1 /* 2 * mm/page-writeback.c. 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to writing back dirty pages at the 7 * address_space level. 8 * 9 * 10Apr2002 akpm@zip.com.au 10 * Initial version 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/spinlock.h> 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/slab.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/init.h> 23 #include <linux/backing-dev.h> 24 #include <linux/blkdev.h> 25 #include <linux/mpage.h> 26 #include <linux/percpu.h> 27 #include <linux/notifier.h> 28 #include <linux/smp.h> 29 #include <linux/sysctl.h> 30 #include <linux/cpu.h> 31 #include <linux/syscalls.h> 32 33 /* 34 * The maximum number of pages to writeout in a single bdflush/kupdate 35 * operation. We do this so we don't hold I_LOCK against an inode for 36 * enormous amounts of time, which would block a userspace task which has 37 * been forced to throttle against that inode. Also, the code reevaluates 38 * the dirty each time it has written this many pages. 39 */ 40 #define MAX_WRITEBACK_PAGES 1024 41 42 /* 43 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 44 * will look to see if it needs to force writeback or throttling. 45 */ 46 static long ratelimit_pages = 32; 47 48 static long total_pages; /* The total number of pages in the machine. */ 49 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */ 50 51 /* 52 * When balance_dirty_pages decides that the caller needs to perform some 53 * non-background writeback, this is how many pages it will attempt to write. 54 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 55 * large amounts of I/O are submitted. 56 */ 57 static inline long sync_writeback_pages(void) 58 { 59 return ratelimit_pages + ratelimit_pages / 2; 60 } 61 62 /* The following parameters are exported via /proc/sys/vm */ 63 64 /* 65 * Start background writeback (via pdflush) at this percentage 66 */ 67 int dirty_background_ratio = 10; 68 69 /* 70 * The generator of dirty data starts writeback at this percentage 71 */ 72 int vm_dirty_ratio = 40; 73 74 /* 75 * The interval between `kupdate'-style writebacks, in centiseconds 76 * (hundredths of a second) 77 */ 78 int dirty_writeback_interval = 5 * HZ; 79 80 /* 81 * The longest number of centiseconds for which data is allowed to remain dirty 82 */ 83 int dirty_expire_interval = 30 * HZ; 84 85 /* 86 * Flag that makes the machine dump writes/reads and block dirtyings. 87 */ 88 int block_dump; 89 90 /* 91 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 92 * a full sync is triggered after this time elapses without any disk activity. 93 */ 94 int laptop_mode; 95 96 EXPORT_SYMBOL(laptop_mode); 97 98 /* End of sysctl-exported parameters */ 99 100 101 static void background_writeout(unsigned long _min_pages); 102 103 struct writeback_state 104 { 105 unsigned long nr_dirty; 106 unsigned long nr_unstable; 107 unsigned long nr_mapped; 108 unsigned long nr_writeback; 109 }; 110 111 static void get_writeback_state(struct writeback_state *wbs) 112 { 113 wbs->nr_dirty = read_page_state(nr_dirty); 114 wbs->nr_unstable = read_page_state(nr_unstable); 115 wbs->nr_mapped = read_page_state(nr_mapped); 116 wbs->nr_writeback = read_page_state(nr_writeback); 117 } 118 119 /* 120 * Work out the current dirty-memory clamping and background writeout 121 * thresholds. 122 * 123 * The main aim here is to lower them aggressively if there is a lot of mapped 124 * memory around. To avoid stressing page reclaim with lots of unreclaimable 125 * pages. It is better to clamp down on writers than to start swapping, and 126 * performing lots of scanning. 127 * 128 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 129 * 130 * We don't permit the clamping level to fall below 5% - that is getting rather 131 * excessive. 132 * 133 * We make sure that the background writeout level is below the adjusted 134 * clamping level. 135 */ 136 static void 137 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty, 138 struct address_space *mapping) 139 { 140 int background_ratio; /* Percentages */ 141 int dirty_ratio; 142 int unmapped_ratio; 143 long background; 144 long dirty; 145 unsigned long available_memory = total_pages; 146 struct task_struct *tsk; 147 148 get_writeback_state(wbs); 149 150 #ifdef CONFIG_HIGHMEM 151 /* 152 * If this mapping can only allocate from low memory, 153 * we exclude high memory from our count. 154 */ 155 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM)) 156 available_memory -= totalhigh_pages; 157 #endif 158 159 160 unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages; 161 162 dirty_ratio = vm_dirty_ratio; 163 if (dirty_ratio > unmapped_ratio / 2) 164 dirty_ratio = unmapped_ratio / 2; 165 166 if (dirty_ratio < 5) 167 dirty_ratio = 5; 168 169 background_ratio = dirty_background_ratio; 170 if (background_ratio >= dirty_ratio) 171 background_ratio = dirty_ratio / 2; 172 173 background = (background_ratio * available_memory) / 100; 174 dirty = (dirty_ratio * available_memory) / 100; 175 tsk = current; 176 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 177 background += background / 4; 178 dirty += dirty / 4; 179 } 180 *pbackground = background; 181 *pdirty = dirty; 182 } 183 184 /* 185 * balance_dirty_pages() must be called by processes which are generating dirty 186 * data. It looks at the number of dirty pages in the machine and will force 187 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 188 * If we're over `background_thresh' then pdflush is woken to perform some 189 * writeout. 190 */ 191 static void balance_dirty_pages(struct address_space *mapping) 192 { 193 struct writeback_state wbs; 194 long nr_reclaimable; 195 long background_thresh; 196 long dirty_thresh; 197 unsigned long pages_written = 0; 198 unsigned long write_chunk = sync_writeback_pages(); 199 200 struct backing_dev_info *bdi = mapping->backing_dev_info; 201 202 for (;;) { 203 struct writeback_control wbc = { 204 .bdi = bdi, 205 .sync_mode = WB_SYNC_NONE, 206 .older_than_this = NULL, 207 .nr_to_write = write_chunk, 208 }; 209 210 get_dirty_limits(&wbs, &background_thresh, 211 &dirty_thresh, mapping); 212 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; 213 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) 214 break; 215 216 if (!dirty_exceeded) 217 dirty_exceeded = 1; 218 219 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 220 * Unstable writes are a feature of certain networked 221 * filesystems (i.e. NFS) in which data may have been 222 * written to the server's write cache, but has not yet 223 * been flushed to permanent storage. 224 */ 225 if (nr_reclaimable) { 226 writeback_inodes(&wbc); 227 get_dirty_limits(&wbs, &background_thresh, 228 &dirty_thresh, mapping); 229 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; 230 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) 231 break; 232 pages_written += write_chunk - wbc.nr_to_write; 233 if (pages_written >= write_chunk) 234 break; /* We've done our duty */ 235 } 236 blk_congestion_wait(WRITE, HZ/10); 237 } 238 239 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded) 240 dirty_exceeded = 0; 241 242 if (writeback_in_progress(bdi)) 243 return; /* pdflush is already working this queue */ 244 245 /* 246 * In laptop mode, we wait until hitting the higher threshold before 247 * starting background writeout, and then write out all the way down 248 * to the lower threshold. So slow writers cause minimal disk activity. 249 * 250 * In normal mode, we start background writeout at the lower 251 * background_thresh, to keep the amount of dirty memory low. 252 */ 253 if ((laptop_mode && pages_written) || 254 (!laptop_mode && (nr_reclaimable > background_thresh))) 255 pdflush_operation(background_writeout, 0); 256 } 257 258 /** 259 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 260 * @mapping: address_space which was dirtied 261 * @nr_pages: number of pages which the caller has just dirtied 262 * 263 * Processes which are dirtying memory should call in here once for each page 264 * which was newly dirtied. The function will periodically check the system's 265 * dirty state and will initiate writeback if needed. 266 * 267 * On really big machines, get_writeback_state is expensive, so try to avoid 268 * calling it too often (ratelimiting). But once we're over the dirty memory 269 * limit we decrease the ratelimiting by a lot, to prevent individual processes 270 * from overshooting the limit by (ratelimit_pages) each. 271 */ 272 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 273 unsigned long nr_pages_dirtied) 274 { 275 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0; 276 unsigned long ratelimit; 277 unsigned long *p; 278 279 ratelimit = ratelimit_pages; 280 if (dirty_exceeded) 281 ratelimit = 8; 282 283 /* 284 * Check the rate limiting. Also, we do not want to throttle real-time 285 * tasks in balance_dirty_pages(). Period. 286 */ 287 preempt_disable(); 288 p = &__get_cpu_var(ratelimits); 289 *p += nr_pages_dirtied; 290 if (unlikely(*p >= ratelimit)) { 291 *p = 0; 292 preempt_enable(); 293 balance_dirty_pages(mapping); 294 return; 295 } 296 preempt_enable(); 297 } 298 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 299 300 void throttle_vm_writeout(void) 301 { 302 struct writeback_state wbs; 303 long background_thresh; 304 long dirty_thresh; 305 306 for ( ; ; ) { 307 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); 308 309 /* 310 * Boost the allowable dirty threshold a bit for page 311 * allocators so they don't get DoS'ed by heavy writers 312 */ 313 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 314 315 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh) 316 break; 317 blk_congestion_wait(WRITE, HZ/10); 318 } 319 } 320 321 322 /* 323 * writeback at least _min_pages, and keep writing until the amount of dirty 324 * memory is less than the background threshold, or until we're all clean. 325 */ 326 static void background_writeout(unsigned long _min_pages) 327 { 328 long min_pages = _min_pages; 329 struct writeback_control wbc = { 330 .bdi = NULL, 331 .sync_mode = WB_SYNC_NONE, 332 .older_than_this = NULL, 333 .nr_to_write = 0, 334 .nonblocking = 1, 335 }; 336 337 for ( ; ; ) { 338 struct writeback_state wbs; 339 long background_thresh; 340 long dirty_thresh; 341 342 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); 343 if (wbs.nr_dirty + wbs.nr_unstable < background_thresh 344 && min_pages <= 0) 345 break; 346 wbc.encountered_congestion = 0; 347 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 348 wbc.pages_skipped = 0; 349 writeback_inodes(&wbc); 350 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 351 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { 352 /* Wrote less than expected */ 353 blk_congestion_wait(WRITE, HZ/10); 354 if (!wbc.encountered_congestion) 355 break; 356 } 357 } 358 } 359 360 /* 361 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 362 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns 363 * -1 if all pdflush threads were busy. 364 */ 365 int wakeup_pdflush(long nr_pages) 366 { 367 if (nr_pages == 0) { 368 struct writeback_state wbs; 369 370 get_writeback_state(&wbs); 371 nr_pages = wbs.nr_dirty + wbs.nr_unstable; 372 } 373 return pdflush_operation(background_writeout, nr_pages); 374 } 375 376 static void wb_timer_fn(unsigned long unused); 377 static void laptop_timer_fn(unsigned long unused); 378 379 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); 380 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 381 382 /* 383 * Periodic writeback of "old" data. 384 * 385 * Define "old": the first time one of an inode's pages is dirtied, we mark the 386 * dirtying-time in the inode's address_space. So this periodic writeback code 387 * just walks the superblock inode list, writing back any inodes which are 388 * older than a specific point in time. 389 * 390 * Try to run once per dirty_writeback_interval. But if a writeback event 391 * takes longer than a dirty_writeback_interval interval, then leave a 392 * one-second gap. 393 * 394 * older_than_this takes precedence over nr_to_write. So we'll only write back 395 * all dirty pages if they are all attached to "old" mappings. 396 */ 397 static void wb_kupdate(unsigned long arg) 398 { 399 unsigned long oldest_jif; 400 unsigned long start_jif; 401 unsigned long next_jif; 402 long nr_to_write; 403 struct writeback_state wbs; 404 struct writeback_control wbc = { 405 .bdi = NULL, 406 .sync_mode = WB_SYNC_NONE, 407 .older_than_this = &oldest_jif, 408 .nr_to_write = 0, 409 .nonblocking = 1, 410 .for_kupdate = 1, 411 }; 412 413 sync_supers(); 414 415 get_writeback_state(&wbs); 416 oldest_jif = jiffies - dirty_expire_interval; 417 start_jif = jiffies; 418 next_jif = start_jif + dirty_writeback_interval; 419 nr_to_write = wbs.nr_dirty + wbs.nr_unstable + 420 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 421 while (nr_to_write > 0) { 422 wbc.encountered_congestion = 0; 423 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 424 writeback_inodes(&wbc); 425 if (wbc.nr_to_write > 0) { 426 if (wbc.encountered_congestion) 427 blk_congestion_wait(WRITE, HZ/10); 428 else 429 break; /* All the old data is written */ 430 } 431 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 432 } 433 if (time_before(next_jif, jiffies + HZ)) 434 next_jif = jiffies + HZ; 435 if (dirty_writeback_interval) 436 mod_timer(&wb_timer, next_jif); 437 } 438 439 /* 440 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 441 */ 442 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 443 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 444 { 445 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos); 446 if (dirty_writeback_interval) { 447 mod_timer(&wb_timer, 448 jiffies + dirty_writeback_interval); 449 } else { 450 del_timer(&wb_timer); 451 } 452 return 0; 453 } 454 455 static void wb_timer_fn(unsigned long unused) 456 { 457 if (pdflush_operation(wb_kupdate, 0) < 0) 458 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ 459 } 460 461 static void laptop_flush(unsigned long unused) 462 { 463 sys_sync(); 464 } 465 466 static void laptop_timer_fn(unsigned long unused) 467 { 468 pdflush_operation(laptop_flush, 0); 469 } 470 471 /* 472 * We've spun up the disk and we're in laptop mode: schedule writeback 473 * of all dirty data a few seconds from now. If the flush is already scheduled 474 * then push it back - the user is still using the disk. 475 */ 476 void laptop_io_completion(void) 477 { 478 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 479 } 480 481 /* 482 * We're in laptop mode and we've just synced. The sync's writes will have 483 * caused another writeback to be scheduled by laptop_io_completion. 484 * Nothing needs to be written back anymore, so we unschedule the writeback. 485 */ 486 void laptop_sync_completion(void) 487 { 488 del_timer(&laptop_mode_wb_timer); 489 } 490 491 /* 492 * If ratelimit_pages is too high then we can get into dirty-data overload 493 * if a large number of processes all perform writes at the same time. 494 * If it is too low then SMP machines will call the (expensive) 495 * get_writeback_state too often. 496 * 497 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 498 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 499 * thresholds before writeback cuts in. 500 * 501 * But the limit should not be set too high. Because it also controls the 502 * amount of memory which the balance_dirty_pages() caller has to write back. 503 * If this is too large then the caller will block on the IO queue all the 504 * time. So limit it to four megabytes - the balance_dirty_pages() caller 505 * will write six megabyte chunks, max. 506 */ 507 508 static void set_ratelimit(void) 509 { 510 ratelimit_pages = total_pages / (num_online_cpus() * 32); 511 if (ratelimit_pages < 16) 512 ratelimit_pages = 16; 513 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 514 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 515 } 516 517 static int 518 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 519 { 520 set_ratelimit(); 521 return 0; 522 } 523 524 static struct notifier_block ratelimit_nb = { 525 .notifier_call = ratelimit_handler, 526 .next = NULL, 527 }; 528 529 /* 530 * If the machine has a large highmem:lowmem ratio then scale back the default 531 * dirty memory thresholds: allowing too much dirty highmem pins an excessive 532 * number of buffer_heads. 533 */ 534 void __init page_writeback_init(void) 535 { 536 long buffer_pages = nr_free_buffer_pages(); 537 long correction; 538 539 total_pages = nr_free_pagecache_pages(); 540 541 correction = (100 * 4 * buffer_pages) / total_pages; 542 543 if (correction < 100) { 544 dirty_background_ratio *= correction; 545 dirty_background_ratio /= 100; 546 vm_dirty_ratio *= correction; 547 vm_dirty_ratio /= 100; 548 549 if (dirty_background_ratio <= 0) 550 dirty_background_ratio = 1; 551 if (vm_dirty_ratio <= 0) 552 vm_dirty_ratio = 1; 553 } 554 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 555 set_ratelimit(); 556 register_cpu_notifier(&ratelimit_nb); 557 } 558 559 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 560 { 561 int ret; 562 563 if (wbc->nr_to_write <= 0) 564 return 0; 565 wbc->for_writepages = 1; 566 if (mapping->a_ops->writepages) 567 ret = mapping->a_ops->writepages(mapping, wbc); 568 else 569 ret = generic_writepages(mapping, wbc); 570 wbc->for_writepages = 0; 571 return ret; 572 } 573 574 /** 575 * write_one_page - write out a single page and optionally wait on I/O 576 * 577 * @page: the page to write 578 * @wait: if true, wait on writeout 579 * 580 * The page must be locked by the caller and will be unlocked upon return. 581 * 582 * write_one_page() returns a negative error code if I/O failed. 583 */ 584 int write_one_page(struct page *page, int wait) 585 { 586 struct address_space *mapping = page->mapping; 587 int ret = 0; 588 struct writeback_control wbc = { 589 .sync_mode = WB_SYNC_ALL, 590 .nr_to_write = 1, 591 }; 592 593 BUG_ON(!PageLocked(page)); 594 595 if (wait) 596 wait_on_page_writeback(page); 597 598 if (clear_page_dirty_for_io(page)) { 599 page_cache_get(page); 600 ret = mapping->a_ops->writepage(page, &wbc); 601 if (ret == 0 && wait) { 602 wait_on_page_writeback(page); 603 if (PageError(page)) 604 ret = -EIO; 605 } 606 page_cache_release(page); 607 } else { 608 unlock_page(page); 609 } 610 return ret; 611 } 612 EXPORT_SYMBOL(write_one_page); 613 614 /* 615 * For address_spaces which do not use buffers. Just tag the page as dirty in 616 * its radix tree. 617 * 618 * This is also used when a single buffer is being dirtied: we want to set the 619 * page dirty in that case, but not all the buffers. This is a "bottom-up" 620 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 621 * 622 * Most callers have locked the page, which pins the address_space in memory. 623 * But zap_pte_range() does not lock the page, however in that case the 624 * mapping is pinned by the vma's ->vm_file reference. 625 * 626 * We take care to handle the case where the page was truncated from the 627 * mapping by re-checking page_mapping() insode tree_lock. 628 */ 629 int __set_page_dirty_nobuffers(struct page *page) 630 { 631 if (!TestSetPageDirty(page)) { 632 struct address_space *mapping = page_mapping(page); 633 struct address_space *mapping2; 634 635 if (mapping) { 636 write_lock_irq(&mapping->tree_lock); 637 mapping2 = page_mapping(page); 638 if (mapping2) { /* Race with truncate? */ 639 BUG_ON(mapping2 != mapping); 640 if (mapping_cap_account_dirty(mapping)) 641 inc_page_state(nr_dirty); 642 radix_tree_tag_set(&mapping->page_tree, 643 page_index(page), PAGECACHE_TAG_DIRTY); 644 } 645 write_unlock_irq(&mapping->tree_lock); 646 if (mapping->host) { 647 /* !PageAnon && !swapper_space */ 648 __mark_inode_dirty(mapping->host, 649 I_DIRTY_PAGES); 650 } 651 } 652 return 1; 653 } 654 return 0; 655 } 656 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 657 658 /* 659 * When a writepage implementation decides that it doesn't want to write this 660 * page for some reason, it should redirty the locked page via 661 * redirty_page_for_writepage() and it should then unlock the page and return 0 662 */ 663 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 664 { 665 wbc->pages_skipped++; 666 return __set_page_dirty_nobuffers(page); 667 } 668 EXPORT_SYMBOL(redirty_page_for_writepage); 669 670 /* 671 * If the mapping doesn't provide a set_page_dirty a_op, then 672 * just fall through and assume that it wants buffer_heads. 673 */ 674 int fastcall set_page_dirty(struct page *page) 675 { 676 struct address_space *mapping = page_mapping(page); 677 678 if (likely(mapping)) { 679 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 680 if (spd) 681 return (*spd)(page); 682 return __set_page_dirty_buffers(page); 683 } 684 if (!PageDirty(page)) { 685 if (!TestSetPageDirty(page)) 686 return 1; 687 } 688 return 0; 689 } 690 EXPORT_SYMBOL(set_page_dirty); 691 692 /* 693 * set_page_dirty() is racy if the caller has no reference against 694 * page->mapping->host, and if the page is unlocked. This is because another 695 * CPU could truncate the page off the mapping and then free the mapping. 696 * 697 * Usually, the page _is_ locked, or the caller is a user-space process which 698 * holds a reference on the inode by having an open file. 699 * 700 * In other cases, the page should be locked before running set_page_dirty(). 701 */ 702 int set_page_dirty_lock(struct page *page) 703 { 704 int ret; 705 706 lock_page(page); 707 ret = set_page_dirty(page); 708 unlock_page(page); 709 return ret; 710 } 711 EXPORT_SYMBOL(set_page_dirty_lock); 712 713 /* 714 * Clear a page's dirty flag, while caring for dirty memory accounting. 715 * Returns true if the page was previously dirty. 716 */ 717 int test_clear_page_dirty(struct page *page) 718 { 719 struct address_space *mapping = page_mapping(page); 720 unsigned long flags; 721 722 if (mapping) { 723 write_lock_irqsave(&mapping->tree_lock, flags); 724 if (TestClearPageDirty(page)) { 725 radix_tree_tag_clear(&mapping->page_tree, 726 page_index(page), 727 PAGECACHE_TAG_DIRTY); 728 write_unlock_irqrestore(&mapping->tree_lock, flags); 729 if (mapping_cap_account_dirty(mapping)) 730 dec_page_state(nr_dirty); 731 return 1; 732 } 733 write_unlock_irqrestore(&mapping->tree_lock, flags); 734 return 0; 735 } 736 return TestClearPageDirty(page); 737 } 738 EXPORT_SYMBOL(test_clear_page_dirty); 739 740 /* 741 * Clear a page's dirty flag, while caring for dirty memory accounting. 742 * Returns true if the page was previously dirty. 743 * 744 * This is for preparing to put the page under writeout. We leave the page 745 * tagged as dirty in the radix tree so that a concurrent write-for-sync 746 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 747 * implementation will run either set_page_writeback() or set_page_dirty(), 748 * at which stage we bring the page's dirty flag and radix-tree dirty tag 749 * back into sync. 750 * 751 * This incoherency between the page's dirty flag and radix-tree tag is 752 * unfortunate, but it only exists while the page is locked. 753 */ 754 int clear_page_dirty_for_io(struct page *page) 755 { 756 struct address_space *mapping = page_mapping(page); 757 758 if (mapping) { 759 if (TestClearPageDirty(page)) { 760 if (mapping_cap_account_dirty(mapping)) 761 dec_page_state(nr_dirty); 762 return 1; 763 } 764 return 0; 765 } 766 return TestClearPageDirty(page); 767 } 768 EXPORT_SYMBOL(clear_page_dirty_for_io); 769 770 int test_clear_page_writeback(struct page *page) 771 { 772 struct address_space *mapping = page_mapping(page); 773 int ret; 774 775 if (mapping) { 776 unsigned long flags; 777 778 write_lock_irqsave(&mapping->tree_lock, flags); 779 ret = TestClearPageWriteback(page); 780 if (ret) 781 radix_tree_tag_clear(&mapping->page_tree, 782 page_index(page), 783 PAGECACHE_TAG_WRITEBACK); 784 write_unlock_irqrestore(&mapping->tree_lock, flags); 785 } else { 786 ret = TestClearPageWriteback(page); 787 } 788 return ret; 789 } 790 791 int test_set_page_writeback(struct page *page) 792 { 793 struct address_space *mapping = page_mapping(page); 794 int ret; 795 796 if (mapping) { 797 unsigned long flags; 798 799 write_lock_irqsave(&mapping->tree_lock, flags); 800 ret = TestSetPageWriteback(page); 801 if (!ret) 802 radix_tree_tag_set(&mapping->page_tree, 803 page_index(page), 804 PAGECACHE_TAG_WRITEBACK); 805 if (!PageDirty(page)) 806 radix_tree_tag_clear(&mapping->page_tree, 807 page_index(page), 808 PAGECACHE_TAG_DIRTY); 809 write_unlock_irqrestore(&mapping->tree_lock, flags); 810 } else { 811 ret = TestSetPageWriteback(page); 812 } 813 return ret; 814 815 } 816 EXPORT_SYMBOL(test_set_page_writeback); 817 818 /* 819 * Return true if any of the pages in the mapping are marged with the 820 * passed tag. 821 */ 822 int mapping_tagged(struct address_space *mapping, int tag) 823 { 824 unsigned long flags; 825 int ret; 826 827 read_lock_irqsave(&mapping->tree_lock, flags); 828 ret = radix_tree_tagged(&mapping->page_tree, tag); 829 read_unlock_irqrestore(&mapping->tree_lock, flags); 830 return ret; 831 } 832 EXPORT_SYMBOL(mapping_tagged); 833