1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 #include <trace/events/writeback.h> 38 39 /* 40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 41 * will look to see if it needs to force writeback or throttling. 42 */ 43 static long ratelimit_pages = 32; 44 45 /* 46 * When balance_dirty_pages decides that the caller needs to perform some 47 * non-background writeback, this is how many pages it will attempt to write. 48 * It should be somewhat larger than dirtied pages to ensure that reasonably 49 * large amounts of I/O are submitted. 50 */ 51 static inline long sync_writeback_pages(unsigned long dirtied) 52 { 53 if (dirtied < ratelimit_pages) 54 dirtied = ratelimit_pages; 55 56 return dirtied + dirtied / 2; 57 } 58 59 /* The following parameters are exported via /proc/sys/vm */ 60 61 /* 62 * Start background writeback (via writeback threads) at this percentage 63 */ 64 int dirty_background_ratio = 10; 65 66 /* 67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 68 * dirty_background_ratio * the amount of dirtyable memory 69 */ 70 unsigned long dirty_background_bytes; 71 72 /* 73 * free highmem will not be subtracted from the total free memory 74 * for calculating free ratios if vm_highmem_is_dirtyable is true 75 */ 76 int vm_highmem_is_dirtyable; 77 78 /* 79 * The generator of dirty data starts writeback at this percentage 80 */ 81 int vm_dirty_ratio = 20; 82 83 /* 84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 85 * vm_dirty_ratio * the amount of dirtyable memory 86 */ 87 unsigned long vm_dirty_bytes; 88 89 /* 90 * The interval between `kupdate'-style writebacks 91 */ 92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 93 94 /* 95 * The longest time for which data is allowed to remain dirty 96 */ 97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 98 99 /* 100 * Flag that makes the machine dump writes/reads and block dirtyings. 101 */ 102 int block_dump; 103 104 /* 105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 106 * a full sync is triggered after this time elapses without any disk activity. 107 */ 108 int laptop_mode; 109 110 EXPORT_SYMBOL(laptop_mode); 111 112 /* End of sysctl-exported parameters */ 113 114 115 /* 116 * Scale the writeback cache size proportional to the relative writeout speeds. 117 * 118 * We do this by keeping a floating proportion between BDIs, based on page 119 * writeback completions [end_page_writeback()]. Those devices that write out 120 * pages fastest will get the larger share, while the slower will get a smaller 121 * share. 122 * 123 * We use page writeout completions because we are interested in getting rid of 124 * dirty pages. Having them written out is the primary goal. 125 * 126 * We introduce a concept of time, a period over which we measure these events, 127 * because demand can/will vary over time. The length of this period itself is 128 * measured in page writeback completions. 129 * 130 */ 131 static struct prop_descriptor vm_completions; 132 static struct prop_descriptor vm_dirties; 133 134 /* 135 * couple the period to the dirty_ratio: 136 * 137 * period/2 ~ roundup_pow_of_two(dirty limit) 138 */ 139 static int calc_period_shift(void) 140 { 141 unsigned long dirty_total; 142 143 if (vm_dirty_bytes) 144 dirty_total = vm_dirty_bytes / PAGE_SIZE; 145 else 146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 147 100; 148 return 2 + ilog2(dirty_total - 1); 149 } 150 151 /* 152 * update the period when the dirty threshold changes. 153 */ 154 static void update_completion_period(void) 155 { 156 int shift = calc_period_shift(); 157 prop_change_shift(&vm_completions, shift); 158 prop_change_shift(&vm_dirties, shift); 159 } 160 161 int dirty_background_ratio_handler(struct ctl_table *table, int write, 162 void __user *buffer, size_t *lenp, 163 loff_t *ppos) 164 { 165 int ret; 166 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 168 if (ret == 0 && write) 169 dirty_background_bytes = 0; 170 return ret; 171 } 172 173 int dirty_background_bytes_handler(struct ctl_table *table, int write, 174 void __user *buffer, size_t *lenp, 175 loff_t *ppos) 176 { 177 int ret; 178 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 180 if (ret == 0 && write) 181 dirty_background_ratio = 0; 182 return ret; 183 } 184 185 int dirty_ratio_handler(struct ctl_table *table, int write, 186 void __user *buffer, size_t *lenp, 187 loff_t *ppos) 188 { 189 int old_ratio = vm_dirty_ratio; 190 int ret; 191 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 194 update_completion_period(); 195 vm_dirty_bytes = 0; 196 } 197 return ret; 198 } 199 200 201 int dirty_bytes_handler(struct ctl_table *table, int write, 202 void __user *buffer, size_t *lenp, 203 loff_t *ppos) 204 { 205 unsigned long old_bytes = vm_dirty_bytes; 206 int ret; 207 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 210 update_completion_period(); 211 vm_dirty_ratio = 0; 212 } 213 return ret; 214 } 215 216 /* 217 * Increment the BDI's writeout completion count and the global writeout 218 * completion count. Called from test_clear_page_writeback(). 219 */ 220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 221 { 222 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 223 bdi->max_prop_frac); 224 } 225 226 void bdi_writeout_inc(struct backing_dev_info *bdi) 227 { 228 unsigned long flags; 229 230 local_irq_save(flags); 231 __bdi_writeout_inc(bdi); 232 local_irq_restore(flags); 233 } 234 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 235 236 void task_dirty_inc(struct task_struct *tsk) 237 { 238 prop_inc_single(&vm_dirties, &tsk->dirties); 239 } 240 241 /* 242 * Obtain an accurate fraction of the BDI's portion. 243 */ 244 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 245 long *numerator, long *denominator) 246 { 247 if (bdi_cap_writeback_dirty(bdi)) { 248 prop_fraction_percpu(&vm_completions, &bdi->completions, 249 numerator, denominator); 250 } else { 251 *numerator = 0; 252 *denominator = 1; 253 } 254 } 255 256 /* 257 * Clip the earned share of dirty pages to that which is actually available. 258 * This avoids exceeding the total dirty_limit when the floating averages 259 * fluctuate too quickly. 260 */ 261 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi, 262 unsigned long dirty, unsigned long *pbdi_dirty) 263 { 264 unsigned long avail_dirty; 265 266 avail_dirty = global_page_state(NR_FILE_DIRTY) + 267 global_page_state(NR_WRITEBACK) + 268 global_page_state(NR_UNSTABLE_NFS) + 269 global_page_state(NR_WRITEBACK_TEMP); 270 271 if (avail_dirty < dirty) 272 avail_dirty = dirty - avail_dirty; 273 else 274 avail_dirty = 0; 275 276 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + 277 bdi_stat(bdi, BDI_WRITEBACK); 278 279 *pbdi_dirty = min(*pbdi_dirty, avail_dirty); 280 } 281 282 static inline void task_dirties_fraction(struct task_struct *tsk, 283 long *numerator, long *denominator) 284 { 285 prop_fraction_single(&vm_dirties, &tsk->dirties, 286 numerator, denominator); 287 } 288 289 /* 290 * scale the dirty limit 291 * 292 * task specific dirty limit: 293 * 294 * dirty -= (dirty/8) * p_{t} 295 */ 296 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) 297 { 298 long numerator, denominator; 299 unsigned long dirty = *pdirty; 300 u64 inv = dirty >> 3; 301 302 task_dirties_fraction(tsk, &numerator, &denominator); 303 inv *= numerator; 304 do_div(inv, denominator); 305 306 dirty -= inv; 307 if (dirty < *pdirty/2) 308 dirty = *pdirty/2; 309 310 *pdirty = dirty; 311 } 312 313 /* 314 * 315 */ 316 static unsigned int bdi_min_ratio; 317 318 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 319 { 320 int ret = 0; 321 322 spin_lock_bh(&bdi_lock); 323 if (min_ratio > bdi->max_ratio) { 324 ret = -EINVAL; 325 } else { 326 min_ratio -= bdi->min_ratio; 327 if (bdi_min_ratio + min_ratio < 100) { 328 bdi_min_ratio += min_ratio; 329 bdi->min_ratio += min_ratio; 330 } else { 331 ret = -EINVAL; 332 } 333 } 334 spin_unlock_bh(&bdi_lock); 335 336 return ret; 337 } 338 339 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 340 { 341 int ret = 0; 342 343 if (max_ratio > 100) 344 return -EINVAL; 345 346 spin_lock_bh(&bdi_lock); 347 if (bdi->min_ratio > max_ratio) { 348 ret = -EINVAL; 349 } else { 350 bdi->max_ratio = max_ratio; 351 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 352 } 353 spin_unlock_bh(&bdi_lock); 354 355 return ret; 356 } 357 EXPORT_SYMBOL(bdi_set_max_ratio); 358 359 /* 360 * Work out the current dirty-memory clamping and background writeout 361 * thresholds. 362 * 363 * The main aim here is to lower them aggressively if there is a lot of mapped 364 * memory around. To avoid stressing page reclaim with lots of unreclaimable 365 * pages. It is better to clamp down on writers than to start swapping, and 366 * performing lots of scanning. 367 * 368 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 369 * 370 * We don't permit the clamping level to fall below 5% - that is getting rather 371 * excessive. 372 * 373 * We make sure that the background writeout level is below the adjusted 374 * clamping level. 375 */ 376 377 static unsigned long highmem_dirtyable_memory(unsigned long total) 378 { 379 #ifdef CONFIG_HIGHMEM 380 int node; 381 unsigned long x = 0; 382 383 for_each_node_state(node, N_HIGH_MEMORY) { 384 struct zone *z = 385 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 386 387 x += zone_page_state(z, NR_FREE_PAGES) + 388 zone_reclaimable_pages(z); 389 } 390 /* 391 * Make sure that the number of highmem pages is never larger 392 * than the number of the total dirtyable memory. This can only 393 * occur in very strange VM situations but we want to make sure 394 * that this does not occur. 395 */ 396 return min(x, total); 397 #else 398 return 0; 399 #endif 400 } 401 402 /** 403 * determine_dirtyable_memory - amount of memory that may be used 404 * 405 * Returns the numebr of pages that can currently be freed and used 406 * by the kernel for direct mappings. 407 */ 408 unsigned long determine_dirtyable_memory(void) 409 { 410 unsigned long x; 411 412 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 413 414 if (!vm_highmem_is_dirtyable) 415 x -= highmem_dirtyable_memory(x); 416 417 return x + 1; /* Ensure that we never return 0 */ 418 } 419 420 void 421 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, 422 unsigned long *pbdi_dirty, struct backing_dev_info *bdi) 423 { 424 unsigned long background; 425 unsigned long dirty; 426 unsigned long available_memory = determine_dirtyable_memory(); 427 struct task_struct *tsk; 428 429 if (vm_dirty_bytes) 430 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 431 else { 432 int dirty_ratio; 433 434 dirty_ratio = vm_dirty_ratio; 435 if (dirty_ratio < 5) 436 dirty_ratio = 5; 437 dirty = (dirty_ratio * available_memory) / 100; 438 } 439 440 if (dirty_background_bytes) 441 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 442 else 443 background = (dirty_background_ratio * available_memory) / 100; 444 445 if (background >= dirty) 446 background = dirty / 2; 447 tsk = current; 448 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 449 background += background / 4; 450 dirty += dirty / 4; 451 } 452 *pbackground = background; 453 *pdirty = dirty; 454 455 if (bdi) { 456 u64 bdi_dirty; 457 long numerator, denominator; 458 459 /* 460 * Calculate this BDI's share of the dirty ratio. 461 */ 462 bdi_writeout_fraction(bdi, &numerator, &denominator); 463 464 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 465 bdi_dirty *= numerator; 466 do_div(bdi_dirty, denominator); 467 bdi_dirty += (dirty * bdi->min_ratio) / 100; 468 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 469 bdi_dirty = dirty * bdi->max_ratio / 100; 470 471 *pbdi_dirty = bdi_dirty; 472 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); 473 task_dirty_limit(current, pbdi_dirty); 474 } 475 } 476 477 /* 478 * balance_dirty_pages() must be called by processes which are generating dirty 479 * data. It looks at the number of dirty pages in the machine and will force 480 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 481 * If we're over `background_thresh' then the writeback threads are woken to 482 * perform some writeout. 483 */ 484 static void balance_dirty_pages(struct address_space *mapping, 485 unsigned long write_chunk) 486 { 487 long nr_reclaimable, bdi_nr_reclaimable; 488 long nr_writeback, bdi_nr_writeback; 489 unsigned long background_thresh; 490 unsigned long dirty_thresh; 491 unsigned long bdi_thresh; 492 unsigned long pages_written = 0; 493 unsigned long pause = 1; 494 495 struct backing_dev_info *bdi = mapping->backing_dev_info; 496 497 for (;;) { 498 struct writeback_control wbc = { 499 .sync_mode = WB_SYNC_NONE, 500 .older_than_this = NULL, 501 .nr_to_write = write_chunk, 502 .range_cyclic = 1, 503 }; 504 505 get_dirty_limits(&background_thresh, &dirty_thresh, 506 &bdi_thresh, bdi); 507 508 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 509 global_page_state(NR_UNSTABLE_NFS); 510 nr_writeback = global_page_state(NR_WRITEBACK); 511 512 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 513 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 514 515 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 516 break; 517 518 /* 519 * Throttle it only when the background writeback cannot 520 * catch-up. This avoids (excessively) small writeouts 521 * when the bdi limits are ramping up. 522 */ 523 if (nr_reclaimable + nr_writeback < 524 (background_thresh + dirty_thresh) / 2) 525 break; 526 527 if (!bdi->dirty_exceeded) 528 bdi->dirty_exceeded = 1; 529 530 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 531 * Unstable writes are a feature of certain networked 532 * filesystems (i.e. NFS) in which data may have been 533 * written to the server's write cache, but has not yet 534 * been flushed to permanent storage. 535 * Only move pages to writeback if this bdi is over its 536 * threshold otherwise wait until the disk writes catch 537 * up. 538 */ 539 trace_wbc_balance_dirty_start(&wbc, bdi); 540 if (bdi_nr_reclaimable > bdi_thresh) { 541 writeback_inodes_wb(&bdi->wb, &wbc); 542 pages_written += write_chunk - wbc.nr_to_write; 543 get_dirty_limits(&background_thresh, &dirty_thresh, 544 &bdi_thresh, bdi); 545 trace_wbc_balance_dirty_written(&wbc, bdi); 546 } 547 548 /* 549 * In order to avoid the stacked BDI deadlock we need 550 * to ensure we accurately count the 'dirty' pages when 551 * the threshold is low. 552 * 553 * Otherwise it would be possible to get thresh+n pages 554 * reported dirty, even though there are thresh-m pages 555 * actually dirty; with m+n sitting in the percpu 556 * deltas. 557 */ 558 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 559 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 560 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 561 } else if (bdi_nr_reclaimable) { 562 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 563 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 564 } 565 566 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 567 break; 568 if (pages_written >= write_chunk) 569 break; /* We've done our duty */ 570 571 trace_wbc_balance_dirty_wait(&wbc, bdi); 572 __set_current_state(TASK_INTERRUPTIBLE); 573 io_schedule_timeout(pause); 574 575 /* 576 * Increase the delay for each loop, up to our previous 577 * default of taking a 100ms nap. 578 */ 579 pause <<= 1; 580 if (pause > HZ / 10) 581 pause = HZ / 10; 582 } 583 584 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && 585 bdi->dirty_exceeded) 586 bdi->dirty_exceeded = 0; 587 588 if (writeback_in_progress(bdi)) 589 return; 590 591 /* 592 * In laptop mode, we wait until hitting the higher threshold before 593 * starting background writeout, and then write out all the way down 594 * to the lower threshold. So slow writers cause minimal disk activity. 595 * 596 * In normal mode, we start background writeout at the lower 597 * background_thresh, to keep the amount of dirty memory low. 598 */ 599 if ((laptop_mode && pages_written) || 600 (!laptop_mode && ((global_page_state(NR_FILE_DIRTY) 601 + global_page_state(NR_UNSTABLE_NFS)) 602 > background_thresh))) 603 bdi_start_background_writeback(bdi); 604 } 605 606 void set_page_dirty_balance(struct page *page, int page_mkwrite) 607 { 608 if (set_page_dirty(page) || page_mkwrite) { 609 struct address_space *mapping = page_mapping(page); 610 611 if (mapping) 612 balance_dirty_pages_ratelimited(mapping); 613 } 614 } 615 616 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 617 618 /** 619 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 620 * @mapping: address_space which was dirtied 621 * @nr_pages_dirtied: number of pages which the caller has just dirtied 622 * 623 * Processes which are dirtying memory should call in here once for each page 624 * which was newly dirtied. The function will periodically check the system's 625 * dirty state and will initiate writeback if needed. 626 * 627 * On really big machines, get_writeback_state is expensive, so try to avoid 628 * calling it too often (ratelimiting). But once we're over the dirty memory 629 * limit we decrease the ratelimiting by a lot, to prevent individual processes 630 * from overshooting the limit by (ratelimit_pages) each. 631 */ 632 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 633 unsigned long nr_pages_dirtied) 634 { 635 unsigned long ratelimit; 636 unsigned long *p; 637 638 ratelimit = ratelimit_pages; 639 if (mapping->backing_dev_info->dirty_exceeded) 640 ratelimit = 8; 641 642 /* 643 * Check the rate limiting. Also, we do not want to throttle real-time 644 * tasks in balance_dirty_pages(). Period. 645 */ 646 preempt_disable(); 647 p = &__get_cpu_var(bdp_ratelimits); 648 *p += nr_pages_dirtied; 649 if (unlikely(*p >= ratelimit)) { 650 ratelimit = sync_writeback_pages(*p); 651 *p = 0; 652 preempt_enable(); 653 balance_dirty_pages(mapping, ratelimit); 654 return; 655 } 656 preempt_enable(); 657 } 658 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 659 660 void throttle_vm_writeout(gfp_t gfp_mask) 661 { 662 unsigned long background_thresh; 663 unsigned long dirty_thresh; 664 665 for ( ; ; ) { 666 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 667 668 /* 669 * Boost the allowable dirty threshold a bit for page 670 * allocators so they don't get DoS'ed by heavy writers 671 */ 672 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 673 674 if (global_page_state(NR_UNSTABLE_NFS) + 675 global_page_state(NR_WRITEBACK) <= dirty_thresh) 676 break; 677 congestion_wait(BLK_RW_ASYNC, HZ/10); 678 679 /* 680 * The caller might hold locks which can prevent IO completion 681 * or progress in the filesystem. So we cannot just sit here 682 * waiting for IO to complete. 683 */ 684 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 685 break; 686 } 687 } 688 689 /* 690 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 691 */ 692 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 693 void __user *buffer, size_t *length, loff_t *ppos) 694 { 695 proc_dointvec(table, write, buffer, length, ppos); 696 bdi_arm_supers_timer(); 697 return 0; 698 } 699 700 #ifdef CONFIG_BLOCK 701 void laptop_mode_timer_fn(unsigned long data) 702 { 703 struct request_queue *q = (struct request_queue *)data; 704 int nr_pages = global_page_state(NR_FILE_DIRTY) + 705 global_page_state(NR_UNSTABLE_NFS); 706 707 /* 708 * We want to write everything out, not just down to the dirty 709 * threshold 710 */ 711 if (bdi_has_dirty_io(&q->backing_dev_info)) 712 bdi_start_writeback(&q->backing_dev_info, nr_pages); 713 } 714 715 /* 716 * We've spun up the disk and we're in laptop mode: schedule writeback 717 * of all dirty data a few seconds from now. If the flush is already scheduled 718 * then push it back - the user is still using the disk. 719 */ 720 void laptop_io_completion(struct backing_dev_info *info) 721 { 722 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 723 } 724 725 /* 726 * We're in laptop mode and we've just synced. The sync's writes will have 727 * caused another writeback to be scheduled by laptop_io_completion. 728 * Nothing needs to be written back anymore, so we unschedule the writeback. 729 */ 730 void laptop_sync_completion(void) 731 { 732 struct backing_dev_info *bdi; 733 734 rcu_read_lock(); 735 736 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 737 del_timer(&bdi->laptop_mode_wb_timer); 738 739 rcu_read_unlock(); 740 } 741 #endif 742 743 /* 744 * If ratelimit_pages is too high then we can get into dirty-data overload 745 * if a large number of processes all perform writes at the same time. 746 * If it is too low then SMP machines will call the (expensive) 747 * get_writeback_state too often. 748 * 749 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 750 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 751 * thresholds before writeback cuts in. 752 * 753 * But the limit should not be set too high. Because it also controls the 754 * amount of memory which the balance_dirty_pages() caller has to write back. 755 * If this is too large then the caller will block on the IO queue all the 756 * time. So limit it to four megabytes - the balance_dirty_pages() caller 757 * will write six megabyte chunks, max. 758 */ 759 760 void writeback_set_ratelimit(void) 761 { 762 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 763 if (ratelimit_pages < 16) 764 ratelimit_pages = 16; 765 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 766 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 767 } 768 769 static int __cpuinit 770 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 771 { 772 writeback_set_ratelimit(); 773 return NOTIFY_DONE; 774 } 775 776 static struct notifier_block __cpuinitdata ratelimit_nb = { 777 .notifier_call = ratelimit_handler, 778 .next = NULL, 779 }; 780 781 /* 782 * Called early on to tune the page writeback dirty limits. 783 * 784 * We used to scale dirty pages according to how total memory 785 * related to pages that could be allocated for buffers (by 786 * comparing nr_free_buffer_pages() to vm_total_pages. 787 * 788 * However, that was when we used "dirty_ratio" to scale with 789 * all memory, and we don't do that any more. "dirty_ratio" 790 * is now applied to total non-HIGHPAGE memory (by subtracting 791 * totalhigh_pages from vm_total_pages), and as such we can't 792 * get into the old insane situation any more where we had 793 * large amounts of dirty pages compared to a small amount of 794 * non-HIGHMEM memory. 795 * 796 * But we might still want to scale the dirty_ratio by how 797 * much memory the box has.. 798 */ 799 void __init page_writeback_init(void) 800 { 801 int shift; 802 803 writeback_set_ratelimit(); 804 register_cpu_notifier(&ratelimit_nb); 805 806 shift = calc_period_shift(); 807 prop_descriptor_init(&vm_completions, shift); 808 prop_descriptor_init(&vm_dirties, shift); 809 } 810 811 /** 812 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 813 * @mapping: address space structure to write 814 * @start: starting page index 815 * @end: ending page index (inclusive) 816 * 817 * This function scans the page range from @start to @end (inclusive) and tags 818 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 819 * that write_cache_pages (or whoever calls this function) will then use 820 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 821 * used to avoid livelocking of writeback by a process steadily creating new 822 * dirty pages in the file (thus it is important for this function to be quick 823 * so that it can tag pages faster than a dirtying process can create them). 824 */ 825 /* 826 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 827 */ 828 #define WRITEBACK_TAG_BATCH 4096 829 void tag_pages_for_writeback(struct address_space *mapping, 830 pgoff_t start, pgoff_t end) 831 { 832 unsigned long tagged; 833 834 do { 835 spin_lock_irq(&mapping->tree_lock); 836 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 837 &start, end, WRITEBACK_TAG_BATCH, 838 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 839 spin_unlock_irq(&mapping->tree_lock); 840 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 841 cond_resched(); 842 } while (tagged >= WRITEBACK_TAG_BATCH); 843 } 844 EXPORT_SYMBOL(tag_pages_for_writeback); 845 846 /** 847 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 848 * @mapping: address space structure to write 849 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 850 * @writepage: function called for each page 851 * @data: data passed to writepage function 852 * 853 * If a page is already under I/O, write_cache_pages() skips it, even 854 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 855 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 856 * and msync() need to guarantee that all the data which was dirty at the time 857 * the call was made get new I/O started against them. If wbc->sync_mode is 858 * WB_SYNC_ALL then we were called for data integrity and we must wait for 859 * existing IO to complete. 860 * 861 * To avoid livelocks (when other process dirties new pages), we first tag 862 * pages which should be written back with TOWRITE tag and only then start 863 * writing them. For data-integrity sync we have to be careful so that we do 864 * not miss some pages (e.g., because some other process has cleared TOWRITE 865 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 866 * by the process clearing the DIRTY tag (and submitting the page for IO). 867 */ 868 int write_cache_pages(struct address_space *mapping, 869 struct writeback_control *wbc, writepage_t writepage, 870 void *data) 871 { 872 int ret = 0; 873 int done = 0; 874 struct pagevec pvec; 875 int nr_pages; 876 pgoff_t uninitialized_var(writeback_index); 877 pgoff_t index; 878 pgoff_t end; /* Inclusive */ 879 pgoff_t done_index; 880 int cycled; 881 int range_whole = 0; 882 int tag; 883 884 pagevec_init(&pvec, 0); 885 if (wbc->range_cyclic) { 886 writeback_index = mapping->writeback_index; /* prev offset */ 887 index = writeback_index; 888 if (index == 0) 889 cycled = 1; 890 else 891 cycled = 0; 892 end = -1; 893 } else { 894 index = wbc->range_start >> PAGE_CACHE_SHIFT; 895 end = wbc->range_end >> PAGE_CACHE_SHIFT; 896 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 897 range_whole = 1; 898 cycled = 1; /* ignore range_cyclic tests */ 899 } 900 if (wbc->sync_mode == WB_SYNC_ALL) 901 tag = PAGECACHE_TAG_TOWRITE; 902 else 903 tag = PAGECACHE_TAG_DIRTY; 904 retry: 905 if (wbc->sync_mode == WB_SYNC_ALL) 906 tag_pages_for_writeback(mapping, index, end); 907 done_index = index; 908 while (!done && (index <= end)) { 909 int i; 910 911 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 912 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 913 if (nr_pages == 0) 914 break; 915 916 for (i = 0; i < nr_pages; i++) { 917 struct page *page = pvec.pages[i]; 918 919 /* 920 * At this point, the page may be truncated or 921 * invalidated (changing page->mapping to NULL), or 922 * even swizzled back from swapper_space to tmpfs file 923 * mapping. However, page->index will not change 924 * because we have a reference on the page. 925 */ 926 if (page->index > end) { 927 /* 928 * can't be range_cyclic (1st pass) because 929 * end == -1 in that case. 930 */ 931 done = 1; 932 break; 933 } 934 935 done_index = page->index + 1; 936 937 lock_page(page); 938 939 /* 940 * Page truncated or invalidated. We can freely skip it 941 * then, even for data integrity operations: the page 942 * has disappeared concurrently, so there could be no 943 * real expectation of this data interity operation 944 * even if there is now a new, dirty page at the same 945 * pagecache address. 946 */ 947 if (unlikely(page->mapping != mapping)) { 948 continue_unlock: 949 unlock_page(page); 950 continue; 951 } 952 953 if (!PageDirty(page)) { 954 /* someone wrote it for us */ 955 goto continue_unlock; 956 } 957 958 if (PageWriteback(page)) { 959 if (wbc->sync_mode != WB_SYNC_NONE) 960 wait_on_page_writeback(page); 961 else 962 goto continue_unlock; 963 } 964 965 BUG_ON(PageWriteback(page)); 966 if (!clear_page_dirty_for_io(page)) 967 goto continue_unlock; 968 969 trace_wbc_writepage(wbc, mapping->backing_dev_info); 970 ret = (*writepage)(page, wbc, data); 971 if (unlikely(ret)) { 972 if (ret == AOP_WRITEPAGE_ACTIVATE) { 973 unlock_page(page); 974 ret = 0; 975 } else { 976 /* 977 * done_index is set past this page, 978 * so media errors will not choke 979 * background writeout for the entire 980 * file. This has consequences for 981 * range_cyclic semantics (ie. it may 982 * not be suitable for data integrity 983 * writeout). 984 */ 985 done = 1; 986 break; 987 } 988 } 989 990 if (wbc->nr_to_write > 0) { 991 if (--wbc->nr_to_write == 0 && 992 wbc->sync_mode == WB_SYNC_NONE) { 993 /* 994 * We stop writing back only if we are 995 * not doing integrity sync. In case of 996 * integrity sync we have to keep going 997 * because someone may be concurrently 998 * dirtying pages, and we might have 999 * synced a lot of newly appeared dirty 1000 * pages, but have not synced all of the 1001 * old dirty pages. 1002 */ 1003 done = 1; 1004 break; 1005 } 1006 } 1007 } 1008 pagevec_release(&pvec); 1009 cond_resched(); 1010 } 1011 if (!cycled && !done) { 1012 /* 1013 * range_cyclic: 1014 * We hit the last page and there is more work to be done: wrap 1015 * back to the start of the file 1016 */ 1017 cycled = 1; 1018 index = 0; 1019 end = writeback_index - 1; 1020 goto retry; 1021 } 1022 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1023 mapping->writeback_index = done_index; 1024 1025 return ret; 1026 } 1027 EXPORT_SYMBOL(write_cache_pages); 1028 1029 /* 1030 * Function used by generic_writepages to call the real writepage 1031 * function and set the mapping flags on error 1032 */ 1033 static int __writepage(struct page *page, struct writeback_control *wbc, 1034 void *data) 1035 { 1036 struct address_space *mapping = data; 1037 int ret = mapping->a_ops->writepage(page, wbc); 1038 mapping_set_error(mapping, ret); 1039 return ret; 1040 } 1041 1042 /** 1043 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1044 * @mapping: address space structure to write 1045 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1046 * 1047 * This is a library function, which implements the writepages() 1048 * address_space_operation. 1049 */ 1050 int generic_writepages(struct address_space *mapping, 1051 struct writeback_control *wbc) 1052 { 1053 /* deal with chardevs and other special file */ 1054 if (!mapping->a_ops->writepage) 1055 return 0; 1056 1057 return write_cache_pages(mapping, wbc, __writepage, mapping); 1058 } 1059 1060 EXPORT_SYMBOL(generic_writepages); 1061 1062 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1063 { 1064 int ret; 1065 1066 if (wbc->nr_to_write <= 0) 1067 return 0; 1068 if (mapping->a_ops->writepages) 1069 ret = mapping->a_ops->writepages(mapping, wbc); 1070 else 1071 ret = generic_writepages(mapping, wbc); 1072 return ret; 1073 } 1074 1075 /** 1076 * write_one_page - write out a single page and optionally wait on I/O 1077 * @page: the page to write 1078 * @wait: if true, wait on writeout 1079 * 1080 * The page must be locked by the caller and will be unlocked upon return. 1081 * 1082 * write_one_page() returns a negative error code if I/O failed. 1083 */ 1084 int write_one_page(struct page *page, int wait) 1085 { 1086 struct address_space *mapping = page->mapping; 1087 int ret = 0; 1088 struct writeback_control wbc = { 1089 .sync_mode = WB_SYNC_ALL, 1090 .nr_to_write = 1, 1091 }; 1092 1093 BUG_ON(!PageLocked(page)); 1094 1095 if (wait) 1096 wait_on_page_writeback(page); 1097 1098 if (clear_page_dirty_for_io(page)) { 1099 page_cache_get(page); 1100 ret = mapping->a_ops->writepage(page, &wbc); 1101 if (ret == 0 && wait) { 1102 wait_on_page_writeback(page); 1103 if (PageError(page)) 1104 ret = -EIO; 1105 } 1106 page_cache_release(page); 1107 } else { 1108 unlock_page(page); 1109 } 1110 return ret; 1111 } 1112 EXPORT_SYMBOL(write_one_page); 1113 1114 /* 1115 * For address_spaces which do not use buffers nor write back. 1116 */ 1117 int __set_page_dirty_no_writeback(struct page *page) 1118 { 1119 if (!PageDirty(page)) 1120 SetPageDirty(page); 1121 return 0; 1122 } 1123 1124 /* 1125 * Helper function for set_page_dirty family. 1126 * NOTE: This relies on being atomic wrt interrupts. 1127 */ 1128 void account_page_dirtied(struct page *page, struct address_space *mapping) 1129 { 1130 if (mapping_cap_account_dirty(mapping)) { 1131 __inc_zone_page_state(page, NR_FILE_DIRTY); 1132 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1133 task_dirty_inc(current); 1134 task_io_account_write(PAGE_CACHE_SIZE); 1135 } 1136 } 1137 1138 /* 1139 * For address_spaces which do not use buffers. Just tag the page as dirty in 1140 * its radix tree. 1141 * 1142 * This is also used when a single buffer is being dirtied: we want to set the 1143 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1144 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1145 * 1146 * Most callers have locked the page, which pins the address_space in memory. 1147 * But zap_pte_range() does not lock the page, however in that case the 1148 * mapping is pinned by the vma's ->vm_file reference. 1149 * 1150 * We take care to handle the case where the page was truncated from the 1151 * mapping by re-checking page_mapping() inside tree_lock. 1152 */ 1153 int __set_page_dirty_nobuffers(struct page *page) 1154 { 1155 if (!TestSetPageDirty(page)) { 1156 struct address_space *mapping = page_mapping(page); 1157 struct address_space *mapping2; 1158 1159 if (!mapping) 1160 return 1; 1161 1162 spin_lock_irq(&mapping->tree_lock); 1163 mapping2 = page_mapping(page); 1164 if (mapping2) { /* Race with truncate? */ 1165 BUG_ON(mapping2 != mapping); 1166 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1167 account_page_dirtied(page, mapping); 1168 radix_tree_tag_set(&mapping->page_tree, 1169 page_index(page), PAGECACHE_TAG_DIRTY); 1170 } 1171 spin_unlock_irq(&mapping->tree_lock); 1172 if (mapping->host) { 1173 /* !PageAnon && !swapper_space */ 1174 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1175 } 1176 return 1; 1177 } 1178 return 0; 1179 } 1180 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1181 1182 /* 1183 * When a writepage implementation decides that it doesn't want to write this 1184 * page for some reason, it should redirty the locked page via 1185 * redirty_page_for_writepage() and it should then unlock the page and return 0 1186 */ 1187 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1188 { 1189 wbc->pages_skipped++; 1190 return __set_page_dirty_nobuffers(page); 1191 } 1192 EXPORT_SYMBOL(redirty_page_for_writepage); 1193 1194 /* 1195 * Dirty a page. 1196 * 1197 * For pages with a mapping this should be done under the page lock 1198 * for the benefit of asynchronous memory errors who prefer a consistent 1199 * dirty state. This rule can be broken in some special cases, 1200 * but should be better not to. 1201 * 1202 * If the mapping doesn't provide a set_page_dirty a_op, then 1203 * just fall through and assume that it wants buffer_heads. 1204 */ 1205 int set_page_dirty(struct page *page) 1206 { 1207 struct address_space *mapping = page_mapping(page); 1208 1209 if (likely(mapping)) { 1210 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1211 #ifdef CONFIG_BLOCK 1212 if (!spd) 1213 spd = __set_page_dirty_buffers; 1214 #endif 1215 return (*spd)(page); 1216 } 1217 if (!PageDirty(page)) { 1218 if (!TestSetPageDirty(page)) 1219 return 1; 1220 } 1221 return 0; 1222 } 1223 EXPORT_SYMBOL(set_page_dirty); 1224 1225 /* 1226 * set_page_dirty() is racy if the caller has no reference against 1227 * page->mapping->host, and if the page is unlocked. This is because another 1228 * CPU could truncate the page off the mapping and then free the mapping. 1229 * 1230 * Usually, the page _is_ locked, or the caller is a user-space process which 1231 * holds a reference on the inode by having an open file. 1232 * 1233 * In other cases, the page should be locked before running set_page_dirty(). 1234 */ 1235 int set_page_dirty_lock(struct page *page) 1236 { 1237 int ret; 1238 1239 lock_page_nosync(page); 1240 ret = set_page_dirty(page); 1241 unlock_page(page); 1242 return ret; 1243 } 1244 EXPORT_SYMBOL(set_page_dirty_lock); 1245 1246 /* 1247 * Clear a page's dirty flag, while caring for dirty memory accounting. 1248 * Returns true if the page was previously dirty. 1249 * 1250 * This is for preparing to put the page under writeout. We leave the page 1251 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1252 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1253 * implementation will run either set_page_writeback() or set_page_dirty(), 1254 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1255 * back into sync. 1256 * 1257 * This incoherency between the page's dirty flag and radix-tree tag is 1258 * unfortunate, but it only exists while the page is locked. 1259 */ 1260 int clear_page_dirty_for_io(struct page *page) 1261 { 1262 struct address_space *mapping = page_mapping(page); 1263 1264 BUG_ON(!PageLocked(page)); 1265 1266 ClearPageReclaim(page); 1267 if (mapping && mapping_cap_account_dirty(mapping)) { 1268 /* 1269 * Yes, Virginia, this is indeed insane. 1270 * 1271 * We use this sequence to make sure that 1272 * (a) we account for dirty stats properly 1273 * (b) we tell the low-level filesystem to 1274 * mark the whole page dirty if it was 1275 * dirty in a pagetable. Only to then 1276 * (c) clean the page again and return 1 to 1277 * cause the writeback. 1278 * 1279 * This way we avoid all nasty races with the 1280 * dirty bit in multiple places and clearing 1281 * them concurrently from different threads. 1282 * 1283 * Note! Normally the "set_page_dirty(page)" 1284 * has no effect on the actual dirty bit - since 1285 * that will already usually be set. But we 1286 * need the side effects, and it can help us 1287 * avoid races. 1288 * 1289 * We basically use the page "master dirty bit" 1290 * as a serialization point for all the different 1291 * threads doing their things. 1292 */ 1293 if (page_mkclean(page)) 1294 set_page_dirty(page); 1295 /* 1296 * We carefully synchronise fault handlers against 1297 * installing a dirty pte and marking the page dirty 1298 * at this point. We do this by having them hold the 1299 * page lock at some point after installing their 1300 * pte, but before marking the page dirty. 1301 * Pages are always locked coming in here, so we get 1302 * the desired exclusion. See mm/memory.c:do_wp_page() 1303 * for more comments. 1304 */ 1305 if (TestClearPageDirty(page)) { 1306 dec_zone_page_state(page, NR_FILE_DIRTY); 1307 dec_bdi_stat(mapping->backing_dev_info, 1308 BDI_RECLAIMABLE); 1309 return 1; 1310 } 1311 return 0; 1312 } 1313 return TestClearPageDirty(page); 1314 } 1315 EXPORT_SYMBOL(clear_page_dirty_for_io); 1316 1317 int test_clear_page_writeback(struct page *page) 1318 { 1319 struct address_space *mapping = page_mapping(page); 1320 int ret; 1321 1322 if (mapping) { 1323 struct backing_dev_info *bdi = mapping->backing_dev_info; 1324 unsigned long flags; 1325 1326 spin_lock_irqsave(&mapping->tree_lock, flags); 1327 ret = TestClearPageWriteback(page); 1328 if (ret) { 1329 radix_tree_tag_clear(&mapping->page_tree, 1330 page_index(page), 1331 PAGECACHE_TAG_WRITEBACK); 1332 if (bdi_cap_account_writeback(bdi)) { 1333 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1334 __bdi_writeout_inc(bdi); 1335 } 1336 } 1337 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1338 } else { 1339 ret = TestClearPageWriteback(page); 1340 } 1341 if (ret) 1342 dec_zone_page_state(page, NR_WRITEBACK); 1343 return ret; 1344 } 1345 1346 int test_set_page_writeback(struct page *page) 1347 { 1348 struct address_space *mapping = page_mapping(page); 1349 int ret; 1350 1351 if (mapping) { 1352 struct backing_dev_info *bdi = mapping->backing_dev_info; 1353 unsigned long flags; 1354 1355 spin_lock_irqsave(&mapping->tree_lock, flags); 1356 ret = TestSetPageWriteback(page); 1357 if (!ret) { 1358 radix_tree_tag_set(&mapping->page_tree, 1359 page_index(page), 1360 PAGECACHE_TAG_WRITEBACK); 1361 if (bdi_cap_account_writeback(bdi)) 1362 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1363 } 1364 if (!PageDirty(page)) 1365 radix_tree_tag_clear(&mapping->page_tree, 1366 page_index(page), 1367 PAGECACHE_TAG_DIRTY); 1368 radix_tree_tag_clear(&mapping->page_tree, 1369 page_index(page), 1370 PAGECACHE_TAG_TOWRITE); 1371 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1372 } else { 1373 ret = TestSetPageWriteback(page); 1374 } 1375 if (!ret) 1376 inc_zone_page_state(page, NR_WRITEBACK); 1377 return ret; 1378 1379 } 1380 EXPORT_SYMBOL(test_set_page_writeback); 1381 1382 /* 1383 * Return true if any of the pages in the mapping are marked with the 1384 * passed tag. 1385 */ 1386 int mapping_tagged(struct address_space *mapping, int tag) 1387 { 1388 int ret; 1389 rcu_read_lock(); 1390 ret = radix_tree_tagged(&mapping->page_tree, tag); 1391 rcu_read_unlock(); 1392 return ret; 1393 } 1394 EXPORT_SYMBOL(mapping_tagged); 1395