1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 akpm@zip.com.au 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 38 /* 39 * The maximum number of pages to writeout in a single bdflush/kupdate 40 * operation. We do this so we don't hold I_SYNC against an inode for 41 * enormous amounts of time, which would block a userspace task which has 42 * been forced to throttle against that inode. Also, the code reevaluates 43 * the dirty each time it has written this many pages. 44 */ 45 #define MAX_WRITEBACK_PAGES 1024 46 47 /* 48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 49 * will look to see if it needs to force writeback or throttling. 50 */ 51 static long ratelimit_pages = 32; 52 53 /* 54 * When balance_dirty_pages decides that the caller needs to perform some 55 * non-background writeback, this is how many pages it will attempt to write. 56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 57 * large amounts of I/O are submitted. 58 */ 59 static inline long sync_writeback_pages(void) 60 { 61 return ratelimit_pages + ratelimit_pages / 2; 62 } 63 64 /* The following parameters are exported via /proc/sys/vm */ 65 66 /* 67 * Start background writeback (via pdflush) at this percentage 68 */ 69 int dirty_background_ratio = 5; 70 71 /* 72 * free highmem will not be subtracted from the total free memory 73 * for calculating free ratios if vm_highmem_is_dirtyable is true 74 */ 75 int vm_highmem_is_dirtyable; 76 77 /* 78 * The generator of dirty data starts writeback at this percentage 79 */ 80 int vm_dirty_ratio = 10; 81 82 /* 83 * The interval between `kupdate'-style writebacks, in jiffies 84 */ 85 int dirty_writeback_interval = 5 * HZ; 86 87 /* 88 * The longest number of jiffies for which data is allowed to remain dirty 89 */ 90 int dirty_expire_interval = 30 * HZ; 91 92 /* 93 * Flag that makes the machine dump writes/reads and block dirtyings. 94 */ 95 int block_dump; 96 97 /* 98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 99 * a full sync is triggered after this time elapses without any disk activity. 100 */ 101 int laptop_mode; 102 103 EXPORT_SYMBOL(laptop_mode); 104 105 /* End of sysctl-exported parameters */ 106 107 108 static void background_writeout(unsigned long _min_pages); 109 110 /* 111 * Scale the writeback cache size proportional to the relative writeout speeds. 112 * 113 * We do this by keeping a floating proportion between BDIs, based on page 114 * writeback completions [end_page_writeback()]. Those devices that write out 115 * pages fastest will get the larger share, while the slower will get a smaller 116 * share. 117 * 118 * We use page writeout completions because we are interested in getting rid of 119 * dirty pages. Having them written out is the primary goal. 120 * 121 * We introduce a concept of time, a period over which we measure these events, 122 * because demand can/will vary over time. The length of this period itself is 123 * measured in page writeback completions. 124 * 125 */ 126 static struct prop_descriptor vm_completions; 127 static struct prop_descriptor vm_dirties; 128 129 static unsigned long determine_dirtyable_memory(void); 130 131 /* 132 * couple the period to the dirty_ratio: 133 * 134 * period/2 ~ roundup_pow_of_two(dirty limit) 135 */ 136 static int calc_period_shift(void) 137 { 138 unsigned long dirty_total; 139 140 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100; 141 return 2 + ilog2(dirty_total - 1); 142 } 143 144 /* 145 * update the period when the dirty ratio changes. 146 */ 147 int dirty_ratio_handler(struct ctl_table *table, int write, 148 struct file *filp, void __user *buffer, size_t *lenp, 149 loff_t *ppos) 150 { 151 int old_ratio = vm_dirty_ratio; 152 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 153 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 154 int shift = calc_period_shift(); 155 prop_change_shift(&vm_completions, shift); 156 prop_change_shift(&vm_dirties, shift); 157 } 158 return ret; 159 } 160 161 /* 162 * Increment the BDI's writeout completion count and the global writeout 163 * completion count. Called from test_clear_page_writeback(). 164 */ 165 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 166 { 167 __prop_inc_percpu(&vm_completions, &bdi->completions); 168 } 169 170 static inline void task_dirty_inc(struct task_struct *tsk) 171 { 172 prop_inc_single(&vm_dirties, &tsk->dirties); 173 } 174 175 /* 176 * Obtain an accurate fraction of the BDI's portion. 177 */ 178 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 179 long *numerator, long *denominator) 180 { 181 if (bdi_cap_writeback_dirty(bdi)) { 182 prop_fraction_percpu(&vm_completions, &bdi->completions, 183 numerator, denominator); 184 } else { 185 *numerator = 0; 186 *denominator = 1; 187 } 188 } 189 190 /* 191 * Clip the earned share of dirty pages to that which is actually available. 192 * This avoids exceeding the total dirty_limit when the floating averages 193 * fluctuate too quickly. 194 */ 195 static void 196 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty) 197 { 198 long avail_dirty; 199 200 avail_dirty = dirty - 201 (global_page_state(NR_FILE_DIRTY) + 202 global_page_state(NR_WRITEBACK) + 203 global_page_state(NR_UNSTABLE_NFS)); 204 205 if (avail_dirty < 0) 206 avail_dirty = 0; 207 208 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + 209 bdi_stat(bdi, BDI_WRITEBACK); 210 211 *pbdi_dirty = min(*pbdi_dirty, avail_dirty); 212 } 213 214 static inline void task_dirties_fraction(struct task_struct *tsk, 215 long *numerator, long *denominator) 216 { 217 prop_fraction_single(&vm_dirties, &tsk->dirties, 218 numerator, denominator); 219 } 220 221 /* 222 * scale the dirty limit 223 * 224 * task specific dirty limit: 225 * 226 * dirty -= (dirty/8) * p_{t} 227 */ 228 static void task_dirty_limit(struct task_struct *tsk, long *pdirty) 229 { 230 long numerator, denominator; 231 long dirty = *pdirty; 232 u64 inv = dirty >> 3; 233 234 task_dirties_fraction(tsk, &numerator, &denominator); 235 inv *= numerator; 236 do_div(inv, denominator); 237 238 dirty -= inv; 239 if (dirty < *pdirty/2) 240 dirty = *pdirty/2; 241 242 *pdirty = dirty; 243 } 244 245 /* 246 * Work out the current dirty-memory clamping and background writeout 247 * thresholds. 248 * 249 * The main aim here is to lower them aggressively if there is a lot of mapped 250 * memory around. To avoid stressing page reclaim with lots of unreclaimable 251 * pages. It is better to clamp down on writers than to start swapping, and 252 * performing lots of scanning. 253 * 254 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 255 * 256 * We don't permit the clamping level to fall below 5% - that is getting rather 257 * excessive. 258 * 259 * We make sure that the background writeout level is below the adjusted 260 * clamping level. 261 */ 262 263 static unsigned long highmem_dirtyable_memory(unsigned long total) 264 { 265 #ifdef CONFIG_HIGHMEM 266 int node; 267 unsigned long x = 0; 268 269 for_each_node_state(node, N_HIGH_MEMORY) { 270 struct zone *z = 271 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 272 273 x += zone_page_state(z, NR_FREE_PAGES) 274 + zone_page_state(z, NR_INACTIVE) 275 + zone_page_state(z, NR_ACTIVE); 276 } 277 /* 278 * Make sure that the number of highmem pages is never larger 279 * than the number of the total dirtyable memory. This can only 280 * occur in very strange VM situations but we want to make sure 281 * that this does not occur. 282 */ 283 return min(x, total); 284 #else 285 return 0; 286 #endif 287 } 288 289 static unsigned long determine_dirtyable_memory(void) 290 { 291 unsigned long x; 292 293 x = global_page_state(NR_FREE_PAGES) 294 + global_page_state(NR_INACTIVE) 295 + global_page_state(NR_ACTIVE); 296 297 if (!vm_highmem_is_dirtyable) 298 x -= highmem_dirtyable_memory(x); 299 300 return x + 1; /* Ensure that we never return 0 */ 301 } 302 303 static void 304 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty, 305 struct backing_dev_info *bdi) 306 { 307 int background_ratio; /* Percentages */ 308 int dirty_ratio; 309 long background; 310 long dirty; 311 unsigned long available_memory = determine_dirtyable_memory(); 312 struct task_struct *tsk; 313 314 dirty_ratio = vm_dirty_ratio; 315 if (dirty_ratio < 5) 316 dirty_ratio = 5; 317 318 background_ratio = dirty_background_ratio; 319 if (background_ratio >= dirty_ratio) 320 background_ratio = dirty_ratio / 2; 321 322 background = (background_ratio * available_memory) / 100; 323 dirty = (dirty_ratio * available_memory) / 100; 324 tsk = current; 325 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 326 background += background / 4; 327 dirty += dirty / 4; 328 } 329 *pbackground = background; 330 *pdirty = dirty; 331 332 if (bdi) { 333 u64 bdi_dirty = dirty; 334 long numerator, denominator; 335 336 /* 337 * Calculate this BDI's share of the dirty ratio. 338 */ 339 bdi_writeout_fraction(bdi, &numerator, &denominator); 340 341 bdi_dirty *= numerator; 342 do_div(bdi_dirty, denominator); 343 344 *pbdi_dirty = bdi_dirty; 345 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); 346 task_dirty_limit(current, pbdi_dirty); 347 } 348 } 349 350 /* 351 * balance_dirty_pages() must be called by processes which are generating dirty 352 * data. It looks at the number of dirty pages in the machine and will force 353 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 354 * If we're over `background_thresh' then pdflush is woken to perform some 355 * writeout. 356 */ 357 static void balance_dirty_pages(struct address_space *mapping) 358 { 359 long nr_reclaimable, bdi_nr_reclaimable; 360 long nr_writeback, bdi_nr_writeback; 361 long background_thresh; 362 long dirty_thresh; 363 long bdi_thresh; 364 unsigned long pages_written = 0; 365 unsigned long write_chunk = sync_writeback_pages(); 366 367 struct backing_dev_info *bdi = mapping->backing_dev_info; 368 369 for (;;) { 370 struct writeback_control wbc = { 371 .bdi = bdi, 372 .sync_mode = WB_SYNC_NONE, 373 .older_than_this = NULL, 374 .nr_to_write = write_chunk, 375 .range_cyclic = 1, 376 }; 377 378 get_dirty_limits(&background_thresh, &dirty_thresh, 379 &bdi_thresh, bdi); 380 381 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 382 global_page_state(NR_UNSTABLE_NFS); 383 nr_writeback = global_page_state(NR_WRITEBACK); 384 385 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 386 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 387 388 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 389 break; 390 391 /* 392 * Throttle it only when the background writeback cannot 393 * catch-up. This avoids (excessively) small writeouts 394 * when the bdi limits are ramping up. 395 */ 396 if (nr_reclaimable + nr_writeback < 397 (background_thresh + dirty_thresh) / 2) 398 break; 399 400 if (!bdi->dirty_exceeded) 401 bdi->dirty_exceeded = 1; 402 403 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 404 * Unstable writes are a feature of certain networked 405 * filesystems (i.e. NFS) in which data may have been 406 * written to the server's write cache, but has not yet 407 * been flushed to permanent storage. 408 */ 409 if (bdi_nr_reclaimable) { 410 writeback_inodes(&wbc); 411 pages_written += write_chunk - wbc.nr_to_write; 412 get_dirty_limits(&background_thresh, &dirty_thresh, 413 &bdi_thresh, bdi); 414 } 415 416 /* 417 * In order to avoid the stacked BDI deadlock we need 418 * to ensure we accurately count the 'dirty' pages when 419 * the threshold is low. 420 * 421 * Otherwise it would be possible to get thresh+n pages 422 * reported dirty, even though there are thresh-m pages 423 * actually dirty; with m+n sitting in the percpu 424 * deltas. 425 */ 426 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 427 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 428 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 429 } else if (bdi_nr_reclaimable) { 430 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 431 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 432 } 433 434 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 435 break; 436 if (pages_written >= write_chunk) 437 break; /* We've done our duty */ 438 439 congestion_wait(WRITE, HZ/10); 440 } 441 442 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && 443 bdi->dirty_exceeded) 444 bdi->dirty_exceeded = 0; 445 446 if (writeback_in_progress(bdi)) 447 return; /* pdflush is already working this queue */ 448 449 /* 450 * In laptop mode, we wait until hitting the higher threshold before 451 * starting background writeout, and then write out all the way down 452 * to the lower threshold. So slow writers cause minimal disk activity. 453 * 454 * In normal mode, we start background writeout at the lower 455 * background_thresh, to keep the amount of dirty memory low. 456 */ 457 if ((laptop_mode && pages_written) || 458 (!laptop_mode && (global_page_state(NR_FILE_DIRTY) 459 + global_page_state(NR_UNSTABLE_NFS) 460 > background_thresh))) 461 pdflush_operation(background_writeout, 0); 462 } 463 464 void set_page_dirty_balance(struct page *page, int page_mkwrite) 465 { 466 if (set_page_dirty(page) || page_mkwrite) { 467 struct address_space *mapping = page_mapping(page); 468 469 if (mapping) 470 balance_dirty_pages_ratelimited(mapping); 471 } 472 } 473 474 /** 475 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 476 * @mapping: address_space which was dirtied 477 * @nr_pages_dirtied: number of pages which the caller has just dirtied 478 * 479 * Processes which are dirtying memory should call in here once for each page 480 * which was newly dirtied. The function will periodically check the system's 481 * dirty state and will initiate writeback if needed. 482 * 483 * On really big machines, get_writeback_state is expensive, so try to avoid 484 * calling it too often (ratelimiting). But once we're over the dirty memory 485 * limit we decrease the ratelimiting by a lot, to prevent individual processes 486 * from overshooting the limit by (ratelimit_pages) each. 487 */ 488 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 489 unsigned long nr_pages_dirtied) 490 { 491 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0; 492 unsigned long ratelimit; 493 unsigned long *p; 494 495 ratelimit = ratelimit_pages; 496 if (mapping->backing_dev_info->dirty_exceeded) 497 ratelimit = 8; 498 499 /* 500 * Check the rate limiting. Also, we do not want to throttle real-time 501 * tasks in balance_dirty_pages(). Period. 502 */ 503 preempt_disable(); 504 p = &__get_cpu_var(ratelimits); 505 *p += nr_pages_dirtied; 506 if (unlikely(*p >= ratelimit)) { 507 *p = 0; 508 preempt_enable(); 509 balance_dirty_pages(mapping); 510 return; 511 } 512 preempt_enable(); 513 } 514 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 515 516 void throttle_vm_writeout(gfp_t gfp_mask) 517 { 518 long background_thresh; 519 long dirty_thresh; 520 521 for ( ; ; ) { 522 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 523 524 /* 525 * Boost the allowable dirty threshold a bit for page 526 * allocators so they don't get DoS'ed by heavy writers 527 */ 528 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 529 530 if (global_page_state(NR_UNSTABLE_NFS) + 531 global_page_state(NR_WRITEBACK) <= dirty_thresh) 532 break; 533 congestion_wait(WRITE, HZ/10); 534 535 /* 536 * The caller might hold locks which can prevent IO completion 537 * or progress in the filesystem. So we cannot just sit here 538 * waiting for IO to complete. 539 */ 540 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 541 break; 542 } 543 } 544 545 /* 546 * writeback at least _min_pages, and keep writing until the amount of dirty 547 * memory is less than the background threshold, or until we're all clean. 548 */ 549 static void background_writeout(unsigned long _min_pages) 550 { 551 long min_pages = _min_pages; 552 struct writeback_control wbc = { 553 .bdi = NULL, 554 .sync_mode = WB_SYNC_NONE, 555 .older_than_this = NULL, 556 .nr_to_write = 0, 557 .nonblocking = 1, 558 .range_cyclic = 1, 559 }; 560 561 for ( ; ; ) { 562 long background_thresh; 563 long dirty_thresh; 564 565 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 566 if (global_page_state(NR_FILE_DIRTY) + 567 global_page_state(NR_UNSTABLE_NFS) < background_thresh 568 && min_pages <= 0) 569 break; 570 wbc.more_io = 0; 571 wbc.encountered_congestion = 0; 572 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 573 wbc.pages_skipped = 0; 574 writeback_inodes(&wbc); 575 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 576 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { 577 /* Wrote less than expected */ 578 if (wbc.encountered_congestion || wbc.more_io) 579 congestion_wait(WRITE, HZ/10); 580 else 581 break; 582 } 583 } 584 } 585 586 /* 587 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 588 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns 589 * -1 if all pdflush threads were busy. 590 */ 591 int wakeup_pdflush(long nr_pages) 592 { 593 if (nr_pages == 0) 594 nr_pages = global_page_state(NR_FILE_DIRTY) + 595 global_page_state(NR_UNSTABLE_NFS); 596 return pdflush_operation(background_writeout, nr_pages); 597 } 598 599 static void wb_timer_fn(unsigned long unused); 600 static void laptop_timer_fn(unsigned long unused); 601 602 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); 603 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 604 605 /* 606 * Periodic writeback of "old" data. 607 * 608 * Define "old": the first time one of an inode's pages is dirtied, we mark the 609 * dirtying-time in the inode's address_space. So this periodic writeback code 610 * just walks the superblock inode list, writing back any inodes which are 611 * older than a specific point in time. 612 * 613 * Try to run once per dirty_writeback_interval. But if a writeback event 614 * takes longer than a dirty_writeback_interval interval, then leave a 615 * one-second gap. 616 * 617 * older_than_this takes precedence over nr_to_write. So we'll only write back 618 * all dirty pages if they are all attached to "old" mappings. 619 */ 620 static void wb_kupdate(unsigned long arg) 621 { 622 unsigned long oldest_jif; 623 unsigned long start_jif; 624 unsigned long next_jif; 625 long nr_to_write; 626 struct writeback_control wbc = { 627 .bdi = NULL, 628 .sync_mode = WB_SYNC_NONE, 629 .older_than_this = &oldest_jif, 630 .nr_to_write = 0, 631 .nonblocking = 1, 632 .for_kupdate = 1, 633 .range_cyclic = 1, 634 }; 635 636 sync_supers(); 637 638 oldest_jif = jiffies - dirty_expire_interval; 639 start_jif = jiffies; 640 next_jif = start_jif + dirty_writeback_interval; 641 nr_to_write = global_page_state(NR_FILE_DIRTY) + 642 global_page_state(NR_UNSTABLE_NFS) + 643 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 644 while (nr_to_write > 0) { 645 wbc.more_io = 0; 646 wbc.encountered_congestion = 0; 647 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 648 writeback_inodes(&wbc); 649 if (wbc.nr_to_write > 0) { 650 if (wbc.encountered_congestion || wbc.more_io) 651 congestion_wait(WRITE, HZ/10); 652 else 653 break; /* All the old data is written */ 654 } 655 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 656 } 657 if (time_before(next_jif, jiffies + HZ)) 658 next_jif = jiffies + HZ; 659 if (dirty_writeback_interval) 660 mod_timer(&wb_timer, next_jif); 661 } 662 663 /* 664 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 665 */ 666 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 667 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 668 { 669 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos); 670 if (dirty_writeback_interval) 671 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 672 else 673 del_timer(&wb_timer); 674 return 0; 675 } 676 677 static void wb_timer_fn(unsigned long unused) 678 { 679 if (pdflush_operation(wb_kupdate, 0) < 0) 680 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ 681 } 682 683 static void laptop_flush(unsigned long unused) 684 { 685 sys_sync(); 686 } 687 688 static void laptop_timer_fn(unsigned long unused) 689 { 690 pdflush_operation(laptop_flush, 0); 691 } 692 693 /* 694 * We've spun up the disk and we're in laptop mode: schedule writeback 695 * of all dirty data a few seconds from now. If the flush is already scheduled 696 * then push it back - the user is still using the disk. 697 */ 698 void laptop_io_completion(void) 699 { 700 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 701 } 702 703 /* 704 * We're in laptop mode and we've just synced. The sync's writes will have 705 * caused another writeback to be scheduled by laptop_io_completion. 706 * Nothing needs to be written back anymore, so we unschedule the writeback. 707 */ 708 void laptop_sync_completion(void) 709 { 710 del_timer(&laptop_mode_wb_timer); 711 } 712 713 /* 714 * If ratelimit_pages is too high then we can get into dirty-data overload 715 * if a large number of processes all perform writes at the same time. 716 * If it is too low then SMP machines will call the (expensive) 717 * get_writeback_state too often. 718 * 719 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 720 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 721 * thresholds before writeback cuts in. 722 * 723 * But the limit should not be set too high. Because it also controls the 724 * amount of memory which the balance_dirty_pages() caller has to write back. 725 * If this is too large then the caller will block on the IO queue all the 726 * time. So limit it to four megabytes - the balance_dirty_pages() caller 727 * will write six megabyte chunks, max. 728 */ 729 730 void writeback_set_ratelimit(void) 731 { 732 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 733 if (ratelimit_pages < 16) 734 ratelimit_pages = 16; 735 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 736 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 737 } 738 739 static int __cpuinit 740 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 741 { 742 writeback_set_ratelimit(); 743 return NOTIFY_DONE; 744 } 745 746 static struct notifier_block __cpuinitdata ratelimit_nb = { 747 .notifier_call = ratelimit_handler, 748 .next = NULL, 749 }; 750 751 /* 752 * Called early on to tune the page writeback dirty limits. 753 * 754 * We used to scale dirty pages according to how total memory 755 * related to pages that could be allocated for buffers (by 756 * comparing nr_free_buffer_pages() to vm_total_pages. 757 * 758 * However, that was when we used "dirty_ratio" to scale with 759 * all memory, and we don't do that any more. "dirty_ratio" 760 * is now applied to total non-HIGHPAGE memory (by subtracting 761 * totalhigh_pages from vm_total_pages), and as such we can't 762 * get into the old insane situation any more where we had 763 * large amounts of dirty pages compared to a small amount of 764 * non-HIGHMEM memory. 765 * 766 * But we might still want to scale the dirty_ratio by how 767 * much memory the box has.. 768 */ 769 void __init page_writeback_init(void) 770 { 771 int shift; 772 773 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 774 writeback_set_ratelimit(); 775 register_cpu_notifier(&ratelimit_nb); 776 777 shift = calc_period_shift(); 778 prop_descriptor_init(&vm_completions, shift); 779 prop_descriptor_init(&vm_dirties, shift); 780 } 781 782 /** 783 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 784 * @mapping: address space structure to write 785 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 786 * @writepage: function called for each page 787 * @data: data passed to writepage function 788 * 789 * If a page is already under I/O, write_cache_pages() skips it, even 790 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 791 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 792 * and msync() need to guarantee that all the data which was dirty at the time 793 * the call was made get new I/O started against them. If wbc->sync_mode is 794 * WB_SYNC_ALL then we were called for data integrity and we must wait for 795 * existing IO to complete. 796 */ 797 int write_cache_pages(struct address_space *mapping, 798 struct writeback_control *wbc, writepage_t writepage, 799 void *data) 800 { 801 struct backing_dev_info *bdi = mapping->backing_dev_info; 802 int ret = 0; 803 int done = 0; 804 struct pagevec pvec; 805 int nr_pages; 806 pgoff_t index; 807 pgoff_t end; /* Inclusive */ 808 int scanned = 0; 809 int range_whole = 0; 810 811 if (wbc->nonblocking && bdi_write_congested(bdi)) { 812 wbc->encountered_congestion = 1; 813 return 0; 814 } 815 816 pagevec_init(&pvec, 0); 817 if (wbc->range_cyclic) { 818 index = mapping->writeback_index; /* Start from prev offset */ 819 end = -1; 820 } else { 821 index = wbc->range_start >> PAGE_CACHE_SHIFT; 822 end = wbc->range_end >> PAGE_CACHE_SHIFT; 823 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 824 range_whole = 1; 825 scanned = 1; 826 } 827 retry: 828 while (!done && (index <= end) && 829 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 830 PAGECACHE_TAG_DIRTY, 831 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 832 unsigned i; 833 834 scanned = 1; 835 for (i = 0; i < nr_pages; i++) { 836 struct page *page = pvec.pages[i]; 837 838 /* 839 * At this point we hold neither mapping->tree_lock nor 840 * lock on the page itself: the page may be truncated or 841 * invalidated (changing page->mapping to NULL), or even 842 * swizzled back from swapper_space to tmpfs file 843 * mapping 844 */ 845 lock_page(page); 846 847 if (unlikely(page->mapping != mapping)) { 848 unlock_page(page); 849 continue; 850 } 851 852 if (!wbc->range_cyclic && page->index > end) { 853 done = 1; 854 unlock_page(page); 855 continue; 856 } 857 858 if (wbc->sync_mode != WB_SYNC_NONE) 859 wait_on_page_writeback(page); 860 861 if (PageWriteback(page) || 862 !clear_page_dirty_for_io(page)) { 863 unlock_page(page); 864 continue; 865 } 866 867 ret = (*writepage)(page, wbc, data); 868 869 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 870 unlock_page(page); 871 ret = 0; 872 } 873 if (ret || (--(wbc->nr_to_write) <= 0)) 874 done = 1; 875 if (wbc->nonblocking && bdi_write_congested(bdi)) { 876 wbc->encountered_congestion = 1; 877 done = 1; 878 } 879 } 880 pagevec_release(&pvec); 881 cond_resched(); 882 } 883 if (!scanned && !done) { 884 /* 885 * We hit the last page and there is more work to be done: wrap 886 * back to the start of the file 887 */ 888 scanned = 1; 889 index = 0; 890 goto retry; 891 } 892 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 893 mapping->writeback_index = index; 894 return ret; 895 } 896 EXPORT_SYMBOL(write_cache_pages); 897 898 /* 899 * Function used by generic_writepages to call the real writepage 900 * function and set the mapping flags on error 901 */ 902 static int __writepage(struct page *page, struct writeback_control *wbc, 903 void *data) 904 { 905 struct address_space *mapping = data; 906 int ret = mapping->a_ops->writepage(page, wbc); 907 mapping_set_error(mapping, ret); 908 return ret; 909 } 910 911 /** 912 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 913 * @mapping: address space structure to write 914 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 915 * 916 * This is a library function, which implements the writepages() 917 * address_space_operation. 918 */ 919 int generic_writepages(struct address_space *mapping, 920 struct writeback_control *wbc) 921 { 922 /* deal with chardevs and other special file */ 923 if (!mapping->a_ops->writepage) 924 return 0; 925 926 return write_cache_pages(mapping, wbc, __writepage, mapping); 927 } 928 929 EXPORT_SYMBOL(generic_writepages); 930 931 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 932 { 933 int ret; 934 935 if (wbc->nr_to_write <= 0) 936 return 0; 937 wbc->for_writepages = 1; 938 if (mapping->a_ops->writepages) 939 ret = mapping->a_ops->writepages(mapping, wbc); 940 else 941 ret = generic_writepages(mapping, wbc); 942 wbc->for_writepages = 0; 943 return ret; 944 } 945 946 /** 947 * write_one_page - write out a single page and optionally wait on I/O 948 * @page: the page to write 949 * @wait: if true, wait on writeout 950 * 951 * The page must be locked by the caller and will be unlocked upon return. 952 * 953 * write_one_page() returns a negative error code if I/O failed. 954 */ 955 int write_one_page(struct page *page, int wait) 956 { 957 struct address_space *mapping = page->mapping; 958 int ret = 0; 959 struct writeback_control wbc = { 960 .sync_mode = WB_SYNC_ALL, 961 .nr_to_write = 1, 962 }; 963 964 BUG_ON(!PageLocked(page)); 965 966 if (wait) 967 wait_on_page_writeback(page); 968 969 if (clear_page_dirty_for_io(page)) { 970 page_cache_get(page); 971 ret = mapping->a_ops->writepage(page, &wbc); 972 if (ret == 0 && wait) { 973 wait_on_page_writeback(page); 974 if (PageError(page)) 975 ret = -EIO; 976 } 977 page_cache_release(page); 978 } else { 979 unlock_page(page); 980 } 981 return ret; 982 } 983 EXPORT_SYMBOL(write_one_page); 984 985 /* 986 * For address_spaces which do not use buffers nor write back. 987 */ 988 int __set_page_dirty_no_writeback(struct page *page) 989 { 990 if (!PageDirty(page)) 991 SetPageDirty(page); 992 return 0; 993 } 994 995 /* 996 * For address_spaces which do not use buffers. Just tag the page as dirty in 997 * its radix tree. 998 * 999 * This is also used when a single buffer is being dirtied: we want to set the 1000 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1001 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1002 * 1003 * Most callers have locked the page, which pins the address_space in memory. 1004 * But zap_pte_range() does not lock the page, however in that case the 1005 * mapping is pinned by the vma's ->vm_file reference. 1006 * 1007 * We take care to handle the case where the page was truncated from the 1008 * mapping by re-checking page_mapping() inside tree_lock. 1009 */ 1010 int __set_page_dirty_nobuffers(struct page *page) 1011 { 1012 if (!TestSetPageDirty(page)) { 1013 struct address_space *mapping = page_mapping(page); 1014 struct address_space *mapping2; 1015 1016 if (!mapping) 1017 return 1; 1018 1019 write_lock_irq(&mapping->tree_lock); 1020 mapping2 = page_mapping(page); 1021 if (mapping2) { /* Race with truncate? */ 1022 BUG_ON(mapping2 != mapping); 1023 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1024 if (mapping_cap_account_dirty(mapping)) { 1025 __inc_zone_page_state(page, NR_FILE_DIRTY); 1026 __inc_bdi_stat(mapping->backing_dev_info, 1027 BDI_RECLAIMABLE); 1028 task_io_account_write(PAGE_CACHE_SIZE); 1029 } 1030 radix_tree_tag_set(&mapping->page_tree, 1031 page_index(page), PAGECACHE_TAG_DIRTY); 1032 } 1033 write_unlock_irq(&mapping->tree_lock); 1034 if (mapping->host) { 1035 /* !PageAnon && !swapper_space */ 1036 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1037 } 1038 return 1; 1039 } 1040 return 0; 1041 } 1042 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1043 1044 /* 1045 * When a writepage implementation decides that it doesn't want to write this 1046 * page for some reason, it should redirty the locked page via 1047 * redirty_page_for_writepage() and it should then unlock the page and return 0 1048 */ 1049 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1050 { 1051 wbc->pages_skipped++; 1052 return __set_page_dirty_nobuffers(page); 1053 } 1054 EXPORT_SYMBOL(redirty_page_for_writepage); 1055 1056 /* 1057 * If the mapping doesn't provide a set_page_dirty a_op, then 1058 * just fall through and assume that it wants buffer_heads. 1059 */ 1060 static int __set_page_dirty(struct page *page) 1061 { 1062 struct address_space *mapping = page_mapping(page); 1063 1064 if (likely(mapping)) { 1065 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1066 #ifdef CONFIG_BLOCK 1067 if (!spd) 1068 spd = __set_page_dirty_buffers; 1069 #endif 1070 return (*spd)(page); 1071 } 1072 if (!PageDirty(page)) { 1073 if (!TestSetPageDirty(page)) 1074 return 1; 1075 } 1076 return 0; 1077 } 1078 1079 int set_page_dirty(struct page *page) 1080 { 1081 int ret = __set_page_dirty(page); 1082 if (ret) 1083 task_dirty_inc(current); 1084 return ret; 1085 } 1086 EXPORT_SYMBOL(set_page_dirty); 1087 1088 /* 1089 * set_page_dirty() is racy if the caller has no reference against 1090 * page->mapping->host, and if the page is unlocked. This is because another 1091 * CPU could truncate the page off the mapping and then free the mapping. 1092 * 1093 * Usually, the page _is_ locked, or the caller is a user-space process which 1094 * holds a reference on the inode by having an open file. 1095 * 1096 * In other cases, the page should be locked before running set_page_dirty(). 1097 */ 1098 int set_page_dirty_lock(struct page *page) 1099 { 1100 int ret; 1101 1102 lock_page_nosync(page); 1103 ret = set_page_dirty(page); 1104 unlock_page(page); 1105 return ret; 1106 } 1107 EXPORT_SYMBOL(set_page_dirty_lock); 1108 1109 /* 1110 * Clear a page's dirty flag, while caring for dirty memory accounting. 1111 * Returns true if the page was previously dirty. 1112 * 1113 * This is for preparing to put the page under writeout. We leave the page 1114 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1115 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1116 * implementation will run either set_page_writeback() or set_page_dirty(), 1117 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1118 * back into sync. 1119 * 1120 * This incoherency between the page's dirty flag and radix-tree tag is 1121 * unfortunate, but it only exists while the page is locked. 1122 */ 1123 int clear_page_dirty_for_io(struct page *page) 1124 { 1125 struct address_space *mapping = page_mapping(page); 1126 1127 BUG_ON(!PageLocked(page)); 1128 1129 ClearPageReclaim(page); 1130 if (mapping && mapping_cap_account_dirty(mapping)) { 1131 /* 1132 * Yes, Virginia, this is indeed insane. 1133 * 1134 * We use this sequence to make sure that 1135 * (a) we account for dirty stats properly 1136 * (b) we tell the low-level filesystem to 1137 * mark the whole page dirty if it was 1138 * dirty in a pagetable. Only to then 1139 * (c) clean the page again and return 1 to 1140 * cause the writeback. 1141 * 1142 * This way we avoid all nasty races with the 1143 * dirty bit in multiple places and clearing 1144 * them concurrently from different threads. 1145 * 1146 * Note! Normally the "set_page_dirty(page)" 1147 * has no effect on the actual dirty bit - since 1148 * that will already usually be set. But we 1149 * need the side effects, and it can help us 1150 * avoid races. 1151 * 1152 * We basically use the page "master dirty bit" 1153 * as a serialization point for all the different 1154 * threads doing their things. 1155 */ 1156 if (page_mkclean(page)) 1157 set_page_dirty(page); 1158 /* 1159 * We carefully synchronise fault handlers against 1160 * installing a dirty pte and marking the page dirty 1161 * at this point. We do this by having them hold the 1162 * page lock at some point after installing their 1163 * pte, but before marking the page dirty. 1164 * Pages are always locked coming in here, so we get 1165 * the desired exclusion. See mm/memory.c:do_wp_page() 1166 * for more comments. 1167 */ 1168 if (TestClearPageDirty(page)) { 1169 dec_zone_page_state(page, NR_FILE_DIRTY); 1170 dec_bdi_stat(mapping->backing_dev_info, 1171 BDI_RECLAIMABLE); 1172 return 1; 1173 } 1174 return 0; 1175 } 1176 return TestClearPageDirty(page); 1177 } 1178 EXPORT_SYMBOL(clear_page_dirty_for_io); 1179 1180 int test_clear_page_writeback(struct page *page) 1181 { 1182 struct address_space *mapping = page_mapping(page); 1183 int ret; 1184 1185 if (mapping) { 1186 struct backing_dev_info *bdi = mapping->backing_dev_info; 1187 unsigned long flags; 1188 1189 write_lock_irqsave(&mapping->tree_lock, flags); 1190 ret = TestClearPageWriteback(page); 1191 if (ret) { 1192 radix_tree_tag_clear(&mapping->page_tree, 1193 page_index(page), 1194 PAGECACHE_TAG_WRITEBACK); 1195 if (bdi_cap_writeback_dirty(bdi)) { 1196 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1197 __bdi_writeout_inc(bdi); 1198 } 1199 } 1200 write_unlock_irqrestore(&mapping->tree_lock, flags); 1201 } else { 1202 ret = TestClearPageWriteback(page); 1203 } 1204 if (ret) 1205 dec_zone_page_state(page, NR_WRITEBACK); 1206 return ret; 1207 } 1208 1209 int test_set_page_writeback(struct page *page) 1210 { 1211 struct address_space *mapping = page_mapping(page); 1212 int ret; 1213 1214 if (mapping) { 1215 struct backing_dev_info *bdi = mapping->backing_dev_info; 1216 unsigned long flags; 1217 1218 write_lock_irqsave(&mapping->tree_lock, flags); 1219 ret = TestSetPageWriteback(page); 1220 if (!ret) { 1221 radix_tree_tag_set(&mapping->page_tree, 1222 page_index(page), 1223 PAGECACHE_TAG_WRITEBACK); 1224 if (bdi_cap_writeback_dirty(bdi)) 1225 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1226 } 1227 if (!PageDirty(page)) 1228 radix_tree_tag_clear(&mapping->page_tree, 1229 page_index(page), 1230 PAGECACHE_TAG_DIRTY); 1231 write_unlock_irqrestore(&mapping->tree_lock, flags); 1232 } else { 1233 ret = TestSetPageWriteback(page); 1234 } 1235 if (!ret) 1236 inc_zone_page_state(page, NR_WRITEBACK); 1237 return ret; 1238 1239 } 1240 EXPORT_SYMBOL(test_set_page_writeback); 1241 1242 /* 1243 * Return true if any of the pages in the mapping are marked with the 1244 * passed tag. 1245 */ 1246 int mapping_tagged(struct address_space *mapping, int tag) 1247 { 1248 int ret; 1249 rcu_read_lock(); 1250 ret = radix_tree_tagged(&mapping->page_tree, tag); 1251 rcu_read_unlock(); 1252 return ret; 1253 } 1254 EXPORT_SYMBOL(mapping_tagged); 1255