xref: /linux/mm/page-writeback.c (revision cd354f1ae75e6466a7e31b727faede57a1f89ca5)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to writing back dirty pages at the
7  * address_space level.
8  *
9  * 10Apr2002	akpm@zip.com.au
10  *		Initial version
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/task_io_accounting_ops.h>
25 #include <linux/blkdev.h>
26 #include <linux/mpage.h>
27 #include <linux/rmap.h>
28 #include <linux/percpu.h>
29 #include <linux/notifier.h>
30 #include <linux/smp.h>
31 #include <linux/sysctl.h>
32 #include <linux/cpu.h>
33 #include <linux/syscalls.h>
34 #include <linux/buffer_head.h>
35 #include <linux/pagevec.h>
36 
37 /*
38  * The maximum number of pages to writeout in a single bdflush/kupdate
39  * operation.  We do this so we don't hold I_LOCK against an inode for
40  * enormous amounts of time, which would block a userspace task which has
41  * been forced to throttle against that inode.  Also, the code reevaluates
42  * the dirty each time it has written this many pages.
43  */
44 #define MAX_WRITEBACK_PAGES	1024
45 
46 /*
47  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
48  * will look to see if it needs to force writeback or throttling.
49  */
50 static long ratelimit_pages = 32;
51 
52 static int dirty_exceeded __cacheline_aligned_in_smp;	/* Dirty mem may be over limit */
53 
54 /*
55  * When balance_dirty_pages decides that the caller needs to perform some
56  * non-background writeback, this is how many pages it will attempt to write.
57  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
58  * large amounts of I/O are submitted.
59  */
60 static inline long sync_writeback_pages(void)
61 {
62 	return ratelimit_pages + ratelimit_pages / 2;
63 }
64 
65 /* The following parameters are exported via /proc/sys/vm */
66 
67 /*
68  * Start background writeback (via pdflush) at this percentage
69  */
70 int dirty_background_ratio = 10;
71 
72 /*
73  * The generator of dirty data starts writeback at this percentage
74  */
75 int vm_dirty_ratio = 40;
76 
77 /*
78  * The interval between `kupdate'-style writebacks, in jiffies
79  */
80 int dirty_writeback_interval = 5 * HZ;
81 
82 /*
83  * The longest number of jiffies for which data is allowed to remain dirty
84  */
85 int dirty_expire_interval = 30 * HZ;
86 
87 /*
88  * Flag that makes the machine dump writes/reads and block dirtyings.
89  */
90 int block_dump;
91 
92 /*
93  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
94  * a full sync is triggered after this time elapses without any disk activity.
95  */
96 int laptop_mode;
97 
98 EXPORT_SYMBOL(laptop_mode);
99 
100 /* End of sysctl-exported parameters */
101 
102 
103 static void background_writeout(unsigned long _min_pages);
104 
105 /*
106  * Work out the current dirty-memory clamping and background writeout
107  * thresholds.
108  *
109  * The main aim here is to lower them aggressively if there is a lot of mapped
110  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
111  * pages.  It is better to clamp down on writers than to start swapping, and
112  * performing lots of scanning.
113  *
114  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
115  *
116  * We don't permit the clamping level to fall below 5% - that is getting rather
117  * excessive.
118  *
119  * We make sure that the background writeout level is below the adjusted
120  * clamping level.
121  */
122 static void
123 get_dirty_limits(long *pbackground, long *pdirty,
124 					struct address_space *mapping)
125 {
126 	int background_ratio;		/* Percentages */
127 	int dirty_ratio;
128 	int unmapped_ratio;
129 	long background;
130 	long dirty;
131 	unsigned long available_memory = vm_total_pages;
132 	struct task_struct *tsk;
133 
134 #ifdef CONFIG_HIGHMEM
135 	/*
136 	 * We always exclude high memory from our count.
137 	 */
138 	available_memory -= totalhigh_pages;
139 #endif
140 
141 
142 	unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
143 				global_page_state(NR_ANON_PAGES)) * 100) /
144 					vm_total_pages;
145 
146 	dirty_ratio = vm_dirty_ratio;
147 	if (dirty_ratio > unmapped_ratio / 2)
148 		dirty_ratio = unmapped_ratio / 2;
149 
150 	if (dirty_ratio < 5)
151 		dirty_ratio = 5;
152 
153 	background_ratio = dirty_background_ratio;
154 	if (background_ratio >= dirty_ratio)
155 		background_ratio = dirty_ratio / 2;
156 
157 	background = (background_ratio * available_memory) / 100;
158 	dirty = (dirty_ratio * available_memory) / 100;
159 	tsk = current;
160 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
161 		background += background / 4;
162 		dirty += dirty / 4;
163 	}
164 	*pbackground = background;
165 	*pdirty = dirty;
166 }
167 
168 /*
169  * balance_dirty_pages() must be called by processes which are generating dirty
170  * data.  It looks at the number of dirty pages in the machine and will force
171  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
172  * If we're over `background_thresh' then pdflush is woken to perform some
173  * writeout.
174  */
175 static void balance_dirty_pages(struct address_space *mapping)
176 {
177 	long nr_reclaimable;
178 	long background_thresh;
179 	long dirty_thresh;
180 	unsigned long pages_written = 0;
181 	unsigned long write_chunk = sync_writeback_pages();
182 
183 	struct backing_dev_info *bdi = mapping->backing_dev_info;
184 
185 	for (;;) {
186 		struct writeback_control wbc = {
187 			.bdi		= bdi,
188 			.sync_mode	= WB_SYNC_NONE,
189 			.older_than_this = NULL,
190 			.nr_to_write	= write_chunk,
191 			.range_cyclic	= 1,
192 		};
193 
194 		get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
195 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
196 					global_page_state(NR_UNSTABLE_NFS);
197 		if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
198 			dirty_thresh)
199 				break;
200 
201 		if (!dirty_exceeded)
202 			dirty_exceeded = 1;
203 
204 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
205 		 * Unstable writes are a feature of certain networked
206 		 * filesystems (i.e. NFS) in which data may have been
207 		 * written to the server's write cache, but has not yet
208 		 * been flushed to permanent storage.
209 		 */
210 		if (nr_reclaimable) {
211 			writeback_inodes(&wbc);
212 			get_dirty_limits(&background_thresh,
213 					 	&dirty_thresh, mapping);
214 			nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
215 					global_page_state(NR_UNSTABLE_NFS);
216 			if (nr_reclaimable +
217 				global_page_state(NR_WRITEBACK)
218 					<= dirty_thresh)
219 						break;
220 			pages_written += write_chunk - wbc.nr_to_write;
221 			if (pages_written >= write_chunk)
222 				break;		/* We've done our duty */
223 		}
224 		congestion_wait(WRITE, HZ/10);
225 	}
226 
227 	if (nr_reclaimable + global_page_state(NR_WRITEBACK)
228 		<= dirty_thresh && dirty_exceeded)
229 			dirty_exceeded = 0;
230 
231 	if (writeback_in_progress(bdi))
232 		return;		/* pdflush is already working this queue */
233 
234 	/*
235 	 * In laptop mode, we wait until hitting the higher threshold before
236 	 * starting background writeout, and then write out all the way down
237 	 * to the lower threshold.  So slow writers cause minimal disk activity.
238 	 *
239 	 * In normal mode, we start background writeout at the lower
240 	 * background_thresh, to keep the amount of dirty memory low.
241 	 */
242 	if ((laptop_mode && pages_written) ||
243 	     (!laptop_mode && (nr_reclaimable > background_thresh)))
244 		pdflush_operation(background_writeout, 0);
245 }
246 
247 void set_page_dirty_balance(struct page *page)
248 {
249 	if (set_page_dirty(page)) {
250 		struct address_space *mapping = page_mapping(page);
251 
252 		if (mapping)
253 			balance_dirty_pages_ratelimited(mapping);
254 	}
255 }
256 
257 /**
258  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
259  * @mapping: address_space which was dirtied
260  * @nr_pages_dirtied: number of pages which the caller has just dirtied
261  *
262  * Processes which are dirtying memory should call in here once for each page
263  * which was newly dirtied.  The function will periodically check the system's
264  * dirty state and will initiate writeback if needed.
265  *
266  * On really big machines, get_writeback_state is expensive, so try to avoid
267  * calling it too often (ratelimiting).  But once we're over the dirty memory
268  * limit we decrease the ratelimiting by a lot, to prevent individual processes
269  * from overshooting the limit by (ratelimit_pages) each.
270  */
271 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
272 					unsigned long nr_pages_dirtied)
273 {
274 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
275 	unsigned long ratelimit;
276 	unsigned long *p;
277 
278 	ratelimit = ratelimit_pages;
279 	if (dirty_exceeded)
280 		ratelimit = 8;
281 
282 	/*
283 	 * Check the rate limiting. Also, we do not want to throttle real-time
284 	 * tasks in balance_dirty_pages(). Period.
285 	 */
286 	preempt_disable();
287 	p =  &__get_cpu_var(ratelimits);
288 	*p += nr_pages_dirtied;
289 	if (unlikely(*p >= ratelimit)) {
290 		*p = 0;
291 		preempt_enable();
292 		balance_dirty_pages(mapping);
293 		return;
294 	}
295 	preempt_enable();
296 }
297 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
298 
299 void throttle_vm_writeout(void)
300 {
301 	long background_thresh;
302 	long dirty_thresh;
303 
304         for ( ; ; ) {
305 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
306 
307                 /*
308                  * Boost the allowable dirty threshold a bit for page
309                  * allocators so they don't get DoS'ed by heavy writers
310                  */
311                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
312 
313                 if (global_page_state(NR_UNSTABLE_NFS) +
314 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
315                         	break;
316                 congestion_wait(WRITE, HZ/10);
317         }
318 }
319 
320 
321 /*
322  * writeback at least _min_pages, and keep writing until the amount of dirty
323  * memory is less than the background threshold, or until we're all clean.
324  */
325 static void background_writeout(unsigned long _min_pages)
326 {
327 	long min_pages = _min_pages;
328 	struct writeback_control wbc = {
329 		.bdi		= NULL,
330 		.sync_mode	= WB_SYNC_NONE,
331 		.older_than_this = NULL,
332 		.nr_to_write	= 0,
333 		.nonblocking	= 1,
334 		.range_cyclic	= 1,
335 	};
336 
337 	for ( ; ; ) {
338 		long background_thresh;
339 		long dirty_thresh;
340 
341 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
342 		if (global_page_state(NR_FILE_DIRTY) +
343 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
344 				&& min_pages <= 0)
345 			break;
346 		wbc.encountered_congestion = 0;
347 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
348 		wbc.pages_skipped = 0;
349 		writeback_inodes(&wbc);
350 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
351 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
352 			/* Wrote less than expected */
353 			congestion_wait(WRITE, HZ/10);
354 			if (!wbc.encountered_congestion)
355 				break;
356 		}
357 	}
358 }
359 
360 /*
361  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
362  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
363  * -1 if all pdflush threads were busy.
364  */
365 int wakeup_pdflush(long nr_pages)
366 {
367 	if (nr_pages == 0)
368 		nr_pages = global_page_state(NR_FILE_DIRTY) +
369 				global_page_state(NR_UNSTABLE_NFS);
370 	return pdflush_operation(background_writeout, nr_pages);
371 }
372 
373 static void wb_timer_fn(unsigned long unused);
374 static void laptop_timer_fn(unsigned long unused);
375 
376 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
377 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
378 
379 /*
380  * Periodic writeback of "old" data.
381  *
382  * Define "old": the first time one of an inode's pages is dirtied, we mark the
383  * dirtying-time in the inode's address_space.  So this periodic writeback code
384  * just walks the superblock inode list, writing back any inodes which are
385  * older than a specific point in time.
386  *
387  * Try to run once per dirty_writeback_interval.  But if a writeback event
388  * takes longer than a dirty_writeback_interval interval, then leave a
389  * one-second gap.
390  *
391  * older_than_this takes precedence over nr_to_write.  So we'll only write back
392  * all dirty pages if they are all attached to "old" mappings.
393  */
394 static void wb_kupdate(unsigned long arg)
395 {
396 	unsigned long oldest_jif;
397 	unsigned long start_jif;
398 	unsigned long next_jif;
399 	long nr_to_write;
400 	struct writeback_control wbc = {
401 		.bdi		= NULL,
402 		.sync_mode	= WB_SYNC_NONE,
403 		.older_than_this = &oldest_jif,
404 		.nr_to_write	= 0,
405 		.nonblocking	= 1,
406 		.for_kupdate	= 1,
407 		.range_cyclic	= 1,
408 	};
409 
410 	sync_supers();
411 
412 	oldest_jif = jiffies - dirty_expire_interval;
413 	start_jif = jiffies;
414 	next_jif = start_jif + dirty_writeback_interval;
415 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
416 			global_page_state(NR_UNSTABLE_NFS) +
417 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
418 	while (nr_to_write > 0) {
419 		wbc.encountered_congestion = 0;
420 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
421 		writeback_inodes(&wbc);
422 		if (wbc.nr_to_write > 0) {
423 			if (wbc.encountered_congestion)
424 				congestion_wait(WRITE, HZ/10);
425 			else
426 				break;	/* All the old data is written */
427 		}
428 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
429 	}
430 	if (time_before(next_jif, jiffies + HZ))
431 		next_jif = jiffies + HZ;
432 	if (dirty_writeback_interval)
433 		mod_timer(&wb_timer, next_jif);
434 }
435 
436 /*
437  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
438  */
439 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
440 		struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
441 {
442 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
443 	if (dirty_writeback_interval) {
444 		mod_timer(&wb_timer,
445 			jiffies + dirty_writeback_interval);
446 		} else {
447 		del_timer(&wb_timer);
448 	}
449 	return 0;
450 }
451 
452 static void wb_timer_fn(unsigned long unused)
453 {
454 	if (pdflush_operation(wb_kupdate, 0) < 0)
455 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
456 }
457 
458 static void laptop_flush(unsigned long unused)
459 {
460 	sys_sync();
461 }
462 
463 static void laptop_timer_fn(unsigned long unused)
464 {
465 	pdflush_operation(laptop_flush, 0);
466 }
467 
468 /*
469  * We've spun up the disk and we're in laptop mode: schedule writeback
470  * of all dirty data a few seconds from now.  If the flush is already scheduled
471  * then push it back - the user is still using the disk.
472  */
473 void laptop_io_completion(void)
474 {
475 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
476 }
477 
478 /*
479  * We're in laptop mode and we've just synced. The sync's writes will have
480  * caused another writeback to be scheduled by laptop_io_completion.
481  * Nothing needs to be written back anymore, so we unschedule the writeback.
482  */
483 void laptop_sync_completion(void)
484 {
485 	del_timer(&laptop_mode_wb_timer);
486 }
487 
488 /*
489  * If ratelimit_pages is too high then we can get into dirty-data overload
490  * if a large number of processes all perform writes at the same time.
491  * If it is too low then SMP machines will call the (expensive)
492  * get_writeback_state too often.
493  *
494  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
495  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
496  * thresholds before writeback cuts in.
497  *
498  * But the limit should not be set too high.  Because it also controls the
499  * amount of memory which the balance_dirty_pages() caller has to write back.
500  * If this is too large then the caller will block on the IO queue all the
501  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
502  * will write six megabyte chunks, max.
503  */
504 
505 void writeback_set_ratelimit(void)
506 {
507 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
508 	if (ratelimit_pages < 16)
509 		ratelimit_pages = 16;
510 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
511 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
512 }
513 
514 static int __cpuinit
515 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
516 {
517 	writeback_set_ratelimit();
518 	return NOTIFY_DONE;
519 }
520 
521 static struct notifier_block __cpuinitdata ratelimit_nb = {
522 	.notifier_call	= ratelimit_handler,
523 	.next		= NULL,
524 };
525 
526 /*
527  * Called early on to tune the page writeback dirty limits.
528  *
529  * We used to scale dirty pages according to how total memory
530  * related to pages that could be allocated for buffers (by
531  * comparing nr_free_buffer_pages() to vm_total_pages.
532  *
533  * However, that was when we used "dirty_ratio" to scale with
534  * all memory, and we don't do that any more. "dirty_ratio"
535  * is now applied to total non-HIGHPAGE memory (by subtracting
536  * totalhigh_pages from vm_total_pages), and as such we can't
537  * get into the old insane situation any more where we had
538  * large amounts of dirty pages compared to a small amount of
539  * non-HIGHMEM memory.
540  *
541  * But we might still want to scale the dirty_ratio by how
542  * much memory the box has..
543  */
544 void __init page_writeback_init(void)
545 {
546 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
547 	writeback_set_ratelimit();
548 	register_cpu_notifier(&ratelimit_nb);
549 }
550 
551 /**
552  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
553  * @mapping: address space structure to write
554  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
555  *
556  * This is a library function, which implements the writepages()
557  * address_space_operation.
558  *
559  * If a page is already under I/O, generic_writepages() skips it, even
560  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
561  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
562  * and msync() need to guarantee that all the data which was dirty at the time
563  * the call was made get new I/O started against them.  If wbc->sync_mode is
564  * WB_SYNC_ALL then we were called for data integrity and we must wait for
565  * existing IO to complete.
566  *
567  * Derived from mpage_writepages() - if you fix this you should check that
568  * also!
569  */
570 int generic_writepages(struct address_space *mapping,
571 		       struct writeback_control *wbc)
572 {
573 	struct backing_dev_info *bdi = mapping->backing_dev_info;
574 	int ret = 0;
575 	int done = 0;
576 	int (*writepage)(struct page *page, struct writeback_control *wbc);
577 	struct pagevec pvec;
578 	int nr_pages;
579 	pgoff_t index;
580 	pgoff_t end;		/* Inclusive */
581 	int scanned = 0;
582 	int range_whole = 0;
583 
584 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
585 		wbc->encountered_congestion = 1;
586 		return 0;
587 	}
588 
589 	writepage = mapping->a_ops->writepage;
590 
591 	/* deal with chardevs and other special file */
592 	if (!writepage)
593 		return 0;
594 
595 	pagevec_init(&pvec, 0);
596 	if (wbc->range_cyclic) {
597 		index = mapping->writeback_index; /* Start from prev offset */
598 		end = -1;
599 	} else {
600 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
601 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
602 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
603 			range_whole = 1;
604 		scanned = 1;
605 	}
606 retry:
607 	while (!done && (index <= end) &&
608 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
609 					      PAGECACHE_TAG_DIRTY,
610 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
611 		unsigned i;
612 
613 		scanned = 1;
614 		for (i = 0; i < nr_pages; i++) {
615 			struct page *page = pvec.pages[i];
616 
617 			/*
618 			 * At this point we hold neither mapping->tree_lock nor
619 			 * lock on the page itself: the page may be truncated or
620 			 * invalidated (changing page->mapping to NULL), or even
621 			 * swizzled back from swapper_space to tmpfs file
622 			 * mapping
623 			 */
624 			lock_page(page);
625 
626 			if (unlikely(page->mapping != mapping)) {
627 				unlock_page(page);
628 				continue;
629 			}
630 
631 			if (!wbc->range_cyclic && page->index > end) {
632 				done = 1;
633 				unlock_page(page);
634 				continue;
635 			}
636 
637 			if (wbc->sync_mode != WB_SYNC_NONE)
638 				wait_on_page_writeback(page);
639 
640 			if (PageWriteback(page) ||
641 			    !clear_page_dirty_for_io(page)) {
642 				unlock_page(page);
643 				continue;
644 			}
645 
646 			ret = (*writepage)(page, wbc);
647 			if (ret) {
648 				if (ret == -ENOSPC)
649 					set_bit(AS_ENOSPC, &mapping->flags);
650 				else
651 					set_bit(AS_EIO, &mapping->flags);
652 			}
653 
654 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
655 				unlock_page(page);
656 			if (ret || (--(wbc->nr_to_write) <= 0))
657 				done = 1;
658 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
659 				wbc->encountered_congestion = 1;
660 				done = 1;
661 			}
662 		}
663 		pagevec_release(&pvec);
664 		cond_resched();
665 	}
666 	if (!scanned && !done) {
667 		/*
668 		 * We hit the last page and there is more work to be done: wrap
669 		 * back to the start of the file
670 		 */
671 		scanned = 1;
672 		index = 0;
673 		goto retry;
674 	}
675 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
676 		mapping->writeback_index = index;
677 	return ret;
678 }
679 
680 EXPORT_SYMBOL(generic_writepages);
681 
682 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
683 {
684 	int ret;
685 
686 	if (wbc->nr_to_write <= 0)
687 		return 0;
688 	wbc->for_writepages = 1;
689 	if (mapping->a_ops->writepages)
690 		ret = mapping->a_ops->writepages(mapping, wbc);
691 	else
692 		ret = generic_writepages(mapping, wbc);
693 	wbc->for_writepages = 0;
694 	return ret;
695 }
696 
697 /**
698  * write_one_page - write out a single page and optionally wait on I/O
699  * @page: the page to write
700  * @wait: if true, wait on writeout
701  *
702  * The page must be locked by the caller and will be unlocked upon return.
703  *
704  * write_one_page() returns a negative error code if I/O failed.
705  */
706 int write_one_page(struct page *page, int wait)
707 {
708 	struct address_space *mapping = page->mapping;
709 	int ret = 0;
710 	struct writeback_control wbc = {
711 		.sync_mode = WB_SYNC_ALL,
712 		.nr_to_write = 1,
713 	};
714 
715 	BUG_ON(!PageLocked(page));
716 
717 	if (wait)
718 		wait_on_page_writeback(page);
719 
720 	if (clear_page_dirty_for_io(page)) {
721 		page_cache_get(page);
722 		ret = mapping->a_ops->writepage(page, &wbc);
723 		if (ret == 0 && wait) {
724 			wait_on_page_writeback(page);
725 			if (PageError(page))
726 				ret = -EIO;
727 		}
728 		page_cache_release(page);
729 	} else {
730 		unlock_page(page);
731 	}
732 	return ret;
733 }
734 EXPORT_SYMBOL(write_one_page);
735 
736 /*
737  * For address_spaces which do not use buffers nor write back.
738  */
739 int __set_page_dirty_no_writeback(struct page *page)
740 {
741 	if (!PageDirty(page))
742 		SetPageDirty(page);
743 	return 0;
744 }
745 
746 /*
747  * For address_spaces which do not use buffers.  Just tag the page as dirty in
748  * its radix tree.
749  *
750  * This is also used when a single buffer is being dirtied: we want to set the
751  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
752  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
753  *
754  * Most callers have locked the page, which pins the address_space in memory.
755  * But zap_pte_range() does not lock the page, however in that case the
756  * mapping is pinned by the vma's ->vm_file reference.
757  *
758  * We take care to handle the case where the page was truncated from the
759  * mapping by re-checking page_mapping() insode tree_lock.
760  */
761 int __set_page_dirty_nobuffers(struct page *page)
762 {
763 	if (!TestSetPageDirty(page)) {
764 		struct address_space *mapping = page_mapping(page);
765 		struct address_space *mapping2;
766 
767 		if (!mapping)
768 			return 1;
769 
770 		write_lock_irq(&mapping->tree_lock);
771 		mapping2 = page_mapping(page);
772 		if (mapping2) { /* Race with truncate? */
773 			BUG_ON(mapping2 != mapping);
774 			if (mapping_cap_account_dirty(mapping)) {
775 				__inc_zone_page_state(page, NR_FILE_DIRTY);
776 				task_io_account_write(PAGE_CACHE_SIZE);
777 			}
778 			radix_tree_tag_set(&mapping->page_tree,
779 				page_index(page), PAGECACHE_TAG_DIRTY);
780 		}
781 		write_unlock_irq(&mapping->tree_lock);
782 		if (mapping->host) {
783 			/* !PageAnon && !swapper_space */
784 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
785 		}
786 		return 1;
787 	}
788 	return 0;
789 }
790 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
791 
792 /*
793  * When a writepage implementation decides that it doesn't want to write this
794  * page for some reason, it should redirty the locked page via
795  * redirty_page_for_writepage() and it should then unlock the page and return 0
796  */
797 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
798 {
799 	wbc->pages_skipped++;
800 	return __set_page_dirty_nobuffers(page);
801 }
802 EXPORT_SYMBOL(redirty_page_for_writepage);
803 
804 /*
805  * If the mapping doesn't provide a set_page_dirty a_op, then
806  * just fall through and assume that it wants buffer_heads.
807  */
808 int fastcall set_page_dirty(struct page *page)
809 {
810 	struct address_space *mapping = page_mapping(page);
811 
812 	if (likely(mapping)) {
813 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
814 #ifdef CONFIG_BLOCK
815 		if (!spd)
816 			spd = __set_page_dirty_buffers;
817 #endif
818 		return (*spd)(page);
819 	}
820 	if (!PageDirty(page)) {
821 		if (!TestSetPageDirty(page))
822 			return 1;
823 	}
824 	return 0;
825 }
826 EXPORT_SYMBOL(set_page_dirty);
827 
828 /*
829  * set_page_dirty() is racy if the caller has no reference against
830  * page->mapping->host, and if the page is unlocked.  This is because another
831  * CPU could truncate the page off the mapping and then free the mapping.
832  *
833  * Usually, the page _is_ locked, or the caller is a user-space process which
834  * holds a reference on the inode by having an open file.
835  *
836  * In other cases, the page should be locked before running set_page_dirty().
837  */
838 int set_page_dirty_lock(struct page *page)
839 {
840 	int ret;
841 
842 	lock_page_nosync(page);
843 	ret = set_page_dirty(page);
844 	unlock_page(page);
845 	return ret;
846 }
847 EXPORT_SYMBOL(set_page_dirty_lock);
848 
849 /*
850  * Clear a page's dirty flag, while caring for dirty memory accounting.
851  * Returns true if the page was previously dirty.
852  *
853  * This is for preparing to put the page under writeout.  We leave the page
854  * tagged as dirty in the radix tree so that a concurrent write-for-sync
855  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
856  * implementation will run either set_page_writeback() or set_page_dirty(),
857  * at which stage we bring the page's dirty flag and radix-tree dirty tag
858  * back into sync.
859  *
860  * This incoherency between the page's dirty flag and radix-tree tag is
861  * unfortunate, but it only exists while the page is locked.
862  */
863 int clear_page_dirty_for_io(struct page *page)
864 {
865 	struct address_space *mapping = page_mapping(page);
866 
867 	if (mapping && mapping_cap_account_dirty(mapping)) {
868 		/*
869 		 * Yes, Virginia, this is indeed insane.
870 		 *
871 		 * We use this sequence to make sure that
872 		 *  (a) we account for dirty stats properly
873 		 *  (b) we tell the low-level filesystem to
874 		 *      mark the whole page dirty if it was
875 		 *      dirty in a pagetable. Only to then
876 		 *  (c) clean the page again and return 1 to
877 		 *      cause the writeback.
878 		 *
879 		 * This way we avoid all nasty races with the
880 		 * dirty bit in multiple places and clearing
881 		 * them concurrently from different threads.
882 		 *
883 		 * Note! Normally the "set_page_dirty(page)"
884 		 * has no effect on the actual dirty bit - since
885 		 * that will already usually be set. But we
886 		 * need the side effects, and it can help us
887 		 * avoid races.
888 		 *
889 		 * We basically use the page "master dirty bit"
890 		 * as a serialization point for all the different
891 		 * threads doing their things.
892 		 *
893 		 * FIXME! We still have a race here: if somebody
894 		 * adds the page back to the page tables in
895 		 * between the "page_mkclean()" and the "TestClearPageDirty()",
896 		 * we might have it mapped without the dirty bit set.
897 		 */
898 		if (page_mkclean(page))
899 			set_page_dirty(page);
900 		if (TestClearPageDirty(page)) {
901 			dec_zone_page_state(page, NR_FILE_DIRTY);
902 			return 1;
903 		}
904 		return 0;
905 	}
906 	return TestClearPageDirty(page);
907 }
908 EXPORT_SYMBOL(clear_page_dirty_for_io);
909 
910 int test_clear_page_writeback(struct page *page)
911 {
912 	struct address_space *mapping = page_mapping(page);
913 	int ret;
914 
915 	if (mapping) {
916 		unsigned long flags;
917 
918 		write_lock_irqsave(&mapping->tree_lock, flags);
919 		ret = TestClearPageWriteback(page);
920 		if (ret)
921 			radix_tree_tag_clear(&mapping->page_tree,
922 						page_index(page),
923 						PAGECACHE_TAG_WRITEBACK);
924 		write_unlock_irqrestore(&mapping->tree_lock, flags);
925 	} else {
926 		ret = TestClearPageWriteback(page);
927 	}
928 	return ret;
929 }
930 
931 int test_set_page_writeback(struct page *page)
932 {
933 	struct address_space *mapping = page_mapping(page);
934 	int ret;
935 
936 	if (mapping) {
937 		unsigned long flags;
938 
939 		write_lock_irqsave(&mapping->tree_lock, flags);
940 		ret = TestSetPageWriteback(page);
941 		if (!ret)
942 			radix_tree_tag_set(&mapping->page_tree,
943 						page_index(page),
944 						PAGECACHE_TAG_WRITEBACK);
945 		if (!PageDirty(page))
946 			radix_tree_tag_clear(&mapping->page_tree,
947 						page_index(page),
948 						PAGECACHE_TAG_DIRTY);
949 		write_unlock_irqrestore(&mapping->tree_lock, flags);
950 	} else {
951 		ret = TestSetPageWriteback(page);
952 	}
953 	return ret;
954 
955 }
956 EXPORT_SYMBOL(test_set_page_writeback);
957 
958 /*
959  * Return true if any of the pages in the mapping are marged with the
960  * passed tag.
961  */
962 int mapping_tagged(struct address_space *mapping, int tag)
963 {
964 	unsigned long flags;
965 	int ret;
966 
967 	read_lock_irqsave(&mapping->tree_lock, flags);
968 	ret = radix_tree_tagged(&mapping->page_tree, tag);
969 	read_unlock_irqrestore(&mapping->tree_lock, flags);
970 	return ret;
971 }
972 EXPORT_SYMBOL(mapping_tagged);
973