1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 bool freerun; 143 bool dirty_exceeded; 144 }; 145 146 /* 147 * Length of period for aging writeout fractions of bdis. This is an 148 * arbitrarily chosen number. The longer the period, the slower fractions will 149 * reflect changes in current writeout rate. 150 */ 151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 152 153 #ifdef CONFIG_CGROUP_WRITEBACK 154 155 #define GDTC_INIT(__wb) .wb = (__wb), \ 156 .dom = &global_wb_domain, \ 157 .wb_completions = &(__wb)->completions 158 159 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 160 161 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 162 .dom = mem_cgroup_wb_domain(__wb), \ 163 .wb_completions = &(__wb)->memcg_completions, \ 164 .gdtc = __gdtc 165 166 static bool mdtc_valid(struct dirty_throttle_control *dtc) 167 { 168 return dtc->dom; 169 } 170 171 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 172 { 173 return dtc->dom; 174 } 175 176 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 177 { 178 return mdtc->gdtc; 179 } 180 181 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 182 { 183 return &wb->memcg_completions; 184 } 185 186 static void wb_min_max_ratio(struct bdi_writeback *wb, 187 unsigned long *minp, unsigned long *maxp) 188 { 189 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 190 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 191 unsigned long long min = wb->bdi->min_ratio; 192 unsigned long long max = wb->bdi->max_ratio; 193 194 /* 195 * @wb may already be clean by the time control reaches here and 196 * the total may not include its bw. 197 */ 198 if (this_bw < tot_bw) { 199 if (min) { 200 min *= this_bw; 201 min = div64_ul(min, tot_bw); 202 } 203 if (max < 100 * BDI_RATIO_SCALE) { 204 max *= this_bw; 205 max = div64_ul(max, tot_bw); 206 } 207 } 208 209 *minp = min; 210 *maxp = max; 211 } 212 213 #else /* CONFIG_CGROUP_WRITEBACK */ 214 215 #define GDTC_INIT(__wb) .wb = (__wb), \ 216 .wb_completions = &(__wb)->completions 217 #define GDTC_INIT_NO_WB 218 #define MDTC_INIT(__wb, __gdtc) 219 220 static bool mdtc_valid(struct dirty_throttle_control *dtc) 221 { 222 return false; 223 } 224 225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 226 { 227 return &global_wb_domain; 228 } 229 230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 231 { 232 return NULL; 233 } 234 235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 236 { 237 return NULL; 238 } 239 240 static void wb_min_max_ratio(struct bdi_writeback *wb, 241 unsigned long *minp, unsigned long *maxp) 242 { 243 *minp = wb->bdi->min_ratio; 244 *maxp = wb->bdi->max_ratio; 245 } 246 247 #endif /* CONFIG_CGROUP_WRITEBACK */ 248 249 /* 250 * In a memory zone, there is a certain amount of pages we consider 251 * available for the page cache, which is essentially the number of 252 * free and reclaimable pages, minus some zone reserves to protect 253 * lowmem and the ability to uphold the zone's watermarks without 254 * requiring writeback. 255 * 256 * This number of dirtyable pages is the base value of which the 257 * user-configurable dirty ratio is the effective number of pages that 258 * are allowed to be actually dirtied. Per individual zone, or 259 * globally by using the sum of dirtyable pages over all zones. 260 * 261 * Because the user is allowed to specify the dirty limit globally as 262 * absolute number of bytes, calculating the per-zone dirty limit can 263 * require translating the configured limit into a percentage of 264 * global dirtyable memory first. 265 */ 266 267 /** 268 * node_dirtyable_memory - number of dirtyable pages in a node 269 * @pgdat: the node 270 * 271 * Return: the node's number of pages potentially available for dirty 272 * page cache. This is the base value for the per-node dirty limits. 273 */ 274 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 275 { 276 unsigned long nr_pages = 0; 277 int z; 278 279 for (z = 0; z < MAX_NR_ZONES; z++) { 280 struct zone *zone = pgdat->node_zones + z; 281 282 if (!populated_zone(zone)) 283 continue; 284 285 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 286 } 287 288 /* 289 * Pages reserved for the kernel should not be considered 290 * dirtyable, to prevent a situation where reclaim has to 291 * clean pages in order to balance the zones. 292 */ 293 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 294 295 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 296 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 297 298 return nr_pages; 299 } 300 301 static unsigned long highmem_dirtyable_memory(unsigned long total) 302 { 303 #ifdef CONFIG_HIGHMEM 304 int node; 305 unsigned long x = 0; 306 int i; 307 308 for_each_node_state(node, N_HIGH_MEMORY) { 309 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 310 struct zone *z; 311 unsigned long nr_pages; 312 313 if (!is_highmem_idx(i)) 314 continue; 315 316 z = &NODE_DATA(node)->node_zones[i]; 317 if (!populated_zone(z)) 318 continue; 319 320 nr_pages = zone_page_state(z, NR_FREE_PAGES); 321 /* watch for underflows */ 322 nr_pages -= min(nr_pages, high_wmark_pages(z)); 323 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 324 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 325 x += nr_pages; 326 } 327 } 328 329 /* 330 * Make sure that the number of highmem pages is never larger 331 * than the number of the total dirtyable memory. This can only 332 * occur in very strange VM situations but we want to make sure 333 * that this does not occur. 334 */ 335 return min(x, total); 336 #else 337 return 0; 338 #endif 339 } 340 341 /** 342 * global_dirtyable_memory - number of globally dirtyable pages 343 * 344 * Return: the global number of pages potentially available for dirty 345 * page cache. This is the base value for the global dirty limits. 346 */ 347 static unsigned long global_dirtyable_memory(void) 348 { 349 unsigned long x; 350 351 x = global_zone_page_state(NR_FREE_PAGES); 352 /* 353 * Pages reserved for the kernel should not be considered 354 * dirtyable, to prevent a situation where reclaim has to 355 * clean pages in order to balance the zones. 356 */ 357 x -= min(x, totalreserve_pages); 358 359 x += global_node_page_state(NR_INACTIVE_FILE); 360 x += global_node_page_state(NR_ACTIVE_FILE); 361 362 if (!vm_highmem_is_dirtyable) 363 x -= highmem_dirtyable_memory(x); 364 365 return x + 1; /* Ensure that we never return 0 */ 366 } 367 368 /** 369 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 370 * @dtc: dirty_throttle_control of interest 371 * 372 * Calculate @dtc->thresh and ->bg_thresh considering 373 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 374 * must ensure that @dtc->avail is set before calling this function. The 375 * dirty limits will be lifted by 1/4 for real-time tasks. 376 */ 377 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 378 { 379 const unsigned long available_memory = dtc->avail; 380 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 381 unsigned long bytes = vm_dirty_bytes; 382 unsigned long bg_bytes = dirty_background_bytes; 383 /* convert ratios to per-PAGE_SIZE for higher precision */ 384 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 385 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 386 unsigned long thresh; 387 unsigned long bg_thresh; 388 struct task_struct *tsk; 389 390 /* gdtc is !NULL iff @dtc is for memcg domain */ 391 if (gdtc) { 392 unsigned long global_avail = gdtc->avail; 393 394 /* 395 * The byte settings can't be applied directly to memcg 396 * domains. Convert them to ratios by scaling against 397 * globally available memory. As the ratios are in 398 * per-PAGE_SIZE, they can be obtained by dividing bytes by 399 * number of pages. 400 */ 401 if (bytes) 402 ratio = min(DIV_ROUND_UP(bytes, global_avail), 403 PAGE_SIZE); 404 if (bg_bytes) 405 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 406 PAGE_SIZE); 407 bytes = bg_bytes = 0; 408 } 409 410 if (bytes) 411 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 412 else 413 thresh = (ratio * available_memory) / PAGE_SIZE; 414 415 if (bg_bytes) 416 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 417 else 418 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 419 420 tsk = current; 421 if (rt_or_dl_task(tsk)) { 422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 424 } 425 /* 426 * Dirty throttling logic assumes the limits in page units fit into 427 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 428 */ 429 if (thresh > UINT_MAX) 430 thresh = UINT_MAX; 431 /* This makes sure bg_thresh is within 32-bits as well */ 432 if (bg_thresh >= thresh) 433 bg_thresh = thresh / 2; 434 dtc->thresh = thresh; 435 dtc->bg_thresh = bg_thresh; 436 437 /* we should eventually report the domain in the TP */ 438 if (!gdtc) 439 trace_global_dirty_state(bg_thresh, thresh); 440 } 441 442 /** 443 * global_dirty_limits - background-writeback and dirty-throttling thresholds 444 * @pbackground: out parameter for bg_thresh 445 * @pdirty: out parameter for thresh 446 * 447 * Calculate bg_thresh and thresh for global_wb_domain. See 448 * domain_dirty_limits() for details. 449 */ 450 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 451 { 452 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 453 454 gdtc.avail = global_dirtyable_memory(); 455 domain_dirty_limits(&gdtc); 456 457 *pbackground = gdtc.bg_thresh; 458 *pdirty = gdtc.thresh; 459 } 460 461 /** 462 * node_dirty_limit - maximum number of dirty pages allowed in a node 463 * @pgdat: the node 464 * 465 * Return: the maximum number of dirty pages allowed in a node, based 466 * on the node's dirtyable memory. 467 */ 468 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 469 { 470 unsigned long node_memory = node_dirtyable_memory(pgdat); 471 struct task_struct *tsk = current; 472 unsigned long dirty; 473 474 if (vm_dirty_bytes) 475 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 476 node_memory / global_dirtyable_memory(); 477 else 478 dirty = vm_dirty_ratio * node_memory / 100; 479 480 if (rt_or_dl_task(tsk)) 481 dirty += dirty / 4; 482 483 /* 484 * Dirty throttling logic assumes the limits in page units fit into 485 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 486 */ 487 return min_t(unsigned long, dirty, UINT_MAX); 488 } 489 490 /** 491 * node_dirty_ok - tells whether a node is within its dirty limits 492 * @pgdat: the node to check 493 * 494 * Return: %true when the dirty pages in @pgdat are within the node's 495 * dirty limit, %false if the limit is exceeded. 496 */ 497 bool node_dirty_ok(struct pglist_data *pgdat) 498 { 499 unsigned long limit = node_dirty_limit(pgdat); 500 unsigned long nr_pages = 0; 501 502 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 503 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 504 505 return nr_pages <= limit; 506 } 507 508 #ifdef CONFIG_SYSCTL 509 static int dirty_background_ratio_handler(const struct ctl_table *table, int write, 510 void *buffer, size_t *lenp, loff_t *ppos) 511 { 512 int ret; 513 514 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 if (ret == 0 && write) 516 dirty_background_bytes = 0; 517 return ret; 518 } 519 520 static int dirty_background_bytes_handler(const struct ctl_table *table, int write, 521 void *buffer, size_t *lenp, loff_t *ppos) 522 { 523 int ret; 524 unsigned long old_bytes = dirty_background_bytes; 525 526 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 527 if (ret == 0 && write) { 528 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > 529 UINT_MAX) { 530 dirty_background_bytes = old_bytes; 531 return -ERANGE; 532 } 533 dirty_background_ratio = 0; 534 } 535 return ret; 536 } 537 538 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer, 539 size_t *lenp, loff_t *ppos) 540 { 541 int old_ratio = vm_dirty_ratio; 542 int ret; 543 544 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 545 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 546 writeback_set_ratelimit(); 547 vm_dirty_bytes = 0; 548 } 549 return ret; 550 } 551 552 static int dirty_bytes_handler(const struct ctl_table *table, int write, 553 void *buffer, size_t *lenp, loff_t *ppos) 554 { 555 unsigned long old_bytes = vm_dirty_bytes; 556 int ret; 557 558 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 559 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 560 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { 561 vm_dirty_bytes = old_bytes; 562 return -ERANGE; 563 } 564 writeback_set_ratelimit(); 565 vm_dirty_ratio = 0; 566 } 567 return ret; 568 } 569 #endif 570 571 static unsigned long wp_next_time(unsigned long cur_time) 572 { 573 cur_time += VM_COMPLETIONS_PERIOD_LEN; 574 /* 0 has a special meaning... */ 575 if (!cur_time) 576 return 1; 577 return cur_time; 578 } 579 580 static void wb_domain_writeout_add(struct wb_domain *dom, 581 struct fprop_local_percpu *completions, 582 unsigned int max_prop_frac, long nr) 583 { 584 __fprop_add_percpu_max(&dom->completions, completions, 585 max_prop_frac, nr); 586 /* First event after period switching was turned off? */ 587 if (unlikely(!dom->period_time)) { 588 /* 589 * We can race with other __bdi_writeout_inc calls here but 590 * it does not cause any harm since the resulting time when 591 * timer will fire and what is in writeout_period_time will be 592 * roughly the same. 593 */ 594 dom->period_time = wp_next_time(jiffies); 595 mod_timer(&dom->period_timer, dom->period_time); 596 } 597 } 598 599 /* 600 * Increment @wb's writeout completion count and the global writeout 601 * completion count. Called from __folio_end_writeback(). 602 */ 603 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 604 { 605 struct wb_domain *cgdom; 606 607 wb_stat_mod(wb, WB_WRITTEN, nr); 608 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 609 wb->bdi->max_prop_frac, nr); 610 611 cgdom = mem_cgroup_wb_domain(wb); 612 if (cgdom) 613 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 614 wb->bdi->max_prop_frac, nr); 615 } 616 617 void wb_writeout_inc(struct bdi_writeback *wb) 618 { 619 unsigned long flags; 620 621 local_irq_save(flags); 622 __wb_writeout_add(wb, 1); 623 local_irq_restore(flags); 624 } 625 EXPORT_SYMBOL_GPL(wb_writeout_inc); 626 627 /* 628 * On idle system, we can be called long after we scheduled because we use 629 * deferred timers so count with missed periods. 630 */ 631 static void writeout_period(struct timer_list *t) 632 { 633 struct wb_domain *dom = from_timer(dom, t, period_timer); 634 int miss_periods = (jiffies - dom->period_time) / 635 VM_COMPLETIONS_PERIOD_LEN; 636 637 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 638 dom->period_time = wp_next_time(dom->period_time + 639 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 640 mod_timer(&dom->period_timer, dom->period_time); 641 } else { 642 /* 643 * Aging has zeroed all fractions. Stop wasting CPU on period 644 * updates. 645 */ 646 dom->period_time = 0; 647 } 648 } 649 650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 651 { 652 memset(dom, 0, sizeof(*dom)); 653 654 spin_lock_init(&dom->lock); 655 656 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 657 658 dom->dirty_limit_tstamp = jiffies; 659 660 return fprop_global_init(&dom->completions, gfp); 661 } 662 663 #ifdef CONFIG_CGROUP_WRITEBACK 664 void wb_domain_exit(struct wb_domain *dom) 665 { 666 del_timer_sync(&dom->period_timer); 667 fprop_global_destroy(&dom->completions); 668 } 669 #endif 670 671 /* 672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 673 * registered backing devices, which, for obvious reasons, can not 674 * exceed 100%. 675 */ 676 static unsigned int bdi_min_ratio; 677 678 static int bdi_check_pages_limit(unsigned long pages) 679 { 680 unsigned long max_dirty_pages = global_dirtyable_memory(); 681 682 if (pages > max_dirty_pages) 683 return -EINVAL; 684 685 return 0; 686 } 687 688 static unsigned long bdi_ratio_from_pages(unsigned long pages) 689 { 690 unsigned long background_thresh; 691 unsigned long dirty_thresh; 692 unsigned long ratio; 693 694 global_dirty_limits(&background_thresh, &dirty_thresh); 695 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 696 697 return ratio; 698 } 699 700 static u64 bdi_get_bytes(unsigned int ratio) 701 { 702 unsigned long background_thresh; 703 unsigned long dirty_thresh; 704 u64 bytes; 705 706 global_dirty_limits(&background_thresh, &dirty_thresh); 707 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 708 709 return bytes; 710 } 711 712 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 713 { 714 unsigned int delta; 715 int ret = 0; 716 717 if (min_ratio > 100 * BDI_RATIO_SCALE) 718 return -EINVAL; 719 720 spin_lock_bh(&bdi_lock); 721 if (min_ratio > bdi->max_ratio) { 722 ret = -EINVAL; 723 } else { 724 if (min_ratio < bdi->min_ratio) { 725 delta = bdi->min_ratio - min_ratio; 726 bdi_min_ratio -= delta; 727 bdi->min_ratio = min_ratio; 728 } else { 729 delta = min_ratio - bdi->min_ratio; 730 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 731 bdi_min_ratio += delta; 732 bdi->min_ratio = min_ratio; 733 } else { 734 ret = -EINVAL; 735 } 736 } 737 } 738 spin_unlock_bh(&bdi_lock); 739 740 return ret; 741 } 742 743 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 744 { 745 int ret = 0; 746 747 if (max_ratio > 100 * BDI_RATIO_SCALE) 748 return -EINVAL; 749 750 spin_lock_bh(&bdi_lock); 751 if (bdi->min_ratio > max_ratio) { 752 ret = -EINVAL; 753 } else { 754 bdi->max_ratio = max_ratio; 755 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 756 (100 * BDI_RATIO_SCALE); 757 } 758 spin_unlock_bh(&bdi_lock); 759 760 return ret; 761 } 762 763 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 764 { 765 return __bdi_set_min_ratio(bdi, min_ratio); 766 } 767 768 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 769 { 770 return __bdi_set_max_ratio(bdi, max_ratio); 771 } 772 773 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 774 { 775 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 776 } 777 778 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 779 { 780 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 781 } 782 EXPORT_SYMBOL(bdi_set_max_ratio); 783 784 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 785 { 786 return bdi_get_bytes(bdi->min_ratio); 787 } 788 789 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 790 { 791 int ret; 792 unsigned long pages = min_bytes >> PAGE_SHIFT; 793 unsigned long min_ratio; 794 795 ret = bdi_check_pages_limit(pages); 796 if (ret) 797 return ret; 798 799 min_ratio = bdi_ratio_from_pages(pages); 800 return __bdi_set_min_ratio(bdi, min_ratio); 801 } 802 803 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 804 { 805 return bdi_get_bytes(bdi->max_ratio); 806 } 807 808 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 809 { 810 int ret; 811 unsigned long pages = max_bytes >> PAGE_SHIFT; 812 unsigned long max_ratio; 813 814 ret = bdi_check_pages_limit(pages); 815 if (ret) 816 return ret; 817 818 max_ratio = bdi_ratio_from_pages(pages); 819 return __bdi_set_max_ratio(bdi, max_ratio); 820 } 821 822 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 823 { 824 if (strict_limit > 1) 825 return -EINVAL; 826 827 spin_lock_bh(&bdi_lock); 828 if (strict_limit) 829 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 830 else 831 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 832 spin_unlock_bh(&bdi_lock); 833 834 return 0; 835 } 836 837 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 838 unsigned long bg_thresh) 839 { 840 return (thresh + bg_thresh) / 2; 841 } 842 843 static unsigned long hard_dirty_limit(struct wb_domain *dom, 844 unsigned long thresh) 845 { 846 return max(thresh, dom->dirty_limit); 847 } 848 849 /* 850 * Memory which can be further allocated to a memcg domain is capped by 851 * system-wide clean memory excluding the amount being used in the domain. 852 */ 853 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 854 unsigned long filepages, unsigned long headroom) 855 { 856 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 857 unsigned long clean = filepages - min(filepages, mdtc->dirty); 858 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 859 unsigned long other_clean = global_clean - min(global_clean, clean); 860 861 mdtc->avail = filepages + min(headroom, other_clean); 862 } 863 864 static inline bool dtc_is_global(struct dirty_throttle_control *dtc) 865 { 866 return mdtc_gdtc(dtc) == NULL; 867 } 868 869 /* 870 * Dirty background will ignore pages being written as we're trying to 871 * decide whether to put more under writeback. 872 */ 873 static void domain_dirty_avail(struct dirty_throttle_control *dtc, 874 bool include_writeback) 875 { 876 if (dtc_is_global(dtc)) { 877 dtc->avail = global_dirtyable_memory(); 878 dtc->dirty = global_node_page_state(NR_FILE_DIRTY); 879 if (include_writeback) 880 dtc->dirty += global_node_page_state(NR_WRITEBACK); 881 } else { 882 unsigned long filepages = 0, headroom = 0, writeback = 0; 883 884 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty, 885 &writeback); 886 if (include_writeback) 887 dtc->dirty += writeback; 888 mdtc_calc_avail(dtc, filepages, headroom); 889 } 890 } 891 892 /** 893 * __wb_calc_thresh - @wb's share of dirty threshold 894 * @dtc: dirty_throttle_context of interest 895 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc 896 * 897 * Note that balance_dirty_pages() will only seriously take dirty throttling 898 * threshold as a hard limit when sleeping max_pause per page is not enough 899 * to keep the dirty pages under control. For example, when the device is 900 * completely stalled due to some error conditions, or when there are 1000 901 * dd tasks writing to a slow 10MB/s USB key. 902 * In the other normal situations, it acts more gently by throttling the tasks 903 * more (rather than completely block them) when the wb dirty pages go high. 904 * 905 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 906 * - starving fast devices 907 * - piling up dirty pages (that will take long time to sync) on slow devices 908 * 909 * The wb's share of dirty limit will be adapting to its throughput and 910 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 911 * 912 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term 913 * "dirty" in the context of dirty balancing includes all PG_dirty and 914 * PG_writeback pages. 915 */ 916 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, 917 unsigned long thresh) 918 { 919 struct wb_domain *dom = dtc_dom(dtc); 920 u64 wb_thresh; 921 unsigned long numerator, denominator; 922 unsigned long wb_min_ratio, wb_max_ratio; 923 924 /* 925 * Calculate this wb's share of the thresh ratio. 926 */ 927 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 928 &numerator, &denominator); 929 930 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 931 wb_thresh *= numerator; 932 wb_thresh = div64_ul(wb_thresh, denominator); 933 934 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 935 936 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 937 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE)) 938 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 939 940 return wb_thresh; 941 } 942 943 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 944 { 945 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 946 947 return __wb_calc_thresh(&gdtc, thresh); 948 } 949 950 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 951 { 952 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 953 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 954 955 domain_dirty_avail(&gdtc, true); 956 domain_dirty_avail(&mdtc, true); 957 domain_dirty_limits(&mdtc); 958 959 return __wb_calc_thresh(&mdtc, mdtc.thresh); 960 } 961 962 /* 963 * setpoint - dirty 3 964 * f(dirty) := 1.0 + (----------------) 965 * limit - setpoint 966 * 967 * it's a 3rd order polynomial that subjects to 968 * 969 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 970 * (2) f(setpoint) = 1.0 => the balance point 971 * (3) f(limit) = 0 => the hard limit 972 * (4) df/dx <= 0 => negative feedback control 973 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 974 * => fast response on large errors; small oscillation near setpoint 975 */ 976 static long long pos_ratio_polynom(unsigned long setpoint, 977 unsigned long dirty, 978 unsigned long limit) 979 { 980 long long pos_ratio; 981 long x; 982 983 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 984 (limit - setpoint) | 1); 985 pos_ratio = x; 986 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 987 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 988 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 989 990 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 991 } 992 993 /* 994 * Dirty position control. 995 * 996 * (o) global/bdi setpoints 997 * 998 * We want the dirty pages be balanced around the global/wb setpoints. 999 * When the number of dirty pages is higher/lower than the setpoint, the 1000 * dirty position control ratio (and hence task dirty ratelimit) will be 1001 * decreased/increased to bring the dirty pages back to the setpoint. 1002 * 1003 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 1004 * 1005 * if (dirty < setpoint) scale up pos_ratio 1006 * if (dirty > setpoint) scale down pos_ratio 1007 * 1008 * if (wb_dirty < wb_setpoint) scale up pos_ratio 1009 * if (wb_dirty > wb_setpoint) scale down pos_ratio 1010 * 1011 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 1012 * 1013 * (o) global control line 1014 * 1015 * ^ pos_ratio 1016 * | 1017 * | |<===== global dirty control scope ======>| 1018 * 2.0 * * * * * * * 1019 * | .* 1020 * | . * 1021 * | . * 1022 * | . * 1023 * | . * 1024 * | . * 1025 * 1.0 ................................* 1026 * | . . * 1027 * | . . * 1028 * | . . * 1029 * | . . * 1030 * | . . * 1031 * 0 +------------.------------------.----------------------*-------------> 1032 * freerun^ setpoint^ limit^ dirty pages 1033 * 1034 * (o) wb control line 1035 * 1036 * ^ pos_ratio 1037 * | 1038 * | * 1039 * | * 1040 * | * 1041 * | * 1042 * | * |<=========== span ============>| 1043 * 1.0 .......................* 1044 * | . * 1045 * | . * 1046 * | . * 1047 * | . * 1048 * | . * 1049 * | . * 1050 * | . * 1051 * | . * 1052 * | . * 1053 * | . * 1054 * | . * 1055 * 1/4 ...............................................* * * * * * * * * * * * 1056 * | . . 1057 * | . . 1058 * | . . 1059 * 0 +----------------------.-------------------------------.-------------> 1060 * wb_setpoint^ x_intercept^ 1061 * 1062 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1063 * be smoothly throttled down to normal if it starts high in situations like 1064 * - start writing to a slow SD card and a fast disk at the same time. The SD 1065 * card's wb_dirty may rush to many times higher than wb_setpoint. 1066 * - the wb dirty thresh drops quickly due to change of JBOD workload 1067 */ 1068 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1069 { 1070 struct bdi_writeback *wb = dtc->wb; 1071 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1072 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1073 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1074 unsigned long wb_thresh = dtc->wb_thresh; 1075 unsigned long x_intercept; 1076 unsigned long setpoint; /* dirty pages' target balance point */ 1077 unsigned long wb_setpoint; 1078 unsigned long span; 1079 long long pos_ratio; /* for scaling up/down the rate limit */ 1080 long x; 1081 1082 dtc->pos_ratio = 0; 1083 1084 if (unlikely(dtc->dirty >= limit)) 1085 return; 1086 1087 /* 1088 * global setpoint 1089 * 1090 * See comment for pos_ratio_polynom(). 1091 */ 1092 setpoint = (freerun + limit) / 2; 1093 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1094 1095 /* 1096 * The strictlimit feature is a tool preventing mistrusted filesystems 1097 * from growing a large number of dirty pages before throttling. For 1098 * such filesystems balance_dirty_pages always checks wb counters 1099 * against wb limits. Even if global "nr_dirty" is under "freerun". 1100 * This is especially important for fuse which sets bdi->max_ratio to 1101 * 1% by default. Without strictlimit feature, fuse writeback may 1102 * consume arbitrary amount of RAM because it is accounted in 1103 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1104 * 1105 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1106 * two values: wb_dirty and wb_thresh. Let's consider an example: 1107 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1108 * limits are set by default to 10% and 20% (background and throttle). 1109 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1110 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1111 * about ~6K pages (as the average of background and throttle wb 1112 * limits). The 3rd order polynomial will provide positive feedback if 1113 * wb_dirty is under wb_setpoint and vice versa. 1114 * 1115 * Note, that we cannot use global counters in these calculations 1116 * because we want to throttle process writing to a strictlimit wb 1117 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1118 * in the example above). 1119 */ 1120 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1121 long long wb_pos_ratio; 1122 1123 if (dtc->wb_dirty < 8) { 1124 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 1125 2 << RATELIMIT_CALC_SHIFT); 1126 return; 1127 } 1128 1129 if (dtc->wb_dirty >= wb_thresh) 1130 return; 1131 1132 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1133 dtc->wb_bg_thresh); 1134 1135 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1136 return; 1137 1138 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1139 wb_thresh); 1140 1141 /* 1142 * Typically, for strictlimit case, wb_setpoint << setpoint 1143 * and pos_ratio >> wb_pos_ratio. In the other words global 1144 * state ("dirty") is not limiting factor and we have to 1145 * make decision based on wb counters. But there is an 1146 * important case when global pos_ratio should get precedence: 1147 * global limits are exceeded (e.g. due to activities on other 1148 * wb's) while given strictlimit wb is below limit. 1149 * 1150 * "pos_ratio * wb_pos_ratio" would work for the case above, 1151 * but it would look too non-natural for the case of all 1152 * activity in the system coming from a single strictlimit wb 1153 * with bdi->max_ratio == 100%. 1154 * 1155 * Note that min() below somewhat changes the dynamics of the 1156 * control system. Normally, pos_ratio value can be well over 3 1157 * (when globally we are at freerun and wb is well below wb 1158 * setpoint). Now the maximum pos_ratio in the same situation 1159 * is 2. We might want to tweak this if we observe the control 1160 * system is too slow to adapt. 1161 */ 1162 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1163 return; 1164 } 1165 1166 /* 1167 * We have computed basic pos_ratio above based on global situation. If 1168 * the wb is over/under its share of dirty pages, we want to scale 1169 * pos_ratio further down/up. That is done by the following mechanism. 1170 */ 1171 1172 /* 1173 * wb setpoint 1174 * 1175 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1176 * 1177 * x_intercept - wb_dirty 1178 * := -------------------------- 1179 * x_intercept - wb_setpoint 1180 * 1181 * The main wb control line is a linear function that subjects to 1182 * 1183 * (1) f(wb_setpoint) = 1.0 1184 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1185 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1186 * 1187 * For single wb case, the dirty pages are observed to fluctuate 1188 * regularly within range 1189 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1190 * for various filesystems, where (2) can yield in a reasonable 12.5% 1191 * fluctuation range for pos_ratio. 1192 * 1193 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1194 * own size, so move the slope over accordingly and choose a slope that 1195 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1196 */ 1197 if (unlikely(wb_thresh > dtc->thresh)) 1198 wb_thresh = dtc->thresh; 1199 /* 1200 * It's very possible that wb_thresh is close to 0 not because the 1201 * device is slow, but that it has remained inactive for long time. 1202 * Honour such devices a reasonable good (hopefully IO efficient) 1203 * threshold, so that the occasional writes won't be blocked and active 1204 * writes can rampup the threshold quickly. 1205 */ 1206 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1207 /* 1208 * scale global setpoint to wb's: 1209 * wb_setpoint = setpoint * wb_thresh / thresh 1210 */ 1211 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1212 wb_setpoint = setpoint * (u64)x >> 16; 1213 /* 1214 * Use span=(8*write_bw) in single wb case as indicated by 1215 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1216 * 1217 * wb_thresh thresh - wb_thresh 1218 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1219 * thresh thresh 1220 */ 1221 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1222 x_intercept = wb_setpoint + span; 1223 1224 if (dtc->wb_dirty < x_intercept - span / 4) { 1225 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1226 (x_intercept - wb_setpoint) | 1); 1227 } else 1228 pos_ratio /= 4; 1229 1230 /* 1231 * wb reserve area, safeguard against dirty pool underrun and disk idle 1232 * It may push the desired control point of global dirty pages higher 1233 * than setpoint. 1234 */ 1235 x_intercept = wb_thresh / 2; 1236 if (dtc->wb_dirty < x_intercept) { 1237 if (dtc->wb_dirty > x_intercept / 8) 1238 pos_ratio = div_u64(pos_ratio * x_intercept, 1239 dtc->wb_dirty); 1240 else 1241 pos_ratio *= 8; 1242 } 1243 1244 dtc->pos_ratio = pos_ratio; 1245 } 1246 1247 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1248 unsigned long elapsed, 1249 unsigned long written) 1250 { 1251 const unsigned long period = roundup_pow_of_two(3 * HZ); 1252 unsigned long avg = wb->avg_write_bandwidth; 1253 unsigned long old = wb->write_bandwidth; 1254 u64 bw; 1255 1256 /* 1257 * bw = written * HZ / elapsed 1258 * 1259 * bw * elapsed + write_bandwidth * (period - elapsed) 1260 * write_bandwidth = --------------------------------------------------- 1261 * period 1262 * 1263 * @written may have decreased due to folio_redirty_for_writepage(). 1264 * Avoid underflowing @bw calculation. 1265 */ 1266 bw = written - min(written, wb->written_stamp); 1267 bw *= HZ; 1268 if (unlikely(elapsed > period)) { 1269 bw = div64_ul(bw, elapsed); 1270 avg = bw; 1271 goto out; 1272 } 1273 bw += (u64)wb->write_bandwidth * (period - elapsed); 1274 bw >>= ilog2(period); 1275 1276 /* 1277 * one more level of smoothing, for filtering out sudden spikes 1278 */ 1279 if (avg > old && old >= (unsigned long)bw) 1280 avg -= (avg - old) >> 3; 1281 1282 if (avg < old && old <= (unsigned long)bw) 1283 avg += (old - avg) >> 3; 1284 1285 out: 1286 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1287 avg = max(avg, 1LU); 1288 if (wb_has_dirty_io(wb)) { 1289 long delta = avg - wb->avg_write_bandwidth; 1290 WARN_ON_ONCE(atomic_long_add_return(delta, 1291 &wb->bdi->tot_write_bandwidth) <= 0); 1292 } 1293 wb->write_bandwidth = bw; 1294 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1295 } 1296 1297 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1298 { 1299 struct wb_domain *dom = dtc_dom(dtc); 1300 unsigned long thresh = dtc->thresh; 1301 unsigned long limit = dom->dirty_limit; 1302 1303 /* 1304 * Follow up in one step. 1305 */ 1306 if (limit < thresh) { 1307 limit = thresh; 1308 goto update; 1309 } 1310 1311 /* 1312 * Follow down slowly. Use the higher one as the target, because thresh 1313 * may drop below dirty. This is exactly the reason to introduce 1314 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1315 */ 1316 thresh = max(thresh, dtc->dirty); 1317 if (limit > thresh) { 1318 limit -= (limit - thresh) >> 5; 1319 goto update; 1320 } 1321 return; 1322 update: 1323 dom->dirty_limit = limit; 1324 } 1325 1326 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1327 unsigned long now) 1328 { 1329 struct wb_domain *dom = dtc_dom(dtc); 1330 1331 /* 1332 * check locklessly first to optimize away locking for the most time 1333 */ 1334 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1335 return; 1336 1337 spin_lock(&dom->lock); 1338 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1339 update_dirty_limit(dtc); 1340 dom->dirty_limit_tstamp = now; 1341 } 1342 spin_unlock(&dom->lock); 1343 } 1344 1345 /* 1346 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1347 * 1348 * Normal wb tasks will be curbed at or below it in long term. 1349 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1350 */ 1351 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1352 unsigned long dirtied, 1353 unsigned long elapsed) 1354 { 1355 struct bdi_writeback *wb = dtc->wb; 1356 unsigned long dirty = dtc->dirty; 1357 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1358 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1359 unsigned long setpoint = (freerun + limit) / 2; 1360 unsigned long write_bw = wb->avg_write_bandwidth; 1361 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1362 unsigned long dirty_rate; 1363 unsigned long task_ratelimit; 1364 unsigned long balanced_dirty_ratelimit; 1365 unsigned long step; 1366 unsigned long x; 1367 unsigned long shift; 1368 1369 /* 1370 * The dirty rate will match the writeout rate in long term, except 1371 * when dirty pages are truncated by userspace or re-dirtied by FS. 1372 */ 1373 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1374 1375 /* 1376 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1377 */ 1378 task_ratelimit = (u64)dirty_ratelimit * 1379 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1380 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1381 1382 /* 1383 * A linear estimation of the "balanced" throttle rate. The theory is, 1384 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1385 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1386 * formula will yield the balanced rate limit (write_bw / N). 1387 * 1388 * Note that the expanded form is not a pure rate feedback: 1389 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1390 * but also takes pos_ratio into account: 1391 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1392 * 1393 * (1) is not realistic because pos_ratio also takes part in balancing 1394 * the dirty rate. Consider the state 1395 * pos_ratio = 0.5 (3) 1396 * rate = 2 * (write_bw / N) (4) 1397 * If (1) is used, it will stuck in that state! Because each dd will 1398 * be throttled at 1399 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1400 * yielding 1401 * dirty_rate = N * task_ratelimit = write_bw (6) 1402 * put (6) into (1) we get 1403 * rate_(i+1) = rate_(i) (7) 1404 * 1405 * So we end up using (2) to always keep 1406 * rate_(i+1) ~= (write_bw / N) (8) 1407 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1408 * pos_ratio is able to drive itself to 1.0, which is not only where 1409 * the dirty count meet the setpoint, but also where the slope of 1410 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1411 */ 1412 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1413 dirty_rate | 1); 1414 /* 1415 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1416 */ 1417 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1418 balanced_dirty_ratelimit = write_bw; 1419 1420 /* 1421 * We could safely do this and return immediately: 1422 * 1423 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1424 * 1425 * However to get a more stable dirty_ratelimit, the below elaborated 1426 * code makes use of task_ratelimit to filter out singular points and 1427 * limit the step size. 1428 * 1429 * The below code essentially only uses the relative value of 1430 * 1431 * task_ratelimit - dirty_ratelimit 1432 * = (pos_ratio - 1) * dirty_ratelimit 1433 * 1434 * which reflects the direction and size of dirty position error. 1435 */ 1436 1437 /* 1438 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1439 * task_ratelimit is on the same side of dirty_ratelimit, too. 1440 * For example, when 1441 * - dirty_ratelimit > balanced_dirty_ratelimit 1442 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1443 * lowering dirty_ratelimit will help meet both the position and rate 1444 * control targets. Otherwise, don't update dirty_ratelimit if it will 1445 * only help meet the rate target. After all, what the users ultimately 1446 * feel and care are stable dirty rate and small position error. 1447 * 1448 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1449 * and filter out the singular points of balanced_dirty_ratelimit. Which 1450 * keeps jumping around randomly and can even leap far away at times 1451 * due to the small 200ms estimation period of dirty_rate (we want to 1452 * keep that period small to reduce time lags). 1453 */ 1454 step = 0; 1455 1456 /* 1457 * For strictlimit case, calculations above were based on wb counters 1458 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1459 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1460 * Hence, to calculate "step" properly, we have to use wb_dirty as 1461 * "dirty" and wb_setpoint as "setpoint". 1462 * 1463 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1464 * it's possible that wb_thresh is close to zero due to inactivity 1465 * of backing device. 1466 */ 1467 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1468 dirty = dtc->wb_dirty; 1469 if (dtc->wb_dirty < 8) 1470 setpoint = dtc->wb_dirty + 1; 1471 else 1472 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1473 } 1474 1475 if (dirty < setpoint) { 1476 x = min3(wb->balanced_dirty_ratelimit, 1477 balanced_dirty_ratelimit, task_ratelimit); 1478 if (dirty_ratelimit < x) 1479 step = x - dirty_ratelimit; 1480 } else { 1481 x = max3(wb->balanced_dirty_ratelimit, 1482 balanced_dirty_ratelimit, task_ratelimit); 1483 if (dirty_ratelimit > x) 1484 step = dirty_ratelimit - x; 1485 } 1486 1487 /* 1488 * Don't pursue 100% rate matching. It's impossible since the balanced 1489 * rate itself is constantly fluctuating. So decrease the track speed 1490 * when it gets close to the target. Helps eliminate pointless tremors. 1491 */ 1492 shift = dirty_ratelimit / (2 * step + 1); 1493 if (shift < BITS_PER_LONG) 1494 step = DIV_ROUND_UP(step >> shift, 8); 1495 else 1496 step = 0; 1497 1498 if (dirty_ratelimit < balanced_dirty_ratelimit) 1499 dirty_ratelimit += step; 1500 else 1501 dirty_ratelimit -= step; 1502 1503 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1504 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1505 1506 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1507 } 1508 1509 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1510 struct dirty_throttle_control *mdtc, 1511 bool update_ratelimit) 1512 { 1513 struct bdi_writeback *wb = gdtc->wb; 1514 unsigned long now = jiffies; 1515 unsigned long elapsed; 1516 unsigned long dirtied; 1517 unsigned long written; 1518 1519 spin_lock(&wb->list_lock); 1520 1521 /* 1522 * Lockless checks for elapsed time are racy and delayed update after 1523 * IO completion doesn't do it at all (to make sure written pages are 1524 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1525 * division errors. 1526 */ 1527 elapsed = max(now - wb->bw_time_stamp, 1UL); 1528 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1529 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1530 1531 if (update_ratelimit) { 1532 domain_update_dirty_limit(gdtc, now); 1533 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1534 1535 /* 1536 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1537 * compiler has no way to figure that out. Help it. 1538 */ 1539 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1540 domain_update_dirty_limit(mdtc, now); 1541 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1542 } 1543 } 1544 wb_update_write_bandwidth(wb, elapsed, written); 1545 1546 wb->dirtied_stamp = dirtied; 1547 wb->written_stamp = written; 1548 WRITE_ONCE(wb->bw_time_stamp, now); 1549 spin_unlock(&wb->list_lock); 1550 } 1551 1552 void wb_update_bandwidth(struct bdi_writeback *wb) 1553 { 1554 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1555 1556 __wb_update_bandwidth(&gdtc, NULL, false); 1557 } 1558 1559 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1560 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1561 1562 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1563 { 1564 unsigned long now = jiffies; 1565 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1566 1567 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1568 !atomic_read(&wb->writeback_inodes)) { 1569 spin_lock(&wb->list_lock); 1570 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1571 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1572 WRITE_ONCE(wb->bw_time_stamp, now); 1573 spin_unlock(&wb->list_lock); 1574 } 1575 } 1576 1577 /* 1578 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1579 * will look to see if it needs to start dirty throttling. 1580 * 1581 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1582 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1583 * (the number of pages we may dirty without exceeding the dirty limits). 1584 */ 1585 static unsigned long dirty_poll_interval(unsigned long dirty, 1586 unsigned long thresh) 1587 { 1588 if (thresh > dirty) 1589 return 1UL << (ilog2(thresh - dirty) >> 1); 1590 1591 return 1; 1592 } 1593 1594 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1595 unsigned long wb_dirty) 1596 { 1597 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1598 unsigned long t; 1599 1600 /* 1601 * Limit pause time for small memory systems. If sleeping for too long 1602 * time, a small pool of dirty/writeback pages may go empty and disk go 1603 * idle. 1604 * 1605 * 8 serves as the safety ratio. 1606 */ 1607 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1608 t++; 1609 1610 return min_t(unsigned long, t, MAX_PAUSE); 1611 } 1612 1613 static long wb_min_pause(struct bdi_writeback *wb, 1614 long max_pause, 1615 unsigned long task_ratelimit, 1616 unsigned long dirty_ratelimit, 1617 int *nr_dirtied_pause) 1618 { 1619 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1620 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1621 long t; /* target pause */ 1622 long pause; /* estimated next pause */ 1623 int pages; /* target nr_dirtied_pause */ 1624 1625 /* target for 10ms pause on 1-dd case */ 1626 t = max(1, HZ / 100); 1627 1628 /* 1629 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1630 * overheads. 1631 * 1632 * (N * 10ms) on 2^N concurrent tasks. 1633 */ 1634 if (hi > lo) 1635 t += (hi - lo) * (10 * HZ) / 1024; 1636 1637 /* 1638 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1639 * on the much more stable dirty_ratelimit. However the next pause time 1640 * will be computed based on task_ratelimit and the two rate limits may 1641 * depart considerably at some time. Especially if task_ratelimit goes 1642 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1643 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1644 * result task_ratelimit won't be executed faithfully, which could 1645 * eventually bring down dirty_ratelimit. 1646 * 1647 * We apply two rules to fix it up: 1648 * 1) try to estimate the next pause time and if necessary, use a lower 1649 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1650 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1651 * 2) limit the target pause time to max_pause/2, so that the normal 1652 * small fluctuations of task_ratelimit won't trigger rule (1) and 1653 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1654 */ 1655 t = min(t, 1 + max_pause / 2); 1656 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1657 1658 /* 1659 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1660 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1661 * When the 16 consecutive reads are often interrupted by some dirty 1662 * throttling pause during the async writes, cfq will go into idles 1663 * (deadline is fine). So push nr_dirtied_pause as high as possible 1664 * until reaches DIRTY_POLL_THRESH=32 pages. 1665 */ 1666 if (pages < DIRTY_POLL_THRESH) { 1667 t = max_pause; 1668 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1669 if (pages > DIRTY_POLL_THRESH) { 1670 pages = DIRTY_POLL_THRESH; 1671 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1672 } 1673 } 1674 1675 pause = HZ * pages / (task_ratelimit + 1); 1676 if (pause > max_pause) { 1677 t = max_pause; 1678 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1679 } 1680 1681 *nr_dirtied_pause = pages; 1682 /* 1683 * The minimal pause time will normally be half the target pause time. 1684 */ 1685 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1686 } 1687 1688 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1689 { 1690 struct bdi_writeback *wb = dtc->wb; 1691 unsigned long wb_reclaimable; 1692 1693 /* 1694 * wb_thresh is not treated as some limiting factor as 1695 * dirty_thresh, due to reasons 1696 * - in JBOD setup, wb_thresh can fluctuate a lot 1697 * - in a system with HDD and USB key, the USB key may somehow 1698 * go into state (wb_dirty >> wb_thresh) either because 1699 * wb_dirty starts high, or because wb_thresh drops low. 1700 * In this case we don't want to hard throttle the USB key 1701 * dirtiers for 100 seconds until wb_dirty drops under 1702 * wb_thresh. Instead the auxiliary wb control line in 1703 * wb_position_ratio() will let the dirtier task progress 1704 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1705 */ 1706 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); 1707 dtc->wb_bg_thresh = dtc->thresh ? 1708 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1709 1710 /* 1711 * In order to avoid the stacked BDI deadlock we need 1712 * to ensure we accurately count the 'dirty' pages when 1713 * the threshold is low. 1714 * 1715 * Otherwise it would be possible to get thresh+n pages 1716 * reported dirty, even though there are thresh-m pages 1717 * actually dirty; with m+n sitting in the percpu 1718 * deltas. 1719 */ 1720 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1721 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1722 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1723 } else { 1724 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1725 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1726 } 1727 } 1728 1729 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc, 1730 bool strictlimit) 1731 { 1732 unsigned long dirty, thresh; 1733 1734 if (strictlimit) { 1735 dirty = dtc->wb_dirty; 1736 thresh = dtc->wb_thresh; 1737 } else { 1738 dirty = dtc->dirty; 1739 thresh = dtc->thresh; 1740 } 1741 1742 return dirty_poll_interval(dirty, thresh); 1743 } 1744 1745 /* 1746 * Throttle it only when the background writeback cannot catch-up. This avoids 1747 * (excessively) small writeouts when the wb limits are ramping up in case of 1748 * !strictlimit. 1749 * 1750 * In strictlimit case make decision based on the wb counters and limits. Small 1751 * writeouts when the wb limits are ramping up are the price we consciously pay 1752 * for strictlimit-ing. 1753 */ 1754 static void domain_dirty_freerun(struct dirty_throttle_control *dtc, 1755 bool strictlimit) 1756 { 1757 unsigned long dirty, thresh, bg_thresh; 1758 1759 if (unlikely(strictlimit)) { 1760 wb_dirty_limits(dtc); 1761 dirty = dtc->wb_dirty; 1762 thresh = dtc->wb_thresh; 1763 bg_thresh = dtc->wb_bg_thresh; 1764 } else { 1765 dirty = dtc->dirty; 1766 thresh = dtc->thresh; 1767 bg_thresh = dtc->bg_thresh; 1768 } 1769 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh); 1770 } 1771 1772 static void balance_domain_limits(struct dirty_throttle_control *dtc, 1773 bool strictlimit) 1774 { 1775 domain_dirty_avail(dtc, true); 1776 domain_dirty_limits(dtc); 1777 domain_dirty_freerun(dtc, strictlimit); 1778 } 1779 1780 static void wb_dirty_freerun(struct dirty_throttle_control *dtc, 1781 bool strictlimit) 1782 { 1783 dtc->freerun = false; 1784 1785 /* was already handled in domain_dirty_freerun */ 1786 if (strictlimit) 1787 return; 1788 1789 wb_dirty_limits(dtc); 1790 /* 1791 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb 1792 * freerun ceiling. 1793 */ 1794 if (!(current->flags & PF_LOCAL_THROTTLE)) 1795 return; 1796 1797 dtc->freerun = dtc->wb_dirty < 1798 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh); 1799 } 1800 1801 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc, 1802 bool strictlimit) 1803 { 1804 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) && 1805 ((dtc->dirty > dtc->thresh) || strictlimit); 1806 } 1807 1808 /* 1809 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is 1810 * in freerun state. Please don't use these invalid fields in freerun case. 1811 */ 1812 static void balance_wb_limits(struct dirty_throttle_control *dtc, 1813 bool strictlimit) 1814 { 1815 wb_dirty_freerun(dtc, strictlimit); 1816 if (dtc->freerun) 1817 return; 1818 1819 wb_dirty_exceeded(dtc, strictlimit); 1820 wb_position_ratio(dtc); 1821 } 1822 1823 /* 1824 * balance_dirty_pages() must be called by processes which are generating dirty 1825 * data. It looks at the number of dirty pages in the machine and will force 1826 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1827 * If we're over `background_thresh' then the writeback threads are woken to 1828 * perform some writeout. 1829 */ 1830 static int balance_dirty_pages(struct bdi_writeback *wb, 1831 unsigned long pages_dirtied, unsigned int flags) 1832 { 1833 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1834 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1835 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1836 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1837 &mdtc_stor : NULL; 1838 struct dirty_throttle_control *sdtc; 1839 unsigned long nr_dirty; 1840 long period; 1841 long pause; 1842 long max_pause; 1843 long min_pause; 1844 int nr_dirtied_pause; 1845 unsigned long task_ratelimit; 1846 unsigned long dirty_ratelimit; 1847 struct backing_dev_info *bdi = wb->bdi; 1848 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1849 unsigned long start_time = jiffies; 1850 int ret = 0; 1851 1852 for (;;) { 1853 unsigned long now = jiffies; 1854 1855 nr_dirty = global_node_page_state(NR_FILE_DIRTY); 1856 1857 balance_domain_limits(gdtc, strictlimit); 1858 if (mdtc) { 1859 /* 1860 * If @wb belongs to !root memcg, repeat the same 1861 * basic calculations for the memcg domain. 1862 */ 1863 balance_domain_limits(mdtc, strictlimit); 1864 } 1865 1866 /* 1867 * In laptop mode, we wait until hitting the higher threshold 1868 * before starting background writeout, and then write out all 1869 * the way down to the lower threshold. So slow writers cause 1870 * minimal disk activity. 1871 * 1872 * In normal mode, we start background writeout at the lower 1873 * background_thresh, to keep the amount of dirty memory low. 1874 */ 1875 if (!laptop_mode && nr_dirty > gdtc->bg_thresh && 1876 !writeback_in_progress(wb)) 1877 wb_start_background_writeback(wb); 1878 1879 /* 1880 * If memcg domain is in effect, @dirty should be under 1881 * both global and memcg freerun ceilings. 1882 */ 1883 if (gdtc->freerun && (!mdtc || mdtc->freerun)) { 1884 unsigned long intv; 1885 unsigned long m_intv; 1886 1887 free_running: 1888 intv = domain_poll_intv(gdtc, strictlimit); 1889 m_intv = ULONG_MAX; 1890 1891 current->dirty_paused_when = now; 1892 current->nr_dirtied = 0; 1893 if (mdtc) 1894 m_intv = domain_poll_intv(mdtc, strictlimit); 1895 current->nr_dirtied_pause = min(intv, m_intv); 1896 break; 1897 } 1898 1899 /* Start writeback even when in laptop mode */ 1900 if (unlikely(!writeback_in_progress(wb))) 1901 wb_start_background_writeback(wb); 1902 1903 mem_cgroup_flush_foreign(wb); 1904 1905 /* 1906 * Calculate global domain's pos_ratio and select the 1907 * global dtc by default. 1908 */ 1909 balance_wb_limits(gdtc, strictlimit); 1910 if (gdtc->freerun) 1911 goto free_running; 1912 sdtc = gdtc; 1913 1914 if (mdtc) { 1915 /* 1916 * If memcg domain is in effect, calculate its 1917 * pos_ratio. @wb should satisfy constraints from 1918 * both global and memcg domains. Choose the one 1919 * w/ lower pos_ratio. 1920 */ 1921 balance_wb_limits(mdtc, strictlimit); 1922 if (mdtc->freerun) 1923 goto free_running; 1924 if (mdtc->pos_ratio < gdtc->pos_ratio) 1925 sdtc = mdtc; 1926 } 1927 1928 wb->dirty_exceeded = gdtc->dirty_exceeded || 1929 (mdtc && mdtc->dirty_exceeded); 1930 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1931 BANDWIDTH_INTERVAL)) 1932 __wb_update_bandwidth(gdtc, mdtc, true); 1933 1934 /* throttle according to the chosen dtc */ 1935 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1936 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1937 RATELIMIT_CALC_SHIFT; 1938 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1939 min_pause = wb_min_pause(wb, max_pause, 1940 task_ratelimit, dirty_ratelimit, 1941 &nr_dirtied_pause); 1942 1943 if (unlikely(task_ratelimit == 0)) { 1944 period = max_pause; 1945 pause = max_pause; 1946 goto pause; 1947 } 1948 period = HZ * pages_dirtied / task_ratelimit; 1949 pause = period; 1950 if (current->dirty_paused_when) 1951 pause -= now - current->dirty_paused_when; 1952 /* 1953 * For less than 1s think time (ext3/4 may block the dirtier 1954 * for up to 800ms from time to time on 1-HDD; so does xfs, 1955 * however at much less frequency), try to compensate it in 1956 * future periods by updating the virtual time; otherwise just 1957 * do a reset, as it may be a light dirtier. 1958 */ 1959 if (pause < min_pause) { 1960 trace_balance_dirty_pages(wb, 1961 sdtc->thresh, 1962 sdtc->bg_thresh, 1963 sdtc->dirty, 1964 sdtc->wb_thresh, 1965 sdtc->wb_dirty, 1966 dirty_ratelimit, 1967 task_ratelimit, 1968 pages_dirtied, 1969 period, 1970 min(pause, 0L), 1971 start_time); 1972 if (pause < -HZ) { 1973 current->dirty_paused_when = now; 1974 current->nr_dirtied = 0; 1975 } else if (period) { 1976 current->dirty_paused_when += period; 1977 current->nr_dirtied = 0; 1978 } else if (current->nr_dirtied_pause <= pages_dirtied) 1979 current->nr_dirtied_pause += pages_dirtied; 1980 break; 1981 } 1982 if (unlikely(pause > max_pause)) { 1983 /* for occasional dropped task_ratelimit */ 1984 now += min(pause - max_pause, max_pause); 1985 pause = max_pause; 1986 } 1987 1988 pause: 1989 trace_balance_dirty_pages(wb, 1990 sdtc->thresh, 1991 sdtc->bg_thresh, 1992 sdtc->dirty, 1993 sdtc->wb_thresh, 1994 sdtc->wb_dirty, 1995 dirty_ratelimit, 1996 task_ratelimit, 1997 pages_dirtied, 1998 period, 1999 pause, 2000 start_time); 2001 if (flags & BDP_ASYNC) { 2002 ret = -EAGAIN; 2003 break; 2004 } 2005 __set_current_state(TASK_KILLABLE); 2006 bdi->last_bdp_sleep = jiffies; 2007 io_schedule_timeout(pause); 2008 2009 current->dirty_paused_when = now + pause; 2010 current->nr_dirtied = 0; 2011 current->nr_dirtied_pause = nr_dirtied_pause; 2012 2013 /* 2014 * This is typically equal to (dirty < thresh) and can also 2015 * keep "1000+ dd on a slow USB stick" under control. 2016 */ 2017 if (task_ratelimit) 2018 break; 2019 2020 /* 2021 * In the case of an unresponsive NFS server and the NFS dirty 2022 * pages exceeds dirty_thresh, give the other good wb's a pipe 2023 * to go through, so that tasks on them still remain responsive. 2024 * 2025 * In theory 1 page is enough to keep the consumer-producer 2026 * pipe going: the flusher cleans 1 page => the task dirties 1 2027 * more page. However wb_dirty has accounting errors. So use 2028 * the larger and more IO friendly wb_stat_error. 2029 */ 2030 if (sdtc->wb_dirty <= wb_stat_error()) 2031 break; 2032 2033 if (fatal_signal_pending(current)) 2034 break; 2035 } 2036 return ret; 2037 } 2038 2039 static DEFINE_PER_CPU(int, bdp_ratelimits); 2040 2041 /* 2042 * Normal tasks are throttled by 2043 * loop { 2044 * dirty tsk->nr_dirtied_pause pages; 2045 * take a snap in balance_dirty_pages(); 2046 * } 2047 * However there is a worst case. If every task exit immediately when dirtied 2048 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 2049 * called to throttle the page dirties. The solution is to save the not yet 2050 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 2051 * randomly into the running tasks. This works well for the above worst case, 2052 * as the new task will pick up and accumulate the old task's leaked dirty 2053 * count and eventually get throttled. 2054 */ 2055 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 2056 2057 /** 2058 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 2059 * @mapping: address_space which was dirtied. 2060 * @flags: BDP flags. 2061 * 2062 * Processes which are dirtying memory should call in here once for each page 2063 * which was newly dirtied. The function will periodically check the system's 2064 * dirty state and will initiate writeback if needed. 2065 * 2066 * See balance_dirty_pages_ratelimited() for details. 2067 * 2068 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2069 * indicate that memory is out of balance and the caller must wait 2070 * for I/O to complete. Otherwise, it will return 0 to indicate 2071 * that either memory was already in balance, or it was able to sleep 2072 * until the amount of dirty memory returned to balance. 2073 */ 2074 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2075 unsigned int flags) 2076 { 2077 struct inode *inode = mapping->host; 2078 struct backing_dev_info *bdi = inode_to_bdi(inode); 2079 struct bdi_writeback *wb = NULL; 2080 int ratelimit; 2081 int ret = 0; 2082 int *p; 2083 2084 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2085 return ret; 2086 2087 if (inode_cgwb_enabled(inode)) 2088 wb = wb_get_create_current(bdi, GFP_KERNEL); 2089 if (!wb) 2090 wb = &bdi->wb; 2091 2092 ratelimit = current->nr_dirtied_pause; 2093 if (wb->dirty_exceeded) 2094 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2095 2096 preempt_disable(); 2097 /* 2098 * This prevents one CPU to accumulate too many dirtied pages without 2099 * calling into balance_dirty_pages(), which can happen when there are 2100 * 1000+ tasks, all of them start dirtying pages at exactly the same 2101 * time, hence all honoured too large initial task->nr_dirtied_pause. 2102 */ 2103 p = this_cpu_ptr(&bdp_ratelimits); 2104 if (unlikely(current->nr_dirtied >= ratelimit)) 2105 *p = 0; 2106 else if (unlikely(*p >= ratelimit_pages)) { 2107 *p = 0; 2108 ratelimit = 0; 2109 } 2110 /* 2111 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2112 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2113 * the dirty throttling and livelock other long-run dirtiers. 2114 */ 2115 p = this_cpu_ptr(&dirty_throttle_leaks); 2116 if (*p > 0 && current->nr_dirtied < ratelimit) { 2117 unsigned long nr_pages_dirtied; 2118 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2119 *p -= nr_pages_dirtied; 2120 current->nr_dirtied += nr_pages_dirtied; 2121 } 2122 preempt_enable(); 2123 2124 if (unlikely(current->nr_dirtied >= ratelimit)) 2125 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2126 2127 wb_put(wb); 2128 return ret; 2129 } 2130 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2131 2132 /** 2133 * balance_dirty_pages_ratelimited - balance dirty memory state. 2134 * @mapping: address_space which was dirtied. 2135 * 2136 * Processes which are dirtying memory should call in here once for each page 2137 * which was newly dirtied. The function will periodically check the system's 2138 * dirty state and will initiate writeback if needed. 2139 * 2140 * Once we're over the dirty memory limit we decrease the ratelimiting 2141 * by a lot, to prevent individual processes from overshooting the limit 2142 * by (ratelimit_pages) each. 2143 */ 2144 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2145 { 2146 balance_dirty_pages_ratelimited_flags(mapping, 0); 2147 } 2148 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2149 2150 /* 2151 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty 2152 * and thresh, but it's for background writeback. 2153 */ 2154 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc) 2155 { 2156 struct bdi_writeback *wb = dtc->wb; 2157 2158 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh); 2159 if (dtc->wb_bg_thresh < 2 * wb_stat_error()) 2160 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE); 2161 else 2162 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE); 2163 } 2164 2165 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc) 2166 { 2167 domain_dirty_avail(dtc, false); 2168 domain_dirty_limits(dtc); 2169 if (dtc->dirty > dtc->bg_thresh) 2170 return true; 2171 2172 wb_bg_dirty_limits(dtc); 2173 if (dtc->wb_dirty > dtc->wb_bg_thresh) 2174 return true; 2175 2176 return false; 2177 } 2178 2179 /** 2180 * wb_over_bg_thresh - does @wb need to be written back? 2181 * @wb: bdi_writeback of interest 2182 * 2183 * Determines whether background writeback should keep writing @wb or it's 2184 * clean enough. 2185 * 2186 * Return: %true if writeback should continue. 2187 */ 2188 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2189 { 2190 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 2191 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 2192 2193 if (domain_over_bg_thresh(&gdtc)) 2194 return true; 2195 2196 if (mdtc_valid(&mdtc)) 2197 return domain_over_bg_thresh(&mdtc); 2198 2199 return false; 2200 } 2201 2202 #ifdef CONFIG_SYSCTL 2203 /* 2204 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2205 */ 2206 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write, 2207 void *buffer, size_t *length, loff_t *ppos) 2208 { 2209 unsigned int old_interval = dirty_writeback_interval; 2210 int ret; 2211 2212 ret = proc_dointvec(table, write, buffer, length, ppos); 2213 2214 /* 2215 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2216 * and a different non-zero value will wakeup the writeback threads. 2217 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2218 * iterate over all bdis and wbs. 2219 * The reason we do this is to make the change take effect immediately. 2220 */ 2221 if (!ret && write && dirty_writeback_interval && 2222 dirty_writeback_interval != old_interval) 2223 wakeup_flusher_threads(WB_REASON_PERIODIC); 2224 2225 return ret; 2226 } 2227 #endif 2228 2229 void laptop_mode_timer_fn(struct timer_list *t) 2230 { 2231 struct backing_dev_info *backing_dev_info = 2232 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2233 2234 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2235 } 2236 2237 /* 2238 * We've spun up the disk and we're in laptop mode: schedule writeback 2239 * of all dirty data a few seconds from now. If the flush is already scheduled 2240 * then push it back - the user is still using the disk. 2241 */ 2242 void laptop_io_completion(struct backing_dev_info *info) 2243 { 2244 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2245 } 2246 2247 /* 2248 * We're in laptop mode and we've just synced. The sync's writes will have 2249 * caused another writeback to be scheduled by laptop_io_completion. 2250 * Nothing needs to be written back anymore, so we unschedule the writeback. 2251 */ 2252 void laptop_sync_completion(void) 2253 { 2254 struct backing_dev_info *bdi; 2255 2256 rcu_read_lock(); 2257 2258 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2259 del_timer(&bdi->laptop_mode_wb_timer); 2260 2261 rcu_read_unlock(); 2262 } 2263 2264 /* 2265 * If ratelimit_pages is too high then we can get into dirty-data overload 2266 * if a large number of processes all perform writes at the same time. 2267 * 2268 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2269 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2270 * thresholds. 2271 */ 2272 2273 void writeback_set_ratelimit(void) 2274 { 2275 struct wb_domain *dom = &global_wb_domain; 2276 unsigned long background_thresh; 2277 unsigned long dirty_thresh; 2278 2279 global_dirty_limits(&background_thresh, &dirty_thresh); 2280 dom->dirty_limit = dirty_thresh; 2281 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2282 if (ratelimit_pages < 16) 2283 ratelimit_pages = 16; 2284 } 2285 2286 static int page_writeback_cpu_online(unsigned int cpu) 2287 { 2288 writeback_set_ratelimit(); 2289 return 0; 2290 } 2291 2292 #ifdef CONFIG_SYSCTL 2293 2294 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2295 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2296 2297 static struct ctl_table vm_page_writeback_sysctls[] = { 2298 { 2299 .procname = "dirty_background_ratio", 2300 .data = &dirty_background_ratio, 2301 .maxlen = sizeof(dirty_background_ratio), 2302 .mode = 0644, 2303 .proc_handler = dirty_background_ratio_handler, 2304 .extra1 = SYSCTL_ZERO, 2305 .extra2 = SYSCTL_ONE_HUNDRED, 2306 }, 2307 { 2308 .procname = "dirty_background_bytes", 2309 .data = &dirty_background_bytes, 2310 .maxlen = sizeof(dirty_background_bytes), 2311 .mode = 0644, 2312 .proc_handler = dirty_background_bytes_handler, 2313 .extra1 = SYSCTL_LONG_ONE, 2314 }, 2315 { 2316 .procname = "dirty_ratio", 2317 .data = &vm_dirty_ratio, 2318 .maxlen = sizeof(vm_dirty_ratio), 2319 .mode = 0644, 2320 .proc_handler = dirty_ratio_handler, 2321 .extra1 = SYSCTL_ZERO, 2322 .extra2 = SYSCTL_ONE_HUNDRED, 2323 }, 2324 { 2325 .procname = "dirty_bytes", 2326 .data = &vm_dirty_bytes, 2327 .maxlen = sizeof(vm_dirty_bytes), 2328 .mode = 0644, 2329 .proc_handler = dirty_bytes_handler, 2330 .extra1 = (void *)&dirty_bytes_min, 2331 }, 2332 { 2333 .procname = "dirty_writeback_centisecs", 2334 .data = &dirty_writeback_interval, 2335 .maxlen = sizeof(dirty_writeback_interval), 2336 .mode = 0644, 2337 .proc_handler = dirty_writeback_centisecs_handler, 2338 }, 2339 { 2340 .procname = "dirty_expire_centisecs", 2341 .data = &dirty_expire_interval, 2342 .maxlen = sizeof(dirty_expire_interval), 2343 .mode = 0644, 2344 .proc_handler = proc_dointvec_minmax, 2345 .extra1 = SYSCTL_ZERO, 2346 }, 2347 #ifdef CONFIG_HIGHMEM 2348 { 2349 .procname = "highmem_is_dirtyable", 2350 .data = &vm_highmem_is_dirtyable, 2351 .maxlen = sizeof(vm_highmem_is_dirtyable), 2352 .mode = 0644, 2353 .proc_handler = proc_dointvec_minmax, 2354 .extra1 = SYSCTL_ZERO, 2355 .extra2 = SYSCTL_ONE, 2356 }, 2357 #endif 2358 { 2359 .procname = "laptop_mode", 2360 .data = &laptop_mode, 2361 .maxlen = sizeof(laptop_mode), 2362 .mode = 0644, 2363 .proc_handler = proc_dointvec_jiffies, 2364 }, 2365 }; 2366 #endif 2367 2368 /* 2369 * Called early on to tune the page writeback dirty limits. 2370 * 2371 * We used to scale dirty pages according to how total memory 2372 * related to pages that could be allocated for buffers. 2373 * 2374 * However, that was when we used "dirty_ratio" to scale with 2375 * all memory, and we don't do that any more. "dirty_ratio" 2376 * is now applied to total non-HIGHPAGE memory, and as such we can't 2377 * get into the old insane situation any more where we had 2378 * large amounts of dirty pages compared to a small amount of 2379 * non-HIGHMEM memory. 2380 * 2381 * But we might still want to scale the dirty_ratio by how 2382 * much memory the box has.. 2383 */ 2384 void __init page_writeback_init(void) 2385 { 2386 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2387 2388 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2389 page_writeback_cpu_online, NULL); 2390 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2391 page_writeback_cpu_online); 2392 #ifdef CONFIG_SYSCTL 2393 register_sysctl_init("vm", vm_page_writeback_sysctls); 2394 #endif 2395 } 2396 2397 /** 2398 * tag_pages_for_writeback - tag pages to be written by writeback 2399 * @mapping: address space structure to write 2400 * @start: starting page index 2401 * @end: ending page index (inclusive) 2402 * 2403 * This function scans the page range from @start to @end (inclusive) and tags 2404 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2405 * can then use the TOWRITE tag to identify pages eligible for writeback. 2406 * This mechanism is used to avoid livelocking of writeback by a process 2407 * steadily creating new dirty pages in the file (thus it is important for this 2408 * function to be quick so that it can tag pages faster than a dirtying process 2409 * can create them). 2410 */ 2411 void tag_pages_for_writeback(struct address_space *mapping, 2412 pgoff_t start, pgoff_t end) 2413 { 2414 XA_STATE(xas, &mapping->i_pages, start); 2415 unsigned int tagged = 0; 2416 void *page; 2417 2418 xas_lock_irq(&xas); 2419 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2420 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2421 if (++tagged % XA_CHECK_SCHED) 2422 continue; 2423 2424 xas_pause(&xas); 2425 xas_unlock_irq(&xas); 2426 cond_resched(); 2427 xas_lock_irq(&xas); 2428 } 2429 xas_unlock_irq(&xas); 2430 } 2431 EXPORT_SYMBOL(tag_pages_for_writeback); 2432 2433 static bool folio_prepare_writeback(struct address_space *mapping, 2434 struct writeback_control *wbc, struct folio *folio) 2435 { 2436 /* 2437 * Folio truncated or invalidated. We can freely skip it then, 2438 * even for data integrity operations: the folio has disappeared 2439 * concurrently, so there could be no real expectation of this 2440 * data integrity operation even if there is now a new, dirty 2441 * folio at the same pagecache index. 2442 */ 2443 if (unlikely(folio->mapping != mapping)) 2444 return false; 2445 2446 /* 2447 * Did somebody else write it for us? 2448 */ 2449 if (!folio_test_dirty(folio)) 2450 return false; 2451 2452 if (folio_test_writeback(folio)) { 2453 if (wbc->sync_mode == WB_SYNC_NONE) 2454 return false; 2455 folio_wait_writeback(folio); 2456 } 2457 BUG_ON(folio_test_writeback(folio)); 2458 2459 if (!folio_clear_dirty_for_io(folio)) 2460 return false; 2461 2462 return true; 2463 } 2464 2465 static xa_mark_t wbc_to_tag(struct writeback_control *wbc) 2466 { 2467 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2468 return PAGECACHE_TAG_TOWRITE; 2469 return PAGECACHE_TAG_DIRTY; 2470 } 2471 2472 static pgoff_t wbc_end(struct writeback_control *wbc) 2473 { 2474 if (wbc->range_cyclic) 2475 return -1; 2476 return wbc->range_end >> PAGE_SHIFT; 2477 } 2478 2479 static struct folio *writeback_get_folio(struct address_space *mapping, 2480 struct writeback_control *wbc) 2481 { 2482 struct folio *folio; 2483 2484 retry: 2485 folio = folio_batch_next(&wbc->fbatch); 2486 if (!folio) { 2487 folio_batch_release(&wbc->fbatch); 2488 cond_resched(); 2489 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2490 wbc_to_tag(wbc), &wbc->fbatch); 2491 folio = folio_batch_next(&wbc->fbatch); 2492 if (!folio) 2493 return NULL; 2494 } 2495 2496 folio_lock(folio); 2497 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2498 folio_unlock(folio); 2499 goto retry; 2500 } 2501 2502 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2503 return folio; 2504 } 2505 2506 /** 2507 * writeback_iter - iterate folio of a mapping for writeback 2508 * @mapping: address space structure to write 2509 * @wbc: writeback context 2510 * @folio: previously iterated folio (%NULL to start) 2511 * @error: in-out pointer for writeback errors (see below) 2512 * 2513 * This function returns the next folio for the writeback operation described by 2514 * @wbc on @mapping and should be called in a while loop in the ->writepages 2515 * implementation. 2516 * 2517 * To start the writeback operation, %NULL is passed in the @folio argument, and 2518 * for every subsequent iteration the folio returned previously should be passed 2519 * back in. 2520 * 2521 * If there was an error in the per-folio writeback inside the writeback_iter() 2522 * loop, @error should be set to the error value. 2523 * 2524 * Once the writeback described in @wbc has finished, this function will return 2525 * %NULL and if there was an error in any iteration restore it to @error. 2526 * 2527 * Note: callers should not manually break out of the loop using break or goto 2528 * but must keep calling writeback_iter() until it returns %NULL. 2529 * 2530 * Return: the folio to write or %NULL if the loop is done. 2531 */ 2532 struct folio *writeback_iter(struct address_space *mapping, 2533 struct writeback_control *wbc, struct folio *folio, int *error) 2534 { 2535 if (!folio) { 2536 folio_batch_init(&wbc->fbatch); 2537 wbc->saved_err = *error = 0; 2538 2539 /* 2540 * For range cyclic writeback we remember where we stopped so 2541 * that we can continue where we stopped. 2542 * 2543 * For non-cyclic writeback we always start at the beginning of 2544 * the passed in range. 2545 */ 2546 if (wbc->range_cyclic) 2547 wbc->index = mapping->writeback_index; 2548 else 2549 wbc->index = wbc->range_start >> PAGE_SHIFT; 2550 2551 /* 2552 * To avoid livelocks when other processes dirty new pages, we 2553 * first tag pages which should be written back and only then 2554 * start writing them. 2555 * 2556 * For data-integrity writeback we have to be careful so that we 2557 * do not miss some pages (e.g., because some other process has 2558 * cleared the TOWRITE tag we set). The rule we follow is that 2559 * TOWRITE tag can be cleared only by the process clearing the 2560 * DIRTY tag (and submitting the page for I/O). 2561 */ 2562 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2563 tag_pages_for_writeback(mapping, wbc->index, 2564 wbc_end(wbc)); 2565 } else { 2566 wbc->nr_to_write -= folio_nr_pages(folio); 2567 2568 WARN_ON_ONCE(*error > 0); 2569 2570 /* 2571 * For integrity writeback we have to keep going until we have 2572 * written all the folios we tagged for writeback above, even if 2573 * we run past wbc->nr_to_write or encounter errors. 2574 * We stash away the first error we encounter in wbc->saved_err 2575 * so that it can be retrieved when we're done. This is because 2576 * the file system may still have state to clear for each folio. 2577 * 2578 * For background writeback we exit as soon as we run past 2579 * wbc->nr_to_write or encounter the first error. 2580 */ 2581 if (wbc->sync_mode == WB_SYNC_ALL) { 2582 if (*error && !wbc->saved_err) 2583 wbc->saved_err = *error; 2584 } else { 2585 if (*error || wbc->nr_to_write <= 0) 2586 goto done; 2587 } 2588 } 2589 2590 folio = writeback_get_folio(mapping, wbc); 2591 if (!folio) { 2592 /* 2593 * To avoid deadlocks between range_cyclic writeback and callers 2594 * that hold pages in PageWriteback to aggregate I/O until 2595 * the writeback iteration finishes, we do not loop back to the 2596 * start of the file. Doing so causes a page lock/page 2597 * writeback access order inversion - we should only ever lock 2598 * multiple pages in ascending page->index order, and looping 2599 * back to the start of the file violates that rule and causes 2600 * deadlocks. 2601 */ 2602 if (wbc->range_cyclic) 2603 mapping->writeback_index = 0; 2604 2605 /* 2606 * Return the first error we encountered (if there was any) to 2607 * the caller. 2608 */ 2609 *error = wbc->saved_err; 2610 } 2611 return folio; 2612 2613 done: 2614 if (wbc->range_cyclic) 2615 mapping->writeback_index = folio_next_index(folio); 2616 folio_batch_release(&wbc->fbatch); 2617 return NULL; 2618 } 2619 EXPORT_SYMBOL_GPL(writeback_iter); 2620 2621 /** 2622 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2623 * @mapping: address space structure to write 2624 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2625 * @writepage: function called for each page 2626 * @data: data passed to writepage function 2627 * 2628 * Return: %0 on success, negative error code otherwise 2629 * 2630 * Note: please use writeback_iter() instead. 2631 */ 2632 int write_cache_pages(struct address_space *mapping, 2633 struct writeback_control *wbc, writepage_t writepage, 2634 void *data) 2635 { 2636 struct folio *folio = NULL; 2637 int error; 2638 2639 while ((folio = writeback_iter(mapping, wbc, folio, &error))) { 2640 error = writepage(folio, wbc, data); 2641 if (error == AOP_WRITEPAGE_ACTIVATE) { 2642 folio_unlock(folio); 2643 error = 0; 2644 } 2645 } 2646 2647 return error; 2648 } 2649 EXPORT_SYMBOL(write_cache_pages); 2650 2651 static int writeback_use_writepage(struct address_space *mapping, 2652 struct writeback_control *wbc) 2653 { 2654 struct folio *folio = NULL; 2655 struct blk_plug plug; 2656 int err; 2657 2658 blk_start_plug(&plug); 2659 while ((folio = writeback_iter(mapping, wbc, folio, &err))) { 2660 err = mapping->a_ops->writepage(&folio->page, wbc); 2661 if (err == AOP_WRITEPAGE_ACTIVATE) { 2662 folio_unlock(folio); 2663 err = 0; 2664 } 2665 mapping_set_error(mapping, err); 2666 } 2667 blk_finish_plug(&plug); 2668 2669 return err; 2670 } 2671 2672 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2673 { 2674 int ret; 2675 struct bdi_writeback *wb; 2676 2677 if (wbc->nr_to_write <= 0) 2678 return 0; 2679 wb = inode_to_wb_wbc(mapping->host, wbc); 2680 wb_bandwidth_estimate_start(wb); 2681 while (1) { 2682 if (mapping->a_ops->writepages) { 2683 ret = mapping->a_ops->writepages(mapping, wbc); 2684 } else if (mapping->a_ops->writepage) { 2685 ret = writeback_use_writepage(mapping, wbc); 2686 } else { 2687 /* deal with chardevs and other special files */ 2688 ret = 0; 2689 } 2690 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2691 break; 2692 2693 /* 2694 * Lacking an allocation context or the locality or writeback 2695 * state of any of the inode's pages, throttle based on 2696 * writeback activity on the local node. It's as good a 2697 * guess as any. 2698 */ 2699 reclaim_throttle(NODE_DATA(numa_node_id()), 2700 VMSCAN_THROTTLE_WRITEBACK); 2701 } 2702 /* 2703 * Usually few pages are written by now from those we've just submitted 2704 * but if there's constant writeback being submitted, this makes sure 2705 * writeback bandwidth is updated once in a while. 2706 */ 2707 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2708 BANDWIDTH_INTERVAL)) 2709 wb_update_bandwidth(wb); 2710 return ret; 2711 } 2712 2713 /* 2714 * For address_spaces which do not use buffers nor write back. 2715 */ 2716 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2717 { 2718 if (!folio_test_dirty(folio)) 2719 return !folio_test_set_dirty(folio); 2720 return false; 2721 } 2722 EXPORT_SYMBOL(noop_dirty_folio); 2723 2724 /* 2725 * Helper function for set_page_dirty family. 2726 * 2727 * Caller must hold folio_memcg_lock(). 2728 * 2729 * NOTE: This relies on being atomic wrt interrupts. 2730 */ 2731 static void folio_account_dirtied(struct folio *folio, 2732 struct address_space *mapping) 2733 { 2734 struct inode *inode = mapping->host; 2735 2736 trace_writeback_dirty_folio(folio, mapping); 2737 2738 if (mapping_can_writeback(mapping)) { 2739 struct bdi_writeback *wb; 2740 long nr = folio_nr_pages(folio); 2741 2742 inode_attach_wb(inode, folio); 2743 wb = inode_to_wb(inode); 2744 2745 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2746 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2747 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2748 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2749 wb_stat_mod(wb, WB_DIRTIED, nr); 2750 task_io_account_write(nr * PAGE_SIZE); 2751 current->nr_dirtied += nr; 2752 __this_cpu_add(bdp_ratelimits, nr); 2753 2754 mem_cgroup_track_foreign_dirty(folio, wb); 2755 } 2756 } 2757 2758 /* 2759 * Helper function for deaccounting dirty page without writeback. 2760 * 2761 * Caller must hold folio_memcg_lock(). 2762 */ 2763 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2764 { 2765 long nr = folio_nr_pages(folio); 2766 2767 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2768 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2769 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2770 task_io_account_cancelled_write(nr * PAGE_SIZE); 2771 } 2772 2773 /* 2774 * Mark the folio dirty, and set it dirty in the page cache. 2775 * 2776 * If warn is true, then emit a warning if the folio is not uptodate and has 2777 * not been truncated. 2778 * 2779 * The caller must hold folio_memcg_lock(). It is the caller's 2780 * responsibility to prevent the folio from being truncated while 2781 * this function is in progress, although it may have been truncated 2782 * before this function is called. Most callers have the folio locked. 2783 * A few have the folio blocked from truncation through other means (e.g. 2784 * zap_vma_pages() has it mapped and is holding the page table lock). 2785 * When called from mark_buffer_dirty(), the filesystem should hold a 2786 * reference to the buffer_head that is being marked dirty, which causes 2787 * try_to_free_buffers() to fail. 2788 */ 2789 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2790 int warn) 2791 { 2792 unsigned long flags; 2793 2794 xa_lock_irqsave(&mapping->i_pages, flags); 2795 if (folio->mapping) { /* Race with truncate? */ 2796 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2797 folio_account_dirtied(folio, mapping); 2798 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2799 PAGECACHE_TAG_DIRTY); 2800 } 2801 xa_unlock_irqrestore(&mapping->i_pages, flags); 2802 } 2803 2804 /** 2805 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2806 * @mapping: Address space this folio belongs to. 2807 * @folio: Folio to be marked as dirty. 2808 * 2809 * Filesystems which do not use buffer heads should call this function 2810 * from their dirty_folio address space operation. It ignores the 2811 * contents of folio_get_private(), so if the filesystem marks individual 2812 * blocks as dirty, the filesystem should handle that itself. 2813 * 2814 * This is also sometimes used by filesystems which use buffer_heads when 2815 * a single buffer is being dirtied: we want to set the folio dirty in 2816 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2817 * whereas block_dirty_folio() is a "top-down" dirtying. 2818 * 2819 * The caller must ensure this doesn't race with truncation. Most will 2820 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2821 * folio mapped and the pte lock held, which also locks out truncation. 2822 */ 2823 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2824 { 2825 folio_memcg_lock(folio); 2826 if (folio_test_set_dirty(folio)) { 2827 folio_memcg_unlock(folio); 2828 return false; 2829 } 2830 2831 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2832 folio_memcg_unlock(folio); 2833 2834 if (mapping->host) { 2835 /* !PageAnon && !swapper_space */ 2836 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2837 } 2838 return true; 2839 } 2840 EXPORT_SYMBOL(filemap_dirty_folio); 2841 2842 /** 2843 * folio_redirty_for_writepage - Decline to write a dirty folio. 2844 * @wbc: The writeback control. 2845 * @folio: The folio. 2846 * 2847 * When a writepage implementation decides that it doesn't want to write 2848 * @folio for some reason, it should call this function, unlock @folio and 2849 * return 0. 2850 * 2851 * Return: True if we redirtied the folio. False if someone else dirtied 2852 * it first. 2853 */ 2854 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2855 struct folio *folio) 2856 { 2857 struct address_space *mapping = folio->mapping; 2858 long nr = folio_nr_pages(folio); 2859 bool ret; 2860 2861 wbc->pages_skipped += nr; 2862 ret = filemap_dirty_folio(mapping, folio); 2863 if (mapping && mapping_can_writeback(mapping)) { 2864 struct inode *inode = mapping->host; 2865 struct bdi_writeback *wb; 2866 struct wb_lock_cookie cookie = {}; 2867 2868 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2869 current->nr_dirtied -= nr; 2870 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2871 wb_stat_mod(wb, WB_DIRTIED, -nr); 2872 unlocked_inode_to_wb_end(inode, &cookie); 2873 } 2874 return ret; 2875 } 2876 EXPORT_SYMBOL(folio_redirty_for_writepage); 2877 2878 /** 2879 * folio_mark_dirty - Mark a folio as being modified. 2880 * @folio: The folio. 2881 * 2882 * The folio may not be truncated while this function is running. 2883 * Holding the folio lock is sufficient to prevent truncation, but some 2884 * callers cannot acquire a sleeping lock. These callers instead hold 2885 * the page table lock for a page table which contains at least one page 2886 * in this folio. Truncation will block on the page table lock as it 2887 * unmaps pages before removing the folio from its mapping. 2888 * 2889 * Return: True if the folio was newly dirtied, false if it was already dirty. 2890 */ 2891 bool folio_mark_dirty(struct folio *folio) 2892 { 2893 struct address_space *mapping = folio_mapping(folio); 2894 2895 if (likely(mapping)) { 2896 /* 2897 * readahead/folio_deactivate could remain 2898 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2899 * About readahead, if the folio is written, the flags would be 2900 * reset. So no problem. 2901 * About folio_deactivate, if the folio is redirtied, 2902 * the flag will be reset. So no problem. but if the 2903 * folio is used by readahead it will confuse readahead 2904 * and make it restart the size rampup process. But it's 2905 * a trivial problem. 2906 */ 2907 if (folio_test_reclaim(folio)) 2908 folio_clear_reclaim(folio); 2909 return mapping->a_ops->dirty_folio(mapping, folio); 2910 } 2911 2912 return noop_dirty_folio(mapping, folio); 2913 } 2914 EXPORT_SYMBOL(folio_mark_dirty); 2915 2916 /* 2917 * set_page_dirty() is racy if the caller has no reference against 2918 * page->mapping->host, and if the page is unlocked. This is because another 2919 * CPU could truncate the page off the mapping and then free the mapping. 2920 * 2921 * Usually, the page _is_ locked, or the caller is a user-space process which 2922 * holds a reference on the inode by having an open file. 2923 * 2924 * In other cases, the page should be locked before running set_page_dirty(). 2925 */ 2926 int set_page_dirty_lock(struct page *page) 2927 { 2928 int ret; 2929 2930 lock_page(page); 2931 ret = set_page_dirty(page); 2932 unlock_page(page); 2933 return ret; 2934 } 2935 EXPORT_SYMBOL(set_page_dirty_lock); 2936 2937 /* 2938 * This cancels just the dirty bit on the kernel page itself, it does NOT 2939 * actually remove dirty bits on any mmap's that may be around. It also 2940 * leaves the page tagged dirty, so any sync activity will still find it on 2941 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2942 * look at the dirty bits in the VM. 2943 * 2944 * Doing this should *normally* only ever be done when a page is truncated, 2945 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2946 * this when it notices that somebody has cleaned out all the buffers on a 2947 * page without actually doing it through the VM. Can you say "ext3 is 2948 * horribly ugly"? Thought you could. 2949 */ 2950 void __folio_cancel_dirty(struct folio *folio) 2951 { 2952 struct address_space *mapping = folio_mapping(folio); 2953 2954 if (mapping_can_writeback(mapping)) { 2955 struct inode *inode = mapping->host; 2956 struct bdi_writeback *wb; 2957 struct wb_lock_cookie cookie = {}; 2958 2959 folio_memcg_lock(folio); 2960 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2961 2962 if (folio_test_clear_dirty(folio)) 2963 folio_account_cleaned(folio, wb); 2964 2965 unlocked_inode_to_wb_end(inode, &cookie); 2966 folio_memcg_unlock(folio); 2967 } else { 2968 folio_clear_dirty(folio); 2969 } 2970 } 2971 EXPORT_SYMBOL(__folio_cancel_dirty); 2972 2973 /* 2974 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2975 * Returns true if the folio was previously dirty. 2976 * 2977 * This is for preparing to put the folio under writeout. We leave 2978 * the folio tagged as dirty in the xarray so that a concurrent 2979 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2980 * The ->writepage implementation will run either folio_start_writeback() 2981 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2982 * and xarray dirty tag back into sync. 2983 * 2984 * This incoherency between the folio's dirty flag and xarray tag is 2985 * unfortunate, but it only exists while the folio is locked. 2986 */ 2987 bool folio_clear_dirty_for_io(struct folio *folio) 2988 { 2989 struct address_space *mapping = folio_mapping(folio); 2990 bool ret = false; 2991 2992 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2993 2994 if (mapping && mapping_can_writeback(mapping)) { 2995 struct inode *inode = mapping->host; 2996 struct bdi_writeback *wb; 2997 struct wb_lock_cookie cookie = {}; 2998 2999 /* 3000 * Yes, Virginia, this is indeed insane. 3001 * 3002 * We use this sequence to make sure that 3003 * (a) we account for dirty stats properly 3004 * (b) we tell the low-level filesystem to 3005 * mark the whole folio dirty if it was 3006 * dirty in a pagetable. Only to then 3007 * (c) clean the folio again and return 1 to 3008 * cause the writeback. 3009 * 3010 * This way we avoid all nasty races with the 3011 * dirty bit in multiple places and clearing 3012 * them concurrently from different threads. 3013 * 3014 * Note! Normally the "folio_mark_dirty(folio)" 3015 * has no effect on the actual dirty bit - since 3016 * that will already usually be set. But we 3017 * need the side effects, and it can help us 3018 * avoid races. 3019 * 3020 * We basically use the folio "master dirty bit" 3021 * as a serialization point for all the different 3022 * threads doing their things. 3023 */ 3024 if (folio_mkclean(folio)) 3025 folio_mark_dirty(folio); 3026 /* 3027 * We carefully synchronise fault handlers against 3028 * installing a dirty pte and marking the folio dirty 3029 * at this point. We do this by having them hold the 3030 * page lock while dirtying the folio, and folios are 3031 * always locked coming in here, so we get the desired 3032 * exclusion. 3033 */ 3034 wb = unlocked_inode_to_wb_begin(inode, &cookie); 3035 if (folio_test_clear_dirty(folio)) { 3036 long nr = folio_nr_pages(folio); 3037 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 3038 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3039 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 3040 ret = true; 3041 } 3042 unlocked_inode_to_wb_end(inode, &cookie); 3043 return ret; 3044 } 3045 return folio_test_clear_dirty(folio); 3046 } 3047 EXPORT_SYMBOL(folio_clear_dirty_for_io); 3048 3049 static void wb_inode_writeback_start(struct bdi_writeback *wb) 3050 { 3051 atomic_inc(&wb->writeback_inodes); 3052 } 3053 3054 static void wb_inode_writeback_end(struct bdi_writeback *wb) 3055 { 3056 unsigned long flags; 3057 atomic_dec(&wb->writeback_inodes); 3058 /* 3059 * Make sure estimate of writeback throughput gets updated after 3060 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 3061 * (which is the interval other bandwidth updates use for batching) so 3062 * that if multiple inodes end writeback at a similar time, they get 3063 * batched into one bandwidth update. 3064 */ 3065 spin_lock_irqsave(&wb->work_lock, flags); 3066 if (test_bit(WB_registered, &wb->state)) 3067 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 3068 spin_unlock_irqrestore(&wb->work_lock, flags); 3069 } 3070 3071 bool __folio_end_writeback(struct folio *folio) 3072 { 3073 long nr = folio_nr_pages(folio); 3074 struct address_space *mapping = folio_mapping(folio); 3075 bool ret; 3076 3077 folio_memcg_lock(folio); 3078 if (mapping && mapping_use_writeback_tags(mapping)) { 3079 struct inode *inode = mapping->host; 3080 struct backing_dev_info *bdi = inode_to_bdi(inode); 3081 unsigned long flags; 3082 3083 xa_lock_irqsave(&mapping->i_pages, flags); 3084 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3085 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 3086 PAGECACHE_TAG_WRITEBACK); 3087 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3088 struct bdi_writeback *wb = inode_to_wb(inode); 3089 3090 wb_stat_mod(wb, WB_WRITEBACK, -nr); 3091 __wb_writeout_add(wb, nr); 3092 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 3093 wb_inode_writeback_end(wb); 3094 } 3095 3096 if (mapping->host && !mapping_tagged(mapping, 3097 PAGECACHE_TAG_WRITEBACK)) 3098 sb_clear_inode_writeback(mapping->host); 3099 3100 xa_unlock_irqrestore(&mapping->i_pages, flags); 3101 } else { 3102 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3103 } 3104 3105 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3106 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3107 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3108 folio_memcg_unlock(folio); 3109 3110 return ret; 3111 } 3112 3113 void __folio_start_writeback(struct folio *folio, bool keep_write) 3114 { 3115 long nr = folio_nr_pages(folio); 3116 struct address_space *mapping = folio_mapping(folio); 3117 int access_ret; 3118 3119 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 3120 3121 folio_memcg_lock(folio); 3122 if (mapping && mapping_use_writeback_tags(mapping)) { 3123 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3124 struct inode *inode = mapping->host; 3125 struct backing_dev_info *bdi = inode_to_bdi(inode); 3126 unsigned long flags; 3127 bool on_wblist; 3128 3129 xas_lock_irqsave(&xas, flags); 3130 xas_load(&xas); 3131 folio_test_set_writeback(folio); 3132 3133 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 3134 3135 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3136 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3137 struct bdi_writeback *wb = inode_to_wb(inode); 3138 3139 wb_stat_mod(wb, WB_WRITEBACK, nr); 3140 if (!on_wblist) 3141 wb_inode_writeback_start(wb); 3142 } 3143 3144 /* 3145 * We can come through here when swapping anonymous 3146 * folios, so we don't necessarily have an inode to 3147 * track for sync. 3148 */ 3149 if (mapping->host && !on_wblist) 3150 sb_mark_inode_writeback(mapping->host); 3151 if (!folio_test_dirty(folio)) 3152 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3153 if (!keep_write) 3154 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3155 xas_unlock_irqrestore(&xas, flags); 3156 } else { 3157 folio_test_set_writeback(folio); 3158 } 3159 3160 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3161 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3162 folio_memcg_unlock(folio); 3163 3164 access_ret = arch_make_folio_accessible(folio); 3165 /* 3166 * If writeback has been triggered on a page that cannot be made 3167 * accessible, it is too late to recover here. 3168 */ 3169 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3170 } 3171 EXPORT_SYMBOL(__folio_start_writeback); 3172 3173 /** 3174 * folio_wait_writeback - Wait for a folio to finish writeback. 3175 * @folio: The folio to wait for. 3176 * 3177 * If the folio is currently being written back to storage, wait for the 3178 * I/O to complete. 3179 * 3180 * Context: Sleeps. Must be called in process context and with 3181 * no spinlocks held. Caller should hold a reference on the folio. 3182 * If the folio is not locked, writeback may start again after writeback 3183 * has finished. 3184 */ 3185 void folio_wait_writeback(struct folio *folio) 3186 { 3187 while (folio_test_writeback(folio)) { 3188 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3189 folio_wait_bit(folio, PG_writeback); 3190 } 3191 } 3192 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3193 3194 /** 3195 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3196 * @folio: The folio to wait for. 3197 * 3198 * If the folio is currently being written back to storage, wait for the 3199 * I/O to complete or a fatal signal to arrive. 3200 * 3201 * Context: Sleeps. Must be called in process context and with 3202 * no spinlocks held. Caller should hold a reference on the folio. 3203 * If the folio is not locked, writeback may start again after writeback 3204 * has finished. 3205 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3206 */ 3207 int folio_wait_writeback_killable(struct folio *folio) 3208 { 3209 while (folio_test_writeback(folio)) { 3210 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3211 if (folio_wait_bit_killable(folio, PG_writeback)) 3212 return -EINTR; 3213 } 3214 3215 return 0; 3216 } 3217 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3218 3219 /** 3220 * folio_wait_stable() - wait for writeback to finish, if necessary. 3221 * @folio: The folio to wait on. 3222 * 3223 * This function determines if the given folio is related to a backing 3224 * device that requires folio contents to be held stable during writeback. 3225 * If so, then it will wait for any pending writeback to complete. 3226 * 3227 * Context: Sleeps. Must be called in process context and with 3228 * no spinlocks held. Caller should hold a reference on the folio. 3229 * If the folio is not locked, writeback may start again after writeback 3230 * has finished. 3231 */ 3232 void folio_wait_stable(struct folio *folio) 3233 { 3234 if (mapping_stable_writes(folio_mapping(folio))) 3235 folio_wait_writeback(folio); 3236 } 3237 EXPORT_SYMBOL_GPL(folio_wait_stable); 3238