xref: /linux/mm/page-writeback.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	akpm@zip.com.au
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * The maximum number of pages to writeout in a single bdflush/kupdate
40  * operation.  We do this so we don't hold I_SYNC against an inode for
41  * enormous amounts of time, which would block a userspace task which has
42  * been forced to throttle against that inode.  Also, the code reevaluates
43  * the dirty each time it has written this many pages.
44  */
45 #define MAX_WRITEBACK_PAGES	1024
46 
47 /*
48  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49  * will look to see if it needs to force writeback or throttling.
50  */
51 static long ratelimit_pages = 32;
52 
53 /*
54  * When balance_dirty_pages decides that the caller needs to perform some
55  * non-background writeback, this is how many pages it will attempt to write.
56  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57  * large amounts of I/O are submitted.
58  */
59 static inline long sync_writeback_pages(void)
60 {
61 	return ratelimit_pages + ratelimit_pages / 2;
62 }
63 
64 /* The following parameters are exported via /proc/sys/vm */
65 
66 /*
67  * Start background writeback (via pdflush) at this percentage
68  */
69 int dirty_background_ratio = 5;
70 
71 /*
72  * free highmem will not be subtracted from the total free memory
73  * for calculating free ratios if vm_highmem_is_dirtyable is true
74  */
75 int vm_highmem_is_dirtyable;
76 
77 /*
78  * The generator of dirty data starts writeback at this percentage
79  */
80 int vm_dirty_ratio = 10;
81 
82 /*
83  * The interval between `kupdate'-style writebacks, in jiffies
84  */
85 int dirty_writeback_interval = 5 * HZ;
86 
87 /*
88  * The longest number of jiffies for which data is allowed to remain dirty
89  */
90 int dirty_expire_interval = 30 * HZ;
91 
92 /*
93  * Flag that makes the machine dump writes/reads and block dirtyings.
94  */
95 int block_dump;
96 
97 /*
98  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99  * a full sync is triggered after this time elapses without any disk activity.
100  */
101 int laptop_mode;
102 
103 EXPORT_SYMBOL(laptop_mode);
104 
105 /* End of sysctl-exported parameters */
106 
107 
108 static void background_writeout(unsigned long _min_pages);
109 
110 /*
111  * Scale the writeback cache size proportional to the relative writeout speeds.
112  *
113  * We do this by keeping a floating proportion between BDIs, based on page
114  * writeback completions [end_page_writeback()]. Those devices that write out
115  * pages fastest will get the larger share, while the slower will get a smaller
116  * share.
117  *
118  * We use page writeout completions because we are interested in getting rid of
119  * dirty pages. Having them written out is the primary goal.
120  *
121  * We introduce a concept of time, a period over which we measure these events,
122  * because demand can/will vary over time. The length of this period itself is
123  * measured in page writeback completions.
124  *
125  */
126 static struct prop_descriptor vm_completions;
127 static struct prop_descriptor vm_dirties;
128 
129 static unsigned long determine_dirtyable_memory(void);
130 
131 /*
132  * couple the period to the dirty_ratio:
133  *
134  *   period/2 ~ roundup_pow_of_two(dirty limit)
135  */
136 static int calc_period_shift(void)
137 {
138 	unsigned long dirty_total;
139 
140 	dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
141 	return 2 + ilog2(dirty_total - 1);
142 }
143 
144 /*
145  * update the period when the dirty ratio changes.
146  */
147 int dirty_ratio_handler(struct ctl_table *table, int write,
148 		struct file *filp, void __user *buffer, size_t *lenp,
149 		loff_t *ppos)
150 {
151 	int old_ratio = vm_dirty_ratio;
152 	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
153 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
154 		int shift = calc_period_shift();
155 		prop_change_shift(&vm_completions, shift);
156 		prop_change_shift(&vm_dirties, shift);
157 	}
158 	return ret;
159 }
160 
161 /*
162  * Increment the BDI's writeout completion count and the global writeout
163  * completion count. Called from test_clear_page_writeback().
164  */
165 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
166 {
167 	__prop_inc_percpu(&vm_completions, &bdi->completions);
168 }
169 
170 static inline void task_dirty_inc(struct task_struct *tsk)
171 {
172 	prop_inc_single(&vm_dirties, &tsk->dirties);
173 }
174 
175 /*
176  * Obtain an accurate fraction of the BDI's portion.
177  */
178 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
179 		long *numerator, long *denominator)
180 {
181 	if (bdi_cap_writeback_dirty(bdi)) {
182 		prop_fraction_percpu(&vm_completions, &bdi->completions,
183 				numerator, denominator);
184 	} else {
185 		*numerator = 0;
186 		*denominator = 1;
187 	}
188 }
189 
190 /*
191  * Clip the earned share of dirty pages to that which is actually available.
192  * This avoids exceeding the total dirty_limit when the floating averages
193  * fluctuate too quickly.
194  */
195 static void
196 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
197 {
198 	long avail_dirty;
199 
200 	avail_dirty = dirty -
201 		(global_page_state(NR_FILE_DIRTY) +
202 		 global_page_state(NR_WRITEBACK) +
203 		 global_page_state(NR_UNSTABLE_NFS));
204 
205 	if (avail_dirty < 0)
206 		avail_dirty = 0;
207 
208 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
209 		bdi_stat(bdi, BDI_WRITEBACK);
210 
211 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
212 }
213 
214 static inline void task_dirties_fraction(struct task_struct *tsk,
215 		long *numerator, long *denominator)
216 {
217 	prop_fraction_single(&vm_dirties, &tsk->dirties,
218 				numerator, denominator);
219 }
220 
221 /*
222  * scale the dirty limit
223  *
224  * task specific dirty limit:
225  *
226  *   dirty -= (dirty/8) * p_{t}
227  */
228 static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
229 {
230 	long numerator, denominator;
231 	long dirty = *pdirty;
232 	u64 inv = dirty >> 3;
233 
234 	task_dirties_fraction(tsk, &numerator, &denominator);
235 	inv *= numerator;
236 	do_div(inv, denominator);
237 
238 	dirty -= inv;
239 	if (dirty < *pdirty/2)
240 		dirty = *pdirty/2;
241 
242 	*pdirty = dirty;
243 }
244 
245 /*
246  * Work out the current dirty-memory clamping and background writeout
247  * thresholds.
248  *
249  * The main aim here is to lower them aggressively if there is a lot of mapped
250  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
251  * pages.  It is better to clamp down on writers than to start swapping, and
252  * performing lots of scanning.
253  *
254  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
255  *
256  * We don't permit the clamping level to fall below 5% - that is getting rather
257  * excessive.
258  *
259  * We make sure that the background writeout level is below the adjusted
260  * clamping level.
261  */
262 
263 static unsigned long highmem_dirtyable_memory(unsigned long total)
264 {
265 #ifdef CONFIG_HIGHMEM
266 	int node;
267 	unsigned long x = 0;
268 
269 	for_each_node_state(node, N_HIGH_MEMORY) {
270 		struct zone *z =
271 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
272 
273 		x += zone_page_state(z, NR_FREE_PAGES)
274 			+ zone_page_state(z, NR_INACTIVE)
275 			+ zone_page_state(z, NR_ACTIVE);
276 	}
277 	/*
278 	 * Make sure that the number of highmem pages is never larger
279 	 * than the number of the total dirtyable memory. This can only
280 	 * occur in very strange VM situations but we want to make sure
281 	 * that this does not occur.
282 	 */
283 	return min(x, total);
284 #else
285 	return 0;
286 #endif
287 }
288 
289 static unsigned long determine_dirtyable_memory(void)
290 {
291 	unsigned long x;
292 
293 	x = global_page_state(NR_FREE_PAGES)
294 		+ global_page_state(NR_INACTIVE)
295 		+ global_page_state(NR_ACTIVE);
296 
297 	if (!vm_highmem_is_dirtyable)
298 		x -= highmem_dirtyable_memory(x);
299 
300 	return x + 1;	/* Ensure that we never return 0 */
301 }
302 
303 static void
304 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
305 		 struct backing_dev_info *bdi)
306 {
307 	int background_ratio;		/* Percentages */
308 	int dirty_ratio;
309 	long background;
310 	long dirty;
311 	unsigned long available_memory = determine_dirtyable_memory();
312 	struct task_struct *tsk;
313 
314 	dirty_ratio = vm_dirty_ratio;
315 	if (dirty_ratio < 5)
316 		dirty_ratio = 5;
317 
318 	background_ratio = dirty_background_ratio;
319 	if (background_ratio >= dirty_ratio)
320 		background_ratio = dirty_ratio / 2;
321 
322 	background = (background_ratio * available_memory) / 100;
323 	dirty = (dirty_ratio * available_memory) / 100;
324 	tsk = current;
325 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
326 		background += background / 4;
327 		dirty += dirty / 4;
328 	}
329 	*pbackground = background;
330 	*pdirty = dirty;
331 
332 	if (bdi) {
333 		u64 bdi_dirty = dirty;
334 		long numerator, denominator;
335 
336 		/*
337 		 * Calculate this BDI's share of the dirty ratio.
338 		 */
339 		bdi_writeout_fraction(bdi, &numerator, &denominator);
340 
341 		bdi_dirty *= numerator;
342 		do_div(bdi_dirty, denominator);
343 
344 		*pbdi_dirty = bdi_dirty;
345 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
346 		task_dirty_limit(current, pbdi_dirty);
347 	}
348 }
349 
350 /*
351  * balance_dirty_pages() must be called by processes which are generating dirty
352  * data.  It looks at the number of dirty pages in the machine and will force
353  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
354  * If we're over `background_thresh' then pdflush is woken to perform some
355  * writeout.
356  */
357 static void balance_dirty_pages(struct address_space *mapping)
358 {
359 	long nr_reclaimable, bdi_nr_reclaimable;
360 	long nr_writeback, bdi_nr_writeback;
361 	long background_thresh;
362 	long dirty_thresh;
363 	long bdi_thresh;
364 	unsigned long pages_written = 0;
365 	unsigned long write_chunk = sync_writeback_pages();
366 
367 	struct backing_dev_info *bdi = mapping->backing_dev_info;
368 
369 	for (;;) {
370 		struct writeback_control wbc = {
371 			.bdi		= bdi,
372 			.sync_mode	= WB_SYNC_NONE,
373 			.older_than_this = NULL,
374 			.nr_to_write	= write_chunk,
375 			.range_cyclic	= 1,
376 		};
377 
378 		get_dirty_limits(&background_thresh, &dirty_thresh,
379 				&bdi_thresh, bdi);
380 
381 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
382 					global_page_state(NR_UNSTABLE_NFS);
383 		nr_writeback = global_page_state(NR_WRITEBACK);
384 
385 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
386 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
387 
388 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
389 			break;
390 
391 		/*
392 		 * Throttle it only when the background writeback cannot
393 		 * catch-up. This avoids (excessively) small writeouts
394 		 * when the bdi limits are ramping up.
395 		 */
396 		if (nr_reclaimable + nr_writeback <
397 				(background_thresh + dirty_thresh) / 2)
398 			break;
399 
400 		if (!bdi->dirty_exceeded)
401 			bdi->dirty_exceeded = 1;
402 
403 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
404 		 * Unstable writes are a feature of certain networked
405 		 * filesystems (i.e. NFS) in which data may have been
406 		 * written to the server's write cache, but has not yet
407 		 * been flushed to permanent storage.
408 		 */
409 		if (bdi_nr_reclaimable) {
410 			writeback_inodes(&wbc);
411 			pages_written += write_chunk - wbc.nr_to_write;
412 			get_dirty_limits(&background_thresh, &dirty_thresh,
413 				       &bdi_thresh, bdi);
414 		}
415 
416 		/*
417 		 * In order to avoid the stacked BDI deadlock we need
418 		 * to ensure we accurately count the 'dirty' pages when
419 		 * the threshold is low.
420 		 *
421 		 * Otherwise it would be possible to get thresh+n pages
422 		 * reported dirty, even though there are thresh-m pages
423 		 * actually dirty; with m+n sitting in the percpu
424 		 * deltas.
425 		 */
426 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
427 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
428 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
429 		} else if (bdi_nr_reclaimable) {
430 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
431 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
432 		}
433 
434 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
435 			break;
436 		if (pages_written >= write_chunk)
437 			break;		/* We've done our duty */
438 
439 		congestion_wait(WRITE, HZ/10);
440 	}
441 
442 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
443 			bdi->dirty_exceeded)
444 		bdi->dirty_exceeded = 0;
445 
446 	if (writeback_in_progress(bdi))
447 		return;		/* pdflush is already working this queue */
448 
449 	/*
450 	 * In laptop mode, we wait until hitting the higher threshold before
451 	 * starting background writeout, and then write out all the way down
452 	 * to the lower threshold.  So slow writers cause minimal disk activity.
453 	 *
454 	 * In normal mode, we start background writeout at the lower
455 	 * background_thresh, to keep the amount of dirty memory low.
456 	 */
457 	if ((laptop_mode && pages_written) ||
458 			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
459 					  + global_page_state(NR_UNSTABLE_NFS)
460 					  > background_thresh)))
461 		pdflush_operation(background_writeout, 0);
462 }
463 
464 void set_page_dirty_balance(struct page *page, int page_mkwrite)
465 {
466 	if (set_page_dirty(page) || page_mkwrite) {
467 		struct address_space *mapping = page_mapping(page);
468 
469 		if (mapping)
470 			balance_dirty_pages_ratelimited(mapping);
471 	}
472 }
473 
474 /**
475  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
476  * @mapping: address_space which was dirtied
477  * @nr_pages_dirtied: number of pages which the caller has just dirtied
478  *
479  * Processes which are dirtying memory should call in here once for each page
480  * which was newly dirtied.  The function will periodically check the system's
481  * dirty state and will initiate writeback if needed.
482  *
483  * On really big machines, get_writeback_state is expensive, so try to avoid
484  * calling it too often (ratelimiting).  But once we're over the dirty memory
485  * limit we decrease the ratelimiting by a lot, to prevent individual processes
486  * from overshooting the limit by (ratelimit_pages) each.
487  */
488 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
489 					unsigned long nr_pages_dirtied)
490 {
491 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
492 	unsigned long ratelimit;
493 	unsigned long *p;
494 
495 	ratelimit = ratelimit_pages;
496 	if (mapping->backing_dev_info->dirty_exceeded)
497 		ratelimit = 8;
498 
499 	/*
500 	 * Check the rate limiting. Also, we do not want to throttle real-time
501 	 * tasks in balance_dirty_pages(). Period.
502 	 */
503 	preempt_disable();
504 	p =  &__get_cpu_var(ratelimits);
505 	*p += nr_pages_dirtied;
506 	if (unlikely(*p >= ratelimit)) {
507 		*p = 0;
508 		preempt_enable();
509 		balance_dirty_pages(mapping);
510 		return;
511 	}
512 	preempt_enable();
513 }
514 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
515 
516 void throttle_vm_writeout(gfp_t gfp_mask)
517 {
518 	long background_thresh;
519 	long dirty_thresh;
520 
521         for ( ; ; ) {
522 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
523 
524                 /*
525                  * Boost the allowable dirty threshold a bit for page
526                  * allocators so they don't get DoS'ed by heavy writers
527                  */
528                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
529 
530                 if (global_page_state(NR_UNSTABLE_NFS) +
531 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
532                         	break;
533                 congestion_wait(WRITE, HZ/10);
534 
535 		/*
536 		 * The caller might hold locks which can prevent IO completion
537 		 * or progress in the filesystem.  So we cannot just sit here
538 		 * waiting for IO to complete.
539 		 */
540 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
541 			break;
542         }
543 }
544 
545 /*
546  * writeback at least _min_pages, and keep writing until the amount of dirty
547  * memory is less than the background threshold, or until we're all clean.
548  */
549 static void background_writeout(unsigned long _min_pages)
550 {
551 	long min_pages = _min_pages;
552 	struct writeback_control wbc = {
553 		.bdi		= NULL,
554 		.sync_mode	= WB_SYNC_NONE,
555 		.older_than_this = NULL,
556 		.nr_to_write	= 0,
557 		.nonblocking	= 1,
558 		.range_cyclic	= 1,
559 	};
560 
561 	for ( ; ; ) {
562 		long background_thresh;
563 		long dirty_thresh;
564 
565 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
566 		if (global_page_state(NR_FILE_DIRTY) +
567 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
568 				&& min_pages <= 0)
569 			break;
570 		wbc.more_io = 0;
571 		wbc.encountered_congestion = 0;
572 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
573 		wbc.pages_skipped = 0;
574 		writeback_inodes(&wbc);
575 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
576 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
577 			/* Wrote less than expected */
578 			if (wbc.encountered_congestion || wbc.more_io)
579 				congestion_wait(WRITE, HZ/10);
580 			else
581 				break;
582 		}
583 	}
584 }
585 
586 /*
587  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
588  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
589  * -1 if all pdflush threads were busy.
590  */
591 int wakeup_pdflush(long nr_pages)
592 {
593 	if (nr_pages == 0)
594 		nr_pages = global_page_state(NR_FILE_DIRTY) +
595 				global_page_state(NR_UNSTABLE_NFS);
596 	return pdflush_operation(background_writeout, nr_pages);
597 }
598 
599 static void wb_timer_fn(unsigned long unused);
600 static void laptop_timer_fn(unsigned long unused);
601 
602 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
603 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
604 
605 /*
606  * Periodic writeback of "old" data.
607  *
608  * Define "old": the first time one of an inode's pages is dirtied, we mark the
609  * dirtying-time in the inode's address_space.  So this periodic writeback code
610  * just walks the superblock inode list, writing back any inodes which are
611  * older than a specific point in time.
612  *
613  * Try to run once per dirty_writeback_interval.  But if a writeback event
614  * takes longer than a dirty_writeback_interval interval, then leave a
615  * one-second gap.
616  *
617  * older_than_this takes precedence over nr_to_write.  So we'll only write back
618  * all dirty pages if they are all attached to "old" mappings.
619  */
620 static void wb_kupdate(unsigned long arg)
621 {
622 	unsigned long oldest_jif;
623 	unsigned long start_jif;
624 	unsigned long next_jif;
625 	long nr_to_write;
626 	struct writeback_control wbc = {
627 		.bdi		= NULL,
628 		.sync_mode	= WB_SYNC_NONE,
629 		.older_than_this = &oldest_jif,
630 		.nr_to_write	= 0,
631 		.nonblocking	= 1,
632 		.for_kupdate	= 1,
633 		.range_cyclic	= 1,
634 	};
635 
636 	sync_supers();
637 
638 	oldest_jif = jiffies - dirty_expire_interval;
639 	start_jif = jiffies;
640 	next_jif = start_jif + dirty_writeback_interval;
641 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
642 			global_page_state(NR_UNSTABLE_NFS) +
643 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
644 	while (nr_to_write > 0) {
645 		wbc.more_io = 0;
646 		wbc.encountered_congestion = 0;
647 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
648 		writeback_inodes(&wbc);
649 		if (wbc.nr_to_write > 0) {
650 			if (wbc.encountered_congestion || wbc.more_io)
651 				congestion_wait(WRITE, HZ/10);
652 			else
653 				break;	/* All the old data is written */
654 		}
655 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
656 	}
657 	if (time_before(next_jif, jiffies + HZ))
658 		next_jif = jiffies + HZ;
659 	if (dirty_writeback_interval)
660 		mod_timer(&wb_timer, next_jif);
661 }
662 
663 /*
664  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
665  */
666 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
667 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
668 {
669 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
670 	if (dirty_writeback_interval)
671 		mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
672 	else
673 		del_timer(&wb_timer);
674 	return 0;
675 }
676 
677 static void wb_timer_fn(unsigned long unused)
678 {
679 	if (pdflush_operation(wb_kupdate, 0) < 0)
680 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
681 }
682 
683 static void laptop_flush(unsigned long unused)
684 {
685 	sys_sync();
686 }
687 
688 static void laptop_timer_fn(unsigned long unused)
689 {
690 	pdflush_operation(laptop_flush, 0);
691 }
692 
693 /*
694  * We've spun up the disk and we're in laptop mode: schedule writeback
695  * of all dirty data a few seconds from now.  If the flush is already scheduled
696  * then push it back - the user is still using the disk.
697  */
698 void laptop_io_completion(void)
699 {
700 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
701 }
702 
703 /*
704  * We're in laptop mode and we've just synced. The sync's writes will have
705  * caused another writeback to be scheduled by laptop_io_completion.
706  * Nothing needs to be written back anymore, so we unschedule the writeback.
707  */
708 void laptop_sync_completion(void)
709 {
710 	del_timer(&laptop_mode_wb_timer);
711 }
712 
713 /*
714  * If ratelimit_pages is too high then we can get into dirty-data overload
715  * if a large number of processes all perform writes at the same time.
716  * If it is too low then SMP machines will call the (expensive)
717  * get_writeback_state too often.
718  *
719  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
720  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
721  * thresholds before writeback cuts in.
722  *
723  * But the limit should not be set too high.  Because it also controls the
724  * amount of memory which the balance_dirty_pages() caller has to write back.
725  * If this is too large then the caller will block on the IO queue all the
726  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
727  * will write six megabyte chunks, max.
728  */
729 
730 void writeback_set_ratelimit(void)
731 {
732 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
733 	if (ratelimit_pages < 16)
734 		ratelimit_pages = 16;
735 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
736 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
737 }
738 
739 static int __cpuinit
740 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
741 {
742 	writeback_set_ratelimit();
743 	return NOTIFY_DONE;
744 }
745 
746 static struct notifier_block __cpuinitdata ratelimit_nb = {
747 	.notifier_call	= ratelimit_handler,
748 	.next		= NULL,
749 };
750 
751 /*
752  * Called early on to tune the page writeback dirty limits.
753  *
754  * We used to scale dirty pages according to how total memory
755  * related to pages that could be allocated for buffers (by
756  * comparing nr_free_buffer_pages() to vm_total_pages.
757  *
758  * However, that was when we used "dirty_ratio" to scale with
759  * all memory, and we don't do that any more. "dirty_ratio"
760  * is now applied to total non-HIGHPAGE memory (by subtracting
761  * totalhigh_pages from vm_total_pages), and as such we can't
762  * get into the old insane situation any more where we had
763  * large amounts of dirty pages compared to a small amount of
764  * non-HIGHMEM memory.
765  *
766  * But we might still want to scale the dirty_ratio by how
767  * much memory the box has..
768  */
769 void __init page_writeback_init(void)
770 {
771 	int shift;
772 
773 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
774 	writeback_set_ratelimit();
775 	register_cpu_notifier(&ratelimit_nb);
776 
777 	shift = calc_period_shift();
778 	prop_descriptor_init(&vm_completions, shift);
779 	prop_descriptor_init(&vm_dirties, shift);
780 }
781 
782 /**
783  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
784  * @mapping: address space structure to write
785  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
786  * @writepage: function called for each page
787  * @data: data passed to writepage function
788  *
789  * If a page is already under I/O, write_cache_pages() skips it, even
790  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
791  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
792  * and msync() need to guarantee that all the data which was dirty at the time
793  * the call was made get new I/O started against them.  If wbc->sync_mode is
794  * WB_SYNC_ALL then we were called for data integrity and we must wait for
795  * existing IO to complete.
796  */
797 int write_cache_pages(struct address_space *mapping,
798 		      struct writeback_control *wbc, writepage_t writepage,
799 		      void *data)
800 {
801 	struct backing_dev_info *bdi = mapping->backing_dev_info;
802 	int ret = 0;
803 	int done = 0;
804 	struct pagevec pvec;
805 	int nr_pages;
806 	pgoff_t index;
807 	pgoff_t end;		/* Inclusive */
808 	int scanned = 0;
809 	int range_whole = 0;
810 
811 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
812 		wbc->encountered_congestion = 1;
813 		return 0;
814 	}
815 
816 	pagevec_init(&pvec, 0);
817 	if (wbc->range_cyclic) {
818 		index = mapping->writeback_index; /* Start from prev offset */
819 		end = -1;
820 	} else {
821 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
822 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
823 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
824 			range_whole = 1;
825 		scanned = 1;
826 	}
827 retry:
828 	while (!done && (index <= end) &&
829 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
830 					      PAGECACHE_TAG_DIRTY,
831 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
832 		unsigned i;
833 
834 		scanned = 1;
835 		for (i = 0; i < nr_pages; i++) {
836 			struct page *page = pvec.pages[i];
837 
838 			/*
839 			 * At this point we hold neither mapping->tree_lock nor
840 			 * lock on the page itself: the page may be truncated or
841 			 * invalidated (changing page->mapping to NULL), or even
842 			 * swizzled back from swapper_space to tmpfs file
843 			 * mapping
844 			 */
845 			lock_page(page);
846 
847 			if (unlikely(page->mapping != mapping)) {
848 				unlock_page(page);
849 				continue;
850 			}
851 
852 			if (!wbc->range_cyclic && page->index > end) {
853 				done = 1;
854 				unlock_page(page);
855 				continue;
856 			}
857 
858 			if (wbc->sync_mode != WB_SYNC_NONE)
859 				wait_on_page_writeback(page);
860 
861 			if (PageWriteback(page) ||
862 			    !clear_page_dirty_for_io(page)) {
863 				unlock_page(page);
864 				continue;
865 			}
866 
867 			ret = (*writepage)(page, wbc, data);
868 
869 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
870 				unlock_page(page);
871 				ret = 0;
872 			}
873 			if (ret || (--(wbc->nr_to_write) <= 0))
874 				done = 1;
875 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
876 				wbc->encountered_congestion = 1;
877 				done = 1;
878 			}
879 		}
880 		pagevec_release(&pvec);
881 		cond_resched();
882 	}
883 	if (!scanned && !done) {
884 		/*
885 		 * We hit the last page and there is more work to be done: wrap
886 		 * back to the start of the file
887 		 */
888 		scanned = 1;
889 		index = 0;
890 		goto retry;
891 	}
892 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
893 		mapping->writeback_index = index;
894 	return ret;
895 }
896 EXPORT_SYMBOL(write_cache_pages);
897 
898 /*
899  * Function used by generic_writepages to call the real writepage
900  * function and set the mapping flags on error
901  */
902 static int __writepage(struct page *page, struct writeback_control *wbc,
903 		       void *data)
904 {
905 	struct address_space *mapping = data;
906 	int ret = mapping->a_ops->writepage(page, wbc);
907 	mapping_set_error(mapping, ret);
908 	return ret;
909 }
910 
911 /**
912  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
913  * @mapping: address space structure to write
914  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
915  *
916  * This is a library function, which implements the writepages()
917  * address_space_operation.
918  */
919 int generic_writepages(struct address_space *mapping,
920 		       struct writeback_control *wbc)
921 {
922 	/* deal with chardevs and other special file */
923 	if (!mapping->a_ops->writepage)
924 		return 0;
925 
926 	return write_cache_pages(mapping, wbc, __writepage, mapping);
927 }
928 
929 EXPORT_SYMBOL(generic_writepages);
930 
931 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
932 {
933 	int ret;
934 
935 	if (wbc->nr_to_write <= 0)
936 		return 0;
937 	wbc->for_writepages = 1;
938 	if (mapping->a_ops->writepages)
939 		ret = mapping->a_ops->writepages(mapping, wbc);
940 	else
941 		ret = generic_writepages(mapping, wbc);
942 	wbc->for_writepages = 0;
943 	return ret;
944 }
945 
946 /**
947  * write_one_page - write out a single page and optionally wait on I/O
948  * @page: the page to write
949  * @wait: if true, wait on writeout
950  *
951  * The page must be locked by the caller and will be unlocked upon return.
952  *
953  * write_one_page() returns a negative error code if I/O failed.
954  */
955 int write_one_page(struct page *page, int wait)
956 {
957 	struct address_space *mapping = page->mapping;
958 	int ret = 0;
959 	struct writeback_control wbc = {
960 		.sync_mode = WB_SYNC_ALL,
961 		.nr_to_write = 1,
962 	};
963 
964 	BUG_ON(!PageLocked(page));
965 
966 	if (wait)
967 		wait_on_page_writeback(page);
968 
969 	if (clear_page_dirty_for_io(page)) {
970 		page_cache_get(page);
971 		ret = mapping->a_ops->writepage(page, &wbc);
972 		if (ret == 0 && wait) {
973 			wait_on_page_writeback(page);
974 			if (PageError(page))
975 				ret = -EIO;
976 		}
977 		page_cache_release(page);
978 	} else {
979 		unlock_page(page);
980 	}
981 	return ret;
982 }
983 EXPORT_SYMBOL(write_one_page);
984 
985 /*
986  * For address_spaces which do not use buffers nor write back.
987  */
988 int __set_page_dirty_no_writeback(struct page *page)
989 {
990 	if (!PageDirty(page))
991 		SetPageDirty(page);
992 	return 0;
993 }
994 
995 /*
996  * For address_spaces which do not use buffers.  Just tag the page as dirty in
997  * its radix tree.
998  *
999  * This is also used when a single buffer is being dirtied: we want to set the
1000  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1001  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1002  *
1003  * Most callers have locked the page, which pins the address_space in memory.
1004  * But zap_pte_range() does not lock the page, however in that case the
1005  * mapping is pinned by the vma's ->vm_file reference.
1006  *
1007  * We take care to handle the case where the page was truncated from the
1008  * mapping by re-checking page_mapping() inside tree_lock.
1009  */
1010 int __set_page_dirty_nobuffers(struct page *page)
1011 {
1012 	if (!TestSetPageDirty(page)) {
1013 		struct address_space *mapping = page_mapping(page);
1014 		struct address_space *mapping2;
1015 
1016 		if (!mapping)
1017 			return 1;
1018 
1019 		write_lock_irq(&mapping->tree_lock);
1020 		mapping2 = page_mapping(page);
1021 		if (mapping2) { /* Race with truncate? */
1022 			BUG_ON(mapping2 != mapping);
1023 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1024 			if (mapping_cap_account_dirty(mapping)) {
1025 				__inc_zone_page_state(page, NR_FILE_DIRTY);
1026 				__inc_bdi_stat(mapping->backing_dev_info,
1027 						BDI_RECLAIMABLE);
1028 				task_io_account_write(PAGE_CACHE_SIZE);
1029 			}
1030 			radix_tree_tag_set(&mapping->page_tree,
1031 				page_index(page), PAGECACHE_TAG_DIRTY);
1032 		}
1033 		write_unlock_irq(&mapping->tree_lock);
1034 		if (mapping->host) {
1035 			/* !PageAnon && !swapper_space */
1036 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1037 		}
1038 		return 1;
1039 	}
1040 	return 0;
1041 }
1042 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1043 
1044 /*
1045  * When a writepage implementation decides that it doesn't want to write this
1046  * page for some reason, it should redirty the locked page via
1047  * redirty_page_for_writepage() and it should then unlock the page and return 0
1048  */
1049 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1050 {
1051 	wbc->pages_skipped++;
1052 	return __set_page_dirty_nobuffers(page);
1053 }
1054 EXPORT_SYMBOL(redirty_page_for_writepage);
1055 
1056 /*
1057  * If the mapping doesn't provide a set_page_dirty a_op, then
1058  * just fall through and assume that it wants buffer_heads.
1059  */
1060 static int __set_page_dirty(struct page *page)
1061 {
1062 	struct address_space *mapping = page_mapping(page);
1063 
1064 	if (likely(mapping)) {
1065 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1066 #ifdef CONFIG_BLOCK
1067 		if (!spd)
1068 			spd = __set_page_dirty_buffers;
1069 #endif
1070 		return (*spd)(page);
1071 	}
1072 	if (!PageDirty(page)) {
1073 		if (!TestSetPageDirty(page))
1074 			return 1;
1075 	}
1076 	return 0;
1077 }
1078 
1079 int set_page_dirty(struct page *page)
1080 {
1081 	int ret = __set_page_dirty(page);
1082 	if (ret)
1083 		task_dirty_inc(current);
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(set_page_dirty);
1087 
1088 /*
1089  * set_page_dirty() is racy if the caller has no reference against
1090  * page->mapping->host, and if the page is unlocked.  This is because another
1091  * CPU could truncate the page off the mapping and then free the mapping.
1092  *
1093  * Usually, the page _is_ locked, or the caller is a user-space process which
1094  * holds a reference on the inode by having an open file.
1095  *
1096  * In other cases, the page should be locked before running set_page_dirty().
1097  */
1098 int set_page_dirty_lock(struct page *page)
1099 {
1100 	int ret;
1101 
1102 	lock_page_nosync(page);
1103 	ret = set_page_dirty(page);
1104 	unlock_page(page);
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL(set_page_dirty_lock);
1108 
1109 /*
1110  * Clear a page's dirty flag, while caring for dirty memory accounting.
1111  * Returns true if the page was previously dirty.
1112  *
1113  * This is for preparing to put the page under writeout.  We leave the page
1114  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1115  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1116  * implementation will run either set_page_writeback() or set_page_dirty(),
1117  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1118  * back into sync.
1119  *
1120  * This incoherency between the page's dirty flag and radix-tree tag is
1121  * unfortunate, but it only exists while the page is locked.
1122  */
1123 int clear_page_dirty_for_io(struct page *page)
1124 {
1125 	struct address_space *mapping = page_mapping(page);
1126 
1127 	BUG_ON(!PageLocked(page));
1128 
1129 	ClearPageReclaim(page);
1130 	if (mapping && mapping_cap_account_dirty(mapping)) {
1131 		/*
1132 		 * Yes, Virginia, this is indeed insane.
1133 		 *
1134 		 * We use this sequence to make sure that
1135 		 *  (a) we account for dirty stats properly
1136 		 *  (b) we tell the low-level filesystem to
1137 		 *      mark the whole page dirty if it was
1138 		 *      dirty in a pagetable. Only to then
1139 		 *  (c) clean the page again and return 1 to
1140 		 *      cause the writeback.
1141 		 *
1142 		 * This way we avoid all nasty races with the
1143 		 * dirty bit in multiple places and clearing
1144 		 * them concurrently from different threads.
1145 		 *
1146 		 * Note! Normally the "set_page_dirty(page)"
1147 		 * has no effect on the actual dirty bit - since
1148 		 * that will already usually be set. But we
1149 		 * need the side effects, and it can help us
1150 		 * avoid races.
1151 		 *
1152 		 * We basically use the page "master dirty bit"
1153 		 * as a serialization point for all the different
1154 		 * threads doing their things.
1155 		 */
1156 		if (page_mkclean(page))
1157 			set_page_dirty(page);
1158 		/*
1159 		 * We carefully synchronise fault handlers against
1160 		 * installing a dirty pte and marking the page dirty
1161 		 * at this point. We do this by having them hold the
1162 		 * page lock at some point after installing their
1163 		 * pte, but before marking the page dirty.
1164 		 * Pages are always locked coming in here, so we get
1165 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1166 		 * for more comments.
1167 		 */
1168 		if (TestClearPageDirty(page)) {
1169 			dec_zone_page_state(page, NR_FILE_DIRTY);
1170 			dec_bdi_stat(mapping->backing_dev_info,
1171 					BDI_RECLAIMABLE);
1172 			return 1;
1173 		}
1174 		return 0;
1175 	}
1176 	return TestClearPageDirty(page);
1177 }
1178 EXPORT_SYMBOL(clear_page_dirty_for_io);
1179 
1180 int test_clear_page_writeback(struct page *page)
1181 {
1182 	struct address_space *mapping = page_mapping(page);
1183 	int ret;
1184 
1185 	if (mapping) {
1186 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1187 		unsigned long flags;
1188 
1189 		write_lock_irqsave(&mapping->tree_lock, flags);
1190 		ret = TestClearPageWriteback(page);
1191 		if (ret) {
1192 			radix_tree_tag_clear(&mapping->page_tree,
1193 						page_index(page),
1194 						PAGECACHE_TAG_WRITEBACK);
1195 			if (bdi_cap_writeback_dirty(bdi)) {
1196 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1197 				__bdi_writeout_inc(bdi);
1198 			}
1199 		}
1200 		write_unlock_irqrestore(&mapping->tree_lock, flags);
1201 	} else {
1202 		ret = TestClearPageWriteback(page);
1203 	}
1204 	if (ret)
1205 		dec_zone_page_state(page, NR_WRITEBACK);
1206 	return ret;
1207 }
1208 
1209 int test_set_page_writeback(struct page *page)
1210 {
1211 	struct address_space *mapping = page_mapping(page);
1212 	int ret;
1213 
1214 	if (mapping) {
1215 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1216 		unsigned long flags;
1217 
1218 		write_lock_irqsave(&mapping->tree_lock, flags);
1219 		ret = TestSetPageWriteback(page);
1220 		if (!ret) {
1221 			radix_tree_tag_set(&mapping->page_tree,
1222 						page_index(page),
1223 						PAGECACHE_TAG_WRITEBACK);
1224 			if (bdi_cap_writeback_dirty(bdi))
1225 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1226 		}
1227 		if (!PageDirty(page))
1228 			radix_tree_tag_clear(&mapping->page_tree,
1229 						page_index(page),
1230 						PAGECACHE_TAG_DIRTY);
1231 		write_unlock_irqrestore(&mapping->tree_lock, flags);
1232 	} else {
1233 		ret = TestSetPageWriteback(page);
1234 	}
1235 	if (!ret)
1236 		inc_zone_page_state(page, NR_WRITEBACK);
1237 	return ret;
1238 
1239 }
1240 EXPORT_SYMBOL(test_set_page_writeback);
1241 
1242 /*
1243  * Return true if any of the pages in the mapping are marked with the
1244  * passed tag.
1245  */
1246 int mapping_tagged(struct address_space *mapping, int tag)
1247 {
1248 	int ret;
1249 	rcu_read_lock();
1250 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1251 	rcu_read_unlock();
1252 	return ret;
1253 }
1254 EXPORT_SYMBOL(mapping_tagged);
1255