xref: /linux/mm/page-writeback.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that makes the machine dump writes/reads and block dirtyings.
113  */
114 int block_dump;
115 
116 /*
117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118  * a full sync is triggered after this time elapses without any disk activity.
119  */
120 int laptop_mode;
121 
122 EXPORT_SYMBOL(laptop_mode);
123 
124 /* End of sysctl-exported parameters */
125 
126 struct wb_domain global_wb_domain;
127 
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131 	struct wb_domain	*dom;
132 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
133 #endif
134 	struct bdi_writeback	*wb;
135 	struct fprop_local_percpu *wb_completions;
136 
137 	unsigned long		avail;		/* dirtyable */
138 	unsigned long		dirty;		/* file_dirty + write + nfs */
139 	unsigned long		thresh;		/* dirty threshold */
140 	unsigned long		bg_thresh;	/* dirty background threshold */
141 
142 	unsigned long		wb_dirty;	/* per-wb counterparts */
143 	unsigned long		wb_thresh;
144 	unsigned long		wb_bg_thresh;
145 
146 	unsigned long		pos_ratio;
147 };
148 
149 /*
150  * Length of period for aging writeout fractions of bdis. This is an
151  * arbitrarily chosen number. The longer the period, the slower fractions will
152  * reflect changes in current writeout rate.
153  */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 
156 #ifdef CONFIG_CGROUP_WRITEBACK
157 
158 #define GDTC_INIT(__wb)		.wb = (__wb),				\
159 				.dom = &global_wb_domain,		\
160 				.wb_completions = &(__wb)->completions
161 
162 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 
164 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
165 				.dom = mem_cgroup_wb_domain(__wb),	\
166 				.wb_completions = &(__wb)->memcg_completions, \
167 				.gdtc = __gdtc
168 
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 {
171 	return dtc->dom;
172 }
173 
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 {
176 	return dtc->dom;
177 }
178 
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 {
181 	return mdtc->gdtc;
182 }
183 
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 {
186 	return &wb->memcg_completions;
187 }
188 
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190 			     unsigned long *minp, unsigned long *maxp)
191 {
192 	unsigned long this_bw = wb->avg_write_bandwidth;
193 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 	unsigned long long min = wb->bdi->min_ratio;
195 	unsigned long long max = wb->bdi->max_ratio;
196 
197 	/*
198 	 * @wb may already be clean by the time control reaches here and
199 	 * the total may not include its bw.
200 	 */
201 	if (this_bw < tot_bw) {
202 		if (min) {
203 			min *= this_bw;
204 			do_div(min, tot_bw);
205 		}
206 		if (max < 100) {
207 			max *= this_bw;
208 			do_div(max, tot_bw);
209 		}
210 	}
211 
212 	*minp = min;
213 	*maxp = max;
214 }
215 
216 #else	/* CONFIG_CGROUP_WRITEBACK */
217 
218 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
219 				.wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
222 
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 {
225 	return false;
226 }
227 
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 {
230 	return &global_wb_domain;
231 }
232 
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 {
235 	return NULL;
236 }
237 
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 {
240 	return NULL;
241 }
242 
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244 			     unsigned long *minp, unsigned long *maxp)
245 {
246 	*minp = wb->bdi->min_ratio;
247 	*maxp = wb->bdi->max_ratio;
248 }
249 
250 #endif	/* CONFIG_CGROUP_WRITEBACK */
251 
252 /*
253  * In a memory zone, there is a certain amount of pages we consider
254  * available for the page cache, which is essentially the number of
255  * free and reclaimable pages, minus some zone reserves to protect
256  * lowmem and the ability to uphold the zone's watermarks without
257  * requiring writeback.
258  *
259  * This number of dirtyable pages is the base value of which the
260  * user-configurable dirty ratio is the effictive number of pages that
261  * are allowed to be actually dirtied.  Per individual zone, or
262  * globally by using the sum of dirtyable pages over all zones.
263  *
264  * Because the user is allowed to specify the dirty limit globally as
265  * absolute number of bytes, calculating the per-zone dirty limit can
266  * require translating the configured limit into a percentage of
267  * global dirtyable memory first.
268  */
269 
270 /**
271  * node_dirtyable_memory - number of dirtyable pages in a node
272  * @pgdat: the node
273  *
274  * Returns the node's number of pages potentially available for dirty
275  * page cache.  This is the base value for the per-node dirty limits.
276  */
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 {
279 	unsigned long nr_pages = 0;
280 	int z;
281 
282 	for (z = 0; z < MAX_NR_ZONES; z++) {
283 		struct zone *zone = pgdat->node_zones + z;
284 
285 		if (!populated_zone(zone))
286 			continue;
287 
288 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 	}
290 
291 	/*
292 	 * Pages reserved for the kernel should not be considered
293 	 * dirtyable, to prevent a situation where reclaim has to
294 	 * clean pages in order to balance the zones.
295 	 */
296 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297 
298 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300 
301 	return nr_pages;
302 }
303 
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 {
306 #ifdef CONFIG_HIGHMEM
307 	int node;
308 	unsigned long x = 0;
309 	int i;
310 
311 	for_each_node_state(node, N_HIGH_MEMORY) {
312 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 			struct zone *z;
314 			unsigned long nr_pages;
315 
316 			if (!is_highmem_idx(i))
317 				continue;
318 
319 			z = &NODE_DATA(node)->node_zones[i];
320 			if (!populated_zone(z))
321 				continue;
322 
323 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
324 			/* watch for underflows */
325 			nr_pages -= min(nr_pages, high_wmark_pages(z));
326 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 			x += nr_pages;
329 		}
330 	}
331 
332 	/*
333 	 * Unreclaimable memory (kernel memory or anonymous memory
334 	 * without swap) can bring down the dirtyable pages below
335 	 * the zone's dirty balance reserve and the above calculation
336 	 * will underflow.  However we still want to add in nodes
337 	 * which are below threshold (negative values) to get a more
338 	 * accurate calculation but make sure that the total never
339 	 * underflows.
340 	 */
341 	if ((long)x < 0)
342 		x = 0;
343 
344 	/*
345 	 * Make sure that the number of highmem pages is never larger
346 	 * than the number of the total dirtyable memory. This can only
347 	 * occur in very strange VM situations but we want to make sure
348 	 * that this does not occur.
349 	 */
350 	return min(x, total);
351 #else
352 	return 0;
353 #endif
354 }
355 
356 /**
357  * global_dirtyable_memory - number of globally dirtyable pages
358  *
359  * Returns the global number of pages potentially available for dirty
360  * page cache.  This is the base value for the global dirty limits.
361  */
362 static unsigned long global_dirtyable_memory(void)
363 {
364 	unsigned long x;
365 
366 	x = global_page_state(NR_FREE_PAGES);
367 	/*
368 	 * Pages reserved for the kernel should not be considered
369 	 * dirtyable, to prevent a situation where reclaim has to
370 	 * clean pages in order to balance the zones.
371 	 */
372 	x -= min(x, totalreserve_pages);
373 
374 	x += global_node_page_state(NR_INACTIVE_FILE);
375 	x += global_node_page_state(NR_ACTIVE_FILE);
376 
377 	if (!vm_highmem_is_dirtyable)
378 		x -= highmem_dirtyable_memory(x);
379 
380 	return x + 1;	/* Ensure that we never return 0 */
381 }
382 
383 /**
384  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385  * @dtc: dirty_throttle_control of interest
386  *
387  * Calculate @dtc->thresh and ->bg_thresh considering
388  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
389  * must ensure that @dtc->avail is set before calling this function.  The
390  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391  * real-time tasks.
392  */
393 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394 {
395 	const unsigned long available_memory = dtc->avail;
396 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 	unsigned long bytes = vm_dirty_bytes;
398 	unsigned long bg_bytes = dirty_background_bytes;
399 	/* convert ratios to per-PAGE_SIZE for higher precision */
400 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402 	unsigned long thresh;
403 	unsigned long bg_thresh;
404 	struct task_struct *tsk;
405 
406 	/* gdtc is !NULL iff @dtc is for memcg domain */
407 	if (gdtc) {
408 		unsigned long global_avail = gdtc->avail;
409 
410 		/*
411 		 * The byte settings can't be applied directly to memcg
412 		 * domains.  Convert them to ratios by scaling against
413 		 * globally available memory.  As the ratios are in
414 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 		 * number of pages.
416 		 */
417 		if (bytes)
418 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 				    PAGE_SIZE);
420 		if (bg_bytes)
421 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 				       PAGE_SIZE);
423 		bytes = bg_bytes = 0;
424 	}
425 
426 	if (bytes)
427 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428 	else
429 		thresh = (ratio * available_memory) / PAGE_SIZE;
430 
431 	if (bg_bytes)
432 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433 	else
434 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435 
436 	if (bg_thresh >= thresh)
437 		bg_thresh = thresh / 2;
438 	tsk = current;
439 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
440 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
441 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
442 	}
443 	dtc->thresh = thresh;
444 	dtc->bg_thresh = bg_thresh;
445 
446 	/* we should eventually report the domain in the TP */
447 	if (!gdtc)
448 		trace_global_dirty_state(bg_thresh, thresh);
449 }
450 
451 /**
452  * global_dirty_limits - background-writeback and dirty-throttling thresholds
453  * @pbackground: out parameter for bg_thresh
454  * @pdirty: out parameter for thresh
455  *
456  * Calculate bg_thresh and thresh for global_wb_domain.  See
457  * domain_dirty_limits() for details.
458  */
459 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
460 {
461 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
462 
463 	gdtc.avail = global_dirtyable_memory();
464 	domain_dirty_limits(&gdtc);
465 
466 	*pbackground = gdtc.bg_thresh;
467 	*pdirty = gdtc.thresh;
468 }
469 
470 /**
471  * node_dirty_limit - maximum number of dirty pages allowed in a node
472  * @pgdat: the node
473  *
474  * Returns the maximum number of dirty pages allowed in a node, based
475  * on the node's dirtyable memory.
476  */
477 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
478 {
479 	unsigned long node_memory = node_dirtyable_memory(pgdat);
480 	struct task_struct *tsk = current;
481 	unsigned long dirty;
482 
483 	if (vm_dirty_bytes)
484 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
485 			node_memory / global_dirtyable_memory();
486 	else
487 		dirty = vm_dirty_ratio * node_memory / 100;
488 
489 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
490 		dirty += dirty / 4;
491 
492 	return dirty;
493 }
494 
495 /**
496  * node_dirty_ok - tells whether a node is within its dirty limits
497  * @pgdat: the node to check
498  *
499  * Returns %true when the dirty pages in @pgdat are within the node's
500  * dirty limit, %false if the limit is exceeded.
501  */
502 bool node_dirty_ok(struct pglist_data *pgdat)
503 {
504 	unsigned long limit = node_dirty_limit(pgdat);
505 	unsigned long nr_pages = 0;
506 
507 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
508 	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
509 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
510 
511 	return nr_pages <= limit;
512 }
513 
514 int dirty_background_ratio_handler(struct ctl_table *table, int write,
515 		void __user *buffer, size_t *lenp,
516 		loff_t *ppos)
517 {
518 	int ret;
519 
520 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
521 	if (ret == 0 && write)
522 		dirty_background_bytes = 0;
523 	return ret;
524 }
525 
526 int dirty_background_bytes_handler(struct ctl_table *table, int write,
527 		void __user *buffer, size_t *lenp,
528 		loff_t *ppos)
529 {
530 	int ret;
531 
532 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
533 	if (ret == 0 && write)
534 		dirty_background_ratio = 0;
535 	return ret;
536 }
537 
538 int dirty_ratio_handler(struct ctl_table *table, int write,
539 		void __user *buffer, size_t *lenp,
540 		loff_t *ppos)
541 {
542 	int old_ratio = vm_dirty_ratio;
543 	int ret;
544 
545 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
546 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
547 		writeback_set_ratelimit();
548 		vm_dirty_bytes = 0;
549 	}
550 	return ret;
551 }
552 
553 int dirty_bytes_handler(struct ctl_table *table, int write,
554 		void __user *buffer, size_t *lenp,
555 		loff_t *ppos)
556 {
557 	unsigned long old_bytes = vm_dirty_bytes;
558 	int ret;
559 
560 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
561 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
562 		writeback_set_ratelimit();
563 		vm_dirty_ratio = 0;
564 	}
565 	return ret;
566 }
567 
568 static unsigned long wp_next_time(unsigned long cur_time)
569 {
570 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
571 	/* 0 has a special meaning... */
572 	if (!cur_time)
573 		return 1;
574 	return cur_time;
575 }
576 
577 static void wb_domain_writeout_inc(struct wb_domain *dom,
578 				   struct fprop_local_percpu *completions,
579 				   unsigned int max_prop_frac)
580 {
581 	__fprop_inc_percpu_max(&dom->completions, completions,
582 			       max_prop_frac);
583 	/* First event after period switching was turned off? */
584 	if (unlikely(!dom->period_time)) {
585 		/*
586 		 * We can race with other __bdi_writeout_inc calls here but
587 		 * it does not cause any harm since the resulting time when
588 		 * timer will fire and what is in writeout_period_time will be
589 		 * roughly the same.
590 		 */
591 		dom->period_time = wp_next_time(jiffies);
592 		mod_timer(&dom->period_timer, dom->period_time);
593 	}
594 }
595 
596 /*
597  * Increment @wb's writeout completion count and the global writeout
598  * completion count. Called from test_clear_page_writeback().
599  */
600 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
601 {
602 	struct wb_domain *cgdom;
603 
604 	__inc_wb_stat(wb, WB_WRITTEN);
605 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
606 			       wb->bdi->max_prop_frac);
607 
608 	cgdom = mem_cgroup_wb_domain(wb);
609 	if (cgdom)
610 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
611 				       wb->bdi->max_prop_frac);
612 }
613 
614 void wb_writeout_inc(struct bdi_writeback *wb)
615 {
616 	unsigned long flags;
617 
618 	local_irq_save(flags);
619 	__wb_writeout_inc(wb);
620 	local_irq_restore(flags);
621 }
622 EXPORT_SYMBOL_GPL(wb_writeout_inc);
623 
624 /*
625  * On idle system, we can be called long after we scheduled because we use
626  * deferred timers so count with missed periods.
627  */
628 static void writeout_period(unsigned long t)
629 {
630 	struct wb_domain *dom = (void *)t;
631 	int miss_periods = (jiffies - dom->period_time) /
632 						 VM_COMPLETIONS_PERIOD_LEN;
633 
634 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
635 		dom->period_time = wp_next_time(dom->period_time +
636 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
637 		mod_timer(&dom->period_timer, dom->period_time);
638 	} else {
639 		/*
640 		 * Aging has zeroed all fractions. Stop wasting CPU on period
641 		 * updates.
642 		 */
643 		dom->period_time = 0;
644 	}
645 }
646 
647 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
648 {
649 	memset(dom, 0, sizeof(*dom));
650 
651 	spin_lock_init(&dom->lock);
652 
653 	init_timer_deferrable(&dom->period_timer);
654 	dom->period_timer.function = writeout_period;
655 	dom->period_timer.data = (unsigned long)dom;
656 
657 	dom->dirty_limit_tstamp = jiffies;
658 
659 	return fprop_global_init(&dom->completions, gfp);
660 }
661 
662 #ifdef CONFIG_CGROUP_WRITEBACK
663 void wb_domain_exit(struct wb_domain *dom)
664 {
665 	del_timer_sync(&dom->period_timer);
666 	fprop_global_destroy(&dom->completions);
667 }
668 #endif
669 
670 /*
671  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
672  * registered backing devices, which, for obvious reasons, can not
673  * exceed 100%.
674  */
675 static unsigned int bdi_min_ratio;
676 
677 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
678 {
679 	int ret = 0;
680 
681 	spin_lock_bh(&bdi_lock);
682 	if (min_ratio > bdi->max_ratio) {
683 		ret = -EINVAL;
684 	} else {
685 		min_ratio -= bdi->min_ratio;
686 		if (bdi_min_ratio + min_ratio < 100) {
687 			bdi_min_ratio += min_ratio;
688 			bdi->min_ratio += min_ratio;
689 		} else {
690 			ret = -EINVAL;
691 		}
692 	}
693 	spin_unlock_bh(&bdi_lock);
694 
695 	return ret;
696 }
697 
698 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
699 {
700 	int ret = 0;
701 
702 	if (max_ratio > 100)
703 		return -EINVAL;
704 
705 	spin_lock_bh(&bdi_lock);
706 	if (bdi->min_ratio > max_ratio) {
707 		ret = -EINVAL;
708 	} else {
709 		bdi->max_ratio = max_ratio;
710 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
711 	}
712 	spin_unlock_bh(&bdi_lock);
713 
714 	return ret;
715 }
716 EXPORT_SYMBOL(bdi_set_max_ratio);
717 
718 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
719 					   unsigned long bg_thresh)
720 {
721 	return (thresh + bg_thresh) / 2;
722 }
723 
724 static unsigned long hard_dirty_limit(struct wb_domain *dom,
725 				      unsigned long thresh)
726 {
727 	return max(thresh, dom->dirty_limit);
728 }
729 
730 /*
731  * Memory which can be further allocated to a memcg domain is capped by
732  * system-wide clean memory excluding the amount being used in the domain.
733  */
734 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
735 			    unsigned long filepages, unsigned long headroom)
736 {
737 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
738 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
739 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
740 	unsigned long other_clean = global_clean - min(global_clean, clean);
741 
742 	mdtc->avail = filepages + min(headroom, other_clean);
743 }
744 
745 /**
746  * __wb_calc_thresh - @wb's share of dirty throttling threshold
747  * @dtc: dirty_throttle_context of interest
748  *
749  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
750  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
751  *
752  * Note that balance_dirty_pages() will only seriously take it as a hard limit
753  * when sleeping max_pause per page is not enough to keep the dirty pages under
754  * control. For example, when the device is completely stalled due to some error
755  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
756  * In the other normal situations, it acts more gently by throttling the tasks
757  * more (rather than completely block them) when the wb dirty pages go high.
758  *
759  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
760  * - starving fast devices
761  * - piling up dirty pages (that will take long time to sync) on slow devices
762  *
763  * The wb's share of dirty limit will be adapting to its throughput and
764  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
765  */
766 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
767 {
768 	struct wb_domain *dom = dtc_dom(dtc);
769 	unsigned long thresh = dtc->thresh;
770 	u64 wb_thresh;
771 	long numerator, denominator;
772 	unsigned long wb_min_ratio, wb_max_ratio;
773 
774 	/*
775 	 * Calculate this BDI's share of the thresh ratio.
776 	 */
777 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
778 			      &numerator, &denominator);
779 
780 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
781 	wb_thresh *= numerator;
782 	do_div(wb_thresh, denominator);
783 
784 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
785 
786 	wb_thresh += (thresh * wb_min_ratio) / 100;
787 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
788 		wb_thresh = thresh * wb_max_ratio / 100;
789 
790 	return wb_thresh;
791 }
792 
793 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
794 {
795 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
796 					       .thresh = thresh };
797 	return __wb_calc_thresh(&gdtc);
798 }
799 
800 /*
801  *                           setpoint - dirty 3
802  *        f(dirty) := 1.0 + (----------------)
803  *                           limit - setpoint
804  *
805  * it's a 3rd order polynomial that subjects to
806  *
807  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
808  * (2) f(setpoint) = 1.0 => the balance point
809  * (3) f(limit)    = 0   => the hard limit
810  * (4) df/dx      <= 0	 => negative feedback control
811  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
812  *     => fast response on large errors; small oscillation near setpoint
813  */
814 static long long pos_ratio_polynom(unsigned long setpoint,
815 					  unsigned long dirty,
816 					  unsigned long limit)
817 {
818 	long long pos_ratio;
819 	long x;
820 
821 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
822 		      (limit - setpoint) | 1);
823 	pos_ratio = x;
824 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
825 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
826 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
827 
828 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
829 }
830 
831 /*
832  * Dirty position control.
833  *
834  * (o) global/bdi setpoints
835  *
836  * We want the dirty pages be balanced around the global/wb setpoints.
837  * When the number of dirty pages is higher/lower than the setpoint, the
838  * dirty position control ratio (and hence task dirty ratelimit) will be
839  * decreased/increased to bring the dirty pages back to the setpoint.
840  *
841  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
842  *
843  *     if (dirty < setpoint) scale up   pos_ratio
844  *     if (dirty > setpoint) scale down pos_ratio
845  *
846  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
847  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
848  *
849  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
850  *
851  * (o) global control line
852  *
853  *     ^ pos_ratio
854  *     |
855  *     |            |<===== global dirty control scope ======>|
856  * 2.0 .............*
857  *     |            .*
858  *     |            . *
859  *     |            .   *
860  *     |            .     *
861  *     |            .        *
862  *     |            .            *
863  * 1.0 ................................*
864  *     |            .                  .     *
865  *     |            .                  .          *
866  *     |            .                  .              *
867  *     |            .                  .                 *
868  *     |            .                  .                    *
869  *   0 +------------.------------------.----------------------*------------->
870  *           freerun^          setpoint^                 limit^   dirty pages
871  *
872  * (o) wb control line
873  *
874  *     ^ pos_ratio
875  *     |
876  *     |            *
877  *     |              *
878  *     |                *
879  *     |                  *
880  *     |                    * |<=========== span ============>|
881  * 1.0 .......................*
882  *     |                      . *
883  *     |                      .   *
884  *     |                      .     *
885  *     |                      .       *
886  *     |                      .         *
887  *     |                      .           *
888  *     |                      .             *
889  *     |                      .               *
890  *     |                      .                 *
891  *     |                      .                   *
892  *     |                      .                     *
893  * 1/4 ...............................................* * * * * * * * * * * *
894  *     |                      .                         .
895  *     |                      .                           .
896  *     |                      .                             .
897  *   0 +----------------------.-------------------------------.------------->
898  *                wb_setpoint^                    x_intercept^
899  *
900  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
901  * be smoothly throttled down to normal if it starts high in situations like
902  * - start writing to a slow SD card and a fast disk at the same time. The SD
903  *   card's wb_dirty may rush to many times higher than wb_setpoint.
904  * - the wb dirty thresh drops quickly due to change of JBOD workload
905  */
906 static void wb_position_ratio(struct dirty_throttle_control *dtc)
907 {
908 	struct bdi_writeback *wb = dtc->wb;
909 	unsigned long write_bw = wb->avg_write_bandwidth;
910 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
911 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
912 	unsigned long wb_thresh = dtc->wb_thresh;
913 	unsigned long x_intercept;
914 	unsigned long setpoint;		/* dirty pages' target balance point */
915 	unsigned long wb_setpoint;
916 	unsigned long span;
917 	long long pos_ratio;		/* for scaling up/down the rate limit */
918 	long x;
919 
920 	dtc->pos_ratio = 0;
921 
922 	if (unlikely(dtc->dirty >= limit))
923 		return;
924 
925 	/*
926 	 * global setpoint
927 	 *
928 	 * See comment for pos_ratio_polynom().
929 	 */
930 	setpoint = (freerun + limit) / 2;
931 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
932 
933 	/*
934 	 * The strictlimit feature is a tool preventing mistrusted filesystems
935 	 * from growing a large number of dirty pages before throttling. For
936 	 * such filesystems balance_dirty_pages always checks wb counters
937 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
938 	 * This is especially important for fuse which sets bdi->max_ratio to
939 	 * 1% by default. Without strictlimit feature, fuse writeback may
940 	 * consume arbitrary amount of RAM because it is accounted in
941 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
942 	 *
943 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
944 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
945 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
946 	 * limits are set by default to 10% and 20% (background and throttle).
947 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
948 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
949 	 * about ~6K pages (as the average of background and throttle wb
950 	 * limits). The 3rd order polynomial will provide positive feedback if
951 	 * wb_dirty is under wb_setpoint and vice versa.
952 	 *
953 	 * Note, that we cannot use global counters in these calculations
954 	 * because we want to throttle process writing to a strictlimit wb
955 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
956 	 * in the example above).
957 	 */
958 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
959 		long long wb_pos_ratio;
960 
961 		if (dtc->wb_dirty < 8) {
962 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
963 					   2 << RATELIMIT_CALC_SHIFT);
964 			return;
965 		}
966 
967 		if (dtc->wb_dirty >= wb_thresh)
968 			return;
969 
970 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
971 						    dtc->wb_bg_thresh);
972 
973 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
974 			return;
975 
976 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
977 						 wb_thresh);
978 
979 		/*
980 		 * Typically, for strictlimit case, wb_setpoint << setpoint
981 		 * and pos_ratio >> wb_pos_ratio. In the other words global
982 		 * state ("dirty") is not limiting factor and we have to
983 		 * make decision based on wb counters. But there is an
984 		 * important case when global pos_ratio should get precedence:
985 		 * global limits are exceeded (e.g. due to activities on other
986 		 * wb's) while given strictlimit wb is below limit.
987 		 *
988 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
989 		 * but it would look too non-natural for the case of all
990 		 * activity in the system coming from a single strictlimit wb
991 		 * with bdi->max_ratio == 100%.
992 		 *
993 		 * Note that min() below somewhat changes the dynamics of the
994 		 * control system. Normally, pos_ratio value can be well over 3
995 		 * (when globally we are at freerun and wb is well below wb
996 		 * setpoint). Now the maximum pos_ratio in the same situation
997 		 * is 2. We might want to tweak this if we observe the control
998 		 * system is too slow to adapt.
999 		 */
1000 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1001 		return;
1002 	}
1003 
1004 	/*
1005 	 * We have computed basic pos_ratio above based on global situation. If
1006 	 * the wb is over/under its share of dirty pages, we want to scale
1007 	 * pos_ratio further down/up. That is done by the following mechanism.
1008 	 */
1009 
1010 	/*
1011 	 * wb setpoint
1012 	 *
1013 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1014 	 *
1015 	 *                        x_intercept - wb_dirty
1016 	 *                     := --------------------------
1017 	 *                        x_intercept - wb_setpoint
1018 	 *
1019 	 * The main wb control line is a linear function that subjects to
1020 	 *
1021 	 * (1) f(wb_setpoint) = 1.0
1022 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1023 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1024 	 *
1025 	 * For single wb case, the dirty pages are observed to fluctuate
1026 	 * regularly within range
1027 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1028 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1029 	 * fluctuation range for pos_ratio.
1030 	 *
1031 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1032 	 * own size, so move the slope over accordingly and choose a slope that
1033 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1034 	 */
1035 	if (unlikely(wb_thresh > dtc->thresh))
1036 		wb_thresh = dtc->thresh;
1037 	/*
1038 	 * It's very possible that wb_thresh is close to 0 not because the
1039 	 * device is slow, but that it has remained inactive for long time.
1040 	 * Honour such devices a reasonable good (hopefully IO efficient)
1041 	 * threshold, so that the occasional writes won't be blocked and active
1042 	 * writes can rampup the threshold quickly.
1043 	 */
1044 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1045 	/*
1046 	 * scale global setpoint to wb's:
1047 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1048 	 */
1049 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1050 	wb_setpoint = setpoint * (u64)x >> 16;
1051 	/*
1052 	 * Use span=(8*write_bw) in single wb case as indicated by
1053 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1054 	 *
1055 	 *        wb_thresh                    thresh - wb_thresh
1056 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1057 	 *         thresh                           thresh
1058 	 */
1059 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1060 	x_intercept = wb_setpoint + span;
1061 
1062 	if (dtc->wb_dirty < x_intercept - span / 4) {
1063 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1064 				      (x_intercept - wb_setpoint) | 1);
1065 	} else
1066 		pos_ratio /= 4;
1067 
1068 	/*
1069 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1070 	 * It may push the desired control point of global dirty pages higher
1071 	 * than setpoint.
1072 	 */
1073 	x_intercept = wb_thresh / 2;
1074 	if (dtc->wb_dirty < x_intercept) {
1075 		if (dtc->wb_dirty > x_intercept / 8)
1076 			pos_ratio = div_u64(pos_ratio * x_intercept,
1077 					    dtc->wb_dirty);
1078 		else
1079 			pos_ratio *= 8;
1080 	}
1081 
1082 	dtc->pos_ratio = pos_ratio;
1083 }
1084 
1085 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1086 				      unsigned long elapsed,
1087 				      unsigned long written)
1088 {
1089 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1090 	unsigned long avg = wb->avg_write_bandwidth;
1091 	unsigned long old = wb->write_bandwidth;
1092 	u64 bw;
1093 
1094 	/*
1095 	 * bw = written * HZ / elapsed
1096 	 *
1097 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1098 	 * write_bandwidth = ---------------------------------------------------
1099 	 *                                          period
1100 	 *
1101 	 * @written may have decreased due to account_page_redirty().
1102 	 * Avoid underflowing @bw calculation.
1103 	 */
1104 	bw = written - min(written, wb->written_stamp);
1105 	bw *= HZ;
1106 	if (unlikely(elapsed > period)) {
1107 		do_div(bw, elapsed);
1108 		avg = bw;
1109 		goto out;
1110 	}
1111 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1112 	bw >>= ilog2(period);
1113 
1114 	/*
1115 	 * one more level of smoothing, for filtering out sudden spikes
1116 	 */
1117 	if (avg > old && old >= (unsigned long)bw)
1118 		avg -= (avg - old) >> 3;
1119 
1120 	if (avg < old && old <= (unsigned long)bw)
1121 		avg += (old - avg) >> 3;
1122 
1123 out:
1124 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1125 	avg = max(avg, 1LU);
1126 	if (wb_has_dirty_io(wb)) {
1127 		long delta = avg - wb->avg_write_bandwidth;
1128 		WARN_ON_ONCE(atomic_long_add_return(delta,
1129 					&wb->bdi->tot_write_bandwidth) <= 0);
1130 	}
1131 	wb->write_bandwidth = bw;
1132 	wb->avg_write_bandwidth = avg;
1133 }
1134 
1135 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1136 {
1137 	struct wb_domain *dom = dtc_dom(dtc);
1138 	unsigned long thresh = dtc->thresh;
1139 	unsigned long limit = dom->dirty_limit;
1140 
1141 	/*
1142 	 * Follow up in one step.
1143 	 */
1144 	if (limit < thresh) {
1145 		limit = thresh;
1146 		goto update;
1147 	}
1148 
1149 	/*
1150 	 * Follow down slowly. Use the higher one as the target, because thresh
1151 	 * may drop below dirty. This is exactly the reason to introduce
1152 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1153 	 */
1154 	thresh = max(thresh, dtc->dirty);
1155 	if (limit > thresh) {
1156 		limit -= (limit - thresh) >> 5;
1157 		goto update;
1158 	}
1159 	return;
1160 update:
1161 	dom->dirty_limit = limit;
1162 }
1163 
1164 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1165 				    unsigned long now)
1166 {
1167 	struct wb_domain *dom = dtc_dom(dtc);
1168 
1169 	/*
1170 	 * check locklessly first to optimize away locking for the most time
1171 	 */
1172 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1173 		return;
1174 
1175 	spin_lock(&dom->lock);
1176 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1177 		update_dirty_limit(dtc);
1178 		dom->dirty_limit_tstamp = now;
1179 	}
1180 	spin_unlock(&dom->lock);
1181 }
1182 
1183 /*
1184  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1185  *
1186  * Normal wb tasks will be curbed at or below it in long term.
1187  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1188  */
1189 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1190 				      unsigned long dirtied,
1191 				      unsigned long elapsed)
1192 {
1193 	struct bdi_writeback *wb = dtc->wb;
1194 	unsigned long dirty = dtc->dirty;
1195 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1196 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1197 	unsigned long setpoint = (freerun + limit) / 2;
1198 	unsigned long write_bw = wb->avg_write_bandwidth;
1199 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1200 	unsigned long dirty_rate;
1201 	unsigned long task_ratelimit;
1202 	unsigned long balanced_dirty_ratelimit;
1203 	unsigned long step;
1204 	unsigned long x;
1205 	unsigned long shift;
1206 
1207 	/*
1208 	 * The dirty rate will match the writeout rate in long term, except
1209 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1210 	 */
1211 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1212 
1213 	/*
1214 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1215 	 */
1216 	task_ratelimit = (u64)dirty_ratelimit *
1217 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1218 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1219 
1220 	/*
1221 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1222 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1223 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1224 	 * formula will yield the balanced rate limit (write_bw / N).
1225 	 *
1226 	 * Note that the expanded form is not a pure rate feedback:
1227 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1228 	 * but also takes pos_ratio into account:
1229 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1230 	 *
1231 	 * (1) is not realistic because pos_ratio also takes part in balancing
1232 	 * the dirty rate.  Consider the state
1233 	 *	pos_ratio = 0.5						     (3)
1234 	 *	rate = 2 * (write_bw / N)				     (4)
1235 	 * If (1) is used, it will stuck in that state! Because each dd will
1236 	 * be throttled at
1237 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1238 	 * yielding
1239 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1240 	 * put (6) into (1) we get
1241 	 *	rate_(i+1) = rate_(i)					     (7)
1242 	 *
1243 	 * So we end up using (2) to always keep
1244 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1245 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1246 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1247 	 * the dirty count meet the setpoint, but also where the slope of
1248 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1249 	 */
1250 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1251 					   dirty_rate | 1);
1252 	/*
1253 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1254 	 */
1255 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1256 		balanced_dirty_ratelimit = write_bw;
1257 
1258 	/*
1259 	 * We could safely do this and return immediately:
1260 	 *
1261 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1262 	 *
1263 	 * However to get a more stable dirty_ratelimit, the below elaborated
1264 	 * code makes use of task_ratelimit to filter out singular points and
1265 	 * limit the step size.
1266 	 *
1267 	 * The below code essentially only uses the relative value of
1268 	 *
1269 	 *	task_ratelimit - dirty_ratelimit
1270 	 *	= (pos_ratio - 1) * dirty_ratelimit
1271 	 *
1272 	 * which reflects the direction and size of dirty position error.
1273 	 */
1274 
1275 	/*
1276 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1277 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1278 	 * For example, when
1279 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1280 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1281 	 * lowering dirty_ratelimit will help meet both the position and rate
1282 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1283 	 * only help meet the rate target. After all, what the users ultimately
1284 	 * feel and care are stable dirty rate and small position error.
1285 	 *
1286 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1287 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1288 	 * keeps jumping around randomly and can even leap far away at times
1289 	 * due to the small 200ms estimation period of dirty_rate (we want to
1290 	 * keep that period small to reduce time lags).
1291 	 */
1292 	step = 0;
1293 
1294 	/*
1295 	 * For strictlimit case, calculations above were based on wb counters
1296 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1297 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1298 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1299 	 * "dirty" and wb_setpoint as "setpoint".
1300 	 *
1301 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1302 	 * it's possible that wb_thresh is close to zero due to inactivity
1303 	 * of backing device.
1304 	 */
1305 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1306 		dirty = dtc->wb_dirty;
1307 		if (dtc->wb_dirty < 8)
1308 			setpoint = dtc->wb_dirty + 1;
1309 		else
1310 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1311 	}
1312 
1313 	if (dirty < setpoint) {
1314 		x = min3(wb->balanced_dirty_ratelimit,
1315 			 balanced_dirty_ratelimit, task_ratelimit);
1316 		if (dirty_ratelimit < x)
1317 			step = x - dirty_ratelimit;
1318 	} else {
1319 		x = max3(wb->balanced_dirty_ratelimit,
1320 			 balanced_dirty_ratelimit, task_ratelimit);
1321 		if (dirty_ratelimit > x)
1322 			step = dirty_ratelimit - x;
1323 	}
1324 
1325 	/*
1326 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1327 	 * rate itself is constantly fluctuating. So decrease the track speed
1328 	 * when it gets close to the target. Helps eliminate pointless tremors.
1329 	 */
1330 	shift = dirty_ratelimit / (2 * step + 1);
1331 	if (shift < BITS_PER_LONG)
1332 		step = DIV_ROUND_UP(step >> shift, 8);
1333 	else
1334 		step = 0;
1335 
1336 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1337 		dirty_ratelimit += step;
1338 	else
1339 		dirty_ratelimit -= step;
1340 
1341 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1342 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1343 
1344 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1345 }
1346 
1347 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1348 				  struct dirty_throttle_control *mdtc,
1349 				  unsigned long start_time,
1350 				  bool update_ratelimit)
1351 {
1352 	struct bdi_writeback *wb = gdtc->wb;
1353 	unsigned long now = jiffies;
1354 	unsigned long elapsed = now - wb->bw_time_stamp;
1355 	unsigned long dirtied;
1356 	unsigned long written;
1357 
1358 	lockdep_assert_held(&wb->list_lock);
1359 
1360 	/*
1361 	 * rate-limit, only update once every 200ms.
1362 	 */
1363 	if (elapsed < BANDWIDTH_INTERVAL)
1364 		return;
1365 
1366 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1367 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1368 
1369 	/*
1370 	 * Skip quiet periods when disk bandwidth is under-utilized.
1371 	 * (at least 1s idle time between two flusher runs)
1372 	 */
1373 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1374 		goto snapshot;
1375 
1376 	if (update_ratelimit) {
1377 		domain_update_bandwidth(gdtc, now);
1378 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1379 
1380 		/*
1381 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1382 		 * compiler has no way to figure that out.  Help it.
1383 		 */
1384 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1385 			domain_update_bandwidth(mdtc, now);
1386 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1387 		}
1388 	}
1389 	wb_update_write_bandwidth(wb, elapsed, written);
1390 
1391 snapshot:
1392 	wb->dirtied_stamp = dirtied;
1393 	wb->written_stamp = written;
1394 	wb->bw_time_stamp = now;
1395 }
1396 
1397 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1398 {
1399 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1400 
1401 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1402 }
1403 
1404 /*
1405  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1406  * will look to see if it needs to start dirty throttling.
1407  *
1408  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1409  * global_page_state() too often. So scale it near-sqrt to the safety margin
1410  * (the number of pages we may dirty without exceeding the dirty limits).
1411  */
1412 static unsigned long dirty_poll_interval(unsigned long dirty,
1413 					 unsigned long thresh)
1414 {
1415 	if (thresh > dirty)
1416 		return 1UL << (ilog2(thresh - dirty) >> 1);
1417 
1418 	return 1;
1419 }
1420 
1421 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1422 				  unsigned long wb_dirty)
1423 {
1424 	unsigned long bw = wb->avg_write_bandwidth;
1425 	unsigned long t;
1426 
1427 	/*
1428 	 * Limit pause time for small memory systems. If sleeping for too long
1429 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1430 	 * idle.
1431 	 *
1432 	 * 8 serves as the safety ratio.
1433 	 */
1434 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1435 	t++;
1436 
1437 	return min_t(unsigned long, t, MAX_PAUSE);
1438 }
1439 
1440 static long wb_min_pause(struct bdi_writeback *wb,
1441 			 long max_pause,
1442 			 unsigned long task_ratelimit,
1443 			 unsigned long dirty_ratelimit,
1444 			 int *nr_dirtied_pause)
1445 {
1446 	long hi = ilog2(wb->avg_write_bandwidth);
1447 	long lo = ilog2(wb->dirty_ratelimit);
1448 	long t;		/* target pause */
1449 	long pause;	/* estimated next pause */
1450 	int pages;	/* target nr_dirtied_pause */
1451 
1452 	/* target for 10ms pause on 1-dd case */
1453 	t = max(1, HZ / 100);
1454 
1455 	/*
1456 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1457 	 * overheads.
1458 	 *
1459 	 * (N * 10ms) on 2^N concurrent tasks.
1460 	 */
1461 	if (hi > lo)
1462 		t += (hi - lo) * (10 * HZ) / 1024;
1463 
1464 	/*
1465 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1466 	 * on the much more stable dirty_ratelimit. However the next pause time
1467 	 * will be computed based on task_ratelimit and the two rate limits may
1468 	 * depart considerably at some time. Especially if task_ratelimit goes
1469 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1470 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1471 	 * result task_ratelimit won't be executed faithfully, which could
1472 	 * eventually bring down dirty_ratelimit.
1473 	 *
1474 	 * We apply two rules to fix it up:
1475 	 * 1) try to estimate the next pause time and if necessary, use a lower
1476 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1477 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1478 	 * 2) limit the target pause time to max_pause/2, so that the normal
1479 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1480 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1481 	 */
1482 	t = min(t, 1 + max_pause / 2);
1483 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1484 
1485 	/*
1486 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1487 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1488 	 * When the 16 consecutive reads are often interrupted by some dirty
1489 	 * throttling pause during the async writes, cfq will go into idles
1490 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1491 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1492 	 */
1493 	if (pages < DIRTY_POLL_THRESH) {
1494 		t = max_pause;
1495 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1496 		if (pages > DIRTY_POLL_THRESH) {
1497 			pages = DIRTY_POLL_THRESH;
1498 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1499 		}
1500 	}
1501 
1502 	pause = HZ * pages / (task_ratelimit + 1);
1503 	if (pause > max_pause) {
1504 		t = max_pause;
1505 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1506 	}
1507 
1508 	*nr_dirtied_pause = pages;
1509 	/*
1510 	 * The minimal pause time will normally be half the target pause time.
1511 	 */
1512 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1513 }
1514 
1515 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1516 {
1517 	struct bdi_writeback *wb = dtc->wb;
1518 	unsigned long wb_reclaimable;
1519 
1520 	/*
1521 	 * wb_thresh is not treated as some limiting factor as
1522 	 * dirty_thresh, due to reasons
1523 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1524 	 * - in a system with HDD and USB key, the USB key may somehow
1525 	 *   go into state (wb_dirty >> wb_thresh) either because
1526 	 *   wb_dirty starts high, or because wb_thresh drops low.
1527 	 *   In this case we don't want to hard throttle the USB key
1528 	 *   dirtiers for 100 seconds until wb_dirty drops under
1529 	 *   wb_thresh. Instead the auxiliary wb control line in
1530 	 *   wb_position_ratio() will let the dirtier task progress
1531 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1532 	 */
1533 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1534 	dtc->wb_bg_thresh = dtc->thresh ?
1535 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1536 
1537 	/*
1538 	 * In order to avoid the stacked BDI deadlock we need
1539 	 * to ensure we accurately count the 'dirty' pages when
1540 	 * the threshold is low.
1541 	 *
1542 	 * Otherwise it would be possible to get thresh+n pages
1543 	 * reported dirty, even though there are thresh-m pages
1544 	 * actually dirty; with m+n sitting in the percpu
1545 	 * deltas.
1546 	 */
1547 	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1548 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1549 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1550 	} else {
1551 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1552 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1553 	}
1554 }
1555 
1556 /*
1557  * balance_dirty_pages() must be called by processes which are generating dirty
1558  * data.  It looks at the number of dirty pages in the machine and will force
1559  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1560  * If we're over `background_thresh' then the writeback threads are woken to
1561  * perform some writeout.
1562  */
1563 static void balance_dirty_pages(struct address_space *mapping,
1564 				struct bdi_writeback *wb,
1565 				unsigned long pages_dirtied)
1566 {
1567 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1568 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1569 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1570 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1571 						     &mdtc_stor : NULL;
1572 	struct dirty_throttle_control *sdtc;
1573 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1574 	long period;
1575 	long pause;
1576 	long max_pause;
1577 	long min_pause;
1578 	int nr_dirtied_pause;
1579 	bool dirty_exceeded = false;
1580 	unsigned long task_ratelimit;
1581 	unsigned long dirty_ratelimit;
1582 	struct backing_dev_info *bdi = wb->bdi;
1583 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1584 	unsigned long start_time = jiffies;
1585 
1586 	for (;;) {
1587 		unsigned long now = jiffies;
1588 		unsigned long dirty, thresh, bg_thresh;
1589 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1590 		unsigned long m_thresh = 0;
1591 		unsigned long m_bg_thresh = 0;
1592 
1593 		/*
1594 		 * Unstable writes are a feature of certain networked
1595 		 * filesystems (i.e. NFS) in which data may have been
1596 		 * written to the server's write cache, but has not yet
1597 		 * been flushed to permanent storage.
1598 		 */
1599 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1600 					global_node_page_state(NR_UNSTABLE_NFS);
1601 		gdtc->avail = global_dirtyable_memory();
1602 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1603 
1604 		domain_dirty_limits(gdtc);
1605 
1606 		if (unlikely(strictlimit)) {
1607 			wb_dirty_limits(gdtc);
1608 
1609 			dirty = gdtc->wb_dirty;
1610 			thresh = gdtc->wb_thresh;
1611 			bg_thresh = gdtc->wb_bg_thresh;
1612 		} else {
1613 			dirty = gdtc->dirty;
1614 			thresh = gdtc->thresh;
1615 			bg_thresh = gdtc->bg_thresh;
1616 		}
1617 
1618 		if (mdtc) {
1619 			unsigned long filepages, headroom, writeback;
1620 
1621 			/*
1622 			 * If @wb belongs to !root memcg, repeat the same
1623 			 * basic calculations for the memcg domain.
1624 			 */
1625 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1626 					    &mdtc->dirty, &writeback);
1627 			mdtc->dirty += writeback;
1628 			mdtc_calc_avail(mdtc, filepages, headroom);
1629 
1630 			domain_dirty_limits(mdtc);
1631 
1632 			if (unlikely(strictlimit)) {
1633 				wb_dirty_limits(mdtc);
1634 				m_dirty = mdtc->wb_dirty;
1635 				m_thresh = mdtc->wb_thresh;
1636 				m_bg_thresh = mdtc->wb_bg_thresh;
1637 			} else {
1638 				m_dirty = mdtc->dirty;
1639 				m_thresh = mdtc->thresh;
1640 				m_bg_thresh = mdtc->bg_thresh;
1641 			}
1642 		}
1643 
1644 		/*
1645 		 * Throttle it only when the background writeback cannot
1646 		 * catch-up. This avoids (excessively) small writeouts
1647 		 * when the wb limits are ramping up in case of !strictlimit.
1648 		 *
1649 		 * In strictlimit case make decision based on the wb counters
1650 		 * and limits. Small writeouts when the wb limits are ramping
1651 		 * up are the price we consciously pay for strictlimit-ing.
1652 		 *
1653 		 * If memcg domain is in effect, @dirty should be under
1654 		 * both global and memcg freerun ceilings.
1655 		 */
1656 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1657 		    (!mdtc ||
1658 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1659 			unsigned long intv = dirty_poll_interval(dirty, thresh);
1660 			unsigned long m_intv = ULONG_MAX;
1661 
1662 			current->dirty_paused_when = now;
1663 			current->nr_dirtied = 0;
1664 			if (mdtc)
1665 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1666 			current->nr_dirtied_pause = min(intv, m_intv);
1667 			break;
1668 		}
1669 
1670 		if (unlikely(!writeback_in_progress(wb)))
1671 			wb_start_background_writeback(wb);
1672 
1673 		/*
1674 		 * Calculate global domain's pos_ratio and select the
1675 		 * global dtc by default.
1676 		 */
1677 		if (!strictlimit)
1678 			wb_dirty_limits(gdtc);
1679 
1680 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1681 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1682 
1683 		wb_position_ratio(gdtc);
1684 		sdtc = gdtc;
1685 
1686 		if (mdtc) {
1687 			/*
1688 			 * If memcg domain is in effect, calculate its
1689 			 * pos_ratio.  @wb should satisfy constraints from
1690 			 * both global and memcg domains.  Choose the one
1691 			 * w/ lower pos_ratio.
1692 			 */
1693 			if (!strictlimit)
1694 				wb_dirty_limits(mdtc);
1695 
1696 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1697 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1698 
1699 			wb_position_ratio(mdtc);
1700 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1701 				sdtc = mdtc;
1702 		}
1703 
1704 		if (dirty_exceeded && !wb->dirty_exceeded)
1705 			wb->dirty_exceeded = 1;
1706 
1707 		if (time_is_before_jiffies(wb->bw_time_stamp +
1708 					   BANDWIDTH_INTERVAL)) {
1709 			spin_lock(&wb->list_lock);
1710 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1711 			spin_unlock(&wb->list_lock);
1712 		}
1713 
1714 		/* throttle according to the chosen dtc */
1715 		dirty_ratelimit = wb->dirty_ratelimit;
1716 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1717 							RATELIMIT_CALC_SHIFT;
1718 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1719 		min_pause = wb_min_pause(wb, max_pause,
1720 					 task_ratelimit, dirty_ratelimit,
1721 					 &nr_dirtied_pause);
1722 
1723 		if (unlikely(task_ratelimit == 0)) {
1724 			period = max_pause;
1725 			pause = max_pause;
1726 			goto pause;
1727 		}
1728 		period = HZ * pages_dirtied / task_ratelimit;
1729 		pause = period;
1730 		if (current->dirty_paused_when)
1731 			pause -= now - current->dirty_paused_when;
1732 		/*
1733 		 * For less than 1s think time (ext3/4 may block the dirtier
1734 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1735 		 * however at much less frequency), try to compensate it in
1736 		 * future periods by updating the virtual time; otherwise just
1737 		 * do a reset, as it may be a light dirtier.
1738 		 */
1739 		if (pause < min_pause) {
1740 			trace_balance_dirty_pages(wb,
1741 						  sdtc->thresh,
1742 						  sdtc->bg_thresh,
1743 						  sdtc->dirty,
1744 						  sdtc->wb_thresh,
1745 						  sdtc->wb_dirty,
1746 						  dirty_ratelimit,
1747 						  task_ratelimit,
1748 						  pages_dirtied,
1749 						  period,
1750 						  min(pause, 0L),
1751 						  start_time);
1752 			if (pause < -HZ) {
1753 				current->dirty_paused_when = now;
1754 				current->nr_dirtied = 0;
1755 			} else if (period) {
1756 				current->dirty_paused_when += period;
1757 				current->nr_dirtied = 0;
1758 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1759 				current->nr_dirtied_pause += pages_dirtied;
1760 			break;
1761 		}
1762 		if (unlikely(pause > max_pause)) {
1763 			/* for occasional dropped task_ratelimit */
1764 			now += min(pause - max_pause, max_pause);
1765 			pause = max_pause;
1766 		}
1767 
1768 pause:
1769 		trace_balance_dirty_pages(wb,
1770 					  sdtc->thresh,
1771 					  sdtc->bg_thresh,
1772 					  sdtc->dirty,
1773 					  sdtc->wb_thresh,
1774 					  sdtc->wb_dirty,
1775 					  dirty_ratelimit,
1776 					  task_ratelimit,
1777 					  pages_dirtied,
1778 					  period,
1779 					  pause,
1780 					  start_time);
1781 		__set_current_state(TASK_KILLABLE);
1782 		wb->dirty_sleep = now;
1783 		io_schedule_timeout(pause);
1784 
1785 		current->dirty_paused_when = now + pause;
1786 		current->nr_dirtied = 0;
1787 		current->nr_dirtied_pause = nr_dirtied_pause;
1788 
1789 		/*
1790 		 * This is typically equal to (dirty < thresh) and can also
1791 		 * keep "1000+ dd on a slow USB stick" under control.
1792 		 */
1793 		if (task_ratelimit)
1794 			break;
1795 
1796 		/*
1797 		 * In the case of an unresponding NFS server and the NFS dirty
1798 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1799 		 * to go through, so that tasks on them still remain responsive.
1800 		 *
1801 		 * In theory 1 page is enough to keep the consumer-producer
1802 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1803 		 * more page. However wb_dirty has accounting errors.  So use
1804 		 * the larger and more IO friendly wb_stat_error.
1805 		 */
1806 		if (sdtc->wb_dirty <= wb_stat_error(wb))
1807 			break;
1808 
1809 		if (fatal_signal_pending(current))
1810 			break;
1811 	}
1812 
1813 	if (!dirty_exceeded && wb->dirty_exceeded)
1814 		wb->dirty_exceeded = 0;
1815 
1816 	if (writeback_in_progress(wb))
1817 		return;
1818 
1819 	/*
1820 	 * In laptop mode, we wait until hitting the higher threshold before
1821 	 * starting background writeout, and then write out all the way down
1822 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1823 	 *
1824 	 * In normal mode, we start background writeout at the lower
1825 	 * background_thresh, to keep the amount of dirty memory low.
1826 	 */
1827 	if (laptop_mode)
1828 		return;
1829 
1830 	if (nr_reclaimable > gdtc->bg_thresh)
1831 		wb_start_background_writeback(wb);
1832 }
1833 
1834 static DEFINE_PER_CPU(int, bdp_ratelimits);
1835 
1836 /*
1837  * Normal tasks are throttled by
1838  *	loop {
1839  *		dirty tsk->nr_dirtied_pause pages;
1840  *		take a snap in balance_dirty_pages();
1841  *	}
1842  * However there is a worst case. If every task exit immediately when dirtied
1843  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1844  * called to throttle the page dirties. The solution is to save the not yet
1845  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1846  * randomly into the running tasks. This works well for the above worst case,
1847  * as the new task will pick up and accumulate the old task's leaked dirty
1848  * count and eventually get throttled.
1849  */
1850 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1851 
1852 /**
1853  * balance_dirty_pages_ratelimited - balance dirty memory state
1854  * @mapping: address_space which was dirtied
1855  *
1856  * Processes which are dirtying memory should call in here once for each page
1857  * which was newly dirtied.  The function will periodically check the system's
1858  * dirty state and will initiate writeback if needed.
1859  *
1860  * On really big machines, get_writeback_state is expensive, so try to avoid
1861  * calling it too often (ratelimiting).  But once we're over the dirty memory
1862  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1863  * from overshooting the limit by (ratelimit_pages) each.
1864  */
1865 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1866 {
1867 	struct inode *inode = mapping->host;
1868 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1869 	struct bdi_writeback *wb = NULL;
1870 	int ratelimit;
1871 	int *p;
1872 
1873 	if (!bdi_cap_account_dirty(bdi))
1874 		return;
1875 
1876 	if (inode_cgwb_enabled(inode))
1877 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1878 	if (!wb)
1879 		wb = &bdi->wb;
1880 
1881 	ratelimit = current->nr_dirtied_pause;
1882 	if (wb->dirty_exceeded)
1883 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1884 
1885 	preempt_disable();
1886 	/*
1887 	 * This prevents one CPU to accumulate too many dirtied pages without
1888 	 * calling into balance_dirty_pages(), which can happen when there are
1889 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1890 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1891 	 */
1892 	p =  this_cpu_ptr(&bdp_ratelimits);
1893 	if (unlikely(current->nr_dirtied >= ratelimit))
1894 		*p = 0;
1895 	else if (unlikely(*p >= ratelimit_pages)) {
1896 		*p = 0;
1897 		ratelimit = 0;
1898 	}
1899 	/*
1900 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1901 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1902 	 * the dirty throttling and livelock other long-run dirtiers.
1903 	 */
1904 	p = this_cpu_ptr(&dirty_throttle_leaks);
1905 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1906 		unsigned long nr_pages_dirtied;
1907 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1908 		*p -= nr_pages_dirtied;
1909 		current->nr_dirtied += nr_pages_dirtied;
1910 	}
1911 	preempt_enable();
1912 
1913 	if (unlikely(current->nr_dirtied >= ratelimit))
1914 		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1915 
1916 	wb_put(wb);
1917 }
1918 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1919 
1920 /**
1921  * wb_over_bg_thresh - does @wb need to be written back?
1922  * @wb: bdi_writeback of interest
1923  *
1924  * Determines whether background writeback should keep writing @wb or it's
1925  * clean enough.  Returns %true if writeback should continue.
1926  */
1927 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1928 {
1929 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1930 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1931 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1932 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1933 						     &mdtc_stor : NULL;
1934 
1935 	/*
1936 	 * Similar to balance_dirty_pages() but ignores pages being written
1937 	 * as we're trying to decide whether to put more under writeback.
1938 	 */
1939 	gdtc->avail = global_dirtyable_memory();
1940 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1941 		      global_node_page_state(NR_UNSTABLE_NFS);
1942 	domain_dirty_limits(gdtc);
1943 
1944 	if (gdtc->dirty > gdtc->bg_thresh)
1945 		return true;
1946 
1947 	if (wb_stat(wb, WB_RECLAIMABLE) >
1948 	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1949 		return true;
1950 
1951 	if (mdtc) {
1952 		unsigned long filepages, headroom, writeback;
1953 
1954 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1955 				    &writeback);
1956 		mdtc_calc_avail(mdtc, filepages, headroom);
1957 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1958 
1959 		if (mdtc->dirty > mdtc->bg_thresh)
1960 			return true;
1961 
1962 		if (wb_stat(wb, WB_RECLAIMABLE) >
1963 		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1964 			return true;
1965 	}
1966 
1967 	return false;
1968 }
1969 
1970 /*
1971  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1972  */
1973 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1974 	void __user *buffer, size_t *length, loff_t *ppos)
1975 {
1976 	proc_dointvec(table, write, buffer, length, ppos);
1977 	return 0;
1978 }
1979 
1980 #ifdef CONFIG_BLOCK
1981 void laptop_mode_timer_fn(unsigned long data)
1982 {
1983 	struct request_queue *q = (struct request_queue *)data;
1984 	int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
1985 		global_node_page_state(NR_UNSTABLE_NFS);
1986 	struct bdi_writeback *wb;
1987 
1988 	/*
1989 	 * We want to write everything out, not just down to the dirty
1990 	 * threshold
1991 	 */
1992 	if (!bdi_has_dirty_io(q->backing_dev_info))
1993 		return;
1994 
1995 	rcu_read_lock();
1996 	list_for_each_entry_rcu(wb, &q->backing_dev_info->wb_list, bdi_node)
1997 		if (wb_has_dirty_io(wb))
1998 			wb_start_writeback(wb, nr_pages, true,
1999 					   WB_REASON_LAPTOP_TIMER);
2000 	rcu_read_unlock();
2001 }
2002 
2003 /*
2004  * We've spun up the disk and we're in laptop mode: schedule writeback
2005  * of all dirty data a few seconds from now.  If the flush is already scheduled
2006  * then push it back - the user is still using the disk.
2007  */
2008 void laptop_io_completion(struct backing_dev_info *info)
2009 {
2010 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2011 }
2012 
2013 /*
2014  * We're in laptop mode and we've just synced. The sync's writes will have
2015  * caused another writeback to be scheduled by laptop_io_completion.
2016  * Nothing needs to be written back anymore, so we unschedule the writeback.
2017  */
2018 void laptop_sync_completion(void)
2019 {
2020 	struct backing_dev_info *bdi;
2021 
2022 	rcu_read_lock();
2023 
2024 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2025 		del_timer(&bdi->laptop_mode_wb_timer);
2026 
2027 	rcu_read_unlock();
2028 }
2029 #endif
2030 
2031 /*
2032  * If ratelimit_pages is too high then we can get into dirty-data overload
2033  * if a large number of processes all perform writes at the same time.
2034  * If it is too low then SMP machines will call the (expensive)
2035  * get_writeback_state too often.
2036  *
2037  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2038  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2039  * thresholds.
2040  */
2041 
2042 void writeback_set_ratelimit(void)
2043 {
2044 	struct wb_domain *dom = &global_wb_domain;
2045 	unsigned long background_thresh;
2046 	unsigned long dirty_thresh;
2047 
2048 	global_dirty_limits(&background_thresh, &dirty_thresh);
2049 	dom->dirty_limit = dirty_thresh;
2050 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2051 	if (ratelimit_pages < 16)
2052 		ratelimit_pages = 16;
2053 }
2054 
2055 static int page_writeback_cpu_online(unsigned int cpu)
2056 {
2057 	writeback_set_ratelimit();
2058 	return 0;
2059 }
2060 
2061 /*
2062  * Called early on to tune the page writeback dirty limits.
2063  *
2064  * We used to scale dirty pages according to how total memory
2065  * related to pages that could be allocated for buffers (by
2066  * comparing nr_free_buffer_pages() to vm_total_pages.
2067  *
2068  * However, that was when we used "dirty_ratio" to scale with
2069  * all memory, and we don't do that any more. "dirty_ratio"
2070  * is now applied to total non-HIGHPAGE memory (by subtracting
2071  * totalhigh_pages from vm_total_pages), and as such we can't
2072  * get into the old insane situation any more where we had
2073  * large amounts of dirty pages compared to a small amount of
2074  * non-HIGHMEM memory.
2075  *
2076  * But we might still want to scale the dirty_ratio by how
2077  * much memory the box has..
2078  */
2079 void __init page_writeback_init(void)
2080 {
2081 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2082 
2083 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2084 			  page_writeback_cpu_online, NULL);
2085 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2086 			  page_writeback_cpu_online);
2087 }
2088 
2089 /**
2090  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2091  * @mapping: address space structure to write
2092  * @start: starting page index
2093  * @end: ending page index (inclusive)
2094  *
2095  * This function scans the page range from @start to @end (inclusive) and tags
2096  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2097  * that write_cache_pages (or whoever calls this function) will then use
2098  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2099  * used to avoid livelocking of writeback by a process steadily creating new
2100  * dirty pages in the file (thus it is important for this function to be quick
2101  * so that it can tag pages faster than a dirtying process can create them).
2102  */
2103 /*
2104  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2105  */
2106 void tag_pages_for_writeback(struct address_space *mapping,
2107 			     pgoff_t start, pgoff_t end)
2108 {
2109 #define WRITEBACK_TAG_BATCH 4096
2110 	unsigned long tagged = 0;
2111 	struct radix_tree_iter iter;
2112 	void **slot;
2113 
2114 	spin_lock_irq(&mapping->tree_lock);
2115 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2116 							PAGECACHE_TAG_DIRTY) {
2117 		if (iter.index > end)
2118 			break;
2119 		radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2120 							PAGECACHE_TAG_TOWRITE);
2121 		tagged++;
2122 		if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2123 			continue;
2124 		slot = radix_tree_iter_resume(slot, &iter);
2125 		spin_unlock_irq(&mapping->tree_lock);
2126 		cond_resched();
2127 		spin_lock_irq(&mapping->tree_lock);
2128 	}
2129 	spin_unlock_irq(&mapping->tree_lock);
2130 }
2131 EXPORT_SYMBOL(tag_pages_for_writeback);
2132 
2133 /**
2134  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2135  * @mapping: address space structure to write
2136  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2137  * @writepage: function called for each page
2138  * @data: data passed to writepage function
2139  *
2140  * If a page is already under I/O, write_cache_pages() skips it, even
2141  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2142  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2143  * and msync() need to guarantee that all the data which was dirty at the time
2144  * the call was made get new I/O started against them.  If wbc->sync_mode is
2145  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2146  * existing IO to complete.
2147  *
2148  * To avoid livelocks (when other process dirties new pages), we first tag
2149  * pages which should be written back with TOWRITE tag and only then start
2150  * writing them. For data-integrity sync we have to be careful so that we do
2151  * not miss some pages (e.g., because some other process has cleared TOWRITE
2152  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2153  * by the process clearing the DIRTY tag (and submitting the page for IO).
2154  */
2155 int write_cache_pages(struct address_space *mapping,
2156 		      struct writeback_control *wbc, writepage_t writepage,
2157 		      void *data)
2158 {
2159 	int ret = 0;
2160 	int done = 0;
2161 	struct pagevec pvec;
2162 	int nr_pages;
2163 	pgoff_t uninitialized_var(writeback_index);
2164 	pgoff_t index;
2165 	pgoff_t end;		/* Inclusive */
2166 	pgoff_t done_index;
2167 	int cycled;
2168 	int range_whole = 0;
2169 	int tag;
2170 
2171 	pagevec_init(&pvec, 0);
2172 	if (wbc->range_cyclic) {
2173 		writeback_index = mapping->writeback_index; /* prev offset */
2174 		index = writeback_index;
2175 		if (index == 0)
2176 			cycled = 1;
2177 		else
2178 			cycled = 0;
2179 		end = -1;
2180 	} else {
2181 		index = wbc->range_start >> PAGE_SHIFT;
2182 		end = wbc->range_end >> PAGE_SHIFT;
2183 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2184 			range_whole = 1;
2185 		cycled = 1; /* ignore range_cyclic tests */
2186 	}
2187 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188 		tag = PAGECACHE_TAG_TOWRITE;
2189 	else
2190 		tag = PAGECACHE_TAG_DIRTY;
2191 retry:
2192 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2193 		tag_pages_for_writeback(mapping, index, end);
2194 	done_index = index;
2195 	while (!done && (index <= end)) {
2196 		int i;
2197 
2198 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2199 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2200 		if (nr_pages == 0)
2201 			break;
2202 
2203 		for (i = 0; i < nr_pages; i++) {
2204 			struct page *page = pvec.pages[i];
2205 
2206 			/*
2207 			 * At this point, the page may be truncated or
2208 			 * invalidated (changing page->mapping to NULL), or
2209 			 * even swizzled back from swapper_space to tmpfs file
2210 			 * mapping. However, page->index will not change
2211 			 * because we have a reference on the page.
2212 			 */
2213 			if (page->index > end) {
2214 				/*
2215 				 * can't be range_cyclic (1st pass) because
2216 				 * end == -1 in that case.
2217 				 */
2218 				done = 1;
2219 				break;
2220 			}
2221 
2222 			done_index = page->index;
2223 
2224 			lock_page(page);
2225 
2226 			/*
2227 			 * Page truncated or invalidated. We can freely skip it
2228 			 * then, even for data integrity operations: the page
2229 			 * has disappeared concurrently, so there could be no
2230 			 * real expectation of this data interity operation
2231 			 * even if there is now a new, dirty page at the same
2232 			 * pagecache address.
2233 			 */
2234 			if (unlikely(page->mapping != mapping)) {
2235 continue_unlock:
2236 				unlock_page(page);
2237 				continue;
2238 			}
2239 
2240 			if (!PageDirty(page)) {
2241 				/* someone wrote it for us */
2242 				goto continue_unlock;
2243 			}
2244 
2245 			if (PageWriteback(page)) {
2246 				if (wbc->sync_mode != WB_SYNC_NONE)
2247 					wait_on_page_writeback(page);
2248 				else
2249 					goto continue_unlock;
2250 			}
2251 
2252 			BUG_ON(PageWriteback(page));
2253 			if (!clear_page_dirty_for_io(page))
2254 				goto continue_unlock;
2255 
2256 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2257 			ret = (*writepage)(page, wbc, data);
2258 			if (unlikely(ret)) {
2259 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2260 					unlock_page(page);
2261 					ret = 0;
2262 				} else {
2263 					/*
2264 					 * done_index is set past this page,
2265 					 * so media errors will not choke
2266 					 * background writeout for the entire
2267 					 * file. This has consequences for
2268 					 * range_cyclic semantics (ie. it may
2269 					 * not be suitable for data integrity
2270 					 * writeout).
2271 					 */
2272 					done_index = page->index + 1;
2273 					done = 1;
2274 					break;
2275 				}
2276 			}
2277 
2278 			/*
2279 			 * We stop writing back only if we are not doing
2280 			 * integrity sync. In case of integrity sync we have to
2281 			 * keep going until we have written all the pages
2282 			 * we tagged for writeback prior to entering this loop.
2283 			 */
2284 			if (--wbc->nr_to_write <= 0 &&
2285 			    wbc->sync_mode == WB_SYNC_NONE) {
2286 				done = 1;
2287 				break;
2288 			}
2289 		}
2290 		pagevec_release(&pvec);
2291 		cond_resched();
2292 	}
2293 	if (!cycled && !done) {
2294 		/*
2295 		 * range_cyclic:
2296 		 * We hit the last page and there is more work to be done: wrap
2297 		 * back to the start of the file
2298 		 */
2299 		cycled = 1;
2300 		index = 0;
2301 		end = writeback_index - 1;
2302 		goto retry;
2303 	}
2304 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2305 		mapping->writeback_index = done_index;
2306 
2307 	return ret;
2308 }
2309 EXPORT_SYMBOL(write_cache_pages);
2310 
2311 /*
2312  * Function used by generic_writepages to call the real writepage
2313  * function and set the mapping flags on error
2314  */
2315 static int __writepage(struct page *page, struct writeback_control *wbc,
2316 		       void *data)
2317 {
2318 	struct address_space *mapping = data;
2319 	int ret = mapping->a_ops->writepage(page, wbc);
2320 	mapping_set_error(mapping, ret);
2321 	return ret;
2322 }
2323 
2324 /**
2325  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2326  * @mapping: address space structure to write
2327  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2328  *
2329  * This is a library function, which implements the writepages()
2330  * address_space_operation.
2331  */
2332 int generic_writepages(struct address_space *mapping,
2333 		       struct writeback_control *wbc)
2334 {
2335 	struct blk_plug plug;
2336 	int ret;
2337 
2338 	/* deal with chardevs and other special file */
2339 	if (!mapping->a_ops->writepage)
2340 		return 0;
2341 
2342 	blk_start_plug(&plug);
2343 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2344 	blk_finish_plug(&plug);
2345 	return ret;
2346 }
2347 
2348 EXPORT_SYMBOL(generic_writepages);
2349 
2350 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2351 {
2352 	int ret;
2353 
2354 	if (wbc->nr_to_write <= 0)
2355 		return 0;
2356 	if (mapping->a_ops->writepages)
2357 		ret = mapping->a_ops->writepages(mapping, wbc);
2358 	else
2359 		ret = generic_writepages(mapping, wbc);
2360 	return ret;
2361 }
2362 
2363 /**
2364  * write_one_page - write out a single page and optionally wait on I/O
2365  * @page: the page to write
2366  * @wait: if true, wait on writeout
2367  *
2368  * The page must be locked by the caller and will be unlocked upon return.
2369  *
2370  * write_one_page() returns a negative error code if I/O failed.
2371  */
2372 int write_one_page(struct page *page, int wait)
2373 {
2374 	struct address_space *mapping = page->mapping;
2375 	int ret = 0;
2376 	struct writeback_control wbc = {
2377 		.sync_mode = WB_SYNC_ALL,
2378 		.nr_to_write = 1,
2379 	};
2380 
2381 	BUG_ON(!PageLocked(page));
2382 
2383 	if (wait)
2384 		wait_on_page_writeback(page);
2385 
2386 	if (clear_page_dirty_for_io(page)) {
2387 		get_page(page);
2388 		ret = mapping->a_ops->writepage(page, &wbc);
2389 		if (ret == 0 && wait) {
2390 			wait_on_page_writeback(page);
2391 			if (PageError(page))
2392 				ret = -EIO;
2393 		}
2394 		put_page(page);
2395 	} else {
2396 		unlock_page(page);
2397 	}
2398 	return ret;
2399 }
2400 EXPORT_SYMBOL(write_one_page);
2401 
2402 /*
2403  * For address_spaces which do not use buffers nor write back.
2404  */
2405 int __set_page_dirty_no_writeback(struct page *page)
2406 {
2407 	if (!PageDirty(page))
2408 		return !TestSetPageDirty(page);
2409 	return 0;
2410 }
2411 
2412 /*
2413  * Helper function for set_page_dirty family.
2414  *
2415  * Caller must hold lock_page_memcg().
2416  *
2417  * NOTE: This relies on being atomic wrt interrupts.
2418  */
2419 void account_page_dirtied(struct page *page, struct address_space *mapping)
2420 {
2421 	struct inode *inode = mapping->host;
2422 
2423 	trace_writeback_dirty_page(page, mapping);
2424 
2425 	if (mapping_cap_account_dirty(mapping)) {
2426 		struct bdi_writeback *wb;
2427 
2428 		inode_attach_wb(inode, page);
2429 		wb = inode_to_wb(inode);
2430 
2431 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2432 		__inc_node_page_state(page, NR_FILE_DIRTY);
2433 		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2434 		__inc_node_page_state(page, NR_DIRTIED);
2435 		__inc_wb_stat(wb, WB_RECLAIMABLE);
2436 		__inc_wb_stat(wb, WB_DIRTIED);
2437 		task_io_account_write(PAGE_SIZE);
2438 		current->nr_dirtied++;
2439 		this_cpu_inc(bdp_ratelimits);
2440 	}
2441 }
2442 EXPORT_SYMBOL(account_page_dirtied);
2443 
2444 /*
2445  * Helper function for deaccounting dirty page without writeback.
2446  *
2447  * Caller must hold lock_page_memcg().
2448  */
2449 void account_page_cleaned(struct page *page, struct address_space *mapping,
2450 			  struct bdi_writeback *wb)
2451 {
2452 	if (mapping_cap_account_dirty(mapping)) {
2453 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2454 		dec_node_page_state(page, NR_FILE_DIRTY);
2455 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456 		dec_wb_stat(wb, WB_RECLAIMABLE);
2457 		task_io_account_cancelled_write(PAGE_SIZE);
2458 	}
2459 }
2460 
2461 /*
2462  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2463  * its radix tree.
2464  *
2465  * This is also used when a single buffer is being dirtied: we want to set the
2466  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2467  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2468  *
2469  * The caller must ensure this doesn't race with truncation.  Most will simply
2470  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2471  * the pte lock held, which also locks out truncation.
2472  */
2473 int __set_page_dirty_nobuffers(struct page *page)
2474 {
2475 	lock_page_memcg(page);
2476 	if (!TestSetPageDirty(page)) {
2477 		struct address_space *mapping = page_mapping(page);
2478 		unsigned long flags;
2479 
2480 		if (!mapping) {
2481 			unlock_page_memcg(page);
2482 			return 1;
2483 		}
2484 
2485 		spin_lock_irqsave(&mapping->tree_lock, flags);
2486 		BUG_ON(page_mapping(page) != mapping);
2487 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2488 		account_page_dirtied(page, mapping);
2489 		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2490 				   PAGECACHE_TAG_DIRTY);
2491 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2492 		unlock_page_memcg(page);
2493 
2494 		if (mapping->host) {
2495 			/* !PageAnon && !swapper_space */
2496 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2497 		}
2498 		return 1;
2499 	}
2500 	unlock_page_memcg(page);
2501 	return 0;
2502 }
2503 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2504 
2505 /*
2506  * Call this whenever redirtying a page, to de-account the dirty counters
2507  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2508  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2509  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2510  * control.
2511  */
2512 void account_page_redirty(struct page *page)
2513 {
2514 	struct address_space *mapping = page->mapping;
2515 
2516 	if (mapping && mapping_cap_account_dirty(mapping)) {
2517 		struct inode *inode = mapping->host;
2518 		struct bdi_writeback *wb;
2519 		bool locked;
2520 
2521 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2522 		current->nr_dirtied--;
2523 		dec_node_page_state(page, NR_DIRTIED);
2524 		dec_wb_stat(wb, WB_DIRTIED);
2525 		unlocked_inode_to_wb_end(inode, locked);
2526 	}
2527 }
2528 EXPORT_SYMBOL(account_page_redirty);
2529 
2530 /*
2531  * When a writepage implementation decides that it doesn't want to write this
2532  * page for some reason, it should redirty the locked page via
2533  * redirty_page_for_writepage() and it should then unlock the page and return 0
2534  */
2535 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2536 {
2537 	int ret;
2538 
2539 	wbc->pages_skipped++;
2540 	ret = __set_page_dirty_nobuffers(page);
2541 	account_page_redirty(page);
2542 	return ret;
2543 }
2544 EXPORT_SYMBOL(redirty_page_for_writepage);
2545 
2546 /*
2547  * Dirty a page.
2548  *
2549  * For pages with a mapping this should be done under the page lock
2550  * for the benefit of asynchronous memory errors who prefer a consistent
2551  * dirty state. This rule can be broken in some special cases,
2552  * but should be better not to.
2553  *
2554  * If the mapping doesn't provide a set_page_dirty a_op, then
2555  * just fall through and assume that it wants buffer_heads.
2556  */
2557 int set_page_dirty(struct page *page)
2558 {
2559 	struct address_space *mapping = page_mapping(page);
2560 
2561 	page = compound_head(page);
2562 	if (likely(mapping)) {
2563 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2564 		/*
2565 		 * readahead/lru_deactivate_page could remain
2566 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2567 		 * About readahead, if the page is written, the flags would be
2568 		 * reset. So no problem.
2569 		 * About lru_deactivate_page, if the page is redirty, the flag
2570 		 * will be reset. So no problem. but if the page is used by readahead
2571 		 * it will confuse readahead and make it restart the size rampup
2572 		 * process. But it's a trivial problem.
2573 		 */
2574 		if (PageReclaim(page))
2575 			ClearPageReclaim(page);
2576 #ifdef CONFIG_BLOCK
2577 		if (!spd)
2578 			spd = __set_page_dirty_buffers;
2579 #endif
2580 		return (*spd)(page);
2581 	}
2582 	if (!PageDirty(page)) {
2583 		if (!TestSetPageDirty(page))
2584 			return 1;
2585 	}
2586 	return 0;
2587 }
2588 EXPORT_SYMBOL(set_page_dirty);
2589 
2590 /*
2591  * set_page_dirty() is racy if the caller has no reference against
2592  * page->mapping->host, and if the page is unlocked.  This is because another
2593  * CPU could truncate the page off the mapping and then free the mapping.
2594  *
2595  * Usually, the page _is_ locked, or the caller is a user-space process which
2596  * holds a reference on the inode by having an open file.
2597  *
2598  * In other cases, the page should be locked before running set_page_dirty().
2599  */
2600 int set_page_dirty_lock(struct page *page)
2601 {
2602 	int ret;
2603 
2604 	lock_page(page);
2605 	ret = set_page_dirty(page);
2606 	unlock_page(page);
2607 	return ret;
2608 }
2609 EXPORT_SYMBOL(set_page_dirty_lock);
2610 
2611 /*
2612  * This cancels just the dirty bit on the kernel page itself, it does NOT
2613  * actually remove dirty bits on any mmap's that may be around. It also
2614  * leaves the page tagged dirty, so any sync activity will still find it on
2615  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2616  * look at the dirty bits in the VM.
2617  *
2618  * Doing this should *normally* only ever be done when a page is truncated,
2619  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2620  * this when it notices that somebody has cleaned out all the buffers on a
2621  * page without actually doing it through the VM. Can you say "ext3 is
2622  * horribly ugly"? Thought you could.
2623  */
2624 void cancel_dirty_page(struct page *page)
2625 {
2626 	struct address_space *mapping = page_mapping(page);
2627 
2628 	if (mapping_cap_account_dirty(mapping)) {
2629 		struct inode *inode = mapping->host;
2630 		struct bdi_writeback *wb;
2631 		bool locked;
2632 
2633 		lock_page_memcg(page);
2634 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2635 
2636 		if (TestClearPageDirty(page))
2637 			account_page_cleaned(page, mapping, wb);
2638 
2639 		unlocked_inode_to_wb_end(inode, locked);
2640 		unlock_page_memcg(page);
2641 	} else {
2642 		ClearPageDirty(page);
2643 	}
2644 }
2645 EXPORT_SYMBOL(cancel_dirty_page);
2646 
2647 /*
2648  * Clear a page's dirty flag, while caring for dirty memory accounting.
2649  * Returns true if the page was previously dirty.
2650  *
2651  * This is for preparing to put the page under writeout.  We leave the page
2652  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2653  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2654  * implementation will run either set_page_writeback() or set_page_dirty(),
2655  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2656  * back into sync.
2657  *
2658  * This incoherency between the page's dirty flag and radix-tree tag is
2659  * unfortunate, but it only exists while the page is locked.
2660  */
2661 int clear_page_dirty_for_io(struct page *page)
2662 {
2663 	struct address_space *mapping = page_mapping(page);
2664 	int ret = 0;
2665 
2666 	BUG_ON(!PageLocked(page));
2667 
2668 	if (mapping && mapping_cap_account_dirty(mapping)) {
2669 		struct inode *inode = mapping->host;
2670 		struct bdi_writeback *wb;
2671 		bool locked;
2672 
2673 		/*
2674 		 * Yes, Virginia, this is indeed insane.
2675 		 *
2676 		 * We use this sequence to make sure that
2677 		 *  (a) we account for dirty stats properly
2678 		 *  (b) we tell the low-level filesystem to
2679 		 *      mark the whole page dirty if it was
2680 		 *      dirty in a pagetable. Only to then
2681 		 *  (c) clean the page again and return 1 to
2682 		 *      cause the writeback.
2683 		 *
2684 		 * This way we avoid all nasty races with the
2685 		 * dirty bit in multiple places and clearing
2686 		 * them concurrently from different threads.
2687 		 *
2688 		 * Note! Normally the "set_page_dirty(page)"
2689 		 * has no effect on the actual dirty bit - since
2690 		 * that will already usually be set. But we
2691 		 * need the side effects, and it can help us
2692 		 * avoid races.
2693 		 *
2694 		 * We basically use the page "master dirty bit"
2695 		 * as a serialization point for all the different
2696 		 * threads doing their things.
2697 		 */
2698 		if (page_mkclean(page))
2699 			set_page_dirty(page);
2700 		/*
2701 		 * We carefully synchronise fault handlers against
2702 		 * installing a dirty pte and marking the page dirty
2703 		 * at this point.  We do this by having them hold the
2704 		 * page lock while dirtying the page, and pages are
2705 		 * always locked coming in here, so we get the desired
2706 		 * exclusion.
2707 		 */
2708 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2709 		if (TestClearPageDirty(page)) {
2710 			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2711 			dec_node_page_state(page, NR_FILE_DIRTY);
2712 			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2713 			dec_wb_stat(wb, WB_RECLAIMABLE);
2714 			ret = 1;
2715 		}
2716 		unlocked_inode_to_wb_end(inode, locked);
2717 		return ret;
2718 	}
2719 	return TestClearPageDirty(page);
2720 }
2721 EXPORT_SYMBOL(clear_page_dirty_for_io);
2722 
2723 int test_clear_page_writeback(struct page *page)
2724 {
2725 	struct address_space *mapping = page_mapping(page);
2726 	int ret;
2727 
2728 	lock_page_memcg(page);
2729 	if (mapping && mapping_use_writeback_tags(mapping)) {
2730 		struct inode *inode = mapping->host;
2731 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2732 		unsigned long flags;
2733 
2734 		spin_lock_irqsave(&mapping->tree_lock, flags);
2735 		ret = TestClearPageWriteback(page);
2736 		if (ret) {
2737 			radix_tree_tag_clear(&mapping->page_tree,
2738 						page_index(page),
2739 						PAGECACHE_TAG_WRITEBACK);
2740 			if (bdi_cap_account_writeback(bdi)) {
2741 				struct bdi_writeback *wb = inode_to_wb(inode);
2742 
2743 				__dec_wb_stat(wb, WB_WRITEBACK);
2744 				__wb_writeout_inc(wb);
2745 			}
2746 		}
2747 
2748 		if (mapping->host && !mapping_tagged(mapping,
2749 						     PAGECACHE_TAG_WRITEBACK))
2750 			sb_clear_inode_writeback(mapping->host);
2751 
2752 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2753 	} else {
2754 		ret = TestClearPageWriteback(page);
2755 	}
2756 	if (ret) {
2757 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2758 		dec_node_page_state(page, NR_WRITEBACK);
2759 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2760 		inc_node_page_state(page, NR_WRITTEN);
2761 	}
2762 	unlock_page_memcg(page);
2763 	return ret;
2764 }
2765 
2766 int __test_set_page_writeback(struct page *page, bool keep_write)
2767 {
2768 	struct address_space *mapping = page_mapping(page);
2769 	int ret;
2770 
2771 	lock_page_memcg(page);
2772 	if (mapping && mapping_use_writeback_tags(mapping)) {
2773 		struct inode *inode = mapping->host;
2774 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2775 		unsigned long flags;
2776 
2777 		spin_lock_irqsave(&mapping->tree_lock, flags);
2778 		ret = TestSetPageWriteback(page);
2779 		if (!ret) {
2780 			bool on_wblist;
2781 
2782 			on_wblist = mapping_tagged(mapping,
2783 						   PAGECACHE_TAG_WRITEBACK);
2784 
2785 			radix_tree_tag_set(&mapping->page_tree,
2786 						page_index(page),
2787 						PAGECACHE_TAG_WRITEBACK);
2788 			if (bdi_cap_account_writeback(bdi))
2789 				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2790 
2791 			/*
2792 			 * We can come through here when swapping anonymous
2793 			 * pages, so we don't necessarily have an inode to track
2794 			 * for sync.
2795 			 */
2796 			if (mapping->host && !on_wblist)
2797 				sb_mark_inode_writeback(mapping->host);
2798 		}
2799 		if (!PageDirty(page))
2800 			radix_tree_tag_clear(&mapping->page_tree,
2801 						page_index(page),
2802 						PAGECACHE_TAG_DIRTY);
2803 		if (!keep_write)
2804 			radix_tree_tag_clear(&mapping->page_tree,
2805 						page_index(page),
2806 						PAGECACHE_TAG_TOWRITE);
2807 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2808 	} else {
2809 		ret = TestSetPageWriteback(page);
2810 	}
2811 	if (!ret) {
2812 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2813 		inc_node_page_state(page, NR_WRITEBACK);
2814 		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2815 	}
2816 	unlock_page_memcg(page);
2817 	return ret;
2818 
2819 }
2820 EXPORT_SYMBOL(__test_set_page_writeback);
2821 
2822 /*
2823  * Return true if any of the pages in the mapping are marked with the
2824  * passed tag.
2825  */
2826 int mapping_tagged(struct address_space *mapping, int tag)
2827 {
2828 	return radix_tree_tagged(&mapping->page_tree, tag);
2829 }
2830 EXPORT_SYMBOL(mapping_tagged);
2831 
2832 /**
2833  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2834  * @page:	The page to wait on.
2835  *
2836  * This function determines if the given page is related to a backing device
2837  * that requires page contents to be held stable during writeback.  If so, then
2838  * it will wait for any pending writeback to complete.
2839  */
2840 void wait_for_stable_page(struct page *page)
2841 {
2842 	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2843 		wait_on_page_writeback(page);
2844 }
2845 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2846