xref: /linux/mm/page-writeback.c (revision c053784454550cf750399caa65482b31ffbe3c57)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38 
39 /*
40  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41  * will look to see if it needs to force writeback or throttling.
42  */
43 static long ratelimit_pages = 32;
44 
45 /*
46  * When balance_dirty_pages decides that the caller needs to perform some
47  * non-background writeback, this is how many pages it will attempt to write.
48  * It should be somewhat larger than dirtied pages to ensure that reasonably
49  * large amounts of I/O are submitted.
50  */
51 static inline long sync_writeback_pages(unsigned long dirtied)
52 {
53 	if (dirtied < ratelimit_pages)
54 		dirtied = ratelimit_pages;
55 
56 	return dirtied + dirtied / 2;
57 }
58 
59 /* The following parameters are exported via /proc/sys/vm */
60 
61 /*
62  * Start background writeback (via writeback threads) at this percentage
63  */
64 int dirty_background_ratio = 10;
65 
66 /*
67  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68  * dirty_background_ratio * the amount of dirtyable memory
69  */
70 unsigned long dirty_background_bytes;
71 
72 /*
73  * free highmem will not be subtracted from the total free memory
74  * for calculating free ratios if vm_highmem_is_dirtyable is true
75  */
76 int vm_highmem_is_dirtyable;
77 
78 /*
79  * The generator of dirty data starts writeback at this percentage
80  */
81 int vm_dirty_ratio = 20;
82 
83 /*
84  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85  * vm_dirty_ratio * the amount of dirtyable memory
86  */
87 unsigned long vm_dirty_bytes;
88 
89 /*
90  * The interval between `kupdate'-style writebacks
91  */
92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93 
94 /*
95  * The longest time for which data is allowed to remain dirty
96  */
97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98 
99 /*
100  * Flag that makes the machine dump writes/reads and block dirtyings.
101  */
102 int block_dump;
103 
104 /*
105  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106  * a full sync is triggered after this time elapses without any disk activity.
107  */
108 int laptop_mode;
109 
110 EXPORT_SYMBOL(laptop_mode);
111 
112 /* End of sysctl-exported parameters */
113 
114 
115 /*
116  * Scale the writeback cache size proportional to the relative writeout speeds.
117  *
118  * We do this by keeping a floating proportion between BDIs, based on page
119  * writeback completions [end_page_writeback()]. Those devices that write out
120  * pages fastest will get the larger share, while the slower will get a smaller
121  * share.
122  *
123  * We use page writeout completions because we are interested in getting rid of
124  * dirty pages. Having them written out is the primary goal.
125  *
126  * We introduce a concept of time, a period over which we measure these events,
127  * because demand can/will vary over time. The length of this period itself is
128  * measured in page writeback completions.
129  *
130  */
131 static struct prop_descriptor vm_completions;
132 static struct prop_descriptor vm_dirties;
133 
134 /*
135  * couple the period to the dirty_ratio:
136  *
137  *   period/2 ~ roundup_pow_of_two(dirty limit)
138  */
139 static int calc_period_shift(void)
140 {
141 	unsigned long dirty_total;
142 
143 	if (vm_dirty_bytes)
144 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 	else
146 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 				100;
148 	return 2 + ilog2(dirty_total - 1);
149 }
150 
151 /*
152  * update the period when the dirty threshold changes.
153  */
154 static void update_completion_period(void)
155 {
156 	int shift = calc_period_shift();
157 	prop_change_shift(&vm_completions, shift);
158 	prop_change_shift(&vm_dirties, shift);
159 }
160 
161 int dirty_background_ratio_handler(struct ctl_table *table, int write,
162 		void __user *buffer, size_t *lenp,
163 		loff_t *ppos)
164 {
165 	int ret;
166 
167 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168 	if (ret == 0 && write)
169 		dirty_background_bytes = 0;
170 	return ret;
171 }
172 
173 int dirty_background_bytes_handler(struct ctl_table *table, int write,
174 		void __user *buffer, size_t *lenp,
175 		loff_t *ppos)
176 {
177 	int ret;
178 
179 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180 	if (ret == 0 && write)
181 		dirty_background_ratio = 0;
182 	return ret;
183 }
184 
185 int dirty_ratio_handler(struct ctl_table *table, int write,
186 		void __user *buffer, size_t *lenp,
187 		loff_t *ppos)
188 {
189 	int old_ratio = vm_dirty_ratio;
190 	int ret;
191 
192 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194 		update_completion_period();
195 		vm_dirty_bytes = 0;
196 	}
197 	return ret;
198 }
199 
200 
201 int dirty_bytes_handler(struct ctl_table *table, int write,
202 		void __user *buffer, size_t *lenp,
203 		loff_t *ppos)
204 {
205 	unsigned long old_bytes = vm_dirty_bytes;
206 	int ret;
207 
208 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 		update_completion_period();
211 		vm_dirty_ratio = 0;
212 	}
213 	return ret;
214 }
215 
216 /*
217  * Increment the BDI's writeout completion count and the global writeout
218  * completion count. Called from test_clear_page_writeback().
219  */
220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221 {
222 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 			      bdi->max_prop_frac);
224 }
225 
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228 	unsigned long flags;
229 
230 	local_irq_save(flags);
231 	__bdi_writeout_inc(bdi);
232 	local_irq_restore(flags);
233 }
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235 
236 void task_dirty_inc(struct task_struct *tsk)
237 {
238 	prop_inc_single(&vm_dirties, &tsk->dirties);
239 }
240 
241 /*
242  * Obtain an accurate fraction of the BDI's portion.
243  */
244 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 		long *numerator, long *denominator)
246 {
247 	if (bdi_cap_writeback_dirty(bdi)) {
248 		prop_fraction_percpu(&vm_completions, &bdi->completions,
249 				numerator, denominator);
250 	} else {
251 		*numerator = 0;
252 		*denominator = 1;
253 	}
254 }
255 
256 static inline void task_dirties_fraction(struct task_struct *tsk,
257 		long *numerator, long *denominator)
258 {
259 	prop_fraction_single(&vm_dirties, &tsk->dirties,
260 				numerator, denominator);
261 }
262 
263 /*
264  * task_dirty_limit - scale down dirty throttling threshold for one task
265  *
266  * task specific dirty limit:
267  *
268  *   dirty -= (dirty/8) * p_{t}
269  *
270  * To protect light/slow dirtying tasks from heavier/fast ones, we start
271  * throttling individual tasks before reaching the bdi dirty limit.
272  * Relatively low thresholds will be allocated to heavy dirtiers. So when
273  * dirty pages grow large, heavy dirtiers will be throttled first, which will
274  * effectively curb the growth of dirty pages. Light dirtiers with high enough
275  * dirty threshold may never get throttled.
276  */
277 static unsigned long task_dirty_limit(struct task_struct *tsk,
278 				       unsigned long bdi_dirty)
279 {
280 	long numerator, denominator;
281 	unsigned long dirty = bdi_dirty;
282 	u64 inv = dirty >> 3;
283 
284 	task_dirties_fraction(tsk, &numerator, &denominator);
285 	inv *= numerator;
286 	do_div(inv, denominator);
287 
288 	dirty -= inv;
289 
290 	return max(dirty, bdi_dirty/2);
291 }
292 
293 /*
294  *
295  */
296 static unsigned int bdi_min_ratio;
297 
298 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
299 {
300 	int ret = 0;
301 
302 	spin_lock_bh(&bdi_lock);
303 	if (min_ratio > bdi->max_ratio) {
304 		ret = -EINVAL;
305 	} else {
306 		min_ratio -= bdi->min_ratio;
307 		if (bdi_min_ratio + min_ratio < 100) {
308 			bdi_min_ratio += min_ratio;
309 			bdi->min_ratio += min_ratio;
310 		} else {
311 			ret = -EINVAL;
312 		}
313 	}
314 	spin_unlock_bh(&bdi_lock);
315 
316 	return ret;
317 }
318 
319 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
320 {
321 	int ret = 0;
322 
323 	if (max_ratio > 100)
324 		return -EINVAL;
325 
326 	spin_lock_bh(&bdi_lock);
327 	if (bdi->min_ratio > max_ratio) {
328 		ret = -EINVAL;
329 	} else {
330 		bdi->max_ratio = max_ratio;
331 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
332 	}
333 	spin_unlock_bh(&bdi_lock);
334 
335 	return ret;
336 }
337 EXPORT_SYMBOL(bdi_set_max_ratio);
338 
339 /*
340  * Work out the current dirty-memory clamping and background writeout
341  * thresholds.
342  *
343  * The main aim here is to lower them aggressively if there is a lot of mapped
344  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
345  * pages.  It is better to clamp down on writers than to start swapping, and
346  * performing lots of scanning.
347  *
348  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
349  *
350  * We don't permit the clamping level to fall below 5% - that is getting rather
351  * excessive.
352  *
353  * We make sure that the background writeout level is below the adjusted
354  * clamping level.
355  */
356 
357 static unsigned long highmem_dirtyable_memory(unsigned long total)
358 {
359 #ifdef CONFIG_HIGHMEM
360 	int node;
361 	unsigned long x = 0;
362 
363 	for_each_node_state(node, N_HIGH_MEMORY) {
364 		struct zone *z =
365 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
366 
367 		x += zone_page_state(z, NR_FREE_PAGES) +
368 		     zone_reclaimable_pages(z);
369 	}
370 	/*
371 	 * Make sure that the number of highmem pages is never larger
372 	 * than the number of the total dirtyable memory. This can only
373 	 * occur in very strange VM situations but we want to make sure
374 	 * that this does not occur.
375 	 */
376 	return min(x, total);
377 #else
378 	return 0;
379 #endif
380 }
381 
382 /**
383  * determine_dirtyable_memory - amount of memory that may be used
384  *
385  * Returns the numebr of pages that can currently be freed and used
386  * by the kernel for direct mappings.
387  */
388 unsigned long determine_dirtyable_memory(void)
389 {
390 	unsigned long x;
391 
392 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
393 
394 	if (!vm_highmem_is_dirtyable)
395 		x -= highmem_dirtyable_memory(x);
396 
397 	return x + 1;	/* Ensure that we never return 0 */
398 }
399 
400 /*
401  * global_dirty_limits - background-writeback and dirty-throttling thresholds
402  *
403  * Calculate the dirty thresholds based on sysctl parameters
404  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
405  * - vm.dirty_ratio             or  vm.dirty_bytes
406  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
407  * runtime tasks.
408  */
409 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
410 {
411 	unsigned long background;
412 	unsigned long dirty;
413 	unsigned long available_memory = determine_dirtyable_memory();
414 	struct task_struct *tsk;
415 
416 	if (vm_dirty_bytes)
417 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
418 	else {
419 		int dirty_ratio;
420 
421 		dirty_ratio = vm_dirty_ratio;
422 		if (dirty_ratio < 5)
423 			dirty_ratio = 5;
424 		dirty = (dirty_ratio * available_memory) / 100;
425 	}
426 
427 	if (dirty_background_bytes)
428 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
429 	else
430 		background = (dirty_background_ratio * available_memory) / 100;
431 
432 	if (background >= dirty)
433 		background = dirty / 2;
434 	tsk = current;
435 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
436 		background += background / 4;
437 		dirty += dirty / 4;
438 	}
439 	*pbackground = background;
440 	*pdirty = dirty;
441 }
442 
443 /*
444  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
445  *
446  * Allocate high/low dirty limits to fast/slow devices, in order to prevent
447  * - starving fast devices
448  * - piling up dirty pages (that will take long time to sync) on slow devices
449  *
450  * The bdi's share of dirty limit will be adapting to its throughput and
451  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
452  */
453 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
454 {
455 	u64 bdi_dirty;
456 	long numerator, denominator;
457 
458 	/*
459 	 * Calculate this BDI's share of the dirty ratio.
460 	 */
461 	bdi_writeout_fraction(bdi, &numerator, &denominator);
462 
463 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
464 	bdi_dirty *= numerator;
465 	do_div(bdi_dirty, denominator);
466 
467 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
468 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
469 		bdi_dirty = dirty * bdi->max_ratio / 100;
470 
471 	return bdi_dirty;
472 }
473 
474 /*
475  * balance_dirty_pages() must be called by processes which are generating dirty
476  * data.  It looks at the number of dirty pages in the machine and will force
477  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
478  * If we're over `background_thresh' then the writeback threads are woken to
479  * perform some writeout.
480  */
481 static void balance_dirty_pages(struct address_space *mapping,
482 				unsigned long write_chunk)
483 {
484 	long nr_reclaimable, bdi_nr_reclaimable;
485 	long nr_writeback, bdi_nr_writeback;
486 	unsigned long background_thresh;
487 	unsigned long dirty_thresh;
488 	unsigned long bdi_thresh;
489 	unsigned long pages_written = 0;
490 	unsigned long pause = 1;
491 	bool dirty_exceeded = false;
492 	struct backing_dev_info *bdi = mapping->backing_dev_info;
493 
494 	for (;;) {
495 		struct writeback_control wbc = {
496 			.sync_mode	= WB_SYNC_NONE,
497 			.older_than_this = NULL,
498 			.nr_to_write	= write_chunk,
499 			.range_cyclic	= 1,
500 		};
501 
502 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
503 					global_page_state(NR_UNSTABLE_NFS);
504 		nr_writeback = global_page_state(NR_WRITEBACK);
505 
506 		global_dirty_limits(&background_thresh, &dirty_thresh);
507 
508 		/*
509 		 * Throttle it only when the background writeback cannot
510 		 * catch-up. This avoids (excessively) small writeouts
511 		 * when the bdi limits are ramping up.
512 		 */
513 		if (nr_reclaimable + nr_writeback <
514 				(background_thresh + dirty_thresh) / 2)
515 			break;
516 
517 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
518 		bdi_thresh = task_dirty_limit(current, bdi_thresh);
519 
520 		/*
521 		 * In order to avoid the stacked BDI deadlock we need
522 		 * to ensure we accurately count the 'dirty' pages when
523 		 * the threshold is low.
524 		 *
525 		 * Otherwise it would be possible to get thresh+n pages
526 		 * reported dirty, even though there are thresh-m pages
527 		 * actually dirty; with m+n sitting in the percpu
528 		 * deltas.
529 		 */
530 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
531 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
532 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
533 		} else {
534 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
535 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
536 		}
537 
538 		/*
539 		 * The bdi thresh is somehow "soft" limit derived from the
540 		 * global "hard" limit. The former helps to prevent heavy IO
541 		 * bdi or process from holding back light ones; The latter is
542 		 * the last resort safeguard.
543 		 */
544 		dirty_exceeded =
545 			(bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh)
546 			|| (nr_reclaimable + nr_writeback >= dirty_thresh);
547 
548 		if (!dirty_exceeded)
549 			break;
550 
551 		if (!bdi->dirty_exceeded)
552 			bdi->dirty_exceeded = 1;
553 
554 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
555 		 * Unstable writes are a feature of certain networked
556 		 * filesystems (i.e. NFS) in which data may have been
557 		 * written to the server's write cache, but has not yet
558 		 * been flushed to permanent storage.
559 		 * Only move pages to writeback if this bdi is over its
560 		 * threshold otherwise wait until the disk writes catch
561 		 * up.
562 		 */
563 		trace_wbc_balance_dirty_start(&wbc, bdi);
564 		if (bdi_nr_reclaimable > bdi_thresh) {
565 			writeback_inodes_wb(&bdi->wb, &wbc);
566 			pages_written += write_chunk - wbc.nr_to_write;
567 			trace_wbc_balance_dirty_written(&wbc, bdi);
568 			if (pages_written >= write_chunk)
569 				break;		/* We've done our duty */
570 		}
571 		trace_wbc_balance_dirty_wait(&wbc, bdi);
572 		__set_current_state(TASK_INTERRUPTIBLE);
573 		io_schedule_timeout(pause);
574 
575 		/*
576 		 * Increase the delay for each loop, up to our previous
577 		 * default of taking a 100ms nap.
578 		 */
579 		pause <<= 1;
580 		if (pause > HZ / 10)
581 			pause = HZ / 10;
582 	}
583 
584 	if (!dirty_exceeded && bdi->dirty_exceeded)
585 		bdi->dirty_exceeded = 0;
586 
587 	if (writeback_in_progress(bdi))
588 		return;
589 
590 	/*
591 	 * In laptop mode, we wait until hitting the higher threshold before
592 	 * starting background writeout, and then write out all the way down
593 	 * to the lower threshold.  So slow writers cause minimal disk activity.
594 	 *
595 	 * In normal mode, we start background writeout at the lower
596 	 * background_thresh, to keep the amount of dirty memory low.
597 	 */
598 	if ((laptop_mode && pages_written) ||
599 	    (!laptop_mode && (nr_reclaimable > background_thresh)))
600 		bdi_start_background_writeback(bdi);
601 }
602 
603 void set_page_dirty_balance(struct page *page, int page_mkwrite)
604 {
605 	if (set_page_dirty(page) || page_mkwrite) {
606 		struct address_space *mapping = page_mapping(page);
607 
608 		if (mapping)
609 			balance_dirty_pages_ratelimited(mapping);
610 	}
611 }
612 
613 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
614 
615 /**
616  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
617  * @mapping: address_space which was dirtied
618  * @nr_pages_dirtied: number of pages which the caller has just dirtied
619  *
620  * Processes which are dirtying memory should call in here once for each page
621  * which was newly dirtied.  The function will periodically check the system's
622  * dirty state and will initiate writeback if needed.
623  *
624  * On really big machines, get_writeback_state is expensive, so try to avoid
625  * calling it too often (ratelimiting).  But once we're over the dirty memory
626  * limit we decrease the ratelimiting by a lot, to prevent individual processes
627  * from overshooting the limit by (ratelimit_pages) each.
628  */
629 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
630 					unsigned long nr_pages_dirtied)
631 {
632 	unsigned long ratelimit;
633 	unsigned long *p;
634 
635 	ratelimit = ratelimit_pages;
636 	if (mapping->backing_dev_info->dirty_exceeded)
637 		ratelimit = 8;
638 
639 	/*
640 	 * Check the rate limiting. Also, we do not want to throttle real-time
641 	 * tasks in balance_dirty_pages(). Period.
642 	 */
643 	preempt_disable();
644 	p =  &__get_cpu_var(bdp_ratelimits);
645 	*p += nr_pages_dirtied;
646 	if (unlikely(*p >= ratelimit)) {
647 		ratelimit = sync_writeback_pages(*p);
648 		*p = 0;
649 		preempt_enable();
650 		balance_dirty_pages(mapping, ratelimit);
651 		return;
652 	}
653 	preempt_enable();
654 }
655 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
656 
657 void throttle_vm_writeout(gfp_t gfp_mask)
658 {
659 	unsigned long background_thresh;
660 	unsigned long dirty_thresh;
661 
662         for ( ; ; ) {
663 		global_dirty_limits(&background_thresh, &dirty_thresh);
664 
665                 /*
666                  * Boost the allowable dirty threshold a bit for page
667                  * allocators so they don't get DoS'ed by heavy writers
668                  */
669                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
670 
671                 if (global_page_state(NR_UNSTABLE_NFS) +
672 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
673                         	break;
674                 congestion_wait(BLK_RW_ASYNC, HZ/10);
675 
676 		/*
677 		 * The caller might hold locks which can prevent IO completion
678 		 * or progress in the filesystem.  So we cannot just sit here
679 		 * waiting for IO to complete.
680 		 */
681 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
682 			break;
683         }
684 }
685 
686 /*
687  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
688  */
689 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
690 	void __user *buffer, size_t *length, loff_t *ppos)
691 {
692 	proc_dointvec(table, write, buffer, length, ppos);
693 	bdi_arm_supers_timer();
694 	return 0;
695 }
696 
697 #ifdef CONFIG_BLOCK
698 void laptop_mode_timer_fn(unsigned long data)
699 {
700 	struct request_queue *q = (struct request_queue *)data;
701 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
702 		global_page_state(NR_UNSTABLE_NFS);
703 
704 	/*
705 	 * We want to write everything out, not just down to the dirty
706 	 * threshold
707 	 */
708 	if (bdi_has_dirty_io(&q->backing_dev_info))
709 		bdi_start_writeback(&q->backing_dev_info, nr_pages);
710 }
711 
712 /*
713  * We've spun up the disk and we're in laptop mode: schedule writeback
714  * of all dirty data a few seconds from now.  If the flush is already scheduled
715  * then push it back - the user is still using the disk.
716  */
717 void laptop_io_completion(struct backing_dev_info *info)
718 {
719 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
720 }
721 
722 /*
723  * We're in laptop mode and we've just synced. The sync's writes will have
724  * caused another writeback to be scheduled by laptop_io_completion.
725  * Nothing needs to be written back anymore, so we unschedule the writeback.
726  */
727 void laptop_sync_completion(void)
728 {
729 	struct backing_dev_info *bdi;
730 
731 	rcu_read_lock();
732 
733 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
734 		del_timer(&bdi->laptop_mode_wb_timer);
735 
736 	rcu_read_unlock();
737 }
738 #endif
739 
740 /*
741  * If ratelimit_pages is too high then we can get into dirty-data overload
742  * if a large number of processes all perform writes at the same time.
743  * If it is too low then SMP machines will call the (expensive)
744  * get_writeback_state too often.
745  *
746  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
747  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
748  * thresholds before writeback cuts in.
749  *
750  * But the limit should not be set too high.  Because it also controls the
751  * amount of memory which the balance_dirty_pages() caller has to write back.
752  * If this is too large then the caller will block on the IO queue all the
753  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
754  * will write six megabyte chunks, max.
755  */
756 
757 void writeback_set_ratelimit(void)
758 {
759 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
760 	if (ratelimit_pages < 16)
761 		ratelimit_pages = 16;
762 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
763 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
764 }
765 
766 static int __cpuinit
767 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
768 {
769 	writeback_set_ratelimit();
770 	return NOTIFY_DONE;
771 }
772 
773 static struct notifier_block __cpuinitdata ratelimit_nb = {
774 	.notifier_call	= ratelimit_handler,
775 	.next		= NULL,
776 };
777 
778 /*
779  * Called early on to tune the page writeback dirty limits.
780  *
781  * We used to scale dirty pages according to how total memory
782  * related to pages that could be allocated for buffers (by
783  * comparing nr_free_buffer_pages() to vm_total_pages.
784  *
785  * However, that was when we used "dirty_ratio" to scale with
786  * all memory, and we don't do that any more. "dirty_ratio"
787  * is now applied to total non-HIGHPAGE memory (by subtracting
788  * totalhigh_pages from vm_total_pages), and as such we can't
789  * get into the old insane situation any more where we had
790  * large amounts of dirty pages compared to a small amount of
791  * non-HIGHMEM memory.
792  *
793  * But we might still want to scale the dirty_ratio by how
794  * much memory the box has..
795  */
796 void __init page_writeback_init(void)
797 {
798 	int shift;
799 
800 	writeback_set_ratelimit();
801 	register_cpu_notifier(&ratelimit_nb);
802 
803 	shift = calc_period_shift();
804 	prop_descriptor_init(&vm_completions, shift);
805 	prop_descriptor_init(&vm_dirties, shift);
806 }
807 
808 /**
809  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
810  * @mapping: address space structure to write
811  * @start: starting page index
812  * @end: ending page index (inclusive)
813  *
814  * This function scans the page range from @start to @end (inclusive) and tags
815  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
816  * that write_cache_pages (or whoever calls this function) will then use
817  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
818  * used to avoid livelocking of writeback by a process steadily creating new
819  * dirty pages in the file (thus it is important for this function to be quick
820  * so that it can tag pages faster than a dirtying process can create them).
821  */
822 /*
823  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
824  */
825 void tag_pages_for_writeback(struct address_space *mapping,
826 			     pgoff_t start, pgoff_t end)
827 {
828 #define WRITEBACK_TAG_BATCH 4096
829 	unsigned long tagged;
830 
831 	do {
832 		spin_lock_irq(&mapping->tree_lock);
833 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
834 				&start, end, WRITEBACK_TAG_BATCH,
835 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
836 		spin_unlock_irq(&mapping->tree_lock);
837 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
838 		cond_resched();
839 		/* We check 'start' to handle wrapping when end == ~0UL */
840 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
841 }
842 EXPORT_SYMBOL(tag_pages_for_writeback);
843 
844 /**
845  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
846  * @mapping: address space structure to write
847  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
848  * @writepage: function called for each page
849  * @data: data passed to writepage function
850  *
851  * If a page is already under I/O, write_cache_pages() skips it, even
852  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
853  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
854  * and msync() need to guarantee that all the data which was dirty at the time
855  * the call was made get new I/O started against them.  If wbc->sync_mode is
856  * WB_SYNC_ALL then we were called for data integrity and we must wait for
857  * existing IO to complete.
858  *
859  * To avoid livelocks (when other process dirties new pages), we first tag
860  * pages which should be written back with TOWRITE tag and only then start
861  * writing them. For data-integrity sync we have to be careful so that we do
862  * not miss some pages (e.g., because some other process has cleared TOWRITE
863  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
864  * by the process clearing the DIRTY tag (and submitting the page for IO).
865  */
866 int write_cache_pages(struct address_space *mapping,
867 		      struct writeback_control *wbc, writepage_t writepage,
868 		      void *data)
869 {
870 	int ret = 0;
871 	int done = 0;
872 	struct pagevec pvec;
873 	int nr_pages;
874 	pgoff_t uninitialized_var(writeback_index);
875 	pgoff_t index;
876 	pgoff_t end;		/* Inclusive */
877 	pgoff_t done_index;
878 	int cycled;
879 	int range_whole = 0;
880 	int tag;
881 
882 	pagevec_init(&pvec, 0);
883 	if (wbc->range_cyclic) {
884 		writeback_index = mapping->writeback_index; /* prev offset */
885 		index = writeback_index;
886 		if (index == 0)
887 			cycled = 1;
888 		else
889 			cycled = 0;
890 		end = -1;
891 	} else {
892 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
893 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
894 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
895 			range_whole = 1;
896 		cycled = 1; /* ignore range_cyclic tests */
897 	}
898 	if (wbc->sync_mode == WB_SYNC_ALL)
899 		tag = PAGECACHE_TAG_TOWRITE;
900 	else
901 		tag = PAGECACHE_TAG_DIRTY;
902 retry:
903 	if (wbc->sync_mode == WB_SYNC_ALL)
904 		tag_pages_for_writeback(mapping, index, end);
905 	done_index = index;
906 	while (!done && (index <= end)) {
907 		int i;
908 
909 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
910 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
911 		if (nr_pages == 0)
912 			break;
913 
914 		for (i = 0; i < nr_pages; i++) {
915 			struct page *page = pvec.pages[i];
916 
917 			/*
918 			 * At this point, the page may be truncated or
919 			 * invalidated (changing page->mapping to NULL), or
920 			 * even swizzled back from swapper_space to tmpfs file
921 			 * mapping. However, page->index will not change
922 			 * because we have a reference on the page.
923 			 */
924 			if (page->index > end) {
925 				/*
926 				 * can't be range_cyclic (1st pass) because
927 				 * end == -1 in that case.
928 				 */
929 				done = 1;
930 				break;
931 			}
932 
933 			done_index = page->index + 1;
934 
935 			lock_page(page);
936 
937 			/*
938 			 * Page truncated or invalidated. We can freely skip it
939 			 * then, even for data integrity operations: the page
940 			 * has disappeared concurrently, so there could be no
941 			 * real expectation of this data interity operation
942 			 * even if there is now a new, dirty page at the same
943 			 * pagecache address.
944 			 */
945 			if (unlikely(page->mapping != mapping)) {
946 continue_unlock:
947 				unlock_page(page);
948 				continue;
949 			}
950 
951 			if (!PageDirty(page)) {
952 				/* someone wrote it for us */
953 				goto continue_unlock;
954 			}
955 
956 			if (PageWriteback(page)) {
957 				if (wbc->sync_mode != WB_SYNC_NONE)
958 					wait_on_page_writeback(page);
959 				else
960 					goto continue_unlock;
961 			}
962 
963 			BUG_ON(PageWriteback(page));
964 			if (!clear_page_dirty_for_io(page))
965 				goto continue_unlock;
966 
967 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
968 			ret = (*writepage)(page, wbc, data);
969 			if (unlikely(ret)) {
970 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
971 					unlock_page(page);
972 					ret = 0;
973 				} else {
974 					/*
975 					 * done_index is set past this page,
976 					 * so media errors will not choke
977 					 * background writeout for the entire
978 					 * file. This has consequences for
979 					 * range_cyclic semantics (ie. it may
980 					 * not be suitable for data integrity
981 					 * writeout).
982 					 */
983 					done = 1;
984 					break;
985 				}
986 			}
987 
988 			/*
989 			 * We stop writing back only if we are not doing
990 			 * integrity sync. In case of integrity sync we have to
991 			 * keep going until we have written all the pages
992 			 * we tagged for writeback prior to entering this loop.
993 			 */
994 			if (--wbc->nr_to_write <= 0 &&
995 			    wbc->sync_mode == WB_SYNC_NONE) {
996 				done = 1;
997 				break;
998 			}
999 		}
1000 		pagevec_release(&pvec);
1001 		cond_resched();
1002 	}
1003 	if (!cycled && !done) {
1004 		/*
1005 		 * range_cyclic:
1006 		 * We hit the last page and there is more work to be done: wrap
1007 		 * back to the start of the file
1008 		 */
1009 		cycled = 1;
1010 		index = 0;
1011 		end = writeback_index - 1;
1012 		goto retry;
1013 	}
1014 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1015 		mapping->writeback_index = done_index;
1016 
1017 	return ret;
1018 }
1019 EXPORT_SYMBOL(write_cache_pages);
1020 
1021 /*
1022  * Function used by generic_writepages to call the real writepage
1023  * function and set the mapping flags on error
1024  */
1025 static int __writepage(struct page *page, struct writeback_control *wbc,
1026 		       void *data)
1027 {
1028 	struct address_space *mapping = data;
1029 	int ret = mapping->a_ops->writepage(page, wbc);
1030 	mapping_set_error(mapping, ret);
1031 	return ret;
1032 }
1033 
1034 /**
1035  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1036  * @mapping: address space structure to write
1037  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1038  *
1039  * This is a library function, which implements the writepages()
1040  * address_space_operation.
1041  */
1042 int generic_writepages(struct address_space *mapping,
1043 		       struct writeback_control *wbc)
1044 {
1045 	/* deal with chardevs and other special file */
1046 	if (!mapping->a_ops->writepage)
1047 		return 0;
1048 
1049 	return write_cache_pages(mapping, wbc, __writepage, mapping);
1050 }
1051 
1052 EXPORT_SYMBOL(generic_writepages);
1053 
1054 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1055 {
1056 	int ret;
1057 
1058 	if (wbc->nr_to_write <= 0)
1059 		return 0;
1060 	if (mapping->a_ops->writepages)
1061 		ret = mapping->a_ops->writepages(mapping, wbc);
1062 	else
1063 		ret = generic_writepages(mapping, wbc);
1064 	return ret;
1065 }
1066 
1067 /**
1068  * write_one_page - write out a single page and optionally wait on I/O
1069  * @page: the page to write
1070  * @wait: if true, wait on writeout
1071  *
1072  * The page must be locked by the caller and will be unlocked upon return.
1073  *
1074  * write_one_page() returns a negative error code if I/O failed.
1075  */
1076 int write_one_page(struct page *page, int wait)
1077 {
1078 	struct address_space *mapping = page->mapping;
1079 	int ret = 0;
1080 	struct writeback_control wbc = {
1081 		.sync_mode = WB_SYNC_ALL,
1082 		.nr_to_write = 1,
1083 	};
1084 
1085 	BUG_ON(!PageLocked(page));
1086 
1087 	if (wait)
1088 		wait_on_page_writeback(page);
1089 
1090 	if (clear_page_dirty_for_io(page)) {
1091 		page_cache_get(page);
1092 		ret = mapping->a_ops->writepage(page, &wbc);
1093 		if (ret == 0 && wait) {
1094 			wait_on_page_writeback(page);
1095 			if (PageError(page))
1096 				ret = -EIO;
1097 		}
1098 		page_cache_release(page);
1099 	} else {
1100 		unlock_page(page);
1101 	}
1102 	return ret;
1103 }
1104 EXPORT_SYMBOL(write_one_page);
1105 
1106 /*
1107  * For address_spaces which do not use buffers nor write back.
1108  */
1109 int __set_page_dirty_no_writeback(struct page *page)
1110 {
1111 	if (!PageDirty(page))
1112 		SetPageDirty(page);
1113 	return 0;
1114 }
1115 
1116 /*
1117  * Helper function for set_page_dirty family.
1118  * NOTE: This relies on being atomic wrt interrupts.
1119  */
1120 void account_page_dirtied(struct page *page, struct address_space *mapping)
1121 {
1122 	if (mapping_cap_account_dirty(mapping)) {
1123 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1124 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1125 		task_dirty_inc(current);
1126 		task_io_account_write(PAGE_CACHE_SIZE);
1127 	}
1128 }
1129 EXPORT_SYMBOL(account_page_dirtied);
1130 
1131 /*
1132  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1133  * its radix tree.
1134  *
1135  * This is also used when a single buffer is being dirtied: we want to set the
1136  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1137  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1138  *
1139  * Most callers have locked the page, which pins the address_space in memory.
1140  * But zap_pte_range() does not lock the page, however in that case the
1141  * mapping is pinned by the vma's ->vm_file reference.
1142  *
1143  * We take care to handle the case where the page was truncated from the
1144  * mapping by re-checking page_mapping() inside tree_lock.
1145  */
1146 int __set_page_dirty_nobuffers(struct page *page)
1147 {
1148 	if (!TestSetPageDirty(page)) {
1149 		struct address_space *mapping = page_mapping(page);
1150 		struct address_space *mapping2;
1151 
1152 		if (!mapping)
1153 			return 1;
1154 
1155 		spin_lock_irq(&mapping->tree_lock);
1156 		mapping2 = page_mapping(page);
1157 		if (mapping2) { /* Race with truncate? */
1158 			BUG_ON(mapping2 != mapping);
1159 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1160 			account_page_dirtied(page, mapping);
1161 			radix_tree_tag_set(&mapping->page_tree,
1162 				page_index(page), PAGECACHE_TAG_DIRTY);
1163 		}
1164 		spin_unlock_irq(&mapping->tree_lock);
1165 		if (mapping->host) {
1166 			/* !PageAnon && !swapper_space */
1167 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1168 		}
1169 		return 1;
1170 	}
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1174 
1175 /*
1176  * When a writepage implementation decides that it doesn't want to write this
1177  * page for some reason, it should redirty the locked page via
1178  * redirty_page_for_writepage() and it should then unlock the page and return 0
1179  */
1180 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1181 {
1182 	wbc->pages_skipped++;
1183 	return __set_page_dirty_nobuffers(page);
1184 }
1185 EXPORT_SYMBOL(redirty_page_for_writepage);
1186 
1187 /*
1188  * Dirty a page.
1189  *
1190  * For pages with a mapping this should be done under the page lock
1191  * for the benefit of asynchronous memory errors who prefer a consistent
1192  * dirty state. This rule can be broken in some special cases,
1193  * but should be better not to.
1194  *
1195  * If the mapping doesn't provide a set_page_dirty a_op, then
1196  * just fall through and assume that it wants buffer_heads.
1197  */
1198 int set_page_dirty(struct page *page)
1199 {
1200 	struct address_space *mapping = page_mapping(page);
1201 
1202 	if (likely(mapping)) {
1203 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1204 #ifdef CONFIG_BLOCK
1205 		if (!spd)
1206 			spd = __set_page_dirty_buffers;
1207 #endif
1208 		return (*spd)(page);
1209 	}
1210 	if (!PageDirty(page)) {
1211 		if (!TestSetPageDirty(page))
1212 			return 1;
1213 	}
1214 	return 0;
1215 }
1216 EXPORT_SYMBOL(set_page_dirty);
1217 
1218 /*
1219  * set_page_dirty() is racy if the caller has no reference against
1220  * page->mapping->host, and if the page is unlocked.  This is because another
1221  * CPU could truncate the page off the mapping and then free the mapping.
1222  *
1223  * Usually, the page _is_ locked, or the caller is a user-space process which
1224  * holds a reference on the inode by having an open file.
1225  *
1226  * In other cases, the page should be locked before running set_page_dirty().
1227  */
1228 int set_page_dirty_lock(struct page *page)
1229 {
1230 	int ret;
1231 
1232 	lock_page_nosync(page);
1233 	ret = set_page_dirty(page);
1234 	unlock_page(page);
1235 	return ret;
1236 }
1237 EXPORT_SYMBOL(set_page_dirty_lock);
1238 
1239 /*
1240  * Clear a page's dirty flag, while caring for dirty memory accounting.
1241  * Returns true if the page was previously dirty.
1242  *
1243  * This is for preparing to put the page under writeout.  We leave the page
1244  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1245  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1246  * implementation will run either set_page_writeback() or set_page_dirty(),
1247  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1248  * back into sync.
1249  *
1250  * This incoherency between the page's dirty flag and radix-tree tag is
1251  * unfortunate, but it only exists while the page is locked.
1252  */
1253 int clear_page_dirty_for_io(struct page *page)
1254 {
1255 	struct address_space *mapping = page_mapping(page);
1256 
1257 	BUG_ON(!PageLocked(page));
1258 
1259 	ClearPageReclaim(page);
1260 	if (mapping && mapping_cap_account_dirty(mapping)) {
1261 		/*
1262 		 * Yes, Virginia, this is indeed insane.
1263 		 *
1264 		 * We use this sequence to make sure that
1265 		 *  (a) we account for dirty stats properly
1266 		 *  (b) we tell the low-level filesystem to
1267 		 *      mark the whole page dirty if it was
1268 		 *      dirty in a pagetable. Only to then
1269 		 *  (c) clean the page again and return 1 to
1270 		 *      cause the writeback.
1271 		 *
1272 		 * This way we avoid all nasty races with the
1273 		 * dirty bit in multiple places and clearing
1274 		 * them concurrently from different threads.
1275 		 *
1276 		 * Note! Normally the "set_page_dirty(page)"
1277 		 * has no effect on the actual dirty bit - since
1278 		 * that will already usually be set. But we
1279 		 * need the side effects, and it can help us
1280 		 * avoid races.
1281 		 *
1282 		 * We basically use the page "master dirty bit"
1283 		 * as a serialization point for all the different
1284 		 * threads doing their things.
1285 		 */
1286 		if (page_mkclean(page))
1287 			set_page_dirty(page);
1288 		/*
1289 		 * We carefully synchronise fault handlers against
1290 		 * installing a dirty pte and marking the page dirty
1291 		 * at this point. We do this by having them hold the
1292 		 * page lock at some point after installing their
1293 		 * pte, but before marking the page dirty.
1294 		 * Pages are always locked coming in here, so we get
1295 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1296 		 * for more comments.
1297 		 */
1298 		if (TestClearPageDirty(page)) {
1299 			dec_zone_page_state(page, NR_FILE_DIRTY);
1300 			dec_bdi_stat(mapping->backing_dev_info,
1301 					BDI_RECLAIMABLE);
1302 			return 1;
1303 		}
1304 		return 0;
1305 	}
1306 	return TestClearPageDirty(page);
1307 }
1308 EXPORT_SYMBOL(clear_page_dirty_for_io);
1309 
1310 int test_clear_page_writeback(struct page *page)
1311 {
1312 	struct address_space *mapping = page_mapping(page);
1313 	int ret;
1314 
1315 	if (mapping) {
1316 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1317 		unsigned long flags;
1318 
1319 		spin_lock_irqsave(&mapping->tree_lock, flags);
1320 		ret = TestClearPageWriteback(page);
1321 		if (ret) {
1322 			radix_tree_tag_clear(&mapping->page_tree,
1323 						page_index(page),
1324 						PAGECACHE_TAG_WRITEBACK);
1325 			if (bdi_cap_account_writeback(bdi)) {
1326 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1327 				__bdi_writeout_inc(bdi);
1328 			}
1329 		}
1330 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1331 	} else {
1332 		ret = TestClearPageWriteback(page);
1333 	}
1334 	if (ret)
1335 		dec_zone_page_state(page, NR_WRITEBACK);
1336 	return ret;
1337 }
1338 
1339 int test_set_page_writeback(struct page *page)
1340 {
1341 	struct address_space *mapping = page_mapping(page);
1342 	int ret;
1343 
1344 	if (mapping) {
1345 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1346 		unsigned long flags;
1347 
1348 		spin_lock_irqsave(&mapping->tree_lock, flags);
1349 		ret = TestSetPageWriteback(page);
1350 		if (!ret) {
1351 			radix_tree_tag_set(&mapping->page_tree,
1352 						page_index(page),
1353 						PAGECACHE_TAG_WRITEBACK);
1354 			if (bdi_cap_account_writeback(bdi))
1355 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1356 		}
1357 		if (!PageDirty(page))
1358 			radix_tree_tag_clear(&mapping->page_tree,
1359 						page_index(page),
1360 						PAGECACHE_TAG_DIRTY);
1361 		radix_tree_tag_clear(&mapping->page_tree,
1362 				     page_index(page),
1363 				     PAGECACHE_TAG_TOWRITE);
1364 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1365 	} else {
1366 		ret = TestSetPageWriteback(page);
1367 	}
1368 	if (!ret)
1369 		inc_zone_page_state(page, NR_WRITEBACK);
1370 	return ret;
1371 
1372 }
1373 EXPORT_SYMBOL(test_set_page_writeback);
1374 
1375 /*
1376  * Return true if any of the pages in the mapping are marked with the
1377  * passed tag.
1378  */
1379 int mapping_tagged(struct address_space *mapping, int tag)
1380 {
1381 	int ret;
1382 	rcu_read_lock();
1383 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1384 	rcu_read_unlock();
1385 	return ret;
1386 }
1387 EXPORT_SYMBOL(mapping_tagged);
1388