1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/slab.h> 22 #include <linux/pagemap.h> 23 #include <linux/writeback.h> 24 #include <linux/init.h> 25 #include <linux/backing-dev.h> 26 #include <linux/task_io_accounting_ops.h> 27 #include <linux/blkdev.h> 28 #include <linux/mpage.h> 29 #include <linux/rmap.h> 30 #include <linux/percpu.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/pagevec.h> 36 #include <linux/timer.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/signal.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 112 * a full sync is triggered after this time elapses without any disk activity. 113 */ 114 int laptop_mode; 115 116 EXPORT_SYMBOL(laptop_mode); 117 118 /* End of sysctl-exported parameters */ 119 120 struct wb_domain global_wb_domain; 121 122 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 123 struct dirty_throttle_control { 124 #ifdef CONFIG_CGROUP_WRITEBACK 125 struct wb_domain *dom; 126 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 127 #endif 128 struct bdi_writeback *wb; 129 struct fprop_local_percpu *wb_completions; 130 131 unsigned long avail; /* dirtyable */ 132 unsigned long dirty; /* file_dirty + write + nfs */ 133 unsigned long thresh; /* dirty threshold */ 134 unsigned long bg_thresh; /* dirty background threshold */ 135 136 unsigned long wb_dirty; /* per-wb counterparts */ 137 unsigned long wb_thresh; 138 unsigned long wb_bg_thresh; 139 140 unsigned long pos_ratio; 141 }; 142 143 /* 144 * Length of period for aging writeout fractions of bdis. This is an 145 * arbitrarily chosen number. The longer the period, the slower fractions will 146 * reflect changes in current writeout rate. 147 */ 148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 149 150 #ifdef CONFIG_CGROUP_WRITEBACK 151 152 #define GDTC_INIT(__wb) .wb = (__wb), \ 153 .dom = &global_wb_domain, \ 154 .wb_completions = &(__wb)->completions 155 156 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 157 158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 159 .dom = mem_cgroup_wb_domain(__wb), \ 160 .wb_completions = &(__wb)->memcg_completions, \ 161 .gdtc = __gdtc 162 163 static bool mdtc_valid(struct dirty_throttle_control *dtc) 164 { 165 return dtc->dom; 166 } 167 168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 169 { 170 return dtc->dom; 171 } 172 173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 174 { 175 return mdtc->gdtc; 176 } 177 178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 179 { 180 return &wb->memcg_completions; 181 } 182 183 static void wb_min_max_ratio(struct bdi_writeback *wb, 184 unsigned long *minp, unsigned long *maxp) 185 { 186 unsigned long this_bw = wb->avg_write_bandwidth; 187 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 188 unsigned long long min = wb->bdi->min_ratio; 189 unsigned long long max = wb->bdi->max_ratio; 190 191 /* 192 * @wb may already be clean by the time control reaches here and 193 * the total may not include its bw. 194 */ 195 if (this_bw < tot_bw) { 196 if (min) { 197 min *= this_bw; 198 min = div64_ul(min, tot_bw); 199 } 200 if (max < 100) { 201 max *= this_bw; 202 max = div64_ul(max, tot_bw); 203 } 204 } 205 206 *minp = min; 207 *maxp = max; 208 } 209 210 #else /* CONFIG_CGROUP_WRITEBACK */ 211 212 #define GDTC_INIT(__wb) .wb = (__wb), \ 213 .wb_completions = &(__wb)->completions 214 #define GDTC_INIT_NO_WB 215 #define MDTC_INIT(__wb, __gdtc) 216 217 static bool mdtc_valid(struct dirty_throttle_control *dtc) 218 { 219 return false; 220 } 221 222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 223 { 224 return &global_wb_domain; 225 } 226 227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 228 { 229 return NULL; 230 } 231 232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 233 { 234 return NULL; 235 } 236 237 static void wb_min_max_ratio(struct bdi_writeback *wb, 238 unsigned long *minp, unsigned long *maxp) 239 { 240 *minp = wb->bdi->min_ratio; 241 *maxp = wb->bdi->max_ratio; 242 } 243 244 #endif /* CONFIG_CGROUP_WRITEBACK */ 245 246 /* 247 * In a memory zone, there is a certain amount of pages we consider 248 * available for the page cache, which is essentially the number of 249 * free and reclaimable pages, minus some zone reserves to protect 250 * lowmem and the ability to uphold the zone's watermarks without 251 * requiring writeback. 252 * 253 * This number of dirtyable pages is the base value of which the 254 * user-configurable dirty ratio is the effective number of pages that 255 * are allowed to be actually dirtied. Per individual zone, or 256 * globally by using the sum of dirtyable pages over all zones. 257 * 258 * Because the user is allowed to specify the dirty limit globally as 259 * absolute number of bytes, calculating the per-zone dirty limit can 260 * require translating the configured limit into a percentage of 261 * global dirtyable memory first. 262 */ 263 264 /** 265 * node_dirtyable_memory - number of dirtyable pages in a node 266 * @pgdat: the node 267 * 268 * Return: the node's number of pages potentially available for dirty 269 * page cache. This is the base value for the per-node dirty limits. 270 */ 271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 272 { 273 unsigned long nr_pages = 0; 274 int z; 275 276 for (z = 0; z < MAX_NR_ZONES; z++) { 277 struct zone *zone = pgdat->node_zones + z; 278 279 if (!populated_zone(zone)) 280 continue; 281 282 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 283 } 284 285 /* 286 * Pages reserved for the kernel should not be considered 287 * dirtyable, to prevent a situation where reclaim has to 288 * clean pages in order to balance the zones. 289 */ 290 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 291 292 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 293 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 294 295 return nr_pages; 296 } 297 298 static unsigned long highmem_dirtyable_memory(unsigned long total) 299 { 300 #ifdef CONFIG_HIGHMEM 301 int node; 302 unsigned long x = 0; 303 int i; 304 305 for_each_node_state(node, N_HIGH_MEMORY) { 306 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 307 struct zone *z; 308 unsigned long nr_pages; 309 310 if (!is_highmem_idx(i)) 311 continue; 312 313 z = &NODE_DATA(node)->node_zones[i]; 314 if (!populated_zone(z)) 315 continue; 316 317 nr_pages = zone_page_state(z, NR_FREE_PAGES); 318 /* watch for underflows */ 319 nr_pages -= min(nr_pages, high_wmark_pages(z)); 320 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 321 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 322 x += nr_pages; 323 } 324 } 325 326 /* 327 * Unreclaimable memory (kernel memory or anonymous memory 328 * without swap) can bring down the dirtyable pages below 329 * the zone's dirty balance reserve and the above calculation 330 * will underflow. However we still want to add in nodes 331 * which are below threshold (negative values) to get a more 332 * accurate calculation but make sure that the total never 333 * underflows. 334 */ 335 if ((long)x < 0) 336 x = 0; 337 338 /* 339 * Make sure that the number of highmem pages is never larger 340 * than the number of the total dirtyable memory. This can only 341 * occur in very strange VM situations but we want to make sure 342 * that this does not occur. 343 */ 344 return min(x, total); 345 #else 346 return 0; 347 #endif 348 } 349 350 /** 351 * global_dirtyable_memory - number of globally dirtyable pages 352 * 353 * Return: the global number of pages potentially available for dirty 354 * page cache. This is the base value for the global dirty limits. 355 */ 356 static unsigned long global_dirtyable_memory(void) 357 { 358 unsigned long x; 359 360 x = global_zone_page_state(NR_FREE_PAGES); 361 /* 362 * Pages reserved for the kernel should not be considered 363 * dirtyable, to prevent a situation where reclaim has to 364 * clean pages in order to balance the zones. 365 */ 366 x -= min(x, totalreserve_pages); 367 368 x += global_node_page_state(NR_INACTIVE_FILE); 369 x += global_node_page_state(NR_ACTIVE_FILE); 370 371 if (!vm_highmem_is_dirtyable) 372 x -= highmem_dirtyable_memory(x); 373 374 return x + 1; /* Ensure that we never return 0 */ 375 } 376 377 /** 378 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 379 * @dtc: dirty_throttle_control of interest 380 * 381 * Calculate @dtc->thresh and ->bg_thresh considering 382 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 383 * must ensure that @dtc->avail is set before calling this function. The 384 * dirty limits will be lifted by 1/4 for real-time tasks. 385 */ 386 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 387 { 388 const unsigned long available_memory = dtc->avail; 389 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 390 unsigned long bytes = vm_dirty_bytes; 391 unsigned long bg_bytes = dirty_background_bytes; 392 /* convert ratios to per-PAGE_SIZE for higher precision */ 393 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 394 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 395 unsigned long thresh; 396 unsigned long bg_thresh; 397 struct task_struct *tsk; 398 399 /* gdtc is !NULL iff @dtc is for memcg domain */ 400 if (gdtc) { 401 unsigned long global_avail = gdtc->avail; 402 403 /* 404 * The byte settings can't be applied directly to memcg 405 * domains. Convert them to ratios by scaling against 406 * globally available memory. As the ratios are in 407 * per-PAGE_SIZE, they can be obtained by dividing bytes by 408 * number of pages. 409 */ 410 if (bytes) 411 ratio = min(DIV_ROUND_UP(bytes, global_avail), 412 PAGE_SIZE); 413 if (bg_bytes) 414 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 415 PAGE_SIZE); 416 bytes = bg_bytes = 0; 417 } 418 419 if (bytes) 420 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 421 else 422 thresh = (ratio * available_memory) / PAGE_SIZE; 423 424 if (bg_bytes) 425 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 426 else 427 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 428 429 if (bg_thresh >= thresh) 430 bg_thresh = thresh / 2; 431 tsk = current; 432 if (rt_task(tsk)) { 433 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 434 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 435 } 436 dtc->thresh = thresh; 437 dtc->bg_thresh = bg_thresh; 438 439 /* we should eventually report the domain in the TP */ 440 if (!gdtc) 441 trace_global_dirty_state(bg_thresh, thresh); 442 } 443 444 /** 445 * global_dirty_limits - background-writeback and dirty-throttling thresholds 446 * @pbackground: out parameter for bg_thresh 447 * @pdirty: out parameter for thresh 448 * 449 * Calculate bg_thresh and thresh for global_wb_domain. See 450 * domain_dirty_limits() for details. 451 */ 452 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 453 { 454 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 455 456 gdtc.avail = global_dirtyable_memory(); 457 domain_dirty_limits(&gdtc); 458 459 *pbackground = gdtc.bg_thresh; 460 *pdirty = gdtc.thresh; 461 } 462 463 /** 464 * node_dirty_limit - maximum number of dirty pages allowed in a node 465 * @pgdat: the node 466 * 467 * Return: the maximum number of dirty pages allowed in a node, based 468 * on the node's dirtyable memory. 469 */ 470 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 471 { 472 unsigned long node_memory = node_dirtyable_memory(pgdat); 473 struct task_struct *tsk = current; 474 unsigned long dirty; 475 476 if (vm_dirty_bytes) 477 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 478 node_memory / global_dirtyable_memory(); 479 else 480 dirty = vm_dirty_ratio * node_memory / 100; 481 482 if (rt_task(tsk)) 483 dirty += dirty / 4; 484 485 return dirty; 486 } 487 488 /** 489 * node_dirty_ok - tells whether a node is within its dirty limits 490 * @pgdat: the node to check 491 * 492 * Return: %true when the dirty pages in @pgdat are within the node's 493 * dirty limit, %false if the limit is exceeded. 494 */ 495 bool node_dirty_ok(struct pglist_data *pgdat) 496 { 497 unsigned long limit = node_dirty_limit(pgdat); 498 unsigned long nr_pages = 0; 499 500 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 501 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 502 503 return nr_pages <= limit; 504 } 505 506 int dirty_background_ratio_handler(struct ctl_table *table, int write, 507 void *buffer, size_t *lenp, loff_t *ppos) 508 { 509 int ret; 510 511 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 512 if (ret == 0 && write) 513 dirty_background_bytes = 0; 514 return ret; 515 } 516 517 int dirty_background_bytes_handler(struct ctl_table *table, int write, 518 void *buffer, size_t *lenp, loff_t *ppos) 519 { 520 int ret; 521 522 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 523 if (ret == 0 && write) 524 dirty_background_ratio = 0; 525 return ret; 526 } 527 528 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 529 size_t *lenp, loff_t *ppos) 530 { 531 int old_ratio = vm_dirty_ratio; 532 int ret; 533 534 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 535 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 536 writeback_set_ratelimit(); 537 vm_dirty_bytes = 0; 538 } 539 return ret; 540 } 541 542 int dirty_bytes_handler(struct ctl_table *table, int write, 543 void *buffer, size_t *lenp, loff_t *ppos) 544 { 545 unsigned long old_bytes = vm_dirty_bytes; 546 int ret; 547 548 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 549 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 550 writeback_set_ratelimit(); 551 vm_dirty_ratio = 0; 552 } 553 return ret; 554 } 555 556 static unsigned long wp_next_time(unsigned long cur_time) 557 { 558 cur_time += VM_COMPLETIONS_PERIOD_LEN; 559 /* 0 has a special meaning... */ 560 if (!cur_time) 561 return 1; 562 return cur_time; 563 } 564 565 static void wb_domain_writeout_inc(struct wb_domain *dom, 566 struct fprop_local_percpu *completions, 567 unsigned int max_prop_frac) 568 { 569 __fprop_inc_percpu_max(&dom->completions, completions, 570 max_prop_frac); 571 /* First event after period switching was turned off? */ 572 if (unlikely(!dom->period_time)) { 573 /* 574 * We can race with other __bdi_writeout_inc calls here but 575 * it does not cause any harm since the resulting time when 576 * timer will fire and what is in writeout_period_time will be 577 * roughly the same. 578 */ 579 dom->period_time = wp_next_time(jiffies); 580 mod_timer(&dom->period_timer, dom->period_time); 581 } 582 } 583 584 /* 585 * Increment @wb's writeout completion count and the global writeout 586 * completion count. Called from test_clear_page_writeback(). 587 */ 588 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 589 { 590 struct wb_domain *cgdom; 591 592 inc_wb_stat(wb, WB_WRITTEN); 593 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 594 wb->bdi->max_prop_frac); 595 596 cgdom = mem_cgroup_wb_domain(wb); 597 if (cgdom) 598 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 599 wb->bdi->max_prop_frac); 600 } 601 602 void wb_writeout_inc(struct bdi_writeback *wb) 603 { 604 unsigned long flags; 605 606 local_irq_save(flags); 607 __wb_writeout_inc(wb); 608 local_irq_restore(flags); 609 } 610 EXPORT_SYMBOL_GPL(wb_writeout_inc); 611 612 /* 613 * On idle system, we can be called long after we scheduled because we use 614 * deferred timers so count with missed periods. 615 */ 616 static void writeout_period(struct timer_list *t) 617 { 618 struct wb_domain *dom = from_timer(dom, t, period_timer); 619 int miss_periods = (jiffies - dom->period_time) / 620 VM_COMPLETIONS_PERIOD_LEN; 621 622 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 623 dom->period_time = wp_next_time(dom->period_time + 624 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 625 mod_timer(&dom->period_timer, dom->period_time); 626 } else { 627 /* 628 * Aging has zeroed all fractions. Stop wasting CPU on period 629 * updates. 630 */ 631 dom->period_time = 0; 632 } 633 } 634 635 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 636 { 637 memset(dom, 0, sizeof(*dom)); 638 639 spin_lock_init(&dom->lock); 640 641 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 642 643 dom->dirty_limit_tstamp = jiffies; 644 645 return fprop_global_init(&dom->completions, gfp); 646 } 647 648 #ifdef CONFIG_CGROUP_WRITEBACK 649 void wb_domain_exit(struct wb_domain *dom) 650 { 651 del_timer_sync(&dom->period_timer); 652 fprop_global_destroy(&dom->completions); 653 } 654 #endif 655 656 /* 657 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 658 * registered backing devices, which, for obvious reasons, can not 659 * exceed 100%. 660 */ 661 static unsigned int bdi_min_ratio; 662 663 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 664 { 665 int ret = 0; 666 667 spin_lock_bh(&bdi_lock); 668 if (min_ratio > bdi->max_ratio) { 669 ret = -EINVAL; 670 } else { 671 min_ratio -= bdi->min_ratio; 672 if (bdi_min_ratio + min_ratio < 100) { 673 bdi_min_ratio += min_ratio; 674 bdi->min_ratio += min_ratio; 675 } else { 676 ret = -EINVAL; 677 } 678 } 679 spin_unlock_bh(&bdi_lock); 680 681 return ret; 682 } 683 684 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 685 { 686 int ret = 0; 687 688 if (max_ratio > 100) 689 return -EINVAL; 690 691 spin_lock_bh(&bdi_lock); 692 if (bdi->min_ratio > max_ratio) { 693 ret = -EINVAL; 694 } else { 695 bdi->max_ratio = max_ratio; 696 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 697 } 698 spin_unlock_bh(&bdi_lock); 699 700 return ret; 701 } 702 EXPORT_SYMBOL(bdi_set_max_ratio); 703 704 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 705 unsigned long bg_thresh) 706 { 707 return (thresh + bg_thresh) / 2; 708 } 709 710 static unsigned long hard_dirty_limit(struct wb_domain *dom, 711 unsigned long thresh) 712 { 713 return max(thresh, dom->dirty_limit); 714 } 715 716 /* 717 * Memory which can be further allocated to a memcg domain is capped by 718 * system-wide clean memory excluding the amount being used in the domain. 719 */ 720 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 721 unsigned long filepages, unsigned long headroom) 722 { 723 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 724 unsigned long clean = filepages - min(filepages, mdtc->dirty); 725 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 726 unsigned long other_clean = global_clean - min(global_clean, clean); 727 728 mdtc->avail = filepages + min(headroom, other_clean); 729 } 730 731 /** 732 * __wb_calc_thresh - @wb's share of dirty throttling threshold 733 * @dtc: dirty_throttle_context of interest 734 * 735 * Note that balance_dirty_pages() will only seriously take it as a hard limit 736 * when sleeping max_pause per page is not enough to keep the dirty pages under 737 * control. For example, when the device is completely stalled due to some error 738 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 739 * In the other normal situations, it acts more gently by throttling the tasks 740 * more (rather than completely block them) when the wb dirty pages go high. 741 * 742 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 743 * - starving fast devices 744 * - piling up dirty pages (that will take long time to sync) on slow devices 745 * 746 * The wb's share of dirty limit will be adapting to its throughput and 747 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 748 * 749 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 750 * dirty balancing includes all PG_dirty and PG_writeback pages. 751 */ 752 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 753 { 754 struct wb_domain *dom = dtc_dom(dtc); 755 unsigned long thresh = dtc->thresh; 756 u64 wb_thresh; 757 unsigned long numerator, denominator; 758 unsigned long wb_min_ratio, wb_max_ratio; 759 760 /* 761 * Calculate this BDI's share of the thresh ratio. 762 */ 763 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 764 &numerator, &denominator); 765 766 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 767 wb_thresh *= numerator; 768 wb_thresh = div64_ul(wb_thresh, denominator); 769 770 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 771 772 wb_thresh += (thresh * wb_min_ratio) / 100; 773 if (wb_thresh > (thresh * wb_max_ratio) / 100) 774 wb_thresh = thresh * wb_max_ratio / 100; 775 776 return wb_thresh; 777 } 778 779 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 780 { 781 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 782 .thresh = thresh }; 783 return __wb_calc_thresh(&gdtc); 784 } 785 786 /* 787 * setpoint - dirty 3 788 * f(dirty) := 1.0 + (----------------) 789 * limit - setpoint 790 * 791 * it's a 3rd order polynomial that subjects to 792 * 793 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 794 * (2) f(setpoint) = 1.0 => the balance point 795 * (3) f(limit) = 0 => the hard limit 796 * (4) df/dx <= 0 => negative feedback control 797 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 798 * => fast response on large errors; small oscillation near setpoint 799 */ 800 static long long pos_ratio_polynom(unsigned long setpoint, 801 unsigned long dirty, 802 unsigned long limit) 803 { 804 long long pos_ratio; 805 long x; 806 807 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 808 (limit - setpoint) | 1); 809 pos_ratio = x; 810 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 811 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 812 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 813 814 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 815 } 816 817 /* 818 * Dirty position control. 819 * 820 * (o) global/bdi setpoints 821 * 822 * We want the dirty pages be balanced around the global/wb setpoints. 823 * When the number of dirty pages is higher/lower than the setpoint, the 824 * dirty position control ratio (and hence task dirty ratelimit) will be 825 * decreased/increased to bring the dirty pages back to the setpoint. 826 * 827 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 828 * 829 * if (dirty < setpoint) scale up pos_ratio 830 * if (dirty > setpoint) scale down pos_ratio 831 * 832 * if (wb_dirty < wb_setpoint) scale up pos_ratio 833 * if (wb_dirty > wb_setpoint) scale down pos_ratio 834 * 835 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 836 * 837 * (o) global control line 838 * 839 * ^ pos_ratio 840 * | 841 * | |<===== global dirty control scope ======>| 842 * 2.0 * * * * * * * 843 * | .* 844 * | . * 845 * | . * 846 * | . * 847 * | . * 848 * | . * 849 * 1.0 ................................* 850 * | . . * 851 * | . . * 852 * | . . * 853 * | . . * 854 * | . . * 855 * 0 +------------.------------------.----------------------*-------------> 856 * freerun^ setpoint^ limit^ dirty pages 857 * 858 * (o) wb control line 859 * 860 * ^ pos_ratio 861 * | 862 * | * 863 * | * 864 * | * 865 * | * 866 * | * |<=========== span ============>| 867 * 1.0 .......................* 868 * | . * 869 * | . * 870 * | . * 871 * | . * 872 * | . * 873 * | . * 874 * | . * 875 * | . * 876 * | . * 877 * | . * 878 * | . * 879 * 1/4 ...............................................* * * * * * * * * * * * 880 * | . . 881 * | . . 882 * | . . 883 * 0 +----------------------.-------------------------------.-------------> 884 * wb_setpoint^ x_intercept^ 885 * 886 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 887 * be smoothly throttled down to normal if it starts high in situations like 888 * - start writing to a slow SD card and a fast disk at the same time. The SD 889 * card's wb_dirty may rush to many times higher than wb_setpoint. 890 * - the wb dirty thresh drops quickly due to change of JBOD workload 891 */ 892 static void wb_position_ratio(struct dirty_throttle_control *dtc) 893 { 894 struct bdi_writeback *wb = dtc->wb; 895 unsigned long write_bw = wb->avg_write_bandwidth; 896 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 897 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 898 unsigned long wb_thresh = dtc->wb_thresh; 899 unsigned long x_intercept; 900 unsigned long setpoint; /* dirty pages' target balance point */ 901 unsigned long wb_setpoint; 902 unsigned long span; 903 long long pos_ratio; /* for scaling up/down the rate limit */ 904 long x; 905 906 dtc->pos_ratio = 0; 907 908 if (unlikely(dtc->dirty >= limit)) 909 return; 910 911 /* 912 * global setpoint 913 * 914 * See comment for pos_ratio_polynom(). 915 */ 916 setpoint = (freerun + limit) / 2; 917 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 918 919 /* 920 * The strictlimit feature is a tool preventing mistrusted filesystems 921 * from growing a large number of dirty pages before throttling. For 922 * such filesystems balance_dirty_pages always checks wb counters 923 * against wb limits. Even if global "nr_dirty" is under "freerun". 924 * This is especially important for fuse which sets bdi->max_ratio to 925 * 1% by default. Without strictlimit feature, fuse writeback may 926 * consume arbitrary amount of RAM because it is accounted in 927 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 928 * 929 * Here, in wb_position_ratio(), we calculate pos_ratio based on 930 * two values: wb_dirty and wb_thresh. Let's consider an example: 931 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 932 * limits are set by default to 10% and 20% (background and throttle). 933 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 934 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 935 * about ~6K pages (as the average of background and throttle wb 936 * limits). The 3rd order polynomial will provide positive feedback if 937 * wb_dirty is under wb_setpoint and vice versa. 938 * 939 * Note, that we cannot use global counters in these calculations 940 * because we want to throttle process writing to a strictlimit wb 941 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 942 * in the example above). 943 */ 944 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 945 long long wb_pos_ratio; 946 947 if (dtc->wb_dirty < 8) { 948 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 949 2 << RATELIMIT_CALC_SHIFT); 950 return; 951 } 952 953 if (dtc->wb_dirty >= wb_thresh) 954 return; 955 956 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 957 dtc->wb_bg_thresh); 958 959 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 960 return; 961 962 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 963 wb_thresh); 964 965 /* 966 * Typically, for strictlimit case, wb_setpoint << setpoint 967 * and pos_ratio >> wb_pos_ratio. In the other words global 968 * state ("dirty") is not limiting factor and we have to 969 * make decision based on wb counters. But there is an 970 * important case when global pos_ratio should get precedence: 971 * global limits are exceeded (e.g. due to activities on other 972 * wb's) while given strictlimit wb is below limit. 973 * 974 * "pos_ratio * wb_pos_ratio" would work for the case above, 975 * but it would look too non-natural for the case of all 976 * activity in the system coming from a single strictlimit wb 977 * with bdi->max_ratio == 100%. 978 * 979 * Note that min() below somewhat changes the dynamics of the 980 * control system. Normally, pos_ratio value can be well over 3 981 * (when globally we are at freerun and wb is well below wb 982 * setpoint). Now the maximum pos_ratio in the same situation 983 * is 2. We might want to tweak this if we observe the control 984 * system is too slow to adapt. 985 */ 986 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 987 return; 988 } 989 990 /* 991 * We have computed basic pos_ratio above based on global situation. If 992 * the wb is over/under its share of dirty pages, we want to scale 993 * pos_ratio further down/up. That is done by the following mechanism. 994 */ 995 996 /* 997 * wb setpoint 998 * 999 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1000 * 1001 * x_intercept - wb_dirty 1002 * := -------------------------- 1003 * x_intercept - wb_setpoint 1004 * 1005 * The main wb control line is a linear function that subjects to 1006 * 1007 * (1) f(wb_setpoint) = 1.0 1008 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1009 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1010 * 1011 * For single wb case, the dirty pages are observed to fluctuate 1012 * regularly within range 1013 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1014 * for various filesystems, where (2) can yield in a reasonable 12.5% 1015 * fluctuation range for pos_ratio. 1016 * 1017 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1018 * own size, so move the slope over accordingly and choose a slope that 1019 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1020 */ 1021 if (unlikely(wb_thresh > dtc->thresh)) 1022 wb_thresh = dtc->thresh; 1023 /* 1024 * It's very possible that wb_thresh is close to 0 not because the 1025 * device is slow, but that it has remained inactive for long time. 1026 * Honour such devices a reasonable good (hopefully IO efficient) 1027 * threshold, so that the occasional writes won't be blocked and active 1028 * writes can rampup the threshold quickly. 1029 */ 1030 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1031 /* 1032 * scale global setpoint to wb's: 1033 * wb_setpoint = setpoint * wb_thresh / thresh 1034 */ 1035 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1036 wb_setpoint = setpoint * (u64)x >> 16; 1037 /* 1038 * Use span=(8*write_bw) in single wb case as indicated by 1039 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1040 * 1041 * wb_thresh thresh - wb_thresh 1042 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1043 * thresh thresh 1044 */ 1045 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1046 x_intercept = wb_setpoint + span; 1047 1048 if (dtc->wb_dirty < x_intercept - span / 4) { 1049 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1050 (x_intercept - wb_setpoint) | 1); 1051 } else 1052 pos_ratio /= 4; 1053 1054 /* 1055 * wb reserve area, safeguard against dirty pool underrun and disk idle 1056 * It may push the desired control point of global dirty pages higher 1057 * than setpoint. 1058 */ 1059 x_intercept = wb_thresh / 2; 1060 if (dtc->wb_dirty < x_intercept) { 1061 if (dtc->wb_dirty > x_intercept / 8) 1062 pos_ratio = div_u64(pos_ratio * x_intercept, 1063 dtc->wb_dirty); 1064 else 1065 pos_ratio *= 8; 1066 } 1067 1068 dtc->pos_ratio = pos_ratio; 1069 } 1070 1071 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1072 unsigned long elapsed, 1073 unsigned long written) 1074 { 1075 const unsigned long period = roundup_pow_of_two(3 * HZ); 1076 unsigned long avg = wb->avg_write_bandwidth; 1077 unsigned long old = wb->write_bandwidth; 1078 u64 bw; 1079 1080 /* 1081 * bw = written * HZ / elapsed 1082 * 1083 * bw * elapsed + write_bandwidth * (period - elapsed) 1084 * write_bandwidth = --------------------------------------------------- 1085 * period 1086 * 1087 * @written may have decreased due to account_page_redirty(). 1088 * Avoid underflowing @bw calculation. 1089 */ 1090 bw = written - min(written, wb->written_stamp); 1091 bw *= HZ; 1092 if (unlikely(elapsed > period)) { 1093 bw = div64_ul(bw, elapsed); 1094 avg = bw; 1095 goto out; 1096 } 1097 bw += (u64)wb->write_bandwidth * (period - elapsed); 1098 bw >>= ilog2(period); 1099 1100 /* 1101 * one more level of smoothing, for filtering out sudden spikes 1102 */ 1103 if (avg > old && old >= (unsigned long)bw) 1104 avg -= (avg - old) >> 3; 1105 1106 if (avg < old && old <= (unsigned long)bw) 1107 avg += (old - avg) >> 3; 1108 1109 out: 1110 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1111 avg = max(avg, 1LU); 1112 if (wb_has_dirty_io(wb)) { 1113 long delta = avg - wb->avg_write_bandwidth; 1114 WARN_ON_ONCE(atomic_long_add_return(delta, 1115 &wb->bdi->tot_write_bandwidth) <= 0); 1116 } 1117 wb->write_bandwidth = bw; 1118 wb->avg_write_bandwidth = avg; 1119 } 1120 1121 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1122 { 1123 struct wb_domain *dom = dtc_dom(dtc); 1124 unsigned long thresh = dtc->thresh; 1125 unsigned long limit = dom->dirty_limit; 1126 1127 /* 1128 * Follow up in one step. 1129 */ 1130 if (limit < thresh) { 1131 limit = thresh; 1132 goto update; 1133 } 1134 1135 /* 1136 * Follow down slowly. Use the higher one as the target, because thresh 1137 * may drop below dirty. This is exactly the reason to introduce 1138 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1139 */ 1140 thresh = max(thresh, dtc->dirty); 1141 if (limit > thresh) { 1142 limit -= (limit - thresh) >> 5; 1143 goto update; 1144 } 1145 return; 1146 update: 1147 dom->dirty_limit = limit; 1148 } 1149 1150 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1151 unsigned long now) 1152 { 1153 struct wb_domain *dom = dtc_dom(dtc); 1154 1155 /* 1156 * check locklessly first to optimize away locking for the most time 1157 */ 1158 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1159 return; 1160 1161 spin_lock(&dom->lock); 1162 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1163 update_dirty_limit(dtc); 1164 dom->dirty_limit_tstamp = now; 1165 } 1166 spin_unlock(&dom->lock); 1167 } 1168 1169 /* 1170 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1171 * 1172 * Normal wb tasks will be curbed at or below it in long term. 1173 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1174 */ 1175 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1176 unsigned long dirtied, 1177 unsigned long elapsed) 1178 { 1179 struct bdi_writeback *wb = dtc->wb; 1180 unsigned long dirty = dtc->dirty; 1181 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1182 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1183 unsigned long setpoint = (freerun + limit) / 2; 1184 unsigned long write_bw = wb->avg_write_bandwidth; 1185 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1186 unsigned long dirty_rate; 1187 unsigned long task_ratelimit; 1188 unsigned long balanced_dirty_ratelimit; 1189 unsigned long step; 1190 unsigned long x; 1191 unsigned long shift; 1192 1193 /* 1194 * The dirty rate will match the writeout rate in long term, except 1195 * when dirty pages are truncated by userspace or re-dirtied by FS. 1196 */ 1197 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1198 1199 /* 1200 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1201 */ 1202 task_ratelimit = (u64)dirty_ratelimit * 1203 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1204 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1205 1206 /* 1207 * A linear estimation of the "balanced" throttle rate. The theory is, 1208 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1209 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1210 * formula will yield the balanced rate limit (write_bw / N). 1211 * 1212 * Note that the expanded form is not a pure rate feedback: 1213 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1214 * but also takes pos_ratio into account: 1215 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1216 * 1217 * (1) is not realistic because pos_ratio also takes part in balancing 1218 * the dirty rate. Consider the state 1219 * pos_ratio = 0.5 (3) 1220 * rate = 2 * (write_bw / N) (4) 1221 * If (1) is used, it will stuck in that state! Because each dd will 1222 * be throttled at 1223 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1224 * yielding 1225 * dirty_rate = N * task_ratelimit = write_bw (6) 1226 * put (6) into (1) we get 1227 * rate_(i+1) = rate_(i) (7) 1228 * 1229 * So we end up using (2) to always keep 1230 * rate_(i+1) ~= (write_bw / N) (8) 1231 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1232 * pos_ratio is able to drive itself to 1.0, which is not only where 1233 * the dirty count meet the setpoint, but also where the slope of 1234 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1235 */ 1236 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1237 dirty_rate | 1); 1238 /* 1239 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1240 */ 1241 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1242 balanced_dirty_ratelimit = write_bw; 1243 1244 /* 1245 * We could safely do this and return immediately: 1246 * 1247 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1248 * 1249 * However to get a more stable dirty_ratelimit, the below elaborated 1250 * code makes use of task_ratelimit to filter out singular points and 1251 * limit the step size. 1252 * 1253 * The below code essentially only uses the relative value of 1254 * 1255 * task_ratelimit - dirty_ratelimit 1256 * = (pos_ratio - 1) * dirty_ratelimit 1257 * 1258 * which reflects the direction and size of dirty position error. 1259 */ 1260 1261 /* 1262 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1263 * task_ratelimit is on the same side of dirty_ratelimit, too. 1264 * For example, when 1265 * - dirty_ratelimit > balanced_dirty_ratelimit 1266 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1267 * lowering dirty_ratelimit will help meet both the position and rate 1268 * control targets. Otherwise, don't update dirty_ratelimit if it will 1269 * only help meet the rate target. After all, what the users ultimately 1270 * feel and care are stable dirty rate and small position error. 1271 * 1272 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1273 * and filter out the singular points of balanced_dirty_ratelimit. Which 1274 * keeps jumping around randomly and can even leap far away at times 1275 * due to the small 200ms estimation period of dirty_rate (we want to 1276 * keep that period small to reduce time lags). 1277 */ 1278 step = 0; 1279 1280 /* 1281 * For strictlimit case, calculations above were based on wb counters 1282 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1283 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1284 * Hence, to calculate "step" properly, we have to use wb_dirty as 1285 * "dirty" and wb_setpoint as "setpoint". 1286 * 1287 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1288 * it's possible that wb_thresh is close to zero due to inactivity 1289 * of backing device. 1290 */ 1291 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1292 dirty = dtc->wb_dirty; 1293 if (dtc->wb_dirty < 8) 1294 setpoint = dtc->wb_dirty + 1; 1295 else 1296 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1297 } 1298 1299 if (dirty < setpoint) { 1300 x = min3(wb->balanced_dirty_ratelimit, 1301 balanced_dirty_ratelimit, task_ratelimit); 1302 if (dirty_ratelimit < x) 1303 step = x - dirty_ratelimit; 1304 } else { 1305 x = max3(wb->balanced_dirty_ratelimit, 1306 balanced_dirty_ratelimit, task_ratelimit); 1307 if (dirty_ratelimit > x) 1308 step = dirty_ratelimit - x; 1309 } 1310 1311 /* 1312 * Don't pursue 100% rate matching. It's impossible since the balanced 1313 * rate itself is constantly fluctuating. So decrease the track speed 1314 * when it gets close to the target. Helps eliminate pointless tremors. 1315 */ 1316 shift = dirty_ratelimit / (2 * step + 1); 1317 if (shift < BITS_PER_LONG) 1318 step = DIV_ROUND_UP(step >> shift, 8); 1319 else 1320 step = 0; 1321 1322 if (dirty_ratelimit < balanced_dirty_ratelimit) 1323 dirty_ratelimit += step; 1324 else 1325 dirty_ratelimit -= step; 1326 1327 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1328 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1329 1330 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1331 } 1332 1333 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1334 struct dirty_throttle_control *mdtc, 1335 unsigned long start_time, 1336 bool update_ratelimit) 1337 { 1338 struct bdi_writeback *wb = gdtc->wb; 1339 unsigned long now = jiffies; 1340 unsigned long elapsed = now - wb->bw_time_stamp; 1341 unsigned long dirtied; 1342 unsigned long written; 1343 1344 lockdep_assert_held(&wb->list_lock); 1345 1346 /* 1347 * rate-limit, only update once every 200ms. 1348 */ 1349 if (elapsed < BANDWIDTH_INTERVAL) 1350 return; 1351 1352 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1353 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1354 1355 /* 1356 * Skip quiet periods when disk bandwidth is under-utilized. 1357 * (at least 1s idle time between two flusher runs) 1358 */ 1359 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1360 goto snapshot; 1361 1362 if (update_ratelimit) { 1363 domain_update_bandwidth(gdtc, now); 1364 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1365 1366 /* 1367 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1368 * compiler has no way to figure that out. Help it. 1369 */ 1370 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1371 domain_update_bandwidth(mdtc, now); 1372 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1373 } 1374 } 1375 wb_update_write_bandwidth(wb, elapsed, written); 1376 1377 snapshot: 1378 wb->dirtied_stamp = dirtied; 1379 wb->written_stamp = written; 1380 wb->bw_time_stamp = now; 1381 } 1382 1383 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1384 { 1385 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1386 1387 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1388 } 1389 1390 /* 1391 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1392 * will look to see if it needs to start dirty throttling. 1393 * 1394 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1395 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1396 * (the number of pages we may dirty without exceeding the dirty limits). 1397 */ 1398 static unsigned long dirty_poll_interval(unsigned long dirty, 1399 unsigned long thresh) 1400 { 1401 if (thresh > dirty) 1402 return 1UL << (ilog2(thresh - dirty) >> 1); 1403 1404 return 1; 1405 } 1406 1407 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1408 unsigned long wb_dirty) 1409 { 1410 unsigned long bw = wb->avg_write_bandwidth; 1411 unsigned long t; 1412 1413 /* 1414 * Limit pause time for small memory systems. If sleeping for too long 1415 * time, a small pool of dirty/writeback pages may go empty and disk go 1416 * idle. 1417 * 1418 * 8 serves as the safety ratio. 1419 */ 1420 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1421 t++; 1422 1423 return min_t(unsigned long, t, MAX_PAUSE); 1424 } 1425 1426 static long wb_min_pause(struct bdi_writeback *wb, 1427 long max_pause, 1428 unsigned long task_ratelimit, 1429 unsigned long dirty_ratelimit, 1430 int *nr_dirtied_pause) 1431 { 1432 long hi = ilog2(wb->avg_write_bandwidth); 1433 long lo = ilog2(wb->dirty_ratelimit); 1434 long t; /* target pause */ 1435 long pause; /* estimated next pause */ 1436 int pages; /* target nr_dirtied_pause */ 1437 1438 /* target for 10ms pause on 1-dd case */ 1439 t = max(1, HZ / 100); 1440 1441 /* 1442 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1443 * overheads. 1444 * 1445 * (N * 10ms) on 2^N concurrent tasks. 1446 */ 1447 if (hi > lo) 1448 t += (hi - lo) * (10 * HZ) / 1024; 1449 1450 /* 1451 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1452 * on the much more stable dirty_ratelimit. However the next pause time 1453 * will be computed based on task_ratelimit and the two rate limits may 1454 * depart considerably at some time. Especially if task_ratelimit goes 1455 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1456 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1457 * result task_ratelimit won't be executed faithfully, which could 1458 * eventually bring down dirty_ratelimit. 1459 * 1460 * We apply two rules to fix it up: 1461 * 1) try to estimate the next pause time and if necessary, use a lower 1462 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1463 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1464 * 2) limit the target pause time to max_pause/2, so that the normal 1465 * small fluctuations of task_ratelimit won't trigger rule (1) and 1466 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1467 */ 1468 t = min(t, 1 + max_pause / 2); 1469 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1470 1471 /* 1472 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1473 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1474 * When the 16 consecutive reads are often interrupted by some dirty 1475 * throttling pause during the async writes, cfq will go into idles 1476 * (deadline is fine). So push nr_dirtied_pause as high as possible 1477 * until reaches DIRTY_POLL_THRESH=32 pages. 1478 */ 1479 if (pages < DIRTY_POLL_THRESH) { 1480 t = max_pause; 1481 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1482 if (pages > DIRTY_POLL_THRESH) { 1483 pages = DIRTY_POLL_THRESH; 1484 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1485 } 1486 } 1487 1488 pause = HZ * pages / (task_ratelimit + 1); 1489 if (pause > max_pause) { 1490 t = max_pause; 1491 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1492 } 1493 1494 *nr_dirtied_pause = pages; 1495 /* 1496 * The minimal pause time will normally be half the target pause time. 1497 */ 1498 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1499 } 1500 1501 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1502 { 1503 struct bdi_writeback *wb = dtc->wb; 1504 unsigned long wb_reclaimable; 1505 1506 /* 1507 * wb_thresh is not treated as some limiting factor as 1508 * dirty_thresh, due to reasons 1509 * - in JBOD setup, wb_thresh can fluctuate a lot 1510 * - in a system with HDD and USB key, the USB key may somehow 1511 * go into state (wb_dirty >> wb_thresh) either because 1512 * wb_dirty starts high, or because wb_thresh drops low. 1513 * In this case we don't want to hard throttle the USB key 1514 * dirtiers for 100 seconds until wb_dirty drops under 1515 * wb_thresh. Instead the auxiliary wb control line in 1516 * wb_position_ratio() will let the dirtier task progress 1517 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1518 */ 1519 dtc->wb_thresh = __wb_calc_thresh(dtc); 1520 dtc->wb_bg_thresh = dtc->thresh ? 1521 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1522 1523 /* 1524 * In order to avoid the stacked BDI deadlock we need 1525 * to ensure we accurately count the 'dirty' pages when 1526 * the threshold is low. 1527 * 1528 * Otherwise it would be possible to get thresh+n pages 1529 * reported dirty, even though there are thresh-m pages 1530 * actually dirty; with m+n sitting in the percpu 1531 * deltas. 1532 */ 1533 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1534 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1535 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1536 } else { 1537 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1538 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1539 } 1540 } 1541 1542 /* 1543 * balance_dirty_pages() must be called by processes which are generating dirty 1544 * data. It looks at the number of dirty pages in the machine and will force 1545 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1546 * If we're over `background_thresh' then the writeback threads are woken to 1547 * perform some writeout. 1548 */ 1549 static void balance_dirty_pages(struct bdi_writeback *wb, 1550 unsigned long pages_dirtied) 1551 { 1552 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1553 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1554 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1555 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1556 &mdtc_stor : NULL; 1557 struct dirty_throttle_control *sdtc; 1558 unsigned long nr_reclaimable; /* = file_dirty */ 1559 long period; 1560 long pause; 1561 long max_pause; 1562 long min_pause; 1563 int nr_dirtied_pause; 1564 bool dirty_exceeded = false; 1565 unsigned long task_ratelimit; 1566 unsigned long dirty_ratelimit; 1567 struct backing_dev_info *bdi = wb->bdi; 1568 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1569 unsigned long start_time = jiffies; 1570 1571 for (;;) { 1572 unsigned long now = jiffies; 1573 unsigned long dirty, thresh, bg_thresh; 1574 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1575 unsigned long m_thresh = 0; 1576 unsigned long m_bg_thresh = 0; 1577 1578 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1579 gdtc->avail = global_dirtyable_memory(); 1580 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1581 1582 domain_dirty_limits(gdtc); 1583 1584 if (unlikely(strictlimit)) { 1585 wb_dirty_limits(gdtc); 1586 1587 dirty = gdtc->wb_dirty; 1588 thresh = gdtc->wb_thresh; 1589 bg_thresh = gdtc->wb_bg_thresh; 1590 } else { 1591 dirty = gdtc->dirty; 1592 thresh = gdtc->thresh; 1593 bg_thresh = gdtc->bg_thresh; 1594 } 1595 1596 if (mdtc) { 1597 unsigned long filepages, headroom, writeback; 1598 1599 /* 1600 * If @wb belongs to !root memcg, repeat the same 1601 * basic calculations for the memcg domain. 1602 */ 1603 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1604 &mdtc->dirty, &writeback); 1605 mdtc->dirty += writeback; 1606 mdtc_calc_avail(mdtc, filepages, headroom); 1607 1608 domain_dirty_limits(mdtc); 1609 1610 if (unlikely(strictlimit)) { 1611 wb_dirty_limits(mdtc); 1612 m_dirty = mdtc->wb_dirty; 1613 m_thresh = mdtc->wb_thresh; 1614 m_bg_thresh = mdtc->wb_bg_thresh; 1615 } else { 1616 m_dirty = mdtc->dirty; 1617 m_thresh = mdtc->thresh; 1618 m_bg_thresh = mdtc->bg_thresh; 1619 } 1620 } 1621 1622 /* 1623 * Throttle it only when the background writeback cannot 1624 * catch-up. This avoids (excessively) small writeouts 1625 * when the wb limits are ramping up in case of !strictlimit. 1626 * 1627 * In strictlimit case make decision based on the wb counters 1628 * and limits. Small writeouts when the wb limits are ramping 1629 * up are the price we consciously pay for strictlimit-ing. 1630 * 1631 * If memcg domain is in effect, @dirty should be under 1632 * both global and memcg freerun ceilings. 1633 */ 1634 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1635 (!mdtc || 1636 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1637 unsigned long intv; 1638 unsigned long m_intv; 1639 1640 free_running: 1641 intv = dirty_poll_interval(dirty, thresh); 1642 m_intv = ULONG_MAX; 1643 1644 current->dirty_paused_when = now; 1645 current->nr_dirtied = 0; 1646 if (mdtc) 1647 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1648 current->nr_dirtied_pause = min(intv, m_intv); 1649 break; 1650 } 1651 1652 if (unlikely(!writeback_in_progress(wb))) 1653 wb_start_background_writeback(wb); 1654 1655 mem_cgroup_flush_foreign(wb); 1656 1657 /* 1658 * Calculate global domain's pos_ratio and select the 1659 * global dtc by default. 1660 */ 1661 if (!strictlimit) { 1662 wb_dirty_limits(gdtc); 1663 1664 if ((current->flags & PF_LOCAL_THROTTLE) && 1665 gdtc->wb_dirty < 1666 dirty_freerun_ceiling(gdtc->wb_thresh, 1667 gdtc->wb_bg_thresh)) 1668 /* 1669 * LOCAL_THROTTLE tasks must not be throttled 1670 * when below the per-wb freerun ceiling. 1671 */ 1672 goto free_running; 1673 } 1674 1675 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1676 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1677 1678 wb_position_ratio(gdtc); 1679 sdtc = gdtc; 1680 1681 if (mdtc) { 1682 /* 1683 * If memcg domain is in effect, calculate its 1684 * pos_ratio. @wb should satisfy constraints from 1685 * both global and memcg domains. Choose the one 1686 * w/ lower pos_ratio. 1687 */ 1688 if (!strictlimit) { 1689 wb_dirty_limits(mdtc); 1690 1691 if ((current->flags & PF_LOCAL_THROTTLE) && 1692 mdtc->wb_dirty < 1693 dirty_freerun_ceiling(mdtc->wb_thresh, 1694 mdtc->wb_bg_thresh)) 1695 /* 1696 * LOCAL_THROTTLE tasks must not be 1697 * throttled when below the per-wb 1698 * freerun ceiling. 1699 */ 1700 goto free_running; 1701 } 1702 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1703 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1704 1705 wb_position_ratio(mdtc); 1706 if (mdtc->pos_ratio < gdtc->pos_ratio) 1707 sdtc = mdtc; 1708 } 1709 1710 if (dirty_exceeded && !wb->dirty_exceeded) 1711 wb->dirty_exceeded = 1; 1712 1713 if (time_is_before_jiffies(wb->bw_time_stamp + 1714 BANDWIDTH_INTERVAL)) { 1715 spin_lock(&wb->list_lock); 1716 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1717 spin_unlock(&wb->list_lock); 1718 } 1719 1720 /* throttle according to the chosen dtc */ 1721 dirty_ratelimit = wb->dirty_ratelimit; 1722 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1723 RATELIMIT_CALC_SHIFT; 1724 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1725 min_pause = wb_min_pause(wb, max_pause, 1726 task_ratelimit, dirty_ratelimit, 1727 &nr_dirtied_pause); 1728 1729 if (unlikely(task_ratelimit == 0)) { 1730 period = max_pause; 1731 pause = max_pause; 1732 goto pause; 1733 } 1734 period = HZ * pages_dirtied / task_ratelimit; 1735 pause = period; 1736 if (current->dirty_paused_when) 1737 pause -= now - current->dirty_paused_when; 1738 /* 1739 * For less than 1s think time (ext3/4 may block the dirtier 1740 * for up to 800ms from time to time on 1-HDD; so does xfs, 1741 * however at much less frequency), try to compensate it in 1742 * future periods by updating the virtual time; otherwise just 1743 * do a reset, as it may be a light dirtier. 1744 */ 1745 if (pause < min_pause) { 1746 trace_balance_dirty_pages(wb, 1747 sdtc->thresh, 1748 sdtc->bg_thresh, 1749 sdtc->dirty, 1750 sdtc->wb_thresh, 1751 sdtc->wb_dirty, 1752 dirty_ratelimit, 1753 task_ratelimit, 1754 pages_dirtied, 1755 period, 1756 min(pause, 0L), 1757 start_time); 1758 if (pause < -HZ) { 1759 current->dirty_paused_when = now; 1760 current->nr_dirtied = 0; 1761 } else if (period) { 1762 current->dirty_paused_when += period; 1763 current->nr_dirtied = 0; 1764 } else if (current->nr_dirtied_pause <= pages_dirtied) 1765 current->nr_dirtied_pause += pages_dirtied; 1766 break; 1767 } 1768 if (unlikely(pause > max_pause)) { 1769 /* for occasional dropped task_ratelimit */ 1770 now += min(pause - max_pause, max_pause); 1771 pause = max_pause; 1772 } 1773 1774 pause: 1775 trace_balance_dirty_pages(wb, 1776 sdtc->thresh, 1777 sdtc->bg_thresh, 1778 sdtc->dirty, 1779 sdtc->wb_thresh, 1780 sdtc->wb_dirty, 1781 dirty_ratelimit, 1782 task_ratelimit, 1783 pages_dirtied, 1784 period, 1785 pause, 1786 start_time); 1787 __set_current_state(TASK_KILLABLE); 1788 wb->dirty_sleep = now; 1789 io_schedule_timeout(pause); 1790 1791 current->dirty_paused_when = now + pause; 1792 current->nr_dirtied = 0; 1793 current->nr_dirtied_pause = nr_dirtied_pause; 1794 1795 /* 1796 * This is typically equal to (dirty < thresh) and can also 1797 * keep "1000+ dd on a slow USB stick" under control. 1798 */ 1799 if (task_ratelimit) 1800 break; 1801 1802 /* 1803 * In the case of an unresponsive NFS server and the NFS dirty 1804 * pages exceeds dirty_thresh, give the other good wb's a pipe 1805 * to go through, so that tasks on them still remain responsive. 1806 * 1807 * In theory 1 page is enough to keep the consumer-producer 1808 * pipe going: the flusher cleans 1 page => the task dirties 1 1809 * more page. However wb_dirty has accounting errors. So use 1810 * the larger and more IO friendly wb_stat_error. 1811 */ 1812 if (sdtc->wb_dirty <= wb_stat_error()) 1813 break; 1814 1815 if (fatal_signal_pending(current)) 1816 break; 1817 } 1818 1819 if (!dirty_exceeded && wb->dirty_exceeded) 1820 wb->dirty_exceeded = 0; 1821 1822 if (writeback_in_progress(wb)) 1823 return; 1824 1825 /* 1826 * In laptop mode, we wait until hitting the higher threshold before 1827 * starting background writeout, and then write out all the way down 1828 * to the lower threshold. So slow writers cause minimal disk activity. 1829 * 1830 * In normal mode, we start background writeout at the lower 1831 * background_thresh, to keep the amount of dirty memory low. 1832 */ 1833 if (laptop_mode) 1834 return; 1835 1836 if (nr_reclaimable > gdtc->bg_thresh) 1837 wb_start_background_writeback(wb); 1838 } 1839 1840 static DEFINE_PER_CPU(int, bdp_ratelimits); 1841 1842 /* 1843 * Normal tasks are throttled by 1844 * loop { 1845 * dirty tsk->nr_dirtied_pause pages; 1846 * take a snap in balance_dirty_pages(); 1847 * } 1848 * However there is a worst case. If every task exit immediately when dirtied 1849 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1850 * called to throttle the page dirties. The solution is to save the not yet 1851 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1852 * randomly into the running tasks. This works well for the above worst case, 1853 * as the new task will pick up and accumulate the old task's leaked dirty 1854 * count and eventually get throttled. 1855 */ 1856 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1857 1858 /** 1859 * balance_dirty_pages_ratelimited - balance dirty memory state 1860 * @mapping: address_space which was dirtied 1861 * 1862 * Processes which are dirtying memory should call in here once for each page 1863 * which was newly dirtied. The function will periodically check the system's 1864 * dirty state and will initiate writeback if needed. 1865 * 1866 * Once we're over the dirty memory limit we decrease the ratelimiting 1867 * by a lot, to prevent individual processes from overshooting the limit 1868 * by (ratelimit_pages) each. 1869 */ 1870 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1871 { 1872 struct inode *inode = mapping->host; 1873 struct backing_dev_info *bdi = inode_to_bdi(inode); 1874 struct bdi_writeback *wb = NULL; 1875 int ratelimit; 1876 int *p; 1877 1878 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 1879 return; 1880 1881 if (inode_cgwb_enabled(inode)) 1882 wb = wb_get_create_current(bdi, GFP_KERNEL); 1883 if (!wb) 1884 wb = &bdi->wb; 1885 1886 ratelimit = current->nr_dirtied_pause; 1887 if (wb->dirty_exceeded) 1888 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1889 1890 preempt_disable(); 1891 /* 1892 * This prevents one CPU to accumulate too many dirtied pages without 1893 * calling into balance_dirty_pages(), which can happen when there are 1894 * 1000+ tasks, all of them start dirtying pages at exactly the same 1895 * time, hence all honoured too large initial task->nr_dirtied_pause. 1896 */ 1897 p = this_cpu_ptr(&bdp_ratelimits); 1898 if (unlikely(current->nr_dirtied >= ratelimit)) 1899 *p = 0; 1900 else if (unlikely(*p >= ratelimit_pages)) { 1901 *p = 0; 1902 ratelimit = 0; 1903 } 1904 /* 1905 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1906 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1907 * the dirty throttling and livelock other long-run dirtiers. 1908 */ 1909 p = this_cpu_ptr(&dirty_throttle_leaks); 1910 if (*p > 0 && current->nr_dirtied < ratelimit) { 1911 unsigned long nr_pages_dirtied; 1912 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1913 *p -= nr_pages_dirtied; 1914 current->nr_dirtied += nr_pages_dirtied; 1915 } 1916 preempt_enable(); 1917 1918 if (unlikely(current->nr_dirtied >= ratelimit)) 1919 balance_dirty_pages(wb, current->nr_dirtied); 1920 1921 wb_put(wb); 1922 } 1923 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1924 1925 /** 1926 * wb_over_bg_thresh - does @wb need to be written back? 1927 * @wb: bdi_writeback of interest 1928 * 1929 * Determines whether background writeback should keep writing @wb or it's 1930 * clean enough. 1931 * 1932 * Return: %true if writeback should continue. 1933 */ 1934 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1935 { 1936 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1937 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1938 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1939 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1940 &mdtc_stor : NULL; 1941 unsigned long reclaimable; 1942 unsigned long thresh; 1943 1944 /* 1945 * Similar to balance_dirty_pages() but ignores pages being written 1946 * as we're trying to decide whether to put more under writeback. 1947 */ 1948 gdtc->avail = global_dirtyable_memory(); 1949 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 1950 domain_dirty_limits(gdtc); 1951 1952 if (gdtc->dirty > gdtc->bg_thresh) 1953 return true; 1954 1955 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); 1956 if (thresh < 2 * wb_stat_error()) 1957 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1958 else 1959 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1960 1961 if (reclaimable > thresh) 1962 return true; 1963 1964 if (mdtc) { 1965 unsigned long filepages, headroom, writeback; 1966 1967 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1968 &writeback); 1969 mdtc_calc_avail(mdtc, filepages, headroom); 1970 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1971 1972 if (mdtc->dirty > mdtc->bg_thresh) 1973 return true; 1974 1975 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); 1976 if (thresh < 2 * wb_stat_error()) 1977 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1978 else 1979 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1980 1981 if (reclaimable > thresh) 1982 return true; 1983 } 1984 1985 return false; 1986 } 1987 1988 /* 1989 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1990 */ 1991 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1992 void *buffer, size_t *length, loff_t *ppos) 1993 { 1994 unsigned int old_interval = dirty_writeback_interval; 1995 int ret; 1996 1997 ret = proc_dointvec(table, write, buffer, length, ppos); 1998 1999 /* 2000 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2001 * and a different non-zero value will wakeup the writeback threads. 2002 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2003 * iterate over all bdis and wbs. 2004 * The reason we do this is to make the change take effect immediately. 2005 */ 2006 if (!ret && write && dirty_writeback_interval && 2007 dirty_writeback_interval != old_interval) 2008 wakeup_flusher_threads(WB_REASON_PERIODIC); 2009 2010 return ret; 2011 } 2012 2013 #ifdef CONFIG_BLOCK 2014 void laptop_mode_timer_fn(struct timer_list *t) 2015 { 2016 struct backing_dev_info *backing_dev_info = 2017 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2018 2019 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2020 } 2021 2022 /* 2023 * We've spun up the disk and we're in laptop mode: schedule writeback 2024 * of all dirty data a few seconds from now. If the flush is already scheduled 2025 * then push it back - the user is still using the disk. 2026 */ 2027 void laptop_io_completion(struct backing_dev_info *info) 2028 { 2029 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2030 } 2031 2032 /* 2033 * We're in laptop mode and we've just synced. The sync's writes will have 2034 * caused another writeback to be scheduled by laptop_io_completion. 2035 * Nothing needs to be written back anymore, so we unschedule the writeback. 2036 */ 2037 void laptop_sync_completion(void) 2038 { 2039 struct backing_dev_info *bdi; 2040 2041 rcu_read_lock(); 2042 2043 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2044 del_timer(&bdi->laptop_mode_wb_timer); 2045 2046 rcu_read_unlock(); 2047 } 2048 #endif 2049 2050 /* 2051 * If ratelimit_pages is too high then we can get into dirty-data overload 2052 * if a large number of processes all perform writes at the same time. 2053 * 2054 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2055 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2056 * thresholds. 2057 */ 2058 2059 void writeback_set_ratelimit(void) 2060 { 2061 struct wb_domain *dom = &global_wb_domain; 2062 unsigned long background_thresh; 2063 unsigned long dirty_thresh; 2064 2065 global_dirty_limits(&background_thresh, &dirty_thresh); 2066 dom->dirty_limit = dirty_thresh; 2067 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2068 if (ratelimit_pages < 16) 2069 ratelimit_pages = 16; 2070 } 2071 2072 static int page_writeback_cpu_online(unsigned int cpu) 2073 { 2074 writeback_set_ratelimit(); 2075 return 0; 2076 } 2077 2078 /* 2079 * Called early on to tune the page writeback dirty limits. 2080 * 2081 * We used to scale dirty pages according to how total memory 2082 * related to pages that could be allocated for buffers. 2083 * 2084 * However, that was when we used "dirty_ratio" to scale with 2085 * all memory, and we don't do that any more. "dirty_ratio" 2086 * is now applied to total non-HIGHPAGE memory, and as such we can't 2087 * get into the old insane situation any more where we had 2088 * large amounts of dirty pages compared to a small amount of 2089 * non-HIGHMEM memory. 2090 * 2091 * But we might still want to scale the dirty_ratio by how 2092 * much memory the box has.. 2093 */ 2094 void __init page_writeback_init(void) 2095 { 2096 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2097 2098 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2099 page_writeback_cpu_online, NULL); 2100 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2101 page_writeback_cpu_online); 2102 } 2103 2104 /** 2105 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2106 * @mapping: address space structure to write 2107 * @start: starting page index 2108 * @end: ending page index (inclusive) 2109 * 2110 * This function scans the page range from @start to @end (inclusive) and tags 2111 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2112 * that write_cache_pages (or whoever calls this function) will then use 2113 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2114 * used to avoid livelocking of writeback by a process steadily creating new 2115 * dirty pages in the file (thus it is important for this function to be quick 2116 * so that it can tag pages faster than a dirtying process can create them). 2117 */ 2118 void tag_pages_for_writeback(struct address_space *mapping, 2119 pgoff_t start, pgoff_t end) 2120 { 2121 XA_STATE(xas, &mapping->i_pages, start); 2122 unsigned int tagged = 0; 2123 void *page; 2124 2125 xas_lock_irq(&xas); 2126 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2127 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2128 if (++tagged % XA_CHECK_SCHED) 2129 continue; 2130 2131 xas_pause(&xas); 2132 xas_unlock_irq(&xas); 2133 cond_resched(); 2134 xas_lock_irq(&xas); 2135 } 2136 xas_unlock_irq(&xas); 2137 } 2138 EXPORT_SYMBOL(tag_pages_for_writeback); 2139 2140 /** 2141 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2142 * @mapping: address space structure to write 2143 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2144 * @writepage: function called for each page 2145 * @data: data passed to writepage function 2146 * 2147 * If a page is already under I/O, write_cache_pages() skips it, even 2148 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2149 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2150 * and msync() need to guarantee that all the data which was dirty at the time 2151 * the call was made get new I/O started against them. If wbc->sync_mode is 2152 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2153 * existing IO to complete. 2154 * 2155 * To avoid livelocks (when other process dirties new pages), we first tag 2156 * pages which should be written back with TOWRITE tag and only then start 2157 * writing them. For data-integrity sync we have to be careful so that we do 2158 * not miss some pages (e.g., because some other process has cleared TOWRITE 2159 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2160 * by the process clearing the DIRTY tag (and submitting the page for IO). 2161 * 2162 * To avoid deadlocks between range_cyclic writeback and callers that hold 2163 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2164 * we do not loop back to the start of the file. Doing so causes a page 2165 * lock/page writeback access order inversion - we should only ever lock 2166 * multiple pages in ascending page->index order, and looping back to the start 2167 * of the file violates that rule and causes deadlocks. 2168 * 2169 * Return: %0 on success, negative error code otherwise 2170 */ 2171 int write_cache_pages(struct address_space *mapping, 2172 struct writeback_control *wbc, writepage_t writepage, 2173 void *data) 2174 { 2175 int ret = 0; 2176 int done = 0; 2177 int error; 2178 struct pagevec pvec; 2179 int nr_pages; 2180 pgoff_t index; 2181 pgoff_t end; /* Inclusive */ 2182 pgoff_t done_index; 2183 int range_whole = 0; 2184 xa_mark_t tag; 2185 2186 pagevec_init(&pvec); 2187 if (wbc->range_cyclic) { 2188 index = mapping->writeback_index; /* prev offset */ 2189 end = -1; 2190 } else { 2191 index = wbc->range_start >> PAGE_SHIFT; 2192 end = wbc->range_end >> PAGE_SHIFT; 2193 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2194 range_whole = 1; 2195 } 2196 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2197 tag_pages_for_writeback(mapping, index, end); 2198 tag = PAGECACHE_TAG_TOWRITE; 2199 } else { 2200 tag = PAGECACHE_TAG_DIRTY; 2201 } 2202 done_index = index; 2203 while (!done && (index <= end)) { 2204 int i; 2205 2206 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2207 tag); 2208 if (nr_pages == 0) 2209 break; 2210 2211 for (i = 0; i < nr_pages; i++) { 2212 struct page *page = pvec.pages[i]; 2213 2214 done_index = page->index; 2215 2216 lock_page(page); 2217 2218 /* 2219 * Page truncated or invalidated. We can freely skip it 2220 * then, even for data integrity operations: the page 2221 * has disappeared concurrently, so there could be no 2222 * real expectation of this data integrity operation 2223 * even if there is now a new, dirty page at the same 2224 * pagecache address. 2225 */ 2226 if (unlikely(page->mapping != mapping)) { 2227 continue_unlock: 2228 unlock_page(page); 2229 continue; 2230 } 2231 2232 if (!PageDirty(page)) { 2233 /* someone wrote it for us */ 2234 goto continue_unlock; 2235 } 2236 2237 if (PageWriteback(page)) { 2238 if (wbc->sync_mode != WB_SYNC_NONE) 2239 wait_on_page_writeback(page); 2240 else 2241 goto continue_unlock; 2242 } 2243 2244 BUG_ON(PageWriteback(page)); 2245 if (!clear_page_dirty_for_io(page)) 2246 goto continue_unlock; 2247 2248 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2249 error = (*writepage)(page, wbc, data); 2250 if (unlikely(error)) { 2251 /* 2252 * Handle errors according to the type of 2253 * writeback. There's no need to continue for 2254 * background writeback. Just push done_index 2255 * past this page so media errors won't choke 2256 * writeout for the entire file. For integrity 2257 * writeback, we must process the entire dirty 2258 * set regardless of errors because the fs may 2259 * still have state to clear for each page. In 2260 * that case we continue processing and return 2261 * the first error. 2262 */ 2263 if (error == AOP_WRITEPAGE_ACTIVATE) { 2264 unlock_page(page); 2265 error = 0; 2266 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2267 ret = error; 2268 done_index = page->index + 1; 2269 done = 1; 2270 break; 2271 } 2272 if (!ret) 2273 ret = error; 2274 } 2275 2276 /* 2277 * We stop writing back only if we are not doing 2278 * integrity sync. In case of integrity sync we have to 2279 * keep going until we have written all the pages 2280 * we tagged for writeback prior to entering this loop. 2281 */ 2282 if (--wbc->nr_to_write <= 0 && 2283 wbc->sync_mode == WB_SYNC_NONE) { 2284 done = 1; 2285 break; 2286 } 2287 } 2288 pagevec_release(&pvec); 2289 cond_resched(); 2290 } 2291 2292 /* 2293 * If we hit the last page and there is more work to be done: wrap 2294 * back the index back to the start of the file for the next 2295 * time we are called. 2296 */ 2297 if (wbc->range_cyclic && !done) 2298 done_index = 0; 2299 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2300 mapping->writeback_index = done_index; 2301 2302 return ret; 2303 } 2304 EXPORT_SYMBOL(write_cache_pages); 2305 2306 /* 2307 * Function used by generic_writepages to call the real writepage 2308 * function and set the mapping flags on error 2309 */ 2310 static int __writepage(struct page *page, struct writeback_control *wbc, 2311 void *data) 2312 { 2313 struct address_space *mapping = data; 2314 int ret = mapping->a_ops->writepage(page, wbc); 2315 mapping_set_error(mapping, ret); 2316 return ret; 2317 } 2318 2319 /** 2320 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2321 * @mapping: address space structure to write 2322 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2323 * 2324 * This is a library function, which implements the writepages() 2325 * address_space_operation. 2326 * 2327 * Return: %0 on success, negative error code otherwise 2328 */ 2329 int generic_writepages(struct address_space *mapping, 2330 struct writeback_control *wbc) 2331 { 2332 struct blk_plug plug; 2333 int ret; 2334 2335 /* deal with chardevs and other special file */ 2336 if (!mapping->a_ops->writepage) 2337 return 0; 2338 2339 blk_start_plug(&plug); 2340 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2341 blk_finish_plug(&plug); 2342 return ret; 2343 } 2344 2345 EXPORT_SYMBOL(generic_writepages); 2346 2347 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2348 { 2349 int ret; 2350 2351 if (wbc->nr_to_write <= 0) 2352 return 0; 2353 while (1) { 2354 if (mapping->a_ops->writepages) 2355 ret = mapping->a_ops->writepages(mapping, wbc); 2356 else 2357 ret = generic_writepages(mapping, wbc); 2358 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2359 break; 2360 cond_resched(); 2361 congestion_wait(BLK_RW_ASYNC, HZ/50); 2362 } 2363 return ret; 2364 } 2365 2366 /** 2367 * write_one_page - write out a single page and wait on I/O 2368 * @page: the page to write 2369 * 2370 * The page must be locked by the caller and will be unlocked upon return. 2371 * 2372 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2373 * function returns. 2374 * 2375 * Return: %0 on success, negative error code otherwise 2376 */ 2377 int write_one_page(struct page *page) 2378 { 2379 struct address_space *mapping = page->mapping; 2380 int ret = 0; 2381 struct writeback_control wbc = { 2382 .sync_mode = WB_SYNC_ALL, 2383 .nr_to_write = 1, 2384 }; 2385 2386 BUG_ON(!PageLocked(page)); 2387 2388 wait_on_page_writeback(page); 2389 2390 if (clear_page_dirty_for_io(page)) { 2391 get_page(page); 2392 ret = mapping->a_ops->writepage(page, &wbc); 2393 if (ret == 0) 2394 wait_on_page_writeback(page); 2395 put_page(page); 2396 } else { 2397 unlock_page(page); 2398 } 2399 2400 if (!ret) 2401 ret = filemap_check_errors(mapping); 2402 return ret; 2403 } 2404 EXPORT_SYMBOL(write_one_page); 2405 2406 /* 2407 * For address_spaces which do not use buffers nor write back. 2408 */ 2409 int __set_page_dirty_no_writeback(struct page *page) 2410 { 2411 if (!PageDirty(page)) 2412 return !TestSetPageDirty(page); 2413 return 0; 2414 } 2415 EXPORT_SYMBOL(__set_page_dirty_no_writeback); 2416 2417 /* 2418 * Helper function for set_page_dirty family. 2419 * 2420 * Caller must hold lock_page_memcg(). 2421 * 2422 * NOTE: This relies on being atomic wrt interrupts. 2423 */ 2424 static void account_page_dirtied(struct page *page, 2425 struct address_space *mapping) 2426 { 2427 struct inode *inode = mapping->host; 2428 2429 trace_writeback_dirty_page(page, mapping); 2430 2431 if (mapping_can_writeback(mapping)) { 2432 struct bdi_writeback *wb; 2433 2434 inode_attach_wb(inode, page); 2435 wb = inode_to_wb(inode); 2436 2437 __inc_lruvec_page_state(page, NR_FILE_DIRTY); 2438 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2439 __inc_node_page_state(page, NR_DIRTIED); 2440 inc_wb_stat(wb, WB_RECLAIMABLE); 2441 inc_wb_stat(wb, WB_DIRTIED); 2442 task_io_account_write(PAGE_SIZE); 2443 current->nr_dirtied++; 2444 __this_cpu_inc(bdp_ratelimits); 2445 2446 mem_cgroup_track_foreign_dirty(page, wb); 2447 } 2448 } 2449 2450 /* 2451 * Helper function for deaccounting dirty page without writeback. 2452 * 2453 * Caller must hold lock_page_memcg(). 2454 */ 2455 void account_page_cleaned(struct page *page, struct address_space *mapping, 2456 struct bdi_writeback *wb) 2457 { 2458 if (mapping_can_writeback(mapping)) { 2459 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2460 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2461 dec_wb_stat(wb, WB_RECLAIMABLE); 2462 task_io_account_cancelled_write(PAGE_SIZE); 2463 } 2464 } 2465 2466 /* 2467 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 2468 * dirty. 2469 * 2470 * If warn is true, then emit a warning if the page is not uptodate and has 2471 * not been truncated. 2472 * 2473 * The caller must hold lock_page_memcg(). 2474 */ 2475 void __set_page_dirty(struct page *page, struct address_space *mapping, 2476 int warn) 2477 { 2478 unsigned long flags; 2479 2480 xa_lock_irqsave(&mapping->i_pages, flags); 2481 if (page->mapping) { /* Race with truncate? */ 2482 WARN_ON_ONCE(warn && !PageUptodate(page)); 2483 account_page_dirtied(page, mapping); 2484 __xa_set_mark(&mapping->i_pages, page_index(page), 2485 PAGECACHE_TAG_DIRTY); 2486 } 2487 xa_unlock_irqrestore(&mapping->i_pages, flags); 2488 } 2489 2490 /* 2491 * For address_spaces which do not use buffers. Just tag the page as dirty in 2492 * the xarray. 2493 * 2494 * This is also used when a single buffer is being dirtied: we want to set the 2495 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2496 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2497 * 2498 * The caller must ensure this doesn't race with truncation. Most will simply 2499 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2500 * the pte lock held, which also locks out truncation. 2501 */ 2502 int __set_page_dirty_nobuffers(struct page *page) 2503 { 2504 lock_page_memcg(page); 2505 if (!TestSetPageDirty(page)) { 2506 struct address_space *mapping = page_mapping(page); 2507 2508 if (!mapping) { 2509 unlock_page_memcg(page); 2510 return 1; 2511 } 2512 __set_page_dirty(page, mapping, !PagePrivate(page)); 2513 unlock_page_memcg(page); 2514 2515 if (mapping->host) { 2516 /* !PageAnon && !swapper_space */ 2517 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2518 } 2519 return 1; 2520 } 2521 unlock_page_memcg(page); 2522 return 0; 2523 } 2524 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2525 2526 /* 2527 * Call this whenever redirtying a page, to de-account the dirty counters 2528 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written 2529 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to 2530 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2531 * control. 2532 */ 2533 void account_page_redirty(struct page *page) 2534 { 2535 struct address_space *mapping = page->mapping; 2536 2537 if (mapping && mapping_can_writeback(mapping)) { 2538 struct inode *inode = mapping->host; 2539 struct bdi_writeback *wb; 2540 struct wb_lock_cookie cookie = {}; 2541 2542 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2543 current->nr_dirtied--; 2544 dec_node_page_state(page, NR_DIRTIED); 2545 dec_wb_stat(wb, WB_DIRTIED); 2546 unlocked_inode_to_wb_end(inode, &cookie); 2547 } 2548 } 2549 EXPORT_SYMBOL(account_page_redirty); 2550 2551 /* 2552 * When a writepage implementation decides that it doesn't want to write this 2553 * page for some reason, it should redirty the locked page via 2554 * redirty_page_for_writepage() and it should then unlock the page and return 0 2555 */ 2556 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2557 { 2558 int ret; 2559 2560 wbc->pages_skipped++; 2561 ret = __set_page_dirty_nobuffers(page); 2562 account_page_redirty(page); 2563 return ret; 2564 } 2565 EXPORT_SYMBOL(redirty_page_for_writepage); 2566 2567 /* 2568 * Dirty a page. 2569 * 2570 * For pages with a mapping this should be done under the page lock for the 2571 * benefit of asynchronous memory errors who prefer a consistent dirty state. 2572 * This rule can be broken in some special cases, but should be better not to. 2573 */ 2574 int set_page_dirty(struct page *page) 2575 { 2576 struct address_space *mapping = page_mapping(page); 2577 2578 page = compound_head(page); 2579 if (likely(mapping)) { 2580 /* 2581 * readahead/lru_deactivate_page could remain 2582 * PG_readahead/PG_reclaim due to race with end_page_writeback 2583 * About readahead, if the page is written, the flags would be 2584 * reset. So no problem. 2585 * About lru_deactivate_page, if the page is redirty, the flag 2586 * will be reset. So no problem. but if the page is used by readahead 2587 * it will confuse readahead and make it restart the size rampup 2588 * process. But it's a trivial problem. 2589 */ 2590 if (PageReclaim(page)) 2591 ClearPageReclaim(page); 2592 return mapping->a_ops->set_page_dirty(page); 2593 } 2594 if (!PageDirty(page)) { 2595 if (!TestSetPageDirty(page)) 2596 return 1; 2597 } 2598 return 0; 2599 } 2600 EXPORT_SYMBOL(set_page_dirty); 2601 2602 /* 2603 * set_page_dirty() is racy if the caller has no reference against 2604 * page->mapping->host, and if the page is unlocked. This is because another 2605 * CPU could truncate the page off the mapping and then free the mapping. 2606 * 2607 * Usually, the page _is_ locked, or the caller is a user-space process which 2608 * holds a reference on the inode by having an open file. 2609 * 2610 * In other cases, the page should be locked before running set_page_dirty(). 2611 */ 2612 int set_page_dirty_lock(struct page *page) 2613 { 2614 int ret; 2615 2616 lock_page(page); 2617 ret = set_page_dirty(page); 2618 unlock_page(page); 2619 return ret; 2620 } 2621 EXPORT_SYMBOL(set_page_dirty_lock); 2622 2623 /* 2624 * This cancels just the dirty bit on the kernel page itself, it does NOT 2625 * actually remove dirty bits on any mmap's that may be around. It also 2626 * leaves the page tagged dirty, so any sync activity will still find it on 2627 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2628 * look at the dirty bits in the VM. 2629 * 2630 * Doing this should *normally* only ever be done when a page is truncated, 2631 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2632 * this when it notices that somebody has cleaned out all the buffers on a 2633 * page without actually doing it through the VM. Can you say "ext3 is 2634 * horribly ugly"? Thought you could. 2635 */ 2636 void __cancel_dirty_page(struct page *page) 2637 { 2638 struct address_space *mapping = page_mapping(page); 2639 2640 if (mapping_can_writeback(mapping)) { 2641 struct inode *inode = mapping->host; 2642 struct bdi_writeback *wb; 2643 struct wb_lock_cookie cookie = {}; 2644 2645 lock_page_memcg(page); 2646 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2647 2648 if (TestClearPageDirty(page)) 2649 account_page_cleaned(page, mapping, wb); 2650 2651 unlocked_inode_to_wb_end(inode, &cookie); 2652 unlock_page_memcg(page); 2653 } else { 2654 ClearPageDirty(page); 2655 } 2656 } 2657 EXPORT_SYMBOL(__cancel_dirty_page); 2658 2659 /* 2660 * Clear a page's dirty flag, while caring for dirty memory accounting. 2661 * Returns true if the page was previously dirty. 2662 * 2663 * This is for preparing to put the page under writeout. We leave the page 2664 * tagged as dirty in the xarray so that a concurrent write-for-sync 2665 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2666 * implementation will run either set_page_writeback() or set_page_dirty(), 2667 * at which stage we bring the page's dirty flag and xarray dirty tag 2668 * back into sync. 2669 * 2670 * This incoherency between the page's dirty flag and xarray tag is 2671 * unfortunate, but it only exists while the page is locked. 2672 */ 2673 int clear_page_dirty_for_io(struct page *page) 2674 { 2675 struct address_space *mapping = page_mapping(page); 2676 int ret = 0; 2677 2678 VM_BUG_ON_PAGE(!PageLocked(page), page); 2679 2680 if (mapping && mapping_can_writeback(mapping)) { 2681 struct inode *inode = mapping->host; 2682 struct bdi_writeback *wb; 2683 struct wb_lock_cookie cookie = {}; 2684 2685 /* 2686 * Yes, Virginia, this is indeed insane. 2687 * 2688 * We use this sequence to make sure that 2689 * (a) we account for dirty stats properly 2690 * (b) we tell the low-level filesystem to 2691 * mark the whole page dirty if it was 2692 * dirty in a pagetable. Only to then 2693 * (c) clean the page again and return 1 to 2694 * cause the writeback. 2695 * 2696 * This way we avoid all nasty races with the 2697 * dirty bit in multiple places and clearing 2698 * them concurrently from different threads. 2699 * 2700 * Note! Normally the "set_page_dirty(page)" 2701 * has no effect on the actual dirty bit - since 2702 * that will already usually be set. But we 2703 * need the side effects, and it can help us 2704 * avoid races. 2705 * 2706 * We basically use the page "master dirty bit" 2707 * as a serialization point for all the different 2708 * threads doing their things. 2709 */ 2710 if (page_mkclean(page)) 2711 set_page_dirty(page); 2712 /* 2713 * We carefully synchronise fault handlers against 2714 * installing a dirty pte and marking the page dirty 2715 * at this point. We do this by having them hold the 2716 * page lock while dirtying the page, and pages are 2717 * always locked coming in here, so we get the desired 2718 * exclusion. 2719 */ 2720 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2721 if (TestClearPageDirty(page)) { 2722 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2723 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2724 dec_wb_stat(wb, WB_RECLAIMABLE); 2725 ret = 1; 2726 } 2727 unlocked_inode_to_wb_end(inode, &cookie); 2728 return ret; 2729 } 2730 return TestClearPageDirty(page); 2731 } 2732 EXPORT_SYMBOL(clear_page_dirty_for_io); 2733 2734 int test_clear_page_writeback(struct page *page) 2735 { 2736 struct address_space *mapping = page_mapping(page); 2737 int ret; 2738 2739 lock_page_memcg(page); 2740 if (mapping && mapping_use_writeback_tags(mapping)) { 2741 struct inode *inode = mapping->host; 2742 struct backing_dev_info *bdi = inode_to_bdi(inode); 2743 unsigned long flags; 2744 2745 xa_lock_irqsave(&mapping->i_pages, flags); 2746 ret = TestClearPageWriteback(page); 2747 if (ret) { 2748 __xa_clear_mark(&mapping->i_pages, page_index(page), 2749 PAGECACHE_TAG_WRITEBACK); 2750 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2751 struct bdi_writeback *wb = inode_to_wb(inode); 2752 2753 dec_wb_stat(wb, WB_WRITEBACK); 2754 __wb_writeout_inc(wb); 2755 } 2756 } 2757 2758 if (mapping->host && !mapping_tagged(mapping, 2759 PAGECACHE_TAG_WRITEBACK)) 2760 sb_clear_inode_writeback(mapping->host); 2761 2762 xa_unlock_irqrestore(&mapping->i_pages, flags); 2763 } else { 2764 ret = TestClearPageWriteback(page); 2765 } 2766 if (ret) { 2767 dec_lruvec_page_state(page, NR_WRITEBACK); 2768 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2769 inc_node_page_state(page, NR_WRITTEN); 2770 } 2771 unlock_page_memcg(page); 2772 return ret; 2773 } 2774 2775 int __test_set_page_writeback(struct page *page, bool keep_write) 2776 { 2777 struct address_space *mapping = page_mapping(page); 2778 int ret, access_ret; 2779 2780 lock_page_memcg(page); 2781 if (mapping && mapping_use_writeback_tags(mapping)) { 2782 XA_STATE(xas, &mapping->i_pages, page_index(page)); 2783 struct inode *inode = mapping->host; 2784 struct backing_dev_info *bdi = inode_to_bdi(inode); 2785 unsigned long flags; 2786 2787 xas_lock_irqsave(&xas, flags); 2788 xas_load(&xas); 2789 ret = TestSetPageWriteback(page); 2790 if (!ret) { 2791 bool on_wblist; 2792 2793 on_wblist = mapping_tagged(mapping, 2794 PAGECACHE_TAG_WRITEBACK); 2795 2796 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2797 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) 2798 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2799 2800 /* 2801 * We can come through here when swapping anonymous 2802 * pages, so we don't necessarily have an inode to track 2803 * for sync. 2804 */ 2805 if (mapping->host && !on_wblist) 2806 sb_mark_inode_writeback(mapping->host); 2807 } 2808 if (!PageDirty(page)) 2809 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 2810 if (!keep_write) 2811 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 2812 xas_unlock_irqrestore(&xas, flags); 2813 } else { 2814 ret = TestSetPageWriteback(page); 2815 } 2816 if (!ret) { 2817 inc_lruvec_page_state(page, NR_WRITEBACK); 2818 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2819 } 2820 unlock_page_memcg(page); 2821 access_ret = arch_make_page_accessible(page); 2822 /* 2823 * If writeback has been triggered on a page that cannot be made 2824 * accessible, it is too late to recover here. 2825 */ 2826 VM_BUG_ON_PAGE(access_ret != 0, page); 2827 2828 return ret; 2829 2830 } 2831 EXPORT_SYMBOL(__test_set_page_writeback); 2832 2833 /* 2834 * Wait for a page to complete writeback 2835 */ 2836 void wait_on_page_writeback(struct page *page) 2837 { 2838 while (PageWriteback(page)) { 2839 trace_wait_on_page_writeback(page, page_mapping(page)); 2840 wait_on_page_bit(page, PG_writeback); 2841 } 2842 } 2843 EXPORT_SYMBOL_GPL(wait_on_page_writeback); 2844 2845 /* 2846 * Wait for a page to complete writeback. Returns -EINTR if we get a 2847 * fatal signal while waiting. 2848 */ 2849 int wait_on_page_writeback_killable(struct page *page) 2850 { 2851 while (PageWriteback(page)) { 2852 trace_wait_on_page_writeback(page, page_mapping(page)); 2853 if (wait_on_page_bit_killable(page, PG_writeback)) 2854 return -EINTR; 2855 } 2856 2857 return 0; 2858 } 2859 EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable); 2860 2861 /** 2862 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2863 * @page: The page to wait on. 2864 * 2865 * This function determines if the given page is related to a backing device 2866 * that requires page contents to be held stable during writeback. If so, then 2867 * it will wait for any pending writeback to complete. 2868 */ 2869 void wait_for_stable_page(struct page *page) 2870 { 2871 page = thp_head(page); 2872 if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES) 2873 wait_on_page_writeback(page); 2874 } 2875 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2876