1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 #include <trace/events/writeback.h> 38 39 /* 40 * Sleep at most 200ms at a time in balance_dirty_pages(). 41 */ 42 #define MAX_PAUSE max(HZ/5, 1) 43 44 /* 45 * Estimate write bandwidth at 200ms intervals. 46 */ 47 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 48 49 /* 50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 51 * will look to see if it needs to force writeback or throttling. 52 */ 53 static long ratelimit_pages = 32; 54 55 /* 56 * When balance_dirty_pages decides that the caller needs to perform some 57 * non-background writeback, this is how many pages it will attempt to write. 58 * It should be somewhat larger than dirtied pages to ensure that reasonably 59 * large amounts of I/O are submitted. 60 */ 61 static inline long sync_writeback_pages(unsigned long dirtied) 62 { 63 if (dirtied < ratelimit_pages) 64 dirtied = ratelimit_pages; 65 66 return dirtied + dirtied / 2; 67 } 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 /* 105 * The longest time for which data is allowed to remain dirty 106 */ 107 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 108 109 /* 110 * Flag that makes the machine dump writes/reads and block dirtyings. 111 */ 112 int block_dump; 113 114 /* 115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 116 * a full sync is triggered after this time elapses without any disk activity. 117 */ 118 int laptop_mode; 119 120 EXPORT_SYMBOL(laptop_mode); 121 122 /* End of sysctl-exported parameters */ 123 124 unsigned long global_dirty_limit; 125 126 /* 127 * Scale the writeback cache size proportional to the relative writeout speeds. 128 * 129 * We do this by keeping a floating proportion between BDIs, based on page 130 * writeback completions [end_page_writeback()]. Those devices that write out 131 * pages fastest will get the larger share, while the slower will get a smaller 132 * share. 133 * 134 * We use page writeout completions because we are interested in getting rid of 135 * dirty pages. Having them written out is the primary goal. 136 * 137 * We introduce a concept of time, a period over which we measure these events, 138 * because demand can/will vary over time. The length of this period itself is 139 * measured in page writeback completions. 140 * 141 */ 142 static struct prop_descriptor vm_completions; 143 static struct prop_descriptor vm_dirties; 144 145 /* 146 * couple the period to the dirty_ratio: 147 * 148 * period/2 ~ roundup_pow_of_two(dirty limit) 149 */ 150 static int calc_period_shift(void) 151 { 152 unsigned long dirty_total; 153 154 if (vm_dirty_bytes) 155 dirty_total = vm_dirty_bytes / PAGE_SIZE; 156 else 157 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 158 100; 159 return 2 + ilog2(dirty_total - 1); 160 } 161 162 /* 163 * update the period when the dirty threshold changes. 164 */ 165 static void update_completion_period(void) 166 { 167 int shift = calc_period_shift(); 168 prop_change_shift(&vm_completions, shift); 169 prop_change_shift(&vm_dirties, shift); 170 } 171 172 int dirty_background_ratio_handler(struct ctl_table *table, int write, 173 void __user *buffer, size_t *lenp, 174 loff_t *ppos) 175 { 176 int ret; 177 178 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 179 if (ret == 0 && write) 180 dirty_background_bytes = 0; 181 return ret; 182 } 183 184 int dirty_background_bytes_handler(struct ctl_table *table, int write, 185 void __user *buffer, size_t *lenp, 186 loff_t *ppos) 187 { 188 int ret; 189 190 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 191 if (ret == 0 && write) 192 dirty_background_ratio = 0; 193 return ret; 194 } 195 196 int dirty_ratio_handler(struct ctl_table *table, int write, 197 void __user *buffer, size_t *lenp, 198 loff_t *ppos) 199 { 200 int old_ratio = vm_dirty_ratio; 201 int ret; 202 203 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 204 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 205 update_completion_period(); 206 vm_dirty_bytes = 0; 207 } 208 return ret; 209 } 210 211 212 int dirty_bytes_handler(struct ctl_table *table, int write, 213 void __user *buffer, size_t *lenp, 214 loff_t *ppos) 215 { 216 unsigned long old_bytes = vm_dirty_bytes; 217 int ret; 218 219 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 220 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 221 update_completion_period(); 222 vm_dirty_ratio = 0; 223 } 224 return ret; 225 } 226 227 /* 228 * Increment the BDI's writeout completion count and the global writeout 229 * completion count. Called from test_clear_page_writeback(). 230 */ 231 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 232 { 233 __inc_bdi_stat(bdi, BDI_WRITTEN); 234 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 235 bdi->max_prop_frac); 236 } 237 238 void bdi_writeout_inc(struct backing_dev_info *bdi) 239 { 240 unsigned long flags; 241 242 local_irq_save(flags); 243 __bdi_writeout_inc(bdi); 244 local_irq_restore(flags); 245 } 246 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 247 248 void task_dirty_inc(struct task_struct *tsk) 249 { 250 prop_inc_single(&vm_dirties, &tsk->dirties); 251 } 252 253 /* 254 * Obtain an accurate fraction of the BDI's portion. 255 */ 256 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 257 long *numerator, long *denominator) 258 { 259 prop_fraction_percpu(&vm_completions, &bdi->completions, 260 numerator, denominator); 261 } 262 263 static inline void task_dirties_fraction(struct task_struct *tsk, 264 long *numerator, long *denominator) 265 { 266 prop_fraction_single(&vm_dirties, &tsk->dirties, 267 numerator, denominator); 268 } 269 270 /* 271 * task_dirty_limit - scale down dirty throttling threshold for one task 272 * 273 * task specific dirty limit: 274 * 275 * dirty -= (dirty/8) * p_{t} 276 * 277 * To protect light/slow dirtying tasks from heavier/fast ones, we start 278 * throttling individual tasks before reaching the bdi dirty limit. 279 * Relatively low thresholds will be allocated to heavy dirtiers. So when 280 * dirty pages grow large, heavy dirtiers will be throttled first, which will 281 * effectively curb the growth of dirty pages. Light dirtiers with high enough 282 * dirty threshold may never get throttled. 283 */ 284 #define TASK_LIMIT_FRACTION 8 285 static unsigned long task_dirty_limit(struct task_struct *tsk, 286 unsigned long bdi_dirty) 287 { 288 long numerator, denominator; 289 unsigned long dirty = bdi_dirty; 290 u64 inv = dirty / TASK_LIMIT_FRACTION; 291 292 task_dirties_fraction(tsk, &numerator, &denominator); 293 inv *= numerator; 294 do_div(inv, denominator); 295 296 dirty -= inv; 297 298 return max(dirty, bdi_dirty/2); 299 } 300 301 /* Minimum limit for any task */ 302 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty) 303 { 304 return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION; 305 } 306 307 /* 308 * 309 */ 310 static unsigned int bdi_min_ratio; 311 312 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 313 { 314 int ret = 0; 315 316 spin_lock_bh(&bdi_lock); 317 if (min_ratio > bdi->max_ratio) { 318 ret = -EINVAL; 319 } else { 320 min_ratio -= bdi->min_ratio; 321 if (bdi_min_ratio + min_ratio < 100) { 322 bdi_min_ratio += min_ratio; 323 bdi->min_ratio += min_ratio; 324 } else { 325 ret = -EINVAL; 326 } 327 } 328 spin_unlock_bh(&bdi_lock); 329 330 return ret; 331 } 332 333 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 334 { 335 int ret = 0; 336 337 if (max_ratio > 100) 338 return -EINVAL; 339 340 spin_lock_bh(&bdi_lock); 341 if (bdi->min_ratio > max_ratio) { 342 ret = -EINVAL; 343 } else { 344 bdi->max_ratio = max_ratio; 345 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 346 } 347 spin_unlock_bh(&bdi_lock); 348 349 return ret; 350 } 351 EXPORT_SYMBOL(bdi_set_max_ratio); 352 353 /* 354 * Work out the current dirty-memory clamping and background writeout 355 * thresholds. 356 * 357 * The main aim here is to lower them aggressively if there is a lot of mapped 358 * memory around. To avoid stressing page reclaim with lots of unreclaimable 359 * pages. It is better to clamp down on writers than to start swapping, and 360 * performing lots of scanning. 361 * 362 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 363 * 364 * We don't permit the clamping level to fall below 5% - that is getting rather 365 * excessive. 366 * 367 * We make sure that the background writeout level is below the adjusted 368 * clamping level. 369 */ 370 371 static unsigned long highmem_dirtyable_memory(unsigned long total) 372 { 373 #ifdef CONFIG_HIGHMEM 374 int node; 375 unsigned long x = 0; 376 377 for_each_node_state(node, N_HIGH_MEMORY) { 378 struct zone *z = 379 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 380 381 x += zone_page_state(z, NR_FREE_PAGES) + 382 zone_reclaimable_pages(z); 383 } 384 /* 385 * Make sure that the number of highmem pages is never larger 386 * than the number of the total dirtyable memory. This can only 387 * occur in very strange VM situations but we want to make sure 388 * that this does not occur. 389 */ 390 return min(x, total); 391 #else 392 return 0; 393 #endif 394 } 395 396 /** 397 * determine_dirtyable_memory - amount of memory that may be used 398 * 399 * Returns the numebr of pages that can currently be freed and used 400 * by the kernel for direct mappings. 401 */ 402 unsigned long determine_dirtyable_memory(void) 403 { 404 unsigned long x; 405 406 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 407 408 if (!vm_highmem_is_dirtyable) 409 x -= highmem_dirtyable_memory(x); 410 411 return x + 1; /* Ensure that we never return 0 */ 412 } 413 414 static unsigned long hard_dirty_limit(unsigned long thresh) 415 { 416 return max(thresh, global_dirty_limit); 417 } 418 419 /* 420 * global_dirty_limits - background-writeback and dirty-throttling thresholds 421 * 422 * Calculate the dirty thresholds based on sysctl parameters 423 * - vm.dirty_background_ratio or vm.dirty_background_bytes 424 * - vm.dirty_ratio or vm.dirty_bytes 425 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 426 * real-time tasks. 427 */ 428 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 429 { 430 unsigned long background; 431 unsigned long dirty; 432 unsigned long uninitialized_var(available_memory); 433 struct task_struct *tsk; 434 435 if (!vm_dirty_bytes || !dirty_background_bytes) 436 available_memory = determine_dirtyable_memory(); 437 438 if (vm_dirty_bytes) 439 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 440 else 441 dirty = (vm_dirty_ratio * available_memory) / 100; 442 443 if (dirty_background_bytes) 444 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 445 else 446 background = (dirty_background_ratio * available_memory) / 100; 447 448 if (background >= dirty) 449 background = dirty / 2; 450 tsk = current; 451 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 452 background += background / 4; 453 dirty += dirty / 4; 454 } 455 *pbackground = background; 456 *pdirty = dirty; 457 trace_global_dirty_state(background, dirty); 458 } 459 460 /** 461 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 462 * @bdi: the backing_dev_info to query 463 * @dirty: global dirty limit in pages 464 * 465 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 466 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 467 * And the "limit" in the name is not seriously taken as hard limit in 468 * balance_dirty_pages(). 469 * 470 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 471 * - starving fast devices 472 * - piling up dirty pages (that will take long time to sync) on slow devices 473 * 474 * The bdi's share of dirty limit will be adapting to its throughput and 475 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 476 */ 477 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 478 { 479 u64 bdi_dirty; 480 long numerator, denominator; 481 482 /* 483 * Calculate this BDI's share of the dirty ratio. 484 */ 485 bdi_writeout_fraction(bdi, &numerator, &denominator); 486 487 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 488 bdi_dirty *= numerator; 489 do_div(bdi_dirty, denominator); 490 491 bdi_dirty += (dirty * bdi->min_ratio) / 100; 492 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 493 bdi_dirty = dirty * bdi->max_ratio / 100; 494 495 return bdi_dirty; 496 } 497 498 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 499 unsigned long elapsed, 500 unsigned long written) 501 { 502 const unsigned long period = roundup_pow_of_two(3 * HZ); 503 unsigned long avg = bdi->avg_write_bandwidth; 504 unsigned long old = bdi->write_bandwidth; 505 u64 bw; 506 507 /* 508 * bw = written * HZ / elapsed 509 * 510 * bw * elapsed + write_bandwidth * (period - elapsed) 511 * write_bandwidth = --------------------------------------------------- 512 * period 513 */ 514 bw = written - bdi->written_stamp; 515 bw *= HZ; 516 if (unlikely(elapsed > period)) { 517 do_div(bw, elapsed); 518 avg = bw; 519 goto out; 520 } 521 bw += (u64)bdi->write_bandwidth * (period - elapsed); 522 bw >>= ilog2(period); 523 524 /* 525 * one more level of smoothing, for filtering out sudden spikes 526 */ 527 if (avg > old && old >= (unsigned long)bw) 528 avg -= (avg - old) >> 3; 529 530 if (avg < old && old <= (unsigned long)bw) 531 avg += (old - avg) >> 3; 532 533 out: 534 bdi->write_bandwidth = bw; 535 bdi->avg_write_bandwidth = avg; 536 } 537 538 /* 539 * The global dirtyable memory and dirty threshold could be suddenly knocked 540 * down by a large amount (eg. on the startup of KVM in a swapless system). 541 * This may throw the system into deep dirty exceeded state and throttle 542 * heavy/light dirtiers alike. To retain good responsiveness, maintain 543 * global_dirty_limit for tracking slowly down to the knocked down dirty 544 * threshold. 545 */ 546 static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 547 { 548 unsigned long limit = global_dirty_limit; 549 550 /* 551 * Follow up in one step. 552 */ 553 if (limit < thresh) { 554 limit = thresh; 555 goto update; 556 } 557 558 /* 559 * Follow down slowly. Use the higher one as the target, because thresh 560 * may drop below dirty. This is exactly the reason to introduce 561 * global_dirty_limit which is guaranteed to lie above the dirty pages. 562 */ 563 thresh = max(thresh, dirty); 564 if (limit > thresh) { 565 limit -= (limit - thresh) >> 5; 566 goto update; 567 } 568 return; 569 update: 570 global_dirty_limit = limit; 571 } 572 573 static void global_update_bandwidth(unsigned long thresh, 574 unsigned long dirty, 575 unsigned long now) 576 { 577 static DEFINE_SPINLOCK(dirty_lock); 578 static unsigned long update_time; 579 580 /* 581 * check locklessly first to optimize away locking for the most time 582 */ 583 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 584 return; 585 586 spin_lock(&dirty_lock); 587 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 588 update_dirty_limit(thresh, dirty); 589 update_time = now; 590 } 591 spin_unlock(&dirty_lock); 592 } 593 594 void __bdi_update_bandwidth(struct backing_dev_info *bdi, 595 unsigned long thresh, 596 unsigned long dirty, 597 unsigned long bdi_thresh, 598 unsigned long bdi_dirty, 599 unsigned long start_time) 600 { 601 unsigned long now = jiffies; 602 unsigned long elapsed = now - bdi->bw_time_stamp; 603 unsigned long written; 604 605 /* 606 * rate-limit, only update once every 200ms. 607 */ 608 if (elapsed < BANDWIDTH_INTERVAL) 609 return; 610 611 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 612 613 /* 614 * Skip quiet periods when disk bandwidth is under-utilized. 615 * (at least 1s idle time between two flusher runs) 616 */ 617 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 618 goto snapshot; 619 620 if (thresh) 621 global_update_bandwidth(thresh, dirty, now); 622 623 bdi_update_write_bandwidth(bdi, elapsed, written); 624 625 snapshot: 626 bdi->written_stamp = written; 627 bdi->bw_time_stamp = now; 628 } 629 630 static void bdi_update_bandwidth(struct backing_dev_info *bdi, 631 unsigned long thresh, 632 unsigned long dirty, 633 unsigned long bdi_thresh, 634 unsigned long bdi_dirty, 635 unsigned long start_time) 636 { 637 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 638 return; 639 spin_lock(&bdi->wb.list_lock); 640 __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty, 641 start_time); 642 spin_unlock(&bdi->wb.list_lock); 643 } 644 645 /* 646 * balance_dirty_pages() must be called by processes which are generating dirty 647 * data. It looks at the number of dirty pages in the machine and will force 648 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 649 * If we're over `background_thresh' then the writeback threads are woken to 650 * perform some writeout. 651 */ 652 static void balance_dirty_pages(struct address_space *mapping, 653 unsigned long write_chunk) 654 { 655 unsigned long nr_reclaimable, bdi_nr_reclaimable; 656 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 657 unsigned long bdi_dirty; 658 unsigned long background_thresh; 659 unsigned long dirty_thresh; 660 unsigned long bdi_thresh; 661 unsigned long task_bdi_thresh; 662 unsigned long min_task_bdi_thresh; 663 unsigned long pages_written = 0; 664 unsigned long pause = 1; 665 bool dirty_exceeded = false; 666 bool clear_dirty_exceeded = true; 667 struct backing_dev_info *bdi = mapping->backing_dev_info; 668 unsigned long start_time = jiffies; 669 670 for (;;) { 671 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 672 global_page_state(NR_UNSTABLE_NFS); 673 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 674 675 global_dirty_limits(&background_thresh, &dirty_thresh); 676 677 /* 678 * Throttle it only when the background writeback cannot 679 * catch-up. This avoids (excessively) small writeouts 680 * when the bdi limits are ramping up. 681 */ 682 if (nr_dirty <= (background_thresh + dirty_thresh) / 2) 683 break; 684 685 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 686 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh); 687 task_bdi_thresh = task_dirty_limit(current, bdi_thresh); 688 689 /* 690 * In order to avoid the stacked BDI deadlock we need 691 * to ensure we accurately count the 'dirty' pages when 692 * the threshold is low. 693 * 694 * Otherwise it would be possible to get thresh+n pages 695 * reported dirty, even though there are thresh-m pages 696 * actually dirty; with m+n sitting in the percpu 697 * deltas. 698 */ 699 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) { 700 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 701 bdi_dirty = bdi_nr_reclaimable + 702 bdi_stat_sum(bdi, BDI_WRITEBACK); 703 } else { 704 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 705 bdi_dirty = bdi_nr_reclaimable + 706 bdi_stat(bdi, BDI_WRITEBACK); 707 } 708 709 /* 710 * The bdi thresh is somehow "soft" limit derived from the 711 * global "hard" limit. The former helps to prevent heavy IO 712 * bdi or process from holding back light ones; The latter is 713 * the last resort safeguard. 714 */ 715 dirty_exceeded = (bdi_dirty > task_bdi_thresh) || 716 (nr_dirty > dirty_thresh); 717 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) && 718 (nr_dirty <= dirty_thresh); 719 720 if (!dirty_exceeded) 721 break; 722 723 if (!bdi->dirty_exceeded) 724 bdi->dirty_exceeded = 1; 725 726 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty, 727 bdi_thresh, bdi_dirty, start_time); 728 729 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 730 * Unstable writes are a feature of certain networked 731 * filesystems (i.e. NFS) in which data may have been 732 * written to the server's write cache, but has not yet 733 * been flushed to permanent storage. 734 * Only move pages to writeback if this bdi is over its 735 * threshold otherwise wait until the disk writes catch 736 * up. 737 */ 738 trace_balance_dirty_start(bdi); 739 if (bdi_nr_reclaimable > task_bdi_thresh) { 740 pages_written += writeback_inodes_wb(&bdi->wb, 741 write_chunk); 742 trace_balance_dirty_written(bdi, pages_written); 743 if (pages_written >= write_chunk) 744 break; /* We've done our duty */ 745 } 746 __set_current_state(TASK_UNINTERRUPTIBLE); 747 io_schedule_timeout(pause); 748 trace_balance_dirty_wait(bdi); 749 750 dirty_thresh = hard_dirty_limit(dirty_thresh); 751 /* 752 * max-pause area. If dirty exceeded but still within this 753 * area, no need to sleep for more than 200ms: (a) 8 pages per 754 * 200ms is typically more than enough to curb heavy dirtiers; 755 * (b) the pause time limit makes the dirtiers more responsive. 756 */ 757 if (nr_dirty < dirty_thresh && 758 bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 && 759 time_after(jiffies, start_time + MAX_PAUSE)) 760 break; 761 762 /* 763 * Increase the delay for each loop, up to our previous 764 * default of taking a 100ms nap. 765 */ 766 pause <<= 1; 767 if (pause > HZ / 10) 768 pause = HZ / 10; 769 } 770 771 /* Clear dirty_exceeded flag only when no task can exceed the limit */ 772 if (clear_dirty_exceeded && bdi->dirty_exceeded) 773 bdi->dirty_exceeded = 0; 774 775 if (writeback_in_progress(bdi)) 776 return; 777 778 /* 779 * In laptop mode, we wait until hitting the higher threshold before 780 * starting background writeout, and then write out all the way down 781 * to the lower threshold. So slow writers cause minimal disk activity. 782 * 783 * In normal mode, we start background writeout at the lower 784 * background_thresh, to keep the amount of dirty memory low. 785 */ 786 if ((laptop_mode && pages_written) || 787 (!laptop_mode && (nr_reclaimable > background_thresh))) 788 bdi_start_background_writeback(bdi); 789 } 790 791 void set_page_dirty_balance(struct page *page, int page_mkwrite) 792 { 793 if (set_page_dirty(page) || page_mkwrite) { 794 struct address_space *mapping = page_mapping(page); 795 796 if (mapping) 797 balance_dirty_pages_ratelimited(mapping); 798 } 799 } 800 801 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 802 803 /** 804 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 805 * @mapping: address_space which was dirtied 806 * @nr_pages_dirtied: number of pages which the caller has just dirtied 807 * 808 * Processes which are dirtying memory should call in here once for each page 809 * which was newly dirtied. The function will periodically check the system's 810 * dirty state and will initiate writeback if needed. 811 * 812 * On really big machines, get_writeback_state is expensive, so try to avoid 813 * calling it too often (ratelimiting). But once we're over the dirty memory 814 * limit we decrease the ratelimiting by a lot, to prevent individual processes 815 * from overshooting the limit by (ratelimit_pages) each. 816 */ 817 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 818 unsigned long nr_pages_dirtied) 819 { 820 struct backing_dev_info *bdi = mapping->backing_dev_info; 821 unsigned long ratelimit; 822 unsigned long *p; 823 824 if (!bdi_cap_account_dirty(bdi)) 825 return; 826 827 ratelimit = ratelimit_pages; 828 if (mapping->backing_dev_info->dirty_exceeded) 829 ratelimit = 8; 830 831 /* 832 * Check the rate limiting. Also, we do not want to throttle real-time 833 * tasks in balance_dirty_pages(). Period. 834 */ 835 preempt_disable(); 836 p = &__get_cpu_var(bdp_ratelimits); 837 *p += nr_pages_dirtied; 838 if (unlikely(*p >= ratelimit)) { 839 ratelimit = sync_writeback_pages(*p); 840 *p = 0; 841 preempt_enable(); 842 balance_dirty_pages(mapping, ratelimit); 843 return; 844 } 845 preempt_enable(); 846 } 847 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 848 849 void throttle_vm_writeout(gfp_t gfp_mask) 850 { 851 unsigned long background_thresh; 852 unsigned long dirty_thresh; 853 854 for ( ; ; ) { 855 global_dirty_limits(&background_thresh, &dirty_thresh); 856 857 /* 858 * Boost the allowable dirty threshold a bit for page 859 * allocators so they don't get DoS'ed by heavy writers 860 */ 861 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 862 863 if (global_page_state(NR_UNSTABLE_NFS) + 864 global_page_state(NR_WRITEBACK) <= dirty_thresh) 865 break; 866 congestion_wait(BLK_RW_ASYNC, HZ/10); 867 868 /* 869 * The caller might hold locks which can prevent IO completion 870 * or progress in the filesystem. So we cannot just sit here 871 * waiting for IO to complete. 872 */ 873 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 874 break; 875 } 876 } 877 878 /* 879 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 880 */ 881 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 882 void __user *buffer, size_t *length, loff_t *ppos) 883 { 884 proc_dointvec(table, write, buffer, length, ppos); 885 bdi_arm_supers_timer(); 886 return 0; 887 } 888 889 #ifdef CONFIG_BLOCK 890 void laptop_mode_timer_fn(unsigned long data) 891 { 892 struct request_queue *q = (struct request_queue *)data; 893 int nr_pages = global_page_state(NR_FILE_DIRTY) + 894 global_page_state(NR_UNSTABLE_NFS); 895 896 /* 897 * We want to write everything out, not just down to the dirty 898 * threshold 899 */ 900 if (bdi_has_dirty_io(&q->backing_dev_info)) 901 bdi_start_writeback(&q->backing_dev_info, nr_pages); 902 } 903 904 /* 905 * We've spun up the disk and we're in laptop mode: schedule writeback 906 * of all dirty data a few seconds from now. If the flush is already scheduled 907 * then push it back - the user is still using the disk. 908 */ 909 void laptop_io_completion(struct backing_dev_info *info) 910 { 911 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 912 } 913 914 /* 915 * We're in laptop mode and we've just synced. The sync's writes will have 916 * caused another writeback to be scheduled by laptop_io_completion. 917 * Nothing needs to be written back anymore, so we unschedule the writeback. 918 */ 919 void laptop_sync_completion(void) 920 { 921 struct backing_dev_info *bdi; 922 923 rcu_read_lock(); 924 925 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 926 del_timer(&bdi->laptop_mode_wb_timer); 927 928 rcu_read_unlock(); 929 } 930 #endif 931 932 /* 933 * If ratelimit_pages is too high then we can get into dirty-data overload 934 * if a large number of processes all perform writes at the same time. 935 * If it is too low then SMP machines will call the (expensive) 936 * get_writeback_state too often. 937 * 938 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 939 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 940 * thresholds before writeback cuts in. 941 * 942 * But the limit should not be set too high. Because it also controls the 943 * amount of memory which the balance_dirty_pages() caller has to write back. 944 * If this is too large then the caller will block on the IO queue all the 945 * time. So limit it to four megabytes - the balance_dirty_pages() caller 946 * will write six megabyte chunks, max. 947 */ 948 949 void writeback_set_ratelimit(void) 950 { 951 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 952 if (ratelimit_pages < 16) 953 ratelimit_pages = 16; 954 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 955 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 956 } 957 958 static int __cpuinit 959 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 960 { 961 writeback_set_ratelimit(); 962 return NOTIFY_DONE; 963 } 964 965 static struct notifier_block __cpuinitdata ratelimit_nb = { 966 .notifier_call = ratelimit_handler, 967 .next = NULL, 968 }; 969 970 /* 971 * Called early on to tune the page writeback dirty limits. 972 * 973 * We used to scale dirty pages according to how total memory 974 * related to pages that could be allocated for buffers (by 975 * comparing nr_free_buffer_pages() to vm_total_pages. 976 * 977 * However, that was when we used "dirty_ratio" to scale with 978 * all memory, and we don't do that any more. "dirty_ratio" 979 * is now applied to total non-HIGHPAGE memory (by subtracting 980 * totalhigh_pages from vm_total_pages), and as such we can't 981 * get into the old insane situation any more where we had 982 * large amounts of dirty pages compared to a small amount of 983 * non-HIGHMEM memory. 984 * 985 * But we might still want to scale the dirty_ratio by how 986 * much memory the box has.. 987 */ 988 void __init page_writeback_init(void) 989 { 990 int shift; 991 992 writeback_set_ratelimit(); 993 register_cpu_notifier(&ratelimit_nb); 994 995 shift = calc_period_shift(); 996 prop_descriptor_init(&vm_completions, shift); 997 prop_descriptor_init(&vm_dirties, shift); 998 } 999 1000 /** 1001 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1002 * @mapping: address space structure to write 1003 * @start: starting page index 1004 * @end: ending page index (inclusive) 1005 * 1006 * This function scans the page range from @start to @end (inclusive) and tags 1007 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1008 * that write_cache_pages (or whoever calls this function) will then use 1009 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1010 * used to avoid livelocking of writeback by a process steadily creating new 1011 * dirty pages in the file (thus it is important for this function to be quick 1012 * so that it can tag pages faster than a dirtying process can create them). 1013 */ 1014 /* 1015 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1016 */ 1017 void tag_pages_for_writeback(struct address_space *mapping, 1018 pgoff_t start, pgoff_t end) 1019 { 1020 #define WRITEBACK_TAG_BATCH 4096 1021 unsigned long tagged; 1022 1023 do { 1024 spin_lock_irq(&mapping->tree_lock); 1025 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1026 &start, end, WRITEBACK_TAG_BATCH, 1027 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1028 spin_unlock_irq(&mapping->tree_lock); 1029 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1030 cond_resched(); 1031 /* We check 'start' to handle wrapping when end == ~0UL */ 1032 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1033 } 1034 EXPORT_SYMBOL(tag_pages_for_writeback); 1035 1036 /** 1037 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1038 * @mapping: address space structure to write 1039 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1040 * @writepage: function called for each page 1041 * @data: data passed to writepage function 1042 * 1043 * If a page is already under I/O, write_cache_pages() skips it, even 1044 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1045 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1046 * and msync() need to guarantee that all the data which was dirty at the time 1047 * the call was made get new I/O started against them. If wbc->sync_mode is 1048 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1049 * existing IO to complete. 1050 * 1051 * To avoid livelocks (when other process dirties new pages), we first tag 1052 * pages which should be written back with TOWRITE tag and only then start 1053 * writing them. For data-integrity sync we have to be careful so that we do 1054 * not miss some pages (e.g., because some other process has cleared TOWRITE 1055 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1056 * by the process clearing the DIRTY tag (and submitting the page for IO). 1057 */ 1058 int write_cache_pages(struct address_space *mapping, 1059 struct writeback_control *wbc, writepage_t writepage, 1060 void *data) 1061 { 1062 int ret = 0; 1063 int done = 0; 1064 struct pagevec pvec; 1065 int nr_pages; 1066 pgoff_t uninitialized_var(writeback_index); 1067 pgoff_t index; 1068 pgoff_t end; /* Inclusive */ 1069 pgoff_t done_index; 1070 int cycled; 1071 int range_whole = 0; 1072 int tag; 1073 1074 pagevec_init(&pvec, 0); 1075 if (wbc->range_cyclic) { 1076 writeback_index = mapping->writeback_index; /* prev offset */ 1077 index = writeback_index; 1078 if (index == 0) 1079 cycled = 1; 1080 else 1081 cycled = 0; 1082 end = -1; 1083 } else { 1084 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1085 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1086 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1087 range_whole = 1; 1088 cycled = 1; /* ignore range_cyclic tests */ 1089 } 1090 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1091 tag = PAGECACHE_TAG_TOWRITE; 1092 else 1093 tag = PAGECACHE_TAG_DIRTY; 1094 retry: 1095 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1096 tag_pages_for_writeback(mapping, index, end); 1097 done_index = index; 1098 while (!done && (index <= end)) { 1099 int i; 1100 1101 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1102 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1103 if (nr_pages == 0) 1104 break; 1105 1106 for (i = 0; i < nr_pages; i++) { 1107 struct page *page = pvec.pages[i]; 1108 1109 /* 1110 * At this point, the page may be truncated or 1111 * invalidated (changing page->mapping to NULL), or 1112 * even swizzled back from swapper_space to tmpfs file 1113 * mapping. However, page->index will not change 1114 * because we have a reference on the page. 1115 */ 1116 if (page->index > end) { 1117 /* 1118 * can't be range_cyclic (1st pass) because 1119 * end == -1 in that case. 1120 */ 1121 done = 1; 1122 break; 1123 } 1124 1125 done_index = page->index; 1126 1127 lock_page(page); 1128 1129 /* 1130 * Page truncated or invalidated. We can freely skip it 1131 * then, even for data integrity operations: the page 1132 * has disappeared concurrently, so there could be no 1133 * real expectation of this data interity operation 1134 * even if there is now a new, dirty page at the same 1135 * pagecache address. 1136 */ 1137 if (unlikely(page->mapping != mapping)) { 1138 continue_unlock: 1139 unlock_page(page); 1140 continue; 1141 } 1142 1143 if (!PageDirty(page)) { 1144 /* someone wrote it for us */ 1145 goto continue_unlock; 1146 } 1147 1148 if (PageWriteback(page)) { 1149 if (wbc->sync_mode != WB_SYNC_NONE) 1150 wait_on_page_writeback(page); 1151 else 1152 goto continue_unlock; 1153 } 1154 1155 BUG_ON(PageWriteback(page)); 1156 if (!clear_page_dirty_for_io(page)) 1157 goto continue_unlock; 1158 1159 trace_wbc_writepage(wbc, mapping->backing_dev_info); 1160 ret = (*writepage)(page, wbc, data); 1161 if (unlikely(ret)) { 1162 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1163 unlock_page(page); 1164 ret = 0; 1165 } else { 1166 /* 1167 * done_index is set past this page, 1168 * so media errors will not choke 1169 * background writeout for the entire 1170 * file. This has consequences for 1171 * range_cyclic semantics (ie. it may 1172 * not be suitable for data integrity 1173 * writeout). 1174 */ 1175 done_index = page->index + 1; 1176 done = 1; 1177 break; 1178 } 1179 } 1180 1181 /* 1182 * We stop writing back only if we are not doing 1183 * integrity sync. In case of integrity sync we have to 1184 * keep going until we have written all the pages 1185 * we tagged for writeback prior to entering this loop. 1186 */ 1187 if (--wbc->nr_to_write <= 0 && 1188 wbc->sync_mode == WB_SYNC_NONE) { 1189 done = 1; 1190 break; 1191 } 1192 } 1193 pagevec_release(&pvec); 1194 cond_resched(); 1195 } 1196 if (!cycled && !done) { 1197 /* 1198 * range_cyclic: 1199 * We hit the last page and there is more work to be done: wrap 1200 * back to the start of the file 1201 */ 1202 cycled = 1; 1203 index = 0; 1204 end = writeback_index - 1; 1205 goto retry; 1206 } 1207 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1208 mapping->writeback_index = done_index; 1209 1210 return ret; 1211 } 1212 EXPORT_SYMBOL(write_cache_pages); 1213 1214 /* 1215 * Function used by generic_writepages to call the real writepage 1216 * function and set the mapping flags on error 1217 */ 1218 static int __writepage(struct page *page, struct writeback_control *wbc, 1219 void *data) 1220 { 1221 struct address_space *mapping = data; 1222 int ret = mapping->a_ops->writepage(page, wbc); 1223 mapping_set_error(mapping, ret); 1224 return ret; 1225 } 1226 1227 /** 1228 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1229 * @mapping: address space structure to write 1230 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1231 * 1232 * This is a library function, which implements the writepages() 1233 * address_space_operation. 1234 */ 1235 int generic_writepages(struct address_space *mapping, 1236 struct writeback_control *wbc) 1237 { 1238 struct blk_plug plug; 1239 int ret; 1240 1241 /* deal with chardevs and other special file */ 1242 if (!mapping->a_ops->writepage) 1243 return 0; 1244 1245 blk_start_plug(&plug); 1246 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 1247 blk_finish_plug(&plug); 1248 return ret; 1249 } 1250 1251 EXPORT_SYMBOL(generic_writepages); 1252 1253 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1254 { 1255 int ret; 1256 1257 if (wbc->nr_to_write <= 0) 1258 return 0; 1259 if (mapping->a_ops->writepages) 1260 ret = mapping->a_ops->writepages(mapping, wbc); 1261 else 1262 ret = generic_writepages(mapping, wbc); 1263 return ret; 1264 } 1265 1266 /** 1267 * write_one_page - write out a single page and optionally wait on I/O 1268 * @page: the page to write 1269 * @wait: if true, wait on writeout 1270 * 1271 * The page must be locked by the caller and will be unlocked upon return. 1272 * 1273 * write_one_page() returns a negative error code if I/O failed. 1274 */ 1275 int write_one_page(struct page *page, int wait) 1276 { 1277 struct address_space *mapping = page->mapping; 1278 int ret = 0; 1279 struct writeback_control wbc = { 1280 .sync_mode = WB_SYNC_ALL, 1281 .nr_to_write = 1, 1282 }; 1283 1284 BUG_ON(!PageLocked(page)); 1285 1286 if (wait) 1287 wait_on_page_writeback(page); 1288 1289 if (clear_page_dirty_for_io(page)) { 1290 page_cache_get(page); 1291 ret = mapping->a_ops->writepage(page, &wbc); 1292 if (ret == 0 && wait) { 1293 wait_on_page_writeback(page); 1294 if (PageError(page)) 1295 ret = -EIO; 1296 } 1297 page_cache_release(page); 1298 } else { 1299 unlock_page(page); 1300 } 1301 return ret; 1302 } 1303 EXPORT_SYMBOL(write_one_page); 1304 1305 /* 1306 * For address_spaces which do not use buffers nor write back. 1307 */ 1308 int __set_page_dirty_no_writeback(struct page *page) 1309 { 1310 if (!PageDirty(page)) 1311 return !TestSetPageDirty(page); 1312 return 0; 1313 } 1314 1315 /* 1316 * Helper function for set_page_dirty family. 1317 * NOTE: This relies on being atomic wrt interrupts. 1318 */ 1319 void account_page_dirtied(struct page *page, struct address_space *mapping) 1320 { 1321 if (mapping_cap_account_dirty(mapping)) { 1322 __inc_zone_page_state(page, NR_FILE_DIRTY); 1323 __inc_zone_page_state(page, NR_DIRTIED); 1324 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1325 task_dirty_inc(current); 1326 task_io_account_write(PAGE_CACHE_SIZE); 1327 } 1328 } 1329 EXPORT_SYMBOL(account_page_dirtied); 1330 1331 /* 1332 * Helper function for set_page_writeback family. 1333 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 1334 * wrt interrupts. 1335 */ 1336 void account_page_writeback(struct page *page) 1337 { 1338 inc_zone_page_state(page, NR_WRITEBACK); 1339 } 1340 EXPORT_SYMBOL(account_page_writeback); 1341 1342 /* 1343 * For address_spaces which do not use buffers. Just tag the page as dirty in 1344 * its radix tree. 1345 * 1346 * This is also used when a single buffer is being dirtied: we want to set the 1347 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1348 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1349 * 1350 * Most callers have locked the page, which pins the address_space in memory. 1351 * But zap_pte_range() does not lock the page, however in that case the 1352 * mapping is pinned by the vma's ->vm_file reference. 1353 * 1354 * We take care to handle the case where the page was truncated from the 1355 * mapping by re-checking page_mapping() inside tree_lock. 1356 */ 1357 int __set_page_dirty_nobuffers(struct page *page) 1358 { 1359 if (!TestSetPageDirty(page)) { 1360 struct address_space *mapping = page_mapping(page); 1361 struct address_space *mapping2; 1362 1363 if (!mapping) 1364 return 1; 1365 1366 spin_lock_irq(&mapping->tree_lock); 1367 mapping2 = page_mapping(page); 1368 if (mapping2) { /* Race with truncate? */ 1369 BUG_ON(mapping2 != mapping); 1370 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1371 account_page_dirtied(page, mapping); 1372 radix_tree_tag_set(&mapping->page_tree, 1373 page_index(page), PAGECACHE_TAG_DIRTY); 1374 } 1375 spin_unlock_irq(&mapping->tree_lock); 1376 if (mapping->host) { 1377 /* !PageAnon && !swapper_space */ 1378 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1379 } 1380 return 1; 1381 } 1382 return 0; 1383 } 1384 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1385 1386 /* 1387 * When a writepage implementation decides that it doesn't want to write this 1388 * page for some reason, it should redirty the locked page via 1389 * redirty_page_for_writepage() and it should then unlock the page and return 0 1390 */ 1391 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1392 { 1393 wbc->pages_skipped++; 1394 return __set_page_dirty_nobuffers(page); 1395 } 1396 EXPORT_SYMBOL(redirty_page_for_writepage); 1397 1398 /* 1399 * Dirty a page. 1400 * 1401 * For pages with a mapping this should be done under the page lock 1402 * for the benefit of asynchronous memory errors who prefer a consistent 1403 * dirty state. This rule can be broken in some special cases, 1404 * but should be better not to. 1405 * 1406 * If the mapping doesn't provide a set_page_dirty a_op, then 1407 * just fall through and assume that it wants buffer_heads. 1408 */ 1409 int set_page_dirty(struct page *page) 1410 { 1411 struct address_space *mapping = page_mapping(page); 1412 1413 if (likely(mapping)) { 1414 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1415 /* 1416 * readahead/lru_deactivate_page could remain 1417 * PG_readahead/PG_reclaim due to race with end_page_writeback 1418 * About readahead, if the page is written, the flags would be 1419 * reset. So no problem. 1420 * About lru_deactivate_page, if the page is redirty, the flag 1421 * will be reset. So no problem. but if the page is used by readahead 1422 * it will confuse readahead and make it restart the size rampup 1423 * process. But it's a trivial problem. 1424 */ 1425 ClearPageReclaim(page); 1426 #ifdef CONFIG_BLOCK 1427 if (!spd) 1428 spd = __set_page_dirty_buffers; 1429 #endif 1430 return (*spd)(page); 1431 } 1432 if (!PageDirty(page)) { 1433 if (!TestSetPageDirty(page)) 1434 return 1; 1435 } 1436 return 0; 1437 } 1438 EXPORT_SYMBOL(set_page_dirty); 1439 1440 /* 1441 * set_page_dirty() is racy if the caller has no reference against 1442 * page->mapping->host, and if the page is unlocked. This is because another 1443 * CPU could truncate the page off the mapping and then free the mapping. 1444 * 1445 * Usually, the page _is_ locked, or the caller is a user-space process which 1446 * holds a reference on the inode by having an open file. 1447 * 1448 * In other cases, the page should be locked before running set_page_dirty(). 1449 */ 1450 int set_page_dirty_lock(struct page *page) 1451 { 1452 int ret; 1453 1454 lock_page(page); 1455 ret = set_page_dirty(page); 1456 unlock_page(page); 1457 return ret; 1458 } 1459 EXPORT_SYMBOL(set_page_dirty_lock); 1460 1461 /* 1462 * Clear a page's dirty flag, while caring for dirty memory accounting. 1463 * Returns true if the page was previously dirty. 1464 * 1465 * This is for preparing to put the page under writeout. We leave the page 1466 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1467 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1468 * implementation will run either set_page_writeback() or set_page_dirty(), 1469 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1470 * back into sync. 1471 * 1472 * This incoherency between the page's dirty flag and radix-tree tag is 1473 * unfortunate, but it only exists while the page is locked. 1474 */ 1475 int clear_page_dirty_for_io(struct page *page) 1476 { 1477 struct address_space *mapping = page_mapping(page); 1478 1479 BUG_ON(!PageLocked(page)); 1480 1481 if (mapping && mapping_cap_account_dirty(mapping)) { 1482 /* 1483 * Yes, Virginia, this is indeed insane. 1484 * 1485 * We use this sequence to make sure that 1486 * (a) we account for dirty stats properly 1487 * (b) we tell the low-level filesystem to 1488 * mark the whole page dirty if it was 1489 * dirty in a pagetable. Only to then 1490 * (c) clean the page again and return 1 to 1491 * cause the writeback. 1492 * 1493 * This way we avoid all nasty races with the 1494 * dirty bit in multiple places and clearing 1495 * them concurrently from different threads. 1496 * 1497 * Note! Normally the "set_page_dirty(page)" 1498 * has no effect on the actual dirty bit - since 1499 * that will already usually be set. But we 1500 * need the side effects, and it can help us 1501 * avoid races. 1502 * 1503 * We basically use the page "master dirty bit" 1504 * as a serialization point for all the different 1505 * threads doing their things. 1506 */ 1507 if (page_mkclean(page)) 1508 set_page_dirty(page); 1509 /* 1510 * We carefully synchronise fault handlers against 1511 * installing a dirty pte and marking the page dirty 1512 * at this point. We do this by having them hold the 1513 * page lock at some point after installing their 1514 * pte, but before marking the page dirty. 1515 * Pages are always locked coming in here, so we get 1516 * the desired exclusion. See mm/memory.c:do_wp_page() 1517 * for more comments. 1518 */ 1519 if (TestClearPageDirty(page)) { 1520 dec_zone_page_state(page, NR_FILE_DIRTY); 1521 dec_bdi_stat(mapping->backing_dev_info, 1522 BDI_RECLAIMABLE); 1523 return 1; 1524 } 1525 return 0; 1526 } 1527 return TestClearPageDirty(page); 1528 } 1529 EXPORT_SYMBOL(clear_page_dirty_for_io); 1530 1531 int test_clear_page_writeback(struct page *page) 1532 { 1533 struct address_space *mapping = page_mapping(page); 1534 int ret; 1535 1536 if (mapping) { 1537 struct backing_dev_info *bdi = mapping->backing_dev_info; 1538 unsigned long flags; 1539 1540 spin_lock_irqsave(&mapping->tree_lock, flags); 1541 ret = TestClearPageWriteback(page); 1542 if (ret) { 1543 radix_tree_tag_clear(&mapping->page_tree, 1544 page_index(page), 1545 PAGECACHE_TAG_WRITEBACK); 1546 if (bdi_cap_account_writeback(bdi)) { 1547 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1548 __bdi_writeout_inc(bdi); 1549 } 1550 } 1551 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1552 } else { 1553 ret = TestClearPageWriteback(page); 1554 } 1555 if (ret) { 1556 dec_zone_page_state(page, NR_WRITEBACK); 1557 inc_zone_page_state(page, NR_WRITTEN); 1558 } 1559 return ret; 1560 } 1561 1562 int test_set_page_writeback(struct page *page) 1563 { 1564 struct address_space *mapping = page_mapping(page); 1565 int ret; 1566 1567 if (mapping) { 1568 struct backing_dev_info *bdi = mapping->backing_dev_info; 1569 unsigned long flags; 1570 1571 spin_lock_irqsave(&mapping->tree_lock, flags); 1572 ret = TestSetPageWriteback(page); 1573 if (!ret) { 1574 radix_tree_tag_set(&mapping->page_tree, 1575 page_index(page), 1576 PAGECACHE_TAG_WRITEBACK); 1577 if (bdi_cap_account_writeback(bdi)) 1578 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1579 } 1580 if (!PageDirty(page)) 1581 radix_tree_tag_clear(&mapping->page_tree, 1582 page_index(page), 1583 PAGECACHE_TAG_DIRTY); 1584 radix_tree_tag_clear(&mapping->page_tree, 1585 page_index(page), 1586 PAGECACHE_TAG_TOWRITE); 1587 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1588 } else { 1589 ret = TestSetPageWriteback(page); 1590 } 1591 if (!ret) 1592 account_page_writeback(page); 1593 return ret; 1594 1595 } 1596 EXPORT_SYMBOL(test_set_page_writeback); 1597 1598 /* 1599 * Return true if any of the pages in the mapping are marked with the 1600 * passed tag. 1601 */ 1602 int mapping_tagged(struct address_space *mapping, int tag) 1603 { 1604 return radix_tree_tagged(&mapping->page_tree, tag); 1605 } 1606 EXPORT_SYMBOL(mapping_tagged); 1607