1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that makes the machine dump writes/reads and block dirtyings. 112 */ 113 int block_dump; 114 115 /* 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 117 * a full sync is triggered after this time elapses without any disk activity. 118 */ 119 int laptop_mode; 120 121 EXPORT_SYMBOL(laptop_mode); 122 123 /* End of sysctl-exported parameters */ 124 125 struct wb_domain global_wb_domain; 126 127 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 128 struct dirty_throttle_control { 129 #ifdef CONFIG_CGROUP_WRITEBACK 130 struct wb_domain *dom; 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 132 #endif 133 struct bdi_writeback *wb; 134 struct fprop_local_percpu *wb_completions; 135 136 unsigned long avail; /* dirtyable */ 137 unsigned long dirty; /* file_dirty + write + nfs */ 138 unsigned long thresh; /* dirty threshold */ 139 unsigned long bg_thresh; /* dirty background threshold */ 140 141 unsigned long wb_dirty; /* per-wb counterparts */ 142 unsigned long wb_thresh; 143 unsigned long wb_bg_thresh; 144 145 unsigned long pos_ratio; 146 }; 147 148 #define DTC_INIT_COMMON(__wb) .wb = (__wb), \ 149 .wb_completions = &(__wb)->completions 150 151 /* 152 * Length of period for aging writeout fractions of bdis. This is an 153 * arbitrarily chosen number. The longer the period, the slower fractions will 154 * reflect changes in current writeout rate. 155 */ 156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 157 158 #ifdef CONFIG_CGROUP_WRITEBACK 159 160 #define GDTC_INIT(__wb) .dom = &global_wb_domain, \ 161 DTC_INIT_COMMON(__wb) 162 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 163 #define MDTC_INIT(__wb, __gdtc) .dom = mem_cgroup_wb_domain(__wb), \ 164 .gdtc = __gdtc, \ 165 DTC_INIT_COMMON(__wb) 166 167 static bool mdtc_valid(struct dirty_throttle_control *dtc) 168 { 169 return dtc->dom; 170 } 171 172 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 173 { 174 return dtc->dom; 175 } 176 177 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 178 { 179 return mdtc->gdtc; 180 } 181 182 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 183 { 184 return &wb->memcg_completions; 185 } 186 187 static void wb_min_max_ratio(struct bdi_writeback *wb, 188 unsigned long *minp, unsigned long *maxp) 189 { 190 unsigned long this_bw = wb->avg_write_bandwidth; 191 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 192 unsigned long long min = wb->bdi->min_ratio; 193 unsigned long long max = wb->bdi->max_ratio; 194 195 /* 196 * @wb may already be clean by the time control reaches here and 197 * the total may not include its bw. 198 */ 199 if (this_bw < tot_bw) { 200 if (min) { 201 min *= this_bw; 202 do_div(min, tot_bw); 203 } 204 if (max < 100) { 205 max *= this_bw; 206 do_div(max, tot_bw); 207 } 208 } 209 210 *minp = min; 211 *maxp = max; 212 } 213 214 #else /* CONFIG_CGROUP_WRITEBACK */ 215 216 #define GDTC_INIT(__wb) DTC_INIT_COMMON(__wb) 217 #define GDTC_INIT_NO_WB 218 #define MDTC_INIT(__wb, __gdtc) 219 220 static bool mdtc_valid(struct dirty_throttle_control *dtc) 221 { 222 return false; 223 } 224 225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 226 { 227 return &global_wb_domain; 228 } 229 230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 231 { 232 return NULL; 233 } 234 235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 236 { 237 return NULL; 238 } 239 240 static void wb_min_max_ratio(struct bdi_writeback *wb, 241 unsigned long *minp, unsigned long *maxp) 242 { 243 *minp = wb->bdi->min_ratio; 244 *maxp = wb->bdi->max_ratio; 245 } 246 247 #endif /* CONFIG_CGROUP_WRITEBACK */ 248 249 /* 250 * In a memory zone, there is a certain amount of pages we consider 251 * available for the page cache, which is essentially the number of 252 * free and reclaimable pages, minus some zone reserves to protect 253 * lowmem and the ability to uphold the zone's watermarks without 254 * requiring writeback. 255 * 256 * This number of dirtyable pages is the base value of which the 257 * user-configurable dirty ratio is the effictive number of pages that 258 * are allowed to be actually dirtied. Per individual zone, or 259 * globally by using the sum of dirtyable pages over all zones. 260 * 261 * Because the user is allowed to specify the dirty limit globally as 262 * absolute number of bytes, calculating the per-zone dirty limit can 263 * require translating the configured limit into a percentage of 264 * global dirtyable memory first. 265 */ 266 267 /** 268 * zone_dirtyable_memory - number of dirtyable pages in a zone 269 * @zone: the zone 270 * 271 * Returns the zone's number of pages potentially available for dirty 272 * page cache. This is the base value for the per-zone dirty limits. 273 */ 274 static unsigned long zone_dirtyable_memory(struct zone *zone) 275 { 276 unsigned long nr_pages; 277 278 nr_pages = zone_page_state(zone, NR_FREE_PAGES); 279 nr_pages -= min(nr_pages, zone->dirty_balance_reserve); 280 281 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); 282 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); 283 284 return nr_pages; 285 } 286 287 static unsigned long highmem_dirtyable_memory(unsigned long total) 288 { 289 #ifdef CONFIG_HIGHMEM 290 int node; 291 unsigned long x = 0; 292 293 for_each_node_state(node, N_HIGH_MEMORY) { 294 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 295 296 x += zone_dirtyable_memory(z); 297 } 298 /* 299 * Unreclaimable memory (kernel memory or anonymous memory 300 * without swap) can bring down the dirtyable pages below 301 * the zone's dirty balance reserve and the above calculation 302 * will underflow. However we still want to add in nodes 303 * which are below threshold (negative values) to get a more 304 * accurate calculation but make sure that the total never 305 * underflows. 306 */ 307 if ((long)x < 0) 308 x = 0; 309 310 /* 311 * Make sure that the number of highmem pages is never larger 312 * than the number of the total dirtyable memory. This can only 313 * occur in very strange VM situations but we want to make sure 314 * that this does not occur. 315 */ 316 return min(x, total); 317 #else 318 return 0; 319 #endif 320 } 321 322 /** 323 * global_dirtyable_memory - number of globally dirtyable pages 324 * 325 * Returns the global number of pages potentially available for dirty 326 * page cache. This is the base value for the global dirty limits. 327 */ 328 static unsigned long global_dirtyable_memory(void) 329 { 330 unsigned long x; 331 332 x = global_page_state(NR_FREE_PAGES); 333 x -= min(x, dirty_balance_reserve); 334 335 x += global_page_state(NR_INACTIVE_FILE); 336 x += global_page_state(NR_ACTIVE_FILE); 337 338 if (!vm_highmem_is_dirtyable) 339 x -= highmem_dirtyable_memory(x); 340 341 return x + 1; /* Ensure that we never return 0 */ 342 } 343 344 /** 345 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 346 * @dtc: dirty_throttle_control of interest 347 * 348 * Calculate @dtc->thresh and ->bg_thresh considering 349 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 350 * must ensure that @dtc->avail is set before calling this function. The 351 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 352 * real-time tasks. 353 */ 354 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 355 { 356 const unsigned long available_memory = dtc->avail; 357 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 358 unsigned long bytes = vm_dirty_bytes; 359 unsigned long bg_bytes = dirty_background_bytes; 360 unsigned long ratio = vm_dirty_ratio; 361 unsigned long bg_ratio = dirty_background_ratio; 362 unsigned long thresh; 363 unsigned long bg_thresh; 364 struct task_struct *tsk; 365 366 /* gdtc is !NULL iff @dtc is for memcg domain */ 367 if (gdtc) { 368 unsigned long global_avail = gdtc->avail; 369 370 /* 371 * The byte settings can't be applied directly to memcg 372 * domains. Convert them to ratios by scaling against 373 * globally available memory. 374 */ 375 if (bytes) 376 ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 / 377 global_avail, 100UL); 378 if (bg_bytes) 379 bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 / 380 global_avail, 100UL); 381 bytes = bg_bytes = 0; 382 } 383 384 if (bytes) 385 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 386 else 387 thresh = (ratio * available_memory) / 100; 388 389 if (bg_bytes) 390 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 391 else 392 bg_thresh = (bg_ratio * available_memory) / 100; 393 394 if (bg_thresh >= thresh) 395 bg_thresh = thresh / 2; 396 tsk = current; 397 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 398 bg_thresh += bg_thresh / 4; 399 thresh += thresh / 4; 400 } 401 dtc->thresh = thresh; 402 dtc->bg_thresh = bg_thresh; 403 404 /* we should eventually report the domain in the TP */ 405 if (!gdtc) 406 trace_global_dirty_state(bg_thresh, thresh); 407 } 408 409 /** 410 * global_dirty_limits - background-writeback and dirty-throttling thresholds 411 * @pbackground: out parameter for bg_thresh 412 * @pdirty: out parameter for thresh 413 * 414 * Calculate bg_thresh and thresh for global_wb_domain. See 415 * domain_dirty_limits() for details. 416 */ 417 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 418 { 419 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 420 421 gdtc.avail = global_dirtyable_memory(); 422 domain_dirty_limits(&gdtc); 423 424 *pbackground = gdtc.bg_thresh; 425 *pdirty = gdtc.thresh; 426 } 427 428 /** 429 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 430 * @zone: the zone 431 * 432 * Returns the maximum number of dirty pages allowed in a zone, based 433 * on the zone's dirtyable memory. 434 */ 435 static unsigned long zone_dirty_limit(struct zone *zone) 436 { 437 unsigned long zone_memory = zone_dirtyable_memory(zone); 438 struct task_struct *tsk = current; 439 unsigned long dirty; 440 441 if (vm_dirty_bytes) 442 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 443 zone_memory / global_dirtyable_memory(); 444 else 445 dirty = vm_dirty_ratio * zone_memory / 100; 446 447 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 448 dirty += dirty / 4; 449 450 return dirty; 451 } 452 453 /** 454 * zone_dirty_ok - tells whether a zone is within its dirty limits 455 * @zone: the zone to check 456 * 457 * Returns %true when the dirty pages in @zone are within the zone's 458 * dirty limit, %false if the limit is exceeded. 459 */ 460 bool zone_dirty_ok(struct zone *zone) 461 { 462 unsigned long limit = zone_dirty_limit(zone); 463 464 return zone_page_state(zone, NR_FILE_DIRTY) + 465 zone_page_state(zone, NR_UNSTABLE_NFS) + 466 zone_page_state(zone, NR_WRITEBACK) <= limit; 467 } 468 469 int dirty_background_ratio_handler(struct ctl_table *table, int write, 470 void __user *buffer, size_t *lenp, 471 loff_t *ppos) 472 { 473 int ret; 474 475 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 476 if (ret == 0 && write) 477 dirty_background_bytes = 0; 478 return ret; 479 } 480 481 int dirty_background_bytes_handler(struct ctl_table *table, int write, 482 void __user *buffer, size_t *lenp, 483 loff_t *ppos) 484 { 485 int ret; 486 487 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 488 if (ret == 0 && write) 489 dirty_background_ratio = 0; 490 return ret; 491 } 492 493 int dirty_ratio_handler(struct ctl_table *table, int write, 494 void __user *buffer, size_t *lenp, 495 loff_t *ppos) 496 { 497 int old_ratio = vm_dirty_ratio; 498 int ret; 499 500 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 501 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 502 writeback_set_ratelimit(); 503 vm_dirty_bytes = 0; 504 } 505 return ret; 506 } 507 508 int dirty_bytes_handler(struct ctl_table *table, int write, 509 void __user *buffer, size_t *lenp, 510 loff_t *ppos) 511 { 512 unsigned long old_bytes = vm_dirty_bytes; 513 int ret; 514 515 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 516 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 517 writeback_set_ratelimit(); 518 vm_dirty_ratio = 0; 519 } 520 return ret; 521 } 522 523 static unsigned long wp_next_time(unsigned long cur_time) 524 { 525 cur_time += VM_COMPLETIONS_PERIOD_LEN; 526 /* 0 has a special meaning... */ 527 if (!cur_time) 528 return 1; 529 return cur_time; 530 } 531 532 static void wb_domain_writeout_inc(struct wb_domain *dom, 533 struct fprop_local_percpu *completions, 534 unsigned int max_prop_frac) 535 { 536 __fprop_inc_percpu_max(&dom->completions, completions, 537 max_prop_frac); 538 /* First event after period switching was turned off? */ 539 if (!unlikely(dom->period_time)) { 540 /* 541 * We can race with other __bdi_writeout_inc calls here but 542 * it does not cause any harm since the resulting time when 543 * timer will fire and what is in writeout_period_time will be 544 * roughly the same. 545 */ 546 dom->period_time = wp_next_time(jiffies); 547 mod_timer(&dom->period_timer, dom->period_time); 548 } 549 } 550 551 /* 552 * Increment @wb's writeout completion count and the global writeout 553 * completion count. Called from test_clear_page_writeback(). 554 */ 555 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 556 { 557 struct wb_domain *cgdom; 558 559 __inc_wb_stat(wb, WB_WRITTEN); 560 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 561 wb->bdi->max_prop_frac); 562 563 cgdom = mem_cgroup_wb_domain(wb); 564 if (cgdom) 565 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 566 wb->bdi->max_prop_frac); 567 } 568 569 void wb_writeout_inc(struct bdi_writeback *wb) 570 { 571 unsigned long flags; 572 573 local_irq_save(flags); 574 __wb_writeout_inc(wb); 575 local_irq_restore(flags); 576 } 577 EXPORT_SYMBOL_GPL(wb_writeout_inc); 578 579 /* 580 * On idle system, we can be called long after we scheduled because we use 581 * deferred timers so count with missed periods. 582 */ 583 static void writeout_period(unsigned long t) 584 { 585 struct wb_domain *dom = (void *)t; 586 int miss_periods = (jiffies - dom->period_time) / 587 VM_COMPLETIONS_PERIOD_LEN; 588 589 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 590 dom->period_time = wp_next_time(dom->period_time + 591 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 592 mod_timer(&dom->period_timer, dom->period_time); 593 } else { 594 /* 595 * Aging has zeroed all fractions. Stop wasting CPU on period 596 * updates. 597 */ 598 dom->period_time = 0; 599 } 600 } 601 602 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 603 { 604 memset(dom, 0, sizeof(*dom)); 605 606 spin_lock_init(&dom->lock); 607 608 init_timer_deferrable(&dom->period_timer); 609 dom->period_timer.function = writeout_period; 610 dom->period_timer.data = (unsigned long)dom; 611 612 dom->dirty_limit_tstamp = jiffies; 613 614 return fprop_global_init(&dom->completions, gfp); 615 } 616 617 #ifdef CONFIG_CGROUP_WRITEBACK 618 void wb_domain_exit(struct wb_domain *dom) 619 { 620 del_timer_sync(&dom->period_timer); 621 fprop_global_destroy(&dom->completions); 622 } 623 #endif 624 625 /* 626 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 627 * registered backing devices, which, for obvious reasons, can not 628 * exceed 100%. 629 */ 630 static unsigned int bdi_min_ratio; 631 632 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 633 { 634 int ret = 0; 635 636 spin_lock_bh(&bdi_lock); 637 if (min_ratio > bdi->max_ratio) { 638 ret = -EINVAL; 639 } else { 640 min_ratio -= bdi->min_ratio; 641 if (bdi_min_ratio + min_ratio < 100) { 642 bdi_min_ratio += min_ratio; 643 bdi->min_ratio += min_ratio; 644 } else { 645 ret = -EINVAL; 646 } 647 } 648 spin_unlock_bh(&bdi_lock); 649 650 return ret; 651 } 652 653 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 654 { 655 int ret = 0; 656 657 if (max_ratio > 100) 658 return -EINVAL; 659 660 spin_lock_bh(&bdi_lock); 661 if (bdi->min_ratio > max_ratio) { 662 ret = -EINVAL; 663 } else { 664 bdi->max_ratio = max_ratio; 665 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 666 } 667 spin_unlock_bh(&bdi_lock); 668 669 return ret; 670 } 671 EXPORT_SYMBOL(bdi_set_max_ratio); 672 673 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 674 unsigned long bg_thresh) 675 { 676 return (thresh + bg_thresh) / 2; 677 } 678 679 static unsigned long hard_dirty_limit(struct wb_domain *dom, 680 unsigned long thresh) 681 { 682 return max(thresh, dom->dirty_limit); 683 } 684 685 /* memory available to a memcg domain is capped by system-wide clean memory */ 686 static void mdtc_cap_avail(struct dirty_throttle_control *mdtc) 687 { 688 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 689 unsigned long clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 690 691 mdtc->avail = min(mdtc->avail, clean); 692 } 693 694 /** 695 * __wb_calc_thresh - @wb's share of dirty throttling threshold 696 * @dtc: dirty_throttle_context of interest 697 * 698 * Returns @wb's dirty limit in pages. The term "dirty" in the context of 699 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 700 * 701 * Note that balance_dirty_pages() will only seriously take it as a hard limit 702 * when sleeping max_pause per page is not enough to keep the dirty pages under 703 * control. For example, when the device is completely stalled due to some error 704 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 705 * In the other normal situations, it acts more gently by throttling the tasks 706 * more (rather than completely block them) when the wb dirty pages go high. 707 * 708 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 709 * - starving fast devices 710 * - piling up dirty pages (that will take long time to sync) on slow devices 711 * 712 * The wb's share of dirty limit will be adapting to its throughput and 713 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 714 */ 715 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 716 { 717 struct wb_domain *dom = dtc_dom(dtc); 718 unsigned long thresh = dtc->thresh; 719 u64 wb_thresh; 720 long numerator, denominator; 721 unsigned long wb_min_ratio, wb_max_ratio; 722 723 /* 724 * Calculate this BDI's share of the thresh ratio. 725 */ 726 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 727 &numerator, &denominator); 728 729 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 730 wb_thresh *= numerator; 731 do_div(wb_thresh, denominator); 732 733 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 734 735 wb_thresh += (thresh * wb_min_ratio) / 100; 736 if (wb_thresh > (thresh * wb_max_ratio) / 100) 737 wb_thresh = thresh * wb_max_ratio / 100; 738 739 return wb_thresh; 740 } 741 742 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 743 { 744 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 745 .thresh = thresh }; 746 return __wb_calc_thresh(&gdtc); 747 } 748 749 /* 750 * setpoint - dirty 3 751 * f(dirty) := 1.0 + (----------------) 752 * limit - setpoint 753 * 754 * it's a 3rd order polynomial that subjects to 755 * 756 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 757 * (2) f(setpoint) = 1.0 => the balance point 758 * (3) f(limit) = 0 => the hard limit 759 * (4) df/dx <= 0 => negative feedback control 760 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 761 * => fast response on large errors; small oscillation near setpoint 762 */ 763 static long long pos_ratio_polynom(unsigned long setpoint, 764 unsigned long dirty, 765 unsigned long limit) 766 { 767 long long pos_ratio; 768 long x; 769 770 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 771 (limit - setpoint) | 1); 772 pos_ratio = x; 773 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 774 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 775 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 776 777 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 778 } 779 780 /* 781 * Dirty position control. 782 * 783 * (o) global/bdi setpoints 784 * 785 * We want the dirty pages be balanced around the global/wb setpoints. 786 * When the number of dirty pages is higher/lower than the setpoint, the 787 * dirty position control ratio (and hence task dirty ratelimit) will be 788 * decreased/increased to bring the dirty pages back to the setpoint. 789 * 790 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 791 * 792 * if (dirty < setpoint) scale up pos_ratio 793 * if (dirty > setpoint) scale down pos_ratio 794 * 795 * if (wb_dirty < wb_setpoint) scale up pos_ratio 796 * if (wb_dirty > wb_setpoint) scale down pos_ratio 797 * 798 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 799 * 800 * (o) global control line 801 * 802 * ^ pos_ratio 803 * | 804 * | |<===== global dirty control scope ======>| 805 * 2.0 .............* 806 * | .* 807 * | . * 808 * | . * 809 * | . * 810 * | . * 811 * | . * 812 * 1.0 ................................* 813 * | . . * 814 * | . . * 815 * | . . * 816 * | . . * 817 * | . . * 818 * 0 +------------.------------------.----------------------*-------------> 819 * freerun^ setpoint^ limit^ dirty pages 820 * 821 * (o) wb control line 822 * 823 * ^ pos_ratio 824 * | 825 * | * 826 * | * 827 * | * 828 * | * 829 * | * |<=========== span ============>| 830 * 1.0 .......................* 831 * | . * 832 * | . * 833 * | . * 834 * | . * 835 * | . * 836 * | . * 837 * | . * 838 * | . * 839 * | . * 840 * | . * 841 * | . * 842 * 1/4 ...............................................* * * * * * * * * * * * 843 * | . . 844 * | . . 845 * | . . 846 * 0 +----------------------.-------------------------------.-------------> 847 * wb_setpoint^ x_intercept^ 848 * 849 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 850 * be smoothly throttled down to normal if it starts high in situations like 851 * - start writing to a slow SD card and a fast disk at the same time. The SD 852 * card's wb_dirty may rush to many times higher than wb_setpoint. 853 * - the wb dirty thresh drops quickly due to change of JBOD workload 854 */ 855 static void wb_position_ratio(struct dirty_throttle_control *dtc) 856 { 857 struct bdi_writeback *wb = dtc->wb; 858 unsigned long write_bw = wb->avg_write_bandwidth; 859 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 860 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 861 unsigned long wb_thresh = dtc->wb_thresh; 862 unsigned long x_intercept; 863 unsigned long setpoint; /* dirty pages' target balance point */ 864 unsigned long wb_setpoint; 865 unsigned long span; 866 long long pos_ratio; /* for scaling up/down the rate limit */ 867 long x; 868 869 dtc->pos_ratio = 0; 870 871 if (unlikely(dtc->dirty >= limit)) 872 return; 873 874 /* 875 * global setpoint 876 * 877 * See comment for pos_ratio_polynom(). 878 */ 879 setpoint = (freerun + limit) / 2; 880 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 881 882 /* 883 * The strictlimit feature is a tool preventing mistrusted filesystems 884 * from growing a large number of dirty pages before throttling. For 885 * such filesystems balance_dirty_pages always checks wb counters 886 * against wb limits. Even if global "nr_dirty" is under "freerun". 887 * This is especially important for fuse which sets bdi->max_ratio to 888 * 1% by default. Without strictlimit feature, fuse writeback may 889 * consume arbitrary amount of RAM because it is accounted in 890 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 891 * 892 * Here, in wb_position_ratio(), we calculate pos_ratio based on 893 * two values: wb_dirty and wb_thresh. Let's consider an example: 894 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 895 * limits are set by default to 10% and 20% (background and throttle). 896 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 897 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 898 * about ~6K pages (as the average of background and throttle wb 899 * limits). The 3rd order polynomial will provide positive feedback if 900 * wb_dirty is under wb_setpoint and vice versa. 901 * 902 * Note, that we cannot use global counters in these calculations 903 * because we want to throttle process writing to a strictlimit wb 904 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 905 * in the example above). 906 */ 907 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 908 long long wb_pos_ratio; 909 910 if (dtc->wb_dirty < 8) { 911 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 912 2 << RATELIMIT_CALC_SHIFT); 913 return; 914 } 915 916 if (dtc->wb_dirty >= wb_thresh) 917 return; 918 919 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 920 dtc->wb_bg_thresh); 921 922 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 923 return; 924 925 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 926 wb_thresh); 927 928 /* 929 * Typically, for strictlimit case, wb_setpoint << setpoint 930 * and pos_ratio >> wb_pos_ratio. In the other words global 931 * state ("dirty") is not limiting factor and we have to 932 * make decision based on wb counters. But there is an 933 * important case when global pos_ratio should get precedence: 934 * global limits are exceeded (e.g. due to activities on other 935 * wb's) while given strictlimit wb is below limit. 936 * 937 * "pos_ratio * wb_pos_ratio" would work for the case above, 938 * but it would look too non-natural for the case of all 939 * activity in the system coming from a single strictlimit wb 940 * with bdi->max_ratio == 100%. 941 * 942 * Note that min() below somewhat changes the dynamics of the 943 * control system. Normally, pos_ratio value can be well over 3 944 * (when globally we are at freerun and wb is well below wb 945 * setpoint). Now the maximum pos_ratio in the same situation 946 * is 2. We might want to tweak this if we observe the control 947 * system is too slow to adapt. 948 */ 949 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 950 return; 951 } 952 953 /* 954 * We have computed basic pos_ratio above based on global situation. If 955 * the wb is over/under its share of dirty pages, we want to scale 956 * pos_ratio further down/up. That is done by the following mechanism. 957 */ 958 959 /* 960 * wb setpoint 961 * 962 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 963 * 964 * x_intercept - wb_dirty 965 * := -------------------------- 966 * x_intercept - wb_setpoint 967 * 968 * The main wb control line is a linear function that subjects to 969 * 970 * (1) f(wb_setpoint) = 1.0 971 * (2) k = - 1 / (8 * write_bw) (in single wb case) 972 * or equally: x_intercept = wb_setpoint + 8 * write_bw 973 * 974 * For single wb case, the dirty pages are observed to fluctuate 975 * regularly within range 976 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 977 * for various filesystems, where (2) can yield in a reasonable 12.5% 978 * fluctuation range for pos_ratio. 979 * 980 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 981 * own size, so move the slope over accordingly and choose a slope that 982 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 983 */ 984 if (unlikely(wb_thresh > dtc->thresh)) 985 wb_thresh = dtc->thresh; 986 /* 987 * It's very possible that wb_thresh is close to 0 not because the 988 * device is slow, but that it has remained inactive for long time. 989 * Honour such devices a reasonable good (hopefully IO efficient) 990 * threshold, so that the occasional writes won't be blocked and active 991 * writes can rampup the threshold quickly. 992 */ 993 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 994 /* 995 * scale global setpoint to wb's: 996 * wb_setpoint = setpoint * wb_thresh / thresh 997 */ 998 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 999 wb_setpoint = setpoint * (u64)x >> 16; 1000 /* 1001 * Use span=(8*write_bw) in single wb case as indicated by 1002 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1003 * 1004 * wb_thresh thresh - wb_thresh 1005 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1006 * thresh thresh 1007 */ 1008 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1009 x_intercept = wb_setpoint + span; 1010 1011 if (dtc->wb_dirty < x_intercept - span / 4) { 1012 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1013 (x_intercept - wb_setpoint) | 1); 1014 } else 1015 pos_ratio /= 4; 1016 1017 /* 1018 * wb reserve area, safeguard against dirty pool underrun and disk idle 1019 * It may push the desired control point of global dirty pages higher 1020 * than setpoint. 1021 */ 1022 x_intercept = wb_thresh / 2; 1023 if (dtc->wb_dirty < x_intercept) { 1024 if (dtc->wb_dirty > x_intercept / 8) 1025 pos_ratio = div_u64(pos_ratio * x_intercept, 1026 dtc->wb_dirty); 1027 else 1028 pos_ratio *= 8; 1029 } 1030 1031 dtc->pos_ratio = pos_ratio; 1032 } 1033 1034 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1035 unsigned long elapsed, 1036 unsigned long written) 1037 { 1038 const unsigned long period = roundup_pow_of_two(3 * HZ); 1039 unsigned long avg = wb->avg_write_bandwidth; 1040 unsigned long old = wb->write_bandwidth; 1041 u64 bw; 1042 1043 /* 1044 * bw = written * HZ / elapsed 1045 * 1046 * bw * elapsed + write_bandwidth * (period - elapsed) 1047 * write_bandwidth = --------------------------------------------------- 1048 * period 1049 * 1050 * @written may have decreased due to account_page_redirty(). 1051 * Avoid underflowing @bw calculation. 1052 */ 1053 bw = written - min(written, wb->written_stamp); 1054 bw *= HZ; 1055 if (unlikely(elapsed > period)) { 1056 do_div(bw, elapsed); 1057 avg = bw; 1058 goto out; 1059 } 1060 bw += (u64)wb->write_bandwidth * (period - elapsed); 1061 bw >>= ilog2(period); 1062 1063 /* 1064 * one more level of smoothing, for filtering out sudden spikes 1065 */ 1066 if (avg > old && old >= (unsigned long)bw) 1067 avg -= (avg - old) >> 3; 1068 1069 if (avg < old && old <= (unsigned long)bw) 1070 avg += (old - avg) >> 3; 1071 1072 out: 1073 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1074 avg = max(avg, 1LU); 1075 if (wb_has_dirty_io(wb)) { 1076 long delta = avg - wb->avg_write_bandwidth; 1077 WARN_ON_ONCE(atomic_long_add_return(delta, 1078 &wb->bdi->tot_write_bandwidth) <= 0); 1079 } 1080 wb->write_bandwidth = bw; 1081 wb->avg_write_bandwidth = avg; 1082 } 1083 1084 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1085 { 1086 struct wb_domain *dom = dtc_dom(dtc); 1087 unsigned long thresh = dtc->thresh; 1088 unsigned long limit = dom->dirty_limit; 1089 1090 /* 1091 * Follow up in one step. 1092 */ 1093 if (limit < thresh) { 1094 limit = thresh; 1095 goto update; 1096 } 1097 1098 /* 1099 * Follow down slowly. Use the higher one as the target, because thresh 1100 * may drop below dirty. This is exactly the reason to introduce 1101 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1102 */ 1103 thresh = max(thresh, dtc->dirty); 1104 if (limit > thresh) { 1105 limit -= (limit - thresh) >> 5; 1106 goto update; 1107 } 1108 return; 1109 update: 1110 dom->dirty_limit = limit; 1111 } 1112 1113 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1114 unsigned long now) 1115 { 1116 struct wb_domain *dom = dtc_dom(dtc); 1117 1118 /* 1119 * check locklessly first to optimize away locking for the most time 1120 */ 1121 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1122 return; 1123 1124 spin_lock(&dom->lock); 1125 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1126 update_dirty_limit(dtc); 1127 dom->dirty_limit_tstamp = now; 1128 } 1129 spin_unlock(&dom->lock); 1130 } 1131 1132 /* 1133 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1134 * 1135 * Normal wb tasks will be curbed at or below it in long term. 1136 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1137 */ 1138 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1139 unsigned long dirtied, 1140 unsigned long elapsed) 1141 { 1142 struct bdi_writeback *wb = dtc->wb; 1143 unsigned long dirty = dtc->dirty; 1144 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1145 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1146 unsigned long setpoint = (freerun + limit) / 2; 1147 unsigned long write_bw = wb->avg_write_bandwidth; 1148 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1149 unsigned long dirty_rate; 1150 unsigned long task_ratelimit; 1151 unsigned long balanced_dirty_ratelimit; 1152 unsigned long step; 1153 unsigned long x; 1154 1155 /* 1156 * The dirty rate will match the writeout rate in long term, except 1157 * when dirty pages are truncated by userspace or re-dirtied by FS. 1158 */ 1159 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1160 1161 /* 1162 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1163 */ 1164 task_ratelimit = (u64)dirty_ratelimit * 1165 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1166 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1167 1168 /* 1169 * A linear estimation of the "balanced" throttle rate. The theory is, 1170 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1171 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1172 * formula will yield the balanced rate limit (write_bw / N). 1173 * 1174 * Note that the expanded form is not a pure rate feedback: 1175 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1176 * but also takes pos_ratio into account: 1177 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1178 * 1179 * (1) is not realistic because pos_ratio also takes part in balancing 1180 * the dirty rate. Consider the state 1181 * pos_ratio = 0.5 (3) 1182 * rate = 2 * (write_bw / N) (4) 1183 * If (1) is used, it will stuck in that state! Because each dd will 1184 * be throttled at 1185 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1186 * yielding 1187 * dirty_rate = N * task_ratelimit = write_bw (6) 1188 * put (6) into (1) we get 1189 * rate_(i+1) = rate_(i) (7) 1190 * 1191 * So we end up using (2) to always keep 1192 * rate_(i+1) ~= (write_bw / N) (8) 1193 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1194 * pos_ratio is able to drive itself to 1.0, which is not only where 1195 * the dirty count meet the setpoint, but also where the slope of 1196 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1197 */ 1198 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1199 dirty_rate | 1); 1200 /* 1201 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1202 */ 1203 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1204 balanced_dirty_ratelimit = write_bw; 1205 1206 /* 1207 * We could safely do this and return immediately: 1208 * 1209 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1210 * 1211 * However to get a more stable dirty_ratelimit, the below elaborated 1212 * code makes use of task_ratelimit to filter out singular points and 1213 * limit the step size. 1214 * 1215 * The below code essentially only uses the relative value of 1216 * 1217 * task_ratelimit - dirty_ratelimit 1218 * = (pos_ratio - 1) * dirty_ratelimit 1219 * 1220 * which reflects the direction and size of dirty position error. 1221 */ 1222 1223 /* 1224 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1225 * task_ratelimit is on the same side of dirty_ratelimit, too. 1226 * For example, when 1227 * - dirty_ratelimit > balanced_dirty_ratelimit 1228 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1229 * lowering dirty_ratelimit will help meet both the position and rate 1230 * control targets. Otherwise, don't update dirty_ratelimit if it will 1231 * only help meet the rate target. After all, what the users ultimately 1232 * feel and care are stable dirty rate and small position error. 1233 * 1234 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1235 * and filter out the singular points of balanced_dirty_ratelimit. Which 1236 * keeps jumping around randomly and can even leap far away at times 1237 * due to the small 200ms estimation period of dirty_rate (we want to 1238 * keep that period small to reduce time lags). 1239 */ 1240 step = 0; 1241 1242 /* 1243 * For strictlimit case, calculations above were based on wb counters 1244 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1245 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1246 * Hence, to calculate "step" properly, we have to use wb_dirty as 1247 * "dirty" and wb_setpoint as "setpoint". 1248 * 1249 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1250 * it's possible that wb_thresh is close to zero due to inactivity 1251 * of backing device. 1252 */ 1253 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1254 dirty = dtc->wb_dirty; 1255 if (dtc->wb_dirty < 8) 1256 setpoint = dtc->wb_dirty + 1; 1257 else 1258 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1259 } 1260 1261 if (dirty < setpoint) { 1262 x = min3(wb->balanced_dirty_ratelimit, 1263 balanced_dirty_ratelimit, task_ratelimit); 1264 if (dirty_ratelimit < x) 1265 step = x - dirty_ratelimit; 1266 } else { 1267 x = max3(wb->balanced_dirty_ratelimit, 1268 balanced_dirty_ratelimit, task_ratelimit); 1269 if (dirty_ratelimit > x) 1270 step = dirty_ratelimit - x; 1271 } 1272 1273 /* 1274 * Don't pursue 100% rate matching. It's impossible since the balanced 1275 * rate itself is constantly fluctuating. So decrease the track speed 1276 * when it gets close to the target. Helps eliminate pointless tremors. 1277 */ 1278 step >>= dirty_ratelimit / (2 * step + 1); 1279 /* 1280 * Limit the tracking speed to avoid overshooting. 1281 */ 1282 step = (step + 7) / 8; 1283 1284 if (dirty_ratelimit < balanced_dirty_ratelimit) 1285 dirty_ratelimit += step; 1286 else 1287 dirty_ratelimit -= step; 1288 1289 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1290 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1291 1292 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit); 1293 } 1294 1295 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1296 struct dirty_throttle_control *mdtc, 1297 unsigned long start_time, 1298 bool update_ratelimit) 1299 { 1300 struct bdi_writeback *wb = gdtc->wb; 1301 unsigned long now = jiffies; 1302 unsigned long elapsed = now - wb->bw_time_stamp; 1303 unsigned long dirtied; 1304 unsigned long written; 1305 1306 lockdep_assert_held(&wb->list_lock); 1307 1308 /* 1309 * rate-limit, only update once every 200ms. 1310 */ 1311 if (elapsed < BANDWIDTH_INTERVAL) 1312 return; 1313 1314 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1315 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1316 1317 /* 1318 * Skip quiet periods when disk bandwidth is under-utilized. 1319 * (at least 1s idle time between two flusher runs) 1320 */ 1321 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1322 goto snapshot; 1323 1324 if (update_ratelimit) { 1325 domain_update_bandwidth(gdtc, now); 1326 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1327 1328 /* 1329 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1330 * compiler has no way to figure that out. Help it. 1331 */ 1332 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1333 domain_update_bandwidth(mdtc, now); 1334 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1335 } 1336 } 1337 wb_update_write_bandwidth(wb, elapsed, written); 1338 1339 snapshot: 1340 wb->dirtied_stamp = dirtied; 1341 wb->written_stamp = written; 1342 wb->bw_time_stamp = now; 1343 } 1344 1345 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1346 { 1347 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1348 1349 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1350 } 1351 1352 /* 1353 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1354 * will look to see if it needs to start dirty throttling. 1355 * 1356 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1357 * global_page_state() too often. So scale it near-sqrt to the safety margin 1358 * (the number of pages we may dirty without exceeding the dirty limits). 1359 */ 1360 static unsigned long dirty_poll_interval(unsigned long dirty, 1361 unsigned long thresh) 1362 { 1363 if (thresh > dirty) 1364 return 1UL << (ilog2(thresh - dirty) >> 1); 1365 1366 return 1; 1367 } 1368 1369 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1370 unsigned long wb_dirty) 1371 { 1372 unsigned long bw = wb->avg_write_bandwidth; 1373 unsigned long t; 1374 1375 /* 1376 * Limit pause time for small memory systems. If sleeping for too long 1377 * time, a small pool of dirty/writeback pages may go empty and disk go 1378 * idle. 1379 * 1380 * 8 serves as the safety ratio. 1381 */ 1382 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1383 t++; 1384 1385 return min_t(unsigned long, t, MAX_PAUSE); 1386 } 1387 1388 static long wb_min_pause(struct bdi_writeback *wb, 1389 long max_pause, 1390 unsigned long task_ratelimit, 1391 unsigned long dirty_ratelimit, 1392 int *nr_dirtied_pause) 1393 { 1394 long hi = ilog2(wb->avg_write_bandwidth); 1395 long lo = ilog2(wb->dirty_ratelimit); 1396 long t; /* target pause */ 1397 long pause; /* estimated next pause */ 1398 int pages; /* target nr_dirtied_pause */ 1399 1400 /* target for 10ms pause on 1-dd case */ 1401 t = max(1, HZ / 100); 1402 1403 /* 1404 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1405 * overheads. 1406 * 1407 * (N * 10ms) on 2^N concurrent tasks. 1408 */ 1409 if (hi > lo) 1410 t += (hi - lo) * (10 * HZ) / 1024; 1411 1412 /* 1413 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1414 * on the much more stable dirty_ratelimit. However the next pause time 1415 * will be computed based on task_ratelimit and the two rate limits may 1416 * depart considerably at some time. Especially if task_ratelimit goes 1417 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1418 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1419 * result task_ratelimit won't be executed faithfully, which could 1420 * eventually bring down dirty_ratelimit. 1421 * 1422 * We apply two rules to fix it up: 1423 * 1) try to estimate the next pause time and if necessary, use a lower 1424 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1425 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1426 * 2) limit the target pause time to max_pause/2, so that the normal 1427 * small fluctuations of task_ratelimit won't trigger rule (1) and 1428 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1429 */ 1430 t = min(t, 1 + max_pause / 2); 1431 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1432 1433 /* 1434 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1435 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1436 * When the 16 consecutive reads are often interrupted by some dirty 1437 * throttling pause during the async writes, cfq will go into idles 1438 * (deadline is fine). So push nr_dirtied_pause as high as possible 1439 * until reaches DIRTY_POLL_THRESH=32 pages. 1440 */ 1441 if (pages < DIRTY_POLL_THRESH) { 1442 t = max_pause; 1443 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1444 if (pages > DIRTY_POLL_THRESH) { 1445 pages = DIRTY_POLL_THRESH; 1446 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1447 } 1448 } 1449 1450 pause = HZ * pages / (task_ratelimit + 1); 1451 if (pause > max_pause) { 1452 t = max_pause; 1453 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1454 } 1455 1456 *nr_dirtied_pause = pages; 1457 /* 1458 * The minimal pause time will normally be half the target pause time. 1459 */ 1460 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1461 } 1462 1463 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1464 { 1465 struct bdi_writeback *wb = dtc->wb; 1466 unsigned long wb_reclaimable; 1467 1468 /* 1469 * wb_thresh is not treated as some limiting factor as 1470 * dirty_thresh, due to reasons 1471 * - in JBOD setup, wb_thresh can fluctuate a lot 1472 * - in a system with HDD and USB key, the USB key may somehow 1473 * go into state (wb_dirty >> wb_thresh) either because 1474 * wb_dirty starts high, or because wb_thresh drops low. 1475 * In this case we don't want to hard throttle the USB key 1476 * dirtiers for 100 seconds until wb_dirty drops under 1477 * wb_thresh. Instead the auxiliary wb control line in 1478 * wb_position_ratio() will let the dirtier task progress 1479 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1480 */ 1481 dtc->wb_thresh = __wb_calc_thresh(dtc); 1482 dtc->wb_bg_thresh = dtc->thresh ? 1483 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1484 1485 /* 1486 * In order to avoid the stacked BDI deadlock we need 1487 * to ensure we accurately count the 'dirty' pages when 1488 * the threshold is low. 1489 * 1490 * Otherwise it would be possible to get thresh+n pages 1491 * reported dirty, even though there are thresh-m pages 1492 * actually dirty; with m+n sitting in the percpu 1493 * deltas. 1494 */ 1495 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) { 1496 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1497 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1498 } else { 1499 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1500 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1501 } 1502 } 1503 1504 /* 1505 * balance_dirty_pages() must be called by processes which are generating dirty 1506 * data. It looks at the number of dirty pages in the machine and will force 1507 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1508 * If we're over `background_thresh' then the writeback threads are woken to 1509 * perform some writeout. 1510 */ 1511 static void balance_dirty_pages(struct address_space *mapping, 1512 struct bdi_writeback *wb, 1513 unsigned long pages_dirtied) 1514 { 1515 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1516 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1517 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1518 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1519 &mdtc_stor : NULL; 1520 struct dirty_throttle_control *sdtc; 1521 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1522 long period; 1523 long pause; 1524 long max_pause; 1525 long min_pause; 1526 int nr_dirtied_pause; 1527 bool dirty_exceeded = false; 1528 unsigned long task_ratelimit; 1529 unsigned long dirty_ratelimit; 1530 struct backing_dev_info *bdi = wb->bdi; 1531 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1532 unsigned long start_time = jiffies; 1533 1534 for (;;) { 1535 unsigned long now = jiffies; 1536 unsigned long dirty, thresh, bg_thresh; 1537 unsigned long m_dirty, m_thresh, m_bg_thresh; 1538 1539 /* 1540 * Unstable writes are a feature of certain networked 1541 * filesystems (i.e. NFS) in which data may have been 1542 * written to the server's write cache, but has not yet 1543 * been flushed to permanent storage. 1544 */ 1545 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1546 global_page_state(NR_UNSTABLE_NFS); 1547 gdtc->avail = global_dirtyable_memory(); 1548 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1549 1550 domain_dirty_limits(gdtc); 1551 1552 if (unlikely(strictlimit)) { 1553 wb_dirty_limits(gdtc); 1554 1555 dirty = gdtc->wb_dirty; 1556 thresh = gdtc->wb_thresh; 1557 bg_thresh = gdtc->wb_bg_thresh; 1558 } else { 1559 dirty = gdtc->dirty; 1560 thresh = gdtc->thresh; 1561 bg_thresh = gdtc->bg_thresh; 1562 } 1563 1564 if (mdtc) { 1565 unsigned long writeback; 1566 1567 /* 1568 * If @wb belongs to !root memcg, repeat the same 1569 * basic calculations for the memcg domain. 1570 */ 1571 mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty, 1572 &writeback); 1573 mdtc_cap_avail(mdtc); 1574 mdtc->dirty += writeback; 1575 1576 domain_dirty_limits(mdtc); 1577 1578 if (unlikely(strictlimit)) { 1579 wb_dirty_limits(mdtc); 1580 m_dirty = mdtc->wb_dirty; 1581 m_thresh = mdtc->wb_thresh; 1582 m_bg_thresh = mdtc->wb_bg_thresh; 1583 } else { 1584 m_dirty = mdtc->dirty; 1585 m_thresh = mdtc->thresh; 1586 m_bg_thresh = mdtc->bg_thresh; 1587 } 1588 } 1589 1590 /* 1591 * Throttle it only when the background writeback cannot 1592 * catch-up. This avoids (excessively) small writeouts 1593 * when the wb limits are ramping up in case of !strictlimit. 1594 * 1595 * In strictlimit case make decision based on the wb counters 1596 * and limits. Small writeouts when the wb limits are ramping 1597 * up are the price we consciously pay for strictlimit-ing. 1598 * 1599 * If memcg domain is in effect, @dirty should be under 1600 * both global and memcg freerun ceilings. 1601 */ 1602 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1603 (!mdtc || 1604 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1605 unsigned long intv = dirty_poll_interval(dirty, thresh); 1606 unsigned long m_intv = ULONG_MAX; 1607 1608 current->dirty_paused_when = now; 1609 current->nr_dirtied = 0; 1610 if (mdtc) 1611 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1612 current->nr_dirtied_pause = min(intv, m_intv); 1613 break; 1614 } 1615 1616 if (unlikely(!writeback_in_progress(wb))) 1617 wb_start_background_writeback(wb); 1618 1619 /* 1620 * Calculate global domain's pos_ratio and select the 1621 * global dtc by default. 1622 */ 1623 if (!strictlimit) 1624 wb_dirty_limits(gdtc); 1625 1626 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1627 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1628 1629 wb_position_ratio(gdtc); 1630 sdtc = gdtc; 1631 1632 if (mdtc) { 1633 /* 1634 * If memcg domain is in effect, calculate its 1635 * pos_ratio. @wb should satisfy constraints from 1636 * both global and memcg domains. Choose the one 1637 * w/ lower pos_ratio. 1638 */ 1639 if (!strictlimit) 1640 wb_dirty_limits(mdtc); 1641 1642 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1643 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1644 1645 wb_position_ratio(mdtc); 1646 if (mdtc->pos_ratio < gdtc->pos_ratio) 1647 sdtc = mdtc; 1648 } 1649 1650 if (dirty_exceeded && !wb->dirty_exceeded) 1651 wb->dirty_exceeded = 1; 1652 1653 if (time_is_before_jiffies(wb->bw_time_stamp + 1654 BANDWIDTH_INTERVAL)) { 1655 spin_lock(&wb->list_lock); 1656 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1657 spin_unlock(&wb->list_lock); 1658 } 1659 1660 /* throttle according to the chosen dtc */ 1661 dirty_ratelimit = wb->dirty_ratelimit; 1662 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1663 RATELIMIT_CALC_SHIFT; 1664 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1665 min_pause = wb_min_pause(wb, max_pause, 1666 task_ratelimit, dirty_ratelimit, 1667 &nr_dirtied_pause); 1668 1669 if (unlikely(task_ratelimit == 0)) { 1670 period = max_pause; 1671 pause = max_pause; 1672 goto pause; 1673 } 1674 period = HZ * pages_dirtied / task_ratelimit; 1675 pause = period; 1676 if (current->dirty_paused_when) 1677 pause -= now - current->dirty_paused_when; 1678 /* 1679 * For less than 1s think time (ext3/4 may block the dirtier 1680 * for up to 800ms from time to time on 1-HDD; so does xfs, 1681 * however at much less frequency), try to compensate it in 1682 * future periods by updating the virtual time; otherwise just 1683 * do a reset, as it may be a light dirtier. 1684 */ 1685 if (pause < min_pause) { 1686 trace_balance_dirty_pages(bdi, 1687 sdtc->thresh, 1688 sdtc->bg_thresh, 1689 sdtc->dirty, 1690 sdtc->wb_thresh, 1691 sdtc->wb_dirty, 1692 dirty_ratelimit, 1693 task_ratelimit, 1694 pages_dirtied, 1695 period, 1696 min(pause, 0L), 1697 start_time); 1698 if (pause < -HZ) { 1699 current->dirty_paused_when = now; 1700 current->nr_dirtied = 0; 1701 } else if (period) { 1702 current->dirty_paused_when += period; 1703 current->nr_dirtied = 0; 1704 } else if (current->nr_dirtied_pause <= pages_dirtied) 1705 current->nr_dirtied_pause += pages_dirtied; 1706 break; 1707 } 1708 if (unlikely(pause > max_pause)) { 1709 /* for occasional dropped task_ratelimit */ 1710 now += min(pause - max_pause, max_pause); 1711 pause = max_pause; 1712 } 1713 1714 pause: 1715 trace_balance_dirty_pages(bdi, 1716 sdtc->thresh, 1717 sdtc->bg_thresh, 1718 sdtc->dirty, 1719 sdtc->wb_thresh, 1720 sdtc->wb_dirty, 1721 dirty_ratelimit, 1722 task_ratelimit, 1723 pages_dirtied, 1724 period, 1725 pause, 1726 start_time); 1727 __set_current_state(TASK_KILLABLE); 1728 io_schedule_timeout(pause); 1729 1730 current->dirty_paused_when = now + pause; 1731 current->nr_dirtied = 0; 1732 current->nr_dirtied_pause = nr_dirtied_pause; 1733 1734 /* 1735 * This is typically equal to (dirty < thresh) and can also 1736 * keep "1000+ dd on a slow USB stick" under control. 1737 */ 1738 if (task_ratelimit) 1739 break; 1740 1741 /* 1742 * In the case of an unresponding NFS server and the NFS dirty 1743 * pages exceeds dirty_thresh, give the other good wb's a pipe 1744 * to go through, so that tasks on them still remain responsive. 1745 * 1746 * In theory 1 page is enough to keep the comsumer-producer 1747 * pipe going: the flusher cleans 1 page => the task dirties 1 1748 * more page. However wb_dirty has accounting errors. So use 1749 * the larger and more IO friendly wb_stat_error. 1750 */ 1751 if (sdtc->wb_dirty <= wb_stat_error(wb)) 1752 break; 1753 1754 if (fatal_signal_pending(current)) 1755 break; 1756 } 1757 1758 if (!dirty_exceeded && wb->dirty_exceeded) 1759 wb->dirty_exceeded = 0; 1760 1761 if (writeback_in_progress(wb)) 1762 return; 1763 1764 /* 1765 * In laptop mode, we wait until hitting the higher threshold before 1766 * starting background writeout, and then write out all the way down 1767 * to the lower threshold. So slow writers cause minimal disk activity. 1768 * 1769 * In normal mode, we start background writeout at the lower 1770 * background_thresh, to keep the amount of dirty memory low. 1771 */ 1772 if (laptop_mode) 1773 return; 1774 1775 if (nr_reclaimable > gdtc->bg_thresh) 1776 wb_start_background_writeback(wb); 1777 } 1778 1779 static DEFINE_PER_CPU(int, bdp_ratelimits); 1780 1781 /* 1782 * Normal tasks are throttled by 1783 * loop { 1784 * dirty tsk->nr_dirtied_pause pages; 1785 * take a snap in balance_dirty_pages(); 1786 * } 1787 * However there is a worst case. If every task exit immediately when dirtied 1788 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1789 * called to throttle the page dirties. The solution is to save the not yet 1790 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1791 * randomly into the running tasks. This works well for the above worst case, 1792 * as the new task will pick up and accumulate the old task's leaked dirty 1793 * count and eventually get throttled. 1794 */ 1795 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1796 1797 /** 1798 * balance_dirty_pages_ratelimited - balance dirty memory state 1799 * @mapping: address_space which was dirtied 1800 * 1801 * Processes which are dirtying memory should call in here once for each page 1802 * which was newly dirtied. The function will periodically check the system's 1803 * dirty state and will initiate writeback if needed. 1804 * 1805 * On really big machines, get_writeback_state is expensive, so try to avoid 1806 * calling it too often (ratelimiting). But once we're over the dirty memory 1807 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1808 * from overshooting the limit by (ratelimit_pages) each. 1809 */ 1810 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1811 { 1812 struct inode *inode = mapping->host; 1813 struct backing_dev_info *bdi = inode_to_bdi(inode); 1814 struct bdi_writeback *wb = NULL; 1815 int ratelimit; 1816 int *p; 1817 1818 if (!bdi_cap_account_dirty(bdi)) 1819 return; 1820 1821 if (inode_cgwb_enabled(inode)) 1822 wb = wb_get_create_current(bdi, GFP_KERNEL); 1823 if (!wb) 1824 wb = &bdi->wb; 1825 1826 ratelimit = current->nr_dirtied_pause; 1827 if (wb->dirty_exceeded) 1828 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1829 1830 preempt_disable(); 1831 /* 1832 * This prevents one CPU to accumulate too many dirtied pages without 1833 * calling into balance_dirty_pages(), which can happen when there are 1834 * 1000+ tasks, all of them start dirtying pages at exactly the same 1835 * time, hence all honoured too large initial task->nr_dirtied_pause. 1836 */ 1837 p = this_cpu_ptr(&bdp_ratelimits); 1838 if (unlikely(current->nr_dirtied >= ratelimit)) 1839 *p = 0; 1840 else if (unlikely(*p >= ratelimit_pages)) { 1841 *p = 0; 1842 ratelimit = 0; 1843 } 1844 /* 1845 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1846 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1847 * the dirty throttling and livelock other long-run dirtiers. 1848 */ 1849 p = this_cpu_ptr(&dirty_throttle_leaks); 1850 if (*p > 0 && current->nr_dirtied < ratelimit) { 1851 unsigned long nr_pages_dirtied; 1852 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1853 *p -= nr_pages_dirtied; 1854 current->nr_dirtied += nr_pages_dirtied; 1855 } 1856 preempt_enable(); 1857 1858 if (unlikely(current->nr_dirtied >= ratelimit)) 1859 balance_dirty_pages(mapping, wb, current->nr_dirtied); 1860 1861 wb_put(wb); 1862 } 1863 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1864 1865 /** 1866 * wb_over_bg_thresh - does @wb need to be written back? 1867 * @wb: bdi_writeback of interest 1868 * 1869 * Determines whether background writeback should keep writing @wb or it's 1870 * clean enough. Returns %true if writeback should continue. 1871 */ 1872 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1873 { 1874 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1875 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1876 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1877 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1878 &mdtc_stor : NULL; 1879 1880 /* 1881 * Similar to balance_dirty_pages() but ignores pages being written 1882 * as we're trying to decide whether to put more under writeback. 1883 */ 1884 gdtc->avail = global_dirtyable_memory(); 1885 gdtc->dirty = global_page_state(NR_FILE_DIRTY) + 1886 global_page_state(NR_UNSTABLE_NFS); 1887 domain_dirty_limits(gdtc); 1888 1889 if (gdtc->dirty > gdtc->bg_thresh) 1890 return true; 1891 1892 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc)) 1893 return true; 1894 1895 if (mdtc) { 1896 unsigned long writeback; 1897 1898 mem_cgroup_wb_stats(wb, &mdtc->avail, &mdtc->dirty, &writeback); 1899 mdtc_cap_avail(mdtc); 1900 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1901 1902 if (mdtc->dirty > mdtc->bg_thresh) 1903 return true; 1904 1905 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc)) 1906 return true; 1907 } 1908 1909 return false; 1910 } 1911 1912 void throttle_vm_writeout(gfp_t gfp_mask) 1913 { 1914 unsigned long background_thresh; 1915 unsigned long dirty_thresh; 1916 1917 for ( ; ; ) { 1918 global_dirty_limits(&background_thresh, &dirty_thresh); 1919 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh); 1920 1921 /* 1922 * Boost the allowable dirty threshold a bit for page 1923 * allocators so they don't get DoS'ed by heavy writers 1924 */ 1925 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1926 1927 if (global_page_state(NR_UNSTABLE_NFS) + 1928 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1929 break; 1930 congestion_wait(BLK_RW_ASYNC, HZ/10); 1931 1932 /* 1933 * The caller might hold locks which can prevent IO completion 1934 * or progress in the filesystem. So we cannot just sit here 1935 * waiting for IO to complete. 1936 */ 1937 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1938 break; 1939 } 1940 } 1941 1942 /* 1943 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1944 */ 1945 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1946 void __user *buffer, size_t *length, loff_t *ppos) 1947 { 1948 proc_dointvec(table, write, buffer, length, ppos); 1949 return 0; 1950 } 1951 1952 #ifdef CONFIG_BLOCK 1953 void laptop_mode_timer_fn(unsigned long data) 1954 { 1955 struct request_queue *q = (struct request_queue *)data; 1956 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1957 global_page_state(NR_UNSTABLE_NFS); 1958 struct bdi_writeback *wb; 1959 struct wb_iter iter; 1960 1961 /* 1962 * We want to write everything out, not just down to the dirty 1963 * threshold 1964 */ 1965 if (!bdi_has_dirty_io(&q->backing_dev_info)) 1966 return; 1967 1968 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0) 1969 if (wb_has_dirty_io(wb)) 1970 wb_start_writeback(wb, nr_pages, true, 1971 WB_REASON_LAPTOP_TIMER); 1972 } 1973 1974 /* 1975 * We've spun up the disk and we're in laptop mode: schedule writeback 1976 * of all dirty data a few seconds from now. If the flush is already scheduled 1977 * then push it back - the user is still using the disk. 1978 */ 1979 void laptop_io_completion(struct backing_dev_info *info) 1980 { 1981 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 1982 } 1983 1984 /* 1985 * We're in laptop mode and we've just synced. The sync's writes will have 1986 * caused another writeback to be scheduled by laptop_io_completion. 1987 * Nothing needs to be written back anymore, so we unschedule the writeback. 1988 */ 1989 void laptop_sync_completion(void) 1990 { 1991 struct backing_dev_info *bdi; 1992 1993 rcu_read_lock(); 1994 1995 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 1996 del_timer(&bdi->laptop_mode_wb_timer); 1997 1998 rcu_read_unlock(); 1999 } 2000 #endif 2001 2002 /* 2003 * If ratelimit_pages is too high then we can get into dirty-data overload 2004 * if a large number of processes all perform writes at the same time. 2005 * If it is too low then SMP machines will call the (expensive) 2006 * get_writeback_state too often. 2007 * 2008 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2009 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2010 * thresholds. 2011 */ 2012 2013 void writeback_set_ratelimit(void) 2014 { 2015 struct wb_domain *dom = &global_wb_domain; 2016 unsigned long background_thresh; 2017 unsigned long dirty_thresh; 2018 2019 global_dirty_limits(&background_thresh, &dirty_thresh); 2020 dom->dirty_limit = dirty_thresh; 2021 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2022 if (ratelimit_pages < 16) 2023 ratelimit_pages = 16; 2024 } 2025 2026 static int 2027 ratelimit_handler(struct notifier_block *self, unsigned long action, 2028 void *hcpu) 2029 { 2030 2031 switch (action & ~CPU_TASKS_FROZEN) { 2032 case CPU_ONLINE: 2033 case CPU_DEAD: 2034 writeback_set_ratelimit(); 2035 return NOTIFY_OK; 2036 default: 2037 return NOTIFY_DONE; 2038 } 2039 } 2040 2041 static struct notifier_block ratelimit_nb = { 2042 .notifier_call = ratelimit_handler, 2043 .next = NULL, 2044 }; 2045 2046 /* 2047 * Called early on to tune the page writeback dirty limits. 2048 * 2049 * We used to scale dirty pages according to how total memory 2050 * related to pages that could be allocated for buffers (by 2051 * comparing nr_free_buffer_pages() to vm_total_pages. 2052 * 2053 * However, that was when we used "dirty_ratio" to scale with 2054 * all memory, and we don't do that any more. "dirty_ratio" 2055 * is now applied to total non-HIGHPAGE memory (by subtracting 2056 * totalhigh_pages from vm_total_pages), and as such we can't 2057 * get into the old insane situation any more where we had 2058 * large amounts of dirty pages compared to a small amount of 2059 * non-HIGHMEM memory. 2060 * 2061 * But we might still want to scale the dirty_ratio by how 2062 * much memory the box has.. 2063 */ 2064 void __init page_writeback_init(void) 2065 { 2066 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2067 2068 writeback_set_ratelimit(); 2069 register_cpu_notifier(&ratelimit_nb); 2070 } 2071 2072 /** 2073 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2074 * @mapping: address space structure to write 2075 * @start: starting page index 2076 * @end: ending page index (inclusive) 2077 * 2078 * This function scans the page range from @start to @end (inclusive) and tags 2079 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2080 * that write_cache_pages (or whoever calls this function) will then use 2081 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2082 * used to avoid livelocking of writeback by a process steadily creating new 2083 * dirty pages in the file (thus it is important for this function to be quick 2084 * so that it can tag pages faster than a dirtying process can create them). 2085 */ 2086 /* 2087 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 2088 */ 2089 void tag_pages_for_writeback(struct address_space *mapping, 2090 pgoff_t start, pgoff_t end) 2091 { 2092 #define WRITEBACK_TAG_BATCH 4096 2093 unsigned long tagged; 2094 2095 do { 2096 spin_lock_irq(&mapping->tree_lock); 2097 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 2098 &start, end, WRITEBACK_TAG_BATCH, 2099 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 2100 spin_unlock_irq(&mapping->tree_lock); 2101 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 2102 cond_resched(); 2103 /* We check 'start' to handle wrapping when end == ~0UL */ 2104 } while (tagged >= WRITEBACK_TAG_BATCH && start); 2105 } 2106 EXPORT_SYMBOL(tag_pages_for_writeback); 2107 2108 /** 2109 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2110 * @mapping: address space structure to write 2111 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2112 * @writepage: function called for each page 2113 * @data: data passed to writepage function 2114 * 2115 * If a page is already under I/O, write_cache_pages() skips it, even 2116 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2117 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2118 * and msync() need to guarantee that all the data which was dirty at the time 2119 * the call was made get new I/O started against them. If wbc->sync_mode is 2120 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2121 * existing IO to complete. 2122 * 2123 * To avoid livelocks (when other process dirties new pages), we first tag 2124 * pages which should be written back with TOWRITE tag and only then start 2125 * writing them. For data-integrity sync we have to be careful so that we do 2126 * not miss some pages (e.g., because some other process has cleared TOWRITE 2127 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2128 * by the process clearing the DIRTY tag (and submitting the page for IO). 2129 */ 2130 int write_cache_pages(struct address_space *mapping, 2131 struct writeback_control *wbc, writepage_t writepage, 2132 void *data) 2133 { 2134 int ret = 0; 2135 int done = 0; 2136 struct pagevec pvec; 2137 int nr_pages; 2138 pgoff_t uninitialized_var(writeback_index); 2139 pgoff_t index; 2140 pgoff_t end; /* Inclusive */ 2141 pgoff_t done_index; 2142 int cycled; 2143 int range_whole = 0; 2144 int tag; 2145 2146 pagevec_init(&pvec, 0); 2147 if (wbc->range_cyclic) { 2148 writeback_index = mapping->writeback_index; /* prev offset */ 2149 index = writeback_index; 2150 if (index == 0) 2151 cycled = 1; 2152 else 2153 cycled = 0; 2154 end = -1; 2155 } else { 2156 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2157 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2158 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2159 range_whole = 1; 2160 cycled = 1; /* ignore range_cyclic tests */ 2161 } 2162 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2163 tag = PAGECACHE_TAG_TOWRITE; 2164 else 2165 tag = PAGECACHE_TAG_DIRTY; 2166 retry: 2167 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2168 tag_pages_for_writeback(mapping, index, end); 2169 done_index = index; 2170 while (!done && (index <= end)) { 2171 int i; 2172 2173 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2174 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2175 if (nr_pages == 0) 2176 break; 2177 2178 for (i = 0; i < nr_pages; i++) { 2179 struct page *page = pvec.pages[i]; 2180 2181 /* 2182 * At this point, the page may be truncated or 2183 * invalidated (changing page->mapping to NULL), or 2184 * even swizzled back from swapper_space to tmpfs file 2185 * mapping. However, page->index will not change 2186 * because we have a reference on the page. 2187 */ 2188 if (page->index > end) { 2189 /* 2190 * can't be range_cyclic (1st pass) because 2191 * end == -1 in that case. 2192 */ 2193 done = 1; 2194 break; 2195 } 2196 2197 done_index = page->index; 2198 2199 lock_page(page); 2200 2201 /* 2202 * Page truncated or invalidated. We can freely skip it 2203 * then, even for data integrity operations: the page 2204 * has disappeared concurrently, so there could be no 2205 * real expectation of this data interity operation 2206 * even if there is now a new, dirty page at the same 2207 * pagecache address. 2208 */ 2209 if (unlikely(page->mapping != mapping)) { 2210 continue_unlock: 2211 unlock_page(page); 2212 continue; 2213 } 2214 2215 if (!PageDirty(page)) { 2216 /* someone wrote it for us */ 2217 goto continue_unlock; 2218 } 2219 2220 if (PageWriteback(page)) { 2221 if (wbc->sync_mode != WB_SYNC_NONE) 2222 wait_on_page_writeback(page); 2223 else 2224 goto continue_unlock; 2225 } 2226 2227 BUG_ON(PageWriteback(page)); 2228 if (!clear_page_dirty_for_io(page)) 2229 goto continue_unlock; 2230 2231 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2232 ret = (*writepage)(page, wbc, data); 2233 if (unlikely(ret)) { 2234 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2235 unlock_page(page); 2236 ret = 0; 2237 } else { 2238 /* 2239 * done_index is set past this page, 2240 * so media errors will not choke 2241 * background writeout for the entire 2242 * file. This has consequences for 2243 * range_cyclic semantics (ie. it may 2244 * not be suitable for data integrity 2245 * writeout). 2246 */ 2247 done_index = page->index + 1; 2248 done = 1; 2249 break; 2250 } 2251 } 2252 2253 /* 2254 * We stop writing back only if we are not doing 2255 * integrity sync. In case of integrity sync we have to 2256 * keep going until we have written all the pages 2257 * we tagged for writeback prior to entering this loop. 2258 */ 2259 if (--wbc->nr_to_write <= 0 && 2260 wbc->sync_mode == WB_SYNC_NONE) { 2261 done = 1; 2262 break; 2263 } 2264 } 2265 pagevec_release(&pvec); 2266 cond_resched(); 2267 } 2268 if (!cycled && !done) { 2269 /* 2270 * range_cyclic: 2271 * We hit the last page and there is more work to be done: wrap 2272 * back to the start of the file 2273 */ 2274 cycled = 1; 2275 index = 0; 2276 end = writeback_index - 1; 2277 goto retry; 2278 } 2279 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2280 mapping->writeback_index = done_index; 2281 2282 return ret; 2283 } 2284 EXPORT_SYMBOL(write_cache_pages); 2285 2286 /* 2287 * Function used by generic_writepages to call the real writepage 2288 * function and set the mapping flags on error 2289 */ 2290 static int __writepage(struct page *page, struct writeback_control *wbc, 2291 void *data) 2292 { 2293 struct address_space *mapping = data; 2294 int ret = mapping->a_ops->writepage(page, wbc); 2295 mapping_set_error(mapping, ret); 2296 return ret; 2297 } 2298 2299 /** 2300 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2301 * @mapping: address space structure to write 2302 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2303 * 2304 * This is a library function, which implements the writepages() 2305 * address_space_operation. 2306 */ 2307 int generic_writepages(struct address_space *mapping, 2308 struct writeback_control *wbc) 2309 { 2310 struct blk_plug plug; 2311 int ret; 2312 2313 /* deal with chardevs and other special file */ 2314 if (!mapping->a_ops->writepage) 2315 return 0; 2316 2317 blk_start_plug(&plug); 2318 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2319 blk_finish_plug(&plug); 2320 return ret; 2321 } 2322 2323 EXPORT_SYMBOL(generic_writepages); 2324 2325 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2326 { 2327 int ret; 2328 2329 if (wbc->nr_to_write <= 0) 2330 return 0; 2331 if (mapping->a_ops->writepages) 2332 ret = mapping->a_ops->writepages(mapping, wbc); 2333 else 2334 ret = generic_writepages(mapping, wbc); 2335 return ret; 2336 } 2337 2338 /** 2339 * write_one_page - write out a single page and optionally wait on I/O 2340 * @page: the page to write 2341 * @wait: if true, wait on writeout 2342 * 2343 * The page must be locked by the caller and will be unlocked upon return. 2344 * 2345 * write_one_page() returns a negative error code if I/O failed. 2346 */ 2347 int write_one_page(struct page *page, int wait) 2348 { 2349 struct address_space *mapping = page->mapping; 2350 int ret = 0; 2351 struct writeback_control wbc = { 2352 .sync_mode = WB_SYNC_ALL, 2353 .nr_to_write = 1, 2354 }; 2355 2356 BUG_ON(!PageLocked(page)); 2357 2358 if (wait) 2359 wait_on_page_writeback(page); 2360 2361 if (clear_page_dirty_for_io(page)) { 2362 page_cache_get(page); 2363 ret = mapping->a_ops->writepage(page, &wbc); 2364 if (ret == 0 && wait) { 2365 wait_on_page_writeback(page); 2366 if (PageError(page)) 2367 ret = -EIO; 2368 } 2369 page_cache_release(page); 2370 } else { 2371 unlock_page(page); 2372 } 2373 return ret; 2374 } 2375 EXPORT_SYMBOL(write_one_page); 2376 2377 /* 2378 * For address_spaces which do not use buffers nor write back. 2379 */ 2380 int __set_page_dirty_no_writeback(struct page *page) 2381 { 2382 if (!PageDirty(page)) 2383 return !TestSetPageDirty(page); 2384 return 0; 2385 } 2386 2387 /* 2388 * Helper function for set_page_dirty family. 2389 * 2390 * Caller must hold mem_cgroup_begin_page_stat(). 2391 * 2392 * NOTE: This relies on being atomic wrt interrupts. 2393 */ 2394 void account_page_dirtied(struct page *page, struct address_space *mapping, 2395 struct mem_cgroup *memcg) 2396 { 2397 struct inode *inode = mapping->host; 2398 2399 trace_writeback_dirty_page(page, mapping); 2400 2401 if (mapping_cap_account_dirty(mapping)) { 2402 struct bdi_writeback *wb; 2403 2404 inode_attach_wb(inode, page); 2405 wb = inode_to_wb(inode); 2406 2407 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY); 2408 __inc_zone_page_state(page, NR_FILE_DIRTY); 2409 __inc_zone_page_state(page, NR_DIRTIED); 2410 __inc_wb_stat(wb, WB_RECLAIMABLE); 2411 __inc_wb_stat(wb, WB_DIRTIED); 2412 task_io_account_write(PAGE_CACHE_SIZE); 2413 current->nr_dirtied++; 2414 this_cpu_inc(bdp_ratelimits); 2415 } 2416 } 2417 EXPORT_SYMBOL(account_page_dirtied); 2418 2419 /* 2420 * Helper function for deaccounting dirty page without writeback. 2421 * 2422 * Caller must hold mem_cgroup_begin_page_stat(). 2423 */ 2424 void account_page_cleaned(struct page *page, struct address_space *mapping, 2425 struct mem_cgroup *memcg, struct bdi_writeback *wb) 2426 { 2427 if (mapping_cap_account_dirty(mapping)) { 2428 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY); 2429 dec_zone_page_state(page, NR_FILE_DIRTY); 2430 dec_wb_stat(wb, WB_RECLAIMABLE); 2431 task_io_account_cancelled_write(PAGE_CACHE_SIZE); 2432 } 2433 } 2434 2435 /* 2436 * For address_spaces which do not use buffers. Just tag the page as dirty in 2437 * its radix tree. 2438 * 2439 * This is also used when a single buffer is being dirtied: we want to set the 2440 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2441 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2442 * 2443 * The caller must ensure this doesn't race with truncation. Most will simply 2444 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2445 * the pte lock held, which also locks out truncation. 2446 */ 2447 int __set_page_dirty_nobuffers(struct page *page) 2448 { 2449 struct mem_cgroup *memcg; 2450 2451 memcg = mem_cgroup_begin_page_stat(page); 2452 if (!TestSetPageDirty(page)) { 2453 struct address_space *mapping = page_mapping(page); 2454 unsigned long flags; 2455 2456 if (!mapping) { 2457 mem_cgroup_end_page_stat(memcg); 2458 return 1; 2459 } 2460 2461 spin_lock_irqsave(&mapping->tree_lock, flags); 2462 BUG_ON(page_mapping(page) != mapping); 2463 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2464 account_page_dirtied(page, mapping, memcg); 2465 radix_tree_tag_set(&mapping->page_tree, page_index(page), 2466 PAGECACHE_TAG_DIRTY); 2467 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2468 mem_cgroup_end_page_stat(memcg); 2469 2470 if (mapping->host) { 2471 /* !PageAnon && !swapper_space */ 2472 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2473 } 2474 return 1; 2475 } 2476 mem_cgroup_end_page_stat(memcg); 2477 return 0; 2478 } 2479 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2480 2481 /* 2482 * Call this whenever redirtying a page, to de-account the dirty counters 2483 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2484 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2485 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2486 * control. 2487 */ 2488 void account_page_redirty(struct page *page) 2489 { 2490 struct address_space *mapping = page->mapping; 2491 2492 if (mapping && mapping_cap_account_dirty(mapping)) { 2493 struct inode *inode = mapping->host; 2494 struct bdi_writeback *wb; 2495 bool locked; 2496 2497 wb = unlocked_inode_to_wb_begin(inode, &locked); 2498 current->nr_dirtied--; 2499 dec_zone_page_state(page, NR_DIRTIED); 2500 dec_wb_stat(wb, WB_DIRTIED); 2501 unlocked_inode_to_wb_end(inode, locked); 2502 } 2503 } 2504 EXPORT_SYMBOL(account_page_redirty); 2505 2506 /* 2507 * When a writepage implementation decides that it doesn't want to write this 2508 * page for some reason, it should redirty the locked page via 2509 * redirty_page_for_writepage() and it should then unlock the page and return 0 2510 */ 2511 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2512 { 2513 int ret; 2514 2515 wbc->pages_skipped++; 2516 ret = __set_page_dirty_nobuffers(page); 2517 account_page_redirty(page); 2518 return ret; 2519 } 2520 EXPORT_SYMBOL(redirty_page_for_writepage); 2521 2522 /* 2523 * Dirty a page. 2524 * 2525 * For pages with a mapping this should be done under the page lock 2526 * for the benefit of asynchronous memory errors who prefer a consistent 2527 * dirty state. This rule can be broken in some special cases, 2528 * but should be better not to. 2529 * 2530 * If the mapping doesn't provide a set_page_dirty a_op, then 2531 * just fall through and assume that it wants buffer_heads. 2532 */ 2533 int set_page_dirty(struct page *page) 2534 { 2535 struct address_space *mapping = page_mapping(page); 2536 2537 if (likely(mapping)) { 2538 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2539 /* 2540 * readahead/lru_deactivate_page could remain 2541 * PG_readahead/PG_reclaim due to race with end_page_writeback 2542 * About readahead, if the page is written, the flags would be 2543 * reset. So no problem. 2544 * About lru_deactivate_page, if the page is redirty, the flag 2545 * will be reset. So no problem. but if the page is used by readahead 2546 * it will confuse readahead and make it restart the size rampup 2547 * process. But it's a trivial problem. 2548 */ 2549 if (PageReclaim(page)) 2550 ClearPageReclaim(page); 2551 #ifdef CONFIG_BLOCK 2552 if (!spd) 2553 spd = __set_page_dirty_buffers; 2554 #endif 2555 return (*spd)(page); 2556 } 2557 if (!PageDirty(page)) { 2558 if (!TestSetPageDirty(page)) 2559 return 1; 2560 } 2561 return 0; 2562 } 2563 EXPORT_SYMBOL(set_page_dirty); 2564 2565 /* 2566 * set_page_dirty() is racy if the caller has no reference against 2567 * page->mapping->host, and if the page is unlocked. This is because another 2568 * CPU could truncate the page off the mapping and then free the mapping. 2569 * 2570 * Usually, the page _is_ locked, or the caller is a user-space process which 2571 * holds a reference on the inode by having an open file. 2572 * 2573 * In other cases, the page should be locked before running set_page_dirty(). 2574 */ 2575 int set_page_dirty_lock(struct page *page) 2576 { 2577 int ret; 2578 2579 lock_page(page); 2580 ret = set_page_dirty(page); 2581 unlock_page(page); 2582 return ret; 2583 } 2584 EXPORT_SYMBOL(set_page_dirty_lock); 2585 2586 /* 2587 * This cancels just the dirty bit on the kernel page itself, it does NOT 2588 * actually remove dirty bits on any mmap's that may be around. It also 2589 * leaves the page tagged dirty, so any sync activity will still find it on 2590 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2591 * look at the dirty bits in the VM. 2592 * 2593 * Doing this should *normally* only ever be done when a page is truncated, 2594 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2595 * this when it notices that somebody has cleaned out all the buffers on a 2596 * page without actually doing it through the VM. Can you say "ext3 is 2597 * horribly ugly"? Thought you could. 2598 */ 2599 void cancel_dirty_page(struct page *page) 2600 { 2601 struct address_space *mapping = page_mapping(page); 2602 2603 if (mapping_cap_account_dirty(mapping)) { 2604 struct inode *inode = mapping->host; 2605 struct bdi_writeback *wb; 2606 struct mem_cgroup *memcg; 2607 bool locked; 2608 2609 memcg = mem_cgroup_begin_page_stat(page); 2610 wb = unlocked_inode_to_wb_begin(inode, &locked); 2611 2612 if (TestClearPageDirty(page)) 2613 account_page_cleaned(page, mapping, memcg, wb); 2614 2615 unlocked_inode_to_wb_end(inode, locked); 2616 mem_cgroup_end_page_stat(memcg); 2617 } else { 2618 ClearPageDirty(page); 2619 } 2620 } 2621 EXPORT_SYMBOL(cancel_dirty_page); 2622 2623 /* 2624 * Clear a page's dirty flag, while caring for dirty memory accounting. 2625 * Returns true if the page was previously dirty. 2626 * 2627 * This is for preparing to put the page under writeout. We leave the page 2628 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2629 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2630 * implementation will run either set_page_writeback() or set_page_dirty(), 2631 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2632 * back into sync. 2633 * 2634 * This incoherency between the page's dirty flag and radix-tree tag is 2635 * unfortunate, but it only exists while the page is locked. 2636 */ 2637 int clear_page_dirty_for_io(struct page *page) 2638 { 2639 struct address_space *mapping = page_mapping(page); 2640 int ret = 0; 2641 2642 BUG_ON(!PageLocked(page)); 2643 2644 if (mapping && mapping_cap_account_dirty(mapping)) { 2645 struct inode *inode = mapping->host; 2646 struct bdi_writeback *wb; 2647 struct mem_cgroup *memcg; 2648 bool locked; 2649 2650 /* 2651 * Yes, Virginia, this is indeed insane. 2652 * 2653 * We use this sequence to make sure that 2654 * (a) we account for dirty stats properly 2655 * (b) we tell the low-level filesystem to 2656 * mark the whole page dirty if it was 2657 * dirty in a pagetable. Only to then 2658 * (c) clean the page again and return 1 to 2659 * cause the writeback. 2660 * 2661 * This way we avoid all nasty races with the 2662 * dirty bit in multiple places and clearing 2663 * them concurrently from different threads. 2664 * 2665 * Note! Normally the "set_page_dirty(page)" 2666 * has no effect on the actual dirty bit - since 2667 * that will already usually be set. But we 2668 * need the side effects, and it can help us 2669 * avoid races. 2670 * 2671 * We basically use the page "master dirty bit" 2672 * as a serialization point for all the different 2673 * threads doing their things. 2674 */ 2675 if (page_mkclean(page)) 2676 set_page_dirty(page); 2677 /* 2678 * We carefully synchronise fault handlers against 2679 * installing a dirty pte and marking the page dirty 2680 * at this point. We do this by having them hold the 2681 * page lock while dirtying the page, and pages are 2682 * always locked coming in here, so we get the desired 2683 * exclusion. 2684 */ 2685 memcg = mem_cgroup_begin_page_stat(page); 2686 wb = unlocked_inode_to_wb_begin(inode, &locked); 2687 if (TestClearPageDirty(page)) { 2688 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY); 2689 dec_zone_page_state(page, NR_FILE_DIRTY); 2690 dec_wb_stat(wb, WB_RECLAIMABLE); 2691 ret = 1; 2692 } 2693 unlocked_inode_to_wb_end(inode, locked); 2694 mem_cgroup_end_page_stat(memcg); 2695 return ret; 2696 } 2697 return TestClearPageDirty(page); 2698 } 2699 EXPORT_SYMBOL(clear_page_dirty_for_io); 2700 2701 int test_clear_page_writeback(struct page *page) 2702 { 2703 struct address_space *mapping = page_mapping(page); 2704 struct mem_cgroup *memcg; 2705 int ret; 2706 2707 memcg = mem_cgroup_begin_page_stat(page); 2708 if (mapping) { 2709 struct inode *inode = mapping->host; 2710 struct backing_dev_info *bdi = inode_to_bdi(inode); 2711 unsigned long flags; 2712 2713 spin_lock_irqsave(&mapping->tree_lock, flags); 2714 ret = TestClearPageWriteback(page); 2715 if (ret) { 2716 radix_tree_tag_clear(&mapping->page_tree, 2717 page_index(page), 2718 PAGECACHE_TAG_WRITEBACK); 2719 if (bdi_cap_account_writeback(bdi)) { 2720 struct bdi_writeback *wb = inode_to_wb(inode); 2721 2722 __dec_wb_stat(wb, WB_WRITEBACK); 2723 __wb_writeout_inc(wb); 2724 } 2725 } 2726 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2727 } else { 2728 ret = TestClearPageWriteback(page); 2729 } 2730 if (ret) { 2731 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 2732 dec_zone_page_state(page, NR_WRITEBACK); 2733 inc_zone_page_state(page, NR_WRITTEN); 2734 } 2735 mem_cgroup_end_page_stat(memcg); 2736 return ret; 2737 } 2738 2739 int __test_set_page_writeback(struct page *page, bool keep_write) 2740 { 2741 struct address_space *mapping = page_mapping(page); 2742 struct mem_cgroup *memcg; 2743 int ret; 2744 2745 memcg = mem_cgroup_begin_page_stat(page); 2746 if (mapping) { 2747 struct inode *inode = mapping->host; 2748 struct backing_dev_info *bdi = inode_to_bdi(inode); 2749 unsigned long flags; 2750 2751 spin_lock_irqsave(&mapping->tree_lock, flags); 2752 ret = TestSetPageWriteback(page); 2753 if (!ret) { 2754 radix_tree_tag_set(&mapping->page_tree, 2755 page_index(page), 2756 PAGECACHE_TAG_WRITEBACK); 2757 if (bdi_cap_account_writeback(bdi)) 2758 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2759 } 2760 if (!PageDirty(page)) 2761 radix_tree_tag_clear(&mapping->page_tree, 2762 page_index(page), 2763 PAGECACHE_TAG_DIRTY); 2764 if (!keep_write) 2765 radix_tree_tag_clear(&mapping->page_tree, 2766 page_index(page), 2767 PAGECACHE_TAG_TOWRITE); 2768 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2769 } else { 2770 ret = TestSetPageWriteback(page); 2771 } 2772 if (!ret) { 2773 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 2774 inc_zone_page_state(page, NR_WRITEBACK); 2775 } 2776 mem_cgroup_end_page_stat(memcg); 2777 return ret; 2778 2779 } 2780 EXPORT_SYMBOL(__test_set_page_writeback); 2781 2782 /* 2783 * Return true if any of the pages in the mapping are marked with the 2784 * passed tag. 2785 */ 2786 int mapping_tagged(struct address_space *mapping, int tag) 2787 { 2788 return radix_tree_tagged(&mapping->page_tree, tag); 2789 } 2790 EXPORT_SYMBOL(mapping_tagged); 2791 2792 /** 2793 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2794 * @page: The page to wait on. 2795 * 2796 * This function determines if the given page is related to a backing device 2797 * that requires page contents to be held stable during writeback. If so, then 2798 * it will wait for any pending writeback to complete. 2799 */ 2800 void wait_for_stable_page(struct page *page) 2801 { 2802 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) 2803 wait_on_page_writeback(page); 2804 } 2805 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2806