1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <trace/events/writeback.h> 40 41 /* 42 * Sleep at most 200ms at a time in balance_dirty_pages(). 43 */ 44 #define MAX_PAUSE max(HZ/5, 1) 45 46 /* 47 * Try to keep balance_dirty_pages() call intervals higher than this many pages 48 * by raising pause time to max_pause when falls below it. 49 */ 50 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 51 52 /* 53 * Estimate write bandwidth at 200ms intervals. 54 */ 55 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 56 57 #define RATELIMIT_CALC_SHIFT 10 58 59 /* 60 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 61 * will look to see if it needs to force writeback or throttling. 62 */ 63 static long ratelimit_pages = 32; 64 65 /* The following parameters are exported via /proc/sys/vm */ 66 67 /* 68 * Start background writeback (via writeback threads) at this percentage 69 */ 70 int dirty_background_ratio = 10; 71 72 /* 73 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 74 * dirty_background_ratio * the amount of dirtyable memory 75 */ 76 unsigned long dirty_background_bytes; 77 78 /* 79 * free highmem will not be subtracted from the total free memory 80 * for calculating free ratios if vm_highmem_is_dirtyable is true 81 */ 82 int vm_highmem_is_dirtyable; 83 84 /* 85 * The generator of dirty data starts writeback at this percentage 86 */ 87 int vm_dirty_ratio = 20; 88 89 /* 90 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 91 * vm_dirty_ratio * the amount of dirtyable memory 92 */ 93 unsigned long vm_dirty_bytes; 94 95 /* 96 * The interval between `kupdate'-style writebacks 97 */ 98 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 99 100 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 101 102 /* 103 * The longest time for which data is allowed to remain dirty 104 */ 105 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 106 107 /* 108 * Flag that makes the machine dump writes/reads and block dirtyings. 109 */ 110 int block_dump; 111 112 /* 113 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 114 * a full sync is triggered after this time elapses without any disk activity. 115 */ 116 int laptop_mode; 117 118 EXPORT_SYMBOL(laptop_mode); 119 120 /* End of sysctl-exported parameters */ 121 122 unsigned long global_dirty_limit; 123 124 /* 125 * Scale the writeback cache size proportional to the relative writeout speeds. 126 * 127 * We do this by keeping a floating proportion between BDIs, based on page 128 * writeback completions [end_page_writeback()]. Those devices that write out 129 * pages fastest will get the larger share, while the slower will get a smaller 130 * share. 131 * 132 * We use page writeout completions because we are interested in getting rid of 133 * dirty pages. Having them written out is the primary goal. 134 * 135 * We introduce a concept of time, a period over which we measure these events, 136 * because demand can/will vary over time. The length of this period itself is 137 * measured in page writeback completions. 138 * 139 */ 140 static struct fprop_global writeout_completions; 141 142 static void writeout_period(unsigned long t); 143 /* Timer for aging of writeout_completions */ 144 static struct timer_list writeout_period_timer = 145 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0); 146 static unsigned long writeout_period_time = 0; 147 148 /* 149 * Length of period for aging writeout fractions of bdis. This is an 150 * arbitrarily chosen number. The longer the period, the slower fractions will 151 * reflect changes in current writeout rate. 152 */ 153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 154 155 /* 156 * Work out the current dirty-memory clamping and background writeout 157 * thresholds. 158 * 159 * The main aim here is to lower them aggressively if there is a lot of mapped 160 * memory around. To avoid stressing page reclaim with lots of unreclaimable 161 * pages. It is better to clamp down on writers than to start swapping, and 162 * performing lots of scanning. 163 * 164 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 165 * 166 * We don't permit the clamping level to fall below 5% - that is getting rather 167 * excessive. 168 * 169 * We make sure that the background writeout level is below the adjusted 170 * clamping level. 171 */ 172 173 /* 174 * In a memory zone, there is a certain amount of pages we consider 175 * available for the page cache, which is essentially the number of 176 * free and reclaimable pages, minus some zone reserves to protect 177 * lowmem and the ability to uphold the zone's watermarks without 178 * requiring writeback. 179 * 180 * This number of dirtyable pages is the base value of which the 181 * user-configurable dirty ratio is the effictive number of pages that 182 * are allowed to be actually dirtied. Per individual zone, or 183 * globally by using the sum of dirtyable pages over all zones. 184 * 185 * Because the user is allowed to specify the dirty limit globally as 186 * absolute number of bytes, calculating the per-zone dirty limit can 187 * require translating the configured limit into a percentage of 188 * global dirtyable memory first. 189 */ 190 191 static unsigned long highmem_dirtyable_memory(unsigned long total) 192 { 193 #ifdef CONFIG_HIGHMEM 194 int node; 195 unsigned long x = 0; 196 197 for_each_node_state(node, N_HIGH_MEMORY) { 198 struct zone *z = 199 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 200 201 x += zone_page_state(z, NR_FREE_PAGES) + 202 zone_reclaimable_pages(z) - z->dirty_balance_reserve; 203 } 204 /* 205 * Unreclaimable memory (kernel memory or anonymous memory 206 * without swap) can bring down the dirtyable pages below 207 * the zone's dirty balance reserve and the above calculation 208 * will underflow. However we still want to add in nodes 209 * which are below threshold (negative values) to get a more 210 * accurate calculation but make sure that the total never 211 * underflows. 212 */ 213 if ((long)x < 0) 214 x = 0; 215 216 /* 217 * Make sure that the number of highmem pages is never larger 218 * than the number of the total dirtyable memory. This can only 219 * occur in very strange VM situations but we want to make sure 220 * that this does not occur. 221 */ 222 return min(x, total); 223 #else 224 return 0; 225 #endif 226 } 227 228 /** 229 * global_dirtyable_memory - number of globally dirtyable pages 230 * 231 * Returns the global number of pages potentially available for dirty 232 * page cache. This is the base value for the global dirty limits. 233 */ 234 static unsigned long global_dirtyable_memory(void) 235 { 236 unsigned long x; 237 238 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 239 x -= min(x, dirty_balance_reserve); 240 241 if (!vm_highmem_is_dirtyable) 242 x -= highmem_dirtyable_memory(x); 243 244 return x + 1; /* Ensure that we never return 0 */ 245 } 246 247 /* 248 * global_dirty_limits - background-writeback and dirty-throttling thresholds 249 * 250 * Calculate the dirty thresholds based on sysctl parameters 251 * - vm.dirty_background_ratio or vm.dirty_background_bytes 252 * - vm.dirty_ratio or vm.dirty_bytes 253 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 254 * real-time tasks. 255 */ 256 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 257 { 258 unsigned long background; 259 unsigned long dirty; 260 unsigned long uninitialized_var(available_memory); 261 struct task_struct *tsk; 262 263 if (!vm_dirty_bytes || !dirty_background_bytes) 264 available_memory = global_dirtyable_memory(); 265 266 if (vm_dirty_bytes) 267 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 268 else 269 dirty = (vm_dirty_ratio * available_memory) / 100; 270 271 if (dirty_background_bytes) 272 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 273 else 274 background = (dirty_background_ratio * available_memory) / 100; 275 276 if (background >= dirty) 277 background = dirty / 2; 278 tsk = current; 279 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 280 background += background / 4; 281 dirty += dirty / 4; 282 } 283 *pbackground = background; 284 *pdirty = dirty; 285 trace_global_dirty_state(background, dirty); 286 } 287 288 /** 289 * zone_dirtyable_memory - number of dirtyable pages in a zone 290 * @zone: the zone 291 * 292 * Returns the zone's number of pages potentially available for dirty 293 * page cache. This is the base value for the per-zone dirty limits. 294 */ 295 static unsigned long zone_dirtyable_memory(struct zone *zone) 296 { 297 /* 298 * The effective global number of dirtyable pages may exclude 299 * highmem as a big-picture measure to keep the ratio between 300 * dirty memory and lowmem reasonable. 301 * 302 * But this function is purely about the individual zone and a 303 * highmem zone can hold its share of dirty pages, so we don't 304 * care about vm_highmem_is_dirtyable here. 305 */ 306 unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) + 307 zone_reclaimable_pages(zone); 308 309 /* don't allow this to underflow */ 310 nr_pages -= min(nr_pages, zone->dirty_balance_reserve); 311 return nr_pages; 312 } 313 314 /** 315 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 316 * @zone: the zone 317 * 318 * Returns the maximum number of dirty pages allowed in a zone, based 319 * on the zone's dirtyable memory. 320 */ 321 static unsigned long zone_dirty_limit(struct zone *zone) 322 { 323 unsigned long zone_memory = zone_dirtyable_memory(zone); 324 struct task_struct *tsk = current; 325 unsigned long dirty; 326 327 if (vm_dirty_bytes) 328 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 329 zone_memory / global_dirtyable_memory(); 330 else 331 dirty = vm_dirty_ratio * zone_memory / 100; 332 333 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 334 dirty += dirty / 4; 335 336 return dirty; 337 } 338 339 /** 340 * zone_dirty_ok - tells whether a zone is within its dirty limits 341 * @zone: the zone to check 342 * 343 * Returns %true when the dirty pages in @zone are within the zone's 344 * dirty limit, %false if the limit is exceeded. 345 */ 346 bool zone_dirty_ok(struct zone *zone) 347 { 348 unsigned long limit = zone_dirty_limit(zone); 349 350 return zone_page_state(zone, NR_FILE_DIRTY) + 351 zone_page_state(zone, NR_UNSTABLE_NFS) + 352 zone_page_state(zone, NR_WRITEBACK) <= limit; 353 } 354 355 int dirty_background_ratio_handler(struct ctl_table *table, int write, 356 void __user *buffer, size_t *lenp, 357 loff_t *ppos) 358 { 359 int ret; 360 361 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 362 if (ret == 0 && write) 363 dirty_background_bytes = 0; 364 return ret; 365 } 366 367 int dirty_background_bytes_handler(struct ctl_table *table, int write, 368 void __user *buffer, size_t *lenp, 369 loff_t *ppos) 370 { 371 int ret; 372 373 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 374 if (ret == 0 && write) 375 dirty_background_ratio = 0; 376 return ret; 377 } 378 379 int dirty_ratio_handler(struct ctl_table *table, int write, 380 void __user *buffer, size_t *lenp, 381 loff_t *ppos) 382 { 383 int old_ratio = vm_dirty_ratio; 384 int ret; 385 386 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 387 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 388 writeback_set_ratelimit(); 389 vm_dirty_bytes = 0; 390 } 391 return ret; 392 } 393 394 int dirty_bytes_handler(struct ctl_table *table, int write, 395 void __user *buffer, size_t *lenp, 396 loff_t *ppos) 397 { 398 unsigned long old_bytes = vm_dirty_bytes; 399 int ret; 400 401 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 402 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 403 writeback_set_ratelimit(); 404 vm_dirty_ratio = 0; 405 } 406 return ret; 407 } 408 409 static unsigned long wp_next_time(unsigned long cur_time) 410 { 411 cur_time += VM_COMPLETIONS_PERIOD_LEN; 412 /* 0 has a special meaning... */ 413 if (!cur_time) 414 return 1; 415 return cur_time; 416 } 417 418 /* 419 * Increment the BDI's writeout completion count and the global writeout 420 * completion count. Called from test_clear_page_writeback(). 421 */ 422 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 423 { 424 __inc_bdi_stat(bdi, BDI_WRITTEN); 425 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions, 426 bdi->max_prop_frac); 427 /* First event after period switching was turned off? */ 428 if (!unlikely(writeout_period_time)) { 429 /* 430 * We can race with other __bdi_writeout_inc calls here but 431 * it does not cause any harm since the resulting time when 432 * timer will fire and what is in writeout_period_time will be 433 * roughly the same. 434 */ 435 writeout_period_time = wp_next_time(jiffies); 436 mod_timer(&writeout_period_timer, writeout_period_time); 437 } 438 } 439 440 void bdi_writeout_inc(struct backing_dev_info *bdi) 441 { 442 unsigned long flags; 443 444 local_irq_save(flags); 445 __bdi_writeout_inc(bdi); 446 local_irq_restore(flags); 447 } 448 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 449 450 /* 451 * Obtain an accurate fraction of the BDI's portion. 452 */ 453 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 454 long *numerator, long *denominator) 455 { 456 fprop_fraction_percpu(&writeout_completions, &bdi->completions, 457 numerator, denominator); 458 } 459 460 /* 461 * On idle system, we can be called long after we scheduled because we use 462 * deferred timers so count with missed periods. 463 */ 464 static void writeout_period(unsigned long t) 465 { 466 int miss_periods = (jiffies - writeout_period_time) / 467 VM_COMPLETIONS_PERIOD_LEN; 468 469 if (fprop_new_period(&writeout_completions, miss_periods + 1)) { 470 writeout_period_time = wp_next_time(writeout_period_time + 471 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 472 mod_timer(&writeout_period_timer, writeout_period_time); 473 } else { 474 /* 475 * Aging has zeroed all fractions. Stop wasting CPU on period 476 * updates. 477 */ 478 writeout_period_time = 0; 479 } 480 } 481 482 /* 483 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 484 * registered backing devices, which, for obvious reasons, can not 485 * exceed 100%. 486 */ 487 static unsigned int bdi_min_ratio; 488 489 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 490 { 491 int ret = 0; 492 493 spin_lock_bh(&bdi_lock); 494 if (min_ratio > bdi->max_ratio) { 495 ret = -EINVAL; 496 } else { 497 min_ratio -= bdi->min_ratio; 498 if (bdi_min_ratio + min_ratio < 100) { 499 bdi_min_ratio += min_ratio; 500 bdi->min_ratio += min_ratio; 501 } else { 502 ret = -EINVAL; 503 } 504 } 505 spin_unlock_bh(&bdi_lock); 506 507 return ret; 508 } 509 510 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 511 { 512 int ret = 0; 513 514 if (max_ratio > 100) 515 return -EINVAL; 516 517 spin_lock_bh(&bdi_lock); 518 if (bdi->min_ratio > max_ratio) { 519 ret = -EINVAL; 520 } else { 521 bdi->max_ratio = max_ratio; 522 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 523 } 524 spin_unlock_bh(&bdi_lock); 525 526 return ret; 527 } 528 EXPORT_SYMBOL(bdi_set_max_ratio); 529 530 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 531 unsigned long bg_thresh) 532 { 533 return (thresh + bg_thresh) / 2; 534 } 535 536 static unsigned long hard_dirty_limit(unsigned long thresh) 537 { 538 return max(thresh, global_dirty_limit); 539 } 540 541 /** 542 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 543 * @bdi: the backing_dev_info to query 544 * @dirty: global dirty limit in pages 545 * 546 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 547 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 548 * 549 * Note that balance_dirty_pages() will only seriously take it as a hard limit 550 * when sleeping max_pause per page is not enough to keep the dirty pages under 551 * control. For example, when the device is completely stalled due to some error 552 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 553 * In the other normal situations, it acts more gently by throttling the tasks 554 * more (rather than completely block them) when the bdi dirty pages go high. 555 * 556 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 557 * - starving fast devices 558 * - piling up dirty pages (that will take long time to sync) on slow devices 559 * 560 * The bdi's share of dirty limit will be adapting to its throughput and 561 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 562 */ 563 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 564 { 565 u64 bdi_dirty; 566 long numerator, denominator; 567 568 /* 569 * Calculate this BDI's share of the dirty ratio. 570 */ 571 bdi_writeout_fraction(bdi, &numerator, &denominator); 572 573 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 574 bdi_dirty *= numerator; 575 do_div(bdi_dirty, denominator); 576 577 bdi_dirty += (dirty * bdi->min_ratio) / 100; 578 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 579 bdi_dirty = dirty * bdi->max_ratio / 100; 580 581 return bdi_dirty; 582 } 583 584 /* 585 * Dirty position control. 586 * 587 * (o) global/bdi setpoints 588 * 589 * We want the dirty pages be balanced around the global/bdi setpoints. 590 * When the number of dirty pages is higher/lower than the setpoint, the 591 * dirty position control ratio (and hence task dirty ratelimit) will be 592 * decreased/increased to bring the dirty pages back to the setpoint. 593 * 594 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 595 * 596 * if (dirty < setpoint) scale up pos_ratio 597 * if (dirty > setpoint) scale down pos_ratio 598 * 599 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio 600 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio 601 * 602 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 603 * 604 * (o) global control line 605 * 606 * ^ pos_ratio 607 * | 608 * | |<===== global dirty control scope ======>| 609 * 2.0 .............* 610 * | .* 611 * | . * 612 * | . * 613 * | . * 614 * | . * 615 * | . * 616 * 1.0 ................................* 617 * | . . * 618 * | . . * 619 * | . . * 620 * | . . * 621 * | . . * 622 * 0 +------------.------------------.----------------------*-------------> 623 * freerun^ setpoint^ limit^ dirty pages 624 * 625 * (o) bdi control line 626 * 627 * ^ pos_ratio 628 * | 629 * | * 630 * | * 631 * | * 632 * | * 633 * | * |<=========== span ============>| 634 * 1.0 .......................* 635 * | . * 636 * | . * 637 * | . * 638 * | . * 639 * | . * 640 * | . * 641 * | . * 642 * | . * 643 * | . * 644 * | . * 645 * | . * 646 * 1/4 ...............................................* * * * * * * * * * * * 647 * | . . 648 * | . . 649 * | . . 650 * 0 +----------------------.-------------------------------.-------------> 651 * bdi_setpoint^ x_intercept^ 652 * 653 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can 654 * be smoothly throttled down to normal if it starts high in situations like 655 * - start writing to a slow SD card and a fast disk at the same time. The SD 656 * card's bdi_dirty may rush to many times higher than bdi_setpoint. 657 * - the bdi dirty thresh drops quickly due to change of JBOD workload 658 */ 659 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, 660 unsigned long thresh, 661 unsigned long bg_thresh, 662 unsigned long dirty, 663 unsigned long bdi_thresh, 664 unsigned long bdi_dirty) 665 { 666 unsigned long write_bw = bdi->avg_write_bandwidth; 667 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 668 unsigned long limit = hard_dirty_limit(thresh); 669 unsigned long x_intercept; 670 unsigned long setpoint; /* dirty pages' target balance point */ 671 unsigned long bdi_setpoint; 672 unsigned long span; 673 long long pos_ratio; /* for scaling up/down the rate limit */ 674 long x; 675 676 if (unlikely(dirty >= limit)) 677 return 0; 678 679 /* 680 * global setpoint 681 * 682 * setpoint - dirty 3 683 * f(dirty) := 1.0 + (----------------) 684 * limit - setpoint 685 * 686 * it's a 3rd order polynomial that subjects to 687 * 688 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 689 * (2) f(setpoint) = 1.0 => the balance point 690 * (3) f(limit) = 0 => the hard limit 691 * (4) df/dx <= 0 => negative feedback control 692 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 693 * => fast response on large errors; small oscillation near setpoint 694 */ 695 setpoint = (freerun + limit) / 2; 696 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT, 697 limit - setpoint + 1); 698 pos_ratio = x; 699 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 700 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 701 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 702 703 /* 704 * We have computed basic pos_ratio above based on global situation. If 705 * the bdi is over/under its share of dirty pages, we want to scale 706 * pos_ratio further down/up. That is done by the following mechanism. 707 */ 708 709 /* 710 * bdi setpoint 711 * 712 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) 713 * 714 * x_intercept - bdi_dirty 715 * := -------------------------- 716 * x_intercept - bdi_setpoint 717 * 718 * The main bdi control line is a linear function that subjects to 719 * 720 * (1) f(bdi_setpoint) = 1.0 721 * (2) k = - 1 / (8 * write_bw) (in single bdi case) 722 * or equally: x_intercept = bdi_setpoint + 8 * write_bw 723 * 724 * For single bdi case, the dirty pages are observed to fluctuate 725 * regularly within range 726 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] 727 * for various filesystems, where (2) can yield in a reasonable 12.5% 728 * fluctuation range for pos_ratio. 729 * 730 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its 731 * own size, so move the slope over accordingly and choose a slope that 732 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. 733 */ 734 if (unlikely(bdi_thresh > thresh)) 735 bdi_thresh = thresh; 736 /* 737 * It's very possible that bdi_thresh is close to 0 not because the 738 * device is slow, but that it has remained inactive for long time. 739 * Honour such devices a reasonable good (hopefully IO efficient) 740 * threshold, so that the occasional writes won't be blocked and active 741 * writes can rampup the threshold quickly. 742 */ 743 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); 744 /* 745 * scale global setpoint to bdi's: 746 * bdi_setpoint = setpoint * bdi_thresh / thresh 747 */ 748 x = div_u64((u64)bdi_thresh << 16, thresh + 1); 749 bdi_setpoint = setpoint * (u64)x >> 16; 750 /* 751 * Use span=(8*write_bw) in single bdi case as indicated by 752 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. 753 * 754 * bdi_thresh thresh - bdi_thresh 755 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh 756 * thresh thresh 757 */ 758 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; 759 x_intercept = bdi_setpoint + span; 760 761 if (bdi_dirty < x_intercept - span / 4) { 762 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty), 763 x_intercept - bdi_setpoint + 1); 764 } else 765 pos_ratio /= 4; 766 767 /* 768 * bdi reserve area, safeguard against dirty pool underrun and disk idle 769 * It may push the desired control point of global dirty pages higher 770 * than setpoint. 771 */ 772 x_intercept = bdi_thresh / 2; 773 if (bdi_dirty < x_intercept) { 774 if (bdi_dirty > x_intercept / 8) 775 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); 776 else 777 pos_ratio *= 8; 778 } 779 780 return pos_ratio; 781 } 782 783 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 784 unsigned long elapsed, 785 unsigned long written) 786 { 787 const unsigned long period = roundup_pow_of_two(3 * HZ); 788 unsigned long avg = bdi->avg_write_bandwidth; 789 unsigned long old = bdi->write_bandwidth; 790 u64 bw; 791 792 /* 793 * bw = written * HZ / elapsed 794 * 795 * bw * elapsed + write_bandwidth * (period - elapsed) 796 * write_bandwidth = --------------------------------------------------- 797 * period 798 */ 799 bw = written - bdi->written_stamp; 800 bw *= HZ; 801 if (unlikely(elapsed > period)) { 802 do_div(bw, elapsed); 803 avg = bw; 804 goto out; 805 } 806 bw += (u64)bdi->write_bandwidth * (period - elapsed); 807 bw >>= ilog2(period); 808 809 /* 810 * one more level of smoothing, for filtering out sudden spikes 811 */ 812 if (avg > old && old >= (unsigned long)bw) 813 avg -= (avg - old) >> 3; 814 815 if (avg < old && old <= (unsigned long)bw) 816 avg += (old - avg) >> 3; 817 818 out: 819 bdi->write_bandwidth = bw; 820 bdi->avg_write_bandwidth = avg; 821 } 822 823 /* 824 * The global dirtyable memory and dirty threshold could be suddenly knocked 825 * down by a large amount (eg. on the startup of KVM in a swapless system). 826 * This may throw the system into deep dirty exceeded state and throttle 827 * heavy/light dirtiers alike. To retain good responsiveness, maintain 828 * global_dirty_limit for tracking slowly down to the knocked down dirty 829 * threshold. 830 */ 831 static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 832 { 833 unsigned long limit = global_dirty_limit; 834 835 /* 836 * Follow up in one step. 837 */ 838 if (limit < thresh) { 839 limit = thresh; 840 goto update; 841 } 842 843 /* 844 * Follow down slowly. Use the higher one as the target, because thresh 845 * may drop below dirty. This is exactly the reason to introduce 846 * global_dirty_limit which is guaranteed to lie above the dirty pages. 847 */ 848 thresh = max(thresh, dirty); 849 if (limit > thresh) { 850 limit -= (limit - thresh) >> 5; 851 goto update; 852 } 853 return; 854 update: 855 global_dirty_limit = limit; 856 } 857 858 static void global_update_bandwidth(unsigned long thresh, 859 unsigned long dirty, 860 unsigned long now) 861 { 862 static DEFINE_SPINLOCK(dirty_lock); 863 static unsigned long update_time; 864 865 /* 866 * check locklessly first to optimize away locking for the most time 867 */ 868 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 869 return; 870 871 spin_lock(&dirty_lock); 872 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 873 update_dirty_limit(thresh, dirty); 874 update_time = now; 875 } 876 spin_unlock(&dirty_lock); 877 } 878 879 /* 880 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. 881 * 882 * Normal bdi tasks will be curbed at or below it in long term. 883 * Obviously it should be around (write_bw / N) when there are N dd tasks. 884 */ 885 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, 886 unsigned long thresh, 887 unsigned long bg_thresh, 888 unsigned long dirty, 889 unsigned long bdi_thresh, 890 unsigned long bdi_dirty, 891 unsigned long dirtied, 892 unsigned long elapsed) 893 { 894 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 895 unsigned long limit = hard_dirty_limit(thresh); 896 unsigned long setpoint = (freerun + limit) / 2; 897 unsigned long write_bw = bdi->avg_write_bandwidth; 898 unsigned long dirty_ratelimit = bdi->dirty_ratelimit; 899 unsigned long dirty_rate; 900 unsigned long task_ratelimit; 901 unsigned long balanced_dirty_ratelimit; 902 unsigned long pos_ratio; 903 unsigned long step; 904 unsigned long x; 905 906 /* 907 * The dirty rate will match the writeout rate in long term, except 908 * when dirty pages are truncated by userspace or re-dirtied by FS. 909 */ 910 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; 911 912 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, 913 bdi_thresh, bdi_dirty); 914 /* 915 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 916 */ 917 task_ratelimit = (u64)dirty_ratelimit * 918 pos_ratio >> RATELIMIT_CALC_SHIFT; 919 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 920 921 /* 922 * A linear estimation of the "balanced" throttle rate. The theory is, 923 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's 924 * dirty_rate will be measured to be (N * task_ratelimit). So the below 925 * formula will yield the balanced rate limit (write_bw / N). 926 * 927 * Note that the expanded form is not a pure rate feedback: 928 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 929 * but also takes pos_ratio into account: 930 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 931 * 932 * (1) is not realistic because pos_ratio also takes part in balancing 933 * the dirty rate. Consider the state 934 * pos_ratio = 0.5 (3) 935 * rate = 2 * (write_bw / N) (4) 936 * If (1) is used, it will stuck in that state! Because each dd will 937 * be throttled at 938 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 939 * yielding 940 * dirty_rate = N * task_ratelimit = write_bw (6) 941 * put (6) into (1) we get 942 * rate_(i+1) = rate_(i) (7) 943 * 944 * So we end up using (2) to always keep 945 * rate_(i+1) ~= (write_bw / N) (8) 946 * regardless of the value of pos_ratio. As long as (8) is satisfied, 947 * pos_ratio is able to drive itself to 1.0, which is not only where 948 * the dirty count meet the setpoint, but also where the slope of 949 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 950 */ 951 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 952 dirty_rate | 1); 953 /* 954 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 955 */ 956 if (unlikely(balanced_dirty_ratelimit > write_bw)) 957 balanced_dirty_ratelimit = write_bw; 958 959 /* 960 * We could safely do this and return immediately: 961 * 962 * bdi->dirty_ratelimit = balanced_dirty_ratelimit; 963 * 964 * However to get a more stable dirty_ratelimit, the below elaborated 965 * code makes use of task_ratelimit to filter out singular points and 966 * limit the step size. 967 * 968 * The below code essentially only uses the relative value of 969 * 970 * task_ratelimit - dirty_ratelimit 971 * = (pos_ratio - 1) * dirty_ratelimit 972 * 973 * which reflects the direction and size of dirty position error. 974 */ 975 976 /* 977 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 978 * task_ratelimit is on the same side of dirty_ratelimit, too. 979 * For example, when 980 * - dirty_ratelimit > balanced_dirty_ratelimit 981 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 982 * lowering dirty_ratelimit will help meet both the position and rate 983 * control targets. Otherwise, don't update dirty_ratelimit if it will 984 * only help meet the rate target. After all, what the users ultimately 985 * feel and care are stable dirty rate and small position error. 986 * 987 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 988 * and filter out the singular points of balanced_dirty_ratelimit. Which 989 * keeps jumping around randomly and can even leap far away at times 990 * due to the small 200ms estimation period of dirty_rate (we want to 991 * keep that period small to reduce time lags). 992 */ 993 step = 0; 994 if (dirty < setpoint) { 995 x = min(bdi->balanced_dirty_ratelimit, 996 min(balanced_dirty_ratelimit, task_ratelimit)); 997 if (dirty_ratelimit < x) 998 step = x - dirty_ratelimit; 999 } else { 1000 x = max(bdi->balanced_dirty_ratelimit, 1001 max(balanced_dirty_ratelimit, task_ratelimit)); 1002 if (dirty_ratelimit > x) 1003 step = dirty_ratelimit - x; 1004 } 1005 1006 /* 1007 * Don't pursue 100% rate matching. It's impossible since the balanced 1008 * rate itself is constantly fluctuating. So decrease the track speed 1009 * when it gets close to the target. Helps eliminate pointless tremors. 1010 */ 1011 step >>= dirty_ratelimit / (2 * step + 1); 1012 /* 1013 * Limit the tracking speed to avoid overshooting. 1014 */ 1015 step = (step + 7) / 8; 1016 1017 if (dirty_ratelimit < balanced_dirty_ratelimit) 1018 dirty_ratelimit += step; 1019 else 1020 dirty_ratelimit -= step; 1021 1022 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1023 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1024 1025 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); 1026 } 1027 1028 void __bdi_update_bandwidth(struct backing_dev_info *bdi, 1029 unsigned long thresh, 1030 unsigned long bg_thresh, 1031 unsigned long dirty, 1032 unsigned long bdi_thresh, 1033 unsigned long bdi_dirty, 1034 unsigned long start_time) 1035 { 1036 unsigned long now = jiffies; 1037 unsigned long elapsed = now - bdi->bw_time_stamp; 1038 unsigned long dirtied; 1039 unsigned long written; 1040 1041 /* 1042 * rate-limit, only update once every 200ms. 1043 */ 1044 if (elapsed < BANDWIDTH_INTERVAL) 1045 return; 1046 1047 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); 1048 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 1049 1050 /* 1051 * Skip quiet periods when disk bandwidth is under-utilized. 1052 * (at least 1s idle time between two flusher runs) 1053 */ 1054 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 1055 goto snapshot; 1056 1057 if (thresh) { 1058 global_update_bandwidth(thresh, dirty, now); 1059 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, 1060 bdi_thresh, bdi_dirty, 1061 dirtied, elapsed); 1062 } 1063 bdi_update_write_bandwidth(bdi, elapsed, written); 1064 1065 snapshot: 1066 bdi->dirtied_stamp = dirtied; 1067 bdi->written_stamp = written; 1068 bdi->bw_time_stamp = now; 1069 } 1070 1071 static void bdi_update_bandwidth(struct backing_dev_info *bdi, 1072 unsigned long thresh, 1073 unsigned long bg_thresh, 1074 unsigned long dirty, 1075 unsigned long bdi_thresh, 1076 unsigned long bdi_dirty, 1077 unsigned long start_time) 1078 { 1079 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 1080 return; 1081 spin_lock(&bdi->wb.list_lock); 1082 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, 1083 bdi_thresh, bdi_dirty, start_time); 1084 spin_unlock(&bdi->wb.list_lock); 1085 } 1086 1087 /* 1088 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1089 * will look to see if it needs to start dirty throttling. 1090 * 1091 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1092 * global_page_state() too often. So scale it near-sqrt to the safety margin 1093 * (the number of pages we may dirty without exceeding the dirty limits). 1094 */ 1095 static unsigned long dirty_poll_interval(unsigned long dirty, 1096 unsigned long thresh) 1097 { 1098 if (thresh > dirty) 1099 return 1UL << (ilog2(thresh - dirty) >> 1); 1100 1101 return 1; 1102 } 1103 1104 static long bdi_max_pause(struct backing_dev_info *bdi, 1105 unsigned long bdi_dirty) 1106 { 1107 long bw = bdi->avg_write_bandwidth; 1108 long t; 1109 1110 /* 1111 * Limit pause time for small memory systems. If sleeping for too long 1112 * time, a small pool of dirty/writeback pages may go empty and disk go 1113 * idle. 1114 * 1115 * 8 serves as the safety ratio. 1116 */ 1117 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1118 t++; 1119 1120 return min_t(long, t, MAX_PAUSE); 1121 } 1122 1123 static long bdi_min_pause(struct backing_dev_info *bdi, 1124 long max_pause, 1125 unsigned long task_ratelimit, 1126 unsigned long dirty_ratelimit, 1127 int *nr_dirtied_pause) 1128 { 1129 long hi = ilog2(bdi->avg_write_bandwidth); 1130 long lo = ilog2(bdi->dirty_ratelimit); 1131 long t; /* target pause */ 1132 long pause; /* estimated next pause */ 1133 int pages; /* target nr_dirtied_pause */ 1134 1135 /* target for 10ms pause on 1-dd case */ 1136 t = max(1, HZ / 100); 1137 1138 /* 1139 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1140 * overheads. 1141 * 1142 * (N * 10ms) on 2^N concurrent tasks. 1143 */ 1144 if (hi > lo) 1145 t += (hi - lo) * (10 * HZ) / 1024; 1146 1147 /* 1148 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1149 * on the much more stable dirty_ratelimit. However the next pause time 1150 * will be computed based on task_ratelimit and the two rate limits may 1151 * depart considerably at some time. Especially if task_ratelimit goes 1152 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1153 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1154 * result task_ratelimit won't be executed faithfully, which could 1155 * eventually bring down dirty_ratelimit. 1156 * 1157 * We apply two rules to fix it up: 1158 * 1) try to estimate the next pause time and if necessary, use a lower 1159 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1160 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1161 * 2) limit the target pause time to max_pause/2, so that the normal 1162 * small fluctuations of task_ratelimit won't trigger rule (1) and 1163 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1164 */ 1165 t = min(t, 1 + max_pause / 2); 1166 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1167 1168 /* 1169 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1170 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1171 * When the 16 consecutive reads are often interrupted by some dirty 1172 * throttling pause during the async writes, cfq will go into idles 1173 * (deadline is fine). So push nr_dirtied_pause as high as possible 1174 * until reaches DIRTY_POLL_THRESH=32 pages. 1175 */ 1176 if (pages < DIRTY_POLL_THRESH) { 1177 t = max_pause; 1178 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1179 if (pages > DIRTY_POLL_THRESH) { 1180 pages = DIRTY_POLL_THRESH; 1181 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1182 } 1183 } 1184 1185 pause = HZ * pages / (task_ratelimit + 1); 1186 if (pause > max_pause) { 1187 t = max_pause; 1188 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1189 } 1190 1191 *nr_dirtied_pause = pages; 1192 /* 1193 * The minimal pause time will normally be half the target pause time. 1194 */ 1195 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1196 } 1197 1198 /* 1199 * balance_dirty_pages() must be called by processes which are generating dirty 1200 * data. It looks at the number of dirty pages in the machine and will force 1201 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1202 * If we're over `background_thresh' then the writeback threads are woken to 1203 * perform some writeout. 1204 */ 1205 static void balance_dirty_pages(struct address_space *mapping, 1206 unsigned long pages_dirtied) 1207 { 1208 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1209 unsigned long bdi_reclaimable; 1210 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 1211 unsigned long bdi_dirty; 1212 unsigned long freerun; 1213 unsigned long background_thresh; 1214 unsigned long dirty_thresh; 1215 unsigned long bdi_thresh; 1216 long period; 1217 long pause; 1218 long max_pause; 1219 long min_pause; 1220 int nr_dirtied_pause; 1221 bool dirty_exceeded = false; 1222 unsigned long task_ratelimit; 1223 unsigned long dirty_ratelimit; 1224 unsigned long pos_ratio; 1225 struct backing_dev_info *bdi = mapping->backing_dev_info; 1226 unsigned long start_time = jiffies; 1227 1228 for (;;) { 1229 unsigned long now = jiffies; 1230 1231 /* 1232 * Unstable writes are a feature of certain networked 1233 * filesystems (i.e. NFS) in which data may have been 1234 * written to the server's write cache, but has not yet 1235 * been flushed to permanent storage. 1236 */ 1237 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1238 global_page_state(NR_UNSTABLE_NFS); 1239 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1240 1241 global_dirty_limits(&background_thresh, &dirty_thresh); 1242 1243 /* 1244 * Throttle it only when the background writeback cannot 1245 * catch-up. This avoids (excessively) small writeouts 1246 * when the bdi limits are ramping up. 1247 */ 1248 freerun = dirty_freerun_ceiling(dirty_thresh, 1249 background_thresh); 1250 if (nr_dirty <= freerun) { 1251 current->dirty_paused_when = now; 1252 current->nr_dirtied = 0; 1253 current->nr_dirtied_pause = 1254 dirty_poll_interval(nr_dirty, dirty_thresh); 1255 break; 1256 } 1257 1258 if (unlikely(!writeback_in_progress(bdi))) 1259 bdi_start_background_writeback(bdi); 1260 1261 /* 1262 * bdi_thresh is not treated as some limiting factor as 1263 * dirty_thresh, due to reasons 1264 * - in JBOD setup, bdi_thresh can fluctuate a lot 1265 * - in a system with HDD and USB key, the USB key may somehow 1266 * go into state (bdi_dirty >> bdi_thresh) either because 1267 * bdi_dirty starts high, or because bdi_thresh drops low. 1268 * In this case we don't want to hard throttle the USB key 1269 * dirtiers for 100 seconds until bdi_dirty drops under 1270 * bdi_thresh. Instead the auxiliary bdi control line in 1271 * bdi_position_ratio() will let the dirtier task progress 1272 * at some rate <= (write_bw / 2) for bringing down bdi_dirty. 1273 */ 1274 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 1275 1276 /* 1277 * In order to avoid the stacked BDI deadlock we need 1278 * to ensure we accurately count the 'dirty' pages when 1279 * the threshold is low. 1280 * 1281 * Otherwise it would be possible to get thresh+n pages 1282 * reported dirty, even though there are thresh-m pages 1283 * actually dirty; with m+n sitting in the percpu 1284 * deltas. 1285 */ 1286 if (bdi_thresh < 2 * bdi_stat_error(bdi)) { 1287 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 1288 bdi_dirty = bdi_reclaimable + 1289 bdi_stat_sum(bdi, BDI_WRITEBACK); 1290 } else { 1291 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 1292 bdi_dirty = bdi_reclaimable + 1293 bdi_stat(bdi, BDI_WRITEBACK); 1294 } 1295 1296 dirty_exceeded = (bdi_dirty > bdi_thresh) && 1297 (nr_dirty > dirty_thresh); 1298 if (dirty_exceeded && !bdi->dirty_exceeded) 1299 bdi->dirty_exceeded = 1; 1300 1301 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, 1302 nr_dirty, bdi_thresh, bdi_dirty, 1303 start_time); 1304 1305 dirty_ratelimit = bdi->dirty_ratelimit; 1306 pos_ratio = bdi_position_ratio(bdi, dirty_thresh, 1307 background_thresh, nr_dirty, 1308 bdi_thresh, bdi_dirty); 1309 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> 1310 RATELIMIT_CALC_SHIFT; 1311 max_pause = bdi_max_pause(bdi, bdi_dirty); 1312 min_pause = bdi_min_pause(bdi, max_pause, 1313 task_ratelimit, dirty_ratelimit, 1314 &nr_dirtied_pause); 1315 1316 if (unlikely(task_ratelimit == 0)) { 1317 period = max_pause; 1318 pause = max_pause; 1319 goto pause; 1320 } 1321 period = HZ * pages_dirtied / task_ratelimit; 1322 pause = period; 1323 if (current->dirty_paused_when) 1324 pause -= now - current->dirty_paused_when; 1325 /* 1326 * For less than 1s think time (ext3/4 may block the dirtier 1327 * for up to 800ms from time to time on 1-HDD; so does xfs, 1328 * however at much less frequency), try to compensate it in 1329 * future periods by updating the virtual time; otherwise just 1330 * do a reset, as it may be a light dirtier. 1331 */ 1332 if (pause < min_pause) { 1333 trace_balance_dirty_pages(bdi, 1334 dirty_thresh, 1335 background_thresh, 1336 nr_dirty, 1337 bdi_thresh, 1338 bdi_dirty, 1339 dirty_ratelimit, 1340 task_ratelimit, 1341 pages_dirtied, 1342 period, 1343 min(pause, 0L), 1344 start_time); 1345 if (pause < -HZ) { 1346 current->dirty_paused_when = now; 1347 current->nr_dirtied = 0; 1348 } else if (period) { 1349 current->dirty_paused_when += period; 1350 current->nr_dirtied = 0; 1351 } else if (current->nr_dirtied_pause <= pages_dirtied) 1352 current->nr_dirtied_pause += pages_dirtied; 1353 break; 1354 } 1355 if (unlikely(pause > max_pause)) { 1356 /* for occasional dropped task_ratelimit */ 1357 now += min(pause - max_pause, max_pause); 1358 pause = max_pause; 1359 } 1360 1361 pause: 1362 trace_balance_dirty_pages(bdi, 1363 dirty_thresh, 1364 background_thresh, 1365 nr_dirty, 1366 bdi_thresh, 1367 bdi_dirty, 1368 dirty_ratelimit, 1369 task_ratelimit, 1370 pages_dirtied, 1371 period, 1372 pause, 1373 start_time); 1374 __set_current_state(TASK_KILLABLE); 1375 io_schedule_timeout(pause); 1376 1377 current->dirty_paused_when = now + pause; 1378 current->nr_dirtied = 0; 1379 current->nr_dirtied_pause = nr_dirtied_pause; 1380 1381 /* 1382 * This is typically equal to (nr_dirty < dirty_thresh) and can 1383 * also keep "1000+ dd on a slow USB stick" under control. 1384 */ 1385 if (task_ratelimit) 1386 break; 1387 1388 /* 1389 * In the case of an unresponding NFS server and the NFS dirty 1390 * pages exceeds dirty_thresh, give the other good bdi's a pipe 1391 * to go through, so that tasks on them still remain responsive. 1392 * 1393 * In theory 1 page is enough to keep the comsumer-producer 1394 * pipe going: the flusher cleans 1 page => the task dirties 1 1395 * more page. However bdi_dirty has accounting errors. So use 1396 * the larger and more IO friendly bdi_stat_error. 1397 */ 1398 if (bdi_dirty <= bdi_stat_error(bdi)) 1399 break; 1400 1401 if (fatal_signal_pending(current)) 1402 break; 1403 } 1404 1405 if (!dirty_exceeded && bdi->dirty_exceeded) 1406 bdi->dirty_exceeded = 0; 1407 1408 if (writeback_in_progress(bdi)) 1409 return; 1410 1411 /* 1412 * In laptop mode, we wait until hitting the higher threshold before 1413 * starting background writeout, and then write out all the way down 1414 * to the lower threshold. So slow writers cause minimal disk activity. 1415 * 1416 * In normal mode, we start background writeout at the lower 1417 * background_thresh, to keep the amount of dirty memory low. 1418 */ 1419 if (laptop_mode) 1420 return; 1421 1422 if (nr_reclaimable > background_thresh) 1423 bdi_start_background_writeback(bdi); 1424 } 1425 1426 void set_page_dirty_balance(struct page *page, int page_mkwrite) 1427 { 1428 if (set_page_dirty(page) || page_mkwrite) { 1429 struct address_space *mapping = page_mapping(page); 1430 1431 if (mapping) 1432 balance_dirty_pages_ratelimited(mapping); 1433 } 1434 } 1435 1436 static DEFINE_PER_CPU(int, bdp_ratelimits); 1437 1438 /* 1439 * Normal tasks are throttled by 1440 * loop { 1441 * dirty tsk->nr_dirtied_pause pages; 1442 * take a snap in balance_dirty_pages(); 1443 * } 1444 * However there is a worst case. If every task exit immediately when dirtied 1445 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1446 * called to throttle the page dirties. The solution is to save the not yet 1447 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1448 * randomly into the running tasks. This works well for the above worst case, 1449 * as the new task will pick up and accumulate the old task's leaked dirty 1450 * count and eventually get throttled. 1451 */ 1452 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1453 1454 /** 1455 * balance_dirty_pages_ratelimited - balance dirty memory state 1456 * @mapping: address_space which was dirtied 1457 * 1458 * Processes which are dirtying memory should call in here once for each page 1459 * which was newly dirtied. The function will periodically check the system's 1460 * dirty state and will initiate writeback if needed. 1461 * 1462 * On really big machines, get_writeback_state is expensive, so try to avoid 1463 * calling it too often (ratelimiting). But once we're over the dirty memory 1464 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1465 * from overshooting the limit by (ratelimit_pages) each. 1466 */ 1467 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1468 { 1469 struct backing_dev_info *bdi = mapping->backing_dev_info; 1470 int ratelimit; 1471 int *p; 1472 1473 if (!bdi_cap_account_dirty(bdi)) 1474 return; 1475 1476 ratelimit = current->nr_dirtied_pause; 1477 if (bdi->dirty_exceeded) 1478 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1479 1480 preempt_disable(); 1481 /* 1482 * This prevents one CPU to accumulate too many dirtied pages without 1483 * calling into balance_dirty_pages(), which can happen when there are 1484 * 1000+ tasks, all of them start dirtying pages at exactly the same 1485 * time, hence all honoured too large initial task->nr_dirtied_pause. 1486 */ 1487 p = &__get_cpu_var(bdp_ratelimits); 1488 if (unlikely(current->nr_dirtied >= ratelimit)) 1489 *p = 0; 1490 else if (unlikely(*p >= ratelimit_pages)) { 1491 *p = 0; 1492 ratelimit = 0; 1493 } 1494 /* 1495 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1496 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1497 * the dirty throttling and livelock other long-run dirtiers. 1498 */ 1499 p = &__get_cpu_var(dirty_throttle_leaks); 1500 if (*p > 0 && current->nr_dirtied < ratelimit) { 1501 unsigned long nr_pages_dirtied; 1502 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1503 *p -= nr_pages_dirtied; 1504 current->nr_dirtied += nr_pages_dirtied; 1505 } 1506 preempt_enable(); 1507 1508 if (unlikely(current->nr_dirtied >= ratelimit)) 1509 balance_dirty_pages(mapping, current->nr_dirtied); 1510 } 1511 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1512 1513 void throttle_vm_writeout(gfp_t gfp_mask) 1514 { 1515 unsigned long background_thresh; 1516 unsigned long dirty_thresh; 1517 1518 for ( ; ; ) { 1519 global_dirty_limits(&background_thresh, &dirty_thresh); 1520 dirty_thresh = hard_dirty_limit(dirty_thresh); 1521 1522 /* 1523 * Boost the allowable dirty threshold a bit for page 1524 * allocators so they don't get DoS'ed by heavy writers 1525 */ 1526 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1527 1528 if (global_page_state(NR_UNSTABLE_NFS) + 1529 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1530 break; 1531 congestion_wait(BLK_RW_ASYNC, HZ/10); 1532 1533 /* 1534 * The caller might hold locks which can prevent IO completion 1535 * or progress in the filesystem. So we cannot just sit here 1536 * waiting for IO to complete. 1537 */ 1538 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1539 break; 1540 } 1541 } 1542 1543 /* 1544 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1545 */ 1546 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 1547 void __user *buffer, size_t *length, loff_t *ppos) 1548 { 1549 proc_dointvec(table, write, buffer, length, ppos); 1550 return 0; 1551 } 1552 1553 #ifdef CONFIG_BLOCK 1554 void laptop_mode_timer_fn(unsigned long data) 1555 { 1556 struct request_queue *q = (struct request_queue *)data; 1557 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1558 global_page_state(NR_UNSTABLE_NFS); 1559 1560 /* 1561 * We want to write everything out, not just down to the dirty 1562 * threshold 1563 */ 1564 if (bdi_has_dirty_io(&q->backing_dev_info)) 1565 bdi_start_writeback(&q->backing_dev_info, nr_pages, 1566 WB_REASON_LAPTOP_TIMER); 1567 } 1568 1569 /* 1570 * We've spun up the disk and we're in laptop mode: schedule writeback 1571 * of all dirty data a few seconds from now. If the flush is already scheduled 1572 * then push it back - the user is still using the disk. 1573 */ 1574 void laptop_io_completion(struct backing_dev_info *info) 1575 { 1576 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 1577 } 1578 1579 /* 1580 * We're in laptop mode and we've just synced. The sync's writes will have 1581 * caused another writeback to be scheduled by laptop_io_completion. 1582 * Nothing needs to be written back anymore, so we unschedule the writeback. 1583 */ 1584 void laptop_sync_completion(void) 1585 { 1586 struct backing_dev_info *bdi; 1587 1588 rcu_read_lock(); 1589 1590 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 1591 del_timer(&bdi->laptop_mode_wb_timer); 1592 1593 rcu_read_unlock(); 1594 } 1595 #endif 1596 1597 /* 1598 * If ratelimit_pages is too high then we can get into dirty-data overload 1599 * if a large number of processes all perform writes at the same time. 1600 * If it is too low then SMP machines will call the (expensive) 1601 * get_writeback_state too often. 1602 * 1603 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 1604 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 1605 * thresholds. 1606 */ 1607 1608 void writeback_set_ratelimit(void) 1609 { 1610 unsigned long background_thresh; 1611 unsigned long dirty_thresh; 1612 global_dirty_limits(&background_thresh, &dirty_thresh); 1613 global_dirty_limit = dirty_thresh; 1614 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 1615 if (ratelimit_pages < 16) 1616 ratelimit_pages = 16; 1617 } 1618 1619 static int __cpuinit 1620 ratelimit_handler(struct notifier_block *self, unsigned long action, 1621 void *hcpu) 1622 { 1623 1624 switch (action & ~CPU_TASKS_FROZEN) { 1625 case CPU_ONLINE: 1626 case CPU_DEAD: 1627 writeback_set_ratelimit(); 1628 return NOTIFY_OK; 1629 default: 1630 return NOTIFY_DONE; 1631 } 1632 } 1633 1634 static struct notifier_block __cpuinitdata ratelimit_nb = { 1635 .notifier_call = ratelimit_handler, 1636 .next = NULL, 1637 }; 1638 1639 /* 1640 * Called early on to tune the page writeback dirty limits. 1641 * 1642 * We used to scale dirty pages according to how total memory 1643 * related to pages that could be allocated for buffers (by 1644 * comparing nr_free_buffer_pages() to vm_total_pages. 1645 * 1646 * However, that was when we used "dirty_ratio" to scale with 1647 * all memory, and we don't do that any more. "dirty_ratio" 1648 * is now applied to total non-HIGHPAGE memory (by subtracting 1649 * totalhigh_pages from vm_total_pages), and as such we can't 1650 * get into the old insane situation any more where we had 1651 * large amounts of dirty pages compared to a small amount of 1652 * non-HIGHMEM memory. 1653 * 1654 * But we might still want to scale the dirty_ratio by how 1655 * much memory the box has.. 1656 */ 1657 void __init page_writeback_init(void) 1658 { 1659 writeback_set_ratelimit(); 1660 register_cpu_notifier(&ratelimit_nb); 1661 1662 fprop_global_init(&writeout_completions); 1663 } 1664 1665 /** 1666 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1667 * @mapping: address space structure to write 1668 * @start: starting page index 1669 * @end: ending page index (inclusive) 1670 * 1671 * This function scans the page range from @start to @end (inclusive) and tags 1672 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1673 * that write_cache_pages (or whoever calls this function) will then use 1674 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1675 * used to avoid livelocking of writeback by a process steadily creating new 1676 * dirty pages in the file (thus it is important for this function to be quick 1677 * so that it can tag pages faster than a dirtying process can create them). 1678 */ 1679 /* 1680 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1681 */ 1682 void tag_pages_for_writeback(struct address_space *mapping, 1683 pgoff_t start, pgoff_t end) 1684 { 1685 #define WRITEBACK_TAG_BATCH 4096 1686 unsigned long tagged; 1687 1688 do { 1689 spin_lock_irq(&mapping->tree_lock); 1690 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1691 &start, end, WRITEBACK_TAG_BATCH, 1692 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1693 spin_unlock_irq(&mapping->tree_lock); 1694 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1695 cond_resched(); 1696 /* We check 'start' to handle wrapping when end == ~0UL */ 1697 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1698 } 1699 EXPORT_SYMBOL(tag_pages_for_writeback); 1700 1701 /** 1702 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1703 * @mapping: address space structure to write 1704 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1705 * @writepage: function called for each page 1706 * @data: data passed to writepage function 1707 * 1708 * If a page is already under I/O, write_cache_pages() skips it, even 1709 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1710 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1711 * and msync() need to guarantee that all the data which was dirty at the time 1712 * the call was made get new I/O started against them. If wbc->sync_mode is 1713 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1714 * existing IO to complete. 1715 * 1716 * To avoid livelocks (when other process dirties new pages), we first tag 1717 * pages which should be written back with TOWRITE tag and only then start 1718 * writing them. For data-integrity sync we have to be careful so that we do 1719 * not miss some pages (e.g., because some other process has cleared TOWRITE 1720 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1721 * by the process clearing the DIRTY tag (and submitting the page for IO). 1722 */ 1723 int write_cache_pages(struct address_space *mapping, 1724 struct writeback_control *wbc, writepage_t writepage, 1725 void *data) 1726 { 1727 int ret = 0; 1728 int done = 0; 1729 struct pagevec pvec; 1730 int nr_pages; 1731 pgoff_t uninitialized_var(writeback_index); 1732 pgoff_t index; 1733 pgoff_t end; /* Inclusive */ 1734 pgoff_t done_index; 1735 int cycled; 1736 int range_whole = 0; 1737 int tag; 1738 1739 pagevec_init(&pvec, 0); 1740 if (wbc->range_cyclic) { 1741 writeback_index = mapping->writeback_index; /* prev offset */ 1742 index = writeback_index; 1743 if (index == 0) 1744 cycled = 1; 1745 else 1746 cycled = 0; 1747 end = -1; 1748 } else { 1749 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1750 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1751 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1752 range_whole = 1; 1753 cycled = 1; /* ignore range_cyclic tests */ 1754 } 1755 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1756 tag = PAGECACHE_TAG_TOWRITE; 1757 else 1758 tag = PAGECACHE_TAG_DIRTY; 1759 retry: 1760 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1761 tag_pages_for_writeback(mapping, index, end); 1762 done_index = index; 1763 while (!done && (index <= end)) { 1764 int i; 1765 1766 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1767 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1768 if (nr_pages == 0) 1769 break; 1770 1771 for (i = 0; i < nr_pages; i++) { 1772 struct page *page = pvec.pages[i]; 1773 1774 /* 1775 * At this point, the page may be truncated or 1776 * invalidated (changing page->mapping to NULL), or 1777 * even swizzled back from swapper_space to tmpfs file 1778 * mapping. However, page->index will not change 1779 * because we have a reference on the page. 1780 */ 1781 if (page->index > end) { 1782 /* 1783 * can't be range_cyclic (1st pass) because 1784 * end == -1 in that case. 1785 */ 1786 done = 1; 1787 break; 1788 } 1789 1790 done_index = page->index; 1791 1792 lock_page(page); 1793 1794 /* 1795 * Page truncated or invalidated. We can freely skip it 1796 * then, even for data integrity operations: the page 1797 * has disappeared concurrently, so there could be no 1798 * real expectation of this data interity operation 1799 * even if there is now a new, dirty page at the same 1800 * pagecache address. 1801 */ 1802 if (unlikely(page->mapping != mapping)) { 1803 continue_unlock: 1804 unlock_page(page); 1805 continue; 1806 } 1807 1808 if (!PageDirty(page)) { 1809 /* someone wrote it for us */ 1810 goto continue_unlock; 1811 } 1812 1813 if (PageWriteback(page)) { 1814 if (wbc->sync_mode != WB_SYNC_NONE) 1815 wait_on_page_writeback(page); 1816 else 1817 goto continue_unlock; 1818 } 1819 1820 BUG_ON(PageWriteback(page)); 1821 if (!clear_page_dirty_for_io(page)) 1822 goto continue_unlock; 1823 1824 trace_wbc_writepage(wbc, mapping->backing_dev_info); 1825 ret = (*writepage)(page, wbc, data); 1826 if (unlikely(ret)) { 1827 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1828 unlock_page(page); 1829 ret = 0; 1830 } else { 1831 /* 1832 * done_index is set past this page, 1833 * so media errors will not choke 1834 * background writeout for the entire 1835 * file. This has consequences for 1836 * range_cyclic semantics (ie. it may 1837 * not be suitable for data integrity 1838 * writeout). 1839 */ 1840 done_index = page->index + 1; 1841 done = 1; 1842 break; 1843 } 1844 } 1845 1846 /* 1847 * We stop writing back only if we are not doing 1848 * integrity sync. In case of integrity sync we have to 1849 * keep going until we have written all the pages 1850 * we tagged for writeback prior to entering this loop. 1851 */ 1852 if (--wbc->nr_to_write <= 0 && 1853 wbc->sync_mode == WB_SYNC_NONE) { 1854 done = 1; 1855 break; 1856 } 1857 } 1858 pagevec_release(&pvec); 1859 cond_resched(); 1860 } 1861 if (!cycled && !done) { 1862 /* 1863 * range_cyclic: 1864 * We hit the last page and there is more work to be done: wrap 1865 * back to the start of the file 1866 */ 1867 cycled = 1; 1868 index = 0; 1869 end = writeback_index - 1; 1870 goto retry; 1871 } 1872 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1873 mapping->writeback_index = done_index; 1874 1875 return ret; 1876 } 1877 EXPORT_SYMBOL(write_cache_pages); 1878 1879 /* 1880 * Function used by generic_writepages to call the real writepage 1881 * function and set the mapping flags on error 1882 */ 1883 static int __writepage(struct page *page, struct writeback_control *wbc, 1884 void *data) 1885 { 1886 struct address_space *mapping = data; 1887 int ret = mapping->a_ops->writepage(page, wbc); 1888 mapping_set_error(mapping, ret); 1889 return ret; 1890 } 1891 1892 /** 1893 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1894 * @mapping: address space structure to write 1895 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1896 * 1897 * This is a library function, which implements the writepages() 1898 * address_space_operation. 1899 */ 1900 int generic_writepages(struct address_space *mapping, 1901 struct writeback_control *wbc) 1902 { 1903 struct blk_plug plug; 1904 int ret; 1905 1906 /* deal with chardevs and other special file */ 1907 if (!mapping->a_ops->writepage) 1908 return 0; 1909 1910 blk_start_plug(&plug); 1911 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 1912 blk_finish_plug(&plug); 1913 return ret; 1914 } 1915 1916 EXPORT_SYMBOL(generic_writepages); 1917 1918 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1919 { 1920 int ret; 1921 1922 if (wbc->nr_to_write <= 0) 1923 return 0; 1924 if (mapping->a_ops->writepages) 1925 ret = mapping->a_ops->writepages(mapping, wbc); 1926 else 1927 ret = generic_writepages(mapping, wbc); 1928 return ret; 1929 } 1930 1931 /** 1932 * write_one_page - write out a single page and optionally wait on I/O 1933 * @page: the page to write 1934 * @wait: if true, wait on writeout 1935 * 1936 * The page must be locked by the caller and will be unlocked upon return. 1937 * 1938 * write_one_page() returns a negative error code if I/O failed. 1939 */ 1940 int write_one_page(struct page *page, int wait) 1941 { 1942 struct address_space *mapping = page->mapping; 1943 int ret = 0; 1944 struct writeback_control wbc = { 1945 .sync_mode = WB_SYNC_ALL, 1946 .nr_to_write = 1, 1947 }; 1948 1949 BUG_ON(!PageLocked(page)); 1950 1951 if (wait) 1952 wait_on_page_writeback(page); 1953 1954 if (clear_page_dirty_for_io(page)) { 1955 page_cache_get(page); 1956 ret = mapping->a_ops->writepage(page, &wbc); 1957 if (ret == 0 && wait) { 1958 wait_on_page_writeback(page); 1959 if (PageError(page)) 1960 ret = -EIO; 1961 } 1962 page_cache_release(page); 1963 } else { 1964 unlock_page(page); 1965 } 1966 return ret; 1967 } 1968 EXPORT_SYMBOL(write_one_page); 1969 1970 /* 1971 * For address_spaces which do not use buffers nor write back. 1972 */ 1973 int __set_page_dirty_no_writeback(struct page *page) 1974 { 1975 if (!PageDirty(page)) 1976 return !TestSetPageDirty(page); 1977 return 0; 1978 } 1979 1980 /* 1981 * Helper function for set_page_dirty family. 1982 * NOTE: This relies on being atomic wrt interrupts. 1983 */ 1984 void account_page_dirtied(struct page *page, struct address_space *mapping) 1985 { 1986 if (mapping_cap_account_dirty(mapping)) { 1987 __inc_zone_page_state(page, NR_FILE_DIRTY); 1988 __inc_zone_page_state(page, NR_DIRTIED); 1989 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1990 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 1991 task_io_account_write(PAGE_CACHE_SIZE); 1992 current->nr_dirtied++; 1993 this_cpu_inc(bdp_ratelimits); 1994 } 1995 } 1996 EXPORT_SYMBOL(account_page_dirtied); 1997 1998 /* 1999 * Helper function for set_page_writeback family. 2000 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 2001 * wrt interrupts. 2002 */ 2003 void account_page_writeback(struct page *page) 2004 { 2005 inc_zone_page_state(page, NR_WRITEBACK); 2006 } 2007 EXPORT_SYMBOL(account_page_writeback); 2008 2009 /* 2010 * For address_spaces which do not use buffers. Just tag the page as dirty in 2011 * its radix tree. 2012 * 2013 * This is also used when a single buffer is being dirtied: we want to set the 2014 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2015 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2016 * 2017 * Most callers have locked the page, which pins the address_space in memory. 2018 * But zap_pte_range() does not lock the page, however in that case the 2019 * mapping is pinned by the vma's ->vm_file reference. 2020 * 2021 * We take care to handle the case where the page was truncated from the 2022 * mapping by re-checking page_mapping() inside tree_lock. 2023 */ 2024 int __set_page_dirty_nobuffers(struct page *page) 2025 { 2026 if (!TestSetPageDirty(page)) { 2027 struct address_space *mapping = page_mapping(page); 2028 struct address_space *mapping2; 2029 2030 if (!mapping) 2031 return 1; 2032 2033 spin_lock_irq(&mapping->tree_lock); 2034 mapping2 = page_mapping(page); 2035 if (mapping2) { /* Race with truncate? */ 2036 BUG_ON(mapping2 != mapping); 2037 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2038 account_page_dirtied(page, mapping); 2039 radix_tree_tag_set(&mapping->page_tree, 2040 page_index(page), PAGECACHE_TAG_DIRTY); 2041 } 2042 spin_unlock_irq(&mapping->tree_lock); 2043 if (mapping->host) { 2044 /* !PageAnon && !swapper_space */ 2045 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2046 } 2047 return 1; 2048 } 2049 return 0; 2050 } 2051 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2052 2053 /* 2054 * Call this whenever redirtying a page, to de-account the dirty counters 2055 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2056 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2057 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2058 * control. 2059 */ 2060 void account_page_redirty(struct page *page) 2061 { 2062 struct address_space *mapping = page->mapping; 2063 if (mapping && mapping_cap_account_dirty(mapping)) { 2064 current->nr_dirtied--; 2065 dec_zone_page_state(page, NR_DIRTIED); 2066 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 2067 } 2068 } 2069 EXPORT_SYMBOL(account_page_redirty); 2070 2071 /* 2072 * When a writepage implementation decides that it doesn't want to write this 2073 * page for some reason, it should redirty the locked page via 2074 * redirty_page_for_writepage() and it should then unlock the page and return 0 2075 */ 2076 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2077 { 2078 wbc->pages_skipped++; 2079 account_page_redirty(page); 2080 return __set_page_dirty_nobuffers(page); 2081 } 2082 EXPORT_SYMBOL(redirty_page_for_writepage); 2083 2084 /* 2085 * Dirty a page. 2086 * 2087 * For pages with a mapping this should be done under the page lock 2088 * for the benefit of asynchronous memory errors who prefer a consistent 2089 * dirty state. This rule can be broken in some special cases, 2090 * but should be better not to. 2091 * 2092 * If the mapping doesn't provide a set_page_dirty a_op, then 2093 * just fall through and assume that it wants buffer_heads. 2094 */ 2095 int set_page_dirty(struct page *page) 2096 { 2097 struct address_space *mapping = page_mapping(page); 2098 2099 if (likely(mapping)) { 2100 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2101 /* 2102 * readahead/lru_deactivate_page could remain 2103 * PG_readahead/PG_reclaim due to race with end_page_writeback 2104 * About readahead, if the page is written, the flags would be 2105 * reset. So no problem. 2106 * About lru_deactivate_page, if the page is redirty, the flag 2107 * will be reset. So no problem. but if the page is used by readahead 2108 * it will confuse readahead and make it restart the size rampup 2109 * process. But it's a trivial problem. 2110 */ 2111 ClearPageReclaim(page); 2112 #ifdef CONFIG_BLOCK 2113 if (!spd) 2114 spd = __set_page_dirty_buffers; 2115 #endif 2116 return (*spd)(page); 2117 } 2118 if (!PageDirty(page)) { 2119 if (!TestSetPageDirty(page)) 2120 return 1; 2121 } 2122 return 0; 2123 } 2124 EXPORT_SYMBOL(set_page_dirty); 2125 2126 /* 2127 * set_page_dirty() is racy if the caller has no reference against 2128 * page->mapping->host, and if the page is unlocked. This is because another 2129 * CPU could truncate the page off the mapping and then free the mapping. 2130 * 2131 * Usually, the page _is_ locked, or the caller is a user-space process which 2132 * holds a reference on the inode by having an open file. 2133 * 2134 * In other cases, the page should be locked before running set_page_dirty(). 2135 */ 2136 int set_page_dirty_lock(struct page *page) 2137 { 2138 int ret; 2139 2140 lock_page(page); 2141 ret = set_page_dirty(page); 2142 unlock_page(page); 2143 return ret; 2144 } 2145 EXPORT_SYMBOL(set_page_dirty_lock); 2146 2147 /* 2148 * Clear a page's dirty flag, while caring for dirty memory accounting. 2149 * Returns true if the page was previously dirty. 2150 * 2151 * This is for preparing to put the page under writeout. We leave the page 2152 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2153 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2154 * implementation will run either set_page_writeback() or set_page_dirty(), 2155 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2156 * back into sync. 2157 * 2158 * This incoherency between the page's dirty flag and radix-tree tag is 2159 * unfortunate, but it only exists while the page is locked. 2160 */ 2161 int clear_page_dirty_for_io(struct page *page) 2162 { 2163 struct address_space *mapping = page_mapping(page); 2164 2165 BUG_ON(!PageLocked(page)); 2166 2167 if (mapping && mapping_cap_account_dirty(mapping)) { 2168 /* 2169 * Yes, Virginia, this is indeed insane. 2170 * 2171 * We use this sequence to make sure that 2172 * (a) we account for dirty stats properly 2173 * (b) we tell the low-level filesystem to 2174 * mark the whole page dirty if it was 2175 * dirty in a pagetable. Only to then 2176 * (c) clean the page again and return 1 to 2177 * cause the writeback. 2178 * 2179 * This way we avoid all nasty races with the 2180 * dirty bit in multiple places and clearing 2181 * them concurrently from different threads. 2182 * 2183 * Note! Normally the "set_page_dirty(page)" 2184 * has no effect on the actual dirty bit - since 2185 * that will already usually be set. But we 2186 * need the side effects, and it can help us 2187 * avoid races. 2188 * 2189 * We basically use the page "master dirty bit" 2190 * as a serialization point for all the different 2191 * threads doing their things. 2192 */ 2193 if (page_mkclean(page)) 2194 set_page_dirty(page); 2195 /* 2196 * We carefully synchronise fault handlers against 2197 * installing a dirty pte and marking the page dirty 2198 * at this point. We do this by having them hold the 2199 * page lock at some point after installing their 2200 * pte, but before marking the page dirty. 2201 * Pages are always locked coming in here, so we get 2202 * the desired exclusion. See mm/memory.c:do_wp_page() 2203 * for more comments. 2204 */ 2205 if (TestClearPageDirty(page)) { 2206 dec_zone_page_state(page, NR_FILE_DIRTY); 2207 dec_bdi_stat(mapping->backing_dev_info, 2208 BDI_RECLAIMABLE); 2209 return 1; 2210 } 2211 return 0; 2212 } 2213 return TestClearPageDirty(page); 2214 } 2215 EXPORT_SYMBOL(clear_page_dirty_for_io); 2216 2217 int test_clear_page_writeback(struct page *page) 2218 { 2219 struct address_space *mapping = page_mapping(page); 2220 int ret; 2221 2222 if (mapping) { 2223 struct backing_dev_info *bdi = mapping->backing_dev_info; 2224 unsigned long flags; 2225 2226 spin_lock_irqsave(&mapping->tree_lock, flags); 2227 ret = TestClearPageWriteback(page); 2228 if (ret) { 2229 radix_tree_tag_clear(&mapping->page_tree, 2230 page_index(page), 2231 PAGECACHE_TAG_WRITEBACK); 2232 if (bdi_cap_account_writeback(bdi)) { 2233 __dec_bdi_stat(bdi, BDI_WRITEBACK); 2234 __bdi_writeout_inc(bdi); 2235 } 2236 } 2237 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2238 } else { 2239 ret = TestClearPageWriteback(page); 2240 } 2241 if (ret) { 2242 dec_zone_page_state(page, NR_WRITEBACK); 2243 inc_zone_page_state(page, NR_WRITTEN); 2244 } 2245 return ret; 2246 } 2247 2248 int test_set_page_writeback(struct page *page) 2249 { 2250 struct address_space *mapping = page_mapping(page); 2251 int ret; 2252 2253 if (mapping) { 2254 struct backing_dev_info *bdi = mapping->backing_dev_info; 2255 unsigned long flags; 2256 2257 spin_lock_irqsave(&mapping->tree_lock, flags); 2258 ret = TestSetPageWriteback(page); 2259 if (!ret) { 2260 radix_tree_tag_set(&mapping->page_tree, 2261 page_index(page), 2262 PAGECACHE_TAG_WRITEBACK); 2263 if (bdi_cap_account_writeback(bdi)) 2264 __inc_bdi_stat(bdi, BDI_WRITEBACK); 2265 } 2266 if (!PageDirty(page)) 2267 radix_tree_tag_clear(&mapping->page_tree, 2268 page_index(page), 2269 PAGECACHE_TAG_DIRTY); 2270 radix_tree_tag_clear(&mapping->page_tree, 2271 page_index(page), 2272 PAGECACHE_TAG_TOWRITE); 2273 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2274 } else { 2275 ret = TestSetPageWriteback(page); 2276 } 2277 if (!ret) 2278 account_page_writeback(page); 2279 return ret; 2280 2281 } 2282 EXPORT_SYMBOL(test_set_page_writeback); 2283 2284 /* 2285 * Return true if any of the pages in the mapping are marked with the 2286 * passed tag. 2287 */ 2288 int mapping_tagged(struct address_space *mapping, int tag) 2289 { 2290 return radix_tree_tagged(&mapping->page_tree, tag); 2291 } 2292 EXPORT_SYMBOL(mapping_tagged); 2293 2294 /** 2295 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2296 * @page: The page to wait on. 2297 * 2298 * This function determines if the given page is related to a backing device 2299 * that requires page contents to be held stable during writeback. If so, then 2300 * it will wait for any pending writeback to complete. 2301 */ 2302 void wait_for_stable_page(struct page *page) 2303 { 2304 struct address_space *mapping = page_mapping(page); 2305 struct backing_dev_info *bdi = mapping->backing_dev_info; 2306 2307 if (!bdi_cap_stable_pages_required(bdi)) 2308 return; 2309 #ifdef CONFIG_NEED_BOUNCE_POOL 2310 if (mapping->host->i_sb->s_flags & MS_SNAP_STABLE) 2311 return; 2312 #endif /* CONFIG_NEED_BOUNCE_POOL */ 2313 2314 wait_on_page_writeback(page); 2315 } 2316 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2317