xref: /linux/mm/page-writeback.c (revision a7edd0e676d51145ae634a2acf7a447e319200fa)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to writing back dirty pages at the
7  * address_space level.
8  *
9  * 10Apr2002	akpm@zip.com.au
10  *		Initial version
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/task_io_accounting_ops.h>
25 #include <linux/blkdev.h>
26 #include <linux/mpage.h>
27 #include <linux/rmap.h>
28 #include <linux/percpu.h>
29 #include <linux/notifier.h>
30 #include <linux/smp.h>
31 #include <linux/sysctl.h>
32 #include <linux/cpu.h>
33 #include <linux/syscalls.h>
34 #include <linux/buffer_head.h>
35 #include <linux/pagevec.h>
36 
37 /*
38  * The maximum number of pages to writeout in a single bdflush/kupdate
39  * operation.  We do this so we don't hold I_LOCK against an inode for
40  * enormous amounts of time, which would block a userspace task which has
41  * been forced to throttle against that inode.  Also, the code reevaluates
42  * the dirty each time it has written this many pages.
43  */
44 #define MAX_WRITEBACK_PAGES	1024
45 
46 /*
47  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
48  * will look to see if it needs to force writeback or throttling.
49  */
50 static long ratelimit_pages = 32;
51 
52 static int dirty_exceeded __cacheline_aligned_in_smp;	/* Dirty mem may be over limit */
53 
54 /*
55  * When balance_dirty_pages decides that the caller needs to perform some
56  * non-background writeback, this is how many pages it will attempt to write.
57  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
58  * large amounts of I/O are submitted.
59  */
60 static inline long sync_writeback_pages(void)
61 {
62 	return ratelimit_pages + ratelimit_pages / 2;
63 }
64 
65 /* The following parameters are exported via /proc/sys/vm */
66 
67 /*
68  * Start background writeback (via pdflush) at this percentage
69  */
70 int dirty_background_ratio = 10;
71 
72 /*
73  * The generator of dirty data starts writeback at this percentage
74  */
75 int vm_dirty_ratio = 40;
76 
77 /*
78  * The interval between `kupdate'-style writebacks, in jiffies
79  */
80 int dirty_writeback_interval = 5 * HZ;
81 
82 /*
83  * The longest number of jiffies for which data is allowed to remain dirty
84  */
85 int dirty_expire_interval = 30 * HZ;
86 
87 /*
88  * Flag that makes the machine dump writes/reads and block dirtyings.
89  */
90 int block_dump;
91 
92 /*
93  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
94  * a full sync is triggered after this time elapses without any disk activity.
95  */
96 int laptop_mode;
97 
98 EXPORT_SYMBOL(laptop_mode);
99 
100 /* End of sysctl-exported parameters */
101 
102 
103 static void background_writeout(unsigned long _min_pages);
104 
105 /*
106  * Work out the current dirty-memory clamping and background writeout
107  * thresholds.
108  *
109  * The main aim here is to lower them aggressively if there is a lot of mapped
110  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
111  * pages.  It is better to clamp down on writers than to start swapping, and
112  * performing lots of scanning.
113  *
114  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
115  *
116  * We don't permit the clamping level to fall below 5% - that is getting rather
117  * excessive.
118  *
119  * We make sure that the background writeout level is below the adjusted
120  * clamping level.
121  */
122 static void
123 get_dirty_limits(long *pbackground, long *pdirty,
124 					struct address_space *mapping)
125 {
126 	int background_ratio;		/* Percentages */
127 	int dirty_ratio;
128 	int unmapped_ratio;
129 	long background;
130 	long dirty;
131 	unsigned long available_memory = vm_total_pages;
132 	struct task_struct *tsk;
133 
134 #ifdef CONFIG_HIGHMEM
135 	/*
136 	 * We always exclude high memory from our count.
137 	 */
138 	available_memory -= totalhigh_pages;
139 #endif
140 
141 
142 	unmapped_ratio = 100 - ((global_page_state(NR_FILE_MAPPED) +
143 				global_page_state(NR_ANON_PAGES)) * 100) /
144 					vm_total_pages;
145 
146 	dirty_ratio = vm_dirty_ratio;
147 	if (dirty_ratio > unmapped_ratio / 2)
148 		dirty_ratio = unmapped_ratio / 2;
149 
150 	if (dirty_ratio < 5)
151 		dirty_ratio = 5;
152 
153 	background_ratio = dirty_background_ratio;
154 	if (background_ratio >= dirty_ratio)
155 		background_ratio = dirty_ratio / 2;
156 
157 	background = (background_ratio * available_memory) / 100;
158 	dirty = (dirty_ratio * available_memory) / 100;
159 	tsk = current;
160 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
161 		background += background / 4;
162 		dirty += dirty / 4;
163 	}
164 	*pbackground = background;
165 	*pdirty = dirty;
166 }
167 
168 /*
169  * balance_dirty_pages() must be called by processes which are generating dirty
170  * data.  It looks at the number of dirty pages in the machine and will force
171  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
172  * If we're over `background_thresh' then pdflush is woken to perform some
173  * writeout.
174  */
175 static void balance_dirty_pages(struct address_space *mapping)
176 {
177 	long nr_reclaimable;
178 	long background_thresh;
179 	long dirty_thresh;
180 	unsigned long pages_written = 0;
181 	unsigned long write_chunk = sync_writeback_pages();
182 
183 	struct backing_dev_info *bdi = mapping->backing_dev_info;
184 
185 	for (;;) {
186 		struct writeback_control wbc = {
187 			.bdi		= bdi,
188 			.sync_mode	= WB_SYNC_NONE,
189 			.older_than_this = NULL,
190 			.nr_to_write	= write_chunk,
191 			.range_cyclic	= 1,
192 		};
193 
194 		get_dirty_limits(&background_thresh, &dirty_thresh, mapping);
195 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
196 					global_page_state(NR_UNSTABLE_NFS);
197 		if (nr_reclaimable + global_page_state(NR_WRITEBACK) <=
198 			dirty_thresh)
199 				break;
200 
201 		if (!dirty_exceeded)
202 			dirty_exceeded = 1;
203 
204 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
205 		 * Unstable writes are a feature of certain networked
206 		 * filesystems (i.e. NFS) in which data may have been
207 		 * written to the server's write cache, but has not yet
208 		 * been flushed to permanent storage.
209 		 */
210 		if (nr_reclaimable) {
211 			writeback_inodes(&wbc);
212 			get_dirty_limits(&background_thresh,
213 					 	&dirty_thresh, mapping);
214 			nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
215 					global_page_state(NR_UNSTABLE_NFS);
216 			if (nr_reclaimable +
217 				global_page_state(NR_WRITEBACK)
218 					<= dirty_thresh)
219 						break;
220 			pages_written += write_chunk - wbc.nr_to_write;
221 			if (pages_written >= write_chunk)
222 				break;		/* We've done our duty */
223 		}
224 		congestion_wait(WRITE, HZ/10);
225 	}
226 
227 	if (nr_reclaimable + global_page_state(NR_WRITEBACK)
228 		<= dirty_thresh && dirty_exceeded)
229 			dirty_exceeded = 0;
230 
231 	if (writeback_in_progress(bdi))
232 		return;		/* pdflush is already working this queue */
233 
234 	/*
235 	 * In laptop mode, we wait until hitting the higher threshold before
236 	 * starting background writeout, and then write out all the way down
237 	 * to the lower threshold.  So slow writers cause minimal disk activity.
238 	 *
239 	 * In normal mode, we start background writeout at the lower
240 	 * background_thresh, to keep the amount of dirty memory low.
241 	 */
242 	if ((laptop_mode && pages_written) ||
243 	     (!laptop_mode && (nr_reclaimable > background_thresh)))
244 		pdflush_operation(background_writeout, 0);
245 }
246 
247 void set_page_dirty_balance(struct page *page)
248 {
249 	if (set_page_dirty(page)) {
250 		struct address_space *mapping = page_mapping(page);
251 
252 		if (mapping)
253 			balance_dirty_pages_ratelimited(mapping);
254 	}
255 }
256 
257 /**
258  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
259  * @mapping: address_space which was dirtied
260  * @nr_pages_dirtied: number of pages which the caller has just dirtied
261  *
262  * Processes which are dirtying memory should call in here once for each page
263  * which was newly dirtied.  The function will periodically check the system's
264  * dirty state and will initiate writeback if needed.
265  *
266  * On really big machines, get_writeback_state is expensive, so try to avoid
267  * calling it too often (ratelimiting).  But once we're over the dirty memory
268  * limit we decrease the ratelimiting by a lot, to prevent individual processes
269  * from overshooting the limit by (ratelimit_pages) each.
270  */
271 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
272 					unsigned long nr_pages_dirtied)
273 {
274 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
275 	unsigned long ratelimit;
276 	unsigned long *p;
277 
278 	ratelimit = ratelimit_pages;
279 	if (dirty_exceeded)
280 		ratelimit = 8;
281 
282 	/*
283 	 * Check the rate limiting. Also, we do not want to throttle real-time
284 	 * tasks in balance_dirty_pages(). Period.
285 	 */
286 	preempt_disable();
287 	p =  &__get_cpu_var(ratelimits);
288 	*p += nr_pages_dirtied;
289 	if (unlikely(*p >= ratelimit)) {
290 		*p = 0;
291 		preempt_enable();
292 		balance_dirty_pages(mapping);
293 		return;
294 	}
295 	preempt_enable();
296 }
297 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
298 
299 void throttle_vm_writeout(gfp_t gfp_mask)
300 {
301 	long background_thresh;
302 	long dirty_thresh;
303 
304 	if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) {
305 		/*
306 		 * The caller might hold locks which can prevent IO completion
307 		 * or progress in the filesystem.  So we cannot just sit here
308 		 * waiting for IO to complete.
309 		 */
310 		congestion_wait(WRITE, HZ/10);
311 		return;
312 	}
313 
314         for ( ; ; ) {
315 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
316 
317                 /*
318                  * Boost the allowable dirty threshold a bit for page
319                  * allocators so they don't get DoS'ed by heavy writers
320                  */
321                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
322 
323                 if (global_page_state(NR_UNSTABLE_NFS) +
324 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
325                         	break;
326                 congestion_wait(WRITE, HZ/10);
327         }
328 }
329 
330 /*
331  * writeback at least _min_pages, and keep writing until the amount of dirty
332  * memory is less than the background threshold, or until we're all clean.
333  */
334 static void background_writeout(unsigned long _min_pages)
335 {
336 	long min_pages = _min_pages;
337 	struct writeback_control wbc = {
338 		.bdi		= NULL,
339 		.sync_mode	= WB_SYNC_NONE,
340 		.older_than_this = NULL,
341 		.nr_to_write	= 0,
342 		.nonblocking	= 1,
343 		.range_cyclic	= 1,
344 	};
345 
346 	for ( ; ; ) {
347 		long background_thresh;
348 		long dirty_thresh;
349 
350 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL);
351 		if (global_page_state(NR_FILE_DIRTY) +
352 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
353 				&& min_pages <= 0)
354 			break;
355 		wbc.encountered_congestion = 0;
356 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
357 		wbc.pages_skipped = 0;
358 		writeback_inodes(&wbc);
359 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
360 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
361 			/* Wrote less than expected */
362 			congestion_wait(WRITE, HZ/10);
363 			if (!wbc.encountered_congestion)
364 				break;
365 		}
366 	}
367 }
368 
369 /*
370  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
371  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
372  * -1 if all pdflush threads were busy.
373  */
374 int wakeup_pdflush(long nr_pages)
375 {
376 	if (nr_pages == 0)
377 		nr_pages = global_page_state(NR_FILE_DIRTY) +
378 				global_page_state(NR_UNSTABLE_NFS);
379 	return pdflush_operation(background_writeout, nr_pages);
380 }
381 
382 static void wb_timer_fn(unsigned long unused);
383 static void laptop_timer_fn(unsigned long unused);
384 
385 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
386 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
387 
388 /*
389  * Periodic writeback of "old" data.
390  *
391  * Define "old": the first time one of an inode's pages is dirtied, we mark the
392  * dirtying-time in the inode's address_space.  So this periodic writeback code
393  * just walks the superblock inode list, writing back any inodes which are
394  * older than a specific point in time.
395  *
396  * Try to run once per dirty_writeback_interval.  But if a writeback event
397  * takes longer than a dirty_writeback_interval interval, then leave a
398  * one-second gap.
399  *
400  * older_than_this takes precedence over nr_to_write.  So we'll only write back
401  * all dirty pages if they are all attached to "old" mappings.
402  */
403 static void wb_kupdate(unsigned long arg)
404 {
405 	unsigned long oldest_jif;
406 	unsigned long start_jif;
407 	unsigned long next_jif;
408 	long nr_to_write;
409 	struct writeback_control wbc = {
410 		.bdi		= NULL,
411 		.sync_mode	= WB_SYNC_NONE,
412 		.older_than_this = &oldest_jif,
413 		.nr_to_write	= 0,
414 		.nonblocking	= 1,
415 		.for_kupdate	= 1,
416 		.range_cyclic	= 1,
417 	};
418 
419 	sync_supers();
420 
421 	oldest_jif = jiffies - dirty_expire_interval;
422 	start_jif = jiffies;
423 	next_jif = start_jif + dirty_writeback_interval;
424 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
425 			global_page_state(NR_UNSTABLE_NFS) +
426 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
427 	while (nr_to_write > 0) {
428 		wbc.encountered_congestion = 0;
429 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
430 		writeback_inodes(&wbc);
431 		if (wbc.nr_to_write > 0) {
432 			if (wbc.encountered_congestion)
433 				congestion_wait(WRITE, HZ/10);
434 			else
435 				break;	/* All the old data is written */
436 		}
437 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
438 	}
439 	if (time_before(next_jif, jiffies + HZ))
440 		next_jif = jiffies + HZ;
441 	if (dirty_writeback_interval)
442 		mod_timer(&wb_timer, next_jif);
443 }
444 
445 /*
446  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
447  */
448 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
449 		struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
450 {
451 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
452 	if (dirty_writeback_interval) {
453 		mod_timer(&wb_timer,
454 			jiffies + dirty_writeback_interval);
455 		} else {
456 		del_timer(&wb_timer);
457 	}
458 	return 0;
459 }
460 
461 static void wb_timer_fn(unsigned long unused)
462 {
463 	if (pdflush_operation(wb_kupdate, 0) < 0)
464 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
465 }
466 
467 static void laptop_flush(unsigned long unused)
468 {
469 	sys_sync();
470 }
471 
472 static void laptop_timer_fn(unsigned long unused)
473 {
474 	pdflush_operation(laptop_flush, 0);
475 }
476 
477 /*
478  * We've spun up the disk and we're in laptop mode: schedule writeback
479  * of all dirty data a few seconds from now.  If the flush is already scheduled
480  * then push it back - the user is still using the disk.
481  */
482 void laptop_io_completion(void)
483 {
484 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
485 }
486 
487 /*
488  * We're in laptop mode and we've just synced. The sync's writes will have
489  * caused another writeback to be scheduled by laptop_io_completion.
490  * Nothing needs to be written back anymore, so we unschedule the writeback.
491  */
492 void laptop_sync_completion(void)
493 {
494 	del_timer(&laptop_mode_wb_timer);
495 }
496 
497 /*
498  * If ratelimit_pages is too high then we can get into dirty-data overload
499  * if a large number of processes all perform writes at the same time.
500  * If it is too low then SMP machines will call the (expensive)
501  * get_writeback_state too often.
502  *
503  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
504  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
505  * thresholds before writeback cuts in.
506  *
507  * But the limit should not be set too high.  Because it also controls the
508  * amount of memory which the balance_dirty_pages() caller has to write back.
509  * If this is too large then the caller will block on the IO queue all the
510  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
511  * will write six megabyte chunks, max.
512  */
513 
514 void writeback_set_ratelimit(void)
515 {
516 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
517 	if (ratelimit_pages < 16)
518 		ratelimit_pages = 16;
519 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
520 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
521 }
522 
523 static int __cpuinit
524 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
525 {
526 	writeback_set_ratelimit();
527 	return NOTIFY_DONE;
528 }
529 
530 static struct notifier_block __cpuinitdata ratelimit_nb = {
531 	.notifier_call	= ratelimit_handler,
532 	.next		= NULL,
533 };
534 
535 /*
536  * Called early on to tune the page writeback dirty limits.
537  *
538  * We used to scale dirty pages according to how total memory
539  * related to pages that could be allocated for buffers (by
540  * comparing nr_free_buffer_pages() to vm_total_pages.
541  *
542  * However, that was when we used "dirty_ratio" to scale with
543  * all memory, and we don't do that any more. "dirty_ratio"
544  * is now applied to total non-HIGHPAGE memory (by subtracting
545  * totalhigh_pages from vm_total_pages), and as such we can't
546  * get into the old insane situation any more where we had
547  * large amounts of dirty pages compared to a small amount of
548  * non-HIGHMEM memory.
549  *
550  * But we might still want to scale the dirty_ratio by how
551  * much memory the box has..
552  */
553 void __init page_writeback_init(void)
554 {
555 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
556 	writeback_set_ratelimit();
557 	register_cpu_notifier(&ratelimit_nb);
558 }
559 
560 /**
561  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
562  * @mapping: address space structure to write
563  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
564  *
565  * This is a library function, which implements the writepages()
566  * address_space_operation.
567  *
568  * If a page is already under I/O, generic_writepages() skips it, even
569  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
570  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
571  * and msync() need to guarantee that all the data which was dirty at the time
572  * the call was made get new I/O started against them.  If wbc->sync_mode is
573  * WB_SYNC_ALL then we were called for data integrity and we must wait for
574  * existing IO to complete.
575  *
576  * Derived from mpage_writepages() - if you fix this you should check that
577  * also!
578  */
579 int generic_writepages(struct address_space *mapping,
580 		       struct writeback_control *wbc)
581 {
582 	struct backing_dev_info *bdi = mapping->backing_dev_info;
583 	int ret = 0;
584 	int done = 0;
585 	int (*writepage)(struct page *page, struct writeback_control *wbc);
586 	struct pagevec pvec;
587 	int nr_pages;
588 	pgoff_t index;
589 	pgoff_t end;		/* Inclusive */
590 	int scanned = 0;
591 	int range_whole = 0;
592 
593 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
594 		wbc->encountered_congestion = 1;
595 		return 0;
596 	}
597 
598 	writepage = mapping->a_ops->writepage;
599 
600 	/* deal with chardevs and other special file */
601 	if (!writepage)
602 		return 0;
603 
604 	pagevec_init(&pvec, 0);
605 	if (wbc->range_cyclic) {
606 		index = mapping->writeback_index; /* Start from prev offset */
607 		end = -1;
608 	} else {
609 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
610 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
611 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
612 			range_whole = 1;
613 		scanned = 1;
614 	}
615 retry:
616 	while (!done && (index <= end) &&
617 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
618 					      PAGECACHE_TAG_DIRTY,
619 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
620 		unsigned i;
621 
622 		scanned = 1;
623 		for (i = 0; i < nr_pages; i++) {
624 			struct page *page = pvec.pages[i];
625 
626 			/*
627 			 * At this point we hold neither mapping->tree_lock nor
628 			 * lock on the page itself: the page may be truncated or
629 			 * invalidated (changing page->mapping to NULL), or even
630 			 * swizzled back from swapper_space to tmpfs file
631 			 * mapping
632 			 */
633 			lock_page(page);
634 
635 			if (unlikely(page->mapping != mapping)) {
636 				unlock_page(page);
637 				continue;
638 			}
639 
640 			if (!wbc->range_cyclic && page->index > end) {
641 				done = 1;
642 				unlock_page(page);
643 				continue;
644 			}
645 
646 			if (wbc->sync_mode != WB_SYNC_NONE)
647 				wait_on_page_writeback(page);
648 
649 			if (PageWriteback(page) ||
650 			    !clear_page_dirty_for_io(page)) {
651 				unlock_page(page);
652 				continue;
653 			}
654 
655 			ret = (*writepage)(page, wbc);
656 			if (ret) {
657 				if (ret == -ENOSPC)
658 					set_bit(AS_ENOSPC, &mapping->flags);
659 				else
660 					set_bit(AS_EIO, &mapping->flags);
661 			}
662 
663 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
664 				unlock_page(page);
665 			if (ret || (--(wbc->nr_to_write) <= 0))
666 				done = 1;
667 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
668 				wbc->encountered_congestion = 1;
669 				done = 1;
670 			}
671 		}
672 		pagevec_release(&pvec);
673 		cond_resched();
674 	}
675 	if (!scanned && !done) {
676 		/*
677 		 * We hit the last page and there is more work to be done: wrap
678 		 * back to the start of the file
679 		 */
680 		scanned = 1;
681 		index = 0;
682 		goto retry;
683 	}
684 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
685 		mapping->writeback_index = index;
686 	return ret;
687 }
688 
689 EXPORT_SYMBOL(generic_writepages);
690 
691 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
692 {
693 	int ret;
694 
695 	if (wbc->nr_to_write <= 0)
696 		return 0;
697 	wbc->for_writepages = 1;
698 	if (mapping->a_ops->writepages)
699 		ret = mapping->a_ops->writepages(mapping, wbc);
700 	else
701 		ret = generic_writepages(mapping, wbc);
702 	wbc->for_writepages = 0;
703 	return ret;
704 }
705 
706 /**
707  * write_one_page - write out a single page and optionally wait on I/O
708  * @page: the page to write
709  * @wait: if true, wait on writeout
710  *
711  * The page must be locked by the caller and will be unlocked upon return.
712  *
713  * write_one_page() returns a negative error code if I/O failed.
714  */
715 int write_one_page(struct page *page, int wait)
716 {
717 	struct address_space *mapping = page->mapping;
718 	int ret = 0;
719 	struct writeback_control wbc = {
720 		.sync_mode = WB_SYNC_ALL,
721 		.nr_to_write = 1,
722 	};
723 
724 	BUG_ON(!PageLocked(page));
725 
726 	if (wait)
727 		wait_on_page_writeback(page);
728 
729 	if (clear_page_dirty_for_io(page)) {
730 		page_cache_get(page);
731 		ret = mapping->a_ops->writepage(page, &wbc);
732 		if (ret == 0 && wait) {
733 			wait_on_page_writeback(page);
734 			if (PageError(page))
735 				ret = -EIO;
736 		}
737 		page_cache_release(page);
738 	} else {
739 		unlock_page(page);
740 	}
741 	return ret;
742 }
743 EXPORT_SYMBOL(write_one_page);
744 
745 /*
746  * For address_spaces which do not use buffers nor write back.
747  */
748 int __set_page_dirty_no_writeback(struct page *page)
749 {
750 	if (!PageDirty(page))
751 		SetPageDirty(page);
752 	return 0;
753 }
754 
755 /*
756  * For address_spaces which do not use buffers.  Just tag the page as dirty in
757  * its radix tree.
758  *
759  * This is also used when a single buffer is being dirtied: we want to set the
760  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
761  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
762  *
763  * Most callers have locked the page, which pins the address_space in memory.
764  * But zap_pte_range() does not lock the page, however in that case the
765  * mapping is pinned by the vma's ->vm_file reference.
766  *
767  * We take care to handle the case where the page was truncated from the
768  * mapping by re-checking page_mapping() insode tree_lock.
769  */
770 int __set_page_dirty_nobuffers(struct page *page)
771 {
772 	if (!TestSetPageDirty(page)) {
773 		struct address_space *mapping = page_mapping(page);
774 		struct address_space *mapping2;
775 
776 		if (!mapping)
777 			return 1;
778 
779 		write_lock_irq(&mapping->tree_lock);
780 		mapping2 = page_mapping(page);
781 		if (mapping2) { /* Race with truncate? */
782 			BUG_ON(mapping2 != mapping);
783 			if (mapping_cap_account_dirty(mapping)) {
784 				__inc_zone_page_state(page, NR_FILE_DIRTY);
785 				task_io_account_write(PAGE_CACHE_SIZE);
786 			}
787 			radix_tree_tag_set(&mapping->page_tree,
788 				page_index(page), PAGECACHE_TAG_DIRTY);
789 		}
790 		write_unlock_irq(&mapping->tree_lock);
791 		if (mapping->host) {
792 			/* !PageAnon && !swapper_space */
793 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
794 		}
795 		return 1;
796 	}
797 	return 0;
798 }
799 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
800 
801 /*
802  * When a writepage implementation decides that it doesn't want to write this
803  * page for some reason, it should redirty the locked page via
804  * redirty_page_for_writepage() and it should then unlock the page and return 0
805  */
806 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
807 {
808 	wbc->pages_skipped++;
809 	return __set_page_dirty_nobuffers(page);
810 }
811 EXPORT_SYMBOL(redirty_page_for_writepage);
812 
813 /*
814  * If the mapping doesn't provide a set_page_dirty a_op, then
815  * just fall through and assume that it wants buffer_heads.
816  */
817 int fastcall set_page_dirty(struct page *page)
818 {
819 	struct address_space *mapping = page_mapping(page);
820 
821 	if (likely(mapping)) {
822 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
823 #ifdef CONFIG_BLOCK
824 		if (!spd)
825 			spd = __set_page_dirty_buffers;
826 #endif
827 		return (*spd)(page);
828 	}
829 	if (!PageDirty(page)) {
830 		if (!TestSetPageDirty(page))
831 			return 1;
832 	}
833 	return 0;
834 }
835 EXPORT_SYMBOL(set_page_dirty);
836 
837 /*
838  * set_page_dirty() is racy if the caller has no reference against
839  * page->mapping->host, and if the page is unlocked.  This is because another
840  * CPU could truncate the page off the mapping and then free the mapping.
841  *
842  * Usually, the page _is_ locked, or the caller is a user-space process which
843  * holds a reference on the inode by having an open file.
844  *
845  * In other cases, the page should be locked before running set_page_dirty().
846  */
847 int set_page_dirty_lock(struct page *page)
848 {
849 	int ret;
850 
851 	lock_page_nosync(page);
852 	ret = set_page_dirty(page);
853 	unlock_page(page);
854 	return ret;
855 }
856 EXPORT_SYMBOL(set_page_dirty_lock);
857 
858 /*
859  * Clear a page's dirty flag, while caring for dirty memory accounting.
860  * Returns true if the page was previously dirty.
861  *
862  * This is for preparing to put the page under writeout.  We leave the page
863  * tagged as dirty in the radix tree so that a concurrent write-for-sync
864  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
865  * implementation will run either set_page_writeback() or set_page_dirty(),
866  * at which stage we bring the page's dirty flag and radix-tree dirty tag
867  * back into sync.
868  *
869  * This incoherency between the page's dirty flag and radix-tree tag is
870  * unfortunate, but it only exists while the page is locked.
871  */
872 int clear_page_dirty_for_io(struct page *page)
873 {
874 	struct address_space *mapping = page_mapping(page);
875 
876 	if (mapping && mapping_cap_account_dirty(mapping)) {
877 		/*
878 		 * Yes, Virginia, this is indeed insane.
879 		 *
880 		 * We use this sequence to make sure that
881 		 *  (a) we account for dirty stats properly
882 		 *  (b) we tell the low-level filesystem to
883 		 *      mark the whole page dirty if it was
884 		 *      dirty in a pagetable. Only to then
885 		 *  (c) clean the page again and return 1 to
886 		 *      cause the writeback.
887 		 *
888 		 * This way we avoid all nasty races with the
889 		 * dirty bit in multiple places and clearing
890 		 * them concurrently from different threads.
891 		 *
892 		 * Note! Normally the "set_page_dirty(page)"
893 		 * has no effect on the actual dirty bit - since
894 		 * that will already usually be set. But we
895 		 * need the side effects, and it can help us
896 		 * avoid races.
897 		 *
898 		 * We basically use the page "master dirty bit"
899 		 * as a serialization point for all the different
900 		 * threads doing their things.
901 		 *
902 		 * FIXME! We still have a race here: if somebody
903 		 * adds the page back to the page tables in
904 		 * between the "page_mkclean()" and the "TestClearPageDirty()",
905 		 * we might have it mapped without the dirty bit set.
906 		 */
907 		if (page_mkclean(page))
908 			set_page_dirty(page);
909 		if (TestClearPageDirty(page)) {
910 			dec_zone_page_state(page, NR_FILE_DIRTY);
911 			return 1;
912 		}
913 		return 0;
914 	}
915 	return TestClearPageDirty(page);
916 }
917 EXPORT_SYMBOL(clear_page_dirty_for_io);
918 
919 int test_clear_page_writeback(struct page *page)
920 {
921 	struct address_space *mapping = page_mapping(page);
922 	int ret;
923 
924 	if (mapping) {
925 		unsigned long flags;
926 
927 		write_lock_irqsave(&mapping->tree_lock, flags);
928 		ret = TestClearPageWriteback(page);
929 		if (ret)
930 			radix_tree_tag_clear(&mapping->page_tree,
931 						page_index(page),
932 						PAGECACHE_TAG_WRITEBACK);
933 		write_unlock_irqrestore(&mapping->tree_lock, flags);
934 	} else {
935 		ret = TestClearPageWriteback(page);
936 	}
937 	return ret;
938 }
939 
940 int test_set_page_writeback(struct page *page)
941 {
942 	struct address_space *mapping = page_mapping(page);
943 	int ret;
944 
945 	if (mapping) {
946 		unsigned long flags;
947 
948 		write_lock_irqsave(&mapping->tree_lock, flags);
949 		ret = TestSetPageWriteback(page);
950 		if (!ret)
951 			radix_tree_tag_set(&mapping->page_tree,
952 						page_index(page),
953 						PAGECACHE_TAG_WRITEBACK);
954 		if (!PageDirty(page))
955 			radix_tree_tag_clear(&mapping->page_tree,
956 						page_index(page),
957 						PAGECACHE_TAG_DIRTY);
958 		write_unlock_irqrestore(&mapping->tree_lock, flags);
959 	} else {
960 		ret = TestSetPageWriteback(page);
961 	}
962 	return ret;
963 
964 }
965 EXPORT_SYMBOL(test_set_page_writeback);
966 
967 /*
968  * Return true if any of the pages in the mapping are marged with the
969  * passed tag.
970  */
971 int mapping_tagged(struct address_space *mapping, int tag)
972 {
973 	unsigned long flags;
974 	int ret;
975 
976 	read_lock_irqsave(&mapping->tree_lock, flags);
977 	ret = radix_tree_tagged(&mapping->page_tree, tag);
978 	read_unlock_irqrestore(&mapping->tree_lock, flags);
979 	return ret;
980 }
981 EXPORT_SYMBOL(mapping_tagged);
982