1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 38 /* 39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 40 * will look to see if it needs to force writeback or throttling. 41 */ 42 static long ratelimit_pages = 32; 43 44 /* 45 * When balance_dirty_pages decides that the caller needs to perform some 46 * non-background writeback, this is how many pages it will attempt to write. 47 * It should be somewhat larger than dirtied pages to ensure that reasonably 48 * large amounts of I/O are submitted. 49 */ 50 static inline long sync_writeback_pages(unsigned long dirtied) 51 { 52 if (dirtied < ratelimit_pages) 53 dirtied = ratelimit_pages; 54 55 return dirtied + dirtied / 2; 56 } 57 58 /* The following parameters are exported via /proc/sys/vm */ 59 60 /* 61 * Start background writeback (via writeback threads) at this percentage 62 */ 63 int dirty_background_ratio = 10; 64 65 /* 66 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 67 * dirty_background_ratio * the amount of dirtyable memory 68 */ 69 unsigned long dirty_background_bytes; 70 71 /* 72 * free highmem will not be subtracted from the total free memory 73 * for calculating free ratios if vm_highmem_is_dirtyable is true 74 */ 75 int vm_highmem_is_dirtyable; 76 77 /* 78 * The generator of dirty data starts writeback at this percentage 79 */ 80 int vm_dirty_ratio = 20; 81 82 /* 83 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 84 * vm_dirty_ratio * the amount of dirtyable memory 85 */ 86 unsigned long vm_dirty_bytes; 87 88 /* 89 * The interval between `kupdate'-style writebacks 90 */ 91 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 92 93 /* 94 * The longest time for which data is allowed to remain dirty 95 */ 96 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 97 98 /* 99 * Flag that makes the machine dump writes/reads and block dirtyings. 100 */ 101 int block_dump; 102 103 /* 104 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 105 * a full sync is triggered after this time elapses without any disk activity. 106 */ 107 int laptop_mode; 108 109 EXPORT_SYMBOL(laptop_mode); 110 111 /* End of sysctl-exported parameters */ 112 113 114 /* 115 * Scale the writeback cache size proportional to the relative writeout speeds. 116 * 117 * We do this by keeping a floating proportion between BDIs, based on page 118 * writeback completions [end_page_writeback()]. Those devices that write out 119 * pages fastest will get the larger share, while the slower will get a smaller 120 * share. 121 * 122 * We use page writeout completions because we are interested in getting rid of 123 * dirty pages. Having them written out is the primary goal. 124 * 125 * We introduce a concept of time, a period over which we measure these events, 126 * because demand can/will vary over time. The length of this period itself is 127 * measured in page writeback completions. 128 * 129 */ 130 static struct prop_descriptor vm_completions; 131 static struct prop_descriptor vm_dirties; 132 133 /* 134 * couple the period to the dirty_ratio: 135 * 136 * period/2 ~ roundup_pow_of_two(dirty limit) 137 */ 138 static int calc_period_shift(void) 139 { 140 unsigned long dirty_total; 141 142 if (vm_dirty_bytes) 143 dirty_total = vm_dirty_bytes / PAGE_SIZE; 144 else 145 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 146 100; 147 return 2 + ilog2(dirty_total - 1); 148 } 149 150 /* 151 * update the period when the dirty threshold changes. 152 */ 153 static void update_completion_period(void) 154 { 155 int shift = calc_period_shift(); 156 prop_change_shift(&vm_completions, shift); 157 prop_change_shift(&vm_dirties, shift); 158 } 159 160 int dirty_background_ratio_handler(struct ctl_table *table, int write, 161 void __user *buffer, size_t *lenp, 162 loff_t *ppos) 163 { 164 int ret; 165 166 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 167 if (ret == 0 && write) 168 dirty_background_bytes = 0; 169 return ret; 170 } 171 172 int dirty_background_bytes_handler(struct ctl_table *table, int write, 173 void __user *buffer, size_t *lenp, 174 loff_t *ppos) 175 { 176 int ret; 177 178 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 179 if (ret == 0 && write) 180 dirty_background_ratio = 0; 181 return ret; 182 } 183 184 int dirty_ratio_handler(struct ctl_table *table, int write, 185 void __user *buffer, size_t *lenp, 186 loff_t *ppos) 187 { 188 int old_ratio = vm_dirty_ratio; 189 int ret; 190 191 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 192 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 193 update_completion_period(); 194 vm_dirty_bytes = 0; 195 } 196 return ret; 197 } 198 199 200 int dirty_bytes_handler(struct ctl_table *table, int write, 201 void __user *buffer, size_t *lenp, 202 loff_t *ppos) 203 { 204 unsigned long old_bytes = vm_dirty_bytes; 205 int ret; 206 207 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 208 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 209 update_completion_period(); 210 vm_dirty_ratio = 0; 211 } 212 return ret; 213 } 214 215 /* 216 * Increment the BDI's writeout completion count and the global writeout 217 * completion count. Called from test_clear_page_writeback(). 218 */ 219 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 220 { 221 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 222 bdi->max_prop_frac); 223 } 224 225 void bdi_writeout_inc(struct backing_dev_info *bdi) 226 { 227 unsigned long flags; 228 229 local_irq_save(flags); 230 __bdi_writeout_inc(bdi); 231 local_irq_restore(flags); 232 } 233 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 234 235 void task_dirty_inc(struct task_struct *tsk) 236 { 237 prop_inc_single(&vm_dirties, &tsk->dirties); 238 } 239 240 /* 241 * Obtain an accurate fraction of the BDI's portion. 242 */ 243 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 244 long *numerator, long *denominator) 245 { 246 if (bdi_cap_writeback_dirty(bdi)) { 247 prop_fraction_percpu(&vm_completions, &bdi->completions, 248 numerator, denominator); 249 } else { 250 *numerator = 0; 251 *denominator = 1; 252 } 253 } 254 255 /* 256 * Clip the earned share of dirty pages to that which is actually available. 257 * This avoids exceeding the total dirty_limit when the floating averages 258 * fluctuate too quickly. 259 */ 260 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi, 261 unsigned long dirty, unsigned long *pbdi_dirty) 262 { 263 unsigned long avail_dirty; 264 265 avail_dirty = global_page_state(NR_FILE_DIRTY) + 266 global_page_state(NR_WRITEBACK) + 267 global_page_state(NR_UNSTABLE_NFS) + 268 global_page_state(NR_WRITEBACK_TEMP); 269 270 if (avail_dirty < dirty) 271 avail_dirty = dirty - avail_dirty; 272 else 273 avail_dirty = 0; 274 275 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + 276 bdi_stat(bdi, BDI_WRITEBACK); 277 278 *pbdi_dirty = min(*pbdi_dirty, avail_dirty); 279 } 280 281 static inline void task_dirties_fraction(struct task_struct *tsk, 282 long *numerator, long *denominator) 283 { 284 prop_fraction_single(&vm_dirties, &tsk->dirties, 285 numerator, denominator); 286 } 287 288 /* 289 * scale the dirty limit 290 * 291 * task specific dirty limit: 292 * 293 * dirty -= (dirty/8) * p_{t} 294 */ 295 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) 296 { 297 long numerator, denominator; 298 unsigned long dirty = *pdirty; 299 u64 inv = dirty >> 3; 300 301 task_dirties_fraction(tsk, &numerator, &denominator); 302 inv *= numerator; 303 do_div(inv, denominator); 304 305 dirty -= inv; 306 if (dirty < *pdirty/2) 307 dirty = *pdirty/2; 308 309 *pdirty = dirty; 310 } 311 312 /* 313 * 314 */ 315 static unsigned int bdi_min_ratio; 316 317 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 318 { 319 int ret = 0; 320 321 spin_lock_bh(&bdi_lock); 322 if (min_ratio > bdi->max_ratio) { 323 ret = -EINVAL; 324 } else { 325 min_ratio -= bdi->min_ratio; 326 if (bdi_min_ratio + min_ratio < 100) { 327 bdi_min_ratio += min_ratio; 328 bdi->min_ratio += min_ratio; 329 } else { 330 ret = -EINVAL; 331 } 332 } 333 spin_unlock_bh(&bdi_lock); 334 335 return ret; 336 } 337 338 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 339 { 340 int ret = 0; 341 342 if (max_ratio > 100) 343 return -EINVAL; 344 345 spin_lock_bh(&bdi_lock); 346 if (bdi->min_ratio > max_ratio) { 347 ret = -EINVAL; 348 } else { 349 bdi->max_ratio = max_ratio; 350 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 351 } 352 spin_unlock_bh(&bdi_lock); 353 354 return ret; 355 } 356 EXPORT_SYMBOL(bdi_set_max_ratio); 357 358 /* 359 * Work out the current dirty-memory clamping and background writeout 360 * thresholds. 361 * 362 * The main aim here is to lower them aggressively if there is a lot of mapped 363 * memory around. To avoid stressing page reclaim with lots of unreclaimable 364 * pages. It is better to clamp down on writers than to start swapping, and 365 * performing lots of scanning. 366 * 367 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 368 * 369 * We don't permit the clamping level to fall below 5% - that is getting rather 370 * excessive. 371 * 372 * We make sure that the background writeout level is below the adjusted 373 * clamping level. 374 */ 375 376 static unsigned long highmem_dirtyable_memory(unsigned long total) 377 { 378 #ifdef CONFIG_HIGHMEM 379 int node; 380 unsigned long x = 0; 381 382 for_each_node_state(node, N_HIGH_MEMORY) { 383 struct zone *z = 384 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 385 386 x += zone_page_state(z, NR_FREE_PAGES) + 387 zone_reclaimable_pages(z); 388 } 389 /* 390 * Make sure that the number of highmem pages is never larger 391 * than the number of the total dirtyable memory. This can only 392 * occur in very strange VM situations but we want to make sure 393 * that this does not occur. 394 */ 395 return min(x, total); 396 #else 397 return 0; 398 #endif 399 } 400 401 /** 402 * determine_dirtyable_memory - amount of memory that may be used 403 * 404 * Returns the numebr of pages that can currently be freed and used 405 * by the kernel for direct mappings. 406 */ 407 unsigned long determine_dirtyable_memory(void) 408 { 409 unsigned long x; 410 411 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 412 413 if (!vm_highmem_is_dirtyable) 414 x -= highmem_dirtyable_memory(x); 415 416 return x + 1; /* Ensure that we never return 0 */ 417 } 418 419 void 420 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, 421 unsigned long *pbdi_dirty, struct backing_dev_info *bdi) 422 { 423 unsigned long background; 424 unsigned long dirty; 425 unsigned long available_memory = determine_dirtyable_memory(); 426 struct task_struct *tsk; 427 428 if (vm_dirty_bytes) 429 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 430 else { 431 int dirty_ratio; 432 433 dirty_ratio = vm_dirty_ratio; 434 if (dirty_ratio < 5) 435 dirty_ratio = 5; 436 dirty = (dirty_ratio * available_memory) / 100; 437 } 438 439 if (dirty_background_bytes) 440 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 441 else 442 background = (dirty_background_ratio * available_memory) / 100; 443 444 if (background >= dirty) 445 background = dirty / 2; 446 tsk = current; 447 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 448 background += background / 4; 449 dirty += dirty / 4; 450 } 451 *pbackground = background; 452 *pdirty = dirty; 453 454 if (bdi) { 455 u64 bdi_dirty; 456 long numerator, denominator; 457 458 /* 459 * Calculate this BDI's share of the dirty ratio. 460 */ 461 bdi_writeout_fraction(bdi, &numerator, &denominator); 462 463 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 464 bdi_dirty *= numerator; 465 do_div(bdi_dirty, denominator); 466 bdi_dirty += (dirty * bdi->min_ratio) / 100; 467 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 468 bdi_dirty = dirty * bdi->max_ratio / 100; 469 470 *pbdi_dirty = bdi_dirty; 471 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); 472 task_dirty_limit(current, pbdi_dirty); 473 } 474 } 475 476 /* 477 * balance_dirty_pages() must be called by processes which are generating dirty 478 * data. It looks at the number of dirty pages in the machine and will force 479 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 480 * If we're over `background_thresh' then the writeback threads are woken to 481 * perform some writeout. 482 */ 483 static void balance_dirty_pages(struct address_space *mapping, 484 unsigned long write_chunk) 485 { 486 long nr_reclaimable, bdi_nr_reclaimable; 487 long nr_writeback, bdi_nr_writeback; 488 unsigned long background_thresh; 489 unsigned long dirty_thresh; 490 unsigned long bdi_thresh; 491 unsigned long pages_written = 0; 492 unsigned long pause = 1; 493 494 struct backing_dev_info *bdi = mapping->backing_dev_info; 495 496 for (;;) { 497 struct writeback_control wbc = { 498 .bdi = bdi, 499 .sync_mode = WB_SYNC_NONE, 500 .older_than_this = NULL, 501 .nr_to_write = write_chunk, 502 .range_cyclic = 1, 503 }; 504 505 get_dirty_limits(&background_thresh, &dirty_thresh, 506 &bdi_thresh, bdi); 507 508 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 509 global_page_state(NR_UNSTABLE_NFS); 510 nr_writeback = global_page_state(NR_WRITEBACK); 511 512 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 513 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 514 515 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 516 break; 517 518 /* 519 * Throttle it only when the background writeback cannot 520 * catch-up. This avoids (excessively) small writeouts 521 * when the bdi limits are ramping up. 522 */ 523 if (nr_reclaimable + nr_writeback < 524 (background_thresh + dirty_thresh) / 2) 525 break; 526 527 if (!bdi->dirty_exceeded) 528 bdi->dirty_exceeded = 1; 529 530 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 531 * Unstable writes are a feature of certain networked 532 * filesystems (i.e. NFS) in which data may have been 533 * written to the server's write cache, but has not yet 534 * been flushed to permanent storage. 535 * Only move pages to writeback if this bdi is over its 536 * threshold otherwise wait until the disk writes catch 537 * up. 538 */ 539 if (bdi_nr_reclaimable > bdi_thresh) { 540 writeback_inodes_wbc(&wbc); 541 pages_written += write_chunk - wbc.nr_to_write; 542 get_dirty_limits(&background_thresh, &dirty_thresh, 543 &bdi_thresh, bdi); 544 } 545 546 /* 547 * In order to avoid the stacked BDI deadlock we need 548 * to ensure we accurately count the 'dirty' pages when 549 * the threshold is low. 550 * 551 * Otherwise it would be possible to get thresh+n pages 552 * reported dirty, even though there are thresh-m pages 553 * actually dirty; with m+n sitting in the percpu 554 * deltas. 555 */ 556 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 557 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 558 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 559 } else if (bdi_nr_reclaimable) { 560 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 561 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 562 } 563 564 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 565 break; 566 if (pages_written >= write_chunk) 567 break; /* We've done our duty */ 568 569 __set_current_state(TASK_INTERRUPTIBLE); 570 io_schedule_timeout(pause); 571 572 /* 573 * Increase the delay for each loop, up to our previous 574 * default of taking a 100ms nap. 575 */ 576 pause <<= 1; 577 if (pause > HZ / 10) 578 pause = HZ / 10; 579 } 580 581 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && 582 bdi->dirty_exceeded) 583 bdi->dirty_exceeded = 0; 584 585 if (writeback_in_progress(bdi)) 586 return; 587 588 /* 589 * In laptop mode, we wait until hitting the higher threshold before 590 * starting background writeout, and then write out all the way down 591 * to the lower threshold. So slow writers cause minimal disk activity. 592 * 593 * In normal mode, we start background writeout at the lower 594 * background_thresh, to keep the amount of dirty memory low. 595 */ 596 if ((laptop_mode && pages_written) || 597 (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) 598 + global_page_state(NR_UNSTABLE_NFS)) 599 > background_thresh))) 600 bdi_start_writeback(bdi, NULL, 0); 601 } 602 603 void set_page_dirty_balance(struct page *page, int page_mkwrite) 604 { 605 if (set_page_dirty(page) || page_mkwrite) { 606 struct address_space *mapping = page_mapping(page); 607 608 if (mapping) 609 balance_dirty_pages_ratelimited(mapping); 610 } 611 } 612 613 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 614 615 /** 616 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 617 * @mapping: address_space which was dirtied 618 * @nr_pages_dirtied: number of pages which the caller has just dirtied 619 * 620 * Processes which are dirtying memory should call in here once for each page 621 * which was newly dirtied. The function will periodically check the system's 622 * dirty state and will initiate writeback if needed. 623 * 624 * On really big machines, get_writeback_state is expensive, so try to avoid 625 * calling it too often (ratelimiting). But once we're over the dirty memory 626 * limit we decrease the ratelimiting by a lot, to prevent individual processes 627 * from overshooting the limit by (ratelimit_pages) each. 628 */ 629 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 630 unsigned long nr_pages_dirtied) 631 { 632 unsigned long ratelimit; 633 unsigned long *p; 634 635 ratelimit = ratelimit_pages; 636 if (mapping->backing_dev_info->dirty_exceeded) 637 ratelimit = 8; 638 639 /* 640 * Check the rate limiting. Also, we do not want to throttle real-time 641 * tasks in balance_dirty_pages(). Period. 642 */ 643 preempt_disable(); 644 p = &__get_cpu_var(bdp_ratelimits); 645 *p += nr_pages_dirtied; 646 if (unlikely(*p >= ratelimit)) { 647 ratelimit = sync_writeback_pages(*p); 648 *p = 0; 649 preempt_enable(); 650 balance_dirty_pages(mapping, ratelimit); 651 return; 652 } 653 preempt_enable(); 654 } 655 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 656 657 void throttle_vm_writeout(gfp_t gfp_mask) 658 { 659 unsigned long background_thresh; 660 unsigned long dirty_thresh; 661 662 for ( ; ; ) { 663 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 664 665 /* 666 * Boost the allowable dirty threshold a bit for page 667 * allocators so they don't get DoS'ed by heavy writers 668 */ 669 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 670 671 if (global_page_state(NR_UNSTABLE_NFS) + 672 global_page_state(NR_WRITEBACK) <= dirty_thresh) 673 break; 674 congestion_wait(BLK_RW_ASYNC, HZ/10); 675 676 /* 677 * The caller might hold locks which can prevent IO completion 678 * or progress in the filesystem. So we cannot just sit here 679 * waiting for IO to complete. 680 */ 681 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 682 break; 683 } 684 } 685 686 static void laptop_timer_fn(unsigned long unused); 687 688 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 689 690 /* 691 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 692 */ 693 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 694 void __user *buffer, size_t *length, loff_t *ppos) 695 { 696 proc_dointvec(table, write, buffer, length, ppos); 697 return 0; 698 } 699 700 static void do_laptop_sync(struct work_struct *work) 701 { 702 wakeup_flusher_threads(0); 703 kfree(work); 704 } 705 706 static void laptop_timer_fn(unsigned long unused) 707 { 708 struct work_struct *work; 709 710 work = kmalloc(sizeof(*work), GFP_ATOMIC); 711 if (work) { 712 INIT_WORK(work, do_laptop_sync); 713 schedule_work(work); 714 } 715 } 716 717 /* 718 * We've spun up the disk and we're in laptop mode: schedule writeback 719 * of all dirty data a few seconds from now. If the flush is already scheduled 720 * then push it back - the user is still using the disk. 721 */ 722 void laptop_io_completion(void) 723 { 724 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 725 } 726 727 /* 728 * We're in laptop mode and we've just synced. The sync's writes will have 729 * caused another writeback to be scheduled by laptop_io_completion. 730 * Nothing needs to be written back anymore, so we unschedule the writeback. 731 */ 732 void laptop_sync_completion(void) 733 { 734 del_timer(&laptop_mode_wb_timer); 735 } 736 737 /* 738 * If ratelimit_pages is too high then we can get into dirty-data overload 739 * if a large number of processes all perform writes at the same time. 740 * If it is too low then SMP machines will call the (expensive) 741 * get_writeback_state too often. 742 * 743 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 744 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 745 * thresholds before writeback cuts in. 746 * 747 * But the limit should not be set too high. Because it also controls the 748 * amount of memory which the balance_dirty_pages() caller has to write back. 749 * If this is too large then the caller will block on the IO queue all the 750 * time. So limit it to four megabytes - the balance_dirty_pages() caller 751 * will write six megabyte chunks, max. 752 */ 753 754 void writeback_set_ratelimit(void) 755 { 756 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 757 if (ratelimit_pages < 16) 758 ratelimit_pages = 16; 759 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 760 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 761 } 762 763 static int __cpuinit 764 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 765 { 766 writeback_set_ratelimit(); 767 return NOTIFY_DONE; 768 } 769 770 static struct notifier_block __cpuinitdata ratelimit_nb = { 771 .notifier_call = ratelimit_handler, 772 .next = NULL, 773 }; 774 775 /* 776 * Called early on to tune the page writeback dirty limits. 777 * 778 * We used to scale dirty pages according to how total memory 779 * related to pages that could be allocated for buffers (by 780 * comparing nr_free_buffer_pages() to vm_total_pages. 781 * 782 * However, that was when we used "dirty_ratio" to scale with 783 * all memory, and we don't do that any more. "dirty_ratio" 784 * is now applied to total non-HIGHPAGE memory (by subtracting 785 * totalhigh_pages from vm_total_pages), and as such we can't 786 * get into the old insane situation any more where we had 787 * large amounts of dirty pages compared to a small amount of 788 * non-HIGHMEM memory. 789 * 790 * But we might still want to scale the dirty_ratio by how 791 * much memory the box has.. 792 */ 793 void __init page_writeback_init(void) 794 { 795 int shift; 796 797 writeback_set_ratelimit(); 798 register_cpu_notifier(&ratelimit_nb); 799 800 shift = calc_period_shift(); 801 prop_descriptor_init(&vm_completions, shift); 802 prop_descriptor_init(&vm_dirties, shift); 803 } 804 805 /** 806 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 807 * @mapping: address space structure to write 808 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 809 * @writepage: function called for each page 810 * @data: data passed to writepage function 811 * 812 * If a page is already under I/O, write_cache_pages() skips it, even 813 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 814 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 815 * and msync() need to guarantee that all the data which was dirty at the time 816 * the call was made get new I/O started against them. If wbc->sync_mode is 817 * WB_SYNC_ALL then we were called for data integrity and we must wait for 818 * existing IO to complete. 819 */ 820 int write_cache_pages(struct address_space *mapping, 821 struct writeback_control *wbc, writepage_t writepage, 822 void *data) 823 { 824 int ret = 0; 825 int done = 0; 826 struct pagevec pvec; 827 int nr_pages; 828 pgoff_t uninitialized_var(writeback_index); 829 pgoff_t index; 830 pgoff_t end; /* Inclusive */ 831 pgoff_t done_index; 832 int cycled; 833 int range_whole = 0; 834 long nr_to_write = wbc->nr_to_write; 835 836 pagevec_init(&pvec, 0); 837 if (wbc->range_cyclic) { 838 writeback_index = mapping->writeback_index; /* prev offset */ 839 index = writeback_index; 840 if (index == 0) 841 cycled = 1; 842 else 843 cycled = 0; 844 end = -1; 845 } else { 846 index = wbc->range_start >> PAGE_CACHE_SHIFT; 847 end = wbc->range_end >> PAGE_CACHE_SHIFT; 848 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 849 range_whole = 1; 850 cycled = 1; /* ignore range_cyclic tests */ 851 } 852 retry: 853 done_index = index; 854 while (!done && (index <= end)) { 855 int i; 856 857 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 858 PAGECACHE_TAG_DIRTY, 859 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 860 if (nr_pages == 0) 861 break; 862 863 for (i = 0; i < nr_pages; i++) { 864 struct page *page = pvec.pages[i]; 865 866 /* 867 * At this point, the page may be truncated or 868 * invalidated (changing page->mapping to NULL), or 869 * even swizzled back from swapper_space to tmpfs file 870 * mapping. However, page->index will not change 871 * because we have a reference on the page. 872 */ 873 if (page->index > end) { 874 /* 875 * can't be range_cyclic (1st pass) because 876 * end == -1 in that case. 877 */ 878 done = 1; 879 break; 880 } 881 882 done_index = page->index + 1; 883 884 lock_page(page); 885 886 /* 887 * Page truncated or invalidated. We can freely skip it 888 * then, even for data integrity operations: the page 889 * has disappeared concurrently, so there could be no 890 * real expectation of this data interity operation 891 * even if there is now a new, dirty page at the same 892 * pagecache address. 893 */ 894 if (unlikely(page->mapping != mapping)) { 895 continue_unlock: 896 unlock_page(page); 897 continue; 898 } 899 900 if (!PageDirty(page)) { 901 /* someone wrote it for us */ 902 goto continue_unlock; 903 } 904 905 if (PageWriteback(page)) { 906 if (wbc->sync_mode != WB_SYNC_NONE) 907 wait_on_page_writeback(page); 908 else 909 goto continue_unlock; 910 } 911 912 BUG_ON(PageWriteback(page)); 913 if (!clear_page_dirty_for_io(page)) 914 goto continue_unlock; 915 916 ret = (*writepage)(page, wbc, data); 917 if (unlikely(ret)) { 918 if (ret == AOP_WRITEPAGE_ACTIVATE) { 919 unlock_page(page); 920 ret = 0; 921 } else { 922 /* 923 * done_index is set past this page, 924 * so media errors will not choke 925 * background writeout for the entire 926 * file. This has consequences for 927 * range_cyclic semantics (ie. it may 928 * not be suitable for data integrity 929 * writeout). 930 */ 931 done = 1; 932 break; 933 } 934 } 935 936 if (nr_to_write > 0) { 937 nr_to_write--; 938 if (nr_to_write == 0 && 939 wbc->sync_mode == WB_SYNC_NONE) { 940 /* 941 * We stop writing back only if we are 942 * not doing integrity sync. In case of 943 * integrity sync we have to keep going 944 * because someone may be concurrently 945 * dirtying pages, and we might have 946 * synced a lot of newly appeared dirty 947 * pages, but have not synced all of the 948 * old dirty pages. 949 */ 950 done = 1; 951 break; 952 } 953 } 954 } 955 pagevec_release(&pvec); 956 cond_resched(); 957 } 958 if (!cycled && !done) { 959 /* 960 * range_cyclic: 961 * We hit the last page and there is more work to be done: wrap 962 * back to the start of the file 963 */ 964 cycled = 1; 965 index = 0; 966 end = writeback_index - 1; 967 goto retry; 968 } 969 if (!wbc->no_nrwrite_index_update) { 970 if (wbc->range_cyclic || (range_whole && nr_to_write > 0)) 971 mapping->writeback_index = done_index; 972 wbc->nr_to_write = nr_to_write; 973 } 974 975 return ret; 976 } 977 EXPORT_SYMBOL(write_cache_pages); 978 979 /* 980 * Function used by generic_writepages to call the real writepage 981 * function and set the mapping flags on error 982 */ 983 static int __writepage(struct page *page, struct writeback_control *wbc, 984 void *data) 985 { 986 struct address_space *mapping = data; 987 int ret = mapping->a_ops->writepage(page, wbc); 988 mapping_set_error(mapping, ret); 989 return ret; 990 } 991 992 /** 993 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 994 * @mapping: address space structure to write 995 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 996 * 997 * This is a library function, which implements the writepages() 998 * address_space_operation. 999 */ 1000 int generic_writepages(struct address_space *mapping, 1001 struct writeback_control *wbc) 1002 { 1003 /* deal with chardevs and other special file */ 1004 if (!mapping->a_ops->writepage) 1005 return 0; 1006 1007 return write_cache_pages(mapping, wbc, __writepage, mapping); 1008 } 1009 1010 EXPORT_SYMBOL(generic_writepages); 1011 1012 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1013 { 1014 int ret; 1015 1016 if (wbc->nr_to_write <= 0) 1017 return 0; 1018 if (mapping->a_ops->writepages) 1019 ret = mapping->a_ops->writepages(mapping, wbc); 1020 else 1021 ret = generic_writepages(mapping, wbc); 1022 return ret; 1023 } 1024 1025 /** 1026 * write_one_page - write out a single page and optionally wait on I/O 1027 * @page: the page to write 1028 * @wait: if true, wait on writeout 1029 * 1030 * The page must be locked by the caller and will be unlocked upon return. 1031 * 1032 * write_one_page() returns a negative error code if I/O failed. 1033 */ 1034 int write_one_page(struct page *page, int wait) 1035 { 1036 struct address_space *mapping = page->mapping; 1037 int ret = 0; 1038 struct writeback_control wbc = { 1039 .sync_mode = WB_SYNC_ALL, 1040 .nr_to_write = 1, 1041 }; 1042 1043 BUG_ON(!PageLocked(page)); 1044 1045 if (wait) 1046 wait_on_page_writeback(page); 1047 1048 if (clear_page_dirty_for_io(page)) { 1049 page_cache_get(page); 1050 ret = mapping->a_ops->writepage(page, &wbc); 1051 if (ret == 0 && wait) { 1052 wait_on_page_writeback(page); 1053 if (PageError(page)) 1054 ret = -EIO; 1055 } 1056 page_cache_release(page); 1057 } else { 1058 unlock_page(page); 1059 } 1060 return ret; 1061 } 1062 EXPORT_SYMBOL(write_one_page); 1063 1064 /* 1065 * For address_spaces which do not use buffers nor write back. 1066 */ 1067 int __set_page_dirty_no_writeback(struct page *page) 1068 { 1069 if (!PageDirty(page)) 1070 SetPageDirty(page); 1071 return 0; 1072 } 1073 1074 /* 1075 * Helper function for set_page_dirty family. 1076 * NOTE: This relies on being atomic wrt interrupts. 1077 */ 1078 void account_page_dirtied(struct page *page, struct address_space *mapping) 1079 { 1080 if (mapping_cap_account_dirty(mapping)) { 1081 __inc_zone_page_state(page, NR_FILE_DIRTY); 1082 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1083 task_dirty_inc(current); 1084 task_io_account_write(PAGE_CACHE_SIZE); 1085 } 1086 } 1087 1088 /* 1089 * For address_spaces which do not use buffers. Just tag the page as dirty in 1090 * its radix tree. 1091 * 1092 * This is also used when a single buffer is being dirtied: we want to set the 1093 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1094 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1095 * 1096 * Most callers have locked the page, which pins the address_space in memory. 1097 * But zap_pte_range() does not lock the page, however in that case the 1098 * mapping is pinned by the vma's ->vm_file reference. 1099 * 1100 * We take care to handle the case where the page was truncated from the 1101 * mapping by re-checking page_mapping() inside tree_lock. 1102 */ 1103 int __set_page_dirty_nobuffers(struct page *page) 1104 { 1105 if (!TestSetPageDirty(page)) { 1106 struct address_space *mapping = page_mapping(page); 1107 struct address_space *mapping2; 1108 1109 if (!mapping) 1110 return 1; 1111 1112 spin_lock_irq(&mapping->tree_lock); 1113 mapping2 = page_mapping(page); 1114 if (mapping2) { /* Race with truncate? */ 1115 BUG_ON(mapping2 != mapping); 1116 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1117 account_page_dirtied(page, mapping); 1118 radix_tree_tag_set(&mapping->page_tree, 1119 page_index(page), PAGECACHE_TAG_DIRTY); 1120 } 1121 spin_unlock_irq(&mapping->tree_lock); 1122 if (mapping->host) { 1123 /* !PageAnon && !swapper_space */ 1124 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1125 } 1126 return 1; 1127 } 1128 return 0; 1129 } 1130 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1131 1132 /* 1133 * When a writepage implementation decides that it doesn't want to write this 1134 * page for some reason, it should redirty the locked page via 1135 * redirty_page_for_writepage() and it should then unlock the page and return 0 1136 */ 1137 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1138 { 1139 wbc->pages_skipped++; 1140 return __set_page_dirty_nobuffers(page); 1141 } 1142 EXPORT_SYMBOL(redirty_page_for_writepage); 1143 1144 /* 1145 * Dirty a page. 1146 * 1147 * For pages with a mapping this should be done under the page lock 1148 * for the benefit of asynchronous memory errors who prefer a consistent 1149 * dirty state. This rule can be broken in some special cases, 1150 * but should be better not to. 1151 * 1152 * If the mapping doesn't provide a set_page_dirty a_op, then 1153 * just fall through and assume that it wants buffer_heads. 1154 */ 1155 int set_page_dirty(struct page *page) 1156 { 1157 struct address_space *mapping = page_mapping(page); 1158 1159 if (likely(mapping)) { 1160 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1161 #ifdef CONFIG_BLOCK 1162 if (!spd) 1163 spd = __set_page_dirty_buffers; 1164 #endif 1165 return (*spd)(page); 1166 } 1167 if (!PageDirty(page)) { 1168 if (!TestSetPageDirty(page)) 1169 return 1; 1170 } 1171 return 0; 1172 } 1173 EXPORT_SYMBOL(set_page_dirty); 1174 1175 /* 1176 * set_page_dirty() is racy if the caller has no reference against 1177 * page->mapping->host, and if the page is unlocked. This is because another 1178 * CPU could truncate the page off the mapping and then free the mapping. 1179 * 1180 * Usually, the page _is_ locked, or the caller is a user-space process which 1181 * holds a reference on the inode by having an open file. 1182 * 1183 * In other cases, the page should be locked before running set_page_dirty(). 1184 */ 1185 int set_page_dirty_lock(struct page *page) 1186 { 1187 int ret; 1188 1189 lock_page_nosync(page); 1190 ret = set_page_dirty(page); 1191 unlock_page(page); 1192 return ret; 1193 } 1194 EXPORT_SYMBOL(set_page_dirty_lock); 1195 1196 /* 1197 * Clear a page's dirty flag, while caring for dirty memory accounting. 1198 * Returns true if the page was previously dirty. 1199 * 1200 * This is for preparing to put the page under writeout. We leave the page 1201 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1202 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1203 * implementation will run either set_page_writeback() or set_page_dirty(), 1204 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1205 * back into sync. 1206 * 1207 * This incoherency between the page's dirty flag and radix-tree tag is 1208 * unfortunate, but it only exists while the page is locked. 1209 */ 1210 int clear_page_dirty_for_io(struct page *page) 1211 { 1212 struct address_space *mapping = page_mapping(page); 1213 1214 BUG_ON(!PageLocked(page)); 1215 1216 ClearPageReclaim(page); 1217 if (mapping && mapping_cap_account_dirty(mapping)) { 1218 /* 1219 * Yes, Virginia, this is indeed insane. 1220 * 1221 * We use this sequence to make sure that 1222 * (a) we account for dirty stats properly 1223 * (b) we tell the low-level filesystem to 1224 * mark the whole page dirty if it was 1225 * dirty in a pagetable. Only to then 1226 * (c) clean the page again and return 1 to 1227 * cause the writeback. 1228 * 1229 * This way we avoid all nasty races with the 1230 * dirty bit in multiple places and clearing 1231 * them concurrently from different threads. 1232 * 1233 * Note! Normally the "set_page_dirty(page)" 1234 * has no effect on the actual dirty bit - since 1235 * that will already usually be set. But we 1236 * need the side effects, and it can help us 1237 * avoid races. 1238 * 1239 * We basically use the page "master dirty bit" 1240 * as a serialization point for all the different 1241 * threads doing their things. 1242 */ 1243 if (page_mkclean(page)) 1244 set_page_dirty(page); 1245 /* 1246 * We carefully synchronise fault handlers against 1247 * installing a dirty pte and marking the page dirty 1248 * at this point. We do this by having them hold the 1249 * page lock at some point after installing their 1250 * pte, but before marking the page dirty. 1251 * Pages are always locked coming in here, so we get 1252 * the desired exclusion. See mm/memory.c:do_wp_page() 1253 * for more comments. 1254 */ 1255 if (TestClearPageDirty(page)) { 1256 dec_zone_page_state(page, NR_FILE_DIRTY); 1257 dec_bdi_stat(mapping->backing_dev_info, 1258 BDI_RECLAIMABLE); 1259 return 1; 1260 } 1261 return 0; 1262 } 1263 return TestClearPageDirty(page); 1264 } 1265 EXPORT_SYMBOL(clear_page_dirty_for_io); 1266 1267 int test_clear_page_writeback(struct page *page) 1268 { 1269 struct address_space *mapping = page_mapping(page); 1270 int ret; 1271 1272 if (mapping) { 1273 struct backing_dev_info *bdi = mapping->backing_dev_info; 1274 unsigned long flags; 1275 1276 spin_lock_irqsave(&mapping->tree_lock, flags); 1277 ret = TestClearPageWriteback(page); 1278 if (ret) { 1279 radix_tree_tag_clear(&mapping->page_tree, 1280 page_index(page), 1281 PAGECACHE_TAG_WRITEBACK); 1282 if (bdi_cap_account_writeback(bdi)) { 1283 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1284 __bdi_writeout_inc(bdi); 1285 } 1286 } 1287 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1288 } else { 1289 ret = TestClearPageWriteback(page); 1290 } 1291 if (ret) 1292 dec_zone_page_state(page, NR_WRITEBACK); 1293 return ret; 1294 } 1295 1296 int test_set_page_writeback(struct page *page) 1297 { 1298 struct address_space *mapping = page_mapping(page); 1299 int ret; 1300 1301 if (mapping) { 1302 struct backing_dev_info *bdi = mapping->backing_dev_info; 1303 unsigned long flags; 1304 1305 spin_lock_irqsave(&mapping->tree_lock, flags); 1306 ret = TestSetPageWriteback(page); 1307 if (!ret) { 1308 radix_tree_tag_set(&mapping->page_tree, 1309 page_index(page), 1310 PAGECACHE_TAG_WRITEBACK); 1311 if (bdi_cap_account_writeback(bdi)) 1312 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1313 } 1314 if (!PageDirty(page)) 1315 radix_tree_tag_clear(&mapping->page_tree, 1316 page_index(page), 1317 PAGECACHE_TAG_DIRTY); 1318 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1319 } else { 1320 ret = TestSetPageWriteback(page); 1321 } 1322 if (!ret) 1323 inc_zone_page_state(page, NR_WRITEBACK); 1324 return ret; 1325 1326 } 1327 EXPORT_SYMBOL(test_set_page_writeback); 1328 1329 /* 1330 * Return true if any of the pages in the mapping are marked with the 1331 * passed tag. 1332 */ 1333 int mapping_tagged(struct address_space *mapping, int tag) 1334 { 1335 int ret; 1336 rcu_read_lock(); 1337 ret = radix_tree_tagged(&mapping->page_tree, tag); 1338 rcu_read_unlock(); 1339 return ret; 1340 } 1341 EXPORT_SYMBOL(mapping_tagged); 1342