xref: /linux/mm/page-writeback.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 struct wb_domain global_wb_domain;
126 
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 	struct wb_domain	*dom;
131 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132 #endif
133 	struct bdi_writeback	*wb;
134 	struct fprop_local_percpu *wb_completions;
135 
136 	unsigned long		avail;		/* dirtyable */
137 	unsigned long		dirty;		/* file_dirty + write + nfs */
138 	unsigned long		thresh;		/* dirty threshold */
139 	unsigned long		bg_thresh;	/* dirty background threshold */
140 
141 	unsigned long		wb_dirty;	/* per-wb counterparts */
142 	unsigned long		wb_thresh;
143 	unsigned long		wb_bg_thresh;
144 
145 	unsigned long		pos_ratio;
146 };
147 
148 #define DTC_INIT_COMMON(__wb)	.wb = (__wb),				\
149 				.wb_completions = &(__wb)->completions
150 
151 /*
152  * Length of period for aging writeout fractions of bdis. This is an
153  * arbitrarily chosen number. The longer the period, the slower fractions will
154  * reflect changes in current writeout rate.
155  */
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157 
158 #ifdef CONFIG_CGROUP_WRITEBACK
159 
160 #define GDTC_INIT(__wb)		.dom = &global_wb_domain,		\
161 				DTC_INIT_COMMON(__wb)
162 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 #define MDTC_INIT(__wb, __gdtc)	.dom = mem_cgroup_wb_domain(__wb),	\
164 				.gdtc = __gdtc,				\
165 				DTC_INIT_COMMON(__wb)
166 
167 static bool mdtc_valid(struct dirty_throttle_control *dtc)
168 {
169 	return dtc->dom;
170 }
171 
172 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
173 {
174 	return dtc->dom;
175 }
176 
177 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
178 {
179 	return mdtc->gdtc;
180 }
181 
182 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
183 {
184 	return &wb->memcg_completions;
185 }
186 
187 static void wb_min_max_ratio(struct bdi_writeback *wb,
188 			     unsigned long *minp, unsigned long *maxp)
189 {
190 	unsigned long this_bw = wb->avg_write_bandwidth;
191 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
192 	unsigned long long min = wb->bdi->min_ratio;
193 	unsigned long long max = wb->bdi->max_ratio;
194 
195 	/*
196 	 * @wb may already be clean by the time control reaches here and
197 	 * the total may not include its bw.
198 	 */
199 	if (this_bw < tot_bw) {
200 		if (min) {
201 			min *= this_bw;
202 			do_div(min, tot_bw);
203 		}
204 		if (max < 100) {
205 			max *= this_bw;
206 			do_div(max, tot_bw);
207 		}
208 	}
209 
210 	*minp = min;
211 	*maxp = max;
212 }
213 
214 #else	/* CONFIG_CGROUP_WRITEBACK */
215 
216 #define GDTC_INIT(__wb)		DTC_INIT_COMMON(__wb)
217 #define GDTC_INIT_NO_WB
218 #define MDTC_INIT(__wb, __gdtc)
219 
220 static bool mdtc_valid(struct dirty_throttle_control *dtc)
221 {
222 	return false;
223 }
224 
225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
226 {
227 	return &global_wb_domain;
228 }
229 
230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
231 {
232 	return NULL;
233 }
234 
235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
236 {
237 	return NULL;
238 }
239 
240 static void wb_min_max_ratio(struct bdi_writeback *wb,
241 			     unsigned long *minp, unsigned long *maxp)
242 {
243 	*minp = wb->bdi->min_ratio;
244 	*maxp = wb->bdi->max_ratio;
245 }
246 
247 #endif	/* CONFIG_CGROUP_WRITEBACK */
248 
249 /*
250  * In a memory zone, there is a certain amount of pages we consider
251  * available for the page cache, which is essentially the number of
252  * free and reclaimable pages, minus some zone reserves to protect
253  * lowmem and the ability to uphold the zone's watermarks without
254  * requiring writeback.
255  *
256  * This number of dirtyable pages is the base value of which the
257  * user-configurable dirty ratio is the effictive number of pages that
258  * are allowed to be actually dirtied.  Per individual zone, or
259  * globally by using the sum of dirtyable pages over all zones.
260  *
261  * Because the user is allowed to specify the dirty limit globally as
262  * absolute number of bytes, calculating the per-zone dirty limit can
263  * require translating the configured limit into a percentage of
264  * global dirtyable memory first.
265  */
266 
267 /**
268  * zone_dirtyable_memory - number of dirtyable pages in a zone
269  * @zone: the zone
270  *
271  * Returns the zone's number of pages potentially available for dirty
272  * page cache.  This is the base value for the per-zone dirty limits.
273  */
274 static unsigned long zone_dirtyable_memory(struct zone *zone)
275 {
276 	unsigned long nr_pages;
277 
278 	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
279 	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
280 
281 	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
282 	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
283 
284 	return nr_pages;
285 }
286 
287 static unsigned long highmem_dirtyable_memory(unsigned long total)
288 {
289 #ifdef CONFIG_HIGHMEM
290 	int node;
291 	unsigned long x = 0;
292 
293 	for_each_node_state(node, N_HIGH_MEMORY) {
294 		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
295 
296 		x += zone_dirtyable_memory(z);
297 	}
298 	/*
299 	 * Unreclaimable memory (kernel memory or anonymous memory
300 	 * without swap) can bring down the dirtyable pages below
301 	 * the zone's dirty balance reserve and the above calculation
302 	 * will underflow.  However we still want to add in nodes
303 	 * which are below threshold (negative values) to get a more
304 	 * accurate calculation but make sure that the total never
305 	 * underflows.
306 	 */
307 	if ((long)x < 0)
308 		x = 0;
309 
310 	/*
311 	 * Make sure that the number of highmem pages is never larger
312 	 * than the number of the total dirtyable memory. This can only
313 	 * occur in very strange VM situations but we want to make sure
314 	 * that this does not occur.
315 	 */
316 	return min(x, total);
317 #else
318 	return 0;
319 #endif
320 }
321 
322 /**
323  * global_dirtyable_memory - number of globally dirtyable pages
324  *
325  * Returns the global number of pages potentially available for dirty
326  * page cache.  This is the base value for the global dirty limits.
327  */
328 static unsigned long global_dirtyable_memory(void)
329 {
330 	unsigned long x;
331 
332 	x = global_page_state(NR_FREE_PAGES);
333 	x -= min(x, dirty_balance_reserve);
334 
335 	x += global_page_state(NR_INACTIVE_FILE);
336 	x += global_page_state(NR_ACTIVE_FILE);
337 
338 	if (!vm_highmem_is_dirtyable)
339 		x -= highmem_dirtyable_memory(x);
340 
341 	return x + 1;	/* Ensure that we never return 0 */
342 }
343 
344 /**
345  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
346  * @dtc: dirty_throttle_control of interest
347  *
348  * Calculate @dtc->thresh and ->bg_thresh considering
349  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
350  * must ensure that @dtc->avail is set before calling this function.  The
351  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
352  * real-time tasks.
353  */
354 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
355 {
356 	const unsigned long available_memory = dtc->avail;
357 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
358 	unsigned long bytes = vm_dirty_bytes;
359 	unsigned long bg_bytes = dirty_background_bytes;
360 	unsigned long ratio = vm_dirty_ratio;
361 	unsigned long bg_ratio = dirty_background_ratio;
362 	unsigned long thresh;
363 	unsigned long bg_thresh;
364 	struct task_struct *tsk;
365 
366 	/* gdtc is !NULL iff @dtc is for memcg domain */
367 	if (gdtc) {
368 		unsigned long global_avail = gdtc->avail;
369 
370 		/*
371 		 * The byte settings can't be applied directly to memcg
372 		 * domains.  Convert them to ratios by scaling against
373 		 * globally available memory.
374 		 */
375 		if (bytes)
376 			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
377 				    global_avail, 100UL);
378 		if (bg_bytes)
379 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
380 				       global_avail, 100UL);
381 		bytes = bg_bytes = 0;
382 	}
383 
384 	if (bytes)
385 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
386 	else
387 		thresh = (ratio * available_memory) / 100;
388 
389 	if (bg_bytes)
390 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
391 	else
392 		bg_thresh = (bg_ratio * available_memory) / 100;
393 
394 	if (bg_thresh >= thresh)
395 		bg_thresh = thresh / 2;
396 	tsk = current;
397 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
398 		bg_thresh += bg_thresh / 4;
399 		thresh += thresh / 4;
400 	}
401 	dtc->thresh = thresh;
402 	dtc->bg_thresh = bg_thresh;
403 
404 	/* we should eventually report the domain in the TP */
405 	if (!gdtc)
406 		trace_global_dirty_state(bg_thresh, thresh);
407 }
408 
409 /**
410  * global_dirty_limits - background-writeback and dirty-throttling thresholds
411  * @pbackground: out parameter for bg_thresh
412  * @pdirty: out parameter for thresh
413  *
414  * Calculate bg_thresh and thresh for global_wb_domain.  See
415  * domain_dirty_limits() for details.
416  */
417 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
418 {
419 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
420 
421 	gdtc.avail = global_dirtyable_memory();
422 	domain_dirty_limits(&gdtc);
423 
424 	*pbackground = gdtc.bg_thresh;
425 	*pdirty = gdtc.thresh;
426 }
427 
428 /**
429  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
430  * @zone: the zone
431  *
432  * Returns the maximum number of dirty pages allowed in a zone, based
433  * on the zone's dirtyable memory.
434  */
435 static unsigned long zone_dirty_limit(struct zone *zone)
436 {
437 	unsigned long zone_memory = zone_dirtyable_memory(zone);
438 	struct task_struct *tsk = current;
439 	unsigned long dirty;
440 
441 	if (vm_dirty_bytes)
442 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
443 			zone_memory / global_dirtyable_memory();
444 	else
445 		dirty = vm_dirty_ratio * zone_memory / 100;
446 
447 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
448 		dirty += dirty / 4;
449 
450 	return dirty;
451 }
452 
453 /**
454  * zone_dirty_ok - tells whether a zone is within its dirty limits
455  * @zone: the zone to check
456  *
457  * Returns %true when the dirty pages in @zone are within the zone's
458  * dirty limit, %false if the limit is exceeded.
459  */
460 bool zone_dirty_ok(struct zone *zone)
461 {
462 	unsigned long limit = zone_dirty_limit(zone);
463 
464 	return zone_page_state(zone, NR_FILE_DIRTY) +
465 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
466 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
467 }
468 
469 int dirty_background_ratio_handler(struct ctl_table *table, int write,
470 		void __user *buffer, size_t *lenp,
471 		loff_t *ppos)
472 {
473 	int ret;
474 
475 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
476 	if (ret == 0 && write)
477 		dirty_background_bytes = 0;
478 	return ret;
479 }
480 
481 int dirty_background_bytes_handler(struct ctl_table *table, int write,
482 		void __user *buffer, size_t *lenp,
483 		loff_t *ppos)
484 {
485 	int ret;
486 
487 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
488 	if (ret == 0 && write)
489 		dirty_background_ratio = 0;
490 	return ret;
491 }
492 
493 int dirty_ratio_handler(struct ctl_table *table, int write,
494 		void __user *buffer, size_t *lenp,
495 		loff_t *ppos)
496 {
497 	int old_ratio = vm_dirty_ratio;
498 	int ret;
499 
500 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
501 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
502 		writeback_set_ratelimit();
503 		vm_dirty_bytes = 0;
504 	}
505 	return ret;
506 }
507 
508 int dirty_bytes_handler(struct ctl_table *table, int write,
509 		void __user *buffer, size_t *lenp,
510 		loff_t *ppos)
511 {
512 	unsigned long old_bytes = vm_dirty_bytes;
513 	int ret;
514 
515 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
516 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
517 		writeback_set_ratelimit();
518 		vm_dirty_ratio = 0;
519 	}
520 	return ret;
521 }
522 
523 static unsigned long wp_next_time(unsigned long cur_time)
524 {
525 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
526 	/* 0 has a special meaning... */
527 	if (!cur_time)
528 		return 1;
529 	return cur_time;
530 }
531 
532 static void wb_domain_writeout_inc(struct wb_domain *dom,
533 				   struct fprop_local_percpu *completions,
534 				   unsigned int max_prop_frac)
535 {
536 	__fprop_inc_percpu_max(&dom->completions, completions,
537 			       max_prop_frac);
538 	/* First event after period switching was turned off? */
539 	if (!unlikely(dom->period_time)) {
540 		/*
541 		 * We can race with other __bdi_writeout_inc calls here but
542 		 * it does not cause any harm since the resulting time when
543 		 * timer will fire and what is in writeout_period_time will be
544 		 * roughly the same.
545 		 */
546 		dom->period_time = wp_next_time(jiffies);
547 		mod_timer(&dom->period_timer, dom->period_time);
548 	}
549 }
550 
551 /*
552  * Increment @wb's writeout completion count and the global writeout
553  * completion count. Called from test_clear_page_writeback().
554  */
555 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
556 {
557 	struct wb_domain *cgdom;
558 
559 	__inc_wb_stat(wb, WB_WRITTEN);
560 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
561 			       wb->bdi->max_prop_frac);
562 
563 	cgdom = mem_cgroup_wb_domain(wb);
564 	if (cgdom)
565 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
566 				       wb->bdi->max_prop_frac);
567 }
568 
569 void wb_writeout_inc(struct bdi_writeback *wb)
570 {
571 	unsigned long flags;
572 
573 	local_irq_save(flags);
574 	__wb_writeout_inc(wb);
575 	local_irq_restore(flags);
576 }
577 EXPORT_SYMBOL_GPL(wb_writeout_inc);
578 
579 /*
580  * On idle system, we can be called long after we scheduled because we use
581  * deferred timers so count with missed periods.
582  */
583 static void writeout_period(unsigned long t)
584 {
585 	struct wb_domain *dom = (void *)t;
586 	int miss_periods = (jiffies - dom->period_time) /
587 						 VM_COMPLETIONS_PERIOD_LEN;
588 
589 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
590 		dom->period_time = wp_next_time(dom->period_time +
591 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
592 		mod_timer(&dom->period_timer, dom->period_time);
593 	} else {
594 		/*
595 		 * Aging has zeroed all fractions. Stop wasting CPU on period
596 		 * updates.
597 		 */
598 		dom->period_time = 0;
599 	}
600 }
601 
602 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
603 {
604 	memset(dom, 0, sizeof(*dom));
605 
606 	spin_lock_init(&dom->lock);
607 
608 	init_timer_deferrable(&dom->period_timer);
609 	dom->period_timer.function = writeout_period;
610 	dom->period_timer.data = (unsigned long)dom;
611 
612 	dom->dirty_limit_tstamp = jiffies;
613 
614 	return fprop_global_init(&dom->completions, gfp);
615 }
616 
617 #ifdef CONFIG_CGROUP_WRITEBACK
618 void wb_domain_exit(struct wb_domain *dom)
619 {
620 	del_timer_sync(&dom->period_timer);
621 	fprop_global_destroy(&dom->completions);
622 }
623 #endif
624 
625 /*
626  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
627  * registered backing devices, which, for obvious reasons, can not
628  * exceed 100%.
629  */
630 static unsigned int bdi_min_ratio;
631 
632 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
633 {
634 	int ret = 0;
635 
636 	spin_lock_bh(&bdi_lock);
637 	if (min_ratio > bdi->max_ratio) {
638 		ret = -EINVAL;
639 	} else {
640 		min_ratio -= bdi->min_ratio;
641 		if (bdi_min_ratio + min_ratio < 100) {
642 			bdi_min_ratio += min_ratio;
643 			bdi->min_ratio += min_ratio;
644 		} else {
645 			ret = -EINVAL;
646 		}
647 	}
648 	spin_unlock_bh(&bdi_lock);
649 
650 	return ret;
651 }
652 
653 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
654 {
655 	int ret = 0;
656 
657 	if (max_ratio > 100)
658 		return -EINVAL;
659 
660 	spin_lock_bh(&bdi_lock);
661 	if (bdi->min_ratio > max_ratio) {
662 		ret = -EINVAL;
663 	} else {
664 		bdi->max_ratio = max_ratio;
665 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
666 	}
667 	spin_unlock_bh(&bdi_lock);
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL(bdi_set_max_ratio);
672 
673 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
674 					   unsigned long bg_thresh)
675 {
676 	return (thresh + bg_thresh) / 2;
677 }
678 
679 static unsigned long hard_dirty_limit(struct wb_domain *dom,
680 				      unsigned long thresh)
681 {
682 	return max(thresh, dom->dirty_limit);
683 }
684 
685 /* memory available to a memcg domain is capped by system-wide clean memory */
686 static void mdtc_cap_avail(struct dirty_throttle_control *mdtc)
687 {
688 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
689 	unsigned long clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
690 
691 	mdtc->avail = min(mdtc->avail, clean);
692 }
693 
694 /**
695  * __wb_calc_thresh - @wb's share of dirty throttling threshold
696  * @dtc: dirty_throttle_context of interest
697  *
698  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
699  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
700  *
701  * Note that balance_dirty_pages() will only seriously take it as a hard limit
702  * when sleeping max_pause per page is not enough to keep the dirty pages under
703  * control. For example, when the device is completely stalled due to some error
704  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
705  * In the other normal situations, it acts more gently by throttling the tasks
706  * more (rather than completely block them) when the wb dirty pages go high.
707  *
708  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
709  * - starving fast devices
710  * - piling up dirty pages (that will take long time to sync) on slow devices
711  *
712  * The wb's share of dirty limit will be adapting to its throughput and
713  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
714  */
715 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
716 {
717 	struct wb_domain *dom = dtc_dom(dtc);
718 	unsigned long thresh = dtc->thresh;
719 	u64 wb_thresh;
720 	long numerator, denominator;
721 	unsigned long wb_min_ratio, wb_max_ratio;
722 
723 	/*
724 	 * Calculate this BDI's share of the thresh ratio.
725 	 */
726 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
727 			      &numerator, &denominator);
728 
729 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
730 	wb_thresh *= numerator;
731 	do_div(wb_thresh, denominator);
732 
733 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
734 
735 	wb_thresh += (thresh * wb_min_ratio) / 100;
736 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
737 		wb_thresh = thresh * wb_max_ratio / 100;
738 
739 	return wb_thresh;
740 }
741 
742 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
743 {
744 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
745 					       .thresh = thresh };
746 	return __wb_calc_thresh(&gdtc);
747 }
748 
749 /*
750  *                           setpoint - dirty 3
751  *        f(dirty) := 1.0 + (----------------)
752  *                           limit - setpoint
753  *
754  * it's a 3rd order polynomial that subjects to
755  *
756  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
757  * (2) f(setpoint) = 1.0 => the balance point
758  * (3) f(limit)    = 0   => the hard limit
759  * (4) df/dx      <= 0	 => negative feedback control
760  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
761  *     => fast response on large errors; small oscillation near setpoint
762  */
763 static long long pos_ratio_polynom(unsigned long setpoint,
764 					  unsigned long dirty,
765 					  unsigned long limit)
766 {
767 	long long pos_ratio;
768 	long x;
769 
770 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
771 		      (limit - setpoint) | 1);
772 	pos_ratio = x;
773 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
774 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
775 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
776 
777 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
778 }
779 
780 /*
781  * Dirty position control.
782  *
783  * (o) global/bdi setpoints
784  *
785  * We want the dirty pages be balanced around the global/wb setpoints.
786  * When the number of dirty pages is higher/lower than the setpoint, the
787  * dirty position control ratio (and hence task dirty ratelimit) will be
788  * decreased/increased to bring the dirty pages back to the setpoint.
789  *
790  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
791  *
792  *     if (dirty < setpoint) scale up   pos_ratio
793  *     if (dirty > setpoint) scale down pos_ratio
794  *
795  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
796  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
797  *
798  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
799  *
800  * (o) global control line
801  *
802  *     ^ pos_ratio
803  *     |
804  *     |            |<===== global dirty control scope ======>|
805  * 2.0 .............*
806  *     |            .*
807  *     |            . *
808  *     |            .   *
809  *     |            .     *
810  *     |            .        *
811  *     |            .            *
812  * 1.0 ................................*
813  *     |            .                  .     *
814  *     |            .                  .          *
815  *     |            .                  .              *
816  *     |            .                  .                 *
817  *     |            .                  .                    *
818  *   0 +------------.------------------.----------------------*------------->
819  *           freerun^          setpoint^                 limit^   dirty pages
820  *
821  * (o) wb control line
822  *
823  *     ^ pos_ratio
824  *     |
825  *     |            *
826  *     |              *
827  *     |                *
828  *     |                  *
829  *     |                    * |<=========== span ============>|
830  * 1.0 .......................*
831  *     |                      . *
832  *     |                      .   *
833  *     |                      .     *
834  *     |                      .       *
835  *     |                      .         *
836  *     |                      .           *
837  *     |                      .             *
838  *     |                      .               *
839  *     |                      .                 *
840  *     |                      .                   *
841  *     |                      .                     *
842  * 1/4 ...............................................* * * * * * * * * * * *
843  *     |                      .                         .
844  *     |                      .                           .
845  *     |                      .                             .
846  *   0 +----------------------.-------------------------------.------------->
847  *                wb_setpoint^                    x_intercept^
848  *
849  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
850  * be smoothly throttled down to normal if it starts high in situations like
851  * - start writing to a slow SD card and a fast disk at the same time. The SD
852  *   card's wb_dirty may rush to many times higher than wb_setpoint.
853  * - the wb dirty thresh drops quickly due to change of JBOD workload
854  */
855 static void wb_position_ratio(struct dirty_throttle_control *dtc)
856 {
857 	struct bdi_writeback *wb = dtc->wb;
858 	unsigned long write_bw = wb->avg_write_bandwidth;
859 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
860 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
861 	unsigned long wb_thresh = dtc->wb_thresh;
862 	unsigned long x_intercept;
863 	unsigned long setpoint;		/* dirty pages' target balance point */
864 	unsigned long wb_setpoint;
865 	unsigned long span;
866 	long long pos_ratio;		/* for scaling up/down the rate limit */
867 	long x;
868 
869 	dtc->pos_ratio = 0;
870 
871 	if (unlikely(dtc->dirty >= limit))
872 		return;
873 
874 	/*
875 	 * global setpoint
876 	 *
877 	 * See comment for pos_ratio_polynom().
878 	 */
879 	setpoint = (freerun + limit) / 2;
880 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
881 
882 	/*
883 	 * The strictlimit feature is a tool preventing mistrusted filesystems
884 	 * from growing a large number of dirty pages before throttling. For
885 	 * such filesystems balance_dirty_pages always checks wb counters
886 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
887 	 * This is especially important for fuse which sets bdi->max_ratio to
888 	 * 1% by default. Without strictlimit feature, fuse writeback may
889 	 * consume arbitrary amount of RAM because it is accounted in
890 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
891 	 *
892 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
893 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
894 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
895 	 * limits are set by default to 10% and 20% (background and throttle).
896 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
897 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
898 	 * about ~6K pages (as the average of background and throttle wb
899 	 * limits). The 3rd order polynomial will provide positive feedback if
900 	 * wb_dirty is under wb_setpoint and vice versa.
901 	 *
902 	 * Note, that we cannot use global counters in these calculations
903 	 * because we want to throttle process writing to a strictlimit wb
904 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
905 	 * in the example above).
906 	 */
907 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
908 		long long wb_pos_ratio;
909 
910 		if (dtc->wb_dirty < 8) {
911 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
912 					   2 << RATELIMIT_CALC_SHIFT);
913 			return;
914 		}
915 
916 		if (dtc->wb_dirty >= wb_thresh)
917 			return;
918 
919 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
920 						    dtc->wb_bg_thresh);
921 
922 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
923 			return;
924 
925 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
926 						 wb_thresh);
927 
928 		/*
929 		 * Typically, for strictlimit case, wb_setpoint << setpoint
930 		 * and pos_ratio >> wb_pos_ratio. In the other words global
931 		 * state ("dirty") is not limiting factor and we have to
932 		 * make decision based on wb counters. But there is an
933 		 * important case when global pos_ratio should get precedence:
934 		 * global limits are exceeded (e.g. due to activities on other
935 		 * wb's) while given strictlimit wb is below limit.
936 		 *
937 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
938 		 * but it would look too non-natural for the case of all
939 		 * activity in the system coming from a single strictlimit wb
940 		 * with bdi->max_ratio == 100%.
941 		 *
942 		 * Note that min() below somewhat changes the dynamics of the
943 		 * control system. Normally, pos_ratio value can be well over 3
944 		 * (when globally we are at freerun and wb is well below wb
945 		 * setpoint). Now the maximum pos_ratio in the same situation
946 		 * is 2. We might want to tweak this if we observe the control
947 		 * system is too slow to adapt.
948 		 */
949 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
950 		return;
951 	}
952 
953 	/*
954 	 * We have computed basic pos_ratio above based on global situation. If
955 	 * the wb is over/under its share of dirty pages, we want to scale
956 	 * pos_ratio further down/up. That is done by the following mechanism.
957 	 */
958 
959 	/*
960 	 * wb setpoint
961 	 *
962 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
963 	 *
964 	 *                        x_intercept - wb_dirty
965 	 *                     := --------------------------
966 	 *                        x_intercept - wb_setpoint
967 	 *
968 	 * The main wb control line is a linear function that subjects to
969 	 *
970 	 * (1) f(wb_setpoint) = 1.0
971 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
972 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
973 	 *
974 	 * For single wb case, the dirty pages are observed to fluctuate
975 	 * regularly within range
976 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
977 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
978 	 * fluctuation range for pos_ratio.
979 	 *
980 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
981 	 * own size, so move the slope over accordingly and choose a slope that
982 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
983 	 */
984 	if (unlikely(wb_thresh > dtc->thresh))
985 		wb_thresh = dtc->thresh;
986 	/*
987 	 * It's very possible that wb_thresh is close to 0 not because the
988 	 * device is slow, but that it has remained inactive for long time.
989 	 * Honour such devices a reasonable good (hopefully IO efficient)
990 	 * threshold, so that the occasional writes won't be blocked and active
991 	 * writes can rampup the threshold quickly.
992 	 */
993 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
994 	/*
995 	 * scale global setpoint to wb's:
996 	 *	wb_setpoint = setpoint * wb_thresh / thresh
997 	 */
998 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
999 	wb_setpoint = setpoint * (u64)x >> 16;
1000 	/*
1001 	 * Use span=(8*write_bw) in single wb case as indicated by
1002 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1003 	 *
1004 	 *        wb_thresh                    thresh - wb_thresh
1005 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1006 	 *         thresh                           thresh
1007 	 */
1008 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1009 	x_intercept = wb_setpoint + span;
1010 
1011 	if (dtc->wb_dirty < x_intercept - span / 4) {
1012 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1013 				      (x_intercept - wb_setpoint) | 1);
1014 	} else
1015 		pos_ratio /= 4;
1016 
1017 	/*
1018 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1019 	 * It may push the desired control point of global dirty pages higher
1020 	 * than setpoint.
1021 	 */
1022 	x_intercept = wb_thresh / 2;
1023 	if (dtc->wb_dirty < x_intercept) {
1024 		if (dtc->wb_dirty > x_intercept / 8)
1025 			pos_ratio = div_u64(pos_ratio * x_intercept,
1026 					    dtc->wb_dirty);
1027 		else
1028 			pos_ratio *= 8;
1029 	}
1030 
1031 	dtc->pos_ratio = pos_ratio;
1032 }
1033 
1034 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1035 				      unsigned long elapsed,
1036 				      unsigned long written)
1037 {
1038 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1039 	unsigned long avg = wb->avg_write_bandwidth;
1040 	unsigned long old = wb->write_bandwidth;
1041 	u64 bw;
1042 
1043 	/*
1044 	 * bw = written * HZ / elapsed
1045 	 *
1046 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1047 	 * write_bandwidth = ---------------------------------------------------
1048 	 *                                          period
1049 	 *
1050 	 * @written may have decreased due to account_page_redirty().
1051 	 * Avoid underflowing @bw calculation.
1052 	 */
1053 	bw = written - min(written, wb->written_stamp);
1054 	bw *= HZ;
1055 	if (unlikely(elapsed > period)) {
1056 		do_div(bw, elapsed);
1057 		avg = bw;
1058 		goto out;
1059 	}
1060 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1061 	bw >>= ilog2(period);
1062 
1063 	/*
1064 	 * one more level of smoothing, for filtering out sudden spikes
1065 	 */
1066 	if (avg > old && old >= (unsigned long)bw)
1067 		avg -= (avg - old) >> 3;
1068 
1069 	if (avg < old && old <= (unsigned long)bw)
1070 		avg += (old - avg) >> 3;
1071 
1072 out:
1073 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1074 	avg = max(avg, 1LU);
1075 	if (wb_has_dirty_io(wb)) {
1076 		long delta = avg - wb->avg_write_bandwidth;
1077 		WARN_ON_ONCE(atomic_long_add_return(delta,
1078 					&wb->bdi->tot_write_bandwidth) <= 0);
1079 	}
1080 	wb->write_bandwidth = bw;
1081 	wb->avg_write_bandwidth = avg;
1082 }
1083 
1084 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1085 {
1086 	struct wb_domain *dom = dtc_dom(dtc);
1087 	unsigned long thresh = dtc->thresh;
1088 	unsigned long limit = dom->dirty_limit;
1089 
1090 	/*
1091 	 * Follow up in one step.
1092 	 */
1093 	if (limit < thresh) {
1094 		limit = thresh;
1095 		goto update;
1096 	}
1097 
1098 	/*
1099 	 * Follow down slowly. Use the higher one as the target, because thresh
1100 	 * may drop below dirty. This is exactly the reason to introduce
1101 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1102 	 */
1103 	thresh = max(thresh, dtc->dirty);
1104 	if (limit > thresh) {
1105 		limit -= (limit - thresh) >> 5;
1106 		goto update;
1107 	}
1108 	return;
1109 update:
1110 	dom->dirty_limit = limit;
1111 }
1112 
1113 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1114 				    unsigned long now)
1115 {
1116 	struct wb_domain *dom = dtc_dom(dtc);
1117 
1118 	/*
1119 	 * check locklessly first to optimize away locking for the most time
1120 	 */
1121 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1122 		return;
1123 
1124 	spin_lock(&dom->lock);
1125 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1126 		update_dirty_limit(dtc);
1127 		dom->dirty_limit_tstamp = now;
1128 	}
1129 	spin_unlock(&dom->lock);
1130 }
1131 
1132 /*
1133  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1134  *
1135  * Normal wb tasks will be curbed at or below it in long term.
1136  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1137  */
1138 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1139 				      unsigned long dirtied,
1140 				      unsigned long elapsed)
1141 {
1142 	struct bdi_writeback *wb = dtc->wb;
1143 	unsigned long dirty = dtc->dirty;
1144 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1145 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1146 	unsigned long setpoint = (freerun + limit) / 2;
1147 	unsigned long write_bw = wb->avg_write_bandwidth;
1148 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1149 	unsigned long dirty_rate;
1150 	unsigned long task_ratelimit;
1151 	unsigned long balanced_dirty_ratelimit;
1152 	unsigned long step;
1153 	unsigned long x;
1154 
1155 	/*
1156 	 * The dirty rate will match the writeout rate in long term, except
1157 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1158 	 */
1159 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1160 
1161 	/*
1162 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1163 	 */
1164 	task_ratelimit = (u64)dirty_ratelimit *
1165 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1166 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1167 
1168 	/*
1169 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1170 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1171 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1172 	 * formula will yield the balanced rate limit (write_bw / N).
1173 	 *
1174 	 * Note that the expanded form is not a pure rate feedback:
1175 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1176 	 * but also takes pos_ratio into account:
1177 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1178 	 *
1179 	 * (1) is not realistic because pos_ratio also takes part in balancing
1180 	 * the dirty rate.  Consider the state
1181 	 *	pos_ratio = 0.5						     (3)
1182 	 *	rate = 2 * (write_bw / N)				     (4)
1183 	 * If (1) is used, it will stuck in that state! Because each dd will
1184 	 * be throttled at
1185 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1186 	 * yielding
1187 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1188 	 * put (6) into (1) we get
1189 	 *	rate_(i+1) = rate_(i)					     (7)
1190 	 *
1191 	 * So we end up using (2) to always keep
1192 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1193 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1194 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1195 	 * the dirty count meet the setpoint, but also where the slope of
1196 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1197 	 */
1198 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1199 					   dirty_rate | 1);
1200 	/*
1201 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1202 	 */
1203 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1204 		balanced_dirty_ratelimit = write_bw;
1205 
1206 	/*
1207 	 * We could safely do this and return immediately:
1208 	 *
1209 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1210 	 *
1211 	 * However to get a more stable dirty_ratelimit, the below elaborated
1212 	 * code makes use of task_ratelimit to filter out singular points and
1213 	 * limit the step size.
1214 	 *
1215 	 * The below code essentially only uses the relative value of
1216 	 *
1217 	 *	task_ratelimit - dirty_ratelimit
1218 	 *	= (pos_ratio - 1) * dirty_ratelimit
1219 	 *
1220 	 * which reflects the direction and size of dirty position error.
1221 	 */
1222 
1223 	/*
1224 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1225 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1226 	 * For example, when
1227 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1228 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1229 	 * lowering dirty_ratelimit will help meet both the position and rate
1230 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1231 	 * only help meet the rate target. After all, what the users ultimately
1232 	 * feel and care are stable dirty rate and small position error.
1233 	 *
1234 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1235 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1236 	 * keeps jumping around randomly and can even leap far away at times
1237 	 * due to the small 200ms estimation period of dirty_rate (we want to
1238 	 * keep that period small to reduce time lags).
1239 	 */
1240 	step = 0;
1241 
1242 	/*
1243 	 * For strictlimit case, calculations above were based on wb counters
1244 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1245 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1246 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1247 	 * "dirty" and wb_setpoint as "setpoint".
1248 	 *
1249 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1250 	 * it's possible that wb_thresh is close to zero due to inactivity
1251 	 * of backing device.
1252 	 */
1253 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1254 		dirty = dtc->wb_dirty;
1255 		if (dtc->wb_dirty < 8)
1256 			setpoint = dtc->wb_dirty + 1;
1257 		else
1258 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1259 	}
1260 
1261 	if (dirty < setpoint) {
1262 		x = min3(wb->balanced_dirty_ratelimit,
1263 			 balanced_dirty_ratelimit, task_ratelimit);
1264 		if (dirty_ratelimit < x)
1265 			step = x - dirty_ratelimit;
1266 	} else {
1267 		x = max3(wb->balanced_dirty_ratelimit,
1268 			 balanced_dirty_ratelimit, task_ratelimit);
1269 		if (dirty_ratelimit > x)
1270 			step = dirty_ratelimit - x;
1271 	}
1272 
1273 	/*
1274 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1275 	 * rate itself is constantly fluctuating. So decrease the track speed
1276 	 * when it gets close to the target. Helps eliminate pointless tremors.
1277 	 */
1278 	step >>= dirty_ratelimit / (2 * step + 1);
1279 	/*
1280 	 * Limit the tracking speed to avoid overshooting.
1281 	 */
1282 	step = (step + 7) / 8;
1283 
1284 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1285 		dirty_ratelimit += step;
1286 	else
1287 		dirty_ratelimit -= step;
1288 
1289 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1290 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1291 
1292 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1293 }
1294 
1295 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1296 				  struct dirty_throttle_control *mdtc,
1297 				  unsigned long start_time,
1298 				  bool update_ratelimit)
1299 {
1300 	struct bdi_writeback *wb = gdtc->wb;
1301 	unsigned long now = jiffies;
1302 	unsigned long elapsed = now - wb->bw_time_stamp;
1303 	unsigned long dirtied;
1304 	unsigned long written;
1305 
1306 	lockdep_assert_held(&wb->list_lock);
1307 
1308 	/*
1309 	 * rate-limit, only update once every 200ms.
1310 	 */
1311 	if (elapsed < BANDWIDTH_INTERVAL)
1312 		return;
1313 
1314 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1315 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1316 
1317 	/*
1318 	 * Skip quiet periods when disk bandwidth is under-utilized.
1319 	 * (at least 1s idle time between two flusher runs)
1320 	 */
1321 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1322 		goto snapshot;
1323 
1324 	if (update_ratelimit) {
1325 		domain_update_bandwidth(gdtc, now);
1326 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1327 
1328 		/*
1329 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1330 		 * compiler has no way to figure that out.  Help it.
1331 		 */
1332 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1333 			domain_update_bandwidth(mdtc, now);
1334 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1335 		}
1336 	}
1337 	wb_update_write_bandwidth(wb, elapsed, written);
1338 
1339 snapshot:
1340 	wb->dirtied_stamp = dirtied;
1341 	wb->written_stamp = written;
1342 	wb->bw_time_stamp = now;
1343 }
1344 
1345 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1346 {
1347 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1348 
1349 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1350 }
1351 
1352 /*
1353  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1354  * will look to see if it needs to start dirty throttling.
1355  *
1356  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1357  * global_page_state() too often. So scale it near-sqrt to the safety margin
1358  * (the number of pages we may dirty without exceeding the dirty limits).
1359  */
1360 static unsigned long dirty_poll_interval(unsigned long dirty,
1361 					 unsigned long thresh)
1362 {
1363 	if (thresh > dirty)
1364 		return 1UL << (ilog2(thresh - dirty) >> 1);
1365 
1366 	return 1;
1367 }
1368 
1369 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1370 				  unsigned long wb_dirty)
1371 {
1372 	unsigned long bw = wb->avg_write_bandwidth;
1373 	unsigned long t;
1374 
1375 	/*
1376 	 * Limit pause time for small memory systems. If sleeping for too long
1377 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1378 	 * idle.
1379 	 *
1380 	 * 8 serves as the safety ratio.
1381 	 */
1382 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1383 	t++;
1384 
1385 	return min_t(unsigned long, t, MAX_PAUSE);
1386 }
1387 
1388 static long wb_min_pause(struct bdi_writeback *wb,
1389 			 long max_pause,
1390 			 unsigned long task_ratelimit,
1391 			 unsigned long dirty_ratelimit,
1392 			 int *nr_dirtied_pause)
1393 {
1394 	long hi = ilog2(wb->avg_write_bandwidth);
1395 	long lo = ilog2(wb->dirty_ratelimit);
1396 	long t;		/* target pause */
1397 	long pause;	/* estimated next pause */
1398 	int pages;	/* target nr_dirtied_pause */
1399 
1400 	/* target for 10ms pause on 1-dd case */
1401 	t = max(1, HZ / 100);
1402 
1403 	/*
1404 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1405 	 * overheads.
1406 	 *
1407 	 * (N * 10ms) on 2^N concurrent tasks.
1408 	 */
1409 	if (hi > lo)
1410 		t += (hi - lo) * (10 * HZ) / 1024;
1411 
1412 	/*
1413 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1414 	 * on the much more stable dirty_ratelimit. However the next pause time
1415 	 * will be computed based on task_ratelimit and the two rate limits may
1416 	 * depart considerably at some time. Especially if task_ratelimit goes
1417 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1418 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1419 	 * result task_ratelimit won't be executed faithfully, which could
1420 	 * eventually bring down dirty_ratelimit.
1421 	 *
1422 	 * We apply two rules to fix it up:
1423 	 * 1) try to estimate the next pause time and if necessary, use a lower
1424 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1425 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1426 	 * 2) limit the target pause time to max_pause/2, so that the normal
1427 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1428 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1429 	 */
1430 	t = min(t, 1 + max_pause / 2);
1431 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1432 
1433 	/*
1434 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1435 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1436 	 * When the 16 consecutive reads are often interrupted by some dirty
1437 	 * throttling pause during the async writes, cfq will go into idles
1438 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1439 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1440 	 */
1441 	if (pages < DIRTY_POLL_THRESH) {
1442 		t = max_pause;
1443 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1444 		if (pages > DIRTY_POLL_THRESH) {
1445 			pages = DIRTY_POLL_THRESH;
1446 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1447 		}
1448 	}
1449 
1450 	pause = HZ * pages / (task_ratelimit + 1);
1451 	if (pause > max_pause) {
1452 		t = max_pause;
1453 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1454 	}
1455 
1456 	*nr_dirtied_pause = pages;
1457 	/*
1458 	 * The minimal pause time will normally be half the target pause time.
1459 	 */
1460 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1461 }
1462 
1463 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1464 {
1465 	struct bdi_writeback *wb = dtc->wb;
1466 	unsigned long wb_reclaimable;
1467 
1468 	/*
1469 	 * wb_thresh is not treated as some limiting factor as
1470 	 * dirty_thresh, due to reasons
1471 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1472 	 * - in a system with HDD and USB key, the USB key may somehow
1473 	 *   go into state (wb_dirty >> wb_thresh) either because
1474 	 *   wb_dirty starts high, or because wb_thresh drops low.
1475 	 *   In this case we don't want to hard throttle the USB key
1476 	 *   dirtiers for 100 seconds until wb_dirty drops under
1477 	 *   wb_thresh. Instead the auxiliary wb control line in
1478 	 *   wb_position_ratio() will let the dirtier task progress
1479 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1480 	 */
1481 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1482 	dtc->wb_bg_thresh = dtc->thresh ?
1483 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1484 
1485 	/*
1486 	 * In order to avoid the stacked BDI deadlock we need
1487 	 * to ensure we accurately count the 'dirty' pages when
1488 	 * the threshold is low.
1489 	 *
1490 	 * Otherwise it would be possible to get thresh+n pages
1491 	 * reported dirty, even though there are thresh-m pages
1492 	 * actually dirty; with m+n sitting in the percpu
1493 	 * deltas.
1494 	 */
1495 	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1496 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1497 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1498 	} else {
1499 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1500 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1501 	}
1502 }
1503 
1504 /*
1505  * balance_dirty_pages() must be called by processes which are generating dirty
1506  * data.  It looks at the number of dirty pages in the machine and will force
1507  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1508  * If we're over `background_thresh' then the writeback threads are woken to
1509  * perform some writeout.
1510  */
1511 static void balance_dirty_pages(struct address_space *mapping,
1512 				struct bdi_writeback *wb,
1513 				unsigned long pages_dirtied)
1514 {
1515 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1516 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1517 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1518 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1519 						     &mdtc_stor : NULL;
1520 	struct dirty_throttle_control *sdtc;
1521 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1522 	long period;
1523 	long pause;
1524 	long max_pause;
1525 	long min_pause;
1526 	int nr_dirtied_pause;
1527 	bool dirty_exceeded = false;
1528 	unsigned long task_ratelimit;
1529 	unsigned long dirty_ratelimit;
1530 	struct backing_dev_info *bdi = wb->bdi;
1531 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1532 	unsigned long start_time = jiffies;
1533 
1534 	for (;;) {
1535 		unsigned long now = jiffies;
1536 		unsigned long dirty, thresh, bg_thresh;
1537 		unsigned long m_dirty, m_thresh, m_bg_thresh;
1538 
1539 		/*
1540 		 * Unstable writes are a feature of certain networked
1541 		 * filesystems (i.e. NFS) in which data may have been
1542 		 * written to the server's write cache, but has not yet
1543 		 * been flushed to permanent storage.
1544 		 */
1545 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1546 					global_page_state(NR_UNSTABLE_NFS);
1547 		gdtc->avail = global_dirtyable_memory();
1548 		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1549 
1550 		domain_dirty_limits(gdtc);
1551 
1552 		if (unlikely(strictlimit)) {
1553 			wb_dirty_limits(gdtc);
1554 
1555 			dirty = gdtc->wb_dirty;
1556 			thresh = gdtc->wb_thresh;
1557 			bg_thresh = gdtc->wb_bg_thresh;
1558 		} else {
1559 			dirty = gdtc->dirty;
1560 			thresh = gdtc->thresh;
1561 			bg_thresh = gdtc->bg_thresh;
1562 		}
1563 
1564 		if (mdtc) {
1565 			unsigned long writeback;
1566 
1567 			/*
1568 			 * If @wb belongs to !root memcg, repeat the same
1569 			 * basic calculations for the memcg domain.
1570 			 */
1571 			mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty,
1572 					    &writeback);
1573 			mdtc_cap_avail(mdtc);
1574 			mdtc->dirty += writeback;
1575 
1576 			domain_dirty_limits(mdtc);
1577 
1578 			if (unlikely(strictlimit)) {
1579 				wb_dirty_limits(mdtc);
1580 				m_dirty = mdtc->wb_dirty;
1581 				m_thresh = mdtc->wb_thresh;
1582 				m_bg_thresh = mdtc->wb_bg_thresh;
1583 			} else {
1584 				m_dirty = mdtc->dirty;
1585 				m_thresh = mdtc->thresh;
1586 				m_bg_thresh = mdtc->bg_thresh;
1587 			}
1588 		}
1589 
1590 		/*
1591 		 * Throttle it only when the background writeback cannot
1592 		 * catch-up. This avoids (excessively) small writeouts
1593 		 * when the wb limits are ramping up in case of !strictlimit.
1594 		 *
1595 		 * In strictlimit case make decision based on the wb counters
1596 		 * and limits. Small writeouts when the wb limits are ramping
1597 		 * up are the price we consciously pay for strictlimit-ing.
1598 		 *
1599 		 * If memcg domain is in effect, @dirty should be under
1600 		 * both global and memcg freerun ceilings.
1601 		 */
1602 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1603 		    (!mdtc ||
1604 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1605 			unsigned long intv = dirty_poll_interval(dirty, thresh);
1606 			unsigned long m_intv = ULONG_MAX;
1607 
1608 			current->dirty_paused_when = now;
1609 			current->nr_dirtied = 0;
1610 			if (mdtc)
1611 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1612 			current->nr_dirtied_pause = min(intv, m_intv);
1613 			break;
1614 		}
1615 
1616 		if (unlikely(!writeback_in_progress(wb)))
1617 			wb_start_background_writeback(wb);
1618 
1619 		/*
1620 		 * Calculate global domain's pos_ratio and select the
1621 		 * global dtc by default.
1622 		 */
1623 		if (!strictlimit)
1624 			wb_dirty_limits(gdtc);
1625 
1626 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1627 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1628 
1629 		wb_position_ratio(gdtc);
1630 		sdtc = gdtc;
1631 
1632 		if (mdtc) {
1633 			/*
1634 			 * If memcg domain is in effect, calculate its
1635 			 * pos_ratio.  @wb should satisfy constraints from
1636 			 * both global and memcg domains.  Choose the one
1637 			 * w/ lower pos_ratio.
1638 			 */
1639 			if (!strictlimit)
1640 				wb_dirty_limits(mdtc);
1641 
1642 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1643 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1644 
1645 			wb_position_ratio(mdtc);
1646 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1647 				sdtc = mdtc;
1648 		}
1649 
1650 		if (dirty_exceeded && !wb->dirty_exceeded)
1651 			wb->dirty_exceeded = 1;
1652 
1653 		if (time_is_before_jiffies(wb->bw_time_stamp +
1654 					   BANDWIDTH_INTERVAL)) {
1655 			spin_lock(&wb->list_lock);
1656 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1657 			spin_unlock(&wb->list_lock);
1658 		}
1659 
1660 		/* throttle according to the chosen dtc */
1661 		dirty_ratelimit = wb->dirty_ratelimit;
1662 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1663 							RATELIMIT_CALC_SHIFT;
1664 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1665 		min_pause = wb_min_pause(wb, max_pause,
1666 					 task_ratelimit, dirty_ratelimit,
1667 					 &nr_dirtied_pause);
1668 
1669 		if (unlikely(task_ratelimit == 0)) {
1670 			period = max_pause;
1671 			pause = max_pause;
1672 			goto pause;
1673 		}
1674 		period = HZ * pages_dirtied / task_ratelimit;
1675 		pause = period;
1676 		if (current->dirty_paused_when)
1677 			pause -= now - current->dirty_paused_when;
1678 		/*
1679 		 * For less than 1s think time (ext3/4 may block the dirtier
1680 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1681 		 * however at much less frequency), try to compensate it in
1682 		 * future periods by updating the virtual time; otherwise just
1683 		 * do a reset, as it may be a light dirtier.
1684 		 */
1685 		if (pause < min_pause) {
1686 			trace_balance_dirty_pages(wb,
1687 						  sdtc->thresh,
1688 						  sdtc->bg_thresh,
1689 						  sdtc->dirty,
1690 						  sdtc->wb_thresh,
1691 						  sdtc->wb_dirty,
1692 						  dirty_ratelimit,
1693 						  task_ratelimit,
1694 						  pages_dirtied,
1695 						  period,
1696 						  min(pause, 0L),
1697 						  start_time);
1698 			if (pause < -HZ) {
1699 				current->dirty_paused_when = now;
1700 				current->nr_dirtied = 0;
1701 			} else if (period) {
1702 				current->dirty_paused_when += period;
1703 				current->nr_dirtied = 0;
1704 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1705 				current->nr_dirtied_pause += pages_dirtied;
1706 			break;
1707 		}
1708 		if (unlikely(pause > max_pause)) {
1709 			/* for occasional dropped task_ratelimit */
1710 			now += min(pause - max_pause, max_pause);
1711 			pause = max_pause;
1712 		}
1713 
1714 pause:
1715 		trace_balance_dirty_pages(wb,
1716 					  sdtc->thresh,
1717 					  sdtc->bg_thresh,
1718 					  sdtc->dirty,
1719 					  sdtc->wb_thresh,
1720 					  sdtc->wb_dirty,
1721 					  dirty_ratelimit,
1722 					  task_ratelimit,
1723 					  pages_dirtied,
1724 					  period,
1725 					  pause,
1726 					  start_time);
1727 		__set_current_state(TASK_KILLABLE);
1728 		io_schedule_timeout(pause);
1729 
1730 		current->dirty_paused_when = now + pause;
1731 		current->nr_dirtied = 0;
1732 		current->nr_dirtied_pause = nr_dirtied_pause;
1733 
1734 		/*
1735 		 * This is typically equal to (dirty < thresh) and can also
1736 		 * keep "1000+ dd on a slow USB stick" under control.
1737 		 */
1738 		if (task_ratelimit)
1739 			break;
1740 
1741 		/*
1742 		 * In the case of an unresponding NFS server and the NFS dirty
1743 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1744 		 * to go through, so that tasks on them still remain responsive.
1745 		 *
1746 		 * In theory 1 page is enough to keep the comsumer-producer
1747 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1748 		 * more page. However wb_dirty has accounting errors.  So use
1749 		 * the larger and more IO friendly wb_stat_error.
1750 		 */
1751 		if (sdtc->wb_dirty <= wb_stat_error(wb))
1752 			break;
1753 
1754 		if (fatal_signal_pending(current))
1755 			break;
1756 	}
1757 
1758 	if (!dirty_exceeded && wb->dirty_exceeded)
1759 		wb->dirty_exceeded = 0;
1760 
1761 	if (writeback_in_progress(wb))
1762 		return;
1763 
1764 	/*
1765 	 * In laptop mode, we wait until hitting the higher threshold before
1766 	 * starting background writeout, and then write out all the way down
1767 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1768 	 *
1769 	 * In normal mode, we start background writeout at the lower
1770 	 * background_thresh, to keep the amount of dirty memory low.
1771 	 */
1772 	if (laptop_mode)
1773 		return;
1774 
1775 	if (nr_reclaimable > gdtc->bg_thresh)
1776 		wb_start_background_writeback(wb);
1777 }
1778 
1779 static DEFINE_PER_CPU(int, bdp_ratelimits);
1780 
1781 /*
1782  * Normal tasks are throttled by
1783  *	loop {
1784  *		dirty tsk->nr_dirtied_pause pages;
1785  *		take a snap in balance_dirty_pages();
1786  *	}
1787  * However there is a worst case. If every task exit immediately when dirtied
1788  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1789  * called to throttle the page dirties. The solution is to save the not yet
1790  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1791  * randomly into the running tasks. This works well for the above worst case,
1792  * as the new task will pick up and accumulate the old task's leaked dirty
1793  * count and eventually get throttled.
1794  */
1795 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1796 
1797 /**
1798  * balance_dirty_pages_ratelimited - balance dirty memory state
1799  * @mapping: address_space which was dirtied
1800  *
1801  * Processes which are dirtying memory should call in here once for each page
1802  * which was newly dirtied.  The function will periodically check the system's
1803  * dirty state and will initiate writeback if needed.
1804  *
1805  * On really big machines, get_writeback_state is expensive, so try to avoid
1806  * calling it too often (ratelimiting).  But once we're over the dirty memory
1807  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1808  * from overshooting the limit by (ratelimit_pages) each.
1809  */
1810 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1811 {
1812 	struct inode *inode = mapping->host;
1813 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1814 	struct bdi_writeback *wb = NULL;
1815 	int ratelimit;
1816 	int *p;
1817 
1818 	if (!bdi_cap_account_dirty(bdi))
1819 		return;
1820 
1821 	if (inode_cgwb_enabled(inode))
1822 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1823 	if (!wb)
1824 		wb = &bdi->wb;
1825 
1826 	ratelimit = current->nr_dirtied_pause;
1827 	if (wb->dirty_exceeded)
1828 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1829 
1830 	preempt_disable();
1831 	/*
1832 	 * This prevents one CPU to accumulate too many dirtied pages without
1833 	 * calling into balance_dirty_pages(), which can happen when there are
1834 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1835 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1836 	 */
1837 	p =  this_cpu_ptr(&bdp_ratelimits);
1838 	if (unlikely(current->nr_dirtied >= ratelimit))
1839 		*p = 0;
1840 	else if (unlikely(*p >= ratelimit_pages)) {
1841 		*p = 0;
1842 		ratelimit = 0;
1843 	}
1844 	/*
1845 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1846 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1847 	 * the dirty throttling and livelock other long-run dirtiers.
1848 	 */
1849 	p = this_cpu_ptr(&dirty_throttle_leaks);
1850 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1851 		unsigned long nr_pages_dirtied;
1852 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1853 		*p -= nr_pages_dirtied;
1854 		current->nr_dirtied += nr_pages_dirtied;
1855 	}
1856 	preempt_enable();
1857 
1858 	if (unlikely(current->nr_dirtied >= ratelimit))
1859 		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1860 
1861 	wb_put(wb);
1862 }
1863 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1864 
1865 /**
1866  * wb_over_bg_thresh - does @wb need to be written back?
1867  * @wb: bdi_writeback of interest
1868  *
1869  * Determines whether background writeback should keep writing @wb or it's
1870  * clean enough.  Returns %true if writeback should continue.
1871  */
1872 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1873 {
1874 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1875 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1876 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1877 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1878 						     &mdtc_stor : NULL;
1879 
1880 	/*
1881 	 * Similar to balance_dirty_pages() but ignores pages being written
1882 	 * as we're trying to decide whether to put more under writeback.
1883 	 */
1884 	gdtc->avail = global_dirtyable_memory();
1885 	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1886 		      global_page_state(NR_UNSTABLE_NFS);
1887 	domain_dirty_limits(gdtc);
1888 
1889 	if (gdtc->dirty > gdtc->bg_thresh)
1890 		return true;
1891 
1892 	if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1893 		return true;
1894 
1895 	if (mdtc) {
1896 		unsigned long writeback;
1897 
1898 		mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty, &writeback);
1899 		mdtc_cap_avail(mdtc);
1900 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1901 
1902 		if (mdtc->dirty > mdtc->bg_thresh)
1903 			return true;
1904 
1905 		if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
1906 			return true;
1907 	}
1908 
1909 	return false;
1910 }
1911 
1912 void throttle_vm_writeout(gfp_t gfp_mask)
1913 {
1914 	unsigned long background_thresh;
1915 	unsigned long dirty_thresh;
1916 
1917         for ( ; ; ) {
1918 		global_dirty_limits(&background_thresh, &dirty_thresh);
1919 		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1920 
1921                 /*
1922                  * Boost the allowable dirty threshold a bit for page
1923                  * allocators so they don't get DoS'ed by heavy writers
1924                  */
1925                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1926 
1927                 if (global_page_state(NR_UNSTABLE_NFS) +
1928 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1929                         	break;
1930                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1931 
1932 		/*
1933 		 * The caller might hold locks which can prevent IO completion
1934 		 * or progress in the filesystem.  So we cannot just sit here
1935 		 * waiting for IO to complete.
1936 		 */
1937 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1938 			break;
1939         }
1940 }
1941 
1942 /*
1943  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1944  */
1945 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1946 	void __user *buffer, size_t *length, loff_t *ppos)
1947 {
1948 	proc_dointvec(table, write, buffer, length, ppos);
1949 	return 0;
1950 }
1951 
1952 #ifdef CONFIG_BLOCK
1953 void laptop_mode_timer_fn(unsigned long data)
1954 {
1955 	struct request_queue *q = (struct request_queue *)data;
1956 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1957 		global_page_state(NR_UNSTABLE_NFS);
1958 	struct bdi_writeback *wb;
1959 	struct wb_iter iter;
1960 
1961 	/*
1962 	 * We want to write everything out, not just down to the dirty
1963 	 * threshold
1964 	 */
1965 	if (!bdi_has_dirty_io(&q->backing_dev_info))
1966 		return;
1967 
1968 	bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1969 		if (wb_has_dirty_io(wb))
1970 			wb_start_writeback(wb, nr_pages, true,
1971 					   WB_REASON_LAPTOP_TIMER);
1972 }
1973 
1974 /*
1975  * We've spun up the disk and we're in laptop mode: schedule writeback
1976  * of all dirty data a few seconds from now.  If the flush is already scheduled
1977  * then push it back - the user is still using the disk.
1978  */
1979 void laptop_io_completion(struct backing_dev_info *info)
1980 {
1981 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1982 }
1983 
1984 /*
1985  * We're in laptop mode and we've just synced. The sync's writes will have
1986  * caused another writeback to be scheduled by laptop_io_completion.
1987  * Nothing needs to be written back anymore, so we unschedule the writeback.
1988  */
1989 void laptop_sync_completion(void)
1990 {
1991 	struct backing_dev_info *bdi;
1992 
1993 	rcu_read_lock();
1994 
1995 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1996 		del_timer(&bdi->laptop_mode_wb_timer);
1997 
1998 	rcu_read_unlock();
1999 }
2000 #endif
2001 
2002 /*
2003  * If ratelimit_pages is too high then we can get into dirty-data overload
2004  * if a large number of processes all perform writes at the same time.
2005  * If it is too low then SMP machines will call the (expensive)
2006  * get_writeback_state too often.
2007  *
2008  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2009  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2010  * thresholds.
2011  */
2012 
2013 void writeback_set_ratelimit(void)
2014 {
2015 	struct wb_domain *dom = &global_wb_domain;
2016 	unsigned long background_thresh;
2017 	unsigned long dirty_thresh;
2018 
2019 	global_dirty_limits(&background_thresh, &dirty_thresh);
2020 	dom->dirty_limit = dirty_thresh;
2021 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2022 	if (ratelimit_pages < 16)
2023 		ratelimit_pages = 16;
2024 }
2025 
2026 static int
2027 ratelimit_handler(struct notifier_block *self, unsigned long action,
2028 		  void *hcpu)
2029 {
2030 
2031 	switch (action & ~CPU_TASKS_FROZEN) {
2032 	case CPU_ONLINE:
2033 	case CPU_DEAD:
2034 		writeback_set_ratelimit();
2035 		return NOTIFY_OK;
2036 	default:
2037 		return NOTIFY_DONE;
2038 	}
2039 }
2040 
2041 static struct notifier_block ratelimit_nb = {
2042 	.notifier_call	= ratelimit_handler,
2043 	.next		= NULL,
2044 };
2045 
2046 /*
2047  * Called early on to tune the page writeback dirty limits.
2048  *
2049  * We used to scale dirty pages according to how total memory
2050  * related to pages that could be allocated for buffers (by
2051  * comparing nr_free_buffer_pages() to vm_total_pages.
2052  *
2053  * However, that was when we used "dirty_ratio" to scale with
2054  * all memory, and we don't do that any more. "dirty_ratio"
2055  * is now applied to total non-HIGHPAGE memory (by subtracting
2056  * totalhigh_pages from vm_total_pages), and as such we can't
2057  * get into the old insane situation any more where we had
2058  * large amounts of dirty pages compared to a small amount of
2059  * non-HIGHMEM memory.
2060  *
2061  * But we might still want to scale the dirty_ratio by how
2062  * much memory the box has..
2063  */
2064 void __init page_writeback_init(void)
2065 {
2066 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2067 
2068 	writeback_set_ratelimit();
2069 	register_cpu_notifier(&ratelimit_nb);
2070 }
2071 
2072 /**
2073  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2074  * @mapping: address space structure to write
2075  * @start: starting page index
2076  * @end: ending page index (inclusive)
2077  *
2078  * This function scans the page range from @start to @end (inclusive) and tags
2079  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2080  * that write_cache_pages (or whoever calls this function) will then use
2081  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2082  * used to avoid livelocking of writeback by a process steadily creating new
2083  * dirty pages in the file (thus it is important for this function to be quick
2084  * so that it can tag pages faster than a dirtying process can create them).
2085  */
2086 /*
2087  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2088  */
2089 void tag_pages_for_writeback(struct address_space *mapping,
2090 			     pgoff_t start, pgoff_t end)
2091 {
2092 #define WRITEBACK_TAG_BATCH 4096
2093 	unsigned long tagged;
2094 
2095 	do {
2096 		spin_lock_irq(&mapping->tree_lock);
2097 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2098 				&start, end, WRITEBACK_TAG_BATCH,
2099 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2100 		spin_unlock_irq(&mapping->tree_lock);
2101 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2102 		cond_resched();
2103 		/* We check 'start' to handle wrapping when end == ~0UL */
2104 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2105 }
2106 EXPORT_SYMBOL(tag_pages_for_writeback);
2107 
2108 /**
2109  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2110  * @mapping: address space structure to write
2111  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2112  * @writepage: function called for each page
2113  * @data: data passed to writepage function
2114  *
2115  * If a page is already under I/O, write_cache_pages() skips it, even
2116  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2117  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2118  * and msync() need to guarantee that all the data which was dirty at the time
2119  * the call was made get new I/O started against them.  If wbc->sync_mode is
2120  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2121  * existing IO to complete.
2122  *
2123  * To avoid livelocks (when other process dirties new pages), we first tag
2124  * pages which should be written back with TOWRITE tag and only then start
2125  * writing them. For data-integrity sync we have to be careful so that we do
2126  * not miss some pages (e.g., because some other process has cleared TOWRITE
2127  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2128  * by the process clearing the DIRTY tag (and submitting the page for IO).
2129  */
2130 int write_cache_pages(struct address_space *mapping,
2131 		      struct writeback_control *wbc, writepage_t writepage,
2132 		      void *data)
2133 {
2134 	int ret = 0;
2135 	int done = 0;
2136 	struct pagevec pvec;
2137 	int nr_pages;
2138 	pgoff_t uninitialized_var(writeback_index);
2139 	pgoff_t index;
2140 	pgoff_t end;		/* Inclusive */
2141 	pgoff_t done_index;
2142 	int cycled;
2143 	int range_whole = 0;
2144 	int tag;
2145 
2146 	pagevec_init(&pvec, 0);
2147 	if (wbc->range_cyclic) {
2148 		writeback_index = mapping->writeback_index; /* prev offset */
2149 		index = writeback_index;
2150 		if (index == 0)
2151 			cycled = 1;
2152 		else
2153 			cycled = 0;
2154 		end = -1;
2155 	} else {
2156 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2157 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
2158 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2159 			range_whole = 1;
2160 		cycled = 1; /* ignore range_cyclic tests */
2161 	}
2162 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2163 		tag = PAGECACHE_TAG_TOWRITE;
2164 	else
2165 		tag = PAGECACHE_TAG_DIRTY;
2166 retry:
2167 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2168 		tag_pages_for_writeback(mapping, index, end);
2169 	done_index = index;
2170 	while (!done && (index <= end)) {
2171 		int i;
2172 
2173 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2174 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2175 		if (nr_pages == 0)
2176 			break;
2177 
2178 		for (i = 0; i < nr_pages; i++) {
2179 			struct page *page = pvec.pages[i];
2180 
2181 			/*
2182 			 * At this point, the page may be truncated or
2183 			 * invalidated (changing page->mapping to NULL), or
2184 			 * even swizzled back from swapper_space to tmpfs file
2185 			 * mapping. However, page->index will not change
2186 			 * because we have a reference on the page.
2187 			 */
2188 			if (page->index > end) {
2189 				/*
2190 				 * can't be range_cyclic (1st pass) because
2191 				 * end == -1 in that case.
2192 				 */
2193 				done = 1;
2194 				break;
2195 			}
2196 
2197 			done_index = page->index;
2198 
2199 			lock_page(page);
2200 
2201 			/*
2202 			 * Page truncated or invalidated. We can freely skip it
2203 			 * then, even for data integrity operations: the page
2204 			 * has disappeared concurrently, so there could be no
2205 			 * real expectation of this data interity operation
2206 			 * even if there is now a new, dirty page at the same
2207 			 * pagecache address.
2208 			 */
2209 			if (unlikely(page->mapping != mapping)) {
2210 continue_unlock:
2211 				unlock_page(page);
2212 				continue;
2213 			}
2214 
2215 			if (!PageDirty(page)) {
2216 				/* someone wrote it for us */
2217 				goto continue_unlock;
2218 			}
2219 
2220 			if (PageWriteback(page)) {
2221 				if (wbc->sync_mode != WB_SYNC_NONE)
2222 					wait_on_page_writeback(page);
2223 				else
2224 					goto continue_unlock;
2225 			}
2226 
2227 			BUG_ON(PageWriteback(page));
2228 			if (!clear_page_dirty_for_io(page))
2229 				goto continue_unlock;
2230 
2231 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2232 			ret = (*writepage)(page, wbc, data);
2233 			if (unlikely(ret)) {
2234 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2235 					unlock_page(page);
2236 					ret = 0;
2237 				} else {
2238 					/*
2239 					 * done_index is set past this page,
2240 					 * so media errors will not choke
2241 					 * background writeout for the entire
2242 					 * file. This has consequences for
2243 					 * range_cyclic semantics (ie. it may
2244 					 * not be suitable for data integrity
2245 					 * writeout).
2246 					 */
2247 					done_index = page->index + 1;
2248 					done = 1;
2249 					break;
2250 				}
2251 			}
2252 
2253 			/*
2254 			 * We stop writing back only if we are not doing
2255 			 * integrity sync. In case of integrity sync we have to
2256 			 * keep going until we have written all the pages
2257 			 * we tagged for writeback prior to entering this loop.
2258 			 */
2259 			if (--wbc->nr_to_write <= 0 &&
2260 			    wbc->sync_mode == WB_SYNC_NONE) {
2261 				done = 1;
2262 				break;
2263 			}
2264 		}
2265 		pagevec_release(&pvec);
2266 		cond_resched();
2267 	}
2268 	if (!cycled && !done) {
2269 		/*
2270 		 * range_cyclic:
2271 		 * We hit the last page and there is more work to be done: wrap
2272 		 * back to the start of the file
2273 		 */
2274 		cycled = 1;
2275 		index = 0;
2276 		end = writeback_index - 1;
2277 		goto retry;
2278 	}
2279 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2280 		mapping->writeback_index = done_index;
2281 
2282 	return ret;
2283 }
2284 EXPORT_SYMBOL(write_cache_pages);
2285 
2286 /*
2287  * Function used by generic_writepages to call the real writepage
2288  * function and set the mapping flags on error
2289  */
2290 static int __writepage(struct page *page, struct writeback_control *wbc,
2291 		       void *data)
2292 {
2293 	struct address_space *mapping = data;
2294 	int ret = mapping->a_ops->writepage(page, wbc);
2295 	mapping_set_error(mapping, ret);
2296 	return ret;
2297 }
2298 
2299 /**
2300  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2301  * @mapping: address space structure to write
2302  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2303  *
2304  * This is a library function, which implements the writepages()
2305  * address_space_operation.
2306  */
2307 int generic_writepages(struct address_space *mapping,
2308 		       struct writeback_control *wbc)
2309 {
2310 	struct blk_plug plug;
2311 	int ret;
2312 
2313 	/* deal with chardevs and other special file */
2314 	if (!mapping->a_ops->writepage)
2315 		return 0;
2316 
2317 	blk_start_plug(&plug);
2318 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2319 	blk_finish_plug(&plug);
2320 	return ret;
2321 }
2322 
2323 EXPORT_SYMBOL(generic_writepages);
2324 
2325 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2326 {
2327 	int ret;
2328 
2329 	if (wbc->nr_to_write <= 0)
2330 		return 0;
2331 	if (mapping->a_ops->writepages)
2332 		ret = mapping->a_ops->writepages(mapping, wbc);
2333 	else
2334 		ret = generic_writepages(mapping, wbc);
2335 	return ret;
2336 }
2337 
2338 /**
2339  * write_one_page - write out a single page and optionally wait on I/O
2340  * @page: the page to write
2341  * @wait: if true, wait on writeout
2342  *
2343  * The page must be locked by the caller and will be unlocked upon return.
2344  *
2345  * write_one_page() returns a negative error code if I/O failed.
2346  */
2347 int write_one_page(struct page *page, int wait)
2348 {
2349 	struct address_space *mapping = page->mapping;
2350 	int ret = 0;
2351 	struct writeback_control wbc = {
2352 		.sync_mode = WB_SYNC_ALL,
2353 		.nr_to_write = 1,
2354 	};
2355 
2356 	BUG_ON(!PageLocked(page));
2357 
2358 	if (wait)
2359 		wait_on_page_writeback(page);
2360 
2361 	if (clear_page_dirty_for_io(page)) {
2362 		page_cache_get(page);
2363 		ret = mapping->a_ops->writepage(page, &wbc);
2364 		if (ret == 0 && wait) {
2365 			wait_on_page_writeback(page);
2366 			if (PageError(page))
2367 				ret = -EIO;
2368 		}
2369 		page_cache_release(page);
2370 	} else {
2371 		unlock_page(page);
2372 	}
2373 	return ret;
2374 }
2375 EXPORT_SYMBOL(write_one_page);
2376 
2377 /*
2378  * For address_spaces which do not use buffers nor write back.
2379  */
2380 int __set_page_dirty_no_writeback(struct page *page)
2381 {
2382 	if (!PageDirty(page))
2383 		return !TestSetPageDirty(page);
2384 	return 0;
2385 }
2386 
2387 /*
2388  * Helper function for set_page_dirty family.
2389  *
2390  * Caller must hold mem_cgroup_begin_page_stat().
2391  *
2392  * NOTE: This relies on being atomic wrt interrupts.
2393  */
2394 void account_page_dirtied(struct page *page, struct address_space *mapping,
2395 			  struct mem_cgroup *memcg)
2396 {
2397 	struct inode *inode = mapping->host;
2398 
2399 	trace_writeback_dirty_page(page, mapping);
2400 
2401 	if (mapping_cap_account_dirty(mapping)) {
2402 		struct bdi_writeback *wb;
2403 
2404 		inode_attach_wb(inode, page);
2405 		wb = inode_to_wb(inode);
2406 
2407 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2408 		__inc_zone_page_state(page, NR_FILE_DIRTY);
2409 		__inc_zone_page_state(page, NR_DIRTIED);
2410 		__inc_wb_stat(wb, WB_RECLAIMABLE);
2411 		__inc_wb_stat(wb, WB_DIRTIED);
2412 		task_io_account_write(PAGE_CACHE_SIZE);
2413 		current->nr_dirtied++;
2414 		this_cpu_inc(bdp_ratelimits);
2415 	}
2416 }
2417 EXPORT_SYMBOL(account_page_dirtied);
2418 
2419 /*
2420  * Helper function for deaccounting dirty page without writeback.
2421  *
2422  * Caller must hold mem_cgroup_begin_page_stat().
2423  */
2424 void account_page_cleaned(struct page *page, struct address_space *mapping,
2425 			  struct mem_cgroup *memcg, struct bdi_writeback *wb)
2426 {
2427 	if (mapping_cap_account_dirty(mapping)) {
2428 		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2429 		dec_zone_page_state(page, NR_FILE_DIRTY);
2430 		dec_wb_stat(wb, WB_RECLAIMABLE);
2431 		task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2432 	}
2433 }
2434 
2435 /*
2436  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2437  * its radix tree.
2438  *
2439  * This is also used when a single buffer is being dirtied: we want to set the
2440  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2441  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2442  *
2443  * The caller must ensure this doesn't race with truncation.  Most will simply
2444  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2445  * the pte lock held, which also locks out truncation.
2446  */
2447 int __set_page_dirty_nobuffers(struct page *page)
2448 {
2449 	struct mem_cgroup *memcg;
2450 
2451 	memcg = mem_cgroup_begin_page_stat(page);
2452 	if (!TestSetPageDirty(page)) {
2453 		struct address_space *mapping = page_mapping(page);
2454 		unsigned long flags;
2455 
2456 		if (!mapping) {
2457 			mem_cgroup_end_page_stat(memcg);
2458 			return 1;
2459 		}
2460 
2461 		spin_lock_irqsave(&mapping->tree_lock, flags);
2462 		BUG_ON(page_mapping(page) != mapping);
2463 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2464 		account_page_dirtied(page, mapping, memcg);
2465 		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2466 				   PAGECACHE_TAG_DIRTY);
2467 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2468 		mem_cgroup_end_page_stat(memcg);
2469 
2470 		if (mapping->host) {
2471 			/* !PageAnon && !swapper_space */
2472 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2473 		}
2474 		return 1;
2475 	}
2476 	mem_cgroup_end_page_stat(memcg);
2477 	return 0;
2478 }
2479 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2480 
2481 /*
2482  * Call this whenever redirtying a page, to de-account the dirty counters
2483  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2484  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2485  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2486  * control.
2487  */
2488 void account_page_redirty(struct page *page)
2489 {
2490 	struct address_space *mapping = page->mapping;
2491 
2492 	if (mapping && mapping_cap_account_dirty(mapping)) {
2493 		struct inode *inode = mapping->host;
2494 		struct bdi_writeback *wb;
2495 		bool locked;
2496 
2497 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2498 		current->nr_dirtied--;
2499 		dec_zone_page_state(page, NR_DIRTIED);
2500 		dec_wb_stat(wb, WB_DIRTIED);
2501 		unlocked_inode_to_wb_end(inode, locked);
2502 	}
2503 }
2504 EXPORT_SYMBOL(account_page_redirty);
2505 
2506 /*
2507  * When a writepage implementation decides that it doesn't want to write this
2508  * page for some reason, it should redirty the locked page via
2509  * redirty_page_for_writepage() and it should then unlock the page and return 0
2510  */
2511 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2512 {
2513 	int ret;
2514 
2515 	wbc->pages_skipped++;
2516 	ret = __set_page_dirty_nobuffers(page);
2517 	account_page_redirty(page);
2518 	return ret;
2519 }
2520 EXPORT_SYMBOL(redirty_page_for_writepage);
2521 
2522 /*
2523  * Dirty a page.
2524  *
2525  * For pages with a mapping this should be done under the page lock
2526  * for the benefit of asynchronous memory errors who prefer a consistent
2527  * dirty state. This rule can be broken in some special cases,
2528  * but should be better not to.
2529  *
2530  * If the mapping doesn't provide a set_page_dirty a_op, then
2531  * just fall through and assume that it wants buffer_heads.
2532  */
2533 int set_page_dirty(struct page *page)
2534 {
2535 	struct address_space *mapping = page_mapping(page);
2536 
2537 	if (likely(mapping)) {
2538 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2539 		/*
2540 		 * readahead/lru_deactivate_page could remain
2541 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2542 		 * About readahead, if the page is written, the flags would be
2543 		 * reset. So no problem.
2544 		 * About lru_deactivate_page, if the page is redirty, the flag
2545 		 * will be reset. So no problem. but if the page is used by readahead
2546 		 * it will confuse readahead and make it restart the size rampup
2547 		 * process. But it's a trivial problem.
2548 		 */
2549 		if (PageReclaim(page))
2550 			ClearPageReclaim(page);
2551 #ifdef CONFIG_BLOCK
2552 		if (!spd)
2553 			spd = __set_page_dirty_buffers;
2554 #endif
2555 		return (*spd)(page);
2556 	}
2557 	if (!PageDirty(page)) {
2558 		if (!TestSetPageDirty(page))
2559 			return 1;
2560 	}
2561 	return 0;
2562 }
2563 EXPORT_SYMBOL(set_page_dirty);
2564 
2565 /*
2566  * set_page_dirty() is racy if the caller has no reference against
2567  * page->mapping->host, and if the page is unlocked.  This is because another
2568  * CPU could truncate the page off the mapping and then free the mapping.
2569  *
2570  * Usually, the page _is_ locked, or the caller is a user-space process which
2571  * holds a reference on the inode by having an open file.
2572  *
2573  * In other cases, the page should be locked before running set_page_dirty().
2574  */
2575 int set_page_dirty_lock(struct page *page)
2576 {
2577 	int ret;
2578 
2579 	lock_page(page);
2580 	ret = set_page_dirty(page);
2581 	unlock_page(page);
2582 	return ret;
2583 }
2584 EXPORT_SYMBOL(set_page_dirty_lock);
2585 
2586 /*
2587  * This cancels just the dirty bit on the kernel page itself, it does NOT
2588  * actually remove dirty bits on any mmap's that may be around. It also
2589  * leaves the page tagged dirty, so any sync activity will still find it on
2590  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2591  * look at the dirty bits in the VM.
2592  *
2593  * Doing this should *normally* only ever be done when a page is truncated,
2594  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2595  * this when it notices that somebody has cleaned out all the buffers on a
2596  * page without actually doing it through the VM. Can you say "ext3 is
2597  * horribly ugly"? Thought you could.
2598  */
2599 void cancel_dirty_page(struct page *page)
2600 {
2601 	struct address_space *mapping = page_mapping(page);
2602 
2603 	if (mapping_cap_account_dirty(mapping)) {
2604 		struct inode *inode = mapping->host;
2605 		struct bdi_writeback *wb;
2606 		struct mem_cgroup *memcg;
2607 		bool locked;
2608 
2609 		memcg = mem_cgroup_begin_page_stat(page);
2610 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2611 
2612 		if (TestClearPageDirty(page))
2613 			account_page_cleaned(page, mapping, memcg, wb);
2614 
2615 		unlocked_inode_to_wb_end(inode, locked);
2616 		mem_cgroup_end_page_stat(memcg);
2617 	} else {
2618 		ClearPageDirty(page);
2619 	}
2620 }
2621 EXPORT_SYMBOL(cancel_dirty_page);
2622 
2623 /*
2624  * Clear a page's dirty flag, while caring for dirty memory accounting.
2625  * Returns true if the page was previously dirty.
2626  *
2627  * This is for preparing to put the page under writeout.  We leave the page
2628  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2629  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2630  * implementation will run either set_page_writeback() or set_page_dirty(),
2631  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2632  * back into sync.
2633  *
2634  * This incoherency between the page's dirty flag and radix-tree tag is
2635  * unfortunate, but it only exists while the page is locked.
2636  */
2637 int clear_page_dirty_for_io(struct page *page)
2638 {
2639 	struct address_space *mapping = page_mapping(page);
2640 	int ret = 0;
2641 
2642 	BUG_ON(!PageLocked(page));
2643 
2644 	if (mapping && mapping_cap_account_dirty(mapping)) {
2645 		struct inode *inode = mapping->host;
2646 		struct bdi_writeback *wb;
2647 		struct mem_cgroup *memcg;
2648 		bool locked;
2649 
2650 		/*
2651 		 * Yes, Virginia, this is indeed insane.
2652 		 *
2653 		 * We use this sequence to make sure that
2654 		 *  (a) we account for dirty stats properly
2655 		 *  (b) we tell the low-level filesystem to
2656 		 *      mark the whole page dirty if it was
2657 		 *      dirty in a pagetable. Only to then
2658 		 *  (c) clean the page again and return 1 to
2659 		 *      cause the writeback.
2660 		 *
2661 		 * This way we avoid all nasty races with the
2662 		 * dirty bit in multiple places and clearing
2663 		 * them concurrently from different threads.
2664 		 *
2665 		 * Note! Normally the "set_page_dirty(page)"
2666 		 * has no effect on the actual dirty bit - since
2667 		 * that will already usually be set. But we
2668 		 * need the side effects, and it can help us
2669 		 * avoid races.
2670 		 *
2671 		 * We basically use the page "master dirty bit"
2672 		 * as a serialization point for all the different
2673 		 * threads doing their things.
2674 		 */
2675 		if (page_mkclean(page))
2676 			set_page_dirty(page);
2677 		/*
2678 		 * We carefully synchronise fault handlers against
2679 		 * installing a dirty pte and marking the page dirty
2680 		 * at this point.  We do this by having them hold the
2681 		 * page lock while dirtying the page, and pages are
2682 		 * always locked coming in here, so we get the desired
2683 		 * exclusion.
2684 		 */
2685 		memcg = mem_cgroup_begin_page_stat(page);
2686 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2687 		if (TestClearPageDirty(page)) {
2688 			mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
2689 			dec_zone_page_state(page, NR_FILE_DIRTY);
2690 			dec_wb_stat(wb, WB_RECLAIMABLE);
2691 			ret = 1;
2692 		}
2693 		unlocked_inode_to_wb_end(inode, locked);
2694 		mem_cgroup_end_page_stat(memcg);
2695 		return ret;
2696 	}
2697 	return TestClearPageDirty(page);
2698 }
2699 EXPORT_SYMBOL(clear_page_dirty_for_io);
2700 
2701 int test_clear_page_writeback(struct page *page)
2702 {
2703 	struct address_space *mapping = page_mapping(page);
2704 	struct mem_cgroup *memcg;
2705 	int ret;
2706 
2707 	memcg = mem_cgroup_begin_page_stat(page);
2708 	if (mapping) {
2709 		struct inode *inode = mapping->host;
2710 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2711 		unsigned long flags;
2712 
2713 		spin_lock_irqsave(&mapping->tree_lock, flags);
2714 		ret = TestClearPageWriteback(page);
2715 		if (ret) {
2716 			radix_tree_tag_clear(&mapping->page_tree,
2717 						page_index(page),
2718 						PAGECACHE_TAG_WRITEBACK);
2719 			if (bdi_cap_account_writeback(bdi)) {
2720 				struct bdi_writeback *wb = inode_to_wb(inode);
2721 
2722 				__dec_wb_stat(wb, WB_WRITEBACK);
2723 				__wb_writeout_inc(wb);
2724 			}
2725 		}
2726 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2727 	} else {
2728 		ret = TestClearPageWriteback(page);
2729 	}
2730 	if (ret) {
2731 		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2732 		dec_zone_page_state(page, NR_WRITEBACK);
2733 		inc_zone_page_state(page, NR_WRITTEN);
2734 	}
2735 	mem_cgroup_end_page_stat(memcg);
2736 	return ret;
2737 }
2738 
2739 int __test_set_page_writeback(struct page *page, bool keep_write)
2740 {
2741 	struct address_space *mapping = page_mapping(page);
2742 	struct mem_cgroup *memcg;
2743 	int ret;
2744 
2745 	memcg = mem_cgroup_begin_page_stat(page);
2746 	if (mapping) {
2747 		struct inode *inode = mapping->host;
2748 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2749 		unsigned long flags;
2750 
2751 		spin_lock_irqsave(&mapping->tree_lock, flags);
2752 		ret = TestSetPageWriteback(page);
2753 		if (!ret) {
2754 			radix_tree_tag_set(&mapping->page_tree,
2755 						page_index(page),
2756 						PAGECACHE_TAG_WRITEBACK);
2757 			if (bdi_cap_account_writeback(bdi))
2758 				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2759 		}
2760 		if (!PageDirty(page))
2761 			radix_tree_tag_clear(&mapping->page_tree,
2762 						page_index(page),
2763 						PAGECACHE_TAG_DIRTY);
2764 		if (!keep_write)
2765 			radix_tree_tag_clear(&mapping->page_tree,
2766 						page_index(page),
2767 						PAGECACHE_TAG_TOWRITE);
2768 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2769 	} else {
2770 		ret = TestSetPageWriteback(page);
2771 	}
2772 	if (!ret) {
2773 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2774 		inc_zone_page_state(page, NR_WRITEBACK);
2775 	}
2776 	mem_cgroup_end_page_stat(memcg);
2777 	return ret;
2778 
2779 }
2780 EXPORT_SYMBOL(__test_set_page_writeback);
2781 
2782 /*
2783  * Return true if any of the pages in the mapping are marked with the
2784  * passed tag.
2785  */
2786 int mapping_tagged(struct address_space *mapping, int tag)
2787 {
2788 	return radix_tree_tagged(&mapping->page_tree, tag);
2789 }
2790 EXPORT_SYMBOL(mapping_tagged);
2791 
2792 /**
2793  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2794  * @page:	The page to wait on.
2795  *
2796  * This function determines if the given page is related to a backing device
2797  * that requires page contents to be held stable during writeback.  If so, then
2798  * it will wait for any pending writeback to complete.
2799  */
2800 void wait_for_stable_page(struct page *page)
2801 {
2802 	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2803 		wait_on_page_writeback(page);
2804 }
2805 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2806