loff_t *ppos)
358 {
359 	int ret;
360 
361 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
362 	if (ret == 0 && write)
363 		dirty_background_bytes = 0;
364 	return ret;
365 }
366 
367 int dirty_background_bytes_handler(struct ctl_table *table, int write,
368 		void __user *buffer, size_t *lenp,
369 		loff_t *ppos)
370 {
371 	int ret;
372 
373 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
374 	if (ret == 0 && write)
375 		dirty_background_ratio = 0;
376 	return ret;
377 }
378 
379 int dirty_ratio_handler(struct ctl_table *table, int write,
380 		void __user *buffer, size_t *lenp,
381 		loff_t *ppos)
382 {
383 	int old_ratio = vm_dirty_ratio;
384 	int ret;
385 
386 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
387 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
388 		writeback_set_ratelimit();
389 		vm_dirty_bytes = 0;
390 	}
391 	return ret;
392 }
393 
394 int dirty_bytes_handler(struct ctl_table *table, int write,
395 		void __user *buffer, size_t *lenp,
396 		loff_t *ppos)
397 {
398 	unsigned long old_bytes = vm_dirty_bytes;
399 	int ret;
400 
401 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
402 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
403 		writeback_set_ratelimit();
404 		vm_dirty_ratio = 0;
405 	}
406 	return ret;
407 }
408 
409 static unsigned long wp_next_time(unsigned long cur_time)
410 {
411 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
412 	/* 0 has a special meaning... */
413 	if (!cur_time)
414 		return 1;
415 	return cur_time;
416 }
417 
418 /*
419  * Increment the BDI's writeout completion count and the global writeout
420  * completion count. Called from test_clear_page_writeback().
421  */
422 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
423 {
424 	__inc_bdi_stat(bdi, BDI_WRITTEN);
425 	__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
426 			       bdi->max_prop_frac);
427 	/* First event after period switching was turned off? */
428 	if (!unlikely(writeout_period_time)) {
429 		/*
430 		 * We can race with other __bdi_writeout_inc calls here but
431 		 * it does not cause any harm since the resulting time when
432 		 * timer will fire and what is in writeout_period_time will be
433 		 * roughly the same.
434 		 */
435 		writeout_period_time = wp_next_time(jiffies);
436 		mod_timer(&writeout_period_timer, writeout_period_time);
437 	}
438 }
439 
440 void bdi_writeout_inc(struct backing_dev_info *bdi)
441 {
442 	unsigned long flags;
443 
444 	local_irq_save(flags);
445 	__bdi_writeout_inc(bdi);
446 	local_irq_restore(flags);
447 }
448 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
449 
450 /*
451  * Obtain an accurate fraction of the BDI's portion.
452  */
453 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
454 		long *numerator, long *denominator)
455 {
456 	fprop_fraction_percpu(&writeout_completions, &bdi->completions,
457 				numerator, denominator);
458 }
459 
460 /*
461  * On idle system, we can be called long after we scheduled because we use
462  * deferred timers so count with missed periods.
463  */
464 static void writeout_period(unsigned long t)
465 {
466 	int miss_periods = (jiffies - writeout_period_time) /
467 						 VM_COMPLETIONS_PERIOD_LEN;
468 
469 	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
470 		writeout_period_time = wp_next_time(writeout_period_time +
471 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
472 		mod_timer(&writeout_period_timer, writeout_period_time);
473 	} else {
474 		/*
475 		 * Aging has zeroed all fractions. Stop wasting CPU on period
476 		 * updates.
477 		 */
478 		writeout_period_time = 0;
479 	}
480 }
481 
482 /*
483  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
484  * registered backing devices, which, for obvious reasons, can not
485  * exceed 100%.
486  */
487 static unsigned int bdi_min_ratio;
488 
489 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
490 {
491 	int ret = 0;
492 
493 	spin_lock_bh(&bdi_lock);
494 	if (min_ratio > bdi->max_ratio) {
495 		ret = -EINVAL;
496 	} else {
497 		min_ratio -= bdi->min_ratio;
498 		if (bdi_min_ratio + min_ratio < 100) {
499 			bdi_min_ratio += min_ratio;
500 			bdi->min_ratio += min_ratio;
501 		} else {
502 			ret = -EINVAL;
503 		}
504 	}
505 	spin_unlock_bh(&bdi_lock);
506 
507 	return ret;
508 }
509 
510 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
511 {
512 	int ret = 0;
513 
514 	if (max_ratio > 100)
515 		return -EINVAL;
516 
517 	spin_lock_bh(&bdi_lock);
518 	if (bdi->min_ratio > max_ratio) {
519 		ret = -EINVAL;
520 	} else {
521 		bdi->max_ratio = max_ratio;
522 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
523 	}
524 	spin_unlock_bh(&bdi_lock);
525 
526 	return ret;
527 }
528 EXPORT_SYMBOL(bdi_set_max_ratio);
529 
530 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
531 					   unsigned long bg_thresh)
532 {
533 	return (thresh + bg_thresh) / 2;
534 }
535 
536 static unsigned long hard_dirty_limit(unsigned long thresh)
537 {
538 	return max(thresh, global_dirty_limit);
539 }
540 
541 /**
542  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
543  * @bdi: the backing_dev_info to query
544  * @dirty: global dirty limit in pages
545  *
546  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
547  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
548  *
549  * Note that balance_dirty_pages() will only seriously take it as a hard limit
550  * when sleeping max_pause per page is not enough to keep the dirty pages under
551  * control. For example, when the device is completely stalled due to some error
552  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
553  * In the other normal situations, it acts more gently by throttling the tasks
554  * more (rather than completely block them) when the bdi dirty pages go high.
555  *
556  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
557  * - starving fast devices
558  * - piling up dirty pages (that will take long time to sync) on slow devices
559  *
560  * The bdi's share of dirty limit will be adapting to its throughput and
561  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
562  */
563 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
564 {
565 	u64 bdi_dirty;
566 	long numerator, denominator;
567 
568 	/*
569 	 * Calculate this BDI's share of the dirty ratio.
570 	 */
571 	bdi_writeout_fraction(bdi, &numerator, &denominator);
572 
573 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
574 	bdi_dirty *= numerator;
575 	do_div(bdi_dirty, denominator);
576 
577 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
578 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
579 		bdi_dirty = dirty * bdi->max_ratio / 100;
580 
581 	return bdi_dirty;
582 }
583 
584 /*
585  * Dirty position control.
586  *
587  * (o) global/bdi setpoints
588  *
589  * We want the dirty pages be balanced around the global/bdi setpoints.
590  * When the number of dirty pages is higher/lower than the setpoint, the
591  * dirty position control ratio (and hence task dirty ratelimit) will be
592  * decreased/increased to bring the dirty pages back to the setpoint.
593  *
594  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
595  *
596  *     if (dirty < setpoint) scale up   pos_ratio
597  *     if (dirty > setpoint) scale down pos_ratio
598  *
599  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
600  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
601  *
602  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
603  *
604  * (o) global control line
605  *
606  *     ^ pos_ratio
607  *     |
608  *     |            |<===== global dirty control scope ======>|
609  * 2.0 .............*
610  *     |            .*
611  *     |            . *
612  *     |            .   *
613  *     |            .     *
614  *     |            .        *
615  *     |            .            *
616  * 1.0 ................................*
617  *     |            .                  .     *
618  *     |            .                  .          *
619  *     |            .                  .              *
620  *     |            .                  .                 *
621  *     |            .                  .                    *
622  *   0 +------------.------------------.----------------------*------------->
623  *           freerun^          setpoint^                 limit^   dirty pages
624  *
625  * (o) bdi control line
626  *
627  *     ^ pos_ratio
628  *     |
629  *     |            *
630  *     |              *
631  *     |                *
632  *     |                  *
633  *     |                    * |<=========== span ============>|
634  * 1.0 .......................*
635  *     |                      . *
636  *     |                      .   *
637  *     |                      .     *
638  *     |                      .       *
639  *     |                      .         *
640  *     |                      .           *
641  *     |                      .             *
642  *     |                      .               *
643  *     |                      .                 *
644  *     |                      .                   *
645  *     |                      .                     *
646  * 1/4 ...............................................* * * * * * * * * * * *
647  *     |                      .                         .
648  *     |                      .                           .
649  *     |                      .                             .
650  *   0 +----------------------.-------------------------------.------------->
651  *                bdi_setpoint^                    x_intercept^
652  *
653  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
654  * be smoothly throttled down to normal if it starts high in situations like
655  * - start writing to a slow SD card and a fast disk at the same time. The SD
656  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
657  * - the bdi dirty thresh drops quickly due to change of JBOD workload
658  */
659 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
660 					unsigned long thresh,
661 					unsigned long bg_thresh,
662 					unsigned long dirty,
663 					unsigned long bdi_thresh,
664 					unsigned long bdi_dirty)
665 {
666 	unsigned long write_bw = bdi->avg_write_bandwidth;
667 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
668 	unsigned long limit = hard_dirty_limit(thresh);
669 	unsigned long x_intercept;
670 	unsigned long setpoint;		/* dirty pages' target balance point */
671 	unsigned long bdi_setpoint;
672 	unsigned long span;
673 	long long pos_ratio;		/* for scaling up/down the rate limit */
674 	long x;
675 
676 	if (unlikely(dirty >= limit))
677 		return 0;
678 
679 	/*
680 	 * global setpoint
681 	 *
682 	 *                           setpoint - dirty 3
683 	 *        f(dirty) := 1.0 + (----------------)
684 	 *                           limit - setpoint
685 	 *
686 	 * it's a 3rd order polynomial that subjects to
687 	 *
688 	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
689 	 * (2) f(setpoint) = 1.0 => the balance point
690 	 * (3) f(limit)    = 0   => the hard limit
691 	 * (4) df/dx      <= 0	 => negative feedback control
692 	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
693 	 *     => fast response on large errors; small oscillation near setpoint
694 	 */
695 	setpoint = (freerun + limit) / 2;
696 	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
697 		    limit - setpoint + 1);
698 	pos_ratio = x;
699 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
700 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
701 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
702 
703 	/*
704 	 * We have computed basic pos_ratio above based on global situation. If
705 	 * the bdi is over/under its share of dirty pages, we want to scale
706 	 * pos_ratio further down/up. That is done by the following mechanism.
707 	 */
708 
709 	/*
710 	 * bdi setpoint
711 	 *
712 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
713 	 *
714 	 *                        x_intercept - bdi_dirty
715 	 *                     := --------------------------
716 	 *                        x_intercept - bdi_setpoint
717 	 *
718 	 * The main bdi control line is a linear function that subjects to
719 	 *
720 	 * (1) f(bdi_setpoint) = 1.0
721 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
722 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
723 	 *
724 	 * For single bdi case, the dirty pages are observed to fluctuate
725 	 * regularly within range
726 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
727 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
728 	 * fluctuation range for pos_ratio.
729 	 *
730 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
731 	 * own size, so move the slope over accordingly and choose a slope that
732 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
733 	 */
734 	if (unlikely(bdi_thresh > thresh))
735 		bdi_thresh = thresh;
736 	/*
737 	 * It's very possible that bdi_thresh is close to 0 not because the
738 	 * device is slow, but that it has remained inactive for long time.
739 	 * Honour such devices a reasonable good (hopefully IO efficient)
740 	 * threshold, so that the occasional writes won't be blocked and active
741 	 * writes can rampup the threshold quickly.
742 	 */
743 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
744 	/*
745 	 * scale global setpoint to bdi's:
746 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
747 	 */
748 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
749 	bdi_setpoint = setpoint * (u64)x >> 16;
750 	/*
751 	 * Use span=(8*write_bw) in single bdi case as indicated by
752 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
753 	 *
754 	 *        bdi_thresh                    thresh - bdi_thresh
755 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
756 	 *          thresh                            thresh
757 	 */
758 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
759 	x_intercept = bdi_setpoint + span;
760 
761 	if (bdi_dirty < x_intercept - span / 4) {
762 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
763 				    x_intercept - bdi_setpoint + 1);
764 	} else
765 		pos_ratio /= 4;
766 
767 	/*
768 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
769 	 * It may push the desired control point of global dirty pages higher
770 	 * than setpoint.
771 	 */
772 	x_intercept = bdi_thresh / 2;
773 	if (bdi_dirty < x_intercept) {
774 		if (bdi_dirty > x_intercept / 8)
775 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
776 		else
777 			pos_ratio *= 8;
778 	}
779 
780 	return pos_ratio;
781 }
782 
783 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
784 				       unsigned long elapsed,
785 				       unsigned long written)
786 {
787 	const unsigned long period = roundup_pow_of_two(3 * HZ);
788 	unsigned long avg = bdi->avg_write_bandwidth;
789 	unsigned long old = bdi->write_bandwidth;
790 	u64 bw;
791 
792 	/*
793 	 * bw = written * HZ / elapsed
794 	 *
795 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
796 	 * write_bandwidth = ---------------------------------------------------
797 	 *                                          period
798 	 */
799 	bw = written - bdi->written_stamp;
800 	bw *= HZ;
801 	if (unlikely(elapsed > period)) {
802 		do_div(bw, elapsed);
803 		avg = bw;
804 		goto out;
805 	}
806 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
807 	bw >>= ilog2(period);
808 
809 	/*
810 	 * one more level of smoothing, for filtering out sudden spikes
811 	 */
812 	if (avg > old && old >= (unsigned long)bw)
813 		avg -= (avg - old) >> 3;
814 
815 	if (avg < old && old <= (unsigned long)bw)
816 		avg += (old - avg) >> 3;
817 
818 out:
819 	bdi->write_bandwidth = bw;
820 	bdi->avg_write_bandwidth = avg;
821 }
822 
823 /*
824  * The global dirtyable memory and dirty threshold could be suddenly knocked
825  * down by a large amount (eg. on the startup of KVM in a swapless system).
826  * This may throw the system into deep dirty exceeded state and throttle
827  * heavy/light dirtiers alike. To retain good responsiveness, maintain
828  * global_dirty_limit for tracking slowly down to the knocked down dirty
829  * threshold.
830  */
831 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
832 {
833 	unsigned long limit = global_dirty_limit;
834 
835 	/*
836 	 * Follow up in one step.
837 	 */
838 	if (limit < thresh) {
839 		limit = thresh;
840 		goto update;
841 	}
842 
843 	/*
844 	 * Follow down slowly. Use the higher one as the target, because thresh
845 	 * may drop below dirty. This is exactly the reason to introduce
846 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
847 	 */
848 	thresh = max(thresh, dirty);
849 	if (limit > thresh) {
850 		limit -= (limit - thresh) >> 5;
851 		goto update;
852 	}
853 	return;
854 update:
855 	global_dirty_limit = limit;
856 }
857 
858 static void global_update_bandwidth(unsigned long thresh,
859 				    unsigned long dirty,
860 				    unsigned long now)
861 {
862 	static DEFINE_SPINLOCK(dirty_lock);
863 	static unsigned long update_time;
864 
865 	/*
866 	 * check locklessly first to optimize away locking for the most time
867 	 */
868 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
869 		return;
870 
871 	spin_lock(&dirty_lock);
872 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
873 		update_dirty_limit(thresh, dirty);
874 		update_time = now;
875 	}
876 	spin_unlock(&dirty_lock);
877 }
878 
879 /*
880  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
881  *
882  * Normal bdi tasks will be curbed at or below it in long term.
883  * Obviously it should be around (write_bw / N) when there are N dd tasks.
884  */
885 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
886 				       unsigned long thresh,
887 				       unsigned long bg_thresh,
888 				       unsigned long dirty,
889 				       unsigned long bdi_thresh,
890 				       unsigned long bdi_dirty,
891 				       unsigned long dirtied,
892 				       unsigned long elapsed)
893 {
894 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
895 	unsigned long limit = hard_dirty_limit(thresh);
896 	unsigned long setpoint = (freerun + limit) / 2;
897 	unsigned long write_bw = bdi->avg_write_bandwidth;
898 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
899 	unsigned long dirty_rate;
900 	unsigned long task_ratelimit;
901 	unsigned long balanced_dirty_ratelimit;
902 	unsigned long pos_ratio;
903 	unsigned long step;
904 	unsigned long x;
905 
906 	/*
907 	 * The dirty rate will match the writeout rate in long term, except
908 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
909 	 */
910 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
911 
912 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
913 				       bdi_thresh, bdi_dirty);
914 	/*
915 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
916 	 */
917 	task_ratelimit = (u64)dirty_ratelimit *
918 					pos_ratio >> RATELIMIT_CALC_SHIFT;
919 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
920 
921 	/*
922 	 * A linear estimation of the "balanced" throttle rate. The theory is,
923 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
924 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
925 	 * formula will yield the balanced rate limit (write_bw / N).
926 	 *
927 	 * Note that the expanded form is not a pure rate feedback:
928 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
929 	 * but also takes pos_ratio into account:
930 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
931 	 *
932 	 * (1) is not realistic because pos_ratio also takes part in balancing
933 	 * the dirty rate.  Consider the state
934 	 *	pos_ratio = 0.5						     (3)
935 	 *	rate = 2 * (write_bw / N)				     (4)
936 	 * If (1) is used, it will stuck in that state! Because each dd will
937 	 * be throttled at
938 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
939 	 * yielding
940 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
941 	 * put (6) into (1) we get
942 	 *	rate_(i+1) = rate_(i)					     (7)
943 	 *
944 	 * So we end up using (2) to always keep
945 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
946 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
947 	 * pos_ratio is able to drive itself to 1.0, which is not only where
948 	 * the dirty count meet the setpoint, but also where the slope of
949 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
950 	 */
951 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
952 					   dirty_rate | 1);
953 	/*
954 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
955 	 */
956 	if (unlikely(balanced_dirty_ratelimit > write_bw))
957 		balanced_dirty_ratelimit = write_bw;
958 
959 	/*
960 	 * We could safely do this and return immediately:
961 	 *
962 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
963 	 *
964 	 * However to get a more stable dirty_ratelimit, the below elaborated
965 	 * code makes use of task_ratelimit to filter out singular points and
966 	 * limit the step size.
967 	 *
968 	 * The below code essentially only uses the relative value of
969 	 *
970 	 *	task_ratelimit - dirty_ratelimit
971 	 *	= (pos_ratio - 1) * dirty_ratelimit
972 	 *
973 	 * which reflects the direction and size of dirty position error.
974 	 */
975 
976 	/*
977 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
978 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
979 	 * For example, when
980 	 * - dirty_ratelimit > balanced_dirty_ratelimit
981 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
982 	 * lowering dirty_ratelimit will help meet both the position and rate
983 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
984 	 * only help meet the rate target. After all, what the users ultimately
985 	 * feel and care are stable dirty rate and small position error.
986 	 *
987 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
988 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
989 	 * keeps jumping around randomly and can even leap far away at times
990 	 * due to the small 200ms estimation period of dirty_rate (we want to
991 	 * keep that period small to reduce time lags).
992 	 */
993 	step = 0;
994 	if (dirty < setpoint) {
995 		x = min(bdi->balanced_dirty_ratelimit,
996 			 min(balanced_dirty_ratelimit, task_ratelimit));
997 		if (dirty_ratelimit < x)
998 			step = x - dirty_ratelimit;
999 	} else {
1000 		x = max(bdi->balanced_dirty_ratelimit,
1001 			 max(balanced_dirty_ratelimit, task_ratelimit));
1002 		if (dirty_ratelimit > x)
1003 			step = dirty_ratelimit - x;
1004 	}
1005 
1006 	/*
1007 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1008 	 * rate itself is constantly fluctuating. So decrease the track speed
1009 	 * when it gets close to the target. Helps eliminate pointless tremors.
1010 	 */
1011 	step >>= dirty_ratelimit / (2 * step + 1);
1012 	/*
1013 	 * Limit the tracking speed to avoid overshooting.
1014 	 */
1015 	step = (step + 7) / 8;
1016 
1017 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1018 		dirty_ratelimit += step;
1019 	else
1020 		dirty_ratelimit -= step;
1021 
1022 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1023 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1024 
1025 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1026 }
1027 
1028 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1029 			    unsigned long thresh,
1030 			    unsigned long bg_thresh,
1031 			    unsigned long dirty,
1032 			    unsigned long bdi_thresh,
1033 			    unsigned long bdi_dirty,
1034 			    unsigned long start_time)
1035 {
1036 	unsigned long now = jiffies;
1037 	unsigned long elapsed = now - bdi->bw_time_stamp;
1038 	unsigned long dirtied;
1039 	unsigned long written;
1040 
1041 	/*
1042 	 * rate-limit, only update once every 200ms.
1043 	 */
1044 	if (elapsed < BANDWIDTH_INTERVAL)
1045 		return;
1046 
1047 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1048 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1049 
1050 	/*
1051 	 * Skip quiet periods when disk bandwidth is under-utilized.
1052 	 * (at least 1s idle time between two flusher runs)
1053 	 */
1054 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1055 		goto snapshot;
1056 
1057 	if (thresh) {
1058 		global_update_bandwidth(thresh, dirty, now);
1059 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1060 					   bdi_thresh, bdi_dirty,
1061 					   dirtied, elapsed);
1062 	}
1063 	bdi_update_write_bandwidth(bdi, elapsed, written);
1064 
1065 snapshot:
1066 	bdi->dirtied_stamp = dirtied;
1067 	bdi->written_stamp = written;
1068 	bdi->bw_time_stamp = now;
1069 }
1070 
1071 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1072 				 unsigned long thresh,
1073 				 unsigned long bg_thresh,
1074 				 unsigned long dirty,
1075 				 unsigned long bdi_thresh,
1076 				 unsigned long bdi_dirty,
1077 				 unsigned long start_time)
1078 {
1079 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1080 		return;
1081 	spin_lock(&bdi->wb.list_lock);
1082 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1083 			       bdi_thresh, bdi_dirty, start_time);
1084 	spin_unlock(&bdi->wb.list_lock);
1085 }
1086 
1087 /*
1088  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1089  * will look to see if it needs to start dirty throttling.
1090  *
1091  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1092  * global_page_state() too often. So scale it near-sqrt to the safety margin
1093  * (the number of pages we may dirty without exceeding the dirty limits).
1094  */
1095 static unsigned long dirty_poll_interval(unsigned long dirty,
1096 					 unsigned long thresh)
1097 {
1098 	if (thresh > dirty)
1099 		return 1UL << (ilog2(thresh - dirty) >> 1);
1100 
1101 	return 1;
1102 }
1103 
1104 static long bdi_max_pause(struct backing_dev_info *bdi,
1105 			  unsigned long bdi_dirty)
1106 {
1107 	long bw = bdi->avg_write_bandwidth;
1108 	long t;
1109 
1110 	/*
1111 	 * Limit pause time for small memory systems. If sleeping for too long
1112 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1113 	 * idle.
1114 	 *
1115 	 * 8 serves as the safety ratio.
1116 	 */
1117 	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1118 	t++;
1119 
1120 	return min_t(long, t, MAX_PAUSE);
1121 }
1122 
1123 static long bdi_min_pause(struct backing_dev_info *bdi,
1124 			  long max_pause,
1125 			  unsigned long task_ratelimit,
1126 			  unsigned long dirty_ratelimit,
1127 			  int *nr_dirtied_pause)
1128 {
1129 	long hi = ilog2(bdi->avg_write_bandwidth);
1130 	long lo = ilog2(bdi->dirty_ratelimit);
1131 	long t;		/* target pause */
1132 	long pause;	/* estimated next pause */
1133 	int pages;	/* target nr_dirtied_pause */
1134 
1135 	/* target for 10ms pause on 1-dd case */
1136 	t = max(1, HZ / 100);
1137 
1138 	/*
1139 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1140 	 * overheads.
1141 	 *
1142 	 * (N * 10ms) on 2^N concurrent tasks.
1143 	 */
1144 	if (hi > lo)
1145 		t += (hi - lo) * (10 * HZ) / 1024;
1146 
1147 	/*
1148 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1149 	 * on the much more stable dirty_ratelimit. However the next pause time
1150 	 * will be computed based on task_ratelimit and the two rate limits may
1151 	 * depart considerably at some time. Especially if task_ratelimit goes
1152 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1153 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1154 	 * result task_ratelimit won't be executed faithfully, which could
1155 	 * eventually bring down dirty_ratelimit.
1156 	 *
1157 	 * We apply two rules to fix it up:
1158 	 * 1) try to estimate the next pause time and if necessary, use a lower
1159 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1160 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1161 	 * 2) limit the target pause time to max_pause/2, so that the normal
1162 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1163 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1164 	 */
1165 	t = min(t, 1 + max_pause / 2);
1166 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1167 
1168 	/*
1169 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1170 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1171 	 * When the 16 consecutive reads are often interrupted by some dirty
1172 	 * throttling pause during the async writes, cfq will go into idles
1173 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1174 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1175 	 */
1176 	if (pages < DIRTY_POLL_THRESH) {
1177 		t = max_pause;
1178 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1179 		if (pages > DIRTY_POLL_THRESH) {
1180 			pages = DIRTY_POLL_THRESH;
1181 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1182 		}
1183 	}
1184 
1185 	pause = HZ * pages / (task_ratelimit + 1);
1186 	if (pause > max_pause) {
1187 		t = max_pause;
1188 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1189 	}
1190 
1191 	*nr_dirtied_pause = pages;
1192 	/*
1193 	 * The minimal pause time will normally be half the target pause time.
1194 	 */
1195 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1196 }
1197 
1198 /*
1199  * balance_dirty_pages() must be called by processes which are generating dirty
1200  * data.  It looks at the number of dirty pages in the machine and will force
1201  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1202  * If we're over `background_thresh' then the writeback threads are woken to
1203  * perform some writeout.
1204  */
1205 static void balance_dirty_pages(struct address_space *mapping,
1206 				unsigned long pages_dirtied)
1207 {
1208 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1209 	unsigned long bdi_reclaimable;
1210 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1211 	unsigned long bdi_dirty;
1212 	unsigned long freerun;
1213 	unsigned long background_thresh;
1214 	unsigned long dirty_thresh;
1215 	unsigned long bdi_thresh;
1216 	long period;
1217 	long pause;
1218 	long max_pause;
1219 	long min_pause;
1220 	int nr_dirtied_pause;
1221 	bool dirty_exceeded = false;
1222 	unsigned long task_ratelimit;
1223 	unsigned long dirty_ratelimit;
1224 	unsigned long pos_ratio;
1225 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1226 	unsigned long start_time = jiffies;
1227 
1228 	for (;;) {
1229 		unsigned long now = jiffies;
1230 
1231 		/*
1232 		 * Unstable writes are a feature of certain networked
1233 		 * filesystems (i.e. NFS) in which data may have been
1234 		 * written to the server's write cache, but has not yet
1235 		 * been flushed to permanent storage.
1236 		 */
1237 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1238 					global_page_state(NR_UNSTABLE_NFS);
1239 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1240 
1241 		global_dirty_limits(&background_thresh, &dirty_thresh);
1242 
1243 		/*
1244 		 * Throttle it only when the background writeback cannot
1245 		 * catch-up. This avoids (excessively) small writeouts
1246 		 * when the bdi limits are ramping up.
1247 		 */
1248 		freerun = dirty_freerun_ceiling(dirty_thresh,
1249 						background_thresh);
1250 		if (nr_dirty <= freerun) {
1251 			current->dirty_paused_when = now;
1252 			current->nr_dirtied = 0;
1253 			current->nr_dirtied_pause =
1254 				dirty_poll_interval(nr_dirty, dirty_thresh);
1255 			break;
1256 		}
1257 
1258 		if (unlikely(!writeback_in_progress(bdi)))
1259 			bdi_start_background_writeback(bdi);
1260 
1261 		/*
1262 		 * bdi_thresh is not treated as some limiting factor as
1263 		 * dirty_thresh, due to reasons
1264 		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1265 		 * - in a system with HDD and USB key, the USB key may somehow
1266 		 *   go into state (bdi_dirty >> bdi_thresh) either because
1267 		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1268 		 *   In this case we don't want to hard throttle the USB key
1269 		 *   dirtiers for 100 seconds until bdi_dirty drops under
1270 		 *   bdi_thresh. Instead the auxiliary bdi control line in
1271 		 *   bdi_position_ratio() will let the dirtier task progress
1272 		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1273 		 */
1274 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1275 
1276 		/*
1277 		 * In order to avoid the stacked BDI deadlock we need
1278 		 * to ensure we accurately count the 'dirty' pages when
1279 		 * the threshold is low.
1280 		 *
1281 		 * Otherwise it would be possible to get thresh+n pages
1282 		 * reported dirty, even though there are thresh-m pages
1283 		 * actually dirty; with m+n sitting in the percpu
1284 		 * deltas.
1285 		 */
1286 		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1287 			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1288 			bdi_dirty = bdi_reclaimable +
1289 				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1290 		} else {
1291 			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1292 			bdi_dirty = bdi_reclaimable +
1293 				    bdi_stat(bdi, BDI_WRITEBACK);
1294 		}
1295 
1296 		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1297 				  (nr_dirty > dirty_thresh);
1298 		if (dirty_exceeded && !bdi->dirty_exceeded)
1299 			bdi->dirty_exceeded = 1;
1300 
1301 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1302 				     nr_dirty, bdi_thresh, bdi_dirty,
1303 				     start_time);
1304 
1305 		dirty_ratelimit = bdi->dirty_ratelimit;
1306 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1307 					       background_thresh, nr_dirty,
1308 					       bdi_thresh, bdi_dirty);
1309 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1310 							RATELIMIT_CALC_SHIFT;
1311 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1312 		min_pause = bdi_min_pause(bdi, max_pause,
1313 					  task_ratelimit, dirty_ratelimit,
1314 					  &nr_dirtied_pause);
1315 
1316 		if (unlikely(task_ratelimit == 0)) {
1317 			period = max_pause;
1318 			pause = max_pause;
1319 			goto pause;
1320 		}
1321 		period = HZ * pages_dirtied / task_ratelimit;
1322 		pause = period;
1323 		if (current->dirty_paused_when)
1324 			pause -= now - current->dirty_paused_when;
1325 		/*
1326 		 * For less than 1s think time (ext3/4 may block the dirtier
1327 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1328 		 * however at much less frequency), try to compensate it in
1329 		 * future periods by updating the virtual time; otherwise just
1330 		 * do a reset, as it may be a light dirtier.
1331 		 */
1332 		if (pause < min_pause) {
1333 			trace_balance_dirty_pages(bdi,
1334 						  dirty_thresh,
1335 						  background_thresh,
1336 						  nr_dirty,
1337 						  bdi_thresh,
1338 						  bdi_dirty,
1339 						  dirty_ratelimit,
1340 						  task_ratelimit,
1341 						  pages_dirtied,
1342 						  period,
1343 						  min(pause, 0L),
1344 						  start_time);
1345 			if (pause < -HZ) {
1346 				current->dirty_paused_when = now;
1347 				current->nr_dirtied = 0;
1348 			} else if (period) {
1349 				current->dirty_paused_when += period;
1350 				current->nr_dirtied = 0;
1351 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1352 				current->nr_dirtied_pause += pages_dirtied;
1353 			break;
1354 		}
1355 		if (unlikely(pause > max_pause)) {
1356 			/* for occasional dropped task_ratelimit */
1357 			now += min(pause - max_pause, max_pause);
1358 			pause = max_pause;
1359 		}
1360 
1361 pause:
1362 		trace_balance_dirty_pages(bdi,
1363 					  dirty_thresh,
1364 					  background_thresh,
1365 					  nr_dirty,
1366 					  bdi_thresh,
1367 					  bdi_dirty,
1368 					  dirty_ratelimit,
1369 					  task_ratelimit,
1370 					  pages_dirtied,
1371 					  period,
1372 					  pause,
1373 					  start_time);
1374 		__set_current_state(TASK_KILLABLE);
1375 		io_schedule_timeout(pause);
1376 
1377 		current->dirty_paused_when = now + pause;
1378 		current->nr_dirtied = 0;
1379 		current->nr_dirtied_pause = nr_dirtied_pause;
1380 
1381 		/*
1382 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1383 		 * also keep "1000+ dd on a slow USB stick" under control.
1384 		 */
1385 		if (task_ratelimit)
1386 			break;
1387 
1388 		/*
1389 		 * In the case of an unresponding NFS server and the NFS dirty
1390 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1391 		 * to go through, so that tasks on them still remain responsive.
1392 		 *
1393 		 * In theory 1 page is enough to keep the comsumer-producer
1394 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1395 		 * more page. However bdi_dirty has accounting errors.  So use
1396 		 * the larger and more IO friendly bdi_stat_error.
1397 		 */
1398 		if (bdi_dirty <= bdi_stat_error(bdi))
1399 			break;
1400 
1401 		if (fatal_signal_pending(current))
1402 			break;
1403 	}
1404 
1405 	if (!dirty_exceeded && bdi->dirty_exceeded)
1406 		bdi->dirty_exceeded = 0;
1407 
1408 	if (writeback_in_progress(bdi))
1409 		return;
1410 
1411 	/*
1412 	 * In laptop mode, we wait until hitting the higher threshold before
1413 	 * starting background writeout, and then write out all the way down
1414 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1415 	 *
1416 	 * In normal mode, we start background writeout at the lower
1417 	 * background_thresh, to keep the amount of dirty memory low.
1418 	 */
1419 	if (laptop_mode)
1420 		return;
1421 
1422 	if (nr_reclaimable > background_thresh)
1423 		bdi_start_background_writeback(bdi);
1424 }
1425 
1426 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1427 {
1428 	if (set_page_dirty(page) || page_mkwrite) {
1429 		struct address_space *mapping = page_mapping(page);
1430 
1431 		if (mapping)
1432 			balance_dirty_pages_ratelimited(mapping);
1433 	}
1434 }
1435 
1436 static DEFINE_PER_CPU(int, bdp_ratelimits);
1437 
1438 /*
1439  * Normal tasks are throttled by
1440  *	loop {
1441  *		dirty tsk->nr_dirtied_pause pages;
1442  *		take a snap in balance_dirty_pages();
1443  *	}
1444  * However there is a worst case. If every task exit immediately when dirtied
1445  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1446  * called to throttle the page dirties. The solution is to save the not yet
1447  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1448  * randomly into the running tasks. This works well for the above worst case,
1449  * as the new task will pick up and accumulate the old task's leaked dirty
1450  * count and eventually get throttled.
1451  */
1452 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1453 
1454 /**
1455  * balance_dirty_pages_ratelimited - balance dirty memory state
1456  * @mapping: address_space which was dirtied
1457  *
1458  * Processes which are dirtying memory should call in here once for each page
1459  * which was newly dirtied.  The function will periodically check the system's
1460  * dirty state and will initiate writeback if needed.
1461  *
1462  * On really big machines, get_writeback_state is expensive, so try to avoid
1463  * calling it too often (ratelimiting).  But once we're over the dirty memory
1464  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1465  * from overshooting the limit by (ratelimit_pages) each.
1466  */
1467 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1468 {
1469 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1470 	int ratelimit;
1471 	int *p;
1472 
1473 	if (!bdi_cap_account_dirty(bdi))
1474 		return;
1475 
1476 	ratelimit = current->nr_dirtied_pause;
1477 	if (bdi->dirty_exceeded)
1478 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1479 
1480 	preempt_disable();
1481 	/*
1482 	 * This prevents one CPU to accumulate too many dirtied pages without
1483 	 * calling into balance_dirty_pages(), which can happen when there are
1484 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1485 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1486 	 */
1487 	p =  &__get_cpu_var(bdp_ratelimits);
1488 	if (unlikely(current->nr_dirtied >= ratelimit))
1489 		*p = 0;
1490 	else if (unlikely(*p >= ratelimit_pages)) {
1491 		*p = 0;
1492 		ratelimit = 0;
1493 	}
1494 	/*
1495 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1496 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1497 	 * the dirty throttling and livelock other long-run dirtiers.
1498 	 */
1499 	p = &__get_cpu_var(dirty_throttle_leaks);
1500 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1501 		unsigned long nr_pages_dirtied;
1502 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1503 		*p -= nr_pages_dirtied;
1504 		current->nr_dirtied += nr_pages_dirtied;
1505 	}
1506 	preempt_enable();
1507 
1508 	if (unlikely(current->nr_dirtied >= ratelimit))
1509 		balance_dirty_pages(mapping, current->nr_dirtied);
1510 }
1511 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1512 
1513 void throttle_vm_writeout(gfp_t gfp_mask)
1514 {
1515 	unsigned long background_thresh;
1516 	unsigned long dirty_thresh;
1517 
1518         for ( ; ; ) {
1519 		global_dirty_limits(&background_thresh, &dirty_thresh);
1520 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1521 
1522                 /*
1523                  * Boost the allowable dirty threshold a bit for page
1524                  * allocators so they don't get DoS'ed by heavy writers
1525                  */
1526                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1527 
1528                 if (global_page_state(NR_UNSTABLE_NFS) +
1529 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1530                         	break;
1531                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1532 
1533 		/*
1534 		 * The caller might hold locks which can prevent IO completion
1535 		 * or progress in the filesystem.  So we cannot just sit here
1536 		 * waiting for IO to complete.
1537 		 */
1538 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1539 			break;
1540         }
1541 }
1542 
1543 /*
1544  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1545  */
1546 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1547 	void __user *buffer, size_t *length, loff_t *ppos)
1548 {
1549 	proc_dointvec(table, write, buffer, length, ppos);
1550 	return 0;
1551 }
1552 
1553 #ifdef CONFIG_BLOCK
1554 void laptop_mode_timer_fn(unsigned long data)
1555 {
1556 	struct request_queue *q = (struct request_queue *)data;
1557 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1558 		global_page_state(NR_UNSTABLE_NFS);
1559 
1560 	/*
1561 	 * We want to write everything out, not just down to the dirty
1562 	 * threshold
1563 	 */
1564 	if (bdi_has_dirty_io(&q->backing_dev_info))
1565 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1566 					WB_REASON_LAPTOP_TIMER);
1567 }
1568 
1569 /*
1570  * We've spun up the disk and we're in laptop mode: schedule writeback
1571  * of all dirty data a few seconds from now.  If the flush is already scheduled
1572  * then push it back - the user is still using the disk.
1573  */
1574 void laptop_io_completion(struct backing_dev_info *info)
1575 {
1576 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1577 }
1578 
1579 /*
1580  * We're in laptop mode and we've just synced. The sync's writes will have
1581  * caused another writeback to be scheduled by laptop_io_completion.
1582  * Nothing needs to be written back anymore, so we unschedule the writeback.
1583  */
1584 void laptop_sync_completion(void)
1585 {
1586 	struct backing_dev_info *bdi;
1587 
1588 	rcu_read_lock();
1589 
1590 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1591 		del_timer(&bdi->laptop_mode_wb_timer);
1592 
1593 	rcu_read_unlock();
1594 }
1595 #endif
1596 
1597 /*
1598  * If ratelimit_pages is too high then we can get into dirty-data overload
1599  * if a large number of processes all perform writes at the same time.
1600  * If it is too low then SMP machines will call the (expensive)
1601  * get_writeback_state too often.
1602  *
1603  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1604  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1605  * thresholds.
1606  */
1607 
1608 void writeback_set_ratelimit(void)
1609 {
1610 	unsigned long background_thresh;
1611 	unsigned long dirty_thresh;
1612 	global_dirty_limits(&background_thresh, &dirty_thresh);
1613 	global_dirty_limit = dirty_thresh;
1614 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1615 	if (ratelimit_pages < 16)
1616 		ratelimit_pages = 16;
1617 }
1618 
1619 static int __cpuinit
1620 ratelimit_handler(struct notifier_block *self, unsigned long action,
1621 		  void *hcpu)
1622 {
1623 
1624 	switch (action & ~CPU_TASKS_FROZEN) {
1625 	case CPU_ONLINE:
1626 	case CPU_DEAD:
1627 		writeback_set_ratelimit();
1628 		return NOTIFY_OK;
1629 	default:
1630 		return NOTIFY_DONE;
1631 	}
1632 }
1633 
1634 static struct notifier_block __cpuinitdata ratelimit_nb = {
1635 	.notifier_call	= ratelimit_handler,
1636 	.next		= NULL,
1637 };
1638 
1639 /*
1640  * Called early on to tune the page writeback dirty limits.
1641  *
1642  * We used to scale dirty pages according to how total memory
1643  * related to pages that could be allocated for buffers (by
1644  * comparing nr_free_buffer_pages() to vm_total_pages.
1645  *
1646  * However, that was when we used "dirty_ratio" to scale with
1647  * all memory, and we don't do that any more. "dirty_ratio"
1648  * is now applied to total non-HIGHPAGE memory (by subtracting
1649  * totalhigh_pages from vm_total_pages), and as such we can't
1650  * get into the old insane situation any more where we had
1651  * large amounts of dirty pages compared to a small amount of
1652  * non-HIGHMEM memory.
1653  *
1654  * But we might still want to scale the dirty_ratio by how
1655  * much memory the box has..
1656  */
1657 void __init page_writeback_init(void)
1658 {
1659 	writeback_set_ratelimit();
1660 	register_cpu_notifier(&ratelimit_nb);
1661 
1662 	fprop_global_init(&writeout_completions);
1663 }
1664 
1665 /**
1666  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1667  * @mapping: address space structure to write
1668  * @start: starting page index
1669  * @end: ending page index (inclusive)
1670  *
1671  * This function scans the page range from @start to @end (inclusive) and tags
1672  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1673  * that write_cache_pages (or whoever calls this function) will then use
1674  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1675  * used to avoid livelocking of writeback by a process steadily creating new
1676  * dirty pages in the file (thus it is important for this function to be quick
1677  * so that it can tag pages faster than a dirtying process can create them).
1678  */
1679 /*
1680  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1681  */
1682 void tag_pages_for_writeback(struct address_space *mapping,
1683 			     pgoff_t start, pgoff_t end)
1684 {
1685 #define WRITEBACK_TAG_BATCH 4096
1686 	unsigned long tagged;
1687 
1688 	do {
1689 		spin_lock_irq(&mapping->tree_lock);
1690 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1691 				&start, end, WRITEBACK_TAG_BATCH,
1692 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1693 		spin_unlock_irq(&mapping->tree_lock);
1694 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1695 		cond_resched();
1696 		/* We check 'start' to handle wrapping when end == ~0UL */
1697 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1698 }
1699 EXPORT_SYMBOL(tag_pages_for_writeback);
1700 
1701 /**
1702  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1703  * @mapping: address space structure to write
1704  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1705  * @writepage: function called for each page
1706  * @data: data passed to writepage function
1707  *
1708  * If a page is already under I/O, write_cache_pages() skips it, even
1709  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1710  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1711  * and msync() need to guarantee that all the data which was dirty at the time
1712  * the call was made get new I/O started against them.  If wbc->sync_mode is
1713  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1714  * existing IO to complete.
1715  *
1716  * To avoid livelocks (when other process dirties new pages), we first tag
1717  * pages which should be written back with TOWRITE tag and only then start
1718  * writing them. For data-integrity sync we have to be careful so that we do
1719  * not miss some pages (e.g., because some other process has cleared TOWRITE
1720  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1721  * by the process clearing the DIRTY tag (and submitting the page for IO).
1722  */
1723 int write_cache_pages(struct address_space *mapping,
1724 		      struct writeback_control *wbc, writepage_t writepage,
1725 		      void *data)
1726 {
1727 	int ret = 0;
1728 	int done = 0;
1729 	struct pagevec pvec;
1730 	int nr_pages;
1731 	pgoff_t uninitialized_var(writeback_index);
1732 	pgoff_t index;
1733 	pgoff_t end;		/* Inclusive */
1734 	pgoff_t done_index;
1735 	int cycled;
1736 	int range_whole = 0;
1737 	int tag;
1738 
1739 	pagevec_init(&pvec, 0);
1740 	if (wbc->range_cyclic) {
1741 		writeback_index = mapping->writeback_index; /* prev offset */
1742 		index = writeback_index;
1743 		if (index == 0)
1744 			cycled = 1;
1745 		else
1746 			cycled = 0;
1747 		end = -1;
1748 	} else {
1749 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1750 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1751 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1752 			range_whole = 1;
1753 		cycled = 1; /* ignore range_cyclic tests */
1754 	}
1755 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1756 		tag = PAGECACHE_TAG_TOWRITE;
1757 	else
1758 		tag = PAGECACHE_TAG_DIRTY;
1759 retry:
1760 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1761 		tag_pages_for_writeback(mapping, index, end);
1762 	done_index = index;
1763 	while (!done && (index <= end)) {
1764 		int i;
1765 
1766 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1767 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1768 		if (nr_pages == 0)
1769 			break;
1770 
1771 		for (i = 0; i < nr_pages; i++) {
1772 			struct page *page = pvec.pages[i];
1773 
1774 			/*
1775 			 * At this point, the page may be truncated or
1776 			 * invalidated (changing page->mapping to NULL), or
1777 			 * even swizzled back from swapper_space to tmpfs file
1778 			 * mapping. However, page->index will not change
1779 			 * because we have a reference on the page.
1780 			 */
1781 			if (page->index > end) {
1782 				/*
1783 				 * can't be range_cyclic (1st pass) because
1784 				 * end == -1 in that case.
1785 				 */
1786 				done = 1;
1787 				break;
1788 			}
1789 
1790 			done_index = page->index;
1791 
1792 			lock_page(page);
1793 
1794 			/*
1795 			 * Page truncated or invalidated. We can freely skip it
1796 			 * then, even for data integrity operations: the page
1797 			 * has disappeared concurrently, so there could be no
1798 			 * real expectation of this data interity operation
1799 			 * even if there is now a new, dirty page at the same
1800 			 * pagecache address.
1801 			 */
1802 			if (unlikely(page->mapping != mapping)) {
1803 continue_unlock:
1804 				unlock_page(page);
1805 				continue;
1806 			}
1807 
1808 			if (!PageDirty(page)) {
1809 				/* someone wrote it for us */
1810 				goto continue_unlock;
1811 			}
1812 
1813 			if (PageWriteback(page)) {
1814 				if (wbc->sync_mode != WB_SYNC_NONE)
1815 					wait_on_page_writeback(page);
1816 				else
1817 					goto continue_unlock;
1818 			}
1819 
1820 			BUG_ON(PageWriteback(page));
1821 			if (!clear_page_dirty_for_io(page))
1822 				goto continue_unlock;
1823 
1824 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1825 			ret = (*writepage)(page, wbc, data);
1826 			if (unlikely(ret)) {
1827 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1828 					unlock_page(page);
1829 					ret = 0;
1830 				} else {
1831 					/*
1832 					 * done_index is set past this page,
1833 					 * so media errors will not choke
1834 					 * background writeout for the entire
1835 					 * file. This has consequences for
1836 					 * range_cyclic semantics (ie. it may
1837 					 * not be suitable for data integrity
1838 					 * writeout).
1839 					 */
1840 					done_index = page->index + 1;
1841 					done = 1;
1842 					break;
1843 				}
1844 			}
1845 
1846 			/*
1847 			 * We stop writing back only if we are not doing
1848 			 * integrity sync. In case of integrity sync we have to
1849 			 * keep going until we have written all the pages
1850 			 * we tagged for writeback prior to entering this loop.
1851 			 */
1852 			if (--wbc->nr_to_write <= 0 &&
1853 			    wbc->sync_mode == WB_SYNC_NONE) {
1854 				done = 1;
1855 				break;
1856 			}
1857 		}
1858 		pagevec_release(&pvec);
1859 		cond_resched();
1860 	}
1861 	if (!cycled && !done) {
1862 		/*
1863 		 * range_cyclic:
1864 		 * We hit the last page and there is more work to be done: wrap
1865 		 * back to the start of the file
1866 		 */
1867 		cycled = 1;
1868 		index = 0;
1869 		end = writeback_index - 1;
1870 		goto retry;
1871 	}
1872 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1873 		mapping->writeback_index = done_index;
1874 
1875 	return ret;
1876 }
1877 EXPORT_SYMBOL(write_cache_pages);
1878 
1879 /*
1880  * Function used by generic_writepages to call the real writepage
1881  * function and set the mapping flags on error
1882  */
1883 static int __writepage(struct page *page, struct writeback_control *wbc,
1884 		       void *data)
1885 {
1886 	struct address_space *mapping = data;
1887 	int ret = mapping->a_ops->writepage(page, wbc);
1888 	mapping_set_error(mapping, ret);
1889 	return ret;
1890 }
1891 
1892 /**
1893  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1894  * @mapping: address space structure to write
1895  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1896  *
1897  * This is a library function, which implements the writepages()
1898  * address_space_operation.
1899  */
1900 int generic_writepages(struct address_space *mapping,
1901 		       struct writeback_control *wbc)
1902 {
1903 	struct blk_plug plug;
1904 	int ret;
1905 
1906 	/* deal with chardevs and other special file */
1907 	if (!mapping->a_ops->writepage)
1908 		return 0;
1909 
1910 	blk_start_plug(&plug);
1911 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1912 	blk_finish_plug(&plug);
1913 	return ret;
1914 }
1915 
1916 EXPORT_SYMBOL(generic_writepages);
1917 
1918 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1919 {
1920 	int ret;
1921 
1922 	if (wbc->nr_to_write <= 0)
1923 		return 0;
1924 	if (mapping->a_ops->writepages)
1925 		ret = mapping->a_ops->writepages(mapping, wbc);
1926 	else
1927 		ret = generic_writepages(mapping, wbc);
1928 	return ret;
1929 }
1930 
1931 /**
1932  * write_one_page - write out a single page and optionally wait on I/O
1933  * @page: the page to write
1934  * @wait: if true, wait on writeout
1935  *
1936  * The page must be locked by the caller and will be unlocked upon return.
1937  *
1938  * write_one_page() returns a negative error code if I/O failed.
1939  */
1940 int write_one_page(struct page *page, int wait)
1941 {
1942 	struct address_space *mapping = page->mapping;
1943 	int ret = 0;
1944 	struct writeback_control wbc = {
1945 		.sync_mode = WB_SYNC_ALL,
1946 		.nr_to_write = 1,
1947 	};
1948 
1949 	BUG_ON(!PageLocked(page));
1950 
1951 	if (wait)
1952 		wait_on_page_writeback(page);
1953 
1954 	if (clear_page_dirty_for_io(page)) {
1955 		page_cache_get(page);
1956 		ret = mapping->a_ops->writepage(page, &wbc);
1957 		if (ret == 0 && wait) {
1958 			wait_on_page_writeback(page);
1959 			if (PageError(page))
1960 				ret = -EIO;
1961 		}
1962 		page_cache_release(page);
1963 	} else {
1964 		unlock_page(page);
1965 	}
1966 	return ret;
1967 }
1968 EXPORT_SYMBOL(write_one_page);
1969 
1970 /*
1971  * For address_spaces which do not use buffers nor write back.
1972  */
1973 int __set_page_dirty_no_writeback(struct page *page)
1974 {
1975 	if (!PageDirty(page))
1976 		return !TestSetPageDirty(page);
1977 	return 0;
1978 }
1979 
1980 /*
1981  * Helper function for set_page_dirty family.
1982  * NOTE: This relies on being atomic wrt interrupts.
1983  */
1984 void account_page_dirtied(struct page *page, struct address_space *mapping)
1985 {
1986 	if (mapping_cap_account_dirty(mapping)) {
1987 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1988 		__inc_zone_page_state(page, NR_DIRTIED);
1989 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1990 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1991 		task_io_account_write(PAGE_CACHE_SIZE);
1992 		current->nr_dirtied++;
1993 		this_cpu_inc(bdp_ratelimits);
1994 	}
1995 }
1996 EXPORT_SYMBOL(account_page_dirtied);
1997 
1998 /*
1999  * Helper function for set_page_writeback family.
2000  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2001  * wrt interrupts.
2002  */
2003 void account_page_writeback(struct page *page)
2004 {
2005 	inc_zone_page_state(page, NR_WRITEBACK);
2006 }
2007 EXPORT_SYMBOL(account_page_writeback);
2008 
2009 /*
2010  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2011  * its radix tree.
2012  *
2013  * This is also used when a single buffer is being dirtied: we want to set the
2014  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2015  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2016  *
2017  * Most callers have locked the page, which pins the address_space in memory.
2018  * But zap_pte_range() does not lock the page, however in that case the
2019  * mapping is pinned by the vma's ->vm_file reference.
2020  *
2021  * We take care to handle the case where the page was truncated from the
2022  * mapping by re-checking page_mapping() inside tree_lock.
2023  */
2024 int __set_page_dirty_nobuffers(struct page *page)
2025 {
2026 	if (!TestSetPageDirty(page)) {
2027 		struct address_space *mapping = page_mapping(page);
2028 		struct address_space *mapping2;
2029 
2030 		if (!mapping)
2031 			return 1;
2032 
2033 		spin_lock_irq(&mapping->tree_lock);
2034 		mapping2 = page_mapping(page);
2035 		if (mapping2) { /* Race with truncate? */
2036 			BUG_ON(mapping2 != mapping);
2037 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2038 			account_page_dirtied(page, mapping);
2039 			radix_tree_tag_set(&mapping->page_tree,
2040 				page_index(page), PAGECACHE_TAG_DIRTY);
2041 		}
2042 		spin_unlock_irq(&mapping->tree_lock);
2043 		if (mapping->host) {
2044 			/* !PageAnon && !swapper_space */
2045 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2046 		}
2047 		return 1;
2048 	}
2049 	return 0;
2050 }
2051 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2052 
2053 /*
2054  * Call this whenever redirtying a page, to de-account the dirty counters
2055  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2056  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2057  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2058  * control.
2059  */
2060 void account_page_redirty(struct page *page)
2061 {
2062 	struct address_space *mapping = page->mapping;
2063 	if (mapping && mapping_cap_account_dirty(mapping)) {
2064 		current->nr_dirtied--;
2065 		dec_zone_page_state(page, NR_DIRTIED);
2066 		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2067 	}
2068 }
2069 EXPORT_SYMBOL(account_page_redirty);
2070 
2071 /*
2072  * When a writepage implementation decides that it doesn't want to write this
2073  * page for some reason, it should redirty the locked page via
2074  * redirty_page_for_writepage() and it should then unlock the page and return 0
2075  */
2076 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2077 {
2078 	wbc->pages_skipped++;
2079 	account_page_redirty(page);
2080 	return __set_page_dirty_nobuffers(page);
2081 }
2082 EXPORT_SYMBOL(redirty_page_for_writepage);
2083 
2084 /*
2085  * Dirty a page.
2086  *
2087  * For pages with a mapping this should be done under the page lock
2088  * for the benefit of asynchronous memory errors who prefer a consistent
2089  * dirty state. This rule can be broken in some special cases,
2090  * but should be better not to.
2091  *
2092  * If the mapping doesn't provide a set_page_dirty a_op, then
2093  * just fall through and assume that it wants buffer_heads.
2094  */
2095 int set_page_dirty(struct page *page)
2096 {
2097 	struct address_space *mapping = page_mapping(page);
2098 
2099 	if (likely(mapping)) {
2100 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2101 		/*
2102 		 * readahead/lru_deactivate_page could remain
2103 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2104 		 * About readahead, if the page is written, the flags would be
2105 		 * reset. So no problem.
2106 		 * About lru_deactivate_page, if the page is redirty, the flag
2107 		 * will be reset. So no problem. but if the page is used by readahead
2108 		 * it will confuse readahead and make it restart the size rampup
2109 		 * process. But it's a trivial problem.
2110 		 */
2111 		ClearPageReclaim(page);
2112 #ifdef CONFIG_BLOCK
2113 		if (!spd)
2114 			spd = __set_page_dirty_buffers;
2115 #endif
2116 		return (*spd)(page);
2117 	}
2118 	if (!PageDirty(page)) {
2119 		if (!TestSetPageDirty(page))
2120 			return 1;
2121 	}
2122 	return 0;
2123 }
2124 EXPORT_SYMBOL(set_page_dirty);
2125 
2126 /*
2127  * set_page_dirty() is racy if the caller has no reference against
2128  * page->mapping->host, and if the page is unlocked.  This is because another
2129  * CPU could truncate the page off the mapping and then free the mapping.
2130  *
2131  * Usually, the page _is_ locked, or the caller is a user-space process which
2132  * holds a reference on the inode by having an open file.
2133  *
2134  * In other cases, the page should be locked before running set_page_dirty().
2135  */
2136 int set_page_dirty_lock(struct page *page)
2137 {
2138 	int ret;
2139 
2140 	lock_page(page);
2141 	ret = set_page_dirty(page);
2142 	unlock_page(page);
2143 	return ret;
2144 }
2145 EXPORT_SYMBOL(set_page_dirty_lock);
2146 
2147 /*
2148  * Clear a page's dirty flag, while caring for dirty memory accounting.
2149  * Returns true if the page was previously dirty.
2150  *
2151  * This is for preparing to put the page under writeout.  We leave the page
2152  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2153  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2154  * implementation will run either set_page_writeback() or set_page_dirty(),
2155  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2156  * back into sync.
2157  *
2158  * This incoherency between the page's dirty flag and radix-tree tag is
2159  * unfortunate, but it only exists while the page is locked.
2160  */
2161 int clear_page_dirty_for_io(struct page *page)
2162 {
2163 	struct address_space *mapping = page_mapping(page);
2164 
2165 	BUG_ON(!PageLocked(page));
2166 
2167 	if (mapping && mapping_cap_account_dirty(mapping)) {
2168 		/*
2169 		 * Yes, Virginia, this is indeed insane.
2170 		 *
2171 		 * We use this sequence to make sure that
2172 		 *  (a) we account for dirty stats properly
2173 		 *  (b) we tell the low-level filesystem to
2174 		 *      mark the whole page dirty if it was
2175 		 *      dirty in a pagetable. Only to then
2176 		 *  (c) clean the page again and return 1 to
2177 		 *      cause the writeback.
2178 		 *
2179 		 * This way we avoid all nasty races with the
2180 		 * dirty bit in multiple places and clearing
2181 		 * them concurrently from different threads.
2182 		 *
2183 		 * Note! Normally the "set_page_dirty(page)"
2184 		 * has no effect on the actual dirty bit - since
2185 		 * that will already usually be set. But we
2186 		 * need the side effects, and it can help us
2187 		 * avoid races.
2188 		 *
2189 		 * We basically use the page "master dirty bit"
2190 		 * as a serialization point for all the different
2191 		 * threads doing their things.
2192 		 */
2193 		if (page_mkclean(page))
2194 			set_page_dirty(page);
2195 		/*
2196 		 * We carefully synchronise fault handlers against
2197 		 * installing a dirty pte and marking the page dirty
2198 		 * at this point. We do this by having them hold the
2199 		 * page lock at some point after installing their
2200 		 * pte, but before marking the page dirty.
2201 		 * Pages are always locked coming in here, so we get
2202 		 * the desired exclusion. See mm/memory.c:do_wp_page()
2203 		 * for more comments.
2204 		 */
2205 		if (TestClearPageDirty(page)) {
2206 			dec_zone_page_state(page, NR_FILE_DIRTY);
2207 			dec_bdi_stat(mapping->backing_dev_info,
2208 					BDI_RECLAIMABLE);
2209 			return 1;
2210 		}
2211 		return 0;
2212 	}
2213 	return TestClearPageDirty(page);
2214 }
2215 EXPORT_SYMBOL(clear_page_dirty_for_io);
2216 
2217 int test_clear_page_writeback(struct page *page)
2218 {
2219 	struct address_space *mapping = page_mapping(page);
2220 	int ret;
2221 
2222 	if (mapping) {
2223 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2224 		unsigned long flags;
2225 
2226 		spin_lock_irqsave(&mapping->tree_lock, flags);
2227 		ret = TestClearPageWriteback(page);
2228 		if (ret) {
2229 			radix_tree_tag_clear(&mapping->page_tree,
2230 						page_index(page),
2231 						PAGECACHE_TAG_WRITEBACK);
2232 			if (bdi_cap_account_writeback(bdi)) {
2233 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2234 				__bdi_writeout_inc(bdi);
2235 			}
2236 		}
2237 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2238 	} else {
2239 		ret = TestClearPageWriteback(page);
2240 	}
2241 	if (ret) {
2242 		dec_zone_page_state(page, NR_WRITEBACK);
2243 		inc_zone_page_state(page, NR_WRITTEN);
2244 	}
2245 	return ret;
2246 }
2247 
2248 int test_set_page_writeback(struct page *page)
2249 {
2250 	struct address_space *mapping = page_mapping(page);
2251 	int ret;
2252 
2253 	if (mapping) {
2254 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2255 		unsigned long flags;
2256 
2257 		spin_lock_irqsave(&mapping->tree_lock, flags);
2258 		ret = TestSetPageWriteback(page);
2259 		if (!ret) {
2260 			radix_tree_tag_set(&mapping->page_tree,
2261 						page_index(page),
2262 						PAGECACHE_TAG_WRITEBACK);
2263 			if (bdi_cap_account_writeback(bdi))
2264 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2265 		}
2266 		if (!PageDirty(page))
2267 			radix_tree_tag_clear(&mapping->page_tree,
2268 						page_index(page),
2269 						PAGECACHE_TAG_DIRTY);
2270 		radix_tree_tag_clear(&mapping->page_tree,
2271 				     page_index(page),
2272 				     PAGECACHE_TAG_TOWRITE);
2273 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2274 	} else {
2275 		ret = TestSetPageWriteback(page);
2276 	}
2277 	if (!ret)
2278 		account_page_writeback(page);
2279 	return ret;
2280 
2281 }
2282 EXPORT_SYMBOL(test_set_page_writeback);
2283 
2284 /*
2285  * Return true if any of the pages in the mapping are marked with the
2286  * passed tag.
2287  */
2288 int mapping_tagged(struct address_space *mapping, int tag)
2289 {
2290 	return radix_tree_tagged(&mapping->page_tree, tag);
2291 }
2292 EXPORT_SYMBOL(mapping_tagged);
2293 
2294 /**
2295  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2296  * @page:	The page to wait on.
2297  *
2298  * This function determines if the given page is related to a backing device
2299  * that requires page contents to be held stable during writeback.  If so, then
2300  * it will wait for any pending writeback to complete.
2301  */
2302 void wait_for_stable_page(struct page *page)
2303 {
2304 	struct address_space *mapping = page_mapping(page);
2305 	struct backing_dev_info *bdi = mapping->backing_dev_info;
2306 
2307 	if (!bdi_cap_stable_pages_required(bdi))
2308 		return;
2309 #ifdef CONFIG_NEED_BOUNCE_POOL
2310 	if (mapping->host->i_sb->s_flags & MS_SNAP_STABLE)
2311 		return;
2312 #endif /* CONFIG_NEED_BOUNCE_POOL */
2313 
2314 	wait_on_page_writeback(page);
2315 }
2316 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2317