xref: /linux/mm/page-writeback.c (revision db4e83957f961f9053282409c5062c6baef857a4)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38 
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE		max(HZ/5, 1)
43 
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
48 
49 /*
50  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51  * will look to see if it needs to force writeback or throttling.
52  */
53 static long ratelimit_pages = 32;
54 
55 /*
56  * When balance_dirty_pages decides that the caller needs to perform some
57  * non-background writeback, this is how many pages it will attempt to write.
58  * It should be somewhat larger than dirtied pages to ensure that reasonably
59  * large amounts of I/O are submitted.
60  */
61 static inline long sync_writeback_pages(unsigned long dirtied)
62 {
63 	if (dirtied < ratelimit_pages)
64 		dirtied = ratelimit_pages;
65 
66 	return dirtied + dirtied / 2;
67 }
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 /*
105  * The longest time for which data is allowed to remain dirty
106  */
107 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
108 
109 /*
110  * Flag that makes the machine dump writes/reads and block dirtyings.
111  */
112 int block_dump;
113 
114 /*
115  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
116  * a full sync is triggered after this time elapses without any disk activity.
117  */
118 int laptop_mode;
119 
120 EXPORT_SYMBOL(laptop_mode);
121 
122 /* End of sysctl-exported parameters */
123 
124 unsigned long global_dirty_limit;
125 
126 /*
127  * Scale the writeback cache size proportional to the relative writeout speeds.
128  *
129  * We do this by keeping a floating proportion between BDIs, based on page
130  * writeback completions [end_page_writeback()]. Those devices that write out
131  * pages fastest will get the larger share, while the slower will get a smaller
132  * share.
133  *
134  * We use page writeout completions because we are interested in getting rid of
135  * dirty pages. Having them written out is the primary goal.
136  *
137  * We introduce a concept of time, a period over which we measure these events,
138  * because demand can/will vary over time. The length of this period itself is
139  * measured in page writeback completions.
140  *
141  */
142 static struct prop_descriptor vm_completions;
143 static struct prop_descriptor vm_dirties;
144 
145 /*
146  * couple the period to the dirty_ratio:
147  *
148  *   period/2 ~ roundup_pow_of_two(dirty limit)
149  */
150 static int calc_period_shift(void)
151 {
152 	unsigned long dirty_total;
153 
154 	if (vm_dirty_bytes)
155 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
156 	else
157 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
158 				100;
159 	return 2 + ilog2(dirty_total - 1);
160 }
161 
162 /*
163  * update the period when the dirty threshold changes.
164  */
165 static void update_completion_period(void)
166 {
167 	int shift = calc_period_shift();
168 	prop_change_shift(&vm_completions, shift);
169 	prop_change_shift(&vm_dirties, shift);
170 }
171 
172 int dirty_background_ratio_handler(struct ctl_table *table, int write,
173 		void __user *buffer, size_t *lenp,
174 		loff_t *ppos)
175 {
176 	int ret;
177 
178 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
179 	if (ret == 0 && write)
180 		dirty_background_bytes = 0;
181 	return ret;
182 }
183 
184 int dirty_background_bytes_handler(struct ctl_table *table, int write,
185 		void __user *buffer, size_t *lenp,
186 		loff_t *ppos)
187 {
188 	int ret;
189 
190 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
191 	if (ret == 0 && write)
192 		dirty_background_ratio = 0;
193 	return ret;
194 }
195 
196 int dirty_ratio_handler(struct ctl_table *table, int write,
197 		void __user *buffer, size_t *lenp,
198 		loff_t *ppos)
199 {
200 	int old_ratio = vm_dirty_ratio;
201 	int ret;
202 
203 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
204 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
205 		update_completion_period();
206 		vm_dirty_bytes = 0;
207 	}
208 	return ret;
209 }
210 
211 
212 int dirty_bytes_handler(struct ctl_table *table, int write,
213 		void __user *buffer, size_t *lenp,
214 		loff_t *ppos)
215 {
216 	unsigned long old_bytes = vm_dirty_bytes;
217 	int ret;
218 
219 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
220 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
221 		update_completion_period();
222 		vm_dirty_ratio = 0;
223 	}
224 	return ret;
225 }
226 
227 /*
228  * Increment the BDI's writeout completion count and the global writeout
229  * completion count. Called from test_clear_page_writeback().
230  */
231 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
232 {
233 	__inc_bdi_stat(bdi, BDI_WRITTEN);
234 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
235 			      bdi->max_prop_frac);
236 }
237 
238 void bdi_writeout_inc(struct backing_dev_info *bdi)
239 {
240 	unsigned long flags;
241 
242 	local_irq_save(flags);
243 	__bdi_writeout_inc(bdi);
244 	local_irq_restore(flags);
245 }
246 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
247 
248 void task_dirty_inc(struct task_struct *tsk)
249 {
250 	prop_inc_single(&vm_dirties, &tsk->dirties);
251 }
252 
253 /*
254  * Obtain an accurate fraction of the BDI's portion.
255  */
256 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
257 		long *numerator, long *denominator)
258 {
259 	prop_fraction_percpu(&vm_completions, &bdi->completions,
260 				numerator, denominator);
261 }
262 
263 static inline void task_dirties_fraction(struct task_struct *tsk,
264 		long *numerator, long *denominator)
265 {
266 	prop_fraction_single(&vm_dirties, &tsk->dirties,
267 				numerator, denominator);
268 }
269 
270 /*
271  * task_dirty_limit - scale down dirty throttling threshold for one task
272  *
273  * task specific dirty limit:
274  *
275  *   dirty -= (dirty/8) * p_{t}
276  *
277  * To protect light/slow dirtying tasks from heavier/fast ones, we start
278  * throttling individual tasks before reaching the bdi dirty limit.
279  * Relatively low thresholds will be allocated to heavy dirtiers. So when
280  * dirty pages grow large, heavy dirtiers will be throttled first, which will
281  * effectively curb the growth of dirty pages. Light dirtiers with high enough
282  * dirty threshold may never get throttled.
283  */
284 #define TASK_LIMIT_FRACTION 8
285 static unsigned long task_dirty_limit(struct task_struct *tsk,
286 				       unsigned long bdi_dirty)
287 {
288 	long numerator, denominator;
289 	unsigned long dirty = bdi_dirty;
290 	u64 inv = dirty / TASK_LIMIT_FRACTION;
291 
292 	task_dirties_fraction(tsk, &numerator, &denominator);
293 	inv *= numerator;
294 	do_div(inv, denominator);
295 
296 	dirty -= inv;
297 
298 	return max(dirty, bdi_dirty/2);
299 }
300 
301 /* Minimum limit for any task */
302 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
303 {
304 	return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
305 }
306 
307 /*
308  *
309  */
310 static unsigned int bdi_min_ratio;
311 
312 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
313 {
314 	int ret = 0;
315 
316 	spin_lock_bh(&bdi_lock);
317 	if (min_ratio > bdi->max_ratio) {
318 		ret = -EINVAL;
319 	} else {
320 		min_ratio -= bdi->min_ratio;
321 		if (bdi_min_ratio + min_ratio < 100) {
322 			bdi_min_ratio += min_ratio;
323 			bdi->min_ratio += min_ratio;
324 		} else {
325 			ret = -EINVAL;
326 		}
327 	}
328 	spin_unlock_bh(&bdi_lock);
329 
330 	return ret;
331 }
332 
333 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
334 {
335 	int ret = 0;
336 
337 	if (max_ratio > 100)
338 		return -EINVAL;
339 
340 	spin_lock_bh(&bdi_lock);
341 	if (bdi->min_ratio > max_ratio) {
342 		ret = -EINVAL;
343 	} else {
344 		bdi->max_ratio = max_ratio;
345 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
346 	}
347 	spin_unlock_bh(&bdi_lock);
348 
349 	return ret;
350 }
351 EXPORT_SYMBOL(bdi_set_max_ratio);
352 
353 /*
354  * Work out the current dirty-memory clamping and background writeout
355  * thresholds.
356  *
357  * The main aim here is to lower them aggressively if there is a lot of mapped
358  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
359  * pages.  It is better to clamp down on writers than to start swapping, and
360  * performing lots of scanning.
361  *
362  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
363  *
364  * We don't permit the clamping level to fall below 5% - that is getting rather
365  * excessive.
366  *
367  * We make sure that the background writeout level is below the adjusted
368  * clamping level.
369  */
370 
371 static unsigned long highmem_dirtyable_memory(unsigned long total)
372 {
373 #ifdef CONFIG_HIGHMEM
374 	int node;
375 	unsigned long x = 0;
376 
377 	for_each_node_state(node, N_HIGH_MEMORY) {
378 		struct zone *z =
379 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
380 
381 		x += zone_page_state(z, NR_FREE_PAGES) +
382 		     zone_reclaimable_pages(z);
383 	}
384 	/*
385 	 * Make sure that the number of highmem pages is never larger
386 	 * than the number of the total dirtyable memory. This can only
387 	 * occur in very strange VM situations but we want to make sure
388 	 * that this does not occur.
389 	 */
390 	return min(x, total);
391 #else
392 	return 0;
393 #endif
394 }
395 
396 /**
397  * determine_dirtyable_memory - amount of memory that may be used
398  *
399  * Returns the numebr of pages that can currently be freed and used
400  * by the kernel for direct mappings.
401  */
402 unsigned long determine_dirtyable_memory(void)
403 {
404 	unsigned long x;
405 
406 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
407 
408 	if (!vm_highmem_is_dirtyable)
409 		x -= highmem_dirtyable_memory(x);
410 
411 	return x + 1;	/* Ensure that we never return 0 */
412 }
413 
414 static unsigned long hard_dirty_limit(unsigned long thresh)
415 {
416 	return max(thresh, global_dirty_limit);
417 }
418 
419 /*
420  * global_dirty_limits - background-writeback and dirty-throttling thresholds
421  *
422  * Calculate the dirty thresholds based on sysctl parameters
423  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
424  * - vm.dirty_ratio             or  vm.dirty_bytes
425  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
426  * real-time tasks.
427  */
428 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
429 {
430 	unsigned long background;
431 	unsigned long dirty;
432 	unsigned long uninitialized_var(available_memory);
433 	struct task_struct *tsk;
434 
435 	if (!vm_dirty_bytes || !dirty_background_bytes)
436 		available_memory = determine_dirtyable_memory();
437 
438 	if (vm_dirty_bytes)
439 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
440 	else
441 		dirty = (vm_dirty_ratio * available_memory) / 100;
442 
443 	if (dirty_background_bytes)
444 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
445 	else
446 		background = (dirty_background_ratio * available_memory) / 100;
447 
448 	if (background >= dirty)
449 		background = dirty / 2;
450 	tsk = current;
451 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
452 		background += background / 4;
453 		dirty += dirty / 4;
454 	}
455 	*pbackground = background;
456 	*pdirty = dirty;
457 	trace_global_dirty_state(background, dirty);
458 }
459 
460 /**
461  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
462  * @bdi: the backing_dev_info to query
463  * @dirty: global dirty limit in pages
464  *
465  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
466  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
467  * And the "limit" in the name is not seriously taken as hard limit in
468  * balance_dirty_pages().
469  *
470  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
471  * - starving fast devices
472  * - piling up dirty pages (that will take long time to sync) on slow devices
473  *
474  * The bdi's share of dirty limit will be adapting to its throughput and
475  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
476  */
477 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
478 {
479 	u64 bdi_dirty;
480 	long numerator, denominator;
481 
482 	/*
483 	 * Calculate this BDI's share of the dirty ratio.
484 	 */
485 	bdi_writeout_fraction(bdi, &numerator, &denominator);
486 
487 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
488 	bdi_dirty *= numerator;
489 	do_div(bdi_dirty, denominator);
490 
491 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
492 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
493 		bdi_dirty = dirty * bdi->max_ratio / 100;
494 
495 	return bdi_dirty;
496 }
497 
498 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
499 				       unsigned long elapsed,
500 				       unsigned long written)
501 {
502 	const unsigned long period = roundup_pow_of_two(3 * HZ);
503 	unsigned long avg = bdi->avg_write_bandwidth;
504 	unsigned long old = bdi->write_bandwidth;
505 	u64 bw;
506 
507 	/*
508 	 * bw = written * HZ / elapsed
509 	 *
510 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
511 	 * write_bandwidth = ---------------------------------------------------
512 	 *                                          period
513 	 */
514 	bw = written - bdi->written_stamp;
515 	bw *= HZ;
516 	if (unlikely(elapsed > period)) {
517 		do_div(bw, elapsed);
518 		avg = bw;
519 		goto out;
520 	}
521 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
522 	bw >>= ilog2(period);
523 
524 	/*
525 	 * one more level of smoothing, for filtering out sudden spikes
526 	 */
527 	if (avg > old && old >= (unsigned long)bw)
528 		avg -= (avg - old) >> 3;
529 
530 	if (avg < old && old <= (unsigned long)bw)
531 		avg += (old - avg) >> 3;
532 
533 out:
534 	bdi->write_bandwidth = bw;
535 	bdi->avg_write_bandwidth = avg;
536 }
537 
538 /*
539  * The global dirtyable memory and dirty threshold could be suddenly knocked
540  * down by a large amount (eg. on the startup of KVM in a swapless system).
541  * This may throw the system into deep dirty exceeded state and throttle
542  * heavy/light dirtiers alike. To retain good responsiveness, maintain
543  * global_dirty_limit for tracking slowly down to the knocked down dirty
544  * threshold.
545  */
546 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
547 {
548 	unsigned long limit = global_dirty_limit;
549 
550 	/*
551 	 * Follow up in one step.
552 	 */
553 	if (limit < thresh) {
554 		limit = thresh;
555 		goto update;
556 	}
557 
558 	/*
559 	 * Follow down slowly. Use the higher one as the target, because thresh
560 	 * may drop below dirty. This is exactly the reason to introduce
561 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
562 	 */
563 	thresh = max(thresh, dirty);
564 	if (limit > thresh) {
565 		limit -= (limit - thresh) >> 5;
566 		goto update;
567 	}
568 	return;
569 update:
570 	global_dirty_limit = limit;
571 }
572 
573 static void global_update_bandwidth(unsigned long thresh,
574 				    unsigned long dirty,
575 				    unsigned long now)
576 {
577 	static DEFINE_SPINLOCK(dirty_lock);
578 	static unsigned long update_time;
579 
580 	/*
581 	 * check locklessly first to optimize away locking for the most time
582 	 */
583 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
584 		return;
585 
586 	spin_lock(&dirty_lock);
587 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
588 		update_dirty_limit(thresh, dirty);
589 		update_time = now;
590 	}
591 	spin_unlock(&dirty_lock);
592 }
593 
594 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
595 			    unsigned long thresh,
596 			    unsigned long dirty,
597 			    unsigned long bdi_thresh,
598 			    unsigned long bdi_dirty,
599 			    unsigned long start_time)
600 {
601 	unsigned long now = jiffies;
602 	unsigned long elapsed = now - bdi->bw_time_stamp;
603 	unsigned long written;
604 
605 	/*
606 	 * rate-limit, only update once every 200ms.
607 	 */
608 	if (elapsed < BANDWIDTH_INTERVAL)
609 		return;
610 
611 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
612 
613 	/*
614 	 * Skip quiet periods when disk bandwidth is under-utilized.
615 	 * (at least 1s idle time between two flusher runs)
616 	 */
617 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
618 		goto snapshot;
619 
620 	if (thresh)
621 		global_update_bandwidth(thresh, dirty, now);
622 
623 	bdi_update_write_bandwidth(bdi, elapsed, written);
624 
625 snapshot:
626 	bdi->written_stamp = written;
627 	bdi->bw_time_stamp = now;
628 }
629 
630 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
631 				 unsigned long thresh,
632 				 unsigned long dirty,
633 				 unsigned long bdi_thresh,
634 				 unsigned long bdi_dirty,
635 				 unsigned long start_time)
636 {
637 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
638 		return;
639 	spin_lock(&bdi->wb.list_lock);
640 	__bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
641 			       start_time);
642 	spin_unlock(&bdi->wb.list_lock);
643 }
644 
645 /*
646  * balance_dirty_pages() must be called by processes which are generating dirty
647  * data.  It looks at the number of dirty pages in the machine and will force
648  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
649  * If we're over `background_thresh' then the writeback threads are woken to
650  * perform some writeout.
651  */
652 static void balance_dirty_pages(struct address_space *mapping,
653 				unsigned long write_chunk)
654 {
655 	unsigned long nr_reclaimable, bdi_nr_reclaimable;
656 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
657 	unsigned long bdi_dirty;
658 	unsigned long background_thresh;
659 	unsigned long dirty_thresh;
660 	unsigned long bdi_thresh;
661 	unsigned long task_bdi_thresh;
662 	unsigned long min_task_bdi_thresh;
663 	unsigned long pages_written = 0;
664 	unsigned long pause = 1;
665 	bool dirty_exceeded = false;
666 	bool clear_dirty_exceeded = true;
667 	struct backing_dev_info *bdi = mapping->backing_dev_info;
668 	unsigned long start_time = jiffies;
669 
670 	for (;;) {
671 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
672 					global_page_state(NR_UNSTABLE_NFS);
673 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
674 
675 		global_dirty_limits(&background_thresh, &dirty_thresh);
676 
677 		/*
678 		 * Throttle it only when the background writeback cannot
679 		 * catch-up. This avoids (excessively) small writeouts
680 		 * when the bdi limits are ramping up.
681 		 */
682 		if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
683 			break;
684 
685 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
686 		min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
687 		task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
688 
689 		/*
690 		 * In order to avoid the stacked BDI deadlock we need
691 		 * to ensure we accurately count the 'dirty' pages when
692 		 * the threshold is low.
693 		 *
694 		 * Otherwise it would be possible to get thresh+n pages
695 		 * reported dirty, even though there are thresh-m pages
696 		 * actually dirty; with m+n sitting in the percpu
697 		 * deltas.
698 		 */
699 		if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
700 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
701 			bdi_dirty = bdi_nr_reclaimable +
702 				    bdi_stat_sum(bdi, BDI_WRITEBACK);
703 		} else {
704 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
705 			bdi_dirty = bdi_nr_reclaimable +
706 				    bdi_stat(bdi, BDI_WRITEBACK);
707 		}
708 
709 		/*
710 		 * The bdi thresh is somehow "soft" limit derived from the
711 		 * global "hard" limit. The former helps to prevent heavy IO
712 		 * bdi or process from holding back light ones; The latter is
713 		 * the last resort safeguard.
714 		 */
715 		dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
716 				  (nr_dirty > dirty_thresh);
717 		clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
718 					(nr_dirty <= dirty_thresh);
719 
720 		if (!dirty_exceeded)
721 			break;
722 
723 		if (!bdi->dirty_exceeded)
724 			bdi->dirty_exceeded = 1;
725 
726 		bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
727 				     bdi_thresh, bdi_dirty, start_time);
728 
729 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
730 		 * Unstable writes are a feature of certain networked
731 		 * filesystems (i.e. NFS) in which data may have been
732 		 * written to the server's write cache, but has not yet
733 		 * been flushed to permanent storage.
734 		 * Only move pages to writeback if this bdi is over its
735 		 * threshold otherwise wait until the disk writes catch
736 		 * up.
737 		 */
738 		trace_balance_dirty_start(bdi);
739 		if (bdi_nr_reclaimable > task_bdi_thresh) {
740 			pages_written += writeback_inodes_wb(&bdi->wb,
741 							     write_chunk);
742 			trace_balance_dirty_written(bdi, pages_written);
743 			if (pages_written >= write_chunk)
744 				break;		/* We've done our duty */
745 		}
746 		__set_current_state(TASK_UNINTERRUPTIBLE);
747 		io_schedule_timeout(pause);
748 		trace_balance_dirty_wait(bdi);
749 
750 		dirty_thresh = hard_dirty_limit(dirty_thresh);
751 		/*
752 		 * max-pause area. If dirty exceeded but still within this
753 		 * area, no need to sleep for more than 200ms: (a) 8 pages per
754 		 * 200ms is typically more than enough to curb heavy dirtiers;
755 		 * (b) the pause time limit makes the dirtiers more responsive.
756 		 */
757 		if (nr_dirty < dirty_thresh &&
758 		    bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
759 		    time_after(jiffies, start_time + MAX_PAUSE))
760 			break;
761 
762 		/*
763 		 * Increase the delay for each loop, up to our previous
764 		 * default of taking a 100ms nap.
765 		 */
766 		pause <<= 1;
767 		if (pause > HZ / 10)
768 			pause = HZ / 10;
769 	}
770 
771 	/* Clear dirty_exceeded flag only when no task can exceed the limit */
772 	if (clear_dirty_exceeded && bdi->dirty_exceeded)
773 		bdi->dirty_exceeded = 0;
774 
775 	if (writeback_in_progress(bdi))
776 		return;
777 
778 	/*
779 	 * In laptop mode, we wait until hitting the higher threshold before
780 	 * starting background writeout, and then write out all the way down
781 	 * to the lower threshold.  So slow writers cause minimal disk activity.
782 	 *
783 	 * In normal mode, we start background writeout at the lower
784 	 * background_thresh, to keep the amount of dirty memory low.
785 	 */
786 	if ((laptop_mode && pages_written) ||
787 	    (!laptop_mode && (nr_reclaimable > background_thresh)))
788 		bdi_start_background_writeback(bdi);
789 }
790 
791 void set_page_dirty_balance(struct page *page, int page_mkwrite)
792 {
793 	if (set_page_dirty(page) || page_mkwrite) {
794 		struct address_space *mapping = page_mapping(page);
795 
796 		if (mapping)
797 			balance_dirty_pages_ratelimited(mapping);
798 	}
799 }
800 
801 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
802 
803 /**
804  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
805  * @mapping: address_space which was dirtied
806  * @nr_pages_dirtied: number of pages which the caller has just dirtied
807  *
808  * Processes which are dirtying memory should call in here once for each page
809  * which was newly dirtied.  The function will periodically check the system's
810  * dirty state and will initiate writeback if needed.
811  *
812  * On really big machines, get_writeback_state is expensive, so try to avoid
813  * calling it too often (ratelimiting).  But once we're over the dirty memory
814  * limit we decrease the ratelimiting by a lot, to prevent individual processes
815  * from overshooting the limit by (ratelimit_pages) each.
816  */
817 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
818 					unsigned long nr_pages_dirtied)
819 {
820 	struct backing_dev_info *bdi = mapping->backing_dev_info;
821 	unsigned long ratelimit;
822 	unsigned long *p;
823 
824 	if (!bdi_cap_account_dirty(bdi))
825 		return;
826 
827 	ratelimit = ratelimit_pages;
828 	if (mapping->backing_dev_info->dirty_exceeded)
829 		ratelimit = 8;
830 
831 	/*
832 	 * Check the rate limiting. Also, we do not want to throttle real-time
833 	 * tasks in balance_dirty_pages(). Period.
834 	 */
835 	preempt_disable();
836 	p =  &__get_cpu_var(bdp_ratelimits);
837 	*p += nr_pages_dirtied;
838 	if (unlikely(*p >= ratelimit)) {
839 		ratelimit = sync_writeback_pages(*p);
840 		*p = 0;
841 		preempt_enable();
842 		balance_dirty_pages(mapping, ratelimit);
843 		return;
844 	}
845 	preempt_enable();
846 }
847 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
848 
849 void throttle_vm_writeout(gfp_t gfp_mask)
850 {
851 	unsigned long background_thresh;
852 	unsigned long dirty_thresh;
853 
854         for ( ; ; ) {
855 		global_dirty_limits(&background_thresh, &dirty_thresh);
856 
857                 /*
858                  * Boost the allowable dirty threshold a bit for page
859                  * allocators so they don't get DoS'ed by heavy writers
860                  */
861                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
862 
863                 if (global_page_state(NR_UNSTABLE_NFS) +
864 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
865                         	break;
866                 congestion_wait(BLK_RW_ASYNC, HZ/10);
867 
868 		/*
869 		 * The caller might hold locks which can prevent IO completion
870 		 * or progress in the filesystem.  So we cannot just sit here
871 		 * waiting for IO to complete.
872 		 */
873 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
874 			break;
875         }
876 }
877 
878 /*
879  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
880  */
881 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
882 	void __user *buffer, size_t *length, loff_t *ppos)
883 {
884 	proc_dointvec(table, write, buffer, length, ppos);
885 	bdi_arm_supers_timer();
886 	return 0;
887 }
888 
889 #ifdef CONFIG_BLOCK
890 void laptop_mode_timer_fn(unsigned long data)
891 {
892 	struct request_queue *q = (struct request_queue *)data;
893 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
894 		global_page_state(NR_UNSTABLE_NFS);
895 
896 	/*
897 	 * We want to write everything out, not just down to the dirty
898 	 * threshold
899 	 */
900 	if (bdi_has_dirty_io(&q->backing_dev_info))
901 		bdi_start_writeback(&q->backing_dev_info, nr_pages);
902 }
903 
904 /*
905  * We've spun up the disk and we're in laptop mode: schedule writeback
906  * of all dirty data a few seconds from now.  If the flush is already scheduled
907  * then push it back - the user is still using the disk.
908  */
909 void laptop_io_completion(struct backing_dev_info *info)
910 {
911 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
912 }
913 
914 /*
915  * We're in laptop mode and we've just synced. The sync's writes will have
916  * caused another writeback to be scheduled by laptop_io_completion.
917  * Nothing needs to be written back anymore, so we unschedule the writeback.
918  */
919 void laptop_sync_completion(void)
920 {
921 	struct backing_dev_info *bdi;
922 
923 	rcu_read_lock();
924 
925 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
926 		del_timer(&bdi->laptop_mode_wb_timer);
927 
928 	rcu_read_unlock();
929 }
930 #endif
931 
932 /*
933  * If ratelimit_pages is too high then we can get into dirty-data overload
934  * if a large number of processes all perform writes at the same time.
935  * If it is too low then SMP machines will call the (expensive)
936  * get_writeback_state too often.
937  *
938  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
939  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
940  * thresholds before writeback cuts in.
941  *
942  * But the limit should not be set too high.  Because it also controls the
943  * amount of memory which the balance_dirty_pages() caller has to write back.
944  * If this is too large then the caller will block on the IO queue all the
945  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
946  * will write six megabyte chunks, max.
947  */
948 
949 void writeback_set_ratelimit(void)
950 {
951 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
952 	if (ratelimit_pages < 16)
953 		ratelimit_pages = 16;
954 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
955 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
956 }
957 
958 static int __cpuinit
959 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
960 {
961 	writeback_set_ratelimit();
962 	return NOTIFY_DONE;
963 }
964 
965 static struct notifier_block __cpuinitdata ratelimit_nb = {
966 	.notifier_call	= ratelimit_handler,
967 	.next		= NULL,
968 };
969 
970 /*
971  * Called early on to tune the page writeback dirty limits.
972  *
973  * We used to scale dirty pages according to how total memory
974  * related to pages that could be allocated for buffers (by
975  * comparing nr_free_buffer_pages() to vm_total_pages.
976  *
977  * However, that was when we used "dirty_ratio" to scale with
978  * all memory, and we don't do that any more. "dirty_ratio"
979  * is now applied to total non-HIGHPAGE memory (by subtracting
980  * totalhigh_pages from vm_total_pages), and as such we can't
981  * get into the old insane situation any more where we had
982  * large amounts of dirty pages compared to a small amount of
983  * non-HIGHMEM memory.
984  *
985  * But we might still want to scale the dirty_ratio by how
986  * much memory the box has..
987  */
988 void __init page_writeback_init(void)
989 {
990 	int shift;
991 
992 	writeback_set_ratelimit();
993 	register_cpu_notifier(&ratelimit_nb);
994 
995 	shift = calc_period_shift();
996 	prop_descriptor_init(&vm_completions, shift);
997 	prop_descriptor_init(&vm_dirties, shift);
998 }
999 
1000 /**
1001  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1002  * @mapping: address space structure to write
1003  * @start: starting page index
1004  * @end: ending page index (inclusive)
1005  *
1006  * This function scans the page range from @start to @end (inclusive) and tags
1007  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1008  * that write_cache_pages (or whoever calls this function) will then use
1009  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1010  * used to avoid livelocking of writeback by a process steadily creating new
1011  * dirty pages in the file (thus it is important for this function to be quick
1012  * so that it can tag pages faster than a dirtying process can create them).
1013  */
1014 /*
1015  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1016  */
1017 void tag_pages_for_writeback(struct address_space *mapping,
1018 			     pgoff_t start, pgoff_t end)
1019 {
1020 #define WRITEBACK_TAG_BATCH 4096
1021 	unsigned long tagged;
1022 
1023 	do {
1024 		spin_lock_irq(&mapping->tree_lock);
1025 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1026 				&start, end, WRITEBACK_TAG_BATCH,
1027 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1028 		spin_unlock_irq(&mapping->tree_lock);
1029 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1030 		cond_resched();
1031 		/* We check 'start' to handle wrapping when end == ~0UL */
1032 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1033 }
1034 EXPORT_SYMBOL(tag_pages_for_writeback);
1035 
1036 /**
1037  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1038  * @mapping: address space structure to write
1039  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1040  * @writepage: function called for each page
1041  * @data: data passed to writepage function
1042  *
1043  * If a page is already under I/O, write_cache_pages() skips it, even
1044  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1045  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1046  * and msync() need to guarantee that all the data which was dirty at the time
1047  * the call was made get new I/O started against them.  If wbc->sync_mode is
1048  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1049  * existing IO to complete.
1050  *
1051  * To avoid livelocks (when other process dirties new pages), we first tag
1052  * pages which should be written back with TOWRITE tag and only then start
1053  * writing them. For data-integrity sync we have to be careful so that we do
1054  * not miss some pages (e.g., because some other process has cleared TOWRITE
1055  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1056  * by the process clearing the DIRTY tag (and submitting the page for IO).
1057  */
1058 int write_cache_pages(struct address_space *mapping,
1059 		      struct writeback_control *wbc, writepage_t writepage,
1060 		      void *data)
1061 {
1062 	int ret = 0;
1063 	int done = 0;
1064 	struct pagevec pvec;
1065 	int nr_pages;
1066 	pgoff_t uninitialized_var(writeback_index);
1067 	pgoff_t index;
1068 	pgoff_t end;		/* Inclusive */
1069 	pgoff_t done_index;
1070 	int cycled;
1071 	int range_whole = 0;
1072 	int tag;
1073 
1074 	pagevec_init(&pvec, 0);
1075 	if (wbc->range_cyclic) {
1076 		writeback_index = mapping->writeback_index; /* prev offset */
1077 		index = writeback_index;
1078 		if (index == 0)
1079 			cycled = 1;
1080 		else
1081 			cycled = 0;
1082 		end = -1;
1083 	} else {
1084 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1085 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1086 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1087 			range_whole = 1;
1088 		cycled = 1; /* ignore range_cyclic tests */
1089 	}
1090 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1091 		tag = PAGECACHE_TAG_TOWRITE;
1092 	else
1093 		tag = PAGECACHE_TAG_DIRTY;
1094 retry:
1095 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1096 		tag_pages_for_writeback(mapping, index, end);
1097 	done_index = index;
1098 	while (!done && (index <= end)) {
1099 		int i;
1100 
1101 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1102 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1103 		if (nr_pages == 0)
1104 			break;
1105 
1106 		for (i = 0; i < nr_pages; i++) {
1107 			struct page *page = pvec.pages[i];
1108 
1109 			/*
1110 			 * At this point, the page may be truncated or
1111 			 * invalidated (changing page->mapping to NULL), or
1112 			 * even swizzled back from swapper_space to tmpfs file
1113 			 * mapping. However, page->index will not change
1114 			 * because we have a reference on the page.
1115 			 */
1116 			if (page->index > end) {
1117 				/*
1118 				 * can't be range_cyclic (1st pass) because
1119 				 * end == -1 in that case.
1120 				 */
1121 				done = 1;
1122 				break;
1123 			}
1124 
1125 			done_index = page->index;
1126 
1127 			lock_page(page);
1128 
1129 			/*
1130 			 * Page truncated or invalidated. We can freely skip it
1131 			 * then, even for data integrity operations: the page
1132 			 * has disappeared concurrently, so there could be no
1133 			 * real expectation of this data interity operation
1134 			 * even if there is now a new, dirty page at the same
1135 			 * pagecache address.
1136 			 */
1137 			if (unlikely(page->mapping != mapping)) {
1138 continue_unlock:
1139 				unlock_page(page);
1140 				continue;
1141 			}
1142 
1143 			if (!PageDirty(page)) {
1144 				/* someone wrote it for us */
1145 				goto continue_unlock;
1146 			}
1147 
1148 			if (PageWriteback(page)) {
1149 				if (wbc->sync_mode != WB_SYNC_NONE)
1150 					wait_on_page_writeback(page);
1151 				else
1152 					goto continue_unlock;
1153 			}
1154 
1155 			BUG_ON(PageWriteback(page));
1156 			if (!clear_page_dirty_for_io(page))
1157 				goto continue_unlock;
1158 
1159 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1160 			ret = (*writepage)(page, wbc, data);
1161 			if (unlikely(ret)) {
1162 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1163 					unlock_page(page);
1164 					ret = 0;
1165 				} else {
1166 					/*
1167 					 * done_index is set past this page,
1168 					 * so media errors will not choke
1169 					 * background writeout for the entire
1170 					 * file. This has consequences for
1171 					 * range_cyclic semantics (ie. it may
1172 					 * not be suitable for data integrity
1173 					 * writeout).
1174 					 */
1175 					done_index = page->index + 1;
1176 					done = 1;
1177 					break;
1178 				}
1179 			}
1180 
1181 			/*
1182 			 * We stop writing back only if we are not doing
1183 			 * integrity sync. In case of integrity sync we have to
1184 			 * keep going until we have written all the pages
1185 			 * we tagged for writeback prior to entering this loop.
1186 			 */
1187 			if (--wbc->nr_to_write <= 0 &&
1188 			    wbc->sync_mode == WB_SYNC_NONE) {
1189 				done = 1;
1190 				break;
1191 			}
1192 		}
1193 		pagevec_release(&pvec);
1194 		cond_resched();
1195 	}
1196 	if (!cycled && !done) {
1197 		/*
1198 		 * range_cyclic:
1199 		 * We hit the last page and there is more work to be done: wrap
1200 		 * back to the start of the file
1201 		 */
1202 		cycled = 1;
1203 		index = 0;
1204 		end = writeback_index - 1;
1205 		goto retry;
1206 	}
1207 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1208 		mapping->writeback_index = done_index;
1209 
1210 	return ret;
1211 }
1212 EXPORT_SYMBOL(write_cache_pages);
1213 
1214 /*
1215  * Function used by generic_writepages to call the real writepage
1216  * function and set the mapping flags on error
1217  */
1218 static int __writepage(struct page *page, struct writeback_control *wbc,
1219 		       void *data)
1220 {
1221 	struct address_space *mapping = data;
1222 	int ret = mapping->a_ops->writepage(page, wbc);
1223 	mapping_set_error(mapping, ret);
1224 	return ret;
1225 }
1226 
1227 /**
1228  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1229  * @mapping: address space structure to write
1230  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1231  *
1232  * This is a library function, which implements the writepages()
1233  * address_space_operation.
1234  */
1235 int generic_writepages(struct address_space *mapping,
1236 		       struct writeback_control *wbc)
1237 {
1238 	struct blk_plug plug;
1239 	int ret;
1240 
1241 	/* deal with chardevs and other special file */
1242 	if (!mapping->a_ops->writepage)
1243 		return 0;
1244 
1245 	blk_start_plug(&plug);
1246 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1247 	blk_finish_plug(&plug);
1248 	return ret;
1249 }
1250 
1251 EXPORT_SYMBOL(generic_writepages);
1252 
1253 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1254 {
1255 	int ret;
1256 
1257 	if (wbc->nr_to_write <= 0)
1258 		return 0;
1259 	if (mapping->a_ops->writepages)
1260 		ret = mapping->a_ops->writepages(mapping, wbc);
1261 	else
1262 		ret = generic_writepages(mapping, wbc);
1263 	return ret;
1264 }
1265 
1266 /**
1267  * write_one_page - write out a single page and optionally wait on I/O
1268  * @page: the page to write
1269  * @wait: if true, wait on writeout
1270  *
1271  * The page must be locked by the caller and will be unlocked upon return.
1272  *
1273  * write_one_page() returns a negative error code if I/O failed.
1274  */
1275 int write_one_page(struct page *page, int wait)
1276 {
1277 	struct address_space *mapping = page->mapping;
1278 	int ret = 0;
1279 	struct writeback_control wbc = {
1280 		.sync_mode = WB_SYNC_ALL,
1281 		.nr_to_write = 1,
1282 	};
1283 
1284 	BUG_ON(!PageLocked(page));
1285 
1286 	if (wait)
1287 		wait_on_page_writeback(page);
1288 
1289 	if (clear_page_dirty_for_io(page)) {
1290 		page_cache_get(page);
1291 		ret = mapping->a_ops->writepage(page, &wbc);
1292 		if (ret == 0 && wait) {
1293 			wait_on_page_writeback(page);
1294 			if (PageError(page))
1295 				ret = -EIO;
1296 		}
1297 		page_cache_release(page);
1298 	} else {
1299 		unlock_page(page);
1300 	}
1301 	return ret;
1302 }
1303 EXPORT_SYMBOL(write_one_page);
1304 
1305 /*
1306  * For address_spaces which do not use buffers nor write back.
1307  */
1308 int __set_page_dirty_no_writeback(struct page *page)
1309 {
1310 	if (!PageDirty(page))
1311 		return !TestSetPageDirty(page);
1312 	return 0;
1313 }
1314 
1315 /*
1316  * Helper function for set_page_dirty family.
1317  * NOTE: This relies on being atomic wrt interrupts.
1318  */
1319 void account_page_dirtied(struct page *page, struct address_space *mapping)
1320 {
1321 	if (mapping_cap_account_dirty(mapping)) {
1322 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1323 		__inc_zone_page_state(page, NR_DIRTIED);
1324 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1325 		task_dirty_inc(current);
1326 		task_io_account_write(PAGE_CACHE_SIZE);
1327 	}
1328 }
1329 EXPORT_SYMBOL(account_page_dirtied);
1330 
1331 /*
1332  * Helper function for set_page_writeback family.
1333  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1334  * wrt interrupts.
1335  */
1336 void account_page_writeback(struct page *page)
1337 {
1338 	inc_zone_page_state(page, NR_WRITEBACK);
1339 }
1340 EXPORT_SYMBOL(account_page_writeback);
1341 
1342 /*
1343  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1344  * its radix tree.
1345  *
1346  * This is also used when a single buffer is being dirtied: we want to set the
1347  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1348  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1349  *
1350  * Most callers have locked the page, which pins the address_space in memory.
1351  * But zap_pte_range() does not lock the page, however in that case the
1352  * mapping is pinned by the vma's ->vm_file reference.
1353  *
1354  * We take care to handle the case where the page was truncated from the
1355  * mapping by re-checking page_mapping() inside tree_lock.
1356  */
1357 int __set_page_dirty_nobuffers(struct page *page)
1358 {
1359 	if (!TestSetPageDirty(page)) {
1360 		struct address_space *mapping = page_mapping(page);
1361 		struct address_space *mapping2;
1362 
1363 		if (!mapping)
1364 			return 1;
1365 
1366 		spin_lock_irq(&mapping->tree_lock);
1367 		mapping2 = page_mapping(page);
1368 		if (mapping2) { /* Race with truncate? */
1369 			BUG_ON(mapping2 != mapping);
1370 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1371 			account_page_dirtied(page, mapping);
1372 			radix_tree_tag_set(&mapping->page_tree,
1373 				page_index(page), PAGECACHE_TAG_DIRTY);
1374 		}
1375 		spin_unlock_irq(&mapping->tree_lock);
1376 		if (mapping->host) {
1377 			/* !PageAnon && !swapper_space */
1378 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1379 		}
1380 		return 1;
1381 	}
1382 	return 0;
1383 }
1384 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1385 
1386 /*
1387  * When a writepage implementation decides that it doesn't want to write this
1388  * page for some reason, it should redirty the locked page via
1389  * redirty_page_for_writepage() and it should then unlock the page and return 0
1390  */
1391 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1392 {
1393 	wbc->pages_skipped++;
1394 	return __set_page_dirty_nobuffers(page);
1395 }
1396 EXPORT_SYMBOL(redirty_page_for_writepage);
1397 
1398 /*
1399  * Dirty a page.
1400  *
1401  * For pages with a mapping this should be done under the page lock
1402  * for the benefit of asynchronous memory errors who prefer a consistent
1403  * dirty state. This rule can be broken in some special cases,
1404  * but should be better not to.
1405  *
1406  * If the mapping doesn't provide a set_page_dirty a_op, then
1407  * just fall through and assume that it wants buffer_heads.
1408  */
1409 int set_page_dirty(struct page *page)
1410 {
1411 	struct address_space *mapping = page_mapping(page);
1412 
1413 	if (likely(mapping)) {
1414 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1415 		/*
1416 		 * readahead/lru_deactivate_page could remain
1417 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1418 		 * About readahead, if the page is written, the flags would be
1419 		 * reset. So no problem.
1420 		 * About lru_deactivate_page, if the page is redirty, the flag
1421 		 * will be reset. So no problem. but if the page is used by readahead
1422 		 * it will confuse readahead and make it restart the size rampup
1423 		 * process. But it's a trivial problem.
1424 		 */
1425 		ClearPageReclaim(page);
1426 #ifdef CONFIG_BLOCK
1427 		if (!spd)
1428 			spd = __set_page_dirty_buffers;
1429 #endif
1430 		return (*spd)(page);
1431 	}
1432 	if (!PageDirty(page)) {
1433 		if (!TestSetPageDirty(page))
1434 			return 1;
1435 	}
1436 	return 0;
1437 }
1438 EXPORT_SYMBOL(set_page_dirty);
1439 
1440 /*
1441  * set_page_dirty() is racy if the caller has no reference against
1442  * page->mapping->host, and if the page is unlocked.  This is because another
1443  * CPU could truncate the page off the mapping and then free the mapping.
1444  *
1445  * Usually, the page _is_ locked, or the caller is a user-space process which
1446  * holds a reference on the inode by having an open file.
1447  *
1448  * In other cases, the page should be locked before running set_page_dirty().
1449  */
1450 int set_page_dirty_lock(struct page *page)
1451 {
1452 	int ret;
1453 
1454 	lock_page(page);
1455 	ret = set_page_dirty(page);
1456 	unlock_page(page);
1457 	return ret;
1458 }
1459 EXPORT_SYMBOL(set_page_dirty_lock);
1460 
1461 /*
1462  * Clear a page's dirty flag, while caring for dirty memory accounting.
1463  * Returns true if the page was previously dirty.
1464  *
1465  * This is for preparing to put the page under writeout.  We leave the page
1466  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1467  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1468  * implementation will run either set_page_writeback() or set_page_dirty(),
1469  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1470  * back into sync.
1471  *
1472  * This incoherency between the page's dirty flag and radix-tree tag is
1473  * unfortunate, but it only exists while the page is locked.
1474  */
1475 int clear_page_dirty_for_io(struct page *page)
1476 {
1477 	struct address_space *mapping = page_mapping(page);
1478 
1479 	BUG_ON(!PageLocked(page));
1480 
1481 	if (mapping && mapping_cap_account_dirty(mapping)) {
1482 		/*
1483 		 * Yes, Virginia, this is indeed insane.
1484 		 *
1485 		 * We use this sequence to make sure that
1486 		 *  (a) we account for dirty stats properly
1487 		 *  (b) we tell the low-level filesystem to
1488 		 *      mark the whole page dirty if it was
1489 		 *      dirty in a pagetable. Only to then
1490 		 *  (c) clean the page again and return 1 to
1491 		 *      cause the writeback.
1492 		 *
1493 		 * This way we avoid all nasty races with the
1494 		 * dirty bit in multiple places and clearing
1495 		 * them concurrently from different threads.
1496 		 *
1497 		 * Note! Normally the "set_page_dirty(page)"
1498 		 * has no effect on the actual dirty bit - since
1499 		 * that will already usually be set. But we
1500 		 * need the side effects, and it can help us
1501 		 * avoid races.
1502 		 *
1503 		 * We basically use the page "master dirty bit"
1504 		 * as a serialization point for all the different
1505 		 * threads doing their things.
1506 		 */
1507 		if (page_mkclean(page))
1508 			set_page_dirty(page);
1509 		/*
1510 		 * We carefully synchronise fault handlers against
1511 		 * installing a dirty pte and marking the page dirty
1512 		 * at this point. We do this by having them hold the
1513 		 * page lock at some point after installing their
1514 		 * pte, but before marking the page dirty.
1515 		 * Pages are always locked coming in here, so we get
1516 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1517 		 * for more comments.
1518 		 */
1519 		if (TestClearPageDirty(page)) {
1520 			dec_zone_page_state(page, NR_FILE_DIRTY);
1521 			dec_bdi_stat(mapping->backing_dev_info,
1522 					BDI_RECLAIMABLE);
1523 			return 1;
1524 		}
1525 		return 0;
1526 	}
1527 	return TestClearPageDirty(page);
1528 }
1529 EXPORT_SYMBOL(clear_page_dirty_for_io);
1530 
1531 int test_clear_page_writeback(struct page *page)
1532 {
1533 	struct address_space *mapping = page_mapping(page);
1534 	int ret;
1535 
1536 	if (mapping) {
1537 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1538 		unsigned long flags;
1539 
1540 		spin_lock_irqsave(&mapping->tree_lock, flags);
1541 		ret = TestClearPageWriteback(page);
1542 		if (ret) {
1543 			radix_tree_tag_clear(&mapping->page_tree,
1544 						page_index(page),
1545 						PAGECACHE_TAG_WRITEBACK);
1546 			if (bdi_cap_account_writeback(bdi)) {
1547 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1548 				__bdi_writeout_inc(bdi);
1549 			}
1550 		}
1551 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1552 	} else {
1553 		ret = TestClearPageWriteback(page);
1554 	}
1555 	if (ret) {
1556 		dec_zone_page_state(page, NR_WRITEBACK);
1557 		inc_zone_page_state(page, NR_WRITTEN);
1558 	}
1559 	return ret;
1560 }
1561 
1562 int test_set_page_writeback(struct page *page)
1563 {
1564 	struct address_space *mapping = page_mapping(page);
1565 	int ret;
1566 
1567 	if (mapping) {
1568 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1569 		unsigned long flags;
1570 
1571 		spin_lock_irqsave(&mapping->tree_lock, flags);
1572 		ret = TestSetPageWriteback(page);
1573 		if (!ret) {
1574 			radix_tree_tag_set(&mapping->page_tree,
1575 						page_index(page),
1576 						PAGECACHE_TAG_WRITEBACK);
1577 			if (bdi_cap_account_writeback(bdi))
1578 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1579 		}
1580 		if (!PageDirty(page))
1581 			radix_tree_tag_clear(&mapping->page_tree,
1582 						page_index(page),
1583 						PAGECACHE_TAG_DIRTY);
1584 		radix_tree_tag_clear(&mapping->page_tree,
1585 				     page_index(page),
1586 				     PAGECACHE_TAG_TOWRITE);
1587 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1588 	} else {
1589 		ret = TestSetPageWriteback(page);
1590 	}
1591 	if (!ret)
1592 		account_page_writeback(page);
1593 	return ret;
1594 
1595 }
1596 EXPORT_SYMBOL(test_set_page_writeback);
1597 
1598 /*
1599  * Return true if any of the pages in the mapping are marked with the
1600  * passed tag.
1601  */
1602 int mapping_tagged(struct address_space *mapping, int tag)
1603 {
1604 	return radix_tree_tagged(&mapping->page_tree, tag);
1605 }
1606 EXPORT_SYMBOL(mapping_tagged);
1607