xref: /linux/mm/page-writeback.c (revision a67ff6a54095e27093ea501fb143fefe51a536c2)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38 
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE		max(HZ/5, 1)
43 
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
48 
49 #define RATELIMIT_CALC_SHIFT	10
50 
51 /*
52  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53  * will look to see if it needs to force writeback or throttling.
54  */
55 static long ratelimit_pages = 32;
56 
57 /* The following parameters are exported via /proc/sys/vm */
58 
59 /*
60  * Start background writeback (via writeback threads) at this percentage
61  */
62 int dirty_background_ratio = 10;
63 
64 /*
65  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66  * dirty_background_ratio * the amount of dirtyable memory
67  */
68 unsigned long dirty_background_bytes;
69 
70 /*
71  * free highmem will not be subtracted from the total free memory
72  * for calculating free ratios if vm_highmem_is_dirtyable is true
73  */
74 int vm_highmem_is_dirtyable;
75 
76 /*
77  * The generator of dirty data starts writeback at this percentage
78  */
79 int vm_dirty_ratio = 20;
80 
81 /*
82  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83  * vm_dirty_ratio * the amount of dirtyable memory
84  */
85 unsigned long vm_dirty_bytes;
86 
87 /*
88  * The interval between `kupdate'-style writebacks
89  */
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91 
92 /*
93  * The longest time for which data is allowed to remain dirty
94  */
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96 
97 /*
98  * Flag that makes the machine dump writes/reads and block dirtyings.
99  */
100 int block_dump;
101 
102 /*
103  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104  * a full sync is triggered after this time elapses without any disk activity.
105  */
106 int laptop_mode;
107 
108 EXPORT_SYMBOL(laptop_mode);
109 
110 /* End of sysctl-exported parameters */
111 
112 unsigned long global_dirty_limit;
113 
114 /*
115  * Scale the writeback cache size proportional to the relative writeout speeds.
116  *
117  * We do this by keeping a floating proportion between BDIs, based on page
118  * writeback completions [end_page_writeback()]. Those devices that write out
119  * pages fastest will get the larger share, while the slower will get a smaller
120  * share.
121  *
122  * We use page writeout completions because we are interested in getting rid of
123  * dirty pages. Having them written out is the primary goal.
124  *
125  * We introduce a concept of time, a period over which we measure these events,
126  * because demand can/will vary over time. The length of this period itself is
127  * measured in page writeback completions.
128  *
129  */
130 static struct prop_descriptor vm_completions;
131 static struct prop_descriptor vm_dirties;
132 
133 /*
134  * couple the period to the dirty_ratio:
135  *
136  *   period/2 ~ roundup_pow_of_two(dirty limit)
137  */
138 static int calc_period_shift(void)
139 {
140 	unsigned long dirty_total;
141 
142 	if (vm_dirty_bytes)
143 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
144 	else
145 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
146 				100;
147 	return 2 + ilog2(dirty_total - 1);
148 }
149 
150 /*
151  * update the period when the dirty threshold changes.
152  */
153 static void update_completion_period(void)
154 {
155 	int shift = calc_period_shift();
156 	prop_change_shift(&vm_completions, shift);
157 	prop_change_shift(&vm_dirties, shift);
158 
159 	writeback_set_ratelimit();
160 }
161 
162 int dirty_background_ratio_handler(struct ctl_table *table, int write,
163 		void __user *buffer, size_t *lenp,
164 		loff_t *ppos)
165 {
166 	int ret;
167 
168 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
169 	if (ret == 0 && write)
170 		dirty_background_bytes = 0;
171 	return ret;
172 }
173 
174 int dirty_background_bytes_handler(struct ctl_table *table, int write,
175 		void __user *buffer, size_t *lenp,
176 		loff_t *ppos)
177 {
178 	int ret;
179 
180 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
181 	if (ret == 0 && write)
182 		dirty_background_ratio = 0;
183 	return ret;
184 }
185 
186 int dirty_ratio_handler(struct ctl_table *table, int write,
187 		void __user *buffer, size_t *lenp,
188 		loff_t *ppos)
189 {
190 	int old_ratio = vm_dirty_ratio;
191 	int ret;
192 
193 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
194 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
195 		update_completion_period();
196 		vm_dirty_bytes = 0;
197 	}
198 	return ret;
199 }
200 
201 
202 int dirty_bytes_handler(struct ctl_table *table, int write,
203 		void __user *buffer, size_t *lenp,
204 		loff_t *ppos)
205 {
206 	unsigned long old_bytes = vm_dirty_bytes;
207 	int ret;
208 
209 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
210 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
211 		update_completion_period();
212 		vm_dirty_ratio = 0;
213 	}
214 	return ret;
215 }
216 
217 /*
218  * Increment the BDI's writeout completion count and the global writeout
219  * completion count. Called from test_clear_page_writeback().
220  */
221 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
222 {
223 	__inc_bdi_stat(bdi, BDI_WRITTEN);
224 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
225 			      bdi->max_prop_frac);
226 }
227 
228 void bdi_writeout_inc(struct backing_dev_info *bdi)
229 {
230 	unsigned long flags;
231 
232 	local_irq_save(flags);
233 	__bdi_writeout_inc(bdi);
234 	local_irq_restore(flags);
235 }
236 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
237 
238 void task_dirty_inc(struct task_struct *tsk)
239 {
240 	prop_inc_single(&vm_dirties, &tsk->dirties);
241 }
242 
243 /*
244  * Obtain an accurate fraction of the BDI's portion.
245  */
246 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
247 		long *numerator, long *denominator)
248 {
249 	prop_fraction_percpu(&vm_completions, &bdi->completions,
250 				numerator, denominator);
251 }
252 
253 /*
254  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
255  * registered backing devices, which, for obvious reasons, can not
256  * exceed 100%.
257  */
258 static unsigned int bdi_min_ratio;
259 
260 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
261 {
262 	int ret = 0;
263 
264 	spin_lock_bh(&bdi_lock);
265 	if (min_ratio > bdi->max_ratio) {
266 		ret = -EINVAL;
267 	} else {
268 		min_ratio -= bdi->min_ratio;
269 		if (bdi_min_ratio + min_ratio < 100) {
270 			bdi_min_ratio += min_ratio;
271 			bdi->min_ratio += min_ratio;
272 		} else {
273 			ret = -EINVAL;
274 		}
275 	}
276 	spin_unlock_bh(&bdi_lock);
277 
278 	return ret;
279 }
280 
281 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
282 {
283 	int ret = 0;
284 
285 	if (max_ratio > 100)
286 		return -EINVAL;
287 
288 	spin_lock_bh(&bdi_lock);
289 	if (bdi->min_ratio > max_ratio) {
290 		ret = -EINVAL;
291 	} else {
292 		bdi->max_ratio = max_ratio;
293 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
294 	}
295 	spin_unlock_bh(&bdi_lock);
296 
297 	return ret;
298 }
299 EXPORT_SYMBOL(bdi_set_max_ratio);
300 
301 /*
302  * Work out the current dirty-memory clamping and background writeout
303  * thresholds.
304  *
305  * The main aim here is to lower them aggressively if there is a lot of mapped
306  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
307  * pages.  It is better to clamp down on writers than to start swapping, and
308  * performing lots of scanning.
309  *
310  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
311  *
312  * We don't permit the clamping level to fall below 5% - that is getting rather
313  * excessive.
314  *
315  * We make sure that the background writeout level is below the adjusted
316  * clamping level.
317  */
318 
319 static unsigned long highmem_dirtyable_memory(unsigned long total)
320 {
321 #ifdef CONFIG_HIGHMEM
322 	int node;
323 	unsigned long x = 0;
324 
325 	for_each_node_state(node, N_HIGH_MEMORY) {
326 		struct zone *z =
327 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
328 
329 		x += zone_page_state(z, NR_FREE_PAGES) +
330 		     zone_reclaimable_pages(z);
331 	}
332 	/*
333 	 * Make sure that the number of highmem pages is never larger
334 	 * than the number of the total dirtyable memory. This can only
335 	 * occur in very strange VM situations but we want to make sure
336 	 * that this does not occur.
337 	 */
338 	return min(x, total);
339 #else
340 	return 0;
341 #endif
342 }
343 
344 /**
345  * determine_dirtyable_memory - amount of memory that may be used
346  *
347  * Returns the numebr of pages that can currently be freed and used
348  * by the kernel for direct mappings.
349  */
350 unsigned long determine_dirtyable_memory(void)
351 {
352 	unsigned long x;
353 
354 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
355 
356 	if (!vm_highmem_is_dirtyable)
357 		x -= highmem_dirtyable_memory(x);
358 
359 	return x + 1;	/* Ensure that we never return 0 */
360 }
361 
362 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
363 					   unsigned long bg_thresh)
364 {
365 	return (thresh + bg_thresh) / 2;
366 }
367 
368 static unsigned long hard_dirty_limit(unsigned long thresh)
369 {
370 	return max(thresh, global_dirty_limit);
371 }
372 
373 /*
374  * global_dirty_limits - background-writeback and dirty-throttling thresholds
375  *
376  * Calculate the dirty thresholds based on sysctl parameters
377  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
378  * - vm.dirty_ratio             or  vm.dirty_bytes
379  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
380  * real-time tasks.
381  */
382 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
383 {
384 	unsigned long background;
385 	unsigned long dirty;
386 	unsigned long uninitialized_var(available_memory);
387 	struct task_struct *tsk;
388 
389 	if (!vm_dirty_bytes || !dirty_background_bytes)
390 		available_memory = determine_dirtyable_memory();
391 
392 	if (vm_dirty_bytes)
393 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
394 	else
395 		dirty = (vm_dirty_ratio * available_memory) / 100;
396 
397 	if (dirty_background_bytes)
398 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
399 	else
400 		background = (dirty_background_ratio * available_memory) / 100;
401 
402 	if (background >= dirty)
403 		background = dirty / 2;
404 	tsk = current;
405 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
406 		background += background / 4;
407 		dirty += dirty / 4;
408 	}
409 	*pbackground = background;
410 	*pdirty = dirty;
411 	trace_global_dirty_state(background, dirty);
412 }
413 
414 /**
415  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
416  * @bdi: the backing_dev_info to query
417  * @dirty: global dirty limit in pages
418  *
419  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
420  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
421  * And the "limit" in the name is not seriously taken as hard limit in
422  * balance_dirty_pages().
423  *
424  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
425  * - starving fast devices
426  * - piling up dirty pages (that will take long time to sync) on slow devices
427  *
428  * The bdi's share of dirty limit will be adapting to its throughput and
429  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
430  */
431 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
432 {
433 	u64 bdi_dirty;
434 	long numerator, denominator;
435 
436 	/*
437 	 * Calculate this BDI's share of the dirty ratio.
438 	 */
439 	bdi_writeout_fraction(bdi, &numerator, &denominator);
440 
441 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
442 	bdi_dirty *= numerator;
443 	do_div(bdi_dirty, denominator);
444 
445 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
446 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
447 		bdi_dirty = dirty * bdi->max_ratio / 100;
448 
449 	return bdi_dirty;
450 }
451 
452 /*
453  * Dirty position control.
454  *
455  * (o) global/bdi setpoints
456  *
457  * We want the dirty pages be balanced around the global/bdi setpoints.
458  * When the number of dirty pages is higher/lower than the setpoint, the
459  * dirty position control ratio (and hence task dirty ratelimit) will be
460  * decreased/increased to bring the dirty pages back to the setpoint.
461  *
462  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
463  *
464  *     if (dirty < setpoint) scale up   pos_ratio
465  *     if (dirty > setpoint) scale down pos_ratio
466  *
467  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
468  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
469  *
470  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
471  *
472  * (o) global control line
473  *
474  *     ^ pos_ratio
475  *     |
476  *     |            |<===== global dirty control scope ======>|
477  * 2.0 .............*
478  *     |            .*
479  *     |            . *
480  *     |            .   *
481  *     |            .     *
482  *     |            .        *
483  *     |            .            *
484  * 1.0 ................................*
485  *     |            .                  .     *
486  *     |            .                  .          *
487  *     |            .                  .              *
488  *     |            .                  .                 *
489  *     |            .                  .                    *
490  *   0 +------------.------------------.----------------------*------------->
491  *           freerun^          setpoint^                 limit^   dirty pages
492  *
493  * (o) bdi control line
494  *
495  *     ^ pos_ratio
496  *     |
497  *     |            *
498  *     |              *
499  *     |                *
500  *     |                  *
501  *     |                    * |<=========== span ============>|
502  * 1.0 .......................*
503  *     |                      . *
504  *     |                      .   *
505  *     |                      .     *
506  *     |                      .       *
507  *     |                      .         *
508  *     |                      .           *
509  *     |                      .             *
510  *     |                      .               *
511  *     |                      .                 *
512  *     |                      .                   *
513  *     |                      .                     *
514  * 1/4 ...............................................* * * * * * * * * * * *
515  *     |                      .                         .
516  *     |                      .                           .
517  *     |                      .                             .
518  *   0 +----------------------.-------------------------------.------------->
519  *                bdi_setpoint^                    x_intercept^
520  *
521  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
522  * be smoothly throttled down to normal if it starts high in situations like
523  * - start writing to a slow SD card and a fast disk at the same time. The SD
524  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
525  * - the bdi dirty thresh drops quickly due to change of JBOD workload
526  */
527 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
528 					unsigned long thresh,
529 					unsigned long bg_thresh,
530 					unsigned long dirty,
531 					unsigned long bdi_thresh,
532 					unsigned long bdi_dirty)
533 {
534 	unsigned long write_bw = bdi->avg_write_bandwidth;
535 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
536 	unsigned long limit = hard_dirty_limit(thresh);
537 	unsigned long x_intercept;
538 	unsigned long setpoint;		/* dirty pages' target balance point */
539 	unsigned long bdi_setpoint;
540 	unsigned long span;
541 	long long pos_ratio;		/* for scaling up/down the rate limit */
542 	long x;
543 
544 	if (unlikely(dirty >= limit))
545 		return 0;
546 
547 	/*
548 	 * global setpoint
549 	 *
550 	 *                           setpoint - dirty 3
551 	 *        f(dirty) := 1.0 + (----------------)
552 	 *                           limit - setpoint
553 	 *
554 	 * it's a 3rd order polynomial that subjects to
555 	 *
556 	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
557 	 * (2) f(setpoint) = 1.0 => the balance point
558 	 * (3) f(limit)    = 0   => the hard limit
559 	 * (4) df/dx      <= 0	 => negative feedback control
560 	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
561 	 *     => fast response on large errors; small oscillation near setpoint
562 	 */
563 	setpoint = (freerun + limit) / 2;
564 	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
565 		    limit - setpoint + 1);
566 	pos_ratio = x;
567 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
568 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
569 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
570 
571 	/*
572 	 * We have computed basic pos_ratio above based on global situation. If
573 	 * the bdi is over/under its share of dirty pages, we want to scale
574 	 * pos_ratio further down/up. That is done by the following mechanism.
575 	 */
576 
577 	/*
578 	 * bdi setpoint
579 	 *
580 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
581 	 *
582 	 *                        x_intercept - bdi_dirty
583 	 *                     := --------------------------
584 	 *                        x_intercept - bdi_setpoint
585 	 *
586 	 * The main bdi control line is a linear function that subjects to
587 	 *
588 	 * (1) f(bdi_setpoint) = 1.0
589 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
590 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
591 	 *
592 	 * For single bdi case, the dirty pages are observed to fluctuate
593 	 * regularly within range
594 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
595 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
596 	 * fluctuation range for pos_ratio.
597 	 *
598 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
599 	 * own size, so move the slope over accordingly and choose a slope that
600 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
601 	 */
602 	if (unlikely(bdi_thresh > thresh))
603 		bdi_thresh = thresh;
604 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
605 	/*
606 	 * scale global setpoint to bdi's:
607 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
608 	 */
609 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
610 	bdi_setpoint = setpoint * (u64)x >> 16;
611 	/*
612 	 * Use span=(8*write_bw) in single bdi case as indicated by
613 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
614 	 *
615 	 *        bdi_thresh                    thresh - bdi_thresh
616 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
617 	 *          thresh                            thresh
618 	 */
619 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
620 	x_intercept = bdi_setpoint + span;
621 
622 	if (bdi_dirty < x_intercept - span / 4) {
623 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
624 				    x_intercept - bdi_setpoint + 1);
625 	} else
626 		pos_ratio /= 4;
627 
628 	/*
629 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
630 	 * It may push the desired control point of global dirty pages higher
631 	 * than setpoint.
632 	 */
633 	x_intercept = bdi_thresh / 2;
634 	if (bdi_dirty < x_intercept) {
635 		if (bdi_dirty > x_intercept / 8)
636 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
637 		else
638 			pos_ratio *= 8;
639 	}
640 
641 	return pos_ratio;
642 }
643 
644 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
645 				       unsigned long elapsed,
646 				       unsigned long written)
647 {
648 	const unsigned long period = roundup_pow_of_two(3 * HZ);
649 	unsigned long avg = bdi->avg_write_bandwidth;
650 	unsigned long old = bdi->write_bandwidth;
651 	u64 bw;
652 
653 	/*
654 	 * bw = written * HZ / elapsed
655 	 *
656 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
657 	 * write_bandwidth = ---------------------------------------------------
658 	 *                                          period
659 	 */
660 	bw = written - bdi->written_stamp;
661 	bw *= HZ;
662 	if (unlikely(elapsed > period)) {
663 		do_div(bw, elapsed);
664 		avg = bw;
665 		goto out;
666 	}
667 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
668 	bw >>= ilog2(period);
669 
670 	/*
671 	 * one more level of smoothing, for filtering out sudden spikes
672 	 */
673 	if (avg > old && old >= (unsigned long)bw)
674 		avg -= (avg - old) >> 3;
675 
676 	if (avg < old && old <= (unsigned long)bw)
677 		avg += (old - avg) >> 3;
678 
679 out:
680 	bdi->write_bandwidth = bw;
681 	bdi->avg_write_bandwidth = avg;
682 }
683 
684 /*
685  * The global dirtyable memory and dirty threshold could be suddenly knocked
686  * down by a large amount (eg. on the startup of KVM in a swapless system).
687  * This may throw the system into deep dirty exceeded state and throttle
688  * heavy/light dirtiers alike. To retain good responsiveness, maintain
689  * global_dirty_limit for tracking slowly down to the knocked down dirty
690  * threshold.
691  */
692 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
693 {
694 	unsigned long limit = global_dirty_limit;
695 
696 	/*
697 	 * Follow up in one step.
698 	 */
699 	if (limit < thresh) {
700 		limit = thresh;
701 		goto update;
702 	}
703 
704 	/*
705 	 * Follow down slowly. Use the higher one as the target, because thresh
706 	 * may drop below dirty. This is exactly the reason to introduce
707 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
708 	 */
709 	thresh = max(thresh, dirty);
710 	if (limit > thresh) {
711 		limit -= (limit - thresh) >> 5;
712 		goto update;
713 	}
714 	return;
715 update:
716 	global_dirty_limit = limit;
717 }
718 
719 static void global_update_bandwidth(unsigned long thresh,
720 				    unsigned long dirty,
721 				    unsigned long now)
722 {
723 	static DEFINE_SPINLOCK(dirty_lock);
724 	static unsigned long update_time;
725 
726 	/*
727 	 * check locklessly first to optimize away locking for the most time
728 	 */
729 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
730 		return;
731 
732 	spin_lock(&dirty_lock);
733 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
734 		update_dirty_limit(thresh, dirty);
735 		update_time = now;
736 	}
737 	spin_unlock(&dirty_lock);
738 }
739 
740 /*
741  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
742  *
743  * Normal bdi tasks will be curbed at or below it in long term.
744  * Obviously it should be around (write_bw / N) when there are N dd tasks.
745  */
746 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
747 				       unsigned long thresh,
748 				       unsigned long bg_thresh,
749 				       unsigned long dirty,
750 				       unsigned long bdi_thresh,
751 				       unsigned long bdi_dirty,
752 				       unsigned long dirtied,
753 				       unsigned long elapsed)
754 {
755 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
756 	unsigned long limit = hard_dirty_limit(thresh);
757 	unsigned long setpoint = (freerun + limit) / 2;
758 	unsigned long write_bw = bdi->avg_write_bandwidth;
759 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
760 	unsigned long dirty_rate;
761 	unsigned long task_ratelimit;
762 	unsigned long balanced_dirty_ratelimit;
763 	unsigned long pos_ratio;
764 	unsigned long step;
765 	unsigned long x;
766 
767 	/*
768 	 * The dirty rate will match the writeout rate in long term, except
769 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
770 	 */
771 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
772 
773 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
774 				       bdi_thresh, bdi_dirty);
775 	/*
776 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
777 	 */
778 	task_ratelimit = (u64)dirty_ratelimit *
779 					pos_ratio >> RATELIMIT_CALC_SHIFT;
780 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
781 
782 	/*
783 	 * A linear estimation of the "balanced" throttle rate. The theory is,
784 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
785 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
786 	 * formula will yield the balanced rate limit (write_bw / N).
787 	 *
788 	 * Note that the expanded form is not a pure rate feedback:
789 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
790 	 * but also takes pos_ratio into account:
791 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
792 	 *
793 	 * (1) is not realistic because pos_ratio also takes part in balancing
794 	 * the dirty rate.  Consider the state
795 	 *	pos_ratio = 0.5						     (3)
796 	 *	rate = 2 * (write_bw / N)				     (4)
797 	 * If (1) is used, it will stuck in that state! Because each dd will
798 	 * be throttled at
799 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
800 	 * yielding
801 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
802 	 * put (6) into (1) we get
803 	 *	rate_(i+1) = rate_(i)					     (7)
804 	 *
805 	 * So we end up using (2) to always keep
806 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
807 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
808 	 * pos_ratio is able to drive itself to 1.0, which is not only where
809 	 * the dirty count meet the setpoint, but also where the slope of
810 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
811 	 */
812 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
813 					   dirty_rate | 1);
814 
815 	/*
816 	 * We could safely do this and return immediately:
817 	 *
818 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
819 	 *
820 	 * However to get a more stable dirty_ratelimit, the below elaborated
821 	 * code makes use of task_ratelimit to filter out sigular points and
822 	 * limit the step size.
823 	 *
824 	 * The below code essentially only uses the relative value of
825 	 *
826 	 *	task_ratelimit - dirty_ratelimit
827 	 *	= (pos_ratio - 1) * dirty_ratelimit
828 	 *
829 	 * which reflects the direction and size of dirty position error.
830 	 */
831 
832 	/*
833 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
834 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
835 	 * For example, when
836 	 * - dirty_ratelimit > balanced_dirty_ratelimit
837 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
838 	 * lowering dirty_ratelimit will help meet both the position and rate
839 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
840 	 * only help meet the rate target. After all, what the users ultimately
841 	 * feel and care are stable dirty rate and small position error.
842 	 *
843 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
844 	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
845 	 * keeps jumping around randomly and can even leap far away at times
846 	 * due to the small 200ms estimation period of dirty_rate (we want to
847 	 * keep that period small to reduce time lags).
848 	 */
849 	step = 0;
850 	if (dirty < setpoint) {
851 		x = min(bdi->balanced_dirty_ratelimit,
852 			 min(balanced_dirty_ratelimit, task_ratelimit));
853 		if (dirty_ratelimit < x)
854 			step = x - dirty_ratelimit;
855 	} else {
856 		x = max(bdi->balanced_dirty_ratelimit,
857 			 max(balanced_dirty_ratelimit, task_ratelimit));
858 		if (dirty_ratelimit > x)
859 			step = dirty_ratelimit - x;
860 	}
861 
862 	/*
863 	 * Don't pursue 100% rate matching. It's impossible since the balanced
864 	 * rate itself is constantly fluctuating. So decrease the track speed
865 	 * when it gets close to the target. Helps eliminate pointless tremors.
866 	 */
867 	step >>= dirty_ratelimit / (2 * step + 1);
868 	/*
869 	 * Limit the tracking speed to avoid overshooting.
870 	 */
871 	step = (step + 7) / 8;
872 
873 	if (dirty_ratelimit < balanced_dirty_ratelimit)
874 		dirty_ratelimit += step;
875 	else
876 		dirty_ratelimit -= step;
877 
878 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
879 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
880 
881 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
882 }
883 
884 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
885 			    unsigned long thresh,
886 			    unsigned long bg_thresh,
887 			    unsigned long dirty,
888 			    unsigned long bdi_thresh,
889 			    unsigned long bdi_dirty,
890 			    unsigned long start_time)
891 {
892 	unsigned long now = jiffies;
893 	unsigned long elapsed = now - bdi->bw_time_stamp;
894 	unsigned long dirtied;
895 	unsigned long written;
896 
897 	/*
898 	 * rate-limit, only update once every 200ms.
899 	 */
900 	if (elapsed < BANDWIDTH_INTERVAL)
901 		return;
902 
903 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
904 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
905 
906 	/*
907 	 * Skip quiet periods when disk bandwidth is under-utilized.
908 	 * (at least 1s idle time between two flusher runs)
909 	 */
910 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
911 		goto snapshot;
912 
913 	if (thresh) {
914 		global_update_bandwidth(thresh, dirty, now);
915 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
916 					   bdi_thresh, bdi_dirty,
917 					   dirtied, elapsed);
918 	}
919 	bdi_update_write_bandwidth(bdi, elapsed, written);
920 
921 snapshot:
922 	bdi->dirtied_stamp = dirtied;
923 	bdi->written_stamp = written;
924 	bdi->bw_time_stamp = now;
925 }
926 
927 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
928 				 unsigned long thresh,
929 				 unsigned long bg_thresh,
930 				 unsigned long dirty,
931 				 unsigned long bdi_thresh,
932 				 unsigned long bdi_dirty,
933 				 unsigned long start_time)
934 {
935 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
936 		return;
937 	spin_lock(&bdi->wb.list_lock);
938 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
939 			       bdi_thresh, bdi_dirty, start_time);
940 	spin_unlock(&bdi->wb.list_lock);
941 }
942 
943 /*
944  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
945  * will look to see if it needs to start dirty throttling.
946  *
947  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
948  * global_page_state() too often. So scale it near-sqrt to the safety margin
949  * (the number of pages we may dirty without exceeding the dirty limits).
950  */
951 static unsigned long dirty_poll_interval(unsigned long dirty,
952 					 unsigned long thresh)
953 {
954 	if (thresh > dirty)
955 		return 1UL << (ilog2(thresh - dirty) >> 1);
956 
957 	return 1;
958 }
959 
960 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
961 				   unsigned long bdi_dirty)
962 {
963 	unsigned long bw = bdi->avg_write_bandwidth;
964 	unsigned long hi = ilog2(bw);
965 	unsigned long lo = ilog2(bdi->dirty_ratelimit);
966 	unsigned long t;
967 
968 	/* target for 20ms max pause on 1-dd case */
969 	t = HZ / 50;
970 
971 	/*
972 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
973 	 * overheads.
974 	 *
975 	 * (N * 20ms) on 2^N concurrent tasks.
976 	 */
977 	if (hi > lo)
978 		t += (hi - lo) * (20 * HZ) / 1024;
979 
980 	/*
981 	 * Limit pause time for small memory systems. If sleeping for too long
982 	 * time, a small pool of dirty/writeback pages may go empty and disk go
983 	 * idle.
984 	 *
985 	 * 8 serves as the safety ratio.
986 	 */
987 	if (bdi_dirty)
988 		t = min(t, bdi_dirty * HZ / (8 * bw + 1));
989 
990 	/*
991 	 * The pause time will be settled within range (max_pause/4, max_pause).
992 	 * Apply a minimal value of 4 to get a non-zero max_pause/4.
993 	 */
994 	return clamp_val(t, 4, MAX_PAUSE);
995 }
996 
997 /*
998  * balance_dirty_pages() must be called by processes which are generating dirty
999  * data.  It looks at the number of dirty pages in the machine and will force
1000  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1001  * If we're over `background_thresh' then the writeback threads are woken to
1002  * perform some writeout.
1003  */
1004 static void balance_dirty_pages(struct address_space *mapping,
1005 				unsigned long pages_dirtied)
1006 {
1007 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1008 	unsigned long bdi_reclaimable;
1009 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1010 	unsigned long bdi_dirty;
1011 	unsigned long freerun;
1012 	unsigned long background_thresh;
1013 	unsigned long dirty_thresh;
1014 	unsigned long bdi_thresh;
1015 	long pause = 0;
1016 	long uninitialized_var(max_pause);
1017 	bool dirty_exceeded = false;
1018 	unsigned long task_ratelimit;
1019 	unsigned long uninitialized_var(dirty_ratelimit);
1020 	unsigned long pos_ratio;
1021 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1022 	unsigned long start_time = jiffies;
1023 
1024 	for (;;) {
1025 		/*
1026 		 * Unstable writes are a feature of certain networked
1027 		 * filesystems (i.e. NFS) in which data may have been
1028 		 * written to the server's write cache, but has not yet
1029 		 * been flushed to permanent storage.
1030 		 */
1031 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1032 					global_page_state(NR_UNSTABLE_NFS);
1033 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1034 
1035 		global_dirty_limits(&background_thresh, &dirty_thresh);
1036 
1037 		/*
1038 		 * Throttle it only when the background writeback cannot
1039 		 * catch-up. This avoids (excessively) small writeouts
1040 		 * when the bdi limits are ramping up.
1041 		 */
1042 		freerun = dirty_freerun_ceiling(dirty_thresh,
1043 						background_thresh);
1044 		if (nr_dirty <= freerun)
1045 			break;
1046 
1047 		if (unlikely(!writeback_in_progress(bdi)))
1048 			bdi_start_background_writeback(bdi);
1049 
1050 		/*
1051 		 * bdi_thresh is not treated as some limiting factor as
1052 		 * dirty_thresh, due to reasons
1053 		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1054 		 * - in a system with HDD and USB key, the USB key may somehow
1055 		 *   go into state (bdi_dirty >> bdi_thresh) either because
1056 		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1057 		 *   In this case we don't want to hard throttle the USB key
1058 		 *   dirtiers for 100 seconds until bdi_dirty drops under
1059 		 *   bdi_thresh. Instead the auxiliary bdi control line in
1060 		 *   bdi_position_ratio() will let the dirtier task progress
1061 		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1062 		 */
1063 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1064 
1065 		/*
1066 		 * In order to avoid the stacked BDI deadlock we need
1067 		 * to ensure we accurately count the 'dirty' pages when
1068 		 * the threshold is low.
1069 		 *
1070 		 * Otherwise it would be possible to get thresh+n pages
1071 		 * reported dirty, even though there are thresh-m pages
1072 		 * actually dirty; with m+n sitting in the percpu
1073 		 * deltas.
1074 		 */
1075 		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1076 			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1077 			bdi_dirty = bdi_reclaimable +
1078 				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1079 		} else {
1080 			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1081 			bdi_dirty = bdi_reclaimable +
1082 				    bdi_stat(bdi, BDI_WRITEBACK);
1083 		}
1084 
1085 		dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1086 				  (nr_dirty > dirty_thresh);
1087 		if (dirty_exceeded && !bdi->dirty_exceeded)
1088 			bdi->dirty_exceeded = 1;
1089 
1090 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1091 				     nr_dirty, bdi_thresh, bdi_dirty,
1092 				     start_time);
1093 
1094 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1095 
1096 		dirty_ratelimit = bdi->dirty_ratelimit;
1097 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1098 					       background_thresh, nr_dirty,
1099 					       bdi_thresh, bdi_dirty);
1100 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1101 							RATELIMIT_CALC_SHIFT;
1102 		if (unlikely(task_ratelimit == 0)) {
1103 			pause = max_pause;
1104 			goto pause;
1105 		}
1106 		pause = HZ * pages_dirtied / task_ratelimit;
1107 		if (unlikely(pause <= 0)) {
1108 			trace_balance_dirty_pages(bdi,
1109 						  dirty_thresh,
1110 						  background_thresh,
1111 						  nr_dirty,
1112 						  bdi_thresh,
1113 						  bdi_dirty,
1114 						  dirty_ratelimit,
1115 						  task_ratelimit,
1116 						  pages_dirtied,
1117 						  pause,
1118 						  start_time);
1119 			pause = 1; /* avoid resetting nr_dirtied_pause below */
1120 			break;
1121 		}
1122 		pause = min(pause, max_pause);
1123 
1124 pause:
1125 		trace_balance_dirty_pages(bdi,
1126 					  dirty_thresh,
1127 					  background_thresh,
1128 					  nr_dirty,
1129 					  bdi_thresh,
1130 					  bdi_dirty,
1131 					  dirty_ratelimit,
1132 					  task_ratelimit,
1133 					  pages_dirtied,
1134 					  pause,
1135 					  start_time);
1136 		__set_current_state(TASK_UNINTERRUPTIBLE);
1137 		io_schedule_timeout(pause);
1138 
1139 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1140 		/*
1141 		 * max-pause area. If dirty exceeded but still within this
1142 		 * area, no need to sleep for more than 200ms: (a) 8 pages per
1143 		 * 200ms is typically more than enough to curb heavy dirtiers;
1144 		 * (b) the pause time limit makes the dirtiers more responsive.
1145 		 */
1146 		if (nr_dirty < dirty_thresh)
1147 			break;
1148 	}
1149 
1150 	if (!dirty_exceeded && bdi->dirty_exceeded)
1151 		bdi->dirty_exceeded = 0;
1152 
1153 	current->nr_dirtied = 0;
1154 	if (pause == 0) { /* in freerun area */
1155 		current->nr_dirtied_pause =
1156 				dirty_poll_interval(nr_dirty, dirty_thresh);
1157 	} else if (pause <= max_pause / 4 &&
1158 		   pages_dirtied >= current->nr_dirtied_pause) {
1159 		current->nr_dirtied_pause = clamp_val(
1160 					dirty_ratelimit * (max_pause / 2) / HZ,
1161 					pages_dirtied + pages_dirtied / 8,
1162 					pages_dirtied * 4);
1163 	} else if (pause >= max_pause) {
1164 		current->nr_dirtied_pause = 1 | clamp_val(
1165 					dirty_ratelimit * (max_pause / 2) / HZ,
1166 					pages_dirtied / 4,
1167 					pages_dirtied - pages_dirtied / 8);
1168 	}
1169 
1170 	if (writeback_in_progress(bdi))
1171 		return;
1172 
1173 	/*
1174 	 * In laptop mode, we wait until hitting the higher threshold before
1175 	 * starting background writeout, and then write out all the way down
1176 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1177 	 *
1178 	 * In normal mode, we start background writeout at the lower
1179 	 * background_thresh, to keep the amount of dirty memory low.
1180 	 */
1181 	if (laptop_mode)
1182 		return;
1183 
1184 	if (nr_reclaimable > background_thresh)
1185 		bdi_start_background_writeback(bdi);
1186 }
1187 
1188 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1189 {
1190 	if (set_page_dirty(page) || page_mkwrite) {
1191 		struct address_space *mapping = page_mapping(page);
1192 
1193 		if (mapping)
1194 			balance_dirty_pages_ratelimited(mapping);
1195 	}
1196 }
1197 
1198 static DEFINE_PER_CPU(int, bdp_ratelimits);
1199 
1200 /**
1201  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1202  * @mapping: address_space which was dirtied
1203  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1204  *
1205  * Processes which are dirtying memory should call in here once for each page
1206  * which was newly dirtied.  The function will periodically check the system's
1207  * dirty state and will initiate writeback if needed.
1208  *
1209  * On really big machines, get_writeback_state is expensive, so try to avoid
1210  * calling it too often (ratelimiting).  But once we're over the dirty memory
1211  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1212  * from overshooting the limit by (ratelimit_pages) each.
1213  */
1214 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1215 					unsigned long nr_pages_dirtied)
1216 {
1217 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1218 	int ratelimit;
1219 	int *p;
1220 
1221 	if (!bdi_cap_account_dirty(bdi))
1222 		return;
1223 
1224 	ratelimit = current->nr_dirtied_pause;
1225 	if (bdi->dirty_exceeded)
1226 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1227 
1228 	current->nr_dirtied += nr_pages_dirtied;
1229 
1230 	preempt_disable();
1231 	/*
1232 	 * This prevents one CPU to accumulate too many dirtied pages without
1233 	 * calling into balance_dirty_pages(), which can happen when there are
1234 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1235 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1236 	 */
1237 	p =  &__get_cpu_var(bdp_ratelimits);
1238 	if (unlikely(current->nr_dirtied >= ratelimit))
1239 		*p = 0;
1240 	else {
1241 		*p += nr_pages_dirtied;
1242 		if (unlikely(*p >= ratelimit_pages)) {
1243 			*p = 0;
1244 			ratelimit = 0;
1245 		}
1246 	}
1247 	preempt_enable();
1248 
1249 	if (unlikely(current->nr_dirtied >= ratelimit))
1250 		balance_dirty_pages(mapping, current->nr_dirtied);
1251 }
1252 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1253 
1254 void throttle_vm_writeout(gfp_t gfp_mask)
1255 {
1256 	unsigned long background_thresh;
1257 	unsigned long dirty_thresh;
1258 
1259         for ( ; ; ) {
1260 		global_dirty_limits(&background_thresh, &dirty_thresh);
1261 
1262                 /*
1263                  * Boost the allowable dirty threshold a bit for page
1264                  * allocators so they don't get DoS'ed by heavy writers
1265                  */
1266                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1267 
1268                 if (global_page_state(NR_UNSTABLE_NFS) +
1269 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1270                         	break;
1271                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1272 
1273 		/*
1274 		 * The caller might hold locks which can prevent IO completion
1275 		 * or progress in the filesystem.  So we cannot just sit here
1276 		 * waiting for IO to complete.
1277 		 */
1278 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1279 			break;
1280         }
1281 }
1282 
1283 /*
1284  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1285  */
1286 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1287 	void __user *buffer, size_t *length, loff_t *ppos)
1288 {
1289 	proc_dointvec(table, write, buffer, length, ppos);
1290 	bdi_arm_supers_timer();
1291 	return 0;
1292 }
1293 
1294 #ifdef CONFIG_BLOCK
1295 void laptop_mode_timer_fn(unsigned long data)
1296 {
1297 	struct request_queue *q = (struct request_queue *)data;
1298 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1299 		global_page_state(NR_UNSTABLE_NFS);
1300 
1301 	/*
1302 	 * We want to write everything out, not just down to the dirty
1303 	 * threshold
1304 	 */
1305 	if (bdi_has_dirty_io(&q->backing_dev_info))
1306 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1307 					WB_REASON_LAPTOP_TIMER);
1308 }
1309 
1310 /*
1311  * We've spun up the disk and we're in laptop mode: schedule writeback
1312  * of all dirty data a few seconds from now.  If the flush is already scheduled
1313  * then push it back - the user is still using the disk.
1314  */
1315 void laptop_io_completion(struct backing_dev_info *info)
1316 {
1317 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1318 }
1319 
1320 /*
1321  * We're in laptop mode and we've just synced. The sync's writes will have
1322  * caused another writeback to be scheduled by laptop_io_completion.
1323  * Nothing needs to be written back anymore, so we unschedule the writeback.
1324  */
1325 void laptop_sync_completion(void)
1326 {
1327 	struct backing_dev_info *bdi;
1328 
1329 	rcu_read_lock();
1330 
1331 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1332 		del_timer(&bdi->laptop_mode_wb_timer);
1333 
1334 	rcu_read_unlock();
1335 }
1336 #endif
1337 
1338 /*
1339  * If ratelimit_pages is too high then we can get into dirty-data overload
1340  * if a large number of processes all perform writes at the same time.
1341  * If it is too low then SMP machines will call the (expensive)
1342  * get_writeback_state too often.
1343  *
1344  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1345  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1346  * thresholds.
1347  */
1348 
1349 void writeback_set_ratelimit(void)
1350 {
1351 	unsigned long background_thresh;
1352 	unsigned long dirty_thresh;
1353 	global_dirty_limits(&background_thresh, &dirty_thresh);
1354 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1355 	if (ratelimit_pages < 16)
1356 		ratelimit_pages = 16;
1357 }
1358 
1359 static int __cpuinit
1360 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1361 {
1362 	writeback_set_ratelimit();
1363 	return NOTIFY_DONE;
1364 }
1365 
1366 static struct notifier_block __cpuinitdata ratelimit_nb = {
1367 	.notifier_call	= ratelimit_handler,
1368 	.next		= NULL,
1369 };
1370 
1371 /*
1372  * Called early on to tune the page writeback dirty limits.
1373  *
1374  * We used to scale dirty pages according to how total memory
1375  * related to pages that could be allocated for buffers (by
1376  * comparing nr_free_buffer_pages() to vm_total_pages.
1377  *
1378  * However, that was when we used "dirty_ratio" to scale with
1379  * all memory, and we don't do that any more. "dirty_ratio"
1380  * is now applied to total non-HIGHPAGE memory (by subtracting
1381  * totalhigh_pages from vm_total_pages), and as such we can't
1382  * get into the old insane situation any more where we had
1383  * large amounts of dirty pages compared to a small amount of
1384  * non-HIGHMEM memory.
1385  *
1386  * But we might still want to scale the dirty_ratio by how
1387  * much memory the box has..
1388  */
1389 void __init page_writeback_init(void)
1390 {
1391 	int shift;
1392 
1393 	writeback_set_ratelimit();
1394 	register_cpu_notifier(&ratelimit_nb);
1395 
1396 	shift = calc_period_shift();
1397 	prop_descriptor_init(&vm_completions, shift);
1398 	prop_descriptor_init(&vm_dirties, shift);
1399 }
1400 
1401 /**
1402  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1403  * @mapping: address space structure to write
1404  * @start: starting page index
1405  * @end: ending page index (inclusive)
1406  *
1407  * This function scans the page range from @start to @end (inclusive) and tags
1408  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1409  * that write_cache_pages (or whoever calls this function) will then use
1410  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1411  * used to avoid livelocking of writeback by a process steadily creating new
1412  * dirty pages in the file (thus it is important for this function to be quick
1413  * so that it can tag pages faster than a dirtying process can create them).
1414  */
1415 /*
1416  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1417  */
1418 void tag_pages_for_writeback(struct address_space *mapping,
1419 			     pgoff_t start, pgoff_t end)
1420 {
1421 #define WRITEBACK_TAG_BATCH 4096
1422 	unsigned long tagged;
1423 
1424 	do {
1425 		spin_lock_irq(&mapping->tree_lock);
1426 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1427 				&start, end, WRITEBACK_TAG_BATCH,
1428 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1429 		spin_unlock_irq(&mapping->tree_lock);
1430 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1431 		cond_resched();
1432 		/* We check 'start' to handle wrapping when end == ~0UL */
1433 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1434 }
1435 EXPORT_SYMBOL(tag_pages_for_writeback);
1436 
1437 /**
1438  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1439  * @mapping: address space structure to write
1440  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1441  * @writepage: function called for each page
1442  * @data: data passed to writepage function
1443  *
1444  * If a page is already under I/O, write_cache_pages() skips it, even
1445  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1446  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1447  * and msync() need to guarantee that all the data which was dirty at the time
1448  * the call was made get new I/O started against them.  If wbc->sync_mode is
1449  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1450  * existing IO to complete.
1451  *
1452  * To avoid livelocks (when other process dirties new pages), we first tag
1453  * pages which should be written back with TOWRITE tag and only then start
1454  * writing them. For data-integrity sync we have to be careful so that we do
1455  * not miss some pages (e.g., because some other process has cleared TOWRITE
1456  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1457  * by the process clearing the DIRTY tag (and submitting the page for IO).
1458  */
1459 int write_cache_pages(struct address_space *mapping,
1460 		      struct writeback_control *wbc, writepage_t writepage,
1461 		      void *data)
1462 {
1463 	int ret = 0;
1464 	int done = 0;
1465 	struct pagevec pvec;
1466 	int nr_pages;
1467 	pgoff_t uninitialized_var(writeback_index);
1468 	pgoff_t index;
1469 	pgoff_t end;		/* Inclusive */
1470 	pgoff_t done_index;
1471 	int cycled;
1472 	int range_whole = 0;
1473 	int tag;
1474 
1475 	pagevec_init(&pvec, 0);
1476 	if (wbc->range_cyclic) {
1477 		writeback_index = mapping->writeback_index; /* prev offset */
1478 		index = writeback_index;
1479 		if (index == 0)
1480 			cycled = 1;
1481 		else
1482 			cycled = 0;
1483 		end = -1;
1484 	} else {
1485 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1486 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1487 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1488 			range_whole = 1;
1489 		cycled = 1; /* ignore range_cyclic tests */
1490 	}
1491 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1492 		tag = PAGECACHE_TAG_TOWRITE;
1493 	else
1494 		tag = PAGECACHE_TAG_DIRTY;
1495 retry:
1496 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1497 		tag_pages_for_writeback(mapping, index, end);
1498 	done_index = index;
1499 	while (!done && (index <= end)) {
1500 		int i;
1501 
1502 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1503 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1504 		if (nr_pages == 0)
1505 			break;
1506 
1507 		for (i = 0; i < nr_pages; i++) {
1508 			struct page *page = pvec.pages[i];
1509 
1510 			/*
1511 			 * At this point, the page may be truncated or
1512 			 * invalidated (changing page->mapping to NULL), or
1513 			 * even swizzled back from swapper_space to tmpfs file
1514 			 * mapping. However, page->index will not change
1515 			 * because we have a reference on the page.
1516 			 */
1517 			if (page->index > end) {
1518 				/*
1519 				 * can't be range_cyclic (1st pass) because
1520 				 * end == -1 in that case.
1521 				 */
1522 				done = 1;
1523 				break;
1524 			}
1525 
1526 			done_index = page->index;
1527 
1528 			lock_page(page);
1529 
1530 			/*
1531 			 * Page truncated or invalidated. We can freely skip it
1532 			 * then, even for data integrity operations: the page
1533 			 * has disappeared concurrently, so there could be no
1534 			 * real expectation of this data interity operation
1535 			 * even if there is now a new, dirty page at the same
1536 			 * pagecache address.
1537 			 */
1538 			if (unlikely(page->mapping != mapping)) {
1539 continue_unlock:
1540 				unlock_page(page);
1541 				continue;
1542 			}
1543 
1544 			if (!PageDirty(page)) {
1545 				/* someone wrote it for us */
1546 				goto continue_unlock;
1547 			}
1548 
1549 			if (PageWriteback(page)) {
1550 				if (wbc->sync_mode != WB_SYNC_NONE)
1551 					wait_on_page_writeback(page);
1552 				else
1553 					goto continue_unlock;
1554 			}
1555 
1556 			BUG_ON(PageWriteback(page));
1557 			if (!clear_page_dirty_for_io(page))
1558 				goto continue_unlock;
1559 
1560 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1561 			ret = (*writepage)(page, wbc, data);
1562 			if (unlikely(ret)) {
1563 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1564 					unlock_page(page);
1565 					ret = 0;
1566 				} else {
1567 					/*
1568 					 * done_index is set past this page,
1569 					 * so media errors will not choke
1570 					 * background writeout for the entire
1571 					 * file. This has consequences for
1572 					 * range_cyclic semantics (ie. it may
1573 					 * not be suitable for data integrity
1574 					 * writeout).
1575 					 */
1576 					done_index = page->index + 1;
1577 					done = 1;
1578 					break;
1579 				}
1580 			}
1581 
1582 			/*
1583 			 * We stop writing back only if we are not doing
1584 			 * integrity sync. In case of integrity sync we have to
1585 			 * keep going until we have written all the pages
1586 			 * we tagged for writeback prior to entering this loop.
1587 			 */
1588 			if (--wbc->nr_to_write <= 0 &&
1589 			    wbc->sync_mode == WB_SYNC_NONE) {
1590 				done = 1;
1591 				break;
1592 			}
1593 		}
1594 		pagevec_release(&pvec);
1595 		cond_resched();
1596 	}
1597 	if (!cycled && !done) {
1598 		/*
1599 		 * range_cyclic:
1600 		 * We hit the last page and there is more work to be done: wrap
1601 		 * back to the start of the file
1602 		 */
1603 		cycled = 1;
1604 		index = 0;
1605 		end = writeback_index - 1;
1606 		goto retry;
1607 	}
1608 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1609 		mapping->writeback_index = done_index;
1610 
1611 	return ret;
1612 }
1613 EXPORT_SYMBOL(write_cache_pages);
1614 
1615 /*
1616  * Function used by generic_writepages to call the real writepage
1617  * function and set the mapping flags on error
1618  */
1619 static int __writepage(struct page *page, struct writeback_control *wbc,
1620 		       void *data)
1621 {
1622 	struct address_space *mapping = data;
1623 	int ret = mapping->a_ops->writepage(page, wbc);
1624 	mapping_set_error(mapping, ret);
1625 	return ret;
1626 }
1627 
1628 /**
1629  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1630  * @mapping: address space structure to write
1631  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1632  *
1633  * This is a library function, which implements the writepages()
1634  * address_space_operation.
1635  */
1636 int generic_writepages(struct address_space *mapping,
1637 		       struct writeback_control *wbc)
1638 {
1639 	struct blk_plug plug;
1640 	int ret;
1641 
1642 	/* deal with chardevs and other special file */
1643 	if (!mapping->a_ops->writepage)
1644 		return 0;
1645 
1646 	blk_start_plug(&plug);
1647 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1648 	blk_finish_plug(&plug);
1649 	return ret;
1650 }
1651 
1652 EXPORT_SYMBOL(generic_writepages);
1653 
1654 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1655 {
1656 	int ret;
1657 
1658 	if (wbc->nr_to_write <= 0)
1659 		return 0;
1660 	if (mapping->a_ops->writepages)
1661 		ret = mapping->a_ops->writepages(mapping, wbc);
1662 	else
1663 		ret = generic_writepages(mapping, wbc);
1664 	return ret;
1665 }
1666 
1667 /**
1668  * write_one_page - write out a single page and optionally wait on I/O
1669  * @page: the page to write
1670  * @wait: if true, wait on writeout
1671  *
1672  * The page must be locked by the caller and will be unlocked upon return.
1673  *
1674  * write_one_page() returns a negative error code if I/O failed.
1675  */
1676 int write_one_page(struct page *page, int wait)
1677 {
1678 	struct address_space *mapping = page->mapping;
1679 	int ret = 0;
1680 	struct writeback_control wbc = {
1681 		.sync_mode = WB_SYNC_ALL,
1682 		.nr_to_write = 1,
1683 	};
1684 
1685 	BUG_ON(!PageLocked(page));
1686 
1687 	if (wait)
1688 		wait_on_page_writeback(page);
1689 
1690 	if (clear_page_dirty_for_io(page)) {
1691 		page_cache_get(page);
1692 		ret = mapping->a_ops->writepage(page, &wbc);
1693 		if (ret == 0 && wait) {
1694 			wait_on_page_writeback(page);
1695 			if (PageError(page))
1696 				ret = -EIO;
1697 		}
1698 		page_cache_release(page);
1699 	} else {
1700 		unlock_page(page);
1701 	}
1702 	return ret;
1703 }
1704 EXPORT_SYMBOL(write_one_page);
1705 
1706 /*
1707  * For address_spaces which do not use buffers nor write back.
1708  */
1709 int __set_page_dirty_no_writeback(struct page *page)
1710 {
1711 	if (!PageDirty(page))
1712 		return !TestSetPageDirty(page);
1713 	return 0;
1714 }
1715 
1716 /*
1717  * Helper function for set_page_dirty family.
1718  * NOTE: This relies on being atomic wrt interrupts.
1719  */
1720 void account_page_dirtied(struct page *page, struct address_space *mapping)
1721 {
1722 	if (mapping_cap_account_dirty(mapping)) {
1723 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1724 		__inc_zone_page_state(page, NR_DIRTIED);
1725 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1726 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1727 		task_dirty_inc(current);
1728 		task_io_account_write(PAGE_CACHE_SIZE);
1729 	}
1730 }
1731 EXPORT_SYMBOL(account_page_dirtied);
1732 
1733 /*
1734  * Helper function for set_page_writeback family.
1735  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1736  * wrt interrupts.
1737  */
1738 void account_page_writeback(struct page *page)
1739 {
1740 	inc_zone_page_state(page, NR_WRITEBACK);
1741 }
1742 EXPORT_SYMBOL(account_page_writeback);
1743 
1744 /*
1745  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1746  * its radix tree.
1747  *
1748  * This is also used when a single buffer is being dirtied: we want to set the
1749  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1750  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1751  *
1752  * Most callers have locked the page, which pins the address_space in memory.
1753  * But zap_pte_range() does not lock the page, however in that case the
1754  * mapping is pinned by the vma's ->vm_file reference.
1755  *
1756  * We take care to handle the case where the page was truncated from the
1757  * mapping by re-checking page_mapping() inside tree_lock.
1758  */
1759 int __set_page_dirty_nobuffers(struct page *page)
1760 {
1761 	if (!TestSetPageDirty(page)) {
1762 		struct address_space *mapping = page_mapping(page);
1763 		struct address_space *mapping2;
1764 
1765 		if (!mapping)
1766 			return 1;
1767 
1768 		spin_lock_irq(&mapping->tree_lock);
1769 		mapping2 = page_mapping(page);
1770 		if (mapping2) { /* Race with truncate? */
1771 			BUG_ON(mapping2 != mapping);
1772 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1773 			account_page_dirtied(page, mapping);
1774 			radix_tree_tag_set(&mapping->page_tree,
1775 				page_index(page), PAGECACHE_TAG_DIRTY);
1776 		}
1777 		spin_unlock_irq(&mapping->tree_lock);
1778 		if (mapping->host) {
1779 			/* !PageAnon && !swapper_space */
1780 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1781 		}
1782 		return 1;
1783 	}
1784 	return 0;
1785 }
1786 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1787 
1788 /*
1789  * When a writepage implementation decides that it doesn't want to write this
1790  * page for some reason, it should redirty the locked page via
1791  * redirty_page_for_writepage() and it should then unlock the page and return 0
1792  */
1793 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1794 {
1795 	wbc->pages_skipped++;
1796 	return __set_page_dirty_nobuffers(page);
1797 }
1798 EXPORT_SYMBOL(redirty_page_for_writepage);
1799 
1800 /*
1801  * Dirty a page.
1802  *
1803  * For pages with a mapping this should be done under the page lock
1804  * for the benefit of asynchronous memory errors who prefer a consistent
1805  * dirty state. This rule can be broken in some special cases,
1806  * but should be better not to.
1807  *
1808  * If the mapping doesn't provide a set_page_dirty a_op, then
1809  * just fall through and assume that it wants buffer_heads.
1810  */
1811 int set_page_dirty(struct page *page)
1812 {
1813 	struct address_space *mapping = page_mapping(page);
1814 
1815 	if (likely(mapping)) {
1816 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1817 		/*
1818 		 * readahead/lru_deactivate_page could remain
1819 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1820 		 * About readahead, if the page is written, the flags would be
1821 		 * reset. So no problem.
1822 		 * About lru_deactivate_page, if the page is redirty, the flag
1823 		 * will be reset. So no problem. but if the page is used by readahead
1824 		 * it will confuse readahead and make it restart the size rampup
1825 		 * process. But it's a trivial problem.
1826 		 */
1827 		ClearPageReclaim(page);
1828 #ifdef CONFIG_BLOCK
1829 		if (!spd)
1830 			spd = __set_page_dirty_buffers;
1831 #endif
1832 		return (*spd)(page);
1833 	}
1834 	if (!PageDirty(page)) {
1835 		if (!TestSetPageDirty(page))
1836 			return 1;
1837 	}
1838 	return 0;
1839 }
1840 EXPORT_SYMBOL(set_page_dirty);
1841 
1842 /*
1843  * set_page_dirty() is racy if the caller has no reference against
1844  * page->mapping->host, and if the page is unlocked.  This is because another
1845  * CPU could truncate the page off the mapping and then free the mapping.
1846  *
1847  * Usually, the page _is_ locked, or the caller is a user-space process which
1848  * holds a reference on the inode by having an open file.
1849  *
1850  * In other cases, the page should be locked before running set_page_dirty().
1851  */
1852 int set_page_dirty_lock(struct page *page)
1853 {
1854 	int ret;
1855 
1856 	lock_page(page);
1857 	ret = set_page_dirty(page);
1858 	unlock_page(page);
1859 	return ret;
1860 }
1861 EXPORT_SYMBOL(set_page_dirty_lock);
1862 
1863 /*
1864  * Clear a page's dirty flag, while caring for dirty memory accounting.
1865  * Returns true if the page was previously dirty.
1866  *
1867  * This is for preparing to put the page under writeout.  We leave the page
1868  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1869  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1870  * implementation will run either set_page_writeback() or set_page_dirty(),
1871  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1872  * back into sync.
1873  *
1874  * This incoherency between the page's dirty flag and radix-tree tag is
1875  * unfortunate, but it only exists while the page is locked.
1876  */
1877 int clear_page_dirty_for_io(struct page *page)
1878 {
1879 	struct address_space *mapping = page_mapping(page);
1880 
1881 	BUG_ON(!PageLocked(page));
1882 
1883 	if (mapping && mapping_cap_account_dirty(mapping)) {
1884 		/*
1885 		 * Yes, Virginia, this is indeed insane.
1886 		 *
1887 		 * We use this sequence to make sure that
1888 		 *  (a) we account for dirty stats properly
1889 		 *  (b) we tell the low-level filesystem to
1890 		 *      mark the whole page dirty if it was
1891 		 *      dirty in a pagetable. Only to then
1892 		 *  (c) clean the page again and return 1 to
1893 		 *      cause the writeback.
1894 		 *
1895 		 * This way we avoid all nasty races with the
1896 		 * dirty bit in multiple places and clearing
1897 		 * them concurrently from different threads.
1898 		 *
1899 		 * Note! Normally the "set_page_dirty(page)"
1900 		 * has no effect on the actual dirty bit - since
1901 		 * that will already usually be set. But we
1902 		 * need the side effects, and it can help us
1903 		 * avoid races.
1904 		 *
1905 		 * We basically use the page "master dirty bit"
1906 		 * as a serialization point for all the different
1907 		 * threads doing their things.
1908 		 */
1909 		if (page_mkclean(page))
1910 			set_page_dirty(page);
1911 		/*
1912 		 * We carefully synchronise fault handlers against
1913 		 * installing a dirty pte and marking the page dirty
1914 		 * at this point. We do this by having them hold the
1915 		 * page lock at some point after installing their
1916 		 * pte, but before marking the page dirty.
1917 		 * Pages are always locked coming in here, so we get
1918 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1919 		 * for more comments.
1920 		 */
1921 		if (TestClearPageDirty(page)) {
1922 			dec_zone_page_state(page, NR_FILE_DIRTY);
1923 			dec_bdi_stat(mapping->backing_dev_info,
1924 					BDI_RECLAIMABLE);
1925 			return 1;
1926 		}
1927 		return 0;
1928 	}
1929 	return TestClearPageDirty(page);
1930 }
1931 EXPORT_SYMBOL(clear_page_dirty_for_io);
1932 
1933 int test_clear_page_writeback(struct page *page)
1934 {
1935 	struct address_space *mapping = page_mapping(page);
1936 	int ret;
1937 
1938 	if (mapping) {
1939 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1940 		unsigned long flags;
1941 
1942 		spin_lock_irqsave(&mapping->tree_lock, flags);
1943 		ret = TestClearPageWriteback(page);
1944 		if (ret) {
1945 			radix_tree_tag_clear(&mapping->page_tree,
1946 						page_index(page),
1947 						PAGECACHE_TAG_WRITEBACK);
1948 			if (bdi_cap_account_writeback(bdi)) {
1949 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1950 				__bdi_writeout_inc(bdi);
1951 			}
1952 		}
1953 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1954 	} else {
1955 		ret = TestClearPageWriteback(page);
1956 	}
1957 	if (ret) {
1958 		dec_zone_page_state(page, NR_WRITEBACK);
1959 		inc_zone_page_state(page, NR_WRITTEN);
1960 	}
1961 	return ret;
1962 }
1963 
1964 int test_set_page_writeback(struct page *page)
1965 {
1966 	struct address_space *mapping = page_mapping(page);
1967 	int ret;
1968 
1969 	if (mapping) {
1970 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1971 		unsigned long flags;
1972 
1973 		spin_lock_irqsave(&mapping->tree_lock, flags);
1974 		ret = TestSetPageWriteback(page);
1975 		if (!ret) {
1976 			radix_tree_tag_set(&mapping->page_tree,
1977 						page_index(page),
1978 						PAGECACHE_TAG_WRITEBACK);
1979 			if (bdi_cap_account_writeback(bdi))
1980 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1981 		}
1982 		if (!PageDirty(page))
1983 			radix_tree_tag_clear(&mapping->page_tree,
1984 						page_index(page),
1985 						PAGECACHE_TAG_DIRTY);
1986 		radix_tree_tag_clear(&mapping->page_tree,
1987 				     page_index(page),
1988 				     PAGECACHE_TAG_TOWRITE);
1989 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1990 	} else {
1991 		ret = TestSetPageWriteback(page);
1992 	}
1993 	if (!ret)
1994 		account_page_writeback(page);
1995 	return ret;
1996 
1997 }
1998 EXPORT_SYMBOL(test_set_page_writeback);
1999 
2000 /*
2001  * Return true if any of the pages in the mapping are marked with the
2002  * passed tag.
2003  */
2004 int mapping_tagged(struct address_space *mapping, int tag)
2005 {
2006 	return radix_tree_tagged(&mapping->page_tree, tag);
2007 }
2008 EXPORT_SYMBOL(mapping_tagged);
2009