xref: /linux/mm/page-writeback.c (revision ccea15f45eb0ab12d658f88b5d4be005cb2bb1a7)
1 /*
2  * mm/page-writeback.c.
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to writing back dirty pages at the
7  * address_space level.
8  *
9  * 10Apr2002	akpm@zip.com.au
10  *		Initial version
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
32 
33 /*
34  * The maximum number of pages to writeout in a single bdflush/kupdate
35  * operation.  We do this so we don't hold I_LOCK against an inode for
36  * enormous amounts of time, which would block a userspace task which has
37  * been forced to throttle against that inode.  Also, the code reevaluates
38  * the dirty each time it has written this many pages.
39  */
40 #define MAX_WRITEBACK_PAGES	1024
41 
42 /*
43  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44  * will look to see if it needs to force writeback or throttling.
45  */
46 static long ratelimit_pages = 32;
47 
48 static long total_pages;	/* The total number of pages in the machine. */
49 static int dirty_exceeded __cacheline_aligned_in_smp;	/* Dirty mem may be over limit */
50 
51 /*
52  * When balance_dirty_pages decides that the caller needs to perform some
53  * non-background writeback, this is how many pages it will attempt to write.
54  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55  * large amounts of I/O are submitted.
56  */
57 static inline long sync_writeback_pages(void)
58 {
59 	return ratelimit_pages + ratelimit_pages / 2;
60 }
61 
62 /* The following parameters are exported via /proc/sys/vm */
63 
64 /*
65  * Start background writeback (via pdflush) at this percentage
66  */
67 int dirty_background_ratio = 10;
68 
69 /*
70  * The generator of dirty data starts writeback at this percentage
71  */
72 int vm_dirty_ratio = 40;
73 
74 /*
75  * The interval between `kupdate'-style writebacks, in centiseconds
76  * (hundredths of a second)
77  */
78 int dirty_writeback_interval = 5 * HZ;
79 
80 /*
81  * The longest number of centiseconds for which data is allowed to remain dirty
82  */
83 int dirty_expire_interval = 30 * HZ;
84 
85 /*
86  * Flag that makes the machine dump writes/reads and block dirtyings.
87  */
88 int block_dump;
89 
90 /*
91  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
92  * a full sync is triggered after this time elapses without any disk activity.
93  */
94 int laptop_mode;
95 
96 EXPORT_SYMBOL(laptop_mode);
97 
98 /* End of sysctl-exported parameters */
99 
100 
101 static void background_writeout(unsigned long _min_pages);
102 
103 struct writeback_state
104 {
105 	unsigned long nr_dirty;
106 	unsigned long nr_unstable;
107 	unsigned long nr_mapped;
108 	unsigned long nr_writeback;
109 };
110 
111 static void get_writeback_state(struct writeback_state *wbs)
112 {
113 	wbs->nr_dirty = read_page_state(nr_dirty);
114 	wbs->nr_unstable = read_page_state(nr_unstable);
115 	wbs->nr_mapped = read_page_state(nr_mapped);
116 	wbs->nr_writeback = read_page_state(nr_writeback);
117 }
118 
119 /*
120  * Work out the current dirty-memory clamping and background writeout
121  * thresholds.
122  *
123  * The main aim here is to lower them aggressively if there is a lot of mapped
124  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
125  * pages.  It is better to clamp down on writers than to start swapping, and
126  * performing lots of scanning.
127  *
128  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
129  *
130  * We don't permit the clamping level to fall below 5% - that is getting rather
131  * excessive.
132  *
133  * We make sure that the background writeout level is below the adjusted
134  * clamping level.
135  */
136 static void
137 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
138 		struct address_space *mapping)
139 {
140 	int background_ratio;		/* Percentages */
141 	int dirty_ratio;
142 	int unmapped_ratio;
143 	long background;
144 	long dirty;
145 	unsigned long available_memory = total_pages;
146 	struct task_struct *tsk;
147 
148 	get_writeback_state(wbs);
149 
150 #ifdef CONFIG_HIGHMEM
151 	/*
152 	 * If this mapping can only allocate from low memory,
153 	 * we exclude high memory from our count.
154 	 */
155 	if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
156 		available_memory -= totalhigh_pages;
157 #endif
158 
159 
160 	unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
161 
162 	dirty_ratio = vm_dirty_ratio;
163 	if (dirty_ratio > unmapped_ratio / 2)
164 		dirty_ratio = unmapped_ratio / 2;
165 
166 	if (dirty_ratio < 5)
167 		dirty_ratio = 5;
168 
169 	background_ratio = dirty_background_ratio;
170 	if (background_ratio >= dirty_ratio)
171 		background_ratio = dirty_ratio / 2;
172 
173 	background = (background_ratio * available_memory) / 100;
174 	dirty = (dirty_ratio * available_memory) / 100;
175 	tsk = current;
176 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
177 		background += background / 4;
178 		dirty += dirty / 4;
179 	}
180 	*pbackground = background;
181 	*pdirty = dirty;
182 }
183 
184 /*
185  * balance_dirty_pages() must be called by processes which are generating dirty
186  * data.  It looks at the number of dirty pages in the machine and will force
187  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
188  * If we're over `background_thresh' then pdflush is woken to perform some
189  * writeout.
190  */
191 static void balance_dirty_pages(struct address_space *mapping)
192 {
193 	struct writeback_state wbs;
194 	long nr_reclaimable;
195 	long background_thresh;
196 	long dirty_thresh;
197 	unsigned long pages_written = 0;
198 	unsigned long write_chunk = sync_writeback_pages();
199 
200 	struct backing_dev_info *bdi = mapping->backing_dev_info;
201 
202 	for (;;) {
203 		struct writeback_control wbc = {
204 			.bdi		= bdi,
205 			.sync_mode	= WB_SYNC_NONE,
206 			.older_than_this = NULL,
207 			.nr_to_write	= write_chunk,
208 		};
209 
210 		get_dirty_limits(&wbs, &background_thresh,
211 					&dirty_thresh, mapping);
212 		nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
213 		if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
214 			break;
215 
216 		if (!dirty_exceeded)
217 			dirty_exceeded = 1;
218 
219 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
220 		 * Unstable writes are a feature of certain networked
221 		 * filesystems (i.e. NFS) in which data may have been
222 		 * written to the server's write cache, but has not yet
223 		 * been flushed to permanent storage.
224 		 */
225 		if (nr_reclaimable) {
226 			writeback_inodes(&wbc);
227 			get_dirty_limits(&wbs, &background_thresh,
228 					&dirty_thresh, mapping);
229 			nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
230 			if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
231 				break;
232 			pages_written += write_chunk - wbc.nr_to_write;
233 			if (pages_written >= write_chunk)
234 				break;		/* We've done our duty */
235 		}
236 		blk_congestion_wait(WRITE, HZ/10);
237 	}
238 
239 	if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded)
240 		dirty_exceeded = 0;
241 
242 	if (writeback_in_progress(bdi))
243 		return;		/* pdflush is already working this queue */
244 
245 	/*
246 	 * In laptop mode, we wait until hitting the higher threshold before
247 	 * starting background writeout, and then write out all the way down
248 	 * to the lower threshold.  So slow writers cause minimal disk activity.
249 	 *
250 	 * In normal mode, we start background writeout at the lower
251 	 * background_thresh, to keep the amount of dirty memory low.
252 	 */
253 	if ((laptop_mode && pages_written) ||
254 	     (!laptop_mode && (nr_reclaimable > background_thresh)))
255 		pdflush_operation(background_writeout, 0);
256 }
257 
258 /**
259  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
260  * @mapping: address_space which was dirtied
261  * @nr_pages_dirtied: number of pages which the caller has just dirtied
262  *
263  * Processes which are dirtying memory should call in here once for each page
264  * which was newly dirtied.  The function will periodically check the system's
265  * dirty state and will initiate writeback if needed.
266  *
267  * On really big machines, get_writeback_state is expensive, so try to avoid
268  * calling it too often (ratelimiting).  But once we're over the dirty memory
269  * limit we decrease the ratelimiting by a lot, to prevent individual processes
270  * from overshooting the limit by (ratelimit_pages) each.
271  */
272 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
273 					unsigned long nr_pages_dirtied)
274 {
275 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
276 	unsigned long ratelimit;
277 	unsigned long *p;
278 
279 	ratelimit = ratelimit_pages;
280 	if (dirty_exceeded)
281 		ratelimit = 8;
282 
283 	/*
284 	 * Check the rate limiting. Also, we do not want to throttle real-time
285 	 * tasks in balance_dirty_pages(). Period.
286 	 */
287 	preempt_disable();
288 	p =  &__get_cpu_var(ratelimits);
289 	*p += nr_pages_dirtied;
290 	if (unlikely(*p >= ratelimit)) {
291 		*p = 0;
292 		preempt_enable();
293 		balance_dirty_pages(mapping);
294 		return;
295 	}
296 	preempt_enable();
297 }
298 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
299 
300 void throttle_vm_writeout(void)
301 {
302 	struct writeback_state wbs;
303 	long background_thresh;
304 	long dirty_thresh;
305 
306         for ( ; ; ) {
307 		get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
308 
309                 /*
310                  * Boost the allowable dirty threshold a bit for page
311                  * allocators so they don't get DoS'ed by heavy writers
312                  */
313                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
314 
315                 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
316                         break;
317                 blk_congestion_wait(WRITE, HZ/10);
318         }
319 }
320 
321 
322 /*
323  * writeback at least _min_pages, and keep writing until the amount of dirty
324  * memory is less than the background threshold, or until we're all clean.
325  */
326 static void background_writeout(unsigned long _min_pages)
327 {
328 	long min_pages = _min_pages;
329 	struct writeback_control wbc = {
330 		.bdi		= NULL,
331 		.sync_mode	= WB_SYNC_NONE,
332 		.older_than_this = NULL,
333 		.nr_to_write	= 0,
334 		.nonblocking	= 1,
335 	};
336 
337 	for ( ; ; ) {
338 		struct writeback_state wbs;
339 		long background_thresh;
340 		long dirty_thresh;
341 
342 		get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
343 		if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
344 				&& min_pages <= 0)
345 			break;
346 		wbc.encountered_congestion = 0;
347 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
348 		wbc.pages_skipped = 0;
349 		writeback_inodes(&wbc);
350 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
351 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
352 			/* Wrote less than expected */
353 			blk_congestion_wait(WRITE, HZ/10);
354 			if (!wbc.encountered_congestion)
355 				break;
356 		}
357 	}
358 }
359 
360 /*
361  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
362  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
363  * -1 if all pdflush threads were busy.
364  */
365 int wakeup_pdflush(long nr_pages)
366 {
367 	if (nr_pages == 0) {
368 		struct writeback_state wbs;
369 
370 		get_writeback_state(&wbs);
371 		nr_pages = wbs.nr_dirty + wbs.nr_unstable;
372 	}
373 	return pdflush_operation(background_writeout, nr_pages);
374 }
375 
376 static void wb_timer_fn(unsigned long unused);
377 static void laptop_timer_fn(unsigned long unused);
378 
379 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
380 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
381 
382 /*
383  * Periodic writeback of "old" data.
384  *
385  * Define "old": the first time one of an inode's pages is dirtied, we mark the
386  * dirtying-time in the inode's address_space.  So this periodic writeback code
387  * just walks the superblock inode list, writing back any inodes which are
388  * older than a specific point in time.
389  *
390  * Try to run once per dirty_writeback_interval.  But if a writeback event
391  * takes longer than a dirty_writeback_interval interval, then leave a
392  * one-second gap.
393  *
394  * older_than_this takes precedence over nr_to_write.  So we'll only write back
395  * all dirty pages if they are all attached to "old" mappings.
396  */
397 static void wb_kupdate(unsigned long arg)
398 {
399 	unsigned long oldest_jif;
400 	unsigned long start_jif;
401 	unsigned long next_jif;
402 	long nr_to_write;
403 	struct writeback_state wbs;
404 	struct writeback_control wbc = {
405 		.bdi		= NULL,
406 		.sync_mode	= WB_SYNC_NONE,
407 		.older_than_this = &oldest_jif,
408 		.nr_to_write	= 0,
409 		.nonblocking	= 1,
410 		.for_kupdate	= 1,
411 	};
412 
413 	sync_supers();
414 
415 	get_writeback_state(&wbs);
416 	oldest_jif = jiffies - dirty_expire_interval;
417 	start_jif = jiffies;
418 	next_jif = start_jif + dirty_writeback_interval;
419 	nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
420 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
421 	while (nr_to_write > 0) {
422 		wbc.encountered_congestion = 0;
423 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
424 		writeback_inodes(&wbc);
425 		if (wbc.nr_to_write > 0) {
426 			if (wbc.encountered_congestion)
427 				blk_congestion_wait(WRITE, HZ/10);
428 			else
429 				break;	/* All the old data is written */
430 		}
431 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
432 	}
433 	if (time_before(next_jif, jiffies + HZ))
434 		next_jif = jiffies + HZ;
435 	if (dirty_writeback_interval)
436 		mod_timer(&wb_timer, next_jif);
437 }
438 
439 /*
440  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
441  */
442 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
443 		struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
444 {
445 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
446 	if (dirty_writeback_interval) {
447 		mod_timer(&wb_timer,
448 			jiffies + dirty_writeback_interval);
449 		} else {
450 		del_timer(&wb_timer);
451 	}
452 	return 0;
453 }
454 
455 static void wb_timer_fn(unsigned long unused)
456 {
457 	if (pdflush_operation(wb_kupdate, 0) < 0)
458 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
459 }
460 
461 static void laptop_flush(unsigned long unused)
462 {
463 	sys_sync();
464 }
465 
466 static void laptop_timer_fn(unsigned long unused)
467 {
468 	pdflush_operation(laptop_flush, 0);
469 }
470 
471 /*
472  * We've spun up the disk and we're in laptop mode: schedule writeback
473  * of all dirty data a few seconds from now.  If the flush is already scheduled
474  * then push it back - the user is still using the disk.
475  */
476 void laptop_io_completion(void)
477 {
478 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
479 }
480 
481 /*
482  * We're in laptop mode and we've just synced. The sync's writes will have
483  * caused another writeback to be scheduled by laptop_io_completion.
484  * Nothing needs to be written back anymore, so we unschedule the writeback.
485  */
486 void laptop_sync_completion(void)
487 {
488 	del_timer(&laptop_mode_wb_timer);
489 }
490 
491 /*
492  * If ratelimit_pages is too high then we can get into dirty-data overload
493  * if a large number of processes all perform writes at the same time.
494  * If it is too low then SMP machines will call the (expensive)
495  * get_writeback_state too often.
496  *
497  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
498  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
499  * thresholds before writeback cuts in.
500  *
501  * But the limit should not be set too high.  Because it also controls the
502  * amount of memory which the balance_dirty_pages() caller has to write back.
503  * If this is too large then the caller will block on the IO queue all the
504  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
505  * will write six megabyte chunks, max.
506  */
507 
508 static void set_ratelimit(void)
509 {
510 	ratelimit_pages = total_pages / (num_online_cpus() * 32);
511 	if (ratelimit_pages < 16)
512 		ratelimit_pages = 16;
513 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
514 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
515 }
516 
517 static int
518 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
519 {
520 	set_ratelimit();
521 	return 0;
522 }
523 
524 static struct notifier_block ratelimit_nb = {
525 	.notifier_call	= ratelimit_handler,
526 	.next		= NULL,
527 };
528 
529 /*
530  * If the machine has a large highmem:lowmem ratio then scale back the default
531  * dirty memory thresholds: allowing too much dirty highmem pins an excessive
532  * number of buffer_heads.
533  */
534 void __init page_writeback_init(void)
535 {
536 	long buffer_pages = nr_free_buffer_pages();
537 	long correction;
538 
539 	total_pages = nr_free_pagecache_pages();
540 
541 	correction = (100 * 4 * buffer_pages) / total_pages;
542 
543 	if (correction < 100) {
544 		dirty_background_ratio *= correction;
545 		dirty_background_ratio /= 100;
546 		vm_dirty_ratio *= correction;
547 		vm_dirty_ratio /= 100;
548 
549 		if (dirty_background_ratio <= 0)
550 			dirty_background_ratio = 1;
551 		if (vm_dirty_ratio <= 0)
552 			vm_dirty_ratio = 1;
553 	}
554 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
555 	set_ratelimit();
556 	register_cpu_notifier(&ratelimit_nb);
557 }
558 
559 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
560 {
561 	int ret;
562 
563 	if (wbc->nr_to_write <= 0)
564 		return 0;
565 	wbc->for_writepages = 1;
566 	if (mapping->a_ops->writepages)
567 		ret =  mapping->a_ops->writepages(mapping, wbc);
568 	else
569 		ret = generic_writepages(mapping, wbc);
570 	wbc->for_writepages = 0;
571 	return ret;
572 }
573 
574 /**
575  * write_one_page - write out a single page and optionally wait on I/O
576  *
577  * @page: the page to write
578  * @wait: if true, wait on writeout
579  *
580  * The page must be locked by the caller and will be unlocked upon return.
581  *
582  * write_one_page() returns a negative error code if I/O failed.
583  */
584 int write_one_page(struct page *page, int wait)
585 {
586 	struct address_space *mapping = page->mapping;
587 	int ret = 0;
588 	struct writeback_control wbc = {
589 		.sync_mode = WB_SYNC_ALL,
590 		.nr_to_write = 1,
591 	};
592 
593 	BUG_ON(!PageLocked(page));
594 
595 	if (wait)
596 		wait_on_page_writeback(page);
597 
598 	if (clear_page_dirty_for_io(page)) {
599 		page_cache_get(page);
600 		ret = mapping->a_ops->writepage(page, &wbc);
601 		if (ret == 0 && wait) {
602 			wait_on_page_writeback(page);
603 			if (PageError(page))
604 				ret = -EIO;
605 		}
606 		page_cache_release(page);
607 	} else {
608 		unlock_page(page);
609 	}
610 	return ret;
611 }
612 EXPORT_SYMBOL(write_one_page);
613 
614 /*
615  * For address_spaces which do not use buffers.  Just tag the page as dirty in
616  * its radix tree.
617  *
618  * This is also used when a single buffer is being dirtied: we want to set the
619  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
620  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
621  *
622  * Most callers have locked the page, which pins the address_space in memory.
623  * But zap_pte_range() does not lock the page, however in that case the
624  * mapping is pinned by the vma's ->vm_file reference.
625  *
626  * We take care to handle the case where the page was truncated from the
627  * mapping by re-checking page_mapping() insode tree_lock.
628  */
629 int __set_page_dirty_nobuffers(struct page *page)
630 {
631 	if (!TestSetPageDirty(page)) {
632 		struct address_space *mapping = page_mapping(page);
633 		struct address_space *mapping2;
634 
635 		if (mapping) {
636 			write_lock_irq(&mapping->tree_lock);
637 			mapping2 = page_mapping(page);
638 			if (mapping2) { /* Race with truncate? */
639 				BUG_ON(mapping2 != mapping);
640 				if (mapping_cap_account_dirty(mapping))
641 					inc_page_state(nr_dirty);
642 				radix_tree_tag_set(&mapping->page_tree,
643 					page_index(page), PAGECACHE_TAG_DIRTY);
644 			}
645 			write_unlock_irq(&mapping->tree_lock);
646 			if (mapping->host) {
647 				/* !PageAnon && !swapper_space */
648 				__mark_inode_dirty(mapping->host,
649 							I_DIRTY_PAGES);
650 			}
651 		}
652 		return 1;
653 	}
654 	return 0;
655 }
656 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
657 
658 /*
659  * When a writepage implementation decides that it doesn't want to write this
660  * page for some reason, it should redirty the locked page via
661  * redirty_page_for_writepage() and it should then unlock the page and return 0
662  */
663 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
664 {
665 	wbc->pages_skipped++;
666 	return __set_page_dirty_nobuffers(page);
667 }
668 EXPORT_SYMBOL(redirty_page_for_writepage);
669 
670 /*
671  * If the mapping doesn't provide a set_page_dirty a_op, then
672  * just fall through and assume that it wants buffer_heads.
673  */
674 int fastcall set_page_dirty(struct page *page)
675 {
676 	struct address_space *mapping = page_mapping(page);
677 
678 	if (likely(mapping)) {
679 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
680 		if (spd)
681 			return (*spd)(page);
682 		return __set_page_dirty_buffers(page);
683 	}
684 	if (!PageDirty(page)) {
685 		if (!TestSetPageDirty(page))
686 			return 1;
687 	}
688 	return 0;
689 }
690 EXPORT_SYMBOL(set_page_dirty);
691 
692 /*
693  * set_page_dirty() is racy if the caller has no reference against
694  * page->mapping->host, and if the page is unlocked.  This is because another
695  * CPU could truncate the page off the mapping and then free the mapping.
696  *
697  * Usually, the page _is_ locked, or the caller is a user-space process which
698  * holds a reference on the inode by having an open file.
699  *
700  * In other cases, the page should be locked before running set_page_dirty().
701  */
702 int set_page_dirty_lock(struct page *page)
703 {
704 	int ret;
705 
706 	lock_page(page);
707 	ret = set_page_dirty(page);
708 	unlock_page(page);
709 	return ret;
710 }
711 EXPORT_SYMBOL(set_page_dirty_lock);
712 
713 /*
714  * Clear a page's dirty flag, while caring for dirty memory accounting.
715  * Returns true if the page was previously dirty.
716  */
717 int test_clear_page_dirty(struct page *page)
718 {
719 	struct address_space *mapping = page_mapping(page);
720 	unsigned long flags;
721 
722 	if (mapping) {
723 		write_lock_irqsave(&mapping->tree_lock, flags);
724 		if (TestClearPageDirty(page)) {
725 			radix_tree_tag_clear(&mapping->page_tree,
726 						page_index(page),
727 						PAGECACHE_TAG_DIRTY);
728 			write_unlock_irqrestore(&mapping->tree_lock, flags);
729 			if (mapping_cap_account_dirty(mapping))
730 				dec_page_state(nr_dirty);
731 			return 1;
732 		}
733 		write_unlock_irqrestore(&mapping->tree_lock, flags);
734 		return 0;
735 	}
736 	return TestClearPageDirty(page);
737 }
738 EXPORT_SYMBOL(test_clear_page_dirty);
739 
740 /*
741  * Clear a page's dirty flag, while caring for dirty memory accounting.
742  * Returns true if the page was previously dirty.
743  *
744  * This is for preparing to put the page under writeout.  We leave the page
745  * tagged as dirty in the radix tree so that a concurrent write-for-sync
746  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
747  * implementation will run either set_page_writeback() or set_page_dirty(),
748  * at which stage we bring the page's dirty flag and radix-tree dirty tag
749  * back into sync.
750  *
751  * This incoherency between the page's dirty flag and radix-tree tag is
752  * unfortunate, but it only exists while the page is locked.
753  */
754 int clear_page_dirty_for_io(struct page *page)
755 {
756 	struct address_space *mapping = page_mapping(page);
757 
758 	if (mapping) {
759 		if (TestClearPageDirty(page)) {
760 			if (mapping_cap_account_dirty(mapping))
761 				dec_page_state(nr_dirty);
762 			return 1;
763 		}
764 		return 0;
765 	}
766 	return TestClearPageDirty(page);
767 }
768 EXPORT_SYMBOL(clear_page_dirty_for_io);
769 
770 int test_clear_page_writeback(struct page *page)
771 {
772 	struct address_space *mapping = page_mapping(page);
773 	int ret;
774 
775 	if (mapping) {
776 		unsigned long flags;
777 
778 		write_lock_irqsave(&mapping->tree_lock, flags);
779 		ret = TestClearPageWriteback(page);
780 		if (ret)
781 			radix_tree_tag_clear(&mapping->page_tree,
782 						page_index(page),
783 						PAGECACHE_TAG_WRITEBACK);
784 		write_unlock_irqrestore(&mapping->tree_lock, flags);
785 	} else {
786 		ret = TestClearPageWriteback(page);
787 	}
788 	return ret;
789 }
790 
791 int test_set_page_writeback(struct page *page)
792 {
793 	struct address_space *mapping = page_mapping(page);
794 	int ret;
795 
796 	if (mapping) {
797 		unsigned long flags;
798 
799 		write_lock_irqsave(&mapping->tree_lock, flags);
800 		ret = TestSetPageWriteback(page);
801 		if (!ret)
802 			radix_tree_tag_set(&mapping->page_tree,
803 						page_index(page),
804 						PAGECACHE_TAG_WRITEBACK);
805 		if (!PageDirty(page))
806 			radix_tree_tag_clear(&mapping->page_tree,
807 						page_index(page),
808 						PAGECACHE_TAG_DIRTY);
809 		write_unlock_irqrestore(&mapping->tree_lock, flags);
810 	} else {
811 		ret = TestSetPageWriteback(page);
812 	}
813 	return ret;
814 
815 }
816 EXPORT_SYMBOL(test_set_page_writeback);
817 
818 /*
819  * Return true if any of the pages in the mapping are marged with the
820  * passed tag.
821  */
822 int mapping_tagged(struct address_space *mapping, int tag)
823 {
824 	unsigned long flags;
825 	int ret;
826 
827 	read_lock_irqsave(&mapping->tree_lock, flags);
828 	ret = radix_tree_tagged(&mapping->page_tree, tag);
829 	read_unlock_irqrestore(&mapping->tree_lock, flags);
830 	return ret;
831 }
832 EXPORT_SYMBOL(mapping_tagged);
833