xref: /linux/mm/page-writeback.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40  * will look to see if it needs to force writeback or throttling.
41  */
42 static long ratelimit_pages = 32;
43 
44 /*
45  * When balance_dirty_pages decides that the caller needs to perform some
46  * non-background writeback, this is how many pages it will attempt to write.
47  * It should be somewhat larger than dirtied pages to ensure that reasonably
48  * large amounts of I/O are submitted.
49  */
50 static inline long sync_writeback_pages(unsigned long dirtied)
51 {
52 	if (dirtied < ratelimit_pages)
53 		dirtied = ratelimit_pages;
54 
55 	return dirtied + dirtied / 2;
56 }
57 
58 /* The following parameters are exported via /proc/sys/vm */
59 
60 /*
61  * Start background writeback (via writeback threads) at this percentage
62  */
63 int dirty_background_ratio = 10;
64 
65 /*
66  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
67  * dirty_background_ratio * the amount of dirtyable memory
68  */
69 unsigned long dirty_background_bytes;
70 
71 /*
72  * free highmem will not be subtracted from the total free memory
73  * for calculating free ratios if vm_highmem_is_dirtyable is true
74  */
75 int vm_highmem_is_dirtyable;
76 
77 /*
78  * The generator of dirty data starts writeback at this percentage
79  */
80 int vm_dirty_ratio = 20;
81 
82 /*
83  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
84  * vm_dirty_ratio * the amount of dirtyable memory
85  */
86 unsigned long vm_dirty_bytes;
87 
88 /*
89  * The interval between `kupdate'-style writebacks
90  */
91 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
92 
93 /*
94  * The longest time for which data is allowed to remain dirty
95  */
96 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
97 
98 /*
99  * Flag that makes the machine dump writes/reads and block dirtyings.
100  */
101 int block_dump;
102 
103 /*
104  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
105  * a full sync is triggered after this time elapses without any disk activity.
106  */
107 int laptop_mode;
108 
109 EXPORT_SYMBOL(laptop_mode);
110 
111 /* End of sysctl-exported parameters */
112 
113 
114 /*
115  * Scale the writeback cache size proportional to the relative writeout speeds.
116  *
117  * We do this by keeping a floating proportion between BDIs, based on page
118  * writeback completions [end_page_writeback()]. Those devices that write out
119  * pages fastest will get the larger share, while the slower will get a smaller
120  * share.
121  *
122  * We use page writeout completions because we are interested in getting rid of
123  * dirty pages. Having them written out is the primary goal.
124  *
125  * We introduce a concept of time, a period over which we measure these events,
126  * because demand can/will vary over time. The length of this period itself is
127  * measured in page writeback completions.
128  *
129  */
130 static struct prop_descriptor vm_completions;
131 static struct prop_descriptor vm_dirties;
132 
133 /*
134  * couple the period to the dirty_ratio:
135  *
136  *   period/2 ~ roundup_pow_of_two(dirty limit)
137  */
138 static int calc_period_shift(void)
139 {
140 	unsigned long dirty_total;
141 
142 	if (vm_dirty_bytes)
143 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
144 	else
145 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
146 				100;
147 	return 2 + ilog2(dirty_total - 1);
148 }
149 
150 /*
151  * update the period when the dirty threshold changes.
152  */
153 static void update_completion_period(void)
154 {
155 	int shift = calc_period_shift();
156 	prop_change_shift(&vm_completions, shift);
157 	prop_change_shift(&vm_dirties, shift);
158 }
159 
160 int dirty_background_ratio_handler(struct ctl_table *table, int write,
161 		void __user *buffer, size_t *lenp,
162 		loff_t *ppos)
163 {
164 	int ret;
165 
166 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
167 	if (ret == 0 && write)
168 		dirty_background_bytes = 0;
169 	return ret;
170 }
171 
172 int dirty_background_bytes_handler(struct ctl_table *table, int write,
173 		void __user *buffer, size_t *lenp,
174 		loff_t *ppos)
175 {
176 	int ret;
177 
178 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
179 	if (ret == 0 && write)
180 		dirty_background_ratio = 0;
181 	return ret;
182 }
183 
184 int dirty_ratio_handler(struct ctl_table *table, int write,
185 		void __user *buffer, size_t *lenp,
186 		loff_t *ppos)
187 {
188 	int old_ratio = vm_dirty_ratio;
189 	int ret;
190 
191 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
192 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
193 		update_completion_period();
194 		vm_dirty_bytes = 0;
195 	}
196 	return ret;
197 }
198 
199 
200 int dirty_bytes_handler(struct ctl_table *table, int write,
201 		void __user *buffer, size_t *lenp,
202 		loff_t *ppos)
203 {
204 	unsigned long old_bytes = vm_dirty_bytes;
205 	int ret;
206 
207 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
208 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
209 		update_completion_period();
210 		vm_dirty_ratio = 0;
211 	}
212 	return ret;
213 }
214 
215 /*
216  * Increment the BDI's writeout completion count and the global writeout
217  * completion count. Called from test_clear_page_writeback().
218  */
219 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
220 {
221 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
222 			      bdi->max_prop_frac);
223 }
224 
225 void bdi_writeout_inc(struct backing_dev_info *bdi)
226 {
227 	unsigned long flags;
228 
229 	local_irq_save(flags);
230 	__bdi_writeout_inc(bdi);
231 	local_irq_restore(flags);
232 }
233 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
234 
235 void task_dirty_inc(struct task_struct *tsk)
236 {
237 	prop_inc_single(&vm_dirties, &tsk->dirties);
238 }
239 
240 /*
241  * Obtain an accurate fraction of the BDI's portion.
242  */
243 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
244 		long *numerator, long *denominator)
245 {
246 	if (bdi_cap_writeback_dirty(bdi)) {
247 		prop_fraction_percpu(&vm_completions, &bdi->completions,
248 				numerator, denominator);
249 	} else {
250 		*numerator = 0;
251 		*denominator = 1;
252 	}
253 }
254 
255 /*
256  * Clip the earned share of dirty pages to that which is actually available.
257  * This avoids exceeding the total dirty_limit when the floating averages
258  * fluctuate too quickly.
259  */
260 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
261 		unsigned long dirty, unsigned long *pbdi_dirty)
262 {
263 	unsigned long avail_dirty;
264 
265 	avail_dirty = global_page_state(NR_FILE_DIRTY) +
266 		 global_page_state(NR_WRITEBACK) +
267 		 global_page_state(NR_UNSTABLE_NFS) +
268 		 global_page_state(NR_WRITEBACK_TEMP);
269 
270 	if (avail_dirty < dirty)
271 		avail_dirty = dirty - avail_dirty;
272 	else
273 		avail_dirty = 0;
274 
275 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
276 		bdi_stat(bdi, BDI_WRITEBACK);
277 
278 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
279 }
280 
281 static inline void task_dirties_fraction(struct task_struct *tsk,
282 		long *numerator, long *denominator)
283 {
284 	prop_fraction_single(&vm_dirties, &tsk->dirties,
285 				numerator, denominator);
286 }
287 
288 /*
289  * scale the dirty limit
290  *
291  * task specific dirty limit:
292  *
293  *   dirty -= (dirty/8) * p_{t}
294  */
295 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
296 {
297 	long numerator, denominator;
298 	unsigned long dirty = *pdirty;
299 	u64 inv = dirty >> 3;
300 
301 	task_dirties_fraction(tsk, &numerator, &denominator);
302 	inv *= numerator;
303 	do_div(inv, denominator);
304 
305 	dirty -= inv;
306 	if (dirty < *pdirty/2)
307 		dirty = *pdirty/2;
308 
309 	*pdirty = dirty;
310 }
311 
312 /*
313  *
314  */
315 static unsigned int bdi_min_ratio;
316 
317 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
318 {
319 	int ret = 0;
320 
321 	spin_lock_bh(&bdi_lock);
322 	if (min_ratio > bdi->max_ratio) {
323 		ret = -EINVAL;
324 	} else {
325 		min_ratio -= bdi->min_ratio;
326 		if (bdi_min_ratio + min_ratio < 100) {
327 			bdi_min_ratio += min_ratio;
328 			bdi->min_ratio += min_ratio;
329 		} else {
330 			ret = -EINVAL;
331 		}
332 	}
333 	spin_unlock_bh(&bdi_lock);
334 
335 	return ret;
336 }
337 
338 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
339 {
340 	int ret = 0;
341 
342 	if (max_ratio > 100)
343 		return -EINVAL;
344 
345 	spin_lock_bh(&bdi_lock);
346 	if (bdi->min_ratio > max_ratio) {
347 		ret = -EINVAL;
348 	} else {
349 		bdi->max_ratio = max_ratio;
350 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
351 	}
352 	spin_unlock_bh(&bdi_lock);
353 
354 	return ret;
355 }
356 EXPORT_SYMBOL(bdi_set_max_ratio);
357 
358 /*
359  * Work out the current dirty-memory clamping and background writeout
360  * thresholds.
361  *
362  * The main aim here is to lower them aggressively if there is a lot of mapped
363  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
364  * pages.  It is better to clamp down on writers than to start swapping, and
365  * performing lots of scanning.
366  *
367  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
368  *
369  * We don't permit the clamping level to fall below 5% - that is getting rather
370  * excessive.
371  *
372  * We make sure that the background writeout level is below the adjusted
373  * clamping level.
374  */
375 
376 static unsigned long highmem_dirtyable_memory(unsigned long total)
377 {
378 #ifdef CONFIG_HIGHMEM
379 	int node;
380 	unsigned long x = 0;
381 
382 	for_each_node_state(node, N_HIGH_MEMORY) {
383 		struct zone *z =
384 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
385 
386 		x += zone_page_state(z, NR_FREE_PAGES) +
387 		     zone_reclaimable_pages(z);
388 	}
389 	/*
390 	 * Make sure that the number of highmem pages is never larger
391 	 * than the number of the total dirtyable memory. This can only
392 	 * occur in very strange VM situations but we want to make sure
393 	 * that this does not occur.
394 	 */
395 	return min(x, total);
396 #else
397 	return 0;
398 #endif
399 }
400 
401 /**
402  * determine_dirtyable_memory - amount of memory that may be used
403  *
404  * Returns the numebr of pages that can currently be freed and used
405  * by the kernel for direct mappings.
406  */
407 unsigned long determine_dirtyable_memory(void)
408 {
409 	unsigned long x;
410 
411 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
412 
413 	if (!vm_highmem_is_dirtyable)
414 		x -= highmem_dirtyable_memory(x);
415 
416 	return x + 1;	/* Ensure that we never return 0 */
417 }
418 
419 void
420 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
421 		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
422 {
423 	unsigned long background;
424 	unsigned long dirty;
425 	unsigned long available_memory = determine_dirtyable_memory();
426 	struct task_struct *tsk;
427 
428 	if (vm_dirty_bytes)
429 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
430 	else {
431 		int dirty_ratio;
432 
433 		dirty_ratio = vm_dirty_ratio;
434 		if (dirty_ratio < 5)
435 			dirty_ratio = 5;
436 		dirty = (dirty_ratio * available_memory) / 100;
437 	}
438 
439 	if (dirty_background_bytes)
440 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
441 	else
442 		background = (dirty_background_ratio * available_memory) / 100;
443 
444 	if (background >= dirty)
445 		background = dirty / 2;
446 	tsk = current;
447 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
448 		background += background / 4;
449 		dirty += dirty / 4;
450 	}
451 	*pbackground = background;
452 	*pdirty = dirty;
453 
454 	if (bdi) {
455 		u64 bdi_dirty;
456 		long numerator, denominator;
457 
458 		/*
459 		 * Calculate this BDI's share of the dirty ratio.
460 		 */
461 		bdi_writeout_fraction(bdi, &numerator, &denominator);
462 
463 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
464 		bdi_dirty *= numerator;
465 		do_div(bdi_dirty, denominator);
466 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
467 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
468 			bdi_dirty = dirty * bdi->max_ratio / 100;
469 
470 		*pbdi_dirty = bdi_dirty;
471 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
472 		task_dirty_limit(current, pbdi_dirty);
473 	}
474 }
475 
476 /*
477  * balance_dirty_pages() must be called by processes which are generating dirty
478  * data.  It looks at the number of dirty pages in the machine and will force
479  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
480  * If we're over `background_thresh' then the writeback threads are woken to
481  * perform some writeout.
482  */
483 static void balance_dirty_pages(struct address_space *mapping,
484 				unsigned long write_chunk)
485 {
486 	long nr_reclaimable, bdi_nr_reclaimable;
487 	long nr_writeback, bdi_nr_writeback;
488 	unsigned long background_thresh;
489 	unsigned long dirty_thresh;
490 	unsigned long bdi_thresh;
491 	unsigned long pages_written = 0;
492 	unsigned long pause = 1;
493 
494 	struct backing_dev_info *bdi = mapping->backing_dev_info;
495 
496 	for (;;) {
497 		struct writeback_control wbc = {
498 			.bdi		= bdi,
499 			.sync_mode	= WB_SYNC_NONE,
500 			.older_than_this = NULL,
501 			.nr_to_write	= write_chunk,
502 			.range_cyclic	= 1,
503 		};
504 
505 		get_dirty_limits(&background_thresh, &dirty_thresh,
506 				&bdi_thresh, bdi);
507 
508 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
509 					global_page_state(NR_UNSTABLE_NFS);
510 		nr_writeback = global_page_state(NR_WRITEBACK);
511 
512 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
513 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
514 
515 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
516 			break;
517 
518 		/*
519 		 * Throttle it only when the background writeback cannot
520 		 * catch-up. This avoids (excessively) small writeouts
521 		 * when the bdi limits are ramping up.
522 		 */
523 		if (nr_reclaimable + nr_writeback <
524 				(background_thresh + dirty_thresh) / 2)
525 			break;
526 
527 		if (!bdi->dirty_exceeded)
528 			bdi->dirty_exceeded = 1;
529 
530 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
531 		 * Unstable writes are a feature of certain networked
532 		 * filesystems (i.e. NFS) in which data may have been
533 		 * written to the server's write cache, but has not yet
534 		 * been flushed to permanent storage.
535 		 * Only move pages to writeback if this bdi is over its
536 		 * threshold otherwise wait until the disk writes catch
537 		 * up.
538 		 */
539 		if (bdi_nr_reclaimable > bdi_thresh) {
540 			writeback_inodes_wbc(&wbc);
541 			pages_written += write_chunk - wbc.nr_to_write;
542 			get_dirty_limits(&background_thresh, &dirty_thresh,
543 				       &bdi_thresh, bdi);
544 		}
545 
546 		/*
547 		 * In order to avoid the stacked BDI deadlock we need
548 		 * to ensure we accurately count the 'dirty' pages when
549 		 * the threshold is low.
550 		 *
551 		 * Otherwise it would be possible to get thresh+n pages
552 		 * reported dirty, even though there are thresh-m pages
553 		 * actually dirty; with m+n sitting in the percpu
554 		 * deltas.
555 		 */
556 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
557 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
558 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
559 		} else if (bdi_nr_reclaimable) {
560 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
561 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
562 		}
563 
564 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
565 			break;
566 		if (pages_written >= write_chunk)
567 			break;		/* We've done our duty */
568 
569 		__set_current_state(TASK_INTERRUPTIBLE);
570 		io_schedule_timeout(pause);
571 
572 		/*
573 		 * Increase the delay for each loop, up to our previous
574 		 * default of taking a 100ms nap.
575 		 */
576 		pause <<= 1;
577 		if (pause > HZ / 10)
578 			pause = HZ / 10;
579 	}
580 
581 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
582 			bdi->dirty_exceeded)
583 		bdi->dirty_exceeded = 0;
584 
585 	if (writeback_in_progress(bdi))
586 		return;
587 
588 	/*
589 	 * In laptop mode, we wait until hitting the higher threshold before
590 	 * starting background writeout, and then write out all the way down
591 	 * to the lower threshold.  So slow writers cause minimal disk activity.
592 	 *
593 	 * In normal mode, we start background writeout at the lower
594 	 * background_thresh, to keep the amount of dirty memory low.
595 	 */
596 	if ((laptop_mode && pages_written) ||
597 	    (!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
598 			       + global_page_state(NR_UNSTABLE_NFS))
599 					  > background_thresh)))
600 		bdi_start_writeback(bdi, NULL, 0, 0);
601 }
602 
603 void set_page_dirty_balance(struct page *page, int page_mkwrite)
604 {
605 	if (set_page_dirty(page) || page_mkwrite) {
606 		struct address_space *mapping = page_mapping(page);
607 
608 		if (mapping)
609 			balance_dirty_pages_ratelimited(mapping);
610 	}
611 }
612 
613 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
614 
615 /**
616  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
617  * @mapping: address_space which was dirtied
618  * @nr_pages_dirtied: number of pages which the caller has just dirtied
619  *
620  * Processes which are dirtying memory should call in here once for each page
621  * which was newly dirtied.  The function will periodically check the system's
622  * dirty state and will initiate writeback if needed.
623  *
624  * On really big machines, get_writeback_state is expensive, so try to avoid
625  * calling it too often (ratelimiting).  But once we're over the dirty memory
626  * limit we decrease the ratelimiting by a lot, to prevent individual processes
627  * from overshooting the limit by (ratelimit_pages) each.
628  */
629 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
630 					unsigned long nr_pages_dirtied)
631 {
632 	unsigned long ratelimit;
633 	unsigned long *p;
634 
635 	ratelimit = ratelimit_pages;
636 	if (mapping->backing_dev_info->dirty_exceeded)
637 		ratelimit = 8;
638 
639 	/*
640 	 * Check the rate limiting. Also, we do not want to throttle real-time
641 	 * tasks in balance_dirty_pages(). Period.
642 	 */
643 	preempt_disable();
644 	p =  &__get_cpu_var(bdp_ratelimits);
645 	*p += nr_pages_dirtied;
646 	if (unlikely(*p >= ratelimit)) {
647 		ratelimit = sync_writeback_pages(*p);
648 		*p = 0;
649 		preempt_enable();
650 		balance_dirty_pages(mapping, ratelimit);
651 		return;
652 	}
653 	preempt_enable();
654 }
655 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
656 
657 void throttle_vm_writeout(gfp_t gfp_mask)
658 {
659 	unsigned long background_thresh;
660 	unsigned long dirty_thresh;
661 
662         for ( ; ; ) {
663 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
664 
665                 /*
666                  * Boost the allowable dirty threshold a bit for page
667                  * allocators so they don't get DoS'ed by heavy writers
668                  */
669                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
670 
671                 if (global_page_state(NR_UNSTABLE_NFS) +
672 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
673                         	break;
674                 congestion_wait(BLK_RW_ASYNC, HZ/10);
675 
676 		/*
677 		 * The caller might hold locks which can prevent IO completion
678 		 * or progress in the filesystem.  So we cannot just sit here
679 		 * waiting for IO to complete.
680 		 */
681 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
682 			break;
683         }
684 }
685 
686 /*
687  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
688  */
689 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
690 	void __user *buffer, size_t *length, loff_t *ppos)
691 {
692 	proc_dointvec(table, write, buffer, length, ppos);
693 	bdi_arm_supers_timer();
694 	return 0;
695 }
696 
697 #ifdef CONFIG_BLOCK
698 void laptop_mode_timer_fn(unsigned long data)
699 {
700 	struct request_queue *q = (struct request_queue *)data;
701 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
702 		global_page_state(NR_UNSTABLE_NFS);
703 
704 	/*
705 	 * We want to write everything out, not just down to the dirty
706 	 * threshold
707 	 */
708 
709 	if (bdi_has_dirty_io(&q->backing_dev_info))
710 		bdi_start_writeback(&q->backing_dev_info, NULL, nr_pages, 0);
711 }
712 
713 /*
714  * We've spun up the disk and we're in laptop mode: schedule writeback
715  * of all dirty data a few seconds from now.  If the flush is already scheduled
716  * then push it back - the user is still using the disk.
717  */
718 void laptop_io_completion(struct backing_dev_info *info)
719 {
720 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
721 }
722 
723 /*
724  * We're in laptop mode and we've just synced. The sync's writes will have
725  * caused another writeback to be scheduled by laptop_io_completion.
726  * Nothing needs to be written back anymore, so we unschedule the writeback.
727  */
728 void laptop_sync_completion(void)
729 {
730 	struct backing_dev_info *bdi;
731 
732 	rcu_read_lock();
733 
734 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
735 		del_timer(&bdi->laptop_mode_wb_timer);
736 
737 	rcu_read_unlock();
738 }
739 #endif
740 
741 /*
742  * If ratelimit_pages is too high then we can get into dirty-data overload
743  * if a large number of processes all perform writes at the same time.
744  * If it is too low then SMP machines will call the (expensive)
745  * get_writeback_state too often.
746  *
747  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
748  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
749  * thresholds before writeback cuts in.
750  *
751  * But the limit should not be set too high.  Because it also controls the
752  * amount of memory which the balance_dirty_pages() caller has to write back.
753  * If this is too large then the caller will block on the IO queue all the
754  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
755  * will write six megabyte chunks, max.
756  */
757 
758 void writeback_set_ratelimit(void)
759 {
760 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
761 	if (ratelimit_pages < 16)
762 		ratelimit_pages = 16;
763 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
764 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
765 }
766 
767 static int __cpuinit
768 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
769 {
770 	writeback_set_ratelimit();
771 	return NOTIFY_DONE;
772 }
773 
774 static struct notifier_block __cpuinitdata ratelimit_nb = {
775 	.notifier_call	= ratelimit_handler,
776 	.next		= NULL,
777 };
778 
779 /*
780  * Called early on to tune the page writeback dirty limits.
781  *
782  * We used to scale dirty pages according to how total memory
783  * related to pages that could be allocated for buffers (by
784  * comparing nr_free_buffer_pages() to vm_total_pages.
785  *
786  * However, that was when we used "dirty_ratio" to scale with
787  * all memory, and we don't do that any more. "dirty_ratio"
788  * is now applied to total non-HIGHPAGE memory (by subtracting
789  * totalhigh_pages from vm_total_pages), and as such we can't
790  * get into the old insane situation any more where we had
791  * large amounts of dirty pages compared to a small amount of
792  * non-HIGHMEM memory.
793  *
794  * But we might still want to scale the dirty_ratio by how
795  * much memory the box has..
796  */
797 void __init page_writeback_init(void)
798 {
799 	int shift;
800 
801 	writeback_set_ratelimit();
802 	register_cpu_notifier(&ratelimit_nb);
803 
804 	shift = calc_period_shift();
805 	prop_descriptor_init(&vm_completions, shift);
806 	prop_descriptor_init(&vm_dirties, shift);
807 }
808 
809 /**
810  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811  * @mapping: address space structure to write
812  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
813  * @writepage: function called for each page
814  * @data: data passed to writepage function
815  *
816  * If a page is already under I/O, write_cache_pages() skips it, even
817  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
818  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
819  * and msync() need to guarantee that all the data which was dirty at the time
820  * the call was made get new I/O started against them.  If wbc->sync_mode is
821  * WB_SYNC_ALL then we were called for data integrity and we must wait for
822  * existing IO to complete.
823  */
824 int write_cache_pages(struct address_space *mapping,
825 		      struct writeback_control *wbc, writepage_t writepage,
826 		      void *data)
827 {
828 	int ret = 0;
829 	int done = 0;
830 	struct pagevec pvec;
831 	int nr_pages;
832 	pgoff_t uninitialized_var(writeback_index);
833 	pgoff_t index;
834 	pgoff_t end;		/* Inclusive */
835 	pgoff_t done_index;
836 	int cycled;
837 	int range_whole = 0;
838 	long nr_to_write = wbc->nr_to_write;
839 
840 	pagevec_init(&pvec, 0);
841 	if (wbc->range_cyclic) {
842 		writeback_index = mapping->writeback_index; /* prev offset */
843 		index = writeback_index;
844 		if (index == 0)
845 			cycled = 1;
846 		else
847 			cycled = 0;
848 		end = -1;
849 	} else {
850 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
851 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
852 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
853 			range_whole = 1;
854 		cycled = 1; /* ignore range_cyclic tests */
855 	}
856 retry:
857 	done_index = index;
858 	while (!done && (index <= end)) {
859 		int i;
860 
861 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
862 			      PAGECACHE_TAG_DIRTY,
863 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
864 		if (nr_pages == 0)
865 			break;
866 
867 		for (i = 0; i < nr_pages; i++) {
868 			struct page *page = pvec.pages[i];
869 
870 			/*
871 			 * At this point, the page may be truncated or
872 			 * invalidated (changing page->mapping to NULL), or
873 			 * even swizzled back from swapper_space to tmpfs file
874 			 * mapping. However, page->index will not change
875 			 * because we have a reference on the page.
876 			 */
877 			if (page->index > end) {
878 				/*
879 				 * can't be range_cyclic (1st pass) because
880 				 * end == -1 in that case.
881 				 */
882 				done = 1;
883 				break;
884 			}
885 
886 			done_index = page->index + 1;
887 
888 			lock_page(page);
889 
890 			/*
891 			 * Page truncated or invalidated. We can freely skip it
892 			 * then, even for data integrity operations: the page
893 			 * has disappeared concurrently, so there could be no
894 			 * real expectation of this data interity operation
895 			 * even if there is now a new, dirty page at the same
896 			 * pagecache address.
897 			 */
898 			if (unlikely(page->mapping != mapping)) {
899 continue_unlock:
900 				unlock_page(page);
901 				continue;
902 			}
903 
904 			if (!PageDirty(page)) {
905 				/* someone wrote it for us */
906 				goto continue_unlock;
907 			}
908 
909 			if (PageWriteback(page)) {
910 				if (wbc->sync_mode != WB_SYNC_NONE)
911 					wait_on_page_writeback(page);
912 				else
913 					goto continue_unlock;
914 			}
915 
916 			BUG_ON(PageWriteback(page));
917 			if (!clear_page_dirty_for_io(page))
918 				goto continue_unlock;
919 
920 			ret = (*writepage)(page, wbc, data);
921 			if (unlikely(ret)) {
922 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
923 					unlock_page(page);
924 					ret = 0;
925 				} else {
926 					/*
927 					 * done_index is set past this page,
928 					 * so media errors will not choke
929 					 * background writeout for the entire
930 					 * file. This has consequences for
931 					 * range_cyclic semantics (ie. it may
932 					 * not be suitable for data integrity
933 					 * writeout).
934 					 */
935 					done = 1;
936 					break;
937 				}
938  			}
939 
940 			if (nr_to_write > 0) {
941 				nr_to_write--;
942 				if (nr_to_write == 0 &&
943 				    wbc->sync_mode == WB_SYNC_NONE) {
944 					/*
945 					 * We stop writing back only if we are
946 					 * not doing integrity sync. In case of
947 					 * integrity sync we have to keep going
948 					 * because someone may be concurrently
949 					 * dirtying pages, and we might have
950 					 * synced a lot of newly appeared dirty
951 					 * pages, but have not synced all of the
952 					 * old dirty pages.
953 					 */
954 					done = 1;
955 					break;
956 				}
957 			}
958 		}
959 		pagevec_release(&pvec);
960 		cond_resched();
961 	}
962 	if (!cycled && !done) {
963 		/*
964 		 * range_cyclic:
965 		 * We hit the last page and there is more work to be done: wrap
966 		 * back to the start of the file
967 		 */
968 		cycled = 1;
969 		index = 0;
970 		end = writeback_index - 1;
971 		goto retry;
972 	}
973 	if (!wbc->no_nrwrite_index_update) {
974 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
975 			mapping->writeback_index = done_index;
976 		wbc->nr_to_write = nr_to_write;
977 	}
978 
979 	return ret;
980 }
981 EXPORT_SYMBOL(write_cache_pages);
982 
983 /*
984  * Function used by generic_writepages to call the real writepage
985  * function and set the mapping flags on error
986  */
987 static int __writepage(struct page *page, struct writeback_control *wbc,
988 		       void *data)
989 {
990 	struct address_space *mapping = data;
991 	int ret = mapping->a_ops->writepage(page, wbc);
992 	mapping_set_error(mapping, ret);
993 	return ret;
994 }
995 
996 /**
997  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
998  * @mapping: address space structure to write
999  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1000  *
1001  * This is a library function, which implements the writepages()
1002  * address_space_operation.
1003  */
1004 int generic_writepages(struct address_space *mapping,
1005 		       struct writeback_control *wbc)
1006 {
1007 	/* deal with chardevs and other special file */
1008 	if (!mapping->a_ops->writepage)
1009 		return 0;
1010 
1011 	return write_cache_pages(mapping, wbc, __writepage, mapping);
1012 }
1013 
1014 EXPORT_SYMBOL(generic_writepages);
1015 
1016 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1017 {
1018 	int ret;
1019 
1020 	if (wbc->nr_to_write <= 0)
1021 		return 0;
1022 	if (mapping->a_ops->writepages)
1023 		ret = mapping->a_ops->writepages(mapping, wbc);
1024 	else
1025 		ret = generic_writepages(mapping, wbc);
1026 	return ret;
1027 }
1028 
1029 /**
1030  * write_one_page - write out a single page and optionally wait on I/O
1031  * @page: the page to write
1032  * @wait: if true, wait on writeout
1033  *
1034  * The page must be locked by the caller and will be unlocked upon return.
1035  *
1036  * write_one_page() returns a negative error code if I/O failed.
1037  */
1038 int write_one_page(struct page *page, int wait)
1039 {
1040 	struct address_space *mapping = page->mapping;
1041 	int ret = 0;
1042 	struct writeback_control wbc = {
1043 		.sync_mode = WB_SYNC_ALL,
1044 		.nr_to_write = 1,
1045 	};
1046 
1047 	BUG_ON(!PageLocked(page));
1048 
1049 	if (wait)
1050 		wait_on_page_writeback(page);
1051 
1052 	if (clear_page_dirty_for_io(page)) {
1053 		page_cache_get(page);
1054 		ret = mapping->a_ops->writepage(page, &wbc);
1055 		if (ret == 0 && wait) {
1056 			wait_on_page_writeback(page);
1057 			if (PageError(page))
1058 				ret = -EIO;
1059 		}
1060 		page_cache_release(page);
1061 	} else {
1062 		unlock_page(page);
1063 	}
1064 	return ret;
1065 }
1066 EXPORT_SYMBOL(write_one_page);
1067 
1068 /*
1069  * For address_spaces which do not use buffers nor write back.
1070  */
1071 int __set_page_dirty_no_writeback(struct page *page)
1072 {
1073 	if (!PageDirty(page))
1074 		SetPageDirty(page);
1075 	return 0;
1076 }
1077 
1078 /*
1079  * Helper function for set_page_dirty family.
1080  * NOTE: This relies on being atomic wrt interrupts.
1081  */
1082 void account_page_dirtied(struct page *page, struct address_space *mapping)
1083 {
1084 	if (mapping_cap_account_dirty(mapping)) {
1085 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1086 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1087 		task_dirty_inc(current);
1088 		task_io_account_write(PAGE_CACHE_SIZE);
1089 	}
1090 }
1091 
1092 /*
1093  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1094  * its radix tree.
1095  *
1096  * This is also used when a single buffer is being dirtied: we want to set the
1097  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1098  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1099  *
1100  * Most callers have locked the page, which pins the address_space in memory.
1101  * But zap_pte_range() does not lock the page, however in that case the
1102  * mapping is pinned by the vma's ->vm_file reference.
1103  *
1104  * We take care to handle the case where the page was truncated from the
1105  * mapping by re-checking page_mapping() inside tree_lock.
1106  */
1107 int __set_page_dirty_nobuffers(struct page *page)
1108 {
1109 	if (!TestSetPageDirty(page)) {
1110 		struct address_space *mapping = page_mapping(page);
1111 		struct address_space *mapping2;
1112 
1113 		if (!mapping)
1114 			return 1;
1115 
1116 		spin_lock_irq(&mapping->tree_lock);
1117 		mapping2 = page_mapping(page);
1118 		if (mapping2) { /* Race with truncate? */
1119 			BUG_ON(mapping2 != mapping);
1120 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1121 			account_page_dirtied(page, mapping);
1122 			radix_tree_tag_set(&mapping->page_tree,
1123 				page_index(page), PAGECACHE_TAG_DIRTY);
1124 		}
1125 		spin_unlock_irq(&mapping->tree_lock);
1126 		if (mapping->host) {
1127 			/* !PageAnon && !swapper_space */
1128 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1129 		}
1130 		return 1;
1131 	}
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1135 
1136 /*
1137  * When a writepage implementation decides that it doesn't want to write this
1138  * page for some reason, it should redirty the locked page via
1139  * redirty_page_for_writepage() and it should then unlock the page and return 0
1140  */
1141 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1142 {
1143 	wbc->pages_skipped++;
1144 	return __set_page_dirty_nobuffers(page);
1145 }
1146 EXPORT_SYMBOL(redirty_page_for_writepage);
1147 
1148 /*
1149  * Dirty a page.
1150  *
1151  * For pages with a mapping this should be done under the page lock
1152  * for the benefit of asynchronous memory errors who prefer a consistent
1153  * dirty state. This rule can be broken in some special cases,
1154  * but should be better not to.
1155  *
1156  * If the mapping doesn't provide a set_page_dirty a_op, then
1157  * just fall through and assume that it wants buffer_heads.
1158  */
1159 int set_page_dirty(struct page *page)
1160 {
1161 	struct address_space *mapping = page_mapping(page);
1162 
1163 	if (likely(mapping)) {
1164 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1165 #ifdef CONFIG_BLOCK
1166 		if (!spd)
1167 			spd = __set_page_dirty_buffers;
1168 #endif
1169 		return (*spd)(page);
1170 	}
1171 	if (!PageDirty(page)) {
1172 		if (!TestSetPageDirty(page))
1173 			return 1;
1174 	}
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL(set_page_dirty);
1178 
1179 /*
1180  * set_page_dirty() is racy if the caller has no reference against
1181  * page->mapping->host, and if the page is unlocked.  This is because another
1182  * CPU could truncate the page off the mapping and then free the mapping.
1183  *
1184  * Usually, the page _is_ locked, or the caller is a user-space process which
1185  * holds a reference on the inode by having an open file.
1186  *
1187  * In other cases, the page should be locked before running set_page_dirty().
1188  */
1189 int set_page_dirty_lock(struct page *page)
1190 {
1191 	int ret;
1192 
1193 	lock_page_nosync(page);
1194 	ret = set_page_dirty(page);
1195 	unlock_page(page);
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL(set_page_dirty_lock);
1199 
1200 /*
1201  * Clear a page's dirty flag, while caring for dirty memory accounting.
1202  * Returns true if the page was previously dirty.
1203  *
1204  * This is for preparing to put the page under writeout.  We leave the page
1205  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1206  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1207  * implementation will run either set_page_writeback() or set_page_dirty(),
1208  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1209  * back into sync.
1210  *
1211  * This incoherency between the page's dirty flag and radix-tree tag is
1212  * unfortunate, but it only exists while the page is locked.
1213  */
1214 int clear_page_dirty_for_io(struct page *page)
1215 {
1216 	struct address_space *mapping = page_mapping(page);
1217 
1218 	BUG_ON(!PageLocked(page));
1219 
1220 	ClearPageReclaim(page);
1221 	if (mapping && mapping_cap_account_dirty(mapping)) {
1222 		/*
1223 		 * Yes, Virginia, this is indeed insane.
1224 		 *
1225 		 * We use this sequence to make sure that
1226 		 *  (a) we account for dirty stats properly
1227 		 *  (b) we tell the low-level filesystem to
1228 		 *      mark the whole page dirty if it was
1229 		 *      dirty in a pagetable. Only to then
1230 		 *  (c) clean the page again and return 1 to
1231 		 *      cause the writeback.
1232 		 *
1233 		 * This way we avoid all nasty races with the
1234 		 * dirty bit in multiple places and clearing
1235 		 * them concurrently from different threads.
1236 		 *
1237 		 * Note! Normally the "set_page_dirty(page)"
1238 		 * has no effect on the actual dirty bit - since
1239 		 * that will already usually be set. But we
1240 		 * need the side effects, and it can help us
1241 		 * avoid races.
1242 		 *
1243 		 * We basically use the page "master dirty bit"
1244 		 * as a serialization point for all the different
1245 		 * threads doing their things.
1246 		 */
1247 		if (page_mkclean(page))
1248 			set_page_dirty(page);
1249 		/*
1250 		 * We carefully synchronise fault handlers against
1251 		 * installing a dirty pte and marking the page dirty
1252 		 * at this point. We do this by having them hold the
1253 		 * page lock at some point after installing their
1254 		 * pte, but before marking the page dirty.
1255 		 * Pages are always locked coming in here, so we get
1256 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1257 		 * for more comments.
1258 		 */
1259 		if (TestClearPageDirty(page)) {
1260 			dec_zone_page_state(page, NR_FILE_DIRTY);
1261 			dec_bdi_stat(mapping->backing_dev_info,
1262 					BDI_RECLAIMABLE);
1263 			return 1;
1264 		}
1265 		return 0;
1266 	}
1267 	return TestClearPageDirty(page);
1268 }
1269 EXPORT_SYMBOL(clear_page_dirty_for_io);
1270 
1271 int test_clear_page_writeback(struct page *page)
1272 {
1273 	struct address_space *mapping = page_mapping(page);
1274 	int ret;
1275 
1276 	if (mapping) {
1277 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1278 		unsigned long flags;
1279 
1280 		spin_lock_irqsave(&mapping->tree_lock, flags);
1281 		ret = TestClearPageWriteback(page);
1282 		if (ret) {
1283 			radix_tree_tag_clear(&mapping->page_tree,
1284 						page_index(page),
1285 						PAGECACHE_TAG_WRITEBACK);
1286 			if (bdi_cap_account_writeback(bdi)) {
1287 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1288 				__bdi_writeout_inc(bdi);
1289 			}
1290 		}
1291 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1292 	} else {
1293 		ret = TestClearPageWriteback(page);
1294 	}
1295 	if (ret)
1296 		dec_zone_page_state(page, NR_WRITEBACK);
1297 	return ret;
1298 }
1299 
1300 int test_set_page_writeback(struct page *page)
1301 {
1302 	struct address_space *mapping = page_mapping(page);
1303 	int ret;
1304 
1305 	if (mapping) {
1306 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1307 		unsigned long flags;
1308 
1309 		spin_lock_irqsave(&mapping->tree_lock, flags);
1310 		ret = TestSetPageWriteback(page);
1311 		if (!ret) {
1312 			radix_tree_tag_set(&mapping->page_tree,
1313 						page_index(page),
1314 						PAGECACHE_TAG_WRITEBACK);
1315 			if (bdi_cap_account_writeback(bdi))
1316 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1317 		}
1318 		if (!PageDirty(page))
1319 			radix_tree_tag_clear(&mapping->page_tree,
1320 						page_index(page),
1321 						PAGECACHE_TAG_DIRTY);
1322 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1323 	} else {
1324 		ret = TestSetPageWriteback(page);
1325 	}
1326 	if (!ret)
1327 		inc_zone_page_state(page, NR_WRITEBACK);
1328 	return ret;
1329 
1330 }
1331 EXPORT_SYMBOL(test_set_page_writeback);
1332 
1333 /*
1334  * Return true if any of the pages in the mapping are marked with the
1335  * passed tag.
1336  */
1337 int mapping_tagged(struct address_space *mapping, int tag)
1338 {
1339 	int ret;
1340 	rcu_read_lock();
1341 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1342 	rcu_read_unlock();
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(mapping_tagged);
1346