1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to writing back dirty pages at the 7 * address_space level. 8 * 9 * 10Apr2002 akpm@zip.com.au 10 * Initial version 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/spinlock.h> 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/slab.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/init.h> 23 #include <linux/backing-dev.h> 24 #include <linux/task_io_accounting_ops.h> 25 #include <linux/blkdev.h> 26 #include <linux/mpage.h> 27 #include <linux/rmap.h> 28 #include <linux/percpu.h> 29 #include <linux/notifier.h> 30 #include <linux/smp.h> 31 #include <linux/sysctl.h> 32 #include <linux/cpu.h> 33 #include <linux/syscalls.h> 34 #include <linux/buffer_head.h> 35 #include <linux/pagevec.h> 36 37 /* 38 * The maximum number of pages to writeout in a single bdflush/kupdate 39 * operation. We do this so we don't hold I_LOCK against an inode for 40 * enormous amounts of time, which would block a userspace task which has 41 * been forced to throttle against that inode. Also, the code reevaluates 42 * the dirty each time it has written this many pages. 43 */ 44 #define MAX_WRITEBACK_PAGES 1024 45 46 /* 47 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 48 * will look to see if it needs to force writeback or throttling. 49 */ 50 static long ratelimit_pages = 32; 51 52 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */ 53 54 /* 55 * When balance_dirty_pages decides that the caller needs to perform some 56 * non-background writeback, this is how many pages it will attempt to write. 57 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 58 * large amounts of I/O are submitted. 59 */ 60 static inline long sync_writeback_pages(void) 61 { 62 return ratelimit_pages + ratelimit_pages / 2; 63 } 64 65 /* The following parameters are exported via /proc/sys/vm */ 66 67 /* 68 * Start background writeback (via pdflush) at this percentage 69 */ 70 int dirty_background_ratio = 10; 71 72 /* 73 * The generator of dirty data starts writeback at this percentage 74 */ 75 int vm_dirty_ratio = 40; 76 77 /* 78 * The interval between `kupdate'-style writebacks, in jiffies 79 */ 80 int dirty_writeback_interval = 5 * HZ; 81 82 /* 83 * The longest number of jiffies for which data is allowed to remain dirty 84 */ 85 int dirty_expire_interval = 30 * HZ; 86 87 /* 88 * Flag that makes the machine dump writes/reads and block dirtyings. 89 */ 90 int block_dump; 91 92 /* 93 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 94 * a full sync is triggered after this time elapses without any disk activity. 95 */ 96 int laptop_mode; 97 98 EXPORT_SYMBOL(laptop_mode); 99 100 /* End of sysctl-exported parameters */ 101 102 103 static void background_writeout(unsigned long _min_pages); 104 105 /* 106 * Work out the current dirty-memory clamping and background writeout 107 * thresholds. 108 * 109 * The main aim here is to lower them aggressively if there is a lot of mapped 110 * memory around. To avoid stressing page reclaim with lots of unreclaimable 111 * pages. It is better to clamp down on writers than to start swapping, and 112 * performing lots of scanning. 113 * 114 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 115 * 116 * We don't permit the clamping level to fall below 5% - that is getting rather 117 * excessive. 118 * 119 * We make sure that the background writeout level is below the adjusted 120 * clamping level. 121 */ 122 static void 123 get_dirty_limits(long *pbackground, long *pdirty, 124 struct address_space *mapping) 125 { 126 int background_ratio; /* Percentages */ 127 int dirty_ratio; 128 int unmapped_ratio; 129 long background; 130 long dirty; 131 unsigned long available_memory = vm_total_pages; 132 struct task_struct *tsk; 133 134 #ifdef CONFIG_HIGHMEM 135 /* 136 * We always exclude high memory from our count. 137 */ 138 available_memory -= totalhigh_pages; 139 #endif 140 141 142 unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) + 143 global_page_state(NR_ANON_PAGES)) * 100) / 144 vm_total_pages; 145 146 dirty_ratio = vm_dirty_ratio; 147 if (dirty_ratio > unmapped_ratio / 2) 148 dirty_ratio = unmapped_ratio / 2; 149 150 if (dirty_ratio < 5) 151 dirty_ratio = 5; 152 153 background_ratio = dirty_background_ratio; 154 if (background_ratio >= dirty_ratio) 155 background_ratio = dirty_ratio / 2; 156 157 background = (background_ratio * available_memory) / 100; 158 dirty = (dirty_ratio * available_memory) / 100; 159 tsk = current; 160 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 161 background += background / 4; 162 dirty += dirty / 4; 163 } 164 *pbackground = background; 165 *pdirty = dirty; 166 } 167 168 /* 169 * balance_dirty_pages() must be called by processes which are generating dirty 170 * data. It looks at the number of dirty pages in the machine and will force 171 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 172 * If we're over `background_thresh' then pdflush is woken to perform some 173 * writeout. 174 */ 175 static void balance_dirty_pages(struct address_space *mapping) 176 { 177 long nr_reclaimable; 178 long background_thresh; 179 long dirty_thresh; 180 unsigned long pages_written = 0; 181 unsigned long write_chunk = sync_writeback_pages(); 182 183 struct backing_dev_info *bdi = mapping->backing_dev_info; 184 185 for (;;) { 186 struct writeback_control wbc = { 187 .bdi = bdi, 188 .sync_mode = WB_SYNC_NONE, 189 .older_than_this = NULL, 190 .nr_to_write = write_chunk, 191 .range_cyclic = 1, 192 }; 193 194 get_dirty_limits(&background_thresh, &dirty_thresh, mapping); 195 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 196 global_page_state(NR_UNSTABLE_NFS); 197 if (nr_reclaimable + global_page_state(NR_WRITEBACK) <= 198 dirty_thresh) 199 break; 200 201 if (!dirty_exceeded) 202 dirty_exceeded = 1; 203 204 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 205 * Unstable writes are a feature of certain networked 206 * filesystems (i.e. NFS) in which data may have been 207 * written to the server's write cache, but has not yet 208 * been flushed to permanent storage. 209 */ 210 if (nr_reclaimable) { 211 writeback_inodes(&wbc); 212 get_dirty_limits(&background_thresh, 213 &dirty_thresh, mapping); 214 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 215 global_page_state(NR_UNSTABLE_NFS); 216 if (nr_reclaimable + 217 global_page_state(NR_WRITEBACK) 218 <= dirty_thresh) 219 break; 220 pages_written += write_chunk - wbc.nr_to_write; 221 if (pages_written >= write_chunk) 222 break; /* We've done our duty */ 223 } 224 congestion_wait(WRITE, HZ/10); 225 } 226 227 if (nr_reclaimable + global_page_state(NR_WRITEBACK) 228 <= dirty_thresh && dirty_exceeded) 229 dirty_exceeded = 0; 230 231 if (writeback_in_progress(bdi)) 232 return; /* pdflush is already working this queue */ 233 234 /* 235 * In laptop mode, we wait until hitting the higher threshold before 236 * starting background writeout, and then write out all the way down 237 * to the lower threshold. So slow writers cause minimal disk activity. 238 * 239 * In normal mode, we start background writeout at the lower 240 * background_thresh, to keep the amount of dirty memory low. 241 */ 242 if ((laptop_mode && pages_written) || 243 (!laptop_mode && (nr_reclaimable > background_thresh))) 244 pdflush_operation(background_writeout, 0); 245 } 246 247 void set_page_dirty_balance(struct page *page) 248 { 249 if (set_page_dirty(page)) { 250 struct address_space *mapping = page_mapping(page); 251 252 if (mapping) 253 balance_dirty_pages_ratelimited(mapping); 254 } 255 } 256 257 /** 258 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 259 * @mapping: address_space which was dirtied 260 * @nr_pages_dirtied: number of pages which the caller has just dirtied 261 * 262 * Processes which are dirtying memory should call in here once for each page 263 * which was newly dirtied. The function will periodically check the system's 264 * dirty state and will initiate writeback if needed. 265 * 266 * On really big machines, get_writeback_state is expensive, so try to avoid 267 * calling it too often (ratelimiting). But once we're over the dirty memory 268 * limit we decrease the ratelimiting by a lot, to prevent individual processes 269 * from overshooting the limit by (ratelimit_pages) each. 270 */ 271 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 272 unsigned long nr_pages_dirtied) 273 { 274 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0; 275 unsigned long ratelimit; 276 unsigned long *p; 277 278 ratelimit = ratelimit_pages; 279 if (dirty_exceeded) 280 ratelimit = 8; 281 282 /* 283 * Check the rate limiting. Also, we do not want to throttle real-time 284 * tasks in balance_dirty_pages(). Period. 285 */ 286 preempt_disable(); 287 p = &__get_cpu_var(ratelimits); 288 *p += nr_pages_dirtied; 289 if (unlikely(*p >= ratelimit)) { 290 *p = 0; 291 preempt_enable(); 292 balance_dirty_pages(mapping); 293 return; 294 } 295 preempt_enable(); 296 } 297 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 298 299 void throttle_vm_writeout(void) 300 { 301 long background_thresh; 302 long dirty_thresh; 303 304 for ( ; ; ) { 305 get_dirty_limits(&background_thresh, &dirty_thresh, NULL); 306 307 /* 308 * Boost the allowable dirty threshold a bit for page 309 * allocators so they don't get DoS'ed by heavy writers 310 */ 311 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 312 313 if (global_page_state(NR_UNSTABLE_NFS) + 314 global_page_state(NR_WRITEBACK) <= dirty_thresh) 315 break; 316 congestion_wait(WRITE, HZ/10); 317 } 318 } 319 320 321 /* 322 * writeback at least _min_pages, and keep writing until the amount of dirty 323 * memory is less than the background threshold, or until we're all clean. 324 */ 325 static void background_writeout(unsigned long _min_pages) 326 { 327 long min_pages = _min_pages; 328 struct writeback_control wbc = { 329 .bdi = NULL, 330 .sync_mode = WB_SYNC_NONE, 331 .older_than_this = NULL, 332 .nr_to_write = 0, 333 .nonblocking = 1, 334 .range_cyclic = 1, 335 }; 336 337 for ( ; ; ) { 338 long background_thresh; 339 long dirty_thresh; 340 341 get_dirty_limits(&background_thresh, &dirty_thresh, NULL); 342 if (global_page_state(NR_FILE_DIRTY) + 343 global_page_state(NR_UNSTABLE_NFS) < background_thresh 344 && min_pages <= 0) 345 break; 346 wbc.encountered_congestion = 0; 347 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 348 wbc.pages_skipped = 0; 349 writeback_inodes(&wbc); 350 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 351 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { 352 /* Wrote less than expected */ 353 congestion_wait(WRITE, HZ/10); 354 if (!wbc.encountered_congestion) 355 break; 356 } 357 } 358 } 359 360 /* 361 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 362 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns 363 * -1 if all pdflush threads were busy. 364 */ 365 int wakeup_pdflush(long nr_pages) 366 { 367 if (nr_pages == 0) 368 nr_pages = global_page_state(NR_FILE_DIRTY) + 369 global_page_state(NR_UNSTABLE_NFS); 370 return pdflush_operation(background_writeout, nr_pages); 371 } 372 373 static void wb_timer_fn(unsigned long unused); 374 static void laptop_timer_fn(unsigned long unused); 375 376 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); 377 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 378 379 /* 380 * Periodic writeback of "old" data. 381 * 382 * Define "old": the first time one of an inode's pages is dirtied, we mark the 383 * dirtying-time in the inode's address_space. So this periodic writeback code 384 * just walks the superblock inode list, writing back any inodes which are 385 * older than a specific point in time. 386 * 387 * Try to run once per dirty_writeback_interval. But if a writeback event 388 * takes longer than a dirty_writeback_interval interval, then leave a 389 * one-second gap. 390 * 391 * older_than_this takes precedence over nr_to_write. So we'll only write back 392 * all dirty pages if they are all attached to "old" mappings. 393 */ 394 static void wb_kupdate(unsigned long arg) 395 { 396 unsigned long oldest_jif; 397 unsigned long start_jif; 398 unsigned long next_jif; 399 long nr_to_write; 400 struct writeback_control wbc = { 401 .bdi = NULL, 402 .sync_mode = WB_SYNC_NONE, 403 .older_than_this = &oldest_jif, 404 .nr_to_write = 0, 405 .nonblocking = 1, 406 .for_kupdate = 1, 407 .range_cyclic = 1, 408 }; 409 410 sync_supers(); 411 412 oldest_jif = jiffies - dirty_expire_interval; 413 start_jif = jiffies; 414 next_jif = start_jif + dirty_writeback_interval; 415 nr_to_write = global_page_state(NR_FILE_DIRTY) + 416 global_page_state(NR_UNSTABLE_NFS) + 417 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 418 while (nr_to_write > 0) { 419 wbc.encountered_congestion = 0; 420 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 421 writeback_inodes(&wbc); 422 if (wbc.nr_to_write > 0) { 423 if (wbc.encountered_congestion) 424 congestion_wait(WRITE, HZ/10); 425 else 426 break; /* All the old data is written */ 427 } 428 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 429 } 430 if (time_before(next_jif, jiffies + HZ)) 431 next_jif = jiffies + HZ; 432 if (dirty_writeback_interval) 433 mod_timer(&wb_timer, next_jif); 434 } 435 436 /* 437 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 438 */ 439 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 440 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 441 { 442 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos); 443 if (dirty_writeback_interval) { 444 mod_timer(&wb_timer, 445 jiffies + dirty_writeback_interval); 446 } else { 447 del_timer(&wb_timer); 448 } 449 return 0; 450 } 451 452 static void wb_timer_fn(unsigned long unused) 453 { 454 if (pdflush_operation(wb_kupdate, 0) < 0) 455 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ 456 } 457 458 static void laptop_flush(unsigned long unused) 459 { 460 sys_sync(); 461 } 462 463 static void laptop_timer_fn(unsigned long unused) 464 { 465 pdflush_operation(laptop_flush, 0); 466 } 467 468 /* 469 * We've spun up the disk and we're in laptop mode: schedule writeback 470 * of all dirty data a few seconds from now. If the flush is already scheduled 471 * then push it back - the user is still using the disk. 472 */ 473 void laptop_io_completion(void) 474 { 475 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 476 } 477 478 /* 479 * We're in laptop mode and we've just synced. The sync's writes will have 480 * caused another writeback to be scheduled by laptop_io_completion. 481 * Nothing needs to be written back anymore, so we unschedule the writeback. 482 */ 483 void laptop_sync_completion(void) 484 { 485 del_timer(&laptop_mode_wb_timer); 486 } 487 488 /* 489 * If ratelimit_pages is too high then we can get into dirty-data overload 490 * if a large number of processes all perform writes at the same time. 491 * If it is too low then SMP machines will call the (expensive) 492 * get_writeback_state too often. 493 * 494 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 495 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 496 * thresholds before writeback cuts in. 497 * 498 * But the limit should not be set too high. Because it also controls the 499 * amount of memory which the balance_dirty_pages() caller has to write back. 500 * If this is too large then the caller will block on the IO queue all the 501 * time. So limit it to four megabytes - the balance_dirty_pages() caller 502 * will write six megabyte chunks, max. 503 */ 504 505 void writeback_set_ratelimit(void) 506 { 507 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 508 if (ratelimit_pages < 16) 509 ratelimit_pages = 16; 510 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 511 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 512 } 513 514 static int __cpuinit 515 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 516 { 517 writeback_set_ratelimit(); 518 return 0; 519 } 520 521 static struct notifier_block __cpuinitdata ratelimit_nb = { 522 .notifier_call = ratelimit_handler, 523 .next = NULL, 524 }; 525 526 /* 527 * Called early on to tune the page writeback dirty limits. 528 * 529 * We used to scale dirty pages according to how total memory 530 * related to pages that could be allocated for buffers (by 531 * comparing nr_free_buffer_pages() to vm_total_pages. 532 * 533 * However, that was when we used "dirty_ratio" to scale with 534 * all memory, and we don't do that any more. "dirty_ratio" 535 * is now applied to total non-HIGHPAGE memory (by subtracting 536 * totalhigh_pages from vm_total_pages), and as such we can't 537 * get into the old insane situation any more where we had 538 * large amounts of dirty pages compared to a small amount of 539 * non-HIGHMEM memory. 540 * 541 * But we might still want to scale the dirty_ratio by how 542 * much memory the box has.. 543 */ 544 void __init page_writeback_init(void) 545 { 546 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 547 writeback_set_ratelimit(); 548 register_cpu_notifier(&ratelimit_nb); 549 } 550 551 /** 552 * generic_writepages - walk the list of dirty pages of the given 553 * address space and writepage() all of them. 554 * 555 * @mapping: address space structure to write 556 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 557 * 558 * This is a library function, which implements the writepages() 559 * address_space_operation. 560 * 561 * If a page is already under I/O, generic_writepages() skips it, even 562 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 563 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 564 * and msync() need to guarantee that all the data which was dirty at the time 565 * the call was made get new I/O started against them. If wbc->sync_mode is 566 * WB_SYNC_ALL then we were called for data integrity and we must wait for 567 * existing IO to complete. 568 * 569 * Derived from mpage_writepages() - if you fix this you should check that 570 * also! 571 */ 572 int generic_writepages(struct address_space *mapping, 573 struct writeback_control *wbc) 574 { 575 struct backing_dev_info *bdi = mapping->backing_dev_info; 576 int ret = 0; 577 int done = 0; 578 int (*writepage)(struct page *page, struct writeback_control *wbc); 579 struct pagevec pvec; 580 int nr_pages; 581 pgoff_t index; 582 pgoff_t end; /* Inclusive */ 583 int scanned = 0; 584 int range_whole = 0; 585 586 if (wbc->nonblocking && bdi_write_congested(bdi)) { 587 wbc->encountered_congestion = 1; 588 return 0; 589 } 590 591 writepage = mapping->a_ops->writepage; 592 593 /* deal with chardevs and other special file */ 594 if (!writepage) 595 return 0; 596 597 pagevec_init(&pvec, 0); 598 if (wbc->range_cyclic) { 599 index = mapping->writeback_index; /* Start from prev offset */ 600 end = -1; 601 } else { 602 index = wbc->range_start >> PAGE_CACHE_SHIFT; 603 end = wbc->range_end >> PAGE_CACHE_SHIFT; 604 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 605 range_whole = 1; 606 scanned = 1; 607 } 608 retry: 609 while (!done && (index <= end) && 610 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 611 PAGECACHE_TAG_DIRTY, 612 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 613 unsigned i; 614 615 scanned = 1; 616 for (i = 0; i < nr_pages; i++) { 617 struct page *page = pvec.pages[i]; 618 619 /* 620 * At this point we hold neither mapping->tree_lock nor 621 * lock on the page itself: the page may be truncated or 622 * invalidated (changing page->mapping to NULL), or even 623 * swizzled back from swapper_space to tmpfs file 624 * mapping 625 */ 626 lock_page(page); 627 628 if (unlikely(page->mapping != mapping)) { 629 unlock_page(page); 630 continue; 631 } 632 633 if (!wbc->range_cyclic && page->index > end) { 634 done = 1; 635 unlock_page(page); 636 continue; 637 } 638 639 if (wbc->sync_mode != WB_SYNC_NONE) 640 wait_on_page_writeback(page); 641 642 if (PageWriteback(page) || 643 !clear_page_dirty_for_io(page)) { 644 unlock_page(page); 645 continue; 646 } 647 648 ret = (*writepage)(page, wbc); 649 if (ret) { 650 if (ret == -ENOSPC) 651 set_bit(AS_ENOSPC, &mapping->flags); 652 else 653 set_bit(AS_EIO, &mapping->flags); 654 } 655 656 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) 657 unlock_page(page); 658 if (ret || (--(wbc->nr_to_write) <= 0)) 659 done = 1; 660 if (wbc->nonblocking && bdi_write_congested(bdi)) { 661 wbc->encountered_congestion = 1; 662 done = 1; 663 } 664 } 665 pagevec_release(&pvec); 666 cond_resched(); 667 } 668 if (!scanned && !done) { 669 /* 670 * We hit the last page and there is more work to be done: wrap 671 * back to the start of the file 672 */ 673 scanned = 1; 674 index = 0; 675 goto retry; 676 } 677 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 678 mapping->writeback_index = index; 679 return ret; 680 } 681 682 EXPORT_SYMBOL(generic_writepages); 683 684 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 685 { 686 int ret; 687 688 if (wbc->nr_to_write <= 0) 689 return 0; 690 wbc->for_writepages = 1; 691 if (mapping->a_ops->writepages) 692 ret = mapping->a_ops->writepages(mapping, wbc); 693 else 694 ret = generic_writepages(mapping, wbc); 695 wbc->for_writepages = 0; 696 return ret; 697 } 698 699 /** 700 * write_one_page - write out a single page and optionally wait on I/O 701 * 702 * @page: the page to write 703 * @wait: if true, wait on writeout 704 * 705 * The page must be locked by the caller and will be unlocked upon return. 706 * 707 * write_one_page() returns a negative error code if I/O failed. 708 */ 709 int write_one_page(struct page *page, int wait) 710 { 711 struct address_space *mapping = page->mapping; 712 int ret = 0; 713 struct writeback_control wbc = { 714 .sync_mode = WB_SYNC_ALL, 715 .nr_to_write = 1, 716 }; 717 718 BUG_ON(!PageLocked(page)); 719 720 if (wait) 721 wait_on_page_writeback(page); 722 723 if (clear_page_dirty_for_io(page)) { 724 page_cache_get(page); 725 ret = mapping->a_ops->writepage(page, &wbc); 726 if (ret == 0 && wait) { 727 wait_on_page_writeback(page); 728 if (PageError(page)) 729 ret = -EIO; 730 } 731 page_cache_release(page); 732 } else { 733 unlock_page(page); 734 } 735 return ret; 736 } 737 EXPORT_SYMBOL(write_one_page); 738 739 /* 740 * For address_spaces which do not use buffers. Just tag the page as dirty in 741 * its radix tree. 742 * 743 * This is also used when a single buffer is being dirtied: we want to set the 744 * page dirty in that case, but not all the buffers. This is a "bottom-up" 745 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 746 * 747 * Most callers have locked the page, which pins the address_space in memory. 748 * But zap_pte_range() does not lock the page, however in that case the 749 * mapping is pinned by the vma's ->vm_file reference. 750 * 751 * We take care to handle the case where the page was truncated from the 752 * mapping by re-checking page_mapping() insode tree_lock. 753 */ 754 int __set_page_dirty_nobuffers(struct page *page) 755 { 756 if (!TestSetPageDirty(page)) { 757 struct address_space *mapping = page_mapping(page); 758 struct address_space *mapping2; 759 760 if (!mapping) 761 return 1; 762 763 write_lock_irq(&mapping->tree_lock); 764 mapping2 = page_mapping(page); 765 if (mapping2) { /* Race with truncate? */ 766 BUG_ON(mapping2 != mapping); 767 if (mapping_cap_account_dirty(mapping)) { 768 __inc_zone_page_state(page, NR_FILE_DIRTY); 769 task_io_account_write(PAGE_CACHE_SIZE); 770 } 771 radix_tree_tag_set(&mapping->page_tree, 772 page_index(page), PAGECACHE_TAG_DIRTY); 773 } 774 write_unlock_irq(&mapping->tree_lock); 775 if (mapping->host) { 776 /* !PageAnon && !swapper_space */ 777 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 778 } 779 return 1; 780 } 781 return 0; 782 } 783 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 784 785 /* 786 * When a writepage implementation decides that it doesn't want to write this 787 * page for some reason, it should redirty the locked page via 788 * redirty_page_for_writepage() and it should then unlock the page and return 0 789 */ 790 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 791 { 792 wbc->pages_skipped++; 793 return __set_page_dirty_nobuffers(page); 794 } 795 EXPORT_SYMBOL(redirty_page_for_writepage); 796 797 /* 798 * If the mapping doesn't provide a set_page_dirty a_op, then 799 * just fall through and assume that it wants buffer_heads. 800 */ 801 int fastcall set_page_dirty(struct page *page) 802 { 803 struct address_space *mapping = page_mapping(page); 804 805 if (likely(mapping)) { 806 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 807 #ifdef CONFIG_BLOCK 808 if (!spd) 809 spd = __set_page_dirty_buffers; 810 #endif 811 return (*spd)(page); 812 } 813 if (!PageDirty(page)) { 814 if (!TestSetPageDirty(page)) 815 return 1; 816 } 817 return 0; 818 } 819 EXPORT_SYMBOL(set_page_dirty); 820 821 /* 822 * set_page_dirty() is racy if the caller has no reference against 823 * page->mapping->host, and if the page is unlocked. This is because another 824 * CPU could truncate the page off the mapping and then free the mapping. 825 * 826 * Usually, the page _is_ locked, or the caller is a user-space process which 827 * holds a reference on the inode by having an open file. 828 * 829 * In other cases, the page should be locked before running set_page_dirty(). 830 */ 831 int set_page_dirty_lock(struct page *page) 832 { 833 int ret; 834 835 lock_page_nosync(page); 836 ret = set_page_dirty(page); 837 unlock_page(page); 838 return ret; 839 } 840 EXPORT_SYMBOL(set_page_dirty_lock); 841 842 /* 843 * Clear a page's dirty flag, while caring for dirty memory accounting. 844 * Returns true if the page was previously dirty. 845 * 846 * This is for preparing to put the page under writeout. We leave the page 847 * tagged as dirty in the radix tree so that a concurrent write-for-sync 848 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 849 * implementation will run either set_page_writeback() or set_page_dirty(), 850 * at which stage we bring the page's dirty flag and radix-tree dirty tag 851 * back into sync. 852 * 853 * This incoherency between the page's dirty flag and radix-tree tag is 854 * unfortunate, but it only exists while the page is locked. 855 */ 856 int clear_page_dirty_for_io(struct page *page) 857 { 858 struct address_space *mapping = page_mapping(page); 859 860 if (mapping && mapping_cap_account_dirty(mapping)) { 861 /* 862 * Yes, Virginia, this is indeed insane. 863 * 864 * We use this sequence to make sure that 865 * (a) we account for dirty stats properly 866 * (b) we tell the low-level filesystem to 867 * mark the whole page dirty if it was 868 * dirty in a pagetable. Only to then 869 * (c) clean the page again and return 1 to 870 * cause the writeback. 871 * 872 * This way we avoid all nasty races with the 873 * dirty bit in multiple places and clearing 874 * them concurrently from different threads. 875 * 876 * Note! Normally the "set_page_dirty(page)" 877 * has no effect on the actual dirty bit - since 878 * that will already usually be set. But we 879 * need the side effects, and it can help us 880 * avoid races. 881 * 882 * We basically use the page "master dirty bit" 883 * as a serialization point for all the different 884 * threads doing their things. 885 * 886 * FIXME! We still have a race here: if somebody 887 * adds the page back to the page tables in 888 * between the "page_mkclean()" and the "TestClearPageDirty()", 889 * we might have it mapped without the dirty bit set. 890 */ 891 if (page_mkclean(page)) 892 set_page_dirty(page); 893 if (TestClearPageDirty(page)) { 894 dec_zone_page_state(page, NR_FILE_DIRTY); 895 return 1; 896 } 897 return 0; 898 } 899 return TestClearPageDirty(page); 900 } 901 EXPORT_SYMBOL(clear_page_dirty_for_io); 902 903 int test_clear_page_writeback(struct page *page) 904 { 905 struct address_space *mapping = page_mapping(page); 906 int ret; 907 908 if (mapping) { 909 unsigned long flags; 910 911 write_lock_irqsave(&mapping->tree_lock, flags); 912 ret = TestClearPageWriteback(page); 913 if (ret) 914 radix_tree_tag_clear(&mapping->page_tree, 915 page_index(page), 916 PAGECACHE_TAG_WRITEBACK); 917 write_unlock_irqrestore(&mapping->tree_lock, flags); 918 } else { 919 ret = TestClearPageWriteback(page); 920 } 921 return ret; 922 } 923 924 int test_set_page_writeback(struct page *page) 925 { 926 struct address_space *mapping = page_mapping(page); 927 int ret; 928 929 if (mapping) { 930 unsigned long flags; 931 932 write_lock_irqsave(&mapping->tree_lock, flags); 933 ret = TestSetPageWriteback(page); 934 if (!ret) 935 radix_tree_tag_set(&mapping->page_tree, 936 page_index(page), 937 PAGECACHE_TAG_WRITEBACK); 938 if (!PageDirty(page)) 939 radix_tree_tag_clear(&mapping->page_tree, 940 page_index(page), 941 PAGECACHE_TAG_DIRTY); 942 write_unlock_irqrestore(&mapping->tree_lock, flags); 943 } else { 944 ret = TestSetPageWriteback(page); 945 } 946 return ret; 947 948 } 949 EXPORT_SYMBOL(test_set_page_writeback); 950 951 /* 952 * Return true if any of the pages in the mapping are marged with the 953 * passed tag. 954 */ 955 int mapping_tagged(struct address_space *mapping, int tag) 956 { 957 unsigned long flags; 958 int ret; 959 960 read_lock_irqsave(&mapping->tree_lock, flags); 961 ret = radix_tree_tagged(&mapping->page_tree, tag); 962 read_unlock_irqrestore(&mapping->tree_lock, flags); 963 return ret; 964 } 965 EXPORT_SYMBOL(mapping_tagged); 966