xref: /linux/mm/page-writeback.c (revision add452d09a38c7a7c44aea55c1015392cebf9fa7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 static int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 static unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 static int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 static int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 static unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116 
117 EXPORT_SYMBOL(laptop_mode);
118 
119 /* End of sysctl-exported parameters */
120 
121 struct wb_domain global_wb_domain;
122 
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 	struct wb_domain	*dom;
127 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
128 #endif
129 	struct bdi_writeback	*wb;
130 	struct fprop_local_percpu *wb_completions;
131 
132 	unsigned long		avail;		/* dirtyable */
133 	unsigned long		dirty;		/* file_dirty + write + nfs */
134 	unsigned long		thresh;		/* dirty threshold */
135 	unsigned long		bg_thresh;	/* dirty background threshold */
136 
137 	unsigned long		wb_dirty;	/* per-wb counterparts */
138 	unsigned long		wb_thresh;
139 	unsigned long		wb_bg_thresh;
140 
141 	unsigned long		pos_ratio;
142 	bool			freerun;
143 	bool			dirty_exceeded;
144 };
145 
146 /*
147  * Length of period for aging writeout fractions of bdis. This is an
148  * arbitrarily chosen number. The longer the period, the slower fractions will
149  * reflect changes in current writeout rate.
150  */
151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
152 
153 #ifdef CONFIG_CGROUP_WRITEBACK
154 
155 #define GDTC_INIT(__wb)		.wb = (__wb),				\
156 				.dom = &global_wb_domain,		\
157 				.wb_completions = &(__wb)->completions
158 
159 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
160 
161 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
162 				.dom = mem_cgroup_wb_domain(__wb),	\
163 				.wb_completions = &(__wb)->memcg_completions, \
164 				.gdtc = __gdtc
165 
166 static bool mdtc_valid(struct dirty_throttle_control *dtc)
167 {
168 	return dtc->dom;
169 }
170 
171 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
172 {
173 	return dtc->dom;
174 }
175 
176 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
177 {
178 	return mdtc->gdtc;
179 }
180 
181 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
182 {
183 	return &wb->memcg_completions;
184 }
185 
186 static void wb_min_max_ratio(struct bdi_writeback *wb,
187 			     unsigned long *minp, unsigned long *maxp)
188 {
189 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
190 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
191 	unsigned long long min = wb->bdi->min_ratio;
192 	unsigned long long max = wb->bdi->max_ratio;
193 
194 	/*
195 	 * @wb may already be clean by the time control reaches here and
196 	 * the total may not include its bw.
197 	 */
198 	if (this_bw < tot_bw) {
199 		if (min) {
200 			min *= this_bw;
201 			min = div64_ul(min, tot_bw);
202 		}
203 		if (max < 100 * BDI_RATIO_SCALE) {
204 			max *= this_bw;
205 			max = div64_ul(max, tot_bw);
206 		}
207 	}
208 
209 	*minp = min;
210 	*maxp = max;
211 }
212 
213 #else	/* CONFIG_CGROUP_WRITEBACK */
214 
215 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
216 				.wb_completions = &(__wb)->completions
217 #define GDTC_INIT_NO_WB
218 #define MDTC_INIT(__wb, __gdtc)
219 
220 static bool mdtc_valid(struct dirty_throttle_control *dtc)
221 {
222 	return false;
223 }
224 
225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
226 {
227 	return &global_wb_domain;
228 }
229 
230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
231 {
232 	return NULL;
233 }
234 
235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
236 {
237 	return NULL;
238 }
239 
240 static void wb_min_max_ratio(struct bdi_writeback *wb,
241 			     unsigned long *minp, unsigned long *maxp)
242 {
243 	*minp = wb->bdi->min_ratio;
244 	*maxp = wb->bdi->max_ratio;
245 }
246 
247 #endif	/* CONFIG_CGROUP_WRITEBACK */
248 
249 /*
250  * In a memory zone, there is a certain amount of pages we consider
251  * available for the page cache, which is essentially the number of
252  * free and reclaimable pages, minus some zone reserves to protect
253  * lowmem and the ability to uphold the zone's watermarks without
254  * requiring writeback.
255  *
256  * This number of dirtyable pages is the base value of which the
257  * user-configurable dirty ratio is the effective number of pages that
258  * are allowed to be actually dirtied.  Per individual zone, or
259  * globally by using the sum of dirtyable pages over all zones.
260  *
261  * Because the user is allowed to specify the dirty limit globally as
262  * absolute number of bytes, calculating the per-zone dirty limit can
263  * require translating the configured limit into a percentage of
264  * global dirtyable memory first.
265  */
266 
267 /**
268  * node_dirtyable_memory - number of dirtyable pages in a node
269  * @pgdat: the node
270  *
271  * Return: the node's number of pages potentially available for dirty
272  * page cache.  This is the base value for the per-node dirty limits.
273  */
274 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
275 {
276 	unsigned long nr_pages = 0;
277 	int z;
278 
279 	for (z = 0; z < MAX_NR_ZONES; z++) {
280 		struct zone *zone = pgdat->node_zones + z;
281 
282 		if (!populated_zone(zone))
283 			continue;
284 
285 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
286 	}
287 
288 	/*
289 	 * Pages reserved for the kernel should not be considered
290 	 * dirtyable, to prevent a situation where reclaim has to
291 	 * clean pages in order to balance the zones.
292 	 */
293 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
294 
295 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
296 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
297 
298 	return nr_pages;
299 }
300 
301 static unsigned long highmem_dirtyable_memory(unsigned long total)
302 {
303 #ifdef CONFIG_HIGHMEM
304 	int node;
305 	unsigned long x = 0;
306 	int i;
307 
308 	for_each_node_state(node, N_HIGH_MEMORY) {
309 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
310 			struct zone *z;
311 			unsigned long nr_pages;
312 
313 			if (!is_highmem_idx(i))
314 				continue;
315 
316 			z = &NODE_DATA(node)->node_zones[i];
317 			if (!populated_zone(z))
318 				continue;
319 
320 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
321 			/* watch for underflows */
322 			nr_pages -= min(nr_pages, high_wmark_pages(z));
323 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
324 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
325 			x += nr_pages;
326 		}
327 	}
328 
329 	/*
330 	 * Make sure that the number of highmem pages is never larger
331 	 * than the number of the total dirtyable memory. This can only
332 	 * occur in very strange VM situations but we want to make sure
333 	 * that this does not occur.
334 	 */
335 	return min(x, total);
336 #else
337 	return 0;
338 #endif
339 }
340 
341 /**
342  * global_dirtyable_memory - number of globally dirtyable pages
343  *
344  * Return: the global number of pages potentially available for dirty
345  * page cache.  This is the base value for the global dirty limits.
346  */
347 static unsigned long global_dirtyable_memory(void)
348 {
349 	unsigned long x;
350 
351 	x = global_zone_page_state(NR_FREE_PAGES);
352 	/*
353 	 * Pages reserved for the kernel should not be considered
354 	 * dirtyable, to prevent a situation where reclaim has to
355 	 * clean pages in order to balance the zones.
356 	 */
357 	x -= min(x, totalreserve_pages);
358 
359 	x += global_node_page_state(NR_INACTIVE_FILE);
360 	x += global_node_page_state(NR_ACTIVE_FILE);
361 
362 	if (!vm_highmem_is_dirtyable)
363 		x -= highmem_dirtyable_memory(x);
364 
365 	return x + 1;	/* Ensure that we never return 0 */
366 }
367 
368 /**
369  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
370  * @dtc: dirty_throttle_control of interest
371  *
372  * Calculate @dtc->thresh and ->bg_thresh considering
373  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
374  * must ensure that @dtc->avail is set before calling this function.  The
375  * dirty limits will be lifted by 1/4 for real-time tasks.
376  */
377 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
378 {
379 	const unsigned long available_memory = dtc->avail;
380 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
381 	unsigned long bytes = vm_dirty_bytes;
382 	unsigned long bg_bytes = dirty_background_bytes;
383 	/* convert ratios to per-PAGE_SIZE for higher precision */
384 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
385 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
386 	unsigned long thresh;
387 	unsigned long bg_thresh;
388 	struct task_struct *tsk;
389 
390 	/* gdtc is !NULL iff @dtc is for memcg domain */
391 	if (gdtc) {
392 		unsigned long global_avail = gdtc->avail;
393 
394 		/*
395 		 * The byte settings can't be applied directly to memcg
396 		 * domains.  Convert them to ratios by scaling against
397 		 * globally available memory.  As the ratios are in
398 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
399 		 * number of pages.
400 		 */
401 		if (bytes)
402 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
403 				    PAGE_SIZE);
404 		if (bg_bytes)
405 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
406 				       PAGE_SIZE);
407 		bytes = bg_bytes = 0;
408 	}
409 
410 	if (bytes)
411 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
412 	else
413 		thresh = (ratio * available_memory) / PAGE_SIZE;
414 
415 	if (bg_bytes)
416 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
417 	else
418 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
419 
420 	tsk = current;
421 	if (rt_or_dl_task(tsk)) {
422 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
424 	}
425 	/*
426 	 * Dirty throttling logic assumes the limits in page units fit into
427 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
428 	 */
429 	if (thresh > UINT_MAX)
430 		thresh = UINT_MAX;
431 	/* This makes sure bg_thresh is within 32-bits as well */
432 	if (bg_thresh >= thresh)
433 		bg_thresh = thresh / 2;
434 	dtc->thresh = thresh;
435 	dtc->bg_thresh = bg_thresh;
436 
437 	/* we should eventually report the domain in the TP */
438 	if (!gdtc)
439 		trace_global_dirty_state(bg_thresh, thresh);
440 }
441 
442 /**
443  * global_dirty_limits - background-writeback and dirty-throttling thresholds
444  * @pbackground: out parameter for bg_thresh
445  * @pdirty: out parameter for thresh
446  *
447  * Calculate bg_thresh and thresh for global_wb_domain.  See
448  * domain_dirty_limits() for details.
449  */
450 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
451 {
452 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
453 
454 	gdtc.avail = global_dirtyable_memory();
455 	domain_dirty_limits(&gdtc);
456 
457 	*pbackground = gdtc.bg_thresh;
458 	*pdirty = gdtc.thresh;
459 }
460 
461 /**
462  * node_dirty_limit - maximum number of dirty pages allowed in a node
463  * @pgdat: the node
464  *
465  * Return: the maximum number of dirty pages allowed in a node, based
466  * on the node's dirtyable memory.
467  */
468 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
469 {
470 	unsigned long node_memory = node_dirtyable_memory(pgdat);
471 	struct task_struct *tsk = current;
472 	unsigned long dirty;
473 
474 	if (vm_dirty_bytes)
475 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
476 			node_memory / global_dirtyable_memory();
477 	else
478 		dirty = vm_dirty_ratio * node_memory / 100;
479 
480 	if (rt_or_dl_task(tsk))
481 		dirty += dirty / 4;
482 
483 	/*
484 	 * Dirty throttling logic assumes the limits in page units fit into
485 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
486 	 */
487 	return min_t(unsigned long, dirty, UINT_MAX);
488 }
489 
490 /**
491  * node_dirty_ok - tells whether a node is within its dirty limits
492  * @pgdat: the node to check
493  *
494  * Return: %true when the dirty pages in @pgdat are within the node's
495  * dirty limit, %false if the limit is exceeded.
496  */
497 bool node_dirty_ok(struct pglist_data *pgdat)
498 {
499 	unsigned long limit = node_dirty_limit(pgdat);
500 	unsigned long nr_pages = 0;
501 
502 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
503 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
504 
505 	return nr_pages <= limit;
506 }
507 
508 #ifdef CONFIG_SYSCTL
509 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
510 		void *buffer, size_t *lenp, loff_t *ppos)
511 {
512 	int ret;
513 
514 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 	if (ret == 0 && write)
516 		dirty_background_bytes = 0;
517 	return ret;
518 }
519 
520 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
521 		void *buffer, size_t *lenp, loff_t *ppos)
522 {
523 	int ret;
524 	unsigned long old_bytes = dirty_background_bytes;
525 
526 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
527 	if (ret == 0 && write) {
528 		if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
529 								UINT_MAX) {
530 			dirty_background_bytes = old_bytes;
531 			return -ERANGE;
532 		}
533 		dirty_background_ratio = 0;
534 	}
535 	return ret;
536 }
537 
538 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
539 		size_t *lenp, loff_t *ppos)
540 {
541 	int old_ratio = vm_dirty_ratio;
542 	int ret;
543 
544 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
545 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
546 		writeback_set_ratelimit();
547 		vm_dirty_bytes = 0;
548 	}
549 	return ret;
550 }
551 
552 static int dirty_bytes_handler(const struct ctl_table *table, int write,
553 		void *buffer, size_t *lenp, loff_t *ppos)
554 {
555 	unsigned long old_bytes = vm_dirty_bytes;
556 	int ret;
557 
558 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
559 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
560 		if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
561 			vm_dirty_bytes = old_bytes;
562 			return -ERANGE;
563 		}
564 		writeback_set_ratelimit();
565 		vm_dirty_ratio = 0;
566 	}
567 	return ret;
568 }
569 #endif
570 
571 static unsigned long wp_next_time(unsigned long cur_time)
572 {
573 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
574 	/* 0 has a special meaning... */
575 	if (!cur_time)
576 		return 1;
577 	return cur_time;
578 }
579 
580 static void wb_domain_writeout_add(struct wb_domain *dom,
581 				   struct fprop_local_percpu *completions,
582 				   unsigned int max_prop_frac, long nr)
583 {
584 	__fprop_add_percpu_max(&dom->completions, completions,
585 			       max_prop_frac, nr);
586 	/* First event after period switching was turned off? */
587 	if (unlikely(!dom->period_time)) {
588 		/*
589 		 * We can race with other __bdi_writeout_inc calls here but
590 		 * it does not cause any harm since the resulting time when
591 		 * timer will fire and what is in writeout_period_time will be
592 		 * roughly the same.
593 		 */
594 		dom->period_time = wp_next_time(jiffies);
595 		mod_timer(&dom->period_timer, dom->period_time);
596 	}
597 }
598 
599 /*
600  * Increment @wb's writeout completion count and the global writeout
601  * completion count. Called from __folio_end_writeback().
602  */
603 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
604 {
605 	struct wb_domain *cgdom;
606 
607 	wb_stat_mod(wb, WB_WRITTEN, nr);
608 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
609 			       wb->bdi->max_prop_frac, nr);
610 
611 	cgdom = mem_cgroup_wb_domain(wb);
612 	if (cgdom)
613 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
614 				       wb->bdi->max_prop_frac, nr);
615 }
616 
617 void wb_writeout_inc(struct bdi_writeback *wb)
618 {
619 	unsigned long flags;
620 
621 	local_irq_save(flags);
622 	__wb_writeout_add(wb, 1);
623 	local_irq_restore(flags);
624 }
625 EXPORT_SYMBOL_GPL(wb_writeout_inc);
626 
627 /*
628  * On idle system, we can be called long after we scheduled because we use
629  * deferred timers so count with missed periods.
630  */
631 static void writeout_period(struct timer_list *t)
632 {
633 	struct wb_domain *dom = from_timer(dom, t, period_timer);
634 	int miss_periods = (jiffies - dom->period_time) /
635 						 VM_COMPLETIONS_PERIOD_LEN;
636 
637 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
638 		dom->period_time = wp_next_time(dom->period_time +
639 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
640 		mod_timer(&dom->period_timer, dom->period_time);
641 	} else {
642 		/*
643 		 * Aging has zeroed all fractions. Stop wasting CPU on period
644 		 * updates.
645 		 */
646 		dom->period_time = 0;
647 	}
648 }
649 
650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
651 {
652 	memset(dom, 0, sizeof(*dom));
653 
654 	spin_lock_init(&dom->lock);
655 
656 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
657 
658 	dom->dirty_limit_tstamp = jiffies;
659 
660 	return fprop_global_init(&dom->completions, gfp);
661 }
662 
663 #ifdef CONFIG_CGROUP_WRITEBACK
664 void wb_domain_exit(struct wb_domain *dom)
665 {
666 	del_timer_sync(&dom->period_timer);
667 	fprop_global_destroy(&dom->completions);
668 }
669 #endif
670 
671 /*
672  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
673  * registered backing devices, which, for obvious reasons, can not
674  * exceed 100%.
675  */
676 static unsigned int bdi_min_ratio;
677 
678 static int bdi_check_pages_limit(unsigned long pages)
679 {
680 	unsigned long max_dirty_pages = global_dirtyable_memory();
681 
682 	if (pages > max_dirty_pages)
683 		return -EINVAL;
684 
685 	return 0;
686 }
687 
688 static unsigned long bdi_ratio_from_pages(unsigned long pages)
689 {
690 	unsigned long background_thresh;
691 	unsigned long dirty_thresh;
692 	unsigned long ratio;
693 
694 	global_dirty_limits(&background_thresh, &dirty_thresh);
695 	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
696 
697 	return ratio;
698 }
699 
700 static u64 bdi_get_bytes(unsigned int ratio)
701 {
702 	unsigned long background_thresh;
703 	unsigned long dirty_thresh;
704 	u64 bytes;
705 
706 	global_dirty_limits(&background_thresh, &dirty_thresh);
707 	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
708 
709 	return bytes;
710 }
711 
712 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
713 {
714 	unsigned int delta;
715 	int ret = 0;
716 
717 	if (min_ratio > 100 * BDI_RATIO_SCALE)
718 		return -EINVAL;
719 
720 	spin_lock_bh(&bdi_lock);
721 	if (min_ratio > bdi->max_ratio) {
722 		ret = -EINVAL;
723 	} else {
724 		if (min_ratio < bdi->min_ratio) {
725 			delta = bdi->min_ratio - min_ratio;
726 			bdi_min_ratio -= delta;
727 			bdi->min_ratio = min_ratio;
728 		} else {
729 			delta = min_ratio - bdi->min_ratio;
730 			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
731 				bdi_min_ratio += delta;
732 				bdi->min_ratio = min_ratio;
733 			} else {
734 				ret = -EINVAL;
735 			}
736 		}
737 	}
738 	spin_unlock_bh(&bdi_lock);
739 
740 	return ret;
741 }
742 
743 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
744 {
745 	int ret = 0;
746 
747 	if (max_ratio > 100 * BDI_RATIO_SCALE)
748 		return -EINVAL;
749 
750 	spin_lock_bh(&bdi_lock);
751 	if (bdi->min_ratio > max_ratio) {
752 		ret = -EINVAL;
753 	} else {
754 		bdi->max_ratio = max_ratio;
755 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
756 						(100 * BDI_RATIO_SCALE);
757 	}
758 	spin_unlock_bh(&bdi_lock);
759 
760 	return ret;
761 }
762 
763 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
764 {
765 	return __bdi_set_min_ratio(bdi, min_ratio);
766 }
767 
768 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
769 {
770 	return __bdi_set_max_ratio(bdi, max_ratio);
771 }
772 
773 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
774 {
775 	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
776 }
777 
778 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
779 {
780 	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
781 }
782 EXPORT_SYMBOL(bdi_set_max_ratio);
783 
784 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
785 {
786 	return bdi_get_bytes(bdi->min_ratio);
787 }
788 
789 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
790 {
791 	int ret;
792 	unsigned long pages = min_bytes >> PAGE_SHIFT;
793 	unsigned long min_ratio;
794 
795 	ret = bdi_check_pages_limit(pages);
796 	if (ret)
797 		return ret;
798 
799 	min_ratio = bdi_ratio_from_pages(pages);
800 	return __bdi_set_min_ratio(bdi, min_ratio);
801 }
802 
803 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
804 {
805 	return bdi_get_bytes(bdi->max_ratio);
806 }
807 
808 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
809 {
810 	int ret;
811 	unsigned long pages = max_bytes >> PAGE_SHIFT;
812 	unsigned long max_ratio;
813 
814 	ret = bdi_check_pages_limit(pages);
815 	if (ret)
816 		return ret;
817 
818 	max_ratio = bdi_ratio_from_pages(pages);
819 	return __bdi_set_max_ratio(bdi, max_ratio);
820 }
821 
822 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
823 {
824 	if (strict_limit > 1)
825 		return -EINVAL;
826 
827 	spin_lock_bh(&bdi_lock);
828 	if (strict_limit)
829 		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
830 	else
831 		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
832 	spin_unlock_bh(&bdi_lock);
833 
834 	return 0;
835 }
836 
837 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
838 					   unsigned long bg_thresh)
839 {
840 	return (thresh + bg_thresh) / 2;
841 }
842 
843 static unsigned long hard_dirty_limit(struct wb_domain *dom,
844 				      unsigned long thresh)
845 {
846 	return max(thresh, dom->dirty_limit);
847 }
848 
849 /*
850  * Memory which can be further allocated to a memcg domain is capped by
851  * system-wide clean memory excluding the amount being used in the domain.
852  */
853 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
854 			    unsigned long filepages, unsigned long headroom)
855 {
856 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
857 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
858 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
859 	unsigned long other_clean = global_clean - min(global_clean, clean);
860 
861 	mdtc->avail = filepages + min(headroom, other_clean);
862 }
863 
864 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
865 {
866 	return mdtc_gdtc(dtc) == NULL;
867 }
868 
869 /*
870  * Dirty background will ignore pages being written as we're trying to
871  * decide whether to put more under writeback.
872  */
873 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
874 			       bool include_writeback)
875 {
876 	if (dtc_is_global(dtc)) {
877 		dtc->avail = global_dirtyable_memory();
878 		dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
879 		if (include_writeback)
880 			dtc->dirty += global_node_page_state(NR_WRITEBACK);
881 	} else {
882 		unsigned long filepages = 0, headroom = 0, writeback = 0;
883 
884 		mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
885 				    &writeback);
886 		if (include_writeback)
887 			dtc->dirty += writeback;
888 		mdtc_calc_avail(dtc, filepages, headroom);
889 	}
890 }
891 
892 /**
893  * __wb_calc_thresh - @wb's share of dirty threshold
894  * @dtc: dirty_throttle_context of interest
895  * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
896  *
897  * Note that balance_dirty_pages() will only seriously take dirty throttling
898  * threshold as a hard limit when sleeping max_pause per page is not enough
899  * to keep the dirty pages under control. For example, when the device is
900  * completely stalled due to some error conditions, or when there are 1000
901  * dd tasks writing to a slow 10MB/s USB key.
902  * In the other normal situations, it acts more gently by throttling the tasks
903  * more (rather than completely block them) when the wb dirty pages go high.
904  *
905  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
906  * - starving fast devices
907  * - piling up dirty pages (that will take long time to sync) on slow devices
908  *
909  * The wb's share of dirty limit will be adapting to its throughput and
910  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
911  *
912  * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
913  * "dirty" in the context of dirty balancing includes all PG_dirty and
914  * PG_writeback pages.
915  */
916 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
917 				      unsigned long thresh)
918 {
919 	struct wb_domain *dom = dtc_dom(dtc);
920 	u64 wb_thresh;
921 	unsigned long numerator, denominator;
922 	unsigned long wb_min_ratio, wb_max_ratio;
923 
924 	/*
925 	 * Calculate this wb's share of the thresh ratio.
926 	 */
927 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
928 			      &numerator, &denominator);
929 
930 	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
931 	wb_thresh *= numerator;
932 	wb_thresh = div64_ul(wb_thresh, denominator);
933 
934 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
935 
936 	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
937 	if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
938 		wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
939 
940 	return wb_thresh;
941 }
942 
943 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
944 {
945 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
946 
947 	return __wb_calc_thresh(&gdtc, thresh);
948 }
949 
950 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
951 {
952 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
953 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
954 
955 	domain_dirty_avail(&gdtc, true);
956 	domain_dirty_avail(&mdtc, true);
957 	domain_dirty_limits(&mdtc);
958 
959 	return __wb_calc_thresh(&mdtc, mdtc.thresh);
960 }
961 
962 /*
963  *                           setpoint - dirty 3
964  *        f(dirty) := 1.0 + (----------------)
965  *                           limit - setpoint
966  *
967  * it's a 3rd order polynomial that subjects to
968  *
969  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
970  * (2) f(setpoint) = 1.0 => the balance point
971  * (3) f(limit)    = 0   => the hard limit
972  * (4) df/dx      <= 0	 => negative feedback control
973  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
974  *     => fast response on large errors; small oscillation near setpoint
975  */
976 static long long pos_ratio_polynom(unsigned long setpoint,
977 					  unsigned long dirty,
978 					  unsigned long limit)
979 {
980 	long long pos_ratio;
981 	long x;
982 
983 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
984 		      (limit - setpoint) | 1);
985 	pos_ratio = x;
986 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
987 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
988 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
989 
990 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
991 }
992 
993 /*
994  * Dirty position control.
995  *
996  * (o) global/bdi setpoints
997  *
998  * We want the dirty pages be balanced around the global/wb setpoints.
999  * When the number of dirty pages is higher/lower than the setpoint, the
1000  * dirty position control ratio (and hence task dirty ratelimit) will be
1001  * decreased/increased to bring the dirty pages back to the setpoint.
1002  *
1003  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1004  *
1005  *     if (dirty < setpoint) scale up   pos_ratio
1006  *     if (dirty > setpoint) scale down pos_ratio
1007  *
1008  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
1009  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
1010  *
1011  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1012  *
1013  * (o) global control line
1014  *
1015  *     ^ pos_ratio
1016  *     |
1017  *     |            |<===== global dirty control scope ======>|
1018  * 2.0  * * * * * * *
1019  *     |            .*
1020  *     |            . *
1021  *     |            .   *
1022  *     |            .     *
1023  *     |            .        *
1024  *     |            .            *
1025  * 1.0 ................................*
1026  *     |            .                  .     *
1027  *     |            .                  .          *
1028  *     |            .                  .              *
1029  *     |            .                  .                 *
1030  *     |            .                  .                    *
1031  *   0 +------------.------------------.----------------------*------------->
1032  *           freerun^          setpoint^                 limit^   dirty pages
1033  *
1034  * (o) wb control line
1035  *
1036  *     ^ pos_ratio
1037  *     |
1038  *     |            *
1039  *     |              *
1040  *     |                *
1041  *     |                  *
1042  *     |                    * |<=========== span ============>|
1043  * 1.0 .......................*
1044  *     |                      . *
1045  *     |                      .   *
1046  *     |                      .     *
1047  *     |                      .       *
1048  *     |                      .         *
1049  *     |                      .           *
1050  *     |                      .             *
1051  *     |                      .               *
1052  *     |                      .                 *
1053  *     |                      .                   *
1054  *     |                      .                     *
1055  * 1/4 ...............................................* * * * * * * * * * * *
1056  *     |                      .                         .
1057  *     |                      .                           .
1058  *     |                      .                             .
1059  *   0 +----------------------.-------------------------------.------------->
1060  *                wb_setpoint^                    x_intercept^
1061  *
1062  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1063  * be smoothly throttled down to normal if it starts high in situations like
1064  * - start writing to a slow SD card and a fast disk at the same time. The SD
1065  *   card's wb_dirty may rush to many times higher than wb_setpoint.
1066  * - the wb dirty thresh drops quickly due to change of JBOD workload
1067  */
1068 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1069 {
1070 	struct bdi_writeback *wb = dtc->wb;
1071 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1072 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1073 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1074 	unsigned long wb_thresh = dtc->wb_thresh;
1075 	unsigned long x_intercept;
1076 	unsigned long setpoint;		/* dirty pages' target balance point */
1077 	unsigned long wb_setpoint;
1078 	unsigned long span;
1079 	long long pos_ratio;		/* for scaling up/down the rate limit */
1080 	long x;
1081 
1082 	dtc->pos_ratio = 0;
1083 
1084 	if (unlikely(dtc->dirty >= limit))
1085 		return;
1086 
1087 	/*
1088 	 * global setpoint
1089 	 *
1090 	 * See comment for pos_ratio_polynom().
1091 	 */
1092 	setpoint = (freerun + limit) / 2;
1093 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1094 
1095 	/*
1096 	 * The strictlimit feature is a tool preventing mistrusted filesystems
1097 	 * from growing a large number of dirty pages before throttling. For
1098 	 * such filesystems balance_dirty_pages always checks wb counters
1099 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1100 	 * This is especially important for fuse which sets bdi->max_ratio to
1101 	 * 1% by default. Without strictlimit feature, fuse writeback may
1102 	 * consume arbitrary amount of RAM because it is accounted in
1103 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1104 	 *
1105 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1106 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1107 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1108 	 * limits are set by default to 10% and 20% (background and throttle).
1109 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1110 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1111 	 * about ~6K pages (as the average of background and throttle wb
1112 	 * limits). The 3rd order polynomial will provide positive feedback if
1113 	 * wb_dirty is under wb_setpoint and vice versa.
1114 	 *
1115 	 * Note, that we cannot use global counters in these calculations
1116 	 * because we want to throttle process writing to a strictlimit wb
1117 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1118 	 * in the example above).
1119 	 */
1120 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1121 		long long wb_pos_ratio;
1122 
1123 		if (dtc->wb_dirty < 8) {
1124 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1125 					   2 << RATELIMIT_CALC_SHIFT);
1126 			return;
1127 		}
1128 
1129 		if (dtc->wb_dirty >= wb_thresh)
1130 			return;
1131 
1132 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1133 						    dtc->wb_bg_thresh);
1134 
1135 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1136 			return;
1137 
1138 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1139 						 wb_thresh);
1140 
1141 		/*
1142 		 * Typically, for strictlimit case, wb_setpoint << setpoint
1143 		 * and pos_ratio >> wb_pos_ratio. In the other words global
1144 		 * state ("dirty") is not limiting factor and we have to
1145 		 * make decision based on wb counters. But there is an
1146 		 * important case when global pos_ratio should get precedence:
1147 		 * global limits are exceeded (e.g. due to activities on other
1148 		 * wb's) while given strictlimit wb is below limit.
1149 		 *
1150 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1151 		 * but it would look too non-natural for the case of all
1152 		 * activity in the system coming from a single strictlimit wb
1153 		 * with bdi->max_ratio == 100%.
1154 		 *
1155 		 * Note that min() below somewhat changes the dynamics of the
1156 		 * control system. Normally, pos_ratio value can be well over 3
1157 		 * (when globally we are at freerun and wb is well below wb
1158 		 * setpoint). Now the maximum pos_ratio in the same situation
1159 		 * is 2. We might want to tweak this if we observe the control
1160 		 * system is too slow to adapt.
1161 		 */
1162 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1163 		return;
1164 	}
1165 
1166 	/*
1167 	 * We have computed basic pos_ratio above based on global situation. If
1168 	 * the wb is over/under its share of dirty pages, we want to scale
1169 	 * pos_ratio further down/up. That is done by the following mechanism.
1170 	 */
1171 
1172 	/*
1173 	 * wb setpoint
1174 	 *
1175 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1176 	 *
1177 	 *                        x_intercept - wb_dirty
1178 	 *                     := --------------------------
1179 	 *                        x_intercept - wb_setpoint
1180 	 *
1181 	 * The main wb control line is a linear function that subjects to
1182 	 *
1183 	 * (1) f(wb_setpoint) = 1.0
1184 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1185 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1186 	 *
1187 	 * For single wb case, the dirty pages are observed to fluctuate
1188 	 * regularly within range
1189 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1190 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1191 	 * fluctuation range for pos_ratio.
1192 	 *
1193 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1194 	 * own size, so move the slope over accordingly and choose a slope that
1195 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1196 	 */
1197 	if (unlikely(wb_thresh > dtc->thresh))
1198 		wb_thresh = dtc->thresh;
1199 	/*
1200 	 * It's very possible that wb_thresh is close to 0 not because the
1201 	 * device is slow, but that it has remained inactive for long time.
1202 	 * Honour such devices a reasonable good (hopefully IO efficient)
1203 	 * threshold, so that the occasional writes won't be blocked and active
1204 	 * writes can rampup the threshold quickly.
1205 	 */
1206 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1207 	/*
1208 	 * scale global setpoint to wb's:
1209 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1210 	 */
1211 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1212 	wb_setpoint = setpoint * (u64)x >> 16;
1213 	/*
1214 	 * Use span=(8*write_bw) in single wb case as indicated by
1215 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1216 	 *
1217 	 *        wb_thresh                    thresh - wb_thresh
1218 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1219 	 *         thresh                           thresh
1220 	 */
1221 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1222 	x_intercept = wb_setpoint + span;
1223 
1224 	if (dtc->wb_dirty < x_intercept - span / 4) {
1225 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1226 				      (x_intercept - wb_setpoint) | 1);
1227 	} else
1228 		pos_ratio /= 4;
1229 
1230 	/*
1231 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1232 	 * It may push the desired control point of global dirty pages higher
1233 	 * than setpoint.
1234 	 */
1235 	x_intercept = wb_thresh / 2;
1236 	if (dtc->wb_dirty < x_intercept) {
1237 		if (dtc->wb_dirty > x_intercept / 8)
1238 			pos_ratio = div_u64(pos_ratio * x_intercept,
1239 					    dtc->wb_dirty);
1240 		else
1241 			pos_ratio *= 8;
1242 	}
1243 
1244 	dtc->pos_ratio = pos_ratio;
1245 }
1246 
1247 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1248 				      unsigned long elapsed,
1249 				      unsigned long written)
1250 {
1251 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1252 	unsigned long avg = wb->avg_write_bandwidth;
1253 	unsigned long old = wb->write_bandwidth;
1254 	u64 bw;
1255 
1256 	/*
1257 	 * bw = written * HZ / elapsed
1258 	 *
1259 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1260 	 * write_bandwidth = ---------------------------------------------------
1261 	 *                                          period
1262 	 *
1263 	 * @written may have decreased due to folio_redirty_for_writepage().
1264 	 * Avoid underflowing @bw calculation.
1265 	 */
1266 	bw = written - min(written, wb->written_stamp);
1267 	bw *= HZ;
1268 	if (unlikely(elapsed > period)) {
1269 		bw = div64_ul(bw, elapsed);
1270 		avg = bw;
1271 		goto out;
1272 	}
1273 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1274 	bw >>= ilog2(period);
1275 
1276 	/*
1277 	 * one more level of smoothing, for filtering out sudden spikes
1278 	 */
1279 	if (avg > old && old >= (unsigned long)bw)
1280 		avg -= (avg - old) >> 3;
1281 
1282 	if (avg < old && old <= (unsigned long)bw)
1283 		avg += (old - avg) >> 3;
1284 
1285 out:
1286 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1287 	avg = max(avg, 1LU);
1288 	if (wb_has_dirty_io(wb)) {
1289 		long delta = avg - wb->avg_write_bandwidth;
1290 		WARN_ON_ONCE(atomic_long_add_return(delta,
1291 					&wb->bdi->tot_write_bandwidth) <= 0);
1292 	}
1293 	wb->write_bandwidth = bw;
1294 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1295 }
1296 
1297 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1298 {
1299 	struct wb_domain *dom = dtc_dom(dtc);
1300 	unsigned long thresh = dtc->thresh;
1301 	unsigned long limit = dom->dirty_limit;
1302 
1303 	/*
1304 	 * Follow up in one step.
1305 	 */
1306 	if (limit < thresh) {
1307 		limit = thresh;
1308 		goto update;
1309 	}
1310 
1311 	/*
1312 	 * Follow down slowly. Use the higher one as the target, because thresh
1313 	 * may drop below dirty. This is exactly the reason to introduce
1314 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1315 	 */
1316 	thresh = max(thresh, dtc->dirty);
1317 	if (limit > thresh) {
1318 		limit -= (limit - thresh) >> 5;
1319 		goto update;
1320 	}
1321 	return;
1322 update:
1323 	dom->dirty_limit = limit;
1324 }
1325 
1326 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1327 				      unsigned long now)
1328 {
1329 	struct wb_domain *dom = dtc_dom(dtc);
1330 
1331 	/*
1332 	 * check locklessly first to optimize away locking for the most time
1333 	 */
1334 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1335 		return;
1336 
1337 	spin_lock(&dom->lock);
1338 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1339 		update_dirty_limit(dtc);
1340 		dom->dirty_limit_tstamp = now;
1341 	}
1342 	spin_unlock(&dom->lock);
1343 }
1344 
1345 /*
1346  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1347  *
1348  * Normal wb tasks will be curbed at or below it in long term.
1349  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1350  */
1351 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1352 				      unsigned long dirtied,
1353 				      unsigned long elapsed)
1354 {
1355 	struct bdi_writeback *wb = dtc->wb;
1356 	unsigned long dirty = dtc->dirty;
1357 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1358 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1359 	unsigned long setpoint = (freerun + limit) / 2;
1360 	unsigned long write_bw = wb->avg_write_bandwidth;
1361 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1362 	unsigned long dirty_rate;
1363 	unsigned long task_ratelimit;
1364 	unsigned long balanced_dirty_ratelimit;
1365 	unsigned long step;
1366 	unsigned long x;
1367 	unsigned long shift;
1368 
1369 	/*
1370 	 * The dirty rate will match the writeout rate in long term, except
1371 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1372 	 */
1373 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1374 
1375 	/*
1376 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1377 	 */
1378 	task_ratelimit = (u64)dirty_ratelimit *
1379 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1380 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1381 
1382 	/*
1383 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1384 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1385 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1386 	 * formula will yield the balanced rate limit (write_bw / N).
1387 	 *
1388 	 * Note that the expanded form is not a pure rate feedback:
1389 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1390 	 * but also takes pos_ratio into account:
1391 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1392 	 *
1393 	 * (1) is not realistic because pos_ratio also takes part in balancing
1394 	 * the dirty rate.  Consider the state
1395 	 *	pos_ratio = 0.5						     (3)
1396 	 *	rate = 2 * (write_bw / N)				     (4)
1397 	 * If (1) is used, it will stuck in that state! Because each dd will
1398 	 * be throttled at
1399 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1400 	 * yielding
1401 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1402 	 * put (6) into (1) we get
1403 	 *	rate_(i+1) = rate_(i)					     (7)
1404 	 *
1405 	 * So we end up using (2) to always keep
1406 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1407 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1408 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1409 	 * the dirty count meet the setpoint, but also where the slope of
1410 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1411 	 */
1412 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1413 					   dirty_rate | 1);
1414 	/*
1415 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1416 	 */
1417 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1418 		balanced_dirty_ratelimit = write_bw;
1419 
1420 	/*
1421 	 * We could safely do this and return immediately:
1422 	 *
1423 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1424 	 *
1425 	 * However to get a more stable dirty_ratelimit, the below elaborated
1426 	 * code makes use of task_ratelimit to filter out singular points and
1427 	 * limit the step size.
1428 	 *
1429 	 * The below code essentially only uses the relative value of
1430 	 *
1431 	 *	task_ratelimit - dirty_ratelimit
1432 	 *	= (pos_ratio - 1) * dirty_ratelimit
1433 	 *
1434 	 * which reflects the direction and size of dirty position error.
1435 	 */
1436 
1437 	/*
1438 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1439 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1440 	 * For example, when
1441 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1442 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1443 	 * lowering dirty_ratelimit will help meet both the position and rate
1444 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1445 	 * only help meet the rate target. After all, what the users ultimately
1446 	 * feel and care are stable dirty rate and small position error.
1447 	 *
1448 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1449 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1450 	 * keeps jumping around randomly and can even leap far away at times
1451 	 * due to the small 200ms estimation period of dirty_rate (we want to
1452 	 * keep that period small to reduce time lags).
1453 	 */
1454 	step = 0;
1455 
1456 	/*
1457 	 * For strictlimit case, calculations above were based on wb counters
1458 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1459 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1460 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1461 	 * "dirty" and wb_setpoint as "setpoint".
1462 	 *
1463 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1464 	 * it's possible that wb_thresh is close to zero due to inactivity
1465 	 * of backing device.
1466 	 */
1467 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1468 		dirty = dtc->wb_dirty;
1469 		if (dtc->wb_dirty < 8)
1470 			setpoint = dtc->wb_dirty + 1;
1471 		else
1472 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1473 	}
1474 
1475 	if (dirty < setpoint) {
1476 		x = min3(wb->balanced_dirty_ratelimit,
1477 			 balanced_dirty_ratelimit, task_ratelimit);
1478 		if (dirty_ratelimit < x)
1479 			step = x - dirty_ratelimit;
1480 	} else {
1481 		x = max3(wb->balanced_dirty_ratelimit,
1482 			 balanced_dirty_ratelimit, task_ratelimit);
1483 		if (dirty_ratelimit > x)
1484 			step = dirty_ratelimit - x;
1485 	}
1486 
1487 	/*
1488 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1489 	 * rate itself is constantly fluctuating. So decrease the track speed
1490 	 * when it gets close to the target. Helps eliminate pointless tremors.
1491 	 */
1492 	shift = dirty_ratelimit / (2 * step + 1);
1493 	if (shift < BITS_PER_LONG)
1494 		step = DIV_ROUND_UP(step >> shift, 8);
1495 	else
1496 		step = 0;
1497 
1498 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1499 		dirty_ratelimit += step;
1500 	else
1501 		dirty_ratelimit -= step;
1502 
1503 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1504 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1505 
1506 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1507 }
1508 
1509 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1510 				  struct dirty_throttle_control *mdtc,
1511 				  bool update_ratelimit)
1512 {
1513 	struct bdi_writeback *wb = gdtc->wb;
1514 	unsigned long now = jiffies;
1515 	unsigned long elapsed;
1516 	unsigned long dirtied;
1517 	unsigned long written;
1518 
1519 	spin_lock(&wb->list_lock);
1520 
1521 	/*
1522 	 * Lockless checks for elapsed time are racy and delayed update after
1523 	 * IO completion doesn't do it at all (to make sure written pages are
1524 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1525 	 * division errors.
1526 	 */
1527 	elapsed = max(now - wb->bw_time_stamp, 1UL);
1528 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1529 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1530 
1531 	if (update_ratelimit) {
1532 		domain_update_dirty_limit(gdtc, now);
1533 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1534 
1535 		/*
1536 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1537 		 * compiler has no way to figure that out.  Help it.
1538 		 */
1539 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1540 			domain_update_dirty_limit(mdtc, now);
1541 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1542 		}
1543 	}
1544 	wb_update_write_bandwidth(wb, elapsed, written);
1545 
1546 	wb->dirtied_stamp = dirtied;
1547 	wb->written_stamp = written;
1548 	WRITE_ONCE(wb->bw_time_stamp, now);
1549 	spin_unlock(&wb->list_lock);
1550 }
1551 
1552 void wb_update_bandwidth(struct bdi_writeback *wb)
1553 {
1554 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1555 
1556 	__wb_update_bandwidth(&gdtc, NULL, false);
1557 }
1558 
1559 /* Interval after which we consider wb idle and don't estimate bandwidth */
1560 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1561 
1562 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1563 {
1564 	unsigned long now = jiffies;
1565 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1566 
1567 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1568 	    !atomic_read(&wb->writeback_inodes)) {
1569 		spin_lock(&wb->list_lock);
1570 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1571 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1572 		WRITE_ONCE(wb->bw_time_stamp, now);
1573 		spin_unlock(&wb->list_lock);
1574 	}
1575 }
1576 
1577 /*
1578  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1579  * will look to see if it needs to start dirty throttling.
1580  *
1581  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1582  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1583  * (the number of pages we may dirty without exceeding the dirty limits).
1584  */
1585 static unsigned long dirty_poll_interval(unsigned long dirty,
1586 					 unsigned long thresh)
1587 {
1588 	if (thresh > dirty)
1589 		return 1UL << (ilog2(thresh - dirty) >> 1);
1590 
1591 	return 1;
1592 }
1593 
1594 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1595 				  unsigned long wb_dirty)
1596 {
1597 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1598 	unsigned long t;
1599 
1600 	/*
1601 	 * Limit pause time for small memory systems. If sleeping for too long
1602 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1603 	 * idle.
1604 	 *
1605 	 * 8 serves as the safety ratio.
1606 	 */
1607 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1608 	t++;
1609 
1610 	return min_t(unsigned long, t, MAX_PAUSE);
1611 }
1612 
1613 static long wb_min_pause(struct bdi_writeback *wb,
1614 			 long max_pause,
1615 			 unsigned long task_ratelimit,
1616 			 unsigned long dirty_ratelimit,
1617 			 int *nr_dirtied_pause)
1618 {
1619 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1620 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1621 	long t;		/* target pause */
1622 	long pause;	/* estimated next pause */
1623 	int pages;	/* target nr_dirtied_pause */
1624 
1625 	/* target for 10ms pause on 1-dd case */
1626 	t = max(1, HZ / 100);
1627 
1628 	/*
1629 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1630 	 * overheads.
1631 	 *
1632 	 * (N * 10ms) on 2^N concurrent tasks.
1633 	 */
1634 	if (hi > lo)
1635 		t += (hi - lo) * (10 * HZ) / 1024;
1636 
1637 	/*
1638 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1639 	 * on the much more stable dirty_ratelimit. However the next pause time
1640 	 * will be computed based on task_ratelimit and the two rate limits may
1641 	 * depart considerably at some time. Especially if task_ratelimit goes
1642 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1643 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1644 	 * result task_ratelimit won't be executed faithfully, which could
1645 	 * eventually bring down dirty_ratelimit.
1646 	 *
1647 	 * We apply two rules to fix it up:
1648 	 * 1) try to estimate the next pause time and if necessary, use a lower
1649 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1650 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1651 	 * 2) limit the target pause time to max_pause/2, so that the normal
1652 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1653 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1654 	 */
1655 	t = min(t, 1 + max_pause / 2);
1656 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1657 
1658 	/*
1659 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1660 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1661 	 * When the 16 consecutive reads are often interrupted by some dirty
1662 	 * throttling pause during the async writes, cfq will go into idles
1663 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1664 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1665 	 */
1666 	if (pages < DIRTY_POLL_THRESH) {
1667 		t = max_pause;
1668 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1669 		if (pages > DIRTY_POLL_THRESH) {
1670 			pages = DIRTY_POLL_THRESH;
1671 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1672 		}
1673 	}
1674 
1675 	pause = HZ * pages / (task_ratelimit + 1);
1676 	if (pause > max_pause) {
1677 		t = max_pause;
1678 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1679 	}
1680 
1681 	*nr_dirtied_pause = pages;
1682 	/*
1683 	 * The minimal pause time will normally be half the target pause time.
1684 	 */
1685 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1686 }
1687 
1688 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1689 {
1690 	struct bdi_writeback *wb = dtc->wb;
1691 	unsigned long wb_reclaimable;
1692 
1693 	/*
1694 	 * wb_thresh is not treated as some limiting factor as
1695 	 * dirty_thresh, due to reasons
1696 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1697 	 * - in a system with HDD and USB key, the USB key may somehow
1698 	 *   go into state (wb_dirty >> wb_thresh) either because
1699 	 *   wb_dirty starts high, or because wb_thresh drops low.
1700 	 *   In this case we don't want to hard throttle the USB key
1701 	 *   dirtiers for 100 seconds until wb_dirty drops under
1702 	 *   wb_thresh. Instead the auxiliary wb control line in
1703 	 *   wb_position_ratio() will let the dirtier task progress
1704 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1705 	 */
1706 	dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1707 	dtc->wb_bg_thresh = dtc->thresh ?
1708 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1709 
1710 	/*
1711 	 * In order to avoid the stacked BDI deadlock we need
1712 	 * to ensure we accurately count the 'dirty' pages when
1713 	 * the threshold is low.
1714 	 *
1715 	 * Otherwise it would be possible to get thresh+n pages
1716 	 * reported dirty, even though there are thresh-m pages
1717 	 * actually dirty; with m+n sitting in the percpu
1718 	 * deltas.
1719 	 */
1720 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1721 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1722 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1723 	} else {
1724 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1725 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1726 	}
1727 }
1728 
1729 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1730 				      bool strictlimit)
1731 {
1732 	unsigned long dirty, thresh;
1733 
1734 	if (strictlimit) {
1735 		dirty = dtc->wb_dirty;
1736 		thresh = dtc->wb_thresh;
1737 	} else {
1738 		dirty = dtc->dirty;
1739 		thresh = dtc->thresh;
1740 	}
1741 
1742 	return dirty_poll_interval(dirty, thresh);
1743 }
1744 
1745 /*
1746  * Throttle it only when the background writeback cannot catch-up. This avoids
1747  * (excessively) small writeouts when the wb limits are ramping up in case of
1748  * !strictlimit.
1749  *
1750  * In strictlimit case make decision based on the wb counters and limits. Small
1751  * writeouts when the wb limits are ramping up are the price we consciously pay
1752  * for strictlimit-ing.
1753  */
1754 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1755 				 bool strictlimit)
1756 {
1757 	unsigned long dirty, thresh, bg_thresh;
1758 
1759 	if (unlikely(strictlimit)) {
1760 		wb_dirty_limits(dtc);
1761 		dirty = dtc->wb_dirty;
1762 		thresh = dtc->wb_thresh;
1763 		bg_thresh = dtc->wb_bg_thresh;
1764 	} else {
1765 		dirty = dtc->dirty;
1766 		thresh = dtc->thresh;
1767 		bg_thresh = dtc->bg_thresh;
1768 	}
1769 	dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1770 }
1771 
1772 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1773 				  bool strictlimit)
1774 {
1775 	domain_dirty_avail(dtc, true);
1776 	domain_dirty_limits(dtc);
1777 	domain_dirty_freerun(dtc, strictlimit);
1778 }
1779 
1780 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1781 			     bool strictlimit)
1782 {
1783 	dtc->freerun = false;
1784 
1785 	/* was already handled in domain_dirty_freerun */
1786 	if (strictlimit)
1787 		return;
1788 
1789 	wb_dirty_limits(dtc);
1790 	/*
1791 	 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1792 	 * freerun ceiling.
1793 	 */
1794 	if (!(current->flags & PF_LOCAL_THROTTLE))
1795 		return;
1796 
1797 	dtc->freerun = dtc->wb_dirty <
1798 		       dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1799 }
1800 
1801 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1802 				     bool strictlimit)
1803 {
1804 	dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1805 		((dtc->dirty > dtc->thresh) || strictlimit);
1806 }
1807 
1808 /*
1809  * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1810  * in freerun state. Please don't use these invalid fields in freerun case.
1811  */
1812 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1813 			      bool strictlimit)
1814 {
1815 	wb_dirty_freerun(dtc, strictlimit);
1816 	if (dtc->freerun)
1817 		return;
1818 
1819 	wb_dirty_exceeded(dtc, strictlimit);
1820 	wb_position_ratio(dtc);
1821 }
1822 
1823 /*
1824  * balance_dirty_pages() must be called by processes which are generating dirty
1825  * data.  It looks at the number of dirty pages in the machine and will force
1826  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1827  * If we're over `background_thresh' then the writeback threads are woken to
1828  * perform some writeout.
1829  */
1830 static int balance_dirty_pages(struct bdi_writeback *wb,
1831 			       unsigned long pages_dirtied, unsigned int flags)
1832 {
1833 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1834 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1835 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1836 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1837 						     &mdtc_stor : NULL;
1838 	struct dirty_throttle_control *sdtc;
1839 	unsigned long nr_dirty;
1840 	long period;
1841 	long pause;
1842 	long max_pause;
1843 	long min_pause;
1844 	int nr_dirtied_pause;
1845 	unsigned long task_ratelimit;
1846 	unsigned long dirty_ratelimit;
1847 	struct backing_dev_info *bdi = wb->bdi;
1848 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1849 	unsigned long start_time = jiffies;
1850 	int ret = 0;
1851 
1852 	for (;;) {
1853 		unsigned long now = jiffies;
1854 
1855 		nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1856 
1857 		balance_domain_limits(gdtc, strictlimit);
1858 		if (mdtc) {
1859 			/*
1860 			 * If @wb belongs to !root memcg, repeat the same
1861 			 * basic calculations for the memcg domain.
1862 			 */
1863 			balance_domain_limits(mdtc, strictlimit);
1864 		}
1865 
1866 		/*
1867 		 * In laptop mode, we wait until hitting the higher threshold
1868 		 * before starting background writeout, and then write out all
1869 		 * the way down to the lower threshold.  So slow writers cause
1870 		 * minimal disk activity.
1871 		 *
1872 		 * In normal mode, we start background writeout at the lower
1873 		 * background_thresh, to keep the amount of dirty memory low.
1874 		 */
1875 		if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1876 		    !writeback_in_progress(wb))
1877 			wb_start_background_writeback(wb);
1878 
1879 		/*
1880 		 * If memcg domain is in effect, @dirty should be under
1881 		 * both global and memcg freerun ceilings.
1882 		 */
1883 		if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1884 			unsigned long intv;
1885 			unsigned long m_intv;
1886 
1887 free_running:
1888 			intv = domain_poll_intv(gdtc, strictlimit);
1889 			m_intv = ULONG_MAX;
1890 
1891 			current->dirty_paused_when = now;
1892 			current->nr_dirtied = 0;
1893 			if (mdtc)
1894 				m_intv = domain_poll_intv(mdtc, strictlimit);
1895 			current->nr_dirtied_pause = min(intv, m_intv);
1896 			break;
1897 		}
1898 
1899 		/* Start writeback even when in laptop mode */
1900 		if (unlikely(!writeback_in_progress(wb)))
1901 			wb_start_background_writeback(wb);
1902 
1903 		mem_cgroup_flush_foreign(wb);
1904 
1905 		/*
1906 		 * Calculate global domain's pos_ratio and select the
1907 		 * global dtc by default.
1908 		 */
1909 		balance_wb_limits(gdtc, strictlimit);
1910 		if (gdtc->freerun)
1911 			goto free_running;
1912 		sdtc = gdtc;
1913 
1914 		if (mdtc) {
1915 			/*
1916 			 * If memcg domain is in effect, calculate its
1917 			 * pos_ratio.  @wb should satisfy constraints from
1918 			 * both global and memcg domains.  Choose the one
1919 			 * w/ lower pos_ratio.
1920 			 */
1921 			balance_wb_limits(mdtc, strictlimit);
1922 			if (mdtc->freerun)
1923 				goto free_running;
1924 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1925 				sdtc = mdtc;
1926 		}
1927 
1928 		wb->dirty_exceeded = gdtc->dirty_exceeded ||
1929 				     (mdtc && mdtc->dirty_exceeded);
1930 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1931 					   BANDWIDTH_INTERVAL))
1932 			__wb_update_bandwidth(gdtc, mdtc, true);
1933 
1934 		/* throttle according to the chosen dtc */
1935 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1936 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1937 							RATELIMIT_CALC_SHIFT;
1938 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1939 		min_pause = wb_min_pause(wb, max_pause,
1940 					 task_ratelimit, dirty_ratelimit,
1941 					 &nr_dirtied_pause);
1942 
1943 		if (unlikely(task_ratelimit == 0)) {
1944 			period = max_pause;
1945 			pause = max_pause;
1946 			goto pause;
1947 		}
1948 		period = HZ * pages_dirtied / task_ratelimit;
1949 		pause = period;
1950 		if (current->dirty_paused_when)
1951 			pause -= now - current->dirty_paused_when;
1952 		/*
1953 		 * For less than 1s think time (ext3/4 may block the dirtier
1954 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1955 		 * however at much less frequency), try to compensate it in
1956 		 * future periods by updating the virtual time; otherwise just
1957 		 * do a reset, as it may be a light dirtier.
1958 		 */
1959 		if (pause < min_pause) {
1960 			trace_balance_dirty_pages(wb,
1961 						  sdtc->thresh,
1962 						  sdtc->bg_thresh,
1963 						  sdtc->dirty,
1964 						  sdtc->wb_thresh,
1965 						  sdtc->wb_dirty,
1966 						  dirty_ratelimit,
1967 						  task_ratelimit,
1968 						  pages_dirtied,
1969 						  period,
1970 						  min(pause, 0L),
1971 						  start_time);
1972 			if (pause < -HZ) {
1973 				current->dirty_paused_when = now;
1974 				current->nr_dirtied = 0;
1975 			} else if (period) {
1976 				current->dirty_paused_when += period;
1977 				current->nr_dirtied = 0;
1978 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1979 				current->nr_dirtied_pause += pages_dirtied;
1980 			break;
1981 		}
1982 		if (unlikely(pause > max_pause)) {
1983 			/* for occasional dropped task_ratelimit */
1984 			now += min(pause - max_pause, max_pause);
1985 			pause = max_pause;
1986 		}
1987 
1988 pause:
1989 		trace_balance_dirty_pages(wb,
1990 					  sdtc->thresh,
1991 					  sdtc->bg_thresh,
1992 					  sdtc->dirty,
1993 					  sdtc->wb_thresh,
1994 					  sdtc->wb_dirty,
1995 					  dirty_ratelimit,
1996 					  task_ratelimit,
1997 					  pages_dirtied,
1998 					  period,
1999 					  pause,
2000 					  start_time);
2001 		if (flags & BDP_ASYNC) {
2002 			ret = -EAGAIN;
2003 			break;
2004 		}
2005 		__set_current_state(TASK_KILLABLE);
2006 		bdi->last_bdp_sleep = jiffies;
2007 		io_schedule_timeout(pause);
2008 
2009 		current->dirty_paused_when = now + pause;
2010 		current->nr_dirtied = 0;
2011 		current->nr_dirtied_pause = nr_dirtied_pause;
2012 
2013 		/*
2014 		 * This is typically equal to (dirty < thresh) and can also
2015 		 * keep "1000+ dd on a slow USB stick" under control.
2016 		 */
2017 		if (task_ratelimit)
2018 			break;
2019 
2020 		/*
2021 		 * In the case of an unresponsive NFS server and the NFS dirty
2022 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
2023 		 * to go through, so that tasks on them still remain responsive.
2024 		 *
2025 		 * In theory 1 page is enough to keep the consumer-producer
2026 		 * pipe going: the flusher cleans 1 page => the task dirties 1
2027 		 * more page. However wb_dirty has accounting errors.  So use
2028 		 * the larger and more IO friendly wb_stat_error.
2029 		 */
2030 		if (sdtc->wb_dirty <= wb_stat_error())
2031 			break;
2032 
2033 		if (fatal_signal_pending(current))
2034 			break;
2035 	}
2036 	return ret;
2037 }
2038 
2039 static DEFINE_PER_CPU(int, bdp_ratelimits);
2040 
2041 /*
2042  * Normal tasks are throttled by
2043  *	loop {
2044  *		dirty tsk->nr_dirtied_pause pages;
2045  *		take a snap in balance_dirty_pages();
2046  *	}
2047  * However there is a worst case. If every task exit immediately when dirtied
2048  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2049  * called to throttle the page dirties. The solution is to save the not yet
2050  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2051  * randomly into the running tasks. This works well for the above worst case,
2052  * as the new task will pick up and accumulate the old task's leaked dirty
2053  * count and eventually get throttled.
2054  */
2055 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2056 
2057 /**
2058  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2059  * @mapping: address_space which was dirtied.
2060  * @flags: BDP flags.
2061  *
2062  * Processes which are dirtying memory should call in here once for each page
2063  * which was newly dirtied.  The function will periodically check the system's
2064  * dirty state and will initiate writeback if needed.
2065  *
2066  * See balance_dirty_pages_ratelimited() for details.
2067  *
2068  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2069  * indicate that memory is out of balance and the caller must wait
2070  * for I/O to complete.  Otherwise, it will return 0 to indicate
2071  * that either memory was already in balance, or it was able to sleep
2072  * until the amount of dirty memory returned to balance.
2073  */
2074 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2075 					unsigned int flags)
2076 {
2077 	struct inode *inode = mapping->host;
2078 	struct backing_dev_info *bdi = inode_to_bdi(inode);
2079 	struct bdi_writeback *wb = NULL;
2080 	int ratelimit;
2081 	int ret = 0;
2082 	int *p;
2083 
2084 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2085 		return ret;
2086 
2087 	if (inode_cgwb_enabled(inode))
2088 		wb = wb_get_create_current(bdi, GFP_KERNEL);
2089 	if (!wb)
2090 		wb = &bdi->wb;
2091 
2092 	ratelimit = current->nr_dirtied_pause;
2093 	if (wb->dirty_exceeded)
2094 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2095 
2096 	preempt_disable();
2097 	/*
2098 	 * This prevents one CPU to accumulate too many dirtied pages without
2099 	 * calling into balance_dirty_pages(), which can happen when there are
2100 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2101 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2102 	 */
2103 	p =  this_cpu_ptr(&bdp_ratelimits);
2104 	if (unlikely(current->nr_dirtied >= ratelimit))
2105 		*p = 0;
2106 	else if (unlikely(*p >= ratelimit_pages)) {
2107 		*p = 0;
2108 		ratelimit = 0;
2109 	}
2110 	/*
2111 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2112 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2113 	 * the dirty throttling and livelock other long-run dirtiers.
2114 	 */
2115 	p = this_cpu_ptr(&dirty_throttle_leaks);
2116 	if (*p > 0 && current->nr_dirtied < ratelimit) {
2117 		unsigned long nr_pages_dirtied;
2118 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2119 		*p -= nr_pages_dirtied;
2120 		current->nr_dirtied += nr_pages_dirtied;
2121 	}
2122 	preempt_enable();
2123 
2124 	if (unlikely(current->nr_dirtied >= ratelimit))
2125 		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2126 
2127 	wb_put(wb);
2128 	return ret;
2129 }
2130 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2131 
2132 /**
2133  * balance_dirty_pages_ratelimited - balance dirty memory state.
2134  * @mapping: address_space which was dirtied.
2135  *
2136  * Processes which are dirtying memory should call in here once for each page
2137  * which was newly dirtied.  The function will periodically check the system's
2138  * dirty state and will initiate writeback if needed.
2139  *
2140  * Once we're over the dirty memory limit we decrease the ratelimiting
2141  * by a lot, to prevent individual processes from overshooting the limit
2142  * by (ratelimit_pages) each.
2143  */
2144 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2145 {
2146 	balance_dirty_pages_ratelimited_flags(mapping, 0);
2147 }
2148 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2149 
2150 /*
2151  * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2152  * and thresh, but it's for background writeback.
2153  */
2154 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2155 {
2156 	struct bdi_writeback *wb = dtc->wb;
2157 
2158 	dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2159 	if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2160 		dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2161 	else
2162 		dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2163 }
2164 
2165 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2166 {
2167 	domain_dirty_avail(dtc, false);
2168 	domain_dirty_limits(dtc);
2169 	if (dtc->dirty > dtc->bg_thresh)
2170 		return true;
2171 
2172 	wb_bg_dirty_limits(dtc);
2173 	if (dtc->wb_dirty > dtc->wb_bg_thresh)
2174 		return true;
2175 
2176 	return false;
2177 }
2178 
2179 /**
2180  * wb_over_bg_thresh - does @wb need to be written back?
2181  * @wb: bdi_writeback of interest
2182  *
2183  * Determines whether background writeback should keep writing @wb or it's
2184  * clean enough.
2185  *
2186  * Return: %true if writeback should continue.
2187  */
2188 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2189 {
2190 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2191 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2192 
2193 	if (domain_over_bg_thresh(&gdtc))
2194 		return true;
2195 
2196 	if (mdtc_valid(&mdtc))
2197 		return domain_over_bg_thresh(&mdtc);
2198 
2199 	return false;
2200 }
2201 
2202 #ifdef CONFIG_SYSCTL
2203 /*
2204  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2205  */
2206 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2207 		void *buffer, size_t *length, loff_t *ppos)
2208 {
2209 	unsigned int old_interval = dirty_writeback_interval;
2210 	int ret;
2211 
2212 	ret = proc_dointvec(table, write, buffer, length, ppos);
2213 
2214 	/*
2215 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2216 	 * and a different non-zero value will wakeup the writeback threads.
2217 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2218 	 * iterate over all bdis and wbs.
2219 	 * The reason we do this is to make the change take effect immediately.
2220 	 */
2221 	if (!ret && write && dirty_writeback_interval &&
2222 		dirty_writeback_interval != old_interval)
2223 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2224 
2225 	return ret;
2226 }
2227 #endif
2228 
2229 void laptop_mode_timer_fn(struct timer_list *t)
2230 {
2231 	struct backing_dev_info *backing_dev_info =
2232 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2233 
2234 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2235 }
2236 
2237 /*
2238  * We've spun up the disk and we're in laptop mode: schedule writeback
2239  * of all dirty data a few seconds from now.  If the flush is already scheduled
2240  * then push it back - the user is still using the disk.
2241  */
2242 void laptop_io_completion(struct backing_dev_info *info)
2243 {
2244 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2245 }
2246 
2247 /*
2248  * We're in laptop mode and we've just synced. The sync's writes will have
2249  * caused another writeback to be scheduled by laptop_io_completion.
2250  * Nothing needs to be written back anymore, so we unschedule the writeback.
2251  */
2252 void laptop_sync_completion(void)
2253 {
2254 	struct backing_dev_info *bdi;
2255 
2256 	rcu_read_lock();
2257 
2258 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2259 		del_timer(&bdi->laptop_mode_wb_timer);
2260 
2261 	rcu_read_unlock();
2262 }
2263 
2264 /*
2265  * If ratelimit_pages is too high then we can get into dirty-data overload
2266  * if a large number of processes all perform writes at the same time.
2267  *
2268  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2269  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2270  * thresholds.
2271  */
2272 
2273 void writeback_set_ratelimit(void)
2274 {
2275 	struct wb_domain *dom = &global_wb_domain;
2276 	unsigned long background_thresh;
2277 	unsigned long dirty_thresh;
2278 
2279 	global_dirty_limits(&background_thresh, &dirty_thresh);
2280 	dom->dirty_limit = dirty_thresh;
2281 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2282 	if (ratelimit_pages < 16)
2283 		ratelimit_pages = 16;
2284 }
2285 
2286 static int page_writeback_cpu_online(unsigned int cpu)
2287 {
2288 	writeback_set_ratelimit();
2289 	return 0;
2290 }
2291 
2292 #ifdef CONFIG_SYSCTL
2293 
2294 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2295 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2296 
2297 static struct ctl_table vm_page_writeback_sysctls[] = {
2298 	{
2299 		.procname   = "dirty_background_ratio",
2300 		.data       = &dirty_background_ratio,
2301 		.maxlen     = sizeof(dirty_background_ratio),
2302 		.mode       = 0644,
2303 		.proc_handler   = dirty_background_ratio_handler,
2304 		.extra1     = SYSCTL_ZERO,
2305 		.extra2     = SYSCTL_ONE_HUNDRED,
2306 	},
2307 	{
2308 		.procname   = "dirty_background_bytes",
2309 		.data       = &dirty_background_bytes,
2310 		.maxlen     = sizeof(dirty_background_bytes),
2311 		.mode       = 0644,
2312 		.proc_handler   = dirty_background_bytes_handler,
2313 		.extra1     = SYSCTL_LONG_ONE,
2314 	},
2315 	{
2316 		.procname   = "dirty_ratio",
2317 		.data       = &vm_dirty_ratio,
2318 		.maxlen     = sizeof(vm_dirty_ratio),
2319 		.mode       = 0644,
2320 		.proc_handler   = dirty_ratio_handler,
2321 		.extra1     = SYSCTL_ZERO,
2322 		.extra2     = SYSCTL_ONE_HUNDRED,
2323 	},
2324 	{
2325 		.procname   = "dirty_bytes",
2326 		.data       = &vm_dirty_bytes,
2327 		.maxlen     = sizeof(vm_dirty_bytes),
2328 		.mode       = 0644,
2329 		.proc_handler   = dirty_bytes_handler,
2330 		.extra1     = (void *)&dirty_bytes_min,
2331 	},
2332 	{
2333 		.procname   = "dirty_writeback_centisecs",
2334 		.data       = &dirty_writeback_interval,
2335 		.maxlen     = sizeof(dirty_writeback_interval),
2336 		.mode       = 0644,
2337 		.proc_handler   = dirty_writeback_centisecs_handler,
2338 	},
2339 	{
2340 		.procname   = "dirty_expire_centisecs",
2341 		.data       = &dirty_expire_interval,
2342 		.maxlen     = sizeof(dirty_expire_interval),
2343 		.mode       = 0644,
2344 		.proc_handler   = proc_dointvec_minmax,
2345 		.extra1     = SYSCTL_ZERO,
2346 	},
2347 #ifdef CONFIG_HIGHMEM
2348 	{
2349 		.procname	= "highmem_is_dirtyable",
2350 		.data		= &vm_highmem_is_dirtyable,
2351 		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2352 		.mode		= 0644,
2353 		.proc_handler	= proc_dointvec_minmax,
2354 		.extra1		= SYSCTL_ZERO,
2355 		.extra2		= SYSCTL_ONE,
2356 	},
2357 #endif
2358 	{
2359 		.procname	= "laptop_mode",
2360 		.data		= &laptop_mode,
2361 		.maxlen		= sizeof(laptop_mode),
2362 		.mode		= 0644,
2363 		.proc_handler	= proc_dointvec_jiffies,
2364 	},
2365 };
2366 #endif
2367 
2368 /*
2369  * Called early on to tune the page writeback dirty limits.
2370  *
2371  * We used to scale dirty pages according to how total memory
2372  * related to pages that could be allocated for buffers.
2373  *
2374  * However, that was when we used "dirty_ratio" to scale with
2375  * all memory, and we don't do that any more. "dirty_ratio"
2376  * is now applied to total non-HIGHPAGE memory, and as such we can't
2377  * get into the old insane situation any more where we had
2378  * large amounts of dirty pages compared to a small amount of
2379  * non-HIGHMEM memory.
2380  *
2381  * But we might still want to scale the dirty_ratio by how
2382  * much memory the box has..
2383  */
2384 void __init page_writeback_init(void)
2385 {
2386 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2387 
2388 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2389 			  page_writeback_cpu_online, NULL);
2390 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2391 			  page_writeback_cpu_online);
2392 #ifdef CONFIG_SYSCTL
2393 	register_sysctl_init("vm", vm_page_writeback_sysctls);
2394 #endif
2395 }
2396 
2397 /**
2398  * tag_pages_for_writeback - tag pages to be written by writeback
2399  * @mapping: address space structure to write
2400  * @start: starting page index
2401  * @end: ending page index (inclusive)
2402  *
2403  * This function scans the page range from @start to @end (inclusive) and tags
2404  * all pages that have DIRTY tag set with a special TOWRITE tag.  The caller
2405  * can then use the TOWRITE tag to identify pages eligible for writeback.
2406  * This mechanism is used to avoid livelocking of writeback by a process
2407  * steadily creating new dirty pages in the file (thus it is important for this
2408  * function to be quick so that it can tag pages faster than a dirtying process
2409  * can create them).
2410  */
2411 void tag_pages_for_writeback(struct address_space *mapping,
2412 			     pgoff_t start, pgoff_t end)
2413 {
2414 	XA_STATE(xas, &mapping->i_pages, start);
2415 	unsigned int tagged = 0;
2416 	void *page;
2417 
2418 	xas_lock_irq(&xas);
2419 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2420 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2421 		if (++tagged % XA_CHECK_SCHED)
2422 			continue;
2423 
2424 		xas_pause(&xas);
2425 		xas_unlock_irq(&xas);
2426 		cond_resched();
2427 		xas_lock_irq(&xas);
2428 	}
2429 	xas_unlock_irq(&xas);
2430 }
2431 EXPORT_SYMBOL(tag_pages_for_writeback);
2432 
2433 static bool folio_prepare_writeback(struct address_space *mapping,
2434 		struct writeback_control *wbc, struct folio *folio)
2435 {
2436 	/*
2437 	 * Folio truncated or invalidated. We can freely skip it then,
2438 	 * even for data integrity operations: the folio has disappeared
2439 	 * concurrently, so there could be no real expectation of this
2440 	 * data integrity operation even if there is now a new, dirty
2441 	 * folio at the same pagecache index.
2442 	 */
2443 	if (unlikely(folio->mapping != mapping))
2444 		return false;
2445 
2446 	/*
2447 	 * Did somebody else write it for us?
2448 	 */
2449 	if (!folio_test_dirty(folio))
2450 		return false;
2451 
2452 	if (folio_test_writeback(folio)) {
2453 		if (wbc->sync_mode == WB_SYNC_NONE)
2454 			return false;
2455 		folio_wait_writeback(folio);
2456 	}
2457 	BUG_ON(folio_test_writeback(folio));
2458 
2459 	if (!folio_clear_dirty_for_io(folio))
2460 		return false;
2461 
2462 	return true;
2463 }
2464 
2465 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2466 {
2467 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2468 		return PAGECACHE_TAG_TOWRITE;
2469 	return PAGECACHE_TAG_DIRTY;
2470 }
2471 
2472 static pgoff_t wbc_end(struct writeback_control *wbc)
2473 {
2474 	if (wbc->range_cyclic)
2475 		return -1;
2476 	return wbc->range_end >> PAGE_SHIFT;
2477 }
2478 
2479 static struct folio *writeback_get_folio(struct address_space *mapping,
2480 		struct writeback_control *wbc)
2481 {
2482 	struct folio *folio;
2483 
2484 retry:
2485 	folio = folio_batch_next(&wbc->fbatch);
2486 	if (!folio) {
2487 		folio_batch_release(&wbc->fbatch);
2488 		cond_resched();
2489 		filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2490 				wbc_to_tag(wbc), &wbc->fbatch);
2491 		folio = folio_batch_next(&wbc->fbatch);
2492 		if (!folio)
2493 			return NULL;
2494 	}
2495 
2496 	folio_lock(folio);
2497 	if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2498 		folio_unlock(folio);
2499 		goto retry;
2500 	}
2501 
2502 	trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2503 	return folio;
2504 }
2505 
2506 /**
2507  * writeback_iter - iterate folio of a mapping for writeback
2508  * @mapping: address space structure to write
2509  * @wbc: writeback context
2510  * @folio: previously iterated folio (%NULL to start)
2511  * @error: in-out pointer for writeback errors (see below)
2512  *
2513  * This function returns the next folio for the writeback operation described by
2514  * @wbc on @mapping and  should be called in a while loop in the ->writepages
2515  * implementation.
2516  *
2517  * To start the writeback operation, %NULL is passed in the @folio argument, and
2518  * for every subsequent iteration the folio returned previously should be passed
2519  * back in.
2520  *
2521  * If there was an error in the per-folio writeback inside the writeback_iter()
2522  * loop, @error should be set to the error value.
2523  *
2524  * Once the writeback described in @wbc has finished, this function will return
2525  * %NULL and if there was an error in any iteration restore it to @error.
2526  *
2527  * Note: callers should not manually break out of the loop using break or goto
2528  * but must keep calling writeback_iter() until it returns %NULL.
2529  *
2530  * Return: the folio to write or %NULL if the loop is done.
2531  */
2532 struct folio *writeback_iter(struct address_space *mapping,
2533 		struct writeback_control *wbc, struct folio *folio, int *error)
2534 {
2535 	if (!folio) {
2536 		folio_batch_init(&wbc->fbatch);
2537 		wbc->saved_err = *error = 0;
2538 
2539 		/*
2540 		 * For range cyclic writeback we remember where we stopped so
2541 		 * that we can continue where we stopped.
2542 		 *
2543 		 * For non-cyclic writeback we always start at the beginning of
2544 		 * the passed in range.
2545 		 */
2546 		if (wbc->range_cyclic)
2547 			wbc->index = mapping->writeback_index;
2548 		else
2549 			wbc->index = wbc->range_start >> PAGE_SHIFT;
2550 
2551 		/*
2552 		 * To avoid livelocks when other processes dirty new pages, we
2553 		 * first tag pages which should be written back and only then
2554 		 * start writing them.
2555 		 *
2556 		 * For data-integrity writeback we have to be careful so that we
2557 		 * do not miss some pages (e.g., because some other process has
2558 		 * cleared the TOWRITE tag we set).  The rule we follow is that
2559 		 * TOWRITE tag can be cleared only by the process clearing the
2560 		 * DIRTY tag (and submitting the page for I/O).
2561 		 */
2562 		if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2563 			tag_pages_for_writeback(mapping, wbc->index,
2564 					wbc_end(wbc));
2565 	} else {
2566 		wbc->nr_to_write -= folio_nr_pages(folio);
2567 
2568 		WARN_ON_ONCE(*error > 0);
2569 
2570 		/*
2571 		 * For integrity writeback we have to keep going until we have
2572 		 * written all the folios we tagged for writeback above, even if
2573 		 * we run past wbc->nr_to_write or encounter errors.
2574 		 * We stash away the first error we encounter in wbc->saved_err
2575 		 * so that it can be retrieved when we're done.  This is because
2576 		 * the file system may still have state to clear for each folio.
2577 		 *
2578 		 * For background writeback we exit as soon as we run past
2579 		 * wbc->nr_to_write or encounter the first error.
2580 		 */
2581 		if (wbc->sync_mode == WB_SYNC_ALL) {
2582 			if (*error && !wbc->saved_err)
2583 				wbc->saved_err = *error;
2584 		} else {
2585 			if (*error || wbc->nr_to_write <= 0)
2586 				goto done;
2587 		}
2588 	}
2589 
2590 	folio = writeback_get_folio(mapping, wbc);
2591 	if (!folio) {
2592 		/*
2593 		 * To avoid deadlocks between range_cyclic writeback and callers
2594 		 * that hold pages in PageWriteback to aggregate I/O until
2595 		 * the writeback iteration finishes, we do not loop back to the
2596 		 * start of the file.  Doing so causes a page lock/page
2597 		 * writeback access order inversion - we should only ever lock
2598 		 * multiple pages in ascending page->index order, and looping
2599 		 * back to the start of the file violates that rule and causes
2600 		 * deadlocks.
2601 		 */
2602 		if (wbc->range_cyclic)
2603 			mapping->writeback_index = 0;
2604 
2605 		/*
2606 		 * Return the first error we encountered (if there was any) to
2607 		 * the caller.
2608 		 */
2609 		*error = wbc->saved_err;
2610 	}
2611 	return folio;
2612 
2613 done:
2614 	if (wbc->range_cyclic)
2615 		mapping->writeback_index = folio_next_index(folio);
2616 	folio_batch_release(&wbc->fbatch);
2617 	return NULL;
2618 }
2619 EXPORT_SYMBOL_GPL(writeback_iter);
2620 
2621 /**
2622  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2623  * @mapping: address space structure to write
2624  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2625  * @writepage: function called for each page
2626  * @data: data passed to writepage function
2627  *
2628  * Return: %0 on success, negative error code otherwise
2629  *
2630  * Note: please use writeback_iter() instead.
2631  */
2632 int write_cache_pages(struct address_space *mapping,
2633 		      struct writeback_control *wbc, writepage_t writepage,
2634 		      void *data)
2635 {
2636 	struct folio *folio = NULL;
2637 	int error;
2638 
2639 	while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2640 		error = writepage(folio, wbc, data);
2641 		if (error == AOP_WRITEPAGE_ACTIVATE) {
2642 			folio_unlock(folio);
2643 			error = 0;
2644 		}
2645 	}
2646 
2647 	return error;
2648 }
2649 EXPORT_SYMBOL(write_cache_pages);
2650 
2651 static int writeback_use_writepage(struct address_space *mapping,
2652 		struct writeback_control *wbc)
2653 {
2654 	struct folio *folio = NULL;
2655 	struct blk_plug plug;
2656 	int err;
2657 
2658 	blk_start_plug(&plug);
2659 	while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2660 		err = mapping->a_ops->writepage(&folio->page, wbc);
2661 		if (err == AOP_WRITEPAGE_ACTIVATE) {
2662 			folio_unlock(folio);
2663 			err = 0;
2664 		}
2665 		mapping_set_error(mapping, err);
2666 	}
2667 	blk_finish_plug(&plug);
2668 
2669 	return err;
2670 }
2671 
2672 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2673 {
2674 	int ret;
2675 	struct bdi_writeback *wb;
2676 
2677 	if (wbc->nr_to_write <= 0)
2678 		return 0;
2679 	wb = inode_to_wb_wbc(mapping->host, wbc);
2680 	wb_bandwidth_estimate_start(wb);
2681 	while (1) {
2682 		if (mapping->a_ops->writepages) {
2683 			ret = mapping->a_ops->writepages(mapping, wbc);
2684 		} else if (mapping->a_ops->writepage) {
2685 			ret = writeback_use_writepage(mapping, wbc);
2686 		} else {
2687 			/* deal with chardevs and other special files */
2688 			ret = 0;
2689 		}
2690 		if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2691 			break;
2692 
2693 		/*
2694 		 * Lacking an allocation context or the locality or writeback
2695 		 * state of any of the inode's pages, throttle based on
2696 		 * writeback activity on the local node. It's as good a
2697 		 * guess as any.
2698 		 */
2699 		reclaim_throttle(NODE_DATA(numa_node_id()),
2700 			VMSCAN_THROTTLE_WRITEBACK);
2701 	}
2702 	/*
2703 	 * Usually few pages are written by now from those we've just submitted
2704 	 * but if there's constant writeback being submitted, this makes sure
2705 	 * writeback bandwidth is updated once in a while.
2706 	 */
2707 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2708 				   BANDWIDTH_INTERVAL))
2709 		wb_update_bandwidth(wb);
2710 	return ret;
2711 }
2712 
2713 /*
2714  * For address_spaces which do not use buffers nor write back.
2715  */
2716 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2717 {
2718 	if (!folio_test_dirty(folio))
2719 		return !folio_test_set_dirty(folio);
2720 	return false;
2721 }
2722 EXPORT_SYMBOL(noop_dirty_folio);
2723 
2724 /*
2725  * Helper function for set_page_dirty family.
2726  *
2727  * Caller must hold folio_memcg_lock().
2728  *
2729  * NOTE: This relies on being atomic wrt interrupts.
2730  */
2731 static void folio_account_dirtied(struct folio *folio,
2732 		struct address_space *mapping)
2733 {
2734 	struct inode *inode = mapping->host;
2735 
2736 	trace_writeback_dirty_folio(folio, mapping);
2737 
2738 	if (mapping_can_writeback(mapping)) {
2739 		struct bdi_writeback *wb;
2740 		long nr = folio_nr_pages(folio);
2741 
2742 		inode_attach_wb(inode, folio);
2743 		wb = inode_to_wb(inode);
2744 
2745 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2746 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2747 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2748 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2749 		wb_stat_mod(wb, WB_DIRTIED, nr);
2750 		task_io_account_write(nr * PAGE_SIZE);
2751 		current->nr_dirtied += nr;
2752 		__this_cpu_add(bdp_ratelimits, nr);
2753 
2754 		mem_cgroup_track_foreign_dirty(folio, wb);
2755 	}
2756 }
2757 
2758 /*
2759  * Helper function for deaccounting dirty page without writeback.
2760  *
2761  * Caller must hold folio_memcg_lock().
2762  */
2763 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2764 {
2765 	long nr = folio_nr_pages(folio);
2766 
2767 	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2768 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2769 	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2770 	task_io_account_cancelled_write(nr * PAGE_SIZE);
2771 }
2772 
2773 /*
2774  * Mark the folio dirty, and set it dirty in the page cache.
2775  *
2776  * If warn is true, then emit a warning if the folio is not uptodate and has
2777  * not been truncated.
2778  *
2779  * The caller must hold folio_memcg_lock().  It is the caller's
2780  * responsibility to prevent the folio from being truncated while
2781  * this function is in progress, although it may have been truncated
2782  * before this function is called.  Most callers have the folio locked.
2783  * A few have the folio blocked from truncation through other means (e.g.
2784  * zap_vma_pages() has it mapped and is holding the page table lock).
2785  * When called from mark_buffer_dirty(), the filesystem should hold a
2786  * reference to the buffer_head that is being marked dirty, which causes
2787  * try_to_free_buffers() to fail.
2788  */
2789 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2790 			     int warn)
2791 {
2792 	unsigned long flags;
2793 
2794 	xa_lock_irqsave(&mapping->i_pages, flags);
2795 	if (folio->mapping) {	/* Race with truncate? */
2796 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2797 		folio_account_dirtied(folio, mapping);
2798 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2799 				PAGECACHE_TAG_DIRTY);
2800 	}
2801 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2802 }
2803 
2804 /**
2805  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2806  * @mapping: Address space this folio belongs to.
2807  * @folio: Folio to be marked as dirty.
2808  *
2809  * Filesystems which do not use buffer heads should call this function
2810  * from their dirty_folio address space operation.  It ignores the
2811  * contents of folio_get_private(), so if the filesystem marks individual
2812  * blocks as dirty, the filesystem should handle that itself.
2813  *
2814  * This is also sometimes used by filesystems which use buffer_heads when
2815  * a single buffer is being dirtied: we want to set the folio dirty in
2816  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2817  * whereas block_dirty_folio() is a "top-down" dirtying.
2818  *
2819  * The caller must ensure this doesn't race with truncation.  Most will
2820  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2821  * folio mapped and the pte lock held, which also locks out truncation.
2822  */
2823 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2824 {
2825 	folio_memcg_lock(folio);
2826 	if (folio_test_set_dirty(folio)) {
2827 		folio_memcg_unlock(folio);
2828 		return false;
2829 	}
2830 
2831 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2832 	folio_memcg_unlock(folio);
2833 
2834 	if (mapping->host) {
2835 		/* !PageAnon && !swapper_space */
2836 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2837 	}
2838 	return true;
2839 }
2840 EXPORT_SYMBOL(filemap_dirty_folio);
2841 
2842 /**
2843  * folio_redirty_for_writepage - Decline to write a dirty folio.
2844  * @wbc: The writeback control.
2845  * @folio: The folio.
2846  *
2847  * When a writepage implementation decides that it doesn't want to write
2848  * @folio for some reason, it should call this function, unlock @folio and
2849  * return 0.
2850  *
2851  * Return: True if we redirtied the folio.  False if someone else dirtied
2852  * it first.
2853  */
2854 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2855 		struct folio *folio)
2856 {
2857 	struct address_space *mapping = folio->mapping;
2858 	long nr = folio_nr_pages(folio);
2859 	bool ret;
2860 
2861 	wbc->pages_skipped += nr;
2862 	ret = filemap_dirty_folio(mapping, folio);
2863 	if (mapping && mapping_can_writeback(mapping)) {
2864 		struct inode *inode = mapping->host;
2865 		struct bdi_writeback *wb;
2866 		struct wb_lock_cookie cookie = {};
2867 
2868 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2869 		current->nr_dirtied -= nr;
2870 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2871 		wb_stat_mod(wb, WB_DIRTIED, -nr);
2872 		unlocked_inode_to_wb_end(inode, &cookie);
2873 	}
2874 	return ret;
2875 }
2876 EXPORT_SYMBOL(folio_redirty_for_writepage);
2877 
2878 /**
2879  * folio_mark_dirty - Mark a folio as being modified.
2880  * @folio: The folio.
2881  *
2882  * The folio may not be truncated while this function is running.
2883  * Holding the folio lock is sufficient to prevent truncation, but some
2884  * callers cannot acquire a sleeping lock.  These callers instead hold
2885  * the page table lock for a page table which contains at least one page
2886  * in this folio.  Truncation will block on the page table lock as it
2887  * unmaps pages before removing the folio from its mapping.
2888  *
2889  * Return: True if the folio was newly dirtied, false if it was already dirty.
2890  */
2891 bool folio_mark_dirty(struct folio *folio)
2892 {
2893 	struct address_space *mapping = folio_mapping(folio);
2894 
2895 	if (likely(mapping)) {
2896 		/*
2897 		 * readahead/folio_deactivate could remain
2898 		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2899 		 * About readahead, if the folio is written, the flags would be
2900 		 * reset. So no problem.
2901 		 * About folio_deactivate, if the folio is redirtied,
2902 		 * the flag will be reset. So no problem. but if the
2903 		 * folio is used by readahead it will confuse readahead
2904 		 * and make it restart the size rampup process. But it's
2905 		 * a trivial problem.
2906 		 */
2907 		if (folio_test_reclaim(folio))
2908 			folio_clear_reclaim(folio);
2909 		return mapping->a_ops->dirty_folio(mapping, folio);
2910 	}
2911 
2912 	return noop_dirty_folio(mapping, folio);
2913 }
2914 EXPORT_SYMBOL(folio_mark_dirty);
2915 
2916 /*
2917  * set_page_dirty() is racy if the caller has no reference against
2918  * page->mapping->host, and if the page is unlocked.  This is because another
2919  * CPU could truncate the page off the mapping and then free the mapping.
2920  *
2921  * Usually, the page _is_ locked, or the caller is a user-space process which
2922  * holds a reference on the inode by having an open file.
2923  *
2924  * In other cases, the page should be locked before running set_page_dirty().
2925  */
2926 int set_page_dirty_lock(struct page *page)
2927 {
2928 	int ret;
2929 
2930 	lock_page(page);
2931 	ret = set_page_dirty(page);
2932 	unlock_page(page);
2933 	return ret;
2934 }
2935 EXPORT_SYMBOL(set_page_dirty_lock);
2936 
2937 /*
2938  * This cancels just the dirty bit on the kernel page itself, it does NOT
2939  * actually remove dirty bits on any mmap's that may be around. It also
2940  * leaves the page tagged dirty, so any sync activity will still find it on
2941  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2942  * look at the dirty bits in the VM.
2943  *
2944  * Doing this should *normally* only ever be done when a page is truncated,
2945  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2946  * this when it notices that somebody has cleaned out all the buffers on a
2947  * page without actually doing it through the VM. Can you say "ext3 is
2948  * horribly ugly"? Thought you could.
2949  */
2950 void __folio_cancel_dirty(struct folio *folio)
2951 {
2952 	struct address_space *mapping = folio_mapping(folio);
2953 
2954 	if (mapping_can_writeback(mapping)) {
2955 		struct inode *inode = mapping->host;
2956 		struct bdi_writeback *wb;
2957 		struct wb_lock_cookie cookie = {};
2958 
2959 		folio_memcg_lock(folio);
2960 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2961 
2962 		if (folio_test_clear_dirty(folio))
2963 			folio_account_cleaned(folio, wb);
2964 
2965 		unlocked_inode_to_wb_end(inode, &cookie);
2966 		folio_memcg_unlock(folio);
2967 	} else {
2968 		folio_clear_dirty(folio);
2969 	}
2970 }
2971 EXPORT_SYMBOL(__folio_cancel_dirty);
2972 
2973 /*
2974  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2975  * Returns true if the folio was previously dirty.
2976  *
2977  * This is for preparing to put the folio under writeout.  We leave
2978  * the folio tagged as dirty in the xarray so that a concurrent
2979  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2980  * The ->writepage implementation will run either folio_start_writeback()
2981  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2982  * and xarray dirty tag back into sync.
2983  *
2984  * This incoherency between the folio's dirty flag and xarray tag is
2985  * unfortunate, but it only exists while the folio is locked.
2986  */
2987 bool folio_clear_dirty_for_io(struct folio *folio)
2988 {
2989 	struct address_space *mapping = folio_mapping(folio);
2990 	bool ret = false;
2991 
2992 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2993 
2994 	if (mapping && mapping_can_writeback(mapping)) {
2995 		struct inode *inode = mapping->host;
2996 		struct bdi_writeback *wb;
2997 		struct wb_lock_cookie cookie = {};
2998 
2999 		/*
3000 		 * Yes, Virginia, this is indeed insane.
3001 		 *
3002 		 * We use this sequence to make sure that
3003 		 *  (a) we account for dirty stats properly
3004 		 *  (b) we tell the low-level filesystem to
3005 		 *      mark the whole folio dirty if it was
3006 		 *      dirty in a pagetable. Only to then
3007 		 *  (c) clean the folio again and return 1 to
3008 		 *      cause the writeback.
3009 		 *
3010 		 * This way we avoid all nasty races with the
3011 		 * dirty bit in multiple places and clearing
3012 		 * them concurrently from different threads.
3013 		 *
3014 		 * Note! Normally the "folio_mark_dirty(folio)"
3015 		 * has no effect on the actual dirty bit - since
3016 		 * that will already usually be set. But we
3017 		 * need the side effects, and it can help us
3018 		 * avoid races.
3019 		 *
3020 		 * We basically use the folio "master dirty bit"
3021 		 * as a serialization point for all the different
3022 		 * threads doing their things.
3023 		 */
3024 		if (folio_mkclean(folio))
3025 			folio_mark_dirty(folio);
3026 		/*
3027 		 * We carefully synchronise fault handlers against
3028 		 * installing a dirty pte and marking the folio dirty
3029 		 * at this point.  We do this by having them hold the
3030 		 * page lock while dirtying the folio, and folios are
3031 		 * always locked coming in here, so we get the desired
3032 		 * exclusion.
3033 		 */
3034 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
3035 		if (folio_test_clear_dirty(folio)) {
3036 			long nr = folio_nr_pages(folio);
3037 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3038 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3039 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3040 			ret = true;
3041 		}
3042 		unlocked_inode_to_wb_end(inode, &cookie);
3043 		return ret;
3044 	}
3045 	return folio_test_clear_dirty(folio);
3046 }
3047 EXPORT_SYMBOL(folio_clear_dirty_for_io);
3048 
3049 static void wb_inode_writeback_start(struct bdi_writeback *wb)
3050 {
3051 	atomic_inc(&wb->writeback_inodes);
3052 }
3053 
3054 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3055 {
3056 	unsigned long flags;
3057 	atomic_dec(&wb->writeback_inodes);
3058 	/*
3059 	 * Make sure estimate of writeback throughput gets updated after
3060 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3061 	 * (which is the interval other bandwidth updates use for batching) so
3062 	 * that if multiple inodes end writeback at a similar time, they get
3063 	 * batched into one bandwidth update.
3064 	 */
3065 	spin_lock_irqsave(&wb->work_lock, flags);
3066 	if (test_bit(WB_registered, &wb->state))
3067 		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3068 	spin_unlock_irqrestore(&wb->work_lock, flags);
3069 }
3070 
3071 bool __folio_end_writeback(struct folio *folio)
3072 {
3073 	long nr = folio_nr_pages(folio);
3074 	struct address_space *mapping = folio_mapping(folio);
3075 	bool ret;
3076 
3077 	folio_memcg_lock(folio);
3078 	if (mapping && mapping_use_writeback_tags(mapping)) {
3079 		struct inode *inode = mapping->host;
3080 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3081 		unsigned long flags;
3082 
3083 		xa_lock_irqsave(&mapping->i_pages, flags);
3084 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3085 		__xa_clear_mark(&mapping->i_pages, folio_index(folio),
3086 					PAGECACHE_TAG_WRITEBACK);
3087 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3088 			struct bdi_writeback *wb = inode_to_wb(inode);
3089 
3090 			wb_stat_mod(wb, WB_WRITEBACK, -nr);
3091 			__wb_writeout_add(wb, nr);
3092 			if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3093 				wb_inode_writeback_end(wb);
3094 		}
3095 
3096 		if (mapping->host && !mapping_tagged(mapping,
3097 						     PAGECACHE_TAG_WRITEBACK))
3098 			sb_clear_inode_writeback(mapping->host);
3099 
3100 		xa_unlock_irqrestore(&mapping->i_pages, flags);
3101 	} else {
3102 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3103 	}
3104 
3105 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3106 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3107 	node_stat_mod_folio(folio, NR_WRITTEN, nr);
3108 	folio_memcg_unlock(folio);
3109 
3110 	return ret;
3111 }
3112 
3113 void __folio_start_writeback(struct folio *folio, bool keep_write)
3114 {
3115 	long nr = folio_nr_pages(folio);
3116 	struct address_space *mapping = folio_mapping(folio);
3117 	int access_ret;
3118 
3119 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3120 
3121 	folio_memcg_lock(folio);
3122 	if (mapping && mapping_use_writeback_tags(mapping)) {
3123 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3124 		struct inode *inode = mapping->host;
3125 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3126 		unsigned long flags;
3127 		bool on_wblist;
3128 
3129 		xas_lock_irqsave(&xas, flags);
3130 		xas_load(&xas);
3131 		folio_test_set_writeback(folio);
3132 
3133 		on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3134 
3135 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3136 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3137 			struct bdi_writeback *wb = inode_to_wb(inode);
3138 
3139 			wb_stat_mod(wb, WB_WRITEBACK, nr);
3140 			if (!on_wblist)
3141 				wb_inode_writeback_start(wb);
3142 		}
3143 
3144 		/*
3145 		 * We can come through here when swapping anonymous
3146 		 * folios, so we don't necessarily have an inode to
3147 		 * track for sync.
3148 		 */
3149 		if (mapping->host && !on_wblist)
3150 			sb_mark_inode_writeback(mapping->host);
3151 		if (!folio_test_dirty(folio))
3152 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3153 		if (!keep_write)
3154 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3155 		xas_unlock_irqrestore(&xas, flags);
3156 	} else {
3157 		folio_test_set_writeback(folio);
3158 	}
3159 
3160 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3161 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3162 	folio_memcg_unlock(folio);
3163 
3164 	access_ret = arch_make_folio_accessible(folio);
3165 	/*
3166 	 * If writeback has been triggered on a page that cannot be made
3167 	 * accessible, it is too late to recover here.
3168 	 */
3169 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3170 }
3171 EXPORT_SYMBOL(__folio_start_writeback);
3172 
3173 /**
3174  * folio_wait_writeback - Wait for a folio to finish writeback.
3175  * @folio: The folio to wait for.
3176  *
3177  * If the folio is currently being written back to storage, wait for the
3178  * I/O to complete.
3179  *
3180  * Context: Sleeps.  Must be called in process context and with
3181  * no spinlocks held.  Caller should hold a reference on the folio.
3182  * If the folio is not locked, writeback may start again after writeback
3183  * has finished.
3184  */
3185 void folio_wait_writeback(struct folio *folio)
3186 {
3187 	while (folio_test_writeback(folio)) {
3188 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3189 		folio_wait_bit(folio, PG_writeback);
3190 	}
3191 }
3192 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3193 
3194 /**
3195  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3196  * @folio: The folio to wait for.
3197  *
3198  * If the folio is currently being written back to storage, wait for the
3199  * I/O to complete or a fatal signal to arrive.
3200  *
3201  * Context: Sleeps.  Must be called in process context and with
3202  * no spinlocks held.  Caller should hold a reference on the folio.
3203  * If the folio is not locked, writeback may start again after writeback
3204  * has finished.
3205  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3206  */
3207 int folio_wait_writeback_killable(struct folio *folio)
3208 {
3209 	while (folio_test_writeback(folio)) {
3210 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3211 		if (folio_wait_bit_killable(folio, PG_writeback))
3212 			return -EINTR;
3213 	}
3214 
3215 	return 0;
3216 }
3217 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3218 
3219 /**
3220  * folio_wait_stable() - wait for writeback to finish, if necessary.
3221  * @folio: The folio to wait on.
3222  *
3223  * This function determines if the given folio is related to a backing
3224  * device that requires folio contents to be held stable during writeback.
3225  * If so, then it will wait for any pending writeback to complete.
3226  *
3227  * Context: Sleeps.  Must be called in process context and with
3228  * no spinlocks held.  Caller should hold a reference on the folio.
3229  * If the folio is not locked, writeback may start again after writeback
3230  * has finished.
3231  */
3232 void folio_wait_stable(struct folio *folio)
3233 {
3234 	if (mapping_stable_writes(folio_mapping(folio)))
3235 		folio_wait_writeback(folio);
3236 }
3237 EXPORT_SYMBOL_GPL(folio_wait_stable);
3238