1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth or update dirty limit at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 bool freerun; 143 bool dirty_exceeded; 144 }; 145 146 /* 147 * Length of period for aging writeout fractions of bdis. This is an 148 * arbitrarily chosen number. The longer the period, the slower fractions will 149 * reflect changes in current writeout rate. 150 */ 151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 152 153 #ifdef CONFIG_CGROUP_WRITEBACK 154 155 #define GDTC_INIT(__wb) .wb = (__wb), \ 156 .dom = &global_wb_domain, \ 157 .wb_completions = &(__wb)->completions 158 159 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 160 161 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 162 .dom = mem_cgroup_wb_domain(__wb), \ 163 .wb_completions = &(__wb)->memcg_completions, \ 164 .gdtc = __gdtc 165 166 static bool mdtc_valid(struct dirty_throttle_control *dtc) 167 { 168 return dtc->dom; 169 } 170 171 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 172 { 173 return dtc->dom; 174 } 175 176 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 177 { 178 return mdtc->gdtc; 179 } 180 181 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 182 { 183 return &wb->memcg_completions; 184 } 185 186 static void wb_min_max_ratio(struct bdi_writeback *wb, 187 unsigned long *minp, unsigned long *maxp) 188 { 189 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 190 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 191 unsigned long long min = wb->bdi->min_ratio; 192 unsigned long long max = wb->bdi->max_ratio; 193 194 /* 195 * @wb may already be clean by the time control reaches here and 196 * the total may not include its bw. 197 */ 198 if (this_bw < tot_bw) { 199 if (min) { 200 min *= this_bw; 201 min = div64_ul(min, tot_bw); 202 } 203 if (max < 100 * BDI_RATIO_SCALE) { 204 max *= this_bw; 205 max = div64_ul(max, tot_bw); 206 } 207 } 208 209 *minp = min; 210 *maxp = max; 211 } 212 213 #else /* CONFIG_CGROUP_WRITEBACK */ 214 215 #define GDTC_INIT(__wb) .wb = (__wb), \ 216 .wb_completions = &(__wb)->completions 217 #define GDTC_INIT_NO_WB 218 #define MDTC_INIT(__wb, __gdtc) 219 220 static bool mdtc_valid(struct dirty_throttle_control *dtc) 221 { 222 return false; 223 } 224 225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 226 { 227 return &global_wb_domain; 228 } 229 230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 231 { 232 return NULL; 233 } 234 235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 236 { 237 return NULL; 238 } 239 240 static void wb_min_max_ratio(struct bdi_writeback *wb, 241 unsigned long *minp, unsigned long *maxp) 242 { 243 *minp = wb->bdi->min_ratio; 244 *maxp = wb->bdi->max_ratio; 245 } 246 247 #endif /* CONFIG_CGROUP_WRITEBACK */ 248 249 /* 250 * In a memory zone, there is a certain amount of pages we consider 251 * available for the page cache, which is essentially the number of 252 * free and reclaimable pages, minus some zone reserves to protect 253 * lowmem and the ability to uphold the zone's watermarks without 254 * requiring writeback. 255 * 256 * This number of dirtyable pages is the base value of which the 257 * user-configurable dirty ratio is the effective number of pages that 258 * are allowed to be actually dirtied. Per individual zone, or 259 * globally by using the sum of dirtyable pages over all zones. 260 * 261 * Because the user is allowed to specify the dirty limit globally as 262 * absolute number of bytes, calculating the per-zone dirty limit can 263 * require translating the configured limit into a percentage of 264 * global dirtyable memory first. 265 */ 266 267 /** 268 * node_dirtyable_memory - number of dirtyable pages in a node 269 * @pgdat: the node 270 * 271 * Return: the node's number of pages potentially available for dirty 272 * page cache. This is the base value for the per-node dirty limits. 273 */ 274 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 275 { 276 unsigned long nr_pages = 0; 277 int z; 278 279 for (z = 0; z < MAX_NR_ZONES; z++) { 280 struct zone *zone = pgdat->node_zones + z; 281 282 if (!populated_zone(zone)) 283 continue; 284 285 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 286 } 287 288 /* 289 * Pages reserved for the kernel should not be considered 290 * dirtyable, to prevent a situation where reclaim has to 291 * clean pages in order to balance the zones. 292 */ 293 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 294 295 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 296 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 297 298 return nr_pages; 299 } 300 301 static unsigned long highmem_dirtyable_memory(unsigned long total) 302 { 303 #ifdef CONFIG_HIGHMEM 304 int node; 305 unsigned long x = 0; 306 int i; 307 308 for_each_node_state(node, N_HIGH_MEMORY) { 309 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 310 struct zone *z; 311 unsigned long nr_pages; 312 313 if (!is_highmem_idx(i)) 314 continue; 315 316 z = &NODE_DATA(node)->node_zones[i]; 317 if (!populated_zone(z)) 318 continue; 319 320 nr_pages = zone_page_state(z, NR_FREE_PAGES); 321 /* watch for underflows */ 322 nr_pages -= min(nr_pages, high_wmark_pages(z)); 323 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 324 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 325 x += nr_pages; 326 } 327 } 328 329 /* 330 * Make sure that the number of highmem pages is never larger 331 * than the number of the total dirtyable memory. This can only 332 * occur in very strange VM situations but we want to make sure 333 * that this does not occur. 334 */ 335 return min(x, total); 336 #else 337 return 0; 338 #endif 339 } 340 341 /** 342 * global_dirtyable_memory - number of globally dirtyable pages 343 * 344 * Return: the global number of pages potentially available for dirty 345 * page cache. This is the base value for the global dirty limits. 346 */ 347 static unsigned long global_dirtyable_memory(void) 348 { 349 unsigned long x; 350 351 x = global_zone_page_state(NR_FREE_PAGES); 352 /* 353 * Pages reserved for the kernel should not be considered 354 * dirtyable, to prevent a situation where reclaim has to 355 * clean pages in order to balance the zones. 356 */ 357 x -= min(x, totalreserve_pages); 358 359 x += global_node_page_state(NR_INACTIVE_FILE); 360 x += global_node_page_state(NR_ACTIVE_FILE); 361 362 if (!vm_highmem_is_dirtyable) 363 x -= highmem_dirtyable_memory(x); 364 365 return x + 1; /* Ensure that we never return 0 */ 366 } 367 368 /** 369 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 370 * @dtc: dirty_throttle_control of interest 371 * 372 * Calculate @dtc->thresh and ->bg_thresh considering 373 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 374 * must ensure that @dtc->avail is set before calling this function. The 375 * dirty limits will be lifted by 1/4 for real-time tasks. 376 */ 377 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 378 { 379 const unsigned long available_memory = dtc->avail; 380 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 381 unsigned long bytes = vm_dirty_bytes; 382 unsigned long bg_bytes = dirty_background_bytes; 383 /* convert ratios to per-PAGE_SIZE for higher precision */ 384 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 385 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 386 unsigned long thresh; 387 unsigned long bg_thresh; 388 struct task_struct *tsk; 389 390 /* gdtc is !NULL iff @dtc is for memcg domain */ 391 if (gdtc) { 392 unsigned long global_avail = gdtc->avail; 393 394 /* 395 * The byte settings can't be applied directly to memcg 396 * domains. Convert them to ratios by scaling against 397 * globally available memory. As the ratios are in 398 * per-PAGE_SIZE, they can be obtained by dividing bytes by 399 * number of pages. 400 */ 401 if (bytes) 402 ratio = min(DIV_ROUND_UP(bytes, global_avail), 403 PAGE_SIZE); 404 if (bg_bytes) 405 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 406 PAGE_SIZE); 407 bytes = bg_bytes = 0; 408 } 409 410 if (bytes) 411 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 412 else 413 thresh = (ratio * available_memory) / PAGE_SIZE; 414 415 if (bg_bytes) 416 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 417 else 418 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 419 420 tsk = current; 421 if (rt_or_dl_task(tsk)) { 422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 424 } 425 /* 426 * Dirty throttling logic assumes the limits in page units fit into 427 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 428 */ 429 if (thresh > UINT_MAX) 430 thresh = UINT_MAX; 431 /* This makes sure bg_thresh is within 32-bits as well */ 432 if (bg_thresh >= thresh) 433 bg_thresh = thresh / 2; 434 dtc->thresh = thresh; 435 dtc->bg_thresh = bg_thresh; 436 437 /* we should eventually report the domain in the TP */ 438 if (!gdtc) 439 trace_global_dirty_state(bg_thresh, thresh); 440 } 441 442 /** 443 * global_dirty_limits - background-writeback and dirty-throttling thresholds 444 * @pbackground: out parameter for bg_thresh 445 * @pdirty: out parameter for thresh 446 * 447 * Calculate bg_thresh and thresh for global_wb_domain. See 448 * domain_dirty_limits() for details. 449 */ 450 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 451 { 452 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 453 454 gdtc.avail = global_dirtyable_memory(); 455 domain_dirty_limits(&gdtc); 456 457 *pbackground = gdtc.bg_thresh; 458 *pdirty = gdtc.thresh; 459 } 460 461 /** 462 * node_dirty_limit - maximum number of dirty pages allowed in a node 463 * @pgdat: the node 464 * 465 * Return: the maximum number of dirty pages allowed in a node, based 466 * on the node's dirtyable memory. 467 */ 468 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 469 { 470 unsigned long node_memory = node_dirtyable_memory(pgdat); 471 struct task_struct *tsk = current; 472 unsigned long dirty; 473 474 if (vm_dirty_bytes) 475 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 476 node_memory / global_dirtyable_memory(); 477 else 478 dirty = vm_dirty_ratio * node_memory / 100; 479 480 if (rt_or_dl_task(tsk)) 481 dirty += dirty / 4; 482 483 /* 484 * Dirty throttling logic assumes the limits in page units fit into 485 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 486 */ 487 return min_t(unsigned long, dirty, UINT_MAX); 488 } 489 490 /** 491 * node_dirty_ok - tells whether a node is within its dirty limits 492 * @pgdat: the node to check 493 * 494 * Return: %true when the dirty pages in @pgdat are within the node's 495 * dirty limit, %false if the limit is exceeded. 496 */ 497 bool node_dirty_ok(struct pglist_data *pgdat) 498 { 499 unsigned long limit = node_dirty_limit(pgdat); 500 unsigned long nr_pages = 0; 501 502 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 503 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 504 505 return nr_pages <= limit; 506 } 507 508 #ifdef CONFIG_SYSCTL 509 static int dirty_background_ratio_handler(const struct ctl_table *table, int write, 510 void *buffer, size_t *lenp, loff_t *ppos) 511 { 512 int ret; 513 514 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 if (ret == 0 && write) 516 dirty_background_bytes = 0; 517 return ret; 518 } 519 520 static int dirty_background_bytes_handler(const struct ctl_table *table, int write, 521 void *buffer, size_t *lenp, loff_t *ppos) 522 { 523 int ret; 524 unsigned long old_bytes = dirty_background_bytes; 525 526 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 527 if (ret == 0 && write) { 528 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > 529 UINT_MAX) { 530 dirty_background_bytes = old_bytes; 531 return -ERANGE; 532 } 533 dirty_background_ratio = 0; 534 } 535 return ret; 536 } 537 538 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer, 539 size_t *lenp, loff_t *ppos) 540 { 541 int old_ratio = vm_dirty_ratio; 542 int ret; 543 544 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 545 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 546 writeback_set_ratelimit(); 547 vm_dirty_bytes = 0; 548 } 549 return ret; 550 } 551 552 static int dirty_bytes_handler(const struct ctl_table *table, int write, 553 void *buffer, size_t *lenp, loff_t *ppos) 554 { 555 unsigned long old_bytes = vm_dirty_bytes; 556 int ret; 557 558 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 559 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 560 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { 561 vm_dirty_bytes = old_bytes; 562 return -ERANGE; 563 } 564 writeback_set_ratelimit(); 565 vm_dirty_ratio = 0; 566 } 567 return ret; 568 } 569 #endif 570 571 static unsigned long wp_next_time(unsigned long cur_time) 572 { 573 cur_time += VM_COMPLETIONS_PERIOD_LEN; 574 /* 0 has a special meaning... */ 575 if (!cur_time) 576 return 1; 577 return cur_time; 578 } 579 580 static void wb_domain_writeout_add(struct wb_domain *dom, 581 struct fprop_local_percpu *completions, 582 unsigned int max_prop_frac, long nr) 583 { 584 __fprop_add_percpu_max(&dom->completions, completions, 585 max_prop_frac, nr); 586 /* First event after period switching was turned off? */ 587 if (unlikely(!dom->period_time)) { 588 /* 589 * We can race with other wb_domain_writeout_add calls here but 590 * it does not cause any harm since the resulting time when 591 * timer will fire and what is in writeout_period_time will be 592 * roughly the same. 593 */ 594 dom->period_time = wp_next_time(jiffies); 595 mod_timer(&dom->period_timer, dom->period_time); 596 } 597 } 598 599 /* 600 * Increment @wb's writeout completion count and the global writeout 601 * completion count. Called from __folio_end_writeback(). 602 */ 603 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 604 { 605 struct wb_domain *cgdom; 606 607 wb_stat_mod(wb, WB_WRITTEN, nr); 608 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 609 wb->bdi->max_prop_frac, nr); 610 611 cgdom = mem_cgroup_wb_domain(wb); 612 if (cgdom) 613 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 614 wb->bdi->max_prop_frac, nr); 615 } 616 617 void wb_writeout_inc(struct bdi_writeback *wb) 618 { 619 unsigned long flags; 620 621 local_irq_save(flags); 622 __wb_writeout_add(wb, 1); 623 local_irq_restore(flags); 624 } 625 EXPORT_SYMBOL_GPL(wb_writeout_inc); 626 627 /* 628 * On idle system, we can be called long after we scheduled because we use 629 * deferred timers so count with missed periods. 630 */ 631 static void writeout_period(struct timer_list *t) 632 { 633 struct wb_domain *dom = from_timer(dom, t, period_timer); 634 int miss_periods = (jiffies - dom->period_time) / 635 VM_COMPLETIONS_PERIOD_LEN; 636 637 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 638 dom->period_time = wp_next_time(dom->period_time + 639 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 640 mod_timer(&dom->period_timer, dom->period_time); 641 } else { 642 /* 643 * Aging has zeroed all fractions. Stop wasting CPU on period 644 * updates. 645 */ 646 dom->period_time = 0; 647 } 648 } 649 650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 651 { 652 memset(dom, 0, sizeof(*dom)); 653 654 spin_lock_init(&dom->lock); 655 656 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 657 658 dom->dirty_limit_tstamp = jiffies; 659 660 return fprop_global_init(&dom->completions, gfp); 661 } 662 663 #ifdef CONFIG_CGROUP_WRITEBACK 664 void wb_domain_exit(struct wb_domain *dom) 665 { 666 del_timer_sync(&dom->period_timer); 667 fprop_global_destroy(&dom->completions); 668 } 669 #endif 670 671 /* 672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 673 * registered backing devices, which, for obvious reasons, can not 674 * exceed 100%. 675 */ 676 static unsigned int bdi_min_ratio; 677 678 static int bdi_check_pages_limit(unsigned long pages) 679 { 680 unsigned long max_dirty_pages = global_dirtyable_memory(); 681 682 if (pages > max_dirty_pages) 683 return -EINVAL; 684 685 return 0; 686 } 687 688 static unsigned long bdi_ratio_from_pages(unsigned long pages) 689 { 690 unsigned long background_thresh; 691 unsigned long dirty_thresh; 692 unsigned long ratio; 693 694 global_dirty_limits(&background_thresh, &dirty_thresh); 695 if (!dirty_thresh) 696 return -EINVAL; 697 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 698 699 return ratio; 700 } 701 702 static u64 bdi_get_bytes(unsigned int ratio) 703 { 704 unsigned long background_thresh; 705 unsigned long dirty_thresh; 706 u64 bytes; 707 708 global_dirty_limits(&background_thresh, &dirty_thresh); 709 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 710 711 return bytes; 712 } 713 714 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 715 { 716 unsigned int delta; 717 int ret = 0; 718 719 if (min_ratio > 100 * BDI_RATIO_SCALE) 720 return -EINVAL; 721 722 spin_lock_bh(&bdi_lock); 723 if (min_ratio > bdi->max_ratio) { 724 ret = -EINVAL; 725 } else { 726 if (min_ratio < bdi->min_ratio) { 727 delta = bdi->min_ratio - min_ratio; 728 bdi_min_ratio -= delta; 729 bdi->min_ratio = min_ratio; 730 } else { 731 delta = min_ratio - bdi->min_ratio; 732 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 733 bdi_min_ratio += delta; 734 bdi->min_ratio = min_ratio; 735 } else { 736 ret = -EINVAL; 737 } 738 } 739 } 740 spin_unlock_bh(&bdi_lock); 741 742 return ret; 743 } 744 745 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 746 { 747 int ret = 0; 748 749 if (max_ratio > 100 * BDI_RATIO_SCALE) 750 return -EINVAL; 751 752 spin_lock_bh(&bdi_lock); 753 if (bdi->min_ratio > max_ratio) { 754 ret = -EINVAL; 755 } else { 756 bdi->max_ratio = max_ratio; 757 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 758 (100 * BDI_RATIO_SCALE); 759 } 760 spin_unlock_bh(&bdi_lock); 761 762 return ret; 763 } 764 765 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 766 { 767 return __bdi_set_min_ratio(bdi, min_ratio); 768 } 769 770 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 771 { 772 return __bdi_set_max_ratio(bdi, max_ratio); 773 } 774 775 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 776 { 777 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 778 } 779 780 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 781 { 782 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 783 } 784 EXPORT_SYMBOL(bdi_set_max_ratio); 785 786 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 787 { 788 return bdi_get_bytes(bdi->min_ratio); 789 } 790 791 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 792 { 793 int ret; 794 unsigned long pages = min_bytes >> PAGE_SHIFT; 795 long min_ratio; 796 797 ret = bdi_check_pages_limit(pages); 798 if (ret) 799 return ret; 800 801 min_ratio = bdi_ratio_from_pages(pages); 802 if (min_ratio < 0) 803 return min_ratio; 804 return __bdi_set_min_ratio(bdi, min_ratio); 805 } 806 807 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 808 { 809 return bdi_get_bytes(bdi->max_ratio); 810 } 811 812 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 813 { 814 int ret; 815 unsigned long pages = max_bytes >> PAGE_SHIFT; 816 long max_ratio; 817 818 ret = bdi_check_pages_limit(pages); 819 if (ret) 820 return ret; 821 822 max_ratio = bdi_ratio_from_pages(pages); 823 if (max_ratio < 0) 824 return max_ratio; 825 return __bdi_set_max_ratio(bdi, max_ratio); 826 } 827 828 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 829 { 830 if (strict_limit > 1) 831 return -EINVAL; 832 833 spin_lock_bh(&bdi_lock); 834 if (strict_limit) 835 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 836 else 837 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 838 spin_unlock_bh(&bdi_lock); 839 840 return 0; 841 } 842 843 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 844 unsigned long bg_thresh) 845 { 846 return (thresh + bg_thresh) / 2; 847 } 848 849 static unsigned long hard_dirty_limit(struct wb_domain *dom, 850 unsigned long thresh) 851 { 852 return max(thresh, dom->dirty_limit); 853 } 854 855 /* 856 * Memory which can be further allocated to a memcg domain is capped by 857 * system-wide clean memory excluding the amount being used in the domain. 858 */ 859 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 860 unsigned long filepages, unsigned long headroom) 861 { 862 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 863 unsigned long clean = filepages - min(filepages, mdtc->dirty); 864 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 865 unsigned long other_clean = global_clean - min(global_clean, clean); 866 867 mdtc->avail = filepages + min(headroom, other_clean); 868 } 869 870 static inline bool dtc_is_global(struct dirty_throttle_control *dtc) 871 { 872 return mdtc_gdtc(dtc) == NULL; 873 } 874 875 /* 876 * Dirty background will ignore pages being written as we're trying to 877 * decide whether to put more under writeback. 878 */ 879 static void domain_dirty_avail(struct dirty_throttle_control *dtc, 880 bool include_writeback) 881 { 882 if (dtc_is_global(dtc)) { 883 dtc->avail = global_dirtyable_memory(); 884 dtc->dirty = global_node_page_state(NR_FILE_DIRTY); 885 if (include_writeback) 886 dtc->dirty += global_node_page_state(NR_WRITEBACK); 887 } else { 888 unsigned long filepages = 0, headroom = 0, writeback = 0; 889 890 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty, 891 &writeback); 892 if (include_writeback) 893 dtc->dirty += writeback; 894 mdtc_calc_avail(dtc, filepages, headroom); 895 } 896 } 897 898 /** 899 * __wb_calc_thresh - @wb's share of dirty threshold 900 * @dtc: dirty_throttle_context of interest 901 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc 902 * 903 * Note that balance_dirty_pages() will only seriously take dirty throttling 904 * threshold as a hard limit when sleeping max_pause per page is not enough 905 * to keep the dirty pages under control. For example, when the device is 906 * completely stalled due to some error conditions, or when there are 1000 907 * dd tasks writing to a slow 10MB/s USB key. 908 * In the other normal situations, it acts more gently by throttling the tasks 909 * more (rather than completely block them) when the wb dirty pages go high. 910 * 911 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 912 * - starving fast devices 913 * - piling up dirty pages (that will take long time to sync) on slow devices 914 * 915 * The wb's share of dirty limit will be adapting to its throughput and 916 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 917 * 918 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term 919 * "dirty" in the context of dirty balancing includes all PG_dirty and 920 * PG_writeback pages. 921 */ 922 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, 923 unsigned long thresh) 924 { 925 struct wb_domain *dom = dtc_dom(dtc); 926 struct bdi_writeback *wb = dtc->wb; 927 u64 wb_thresh; 928 u64 wb_max_thresh; 929 unsigned long numerator, denominator; 930 unsigned long wb_min_ratio, wb_max_ratio; 931 932 /* 933 * Calculate this wb's share of the thresh ratio. 934 */ 935 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 936 &numerator, &denominator); 937 938 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 939 wb_thresh *= numerator; 940 wb_thresh = div64_ul(wb_thresh, denominator); 941 942 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio); 943 944 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 945 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 946 if (wb_thresh > wb_max_thresh) 947 wb_thresh = wb_max_thresh; 948 949 /* 950 * With strictlimit flag, the wb_thresh is treated as 951 * a hard limit in balance_dirty_pages() and wb_position_ratio(). 952 * It's possible that wb_thresh is close to zero, not because 953 * the device is slow, but because it has been inactive. 954 * To prevent occasional writes from being blocked, we raise wb_thresh. 955 */ 956 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 957 unsigned long limit = hard_dirty_limit(dom, dtc->thresh); 958 u64 wb_scale_thresh = 0; 959 960 if (limit > dtc->dirty) 961 wb_scale_thresh = (limit - dtc->dirty) / 100; 962 wb_thresh = max(wb_thresh, min(wb_scale_thresh, wb_max_thresh / 4)); 963 } 964 965 return wb_thresh; 966 } 967 968 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 969 { 970 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 971 972 return __wb_calc_thresh(&gdtc, thresh); 973 } 974 975 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 976 { 977 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 978 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 979 980 domain_dirty_avail(&gdtc, true); 981 domain_dirty_avail(&mdtc, true); 982 domain_dirty_limits(&mdtc); 983 984 return __wb_calc_thresh(&mdtc, mdtc.thresh); 985 } 986 987 /* 988 * setpoint - dirty 3 989 * f(dirty) := 1.0 + (----------------) 990 * limit - setpoint 991 * 992 * it's a 3rd order polynomial that subjects to 993 * 994 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 995 * (2) f(setpoint) = 1.0 => the balance point 996 * (3) f(limit) = 0 => the hard limit 997 * (4) df/dx <= 0 => negative feedback control 998 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 999 * => fast response on large errors; small oscillation near setpoint 1000 */ 1001 static long long pos_ratio_polynom(unsigned long setpoint, 1002 unsigned long dirty, 1003 unsigned long limit) 1004 { 1005 long long pos_ratio; 1006 long x; 1007 1008 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 1009 (limit - setpoint) | 1); 1010 pos_ratio = x; 1011 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 1012 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 1013 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 1014 1015 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 1016 } 1017 1018 /* 1019 * Dirty position control. 1020 * 1021 * (o) global/bdi setpoints 1022 * 1023 * We want the dirty pages be balanced around the global/wb setpoints. 1024 * When the number of dirty pages is higher/lower than the setpoint, the 1025 * dirty position control ratio (and hence task dirty ratelimit) will be 1026 * decreased/increased to bring the dirty pages back to the setpoint. 1027 * 1028 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 1029 * 1030 * if (dirty < setpoint) scale up pos_ratio 1031 * if (dirty > setpoint) scale down pos_ratio 1032 * 1033 * if (wb_dirty < wb_setpoint) scale up pos_ratio 1034 * if (wb_dirty > wb_setpoint) scale down pos_ratio 1035 * 1036 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 1037 * 1038 * (o) global control line 1039 * 1040 * ^ pos_ratio 1041 * | 1042 * | |<===== global dirty control scope ======>| 1043 * 2.0 * * * * * * * 1044 * | .* 1045 * | . * 1046 * | . * 1047 * | . * 1048 * | . * 1049 * | . * 1050 * 1.0 ................................* 1051 * | . . * 1052 * | . . * 1053 * | . . * 1054 * | . . * 1055 * | . . * 1056 * 0 +------------.------------------.----------------------*-------------> 1057 * freerun^ setpoint^ limit^ dirty pages 1058 * 1059 * (o) wb control line 1060 * 1061 * ^ pos_ratio 1062 * | 1063 * | * 1064 * | * 1065 * | * 1066 * | * 1067 * | * |<=========== span ============>| 1068 * 1.0 .......................* 1069 * | . * 1070 * | . * 1071 * | . * 1072 * | . * 1073 * | . * 1074 * | . * 1075 * | . * 1076 * | . * 1077 * | . * 1078 * | . * 1079 * | . * 1080 * 1/4 ...............................................* * * * * * * * * * * * 1081 * | . . 1082 * | . . 1083 * | . . 1084 * 0 +----------------------.-------------------------------.-------------> 1085 * wb_setpoint^ x_intercept^ 1086 * 1087 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1088 * be smoothly throttled down to normal if it starts high in situations like 1089 * - start writing to a slow SD card and a fast disk at the same time. The SD 1090 * card's wb_dirty may rush to many times higher than wb_setpoint. 1091 * - the wb dirty thresh drops quickly due to change of JBOD workload 1092 */ 1093 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1094 { 1095 struct bdi_writeback *wb = dtc->wb; 1096 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1097 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1098 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1099 unsigned long wb_thresh = dtc->wb_thresh; 1100 unsigned long x_intercept; 1101 unsigned long setpoint; /* dirty pages' target balance point */ 1102 unsigned long wb_setpoint; 1103 unsigned long span; 1104 long long pos_ratio; /* for scaling up/down the rate limit */ 1105 long x; 1106 1107 dtc->pos_ratio = 0; 1108 1109 if (unlikely(dtc->dirty >= limit)) 1110 return; 1111 1112 /* 1113 * global setpoint 1114 * 1115 * See comment for pos_ratio_polynom(). 1116 */ 1117 setpoint = (freerun + limit) / 2; 1118 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1119 1120 /* 1121 * The strictlimit feature is a tool preventing mistrusted filesystems 1122 * from growing a large number of dirty pages before throttling. For 1123 * such filesystems balance_dirty_pages always checks wb counters 1124 * against wb limits. Even if global "nr_dirty" is under "freerun". 1125 * This is especially important for fuse which sets bdi->max_ratio to 1126 * 1% by default. Without strictlimit feature, fuse writeback may 1127 * consume arbitrary amount of RAM because it is accounted in 1128 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1129 * 1130 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1131 * two values: wb_dirty and wb_thresh. Let's consider an example: 1132 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1133 * limits are set by default to 10% and 20% (background and throttle). 1134 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1135 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1136 * about ~6K pages (as the average of background and throttle wb 1137 * limits). The 3rd order polynomial will provide positive feedback if 1138 * wb_dirty is under wb_setpoint and vice versa. 1139 * 1140 * Note, that we cannot use global counters in these calculations 1141 * because we want to throttle process writing to a strictlimit wb 1142 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1143 * in the example above). 1144 */ 1145 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1146 long long wb_pos_ratio; 1147 1148 if (dtc->wb_dirty < 8) { 1149 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 1150 2 << RATELIMIT_CALC_SHIFT); 1151 return; 1152 } 1153 1154 if (dtc->wb_dirty >= wb_thresh) 1155 return; 1156 1157 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1158 dtc->wb_bg_thresh); 1159 1160 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1161 return; 1162 1163 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1164 wb_thresh); 1165 1166 /* 1167 * Typically, for strictlimit case, wb_setpoint << setpoint 1168 * and pos_ratio >> wb_pos_ratio. In the other words global 1169 * state ("dirty") is not limiting factor and we have to 1170 * make decision based on wb counters. But there is an 1171 * important case when global pos_ratio should get precedence: 1172 * global limits are exceeded (e.g. due to activities on other 1173 * wb's) while given strictlimit wb is below limit. 1174 * 1175 * "pos_ratio * wb_pos_ratio" would work for the case above, 1176 * but it would look too non-natural for the case of all 1177 * activity in the system coming from a single strictlimit wb 1178 * with bdi->max_ratio == 100%. 1179 * 1180 * Note that min() below somewhat changes the dynamics of the 1181 * control system. Normally, pos_ratio value can be well over 3 1182 * (when globally we are at freerun and wb is well below wb 1183 * setpoint). Now the maximum pos_ratio in the same situation 1184 * is 2. We might want to tweak this if we observe the control 1185 * system is too slow to adapt. 1186 */ 1187 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1188 return; 1189 } 1190 1191 /* 1192 * We have computed basic pos_ratio above based on global situation. If 1193 * the wb is over/under its share of dirty pages, we want to scale 1194 * pos_ratio further down/up. That is done by the following mechanism. 1195 */ 1196 1197 /* 1198 * wb setpoint 1199 * 1200 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1201 * 1202 * x_intercept - wb_dirty 1203 * := -------------------------- 1204 * x_intercept - wb_setpoint 1205 * 1206 * The main wb control line is a linear function that subjects to 1207 * 1208 * (1) f(wb_setpoint) = 1.0 1209 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1210 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1211 * 1212 * For single wb case, the dirty pages are observed to fluctuate 1213 * regularly within range 1214 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1215 * for various filesystems, where (2) can yield in a reasonable 12.5% 1216 * fluctuation range for pos_ratio. 1217 * 1218 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1219 * own size, so move the slope over accordingly and choose a slope that 1220 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1221 */ 1222 if (unlikely(wb_thresh > dtc->thresh)) 1223 wb_thresh = dtc->thresh; 1224 /* 1225 * It's very possible that wb_thresh is close to 0 not because the 1226 * device is slow, but that it has remained inactive for long time. 1227 * Honour such devices a reasonable good (hopefully IO efficient) 1228 * threshold, so that the occasional writes won't be blocked and active 1229 * writes can rampup the threshold quickly. 1230 */ 1231 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1232 /* 1233 * scale global setpoint to wb's: 1234 * wb_setpoint = setpoint * wb_thresh / thresh 1235 */ 1236 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1237 wb_setpoint = setpoint * (u64)x >> 16; 1238 /* 1239 * Use span=(8*write_bw) in single wb case as indicated by 1240 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1241 * 1242 * wb_thresh thresh - wb_thresh 1243 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1244 * thresh thresh 1245 */ 1246 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1247 x_intercept = wb_setpoint + span; 1248 1249 if (dtc->wb_dirty < x_intercept - span / 4) { 1250 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1251 (x_intercept - wb_setpoint) | 1); 1252 } else 1253 pos_ratio /= 4; 1254 1255 /* 1256 * wb reserve area, safeguard against dirty pool underrun and disk idle 1257 * It may push the desired control point of global dirty pages higher 1258 * than setpoint. 1259 */ 1260 x_intercept = wb_thresh / 2; 1261 if (dtc->wb_dirty < x_intercept) { 1262 if (dtc->wb_dirty > x_intercept / 8) 1263 pos_ratio = div_u64(pos_ratio * x_intercept, 1264 dtc->wb_dirty); 1265 else 1266 pos_ratio *= 8; 1267 } 1268 1269 dtc->pos_ratio = pos_ratio; 1270 } 1271 1272 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1273 unsigned long elapsed, 1274 unsigned long written) 1275 { 1276 const unsigned long period = roundup_pow_of_two(3 * HZ); 1277 unsigned long avg = wb->avg_write_bandwidth; 1278 unsigned long old = wb->write_bandwidth; 1279 u64 bw; 1280 1281 /* 1282 * bw = written * HZ / elapsed 1283 * 1284 * bw * elapsed + write_bandwidth * (period - elapsed) 1285 * write_bandwidth = --------------------------------------------------- 1286 * period 1287 * 1288 * @written may have decreased due to folio_redirty_for_writepage(). 1289 * Avoid underflowing @bw calculation. 1290 */ 1291 bw = written - min(written, wb->written_stamp); 1292 bw *= HZ; 1293 if (unlikely(elapsed > period)) { 1294 bw = div64_ul(bw, elapsed); 1295 avg = bw; 1296 goto out; 1297 } 1298 bw += (u64)wb->write_bandwidth * (period - elapsed); 1299 bw >>= ilog2(period); 1300 1301 /* 1302 * one more level of smoothing, for filtering out sudden spikes 1303 */ 1304 if (avg > old && old >= (unsigned long)bw) 1305 avg -= (avg - old) >> 3; 1306 1307 if (avg < old && old <= (unsigned long)bw) 1308 avg += (old - avg) >> 3; 1309 1310 out: 1311 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1312 avg = max(avg, 1LU); 1313 if (wb_has_dirty_io(wb)) { 1314 long delta = avg - wb->avg_write_bandwidth; 1315 WARN_ON_ONCE(atomic_long_add_return(delta, 1316 &wb->bdi->tot_write_bandwidth) <= 0); 1317 } 1318 wb->write_bandwidth = bw; 1319 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1320 } 1321 1322 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1323 { 1324 struct wb_domain *dom = dtc_dom(dtc); 1325 unsigned long thresh = dtc->thresh; 1326 unsigned long limit = dom->dirty_limit; 1327 1328 /* 1329 * Follow up in one step. 1330 */ 1331 if (limit < thresh) { 1332 limit = thresh; 1333 goto update; 1334 } 1335 1336 /* 1337 * Follow down slowly. Use the higher one as the target, because thresh 1338 * may drop below dirty. This is exactly the reason to introduce 1339 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1340 */ 1341 thresh = max(thresh, dtc->dirty); 1342 if (limit > thresh) { 1343 limit -= (limit - thresh) >> 5; 1344 goto update; 1345 } 1346 return; 1347 update: 1348 dom->dirty_limit = limit; 1349 } 1350 1351 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1352 unsigned long now) 1353 { 1354 struct wb_domain *dom = dtc_dom(dtc); 1355 1356 /* 1357 * check locklessly first to optimize away locking for the most time 1358 */ 1359 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1360 return; 1361 1362 spin_lock(&dom->lock); 1363 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1364 update_dirty_limit(dtc); 1365 dom->dirty_limit_tstamp = now; 1366 } 1367 spin_unlock(&dom->lock); 1368 } 1369 1370 /* 1371 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1372 * 1373 * Normal wb tasks will be curbed at or below it in long term. 1374 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1375 */ 1376 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1377 unsigned long dirtied, 1378 unsigned long elapsed) 1379 { 1380 struct bdi_writeback *wb = dtc->wb; 1381 unsigned long dirty = dtc->dirty; 1382 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1383 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1384 unsigned long setpoint = (freerun + limit) / 2; 1385 unsigned long write_bw = wb->avg_write_bandwidth; 1386 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1387 unsigned long dirty_rate; 1388 unsigned long task_ratelimit; 1389 unsigned long balanced_dirty_ratelimit; 1390 unsigned long step; 1391 unsigned long x; 1392 unsigned long shift; 1393 1394 /* 1395 * The dirty rate will match the writeout rate in long term, except 1396 * when dirty pages are truncated by userspace or re-dirtied by FS. 1397 */ 1398 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1399 1400 /* 1401 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1402 */ 1403 task_ratelimit = (u64)dirty_ratelimit * 1404 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1405 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1406 1407 /* 1408 * A linear estimation of the "balanced" throttle rate. The theory is, 1409 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1410 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1411 * formula will yield the balanced rate limit (write_bw / N). 1412 * 1413 * Note that the expanded form is not a pure rate feedback: 1414 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1415 * but also takes pos_ratio into account: 1416 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1417 * 1418 * (1) is not realistic because pos_ratio also takes part in balancing 1419 * the dirty rate. Consider the state 1420 * pos_ratio = 0.5 (3) 1421 * rate = 2 * (write_bw / N) (4) 1422 * If (1) is used, it will stuck in that state! Because each dd will 1423 * be throttled at 1424 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1425 * yielding 1426 * dirty_rate = N * task_ratelimit = write_bw (6) 1427 * put (6) into (1) we get 1428 * rate_(i+1) = rate_(i) (7) 1429 * 1430 * So we end up using (2) to always keep 1431 * rate_(i+1) ~= (write_bw / N) (8) 1432 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1433 * pos_ratio is able to drive itself to 1.0, which is not only where 1434 * the dirty count meet the setpoint, but also where the slope of 1435 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1436 */ 1437 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1438 dirty_rate | 1); 1439 /* 1440 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1441 */ 1442 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1443 balanced_dirty_ratelimit = write_bw; 1444 1445 /* 1446 * We could safely do this and return immediately: 1447 * 1448 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1449 * 1450 * However to get a more stable dirty_ratelimit, the below elaborated 1451 * code makes use of task_ratelimit to filter out singular points and 1452 * limit the step size. 1453 * 1454 * The below code essentially only uses the relative value of 1455 * 1456 * task_ratelimit - dirty_ratelimit 1457 * = (pos_ratio - 1) * dirty_ratelimit 1458 * 1459 * which reflects the direction and size of dirty position error. 1460 */ 1461 1462 /* 1463 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1464 * task_ratelimit is on the same side of dirty_ratelimit, too. 1465 * For example, when 1466 * - dirty_ratelimit > balanced_dirty_ratelimit 1467 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1468 * lowering dirty_ratelimit will help meet both the position and rate 1469 * control targets. Otherwise, don't update dirty_ratelimit if it will 1470 * only help meet the rate target. After all, what the users ultimately 1471 * feel and care are stable dirty rate and small position error. 1472 * 1473 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1474 * and filter out the singular points of balanced_dirty_ratelimit. Which 1475 * keeps jumping around randomly and can even leap far away at times 1476 * due to the small 200ms estimation period of dirty_rate (we want to 1477 * keep that period small to reduce time lags). 1478 */ 1479 step = 0; 1480 1481 /* 1482 * For strictlimit case, calculations above were based on wb counters 1483 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1484 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1485 * Hence, to calculate "step" properly, we have to use wb_dirty as 1486 * "dirty" and wb_setpoint as "setpoint". 1487 * 1488 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1489 * it's possible that wb_thresh is close to zero due to inactivity 1490 * of backing device. 1491 */ 1492 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1493 dirty = dtc->wb_dirty; 1494 if (dtc->wb_dirty < 8) 1495 setpoint = dtc->wb_dirty + 1; 1496 else 1497 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1498 } 1499 1500 if (dirty < setpoint) { 1501 x = min3(wb->balanced_dirty_ratelimit, 1502 balanced_dirty_ratelimit, task_ratelimit); 1503 if (dirty_ratelimit < x) 1504 step = x - dirty_ratelimit; 1505 } else { 1506 x = max3(wb->balanced_dirty_ratelimit, 1507 balanced_dirty_ratelimit, task_ratelimit); 1508 if (dirty_ratelimit > x) 1509 step = dirty_ratelimit - x; 1510 } 1511 1512 /* 1513 * Don't pursue 100% rate matching. It's impossible since the balanced 1514 * rate itself is constantly fluctuating. So decrease the track speed 1515 * when it gets close to the target. Helps eliminate pointless tremors. 1516 */ 1517 shift = dirty_ratelimit / (2 * step + 1); 1518 if (shift < BITS_PER_LONG) 1519 step = DIV_ROUND_UP(step >> shift, 8); 1520 else 1521 step = 0; 1522 1523 if (dirty_ratelimit < balanced_dirty_ratelimit) 1524 dirty_ratelimit += step; 1525 else 1526 dirty_ratelimit -= step; 1527 1528 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1529 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1530 1531 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1532 } 1533 1534 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1535 struct dirty_throttle_control *mdtc, 1536 bool update_ratelimit) 1537 { 1538 struct bdi_writeback *wb = gdtc->wb; 1539 unsigned long now = jiffies; 1540 unsigned long elapsed; 1541 unsigned long dirtied; 1542 unsigned long written; 1543 1544 spin_lock(&wb->list_lock); 1545 1546 /* 1547 * Lockless checks for elapsed time are racy and delayed update after 1548 * IO completion doesn't do it at all (to make sure written pages are 1549 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1550 * division errors. 1551 */ 1552 elapsed = max(now - wb->bw_time_stamp, 1UL); 1553 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1554 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1555 1556 if (update_ratelimit) { 1557 domain_update_dirty_limit(gdtc, now); 1558 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1559 1560 /* 1561 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1562 * compiler has no way to figure that out. Help it. 1563 */ 1564 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1565 domain_update_dirty_limit(mdtc, now); 1566 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1567 } 1568 } 1569 wb_update_write_bandwidth(wb, elapsed, written); 1570 1571 wb->dirtied_stamp = dirtied; 1572 wb->written_stamp = written; 1573 WRITE_ONCE(wb->bw_time_stamp, now); 1574 spin_unlock(&wb->list_lock); 1575 } 1576 1577 void wb_update_bandwidth(struct bdi_writeback *wb) 1578 { 1579 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1580 1581 __wb_update_bandwidth(&gdtc, NULL, false); 1582 } 1583 1584 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1585 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1586 1587 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1588 { 1589 unsigned long now = jiffies; 1590 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1591 1592 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1593 !atomic_read(&wb->writeback_inodes)) { 1594 spin_lock(&wb->list_lock); 1595 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1596 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1597 WRITE_ONCE(wb->bw_time_stamp, now); 1598 spin_unlock(&wb->list_lock); 1599 } 1600 } 1601 1602 /* 1603 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1604 * will look to see if it needs to start dirty throttling. 1605 * 1606 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1607 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1608 * (the number of pages we may dirty without exceeding the dirty limits). 1609 */ 1610 static unsigned long dirty_poll_interval(unsigned long dirty, 1611 unsigned long thresh) 1612 { 1613 if (thresh > dirty) 1614 return 1UL << (ilog2(thresh - dirty) >> 1); 1615 1616 return 1; 1617 } 1618 1619 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1620 unsigned long wb_dirty) 1621 { 1622 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1623 unsigned long t; 1624 1625 /* 1626 * Limit pause time for small memory systems. If sleeping for too long 1627 * time, a small pool of dirty/writeback pages may go empty and disk go 1628 * idle. 1629 * 1630 * 8 serves as the safety ratio. 1631 */ 1632 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1633 t++; 1634 1635 return min_t(unsigned long, t, MAX_PAUSE); 1636 } 1637 1638 static long wb_min_pause(struct bdi_writeback *wb, 1639 long max_pause, 1640 unsigned long task_ratelimit, 1641 unsigned long dirty_ratelimit, 1642 int *nr_dirtied_pause) 1643 { 1644 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1645 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1646 long t; /* target pause */ 1647 long pause; /* estimated next pause */ 1648 int pages; /* target nr_dirtied_pause */ 1649 1650 /* target for 10ms pause on 1-dd case */ 1651 t = max(1, HZ / 100); 1652 1653 /* 1654 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1655 * overheads. 1656 * 1657 * (N * 10ms) on 2^N concurrent tasks. 1658 */ 1659 if (hi > lo) 1660 t += (hi - lo) * (10 * HZ) / 1024; 1661 1662 /* 1663 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1664 * on the much more stable dirty_ratelimit. However the next pause time 1665 * will be computed based on task_ratelimit and the two rate limits may 1666 * depart considerably at some time. Especially if task_ratelimit goes 1667 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1668 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1669 * result task_ratelimit won't be executed faithfully, which could 1670 * eventually bring down dirty_ratelimit. 1671 * 1672 * We apply two rules to fix it up: 1673 * 1) try to estimate the next pause time and if necessary, use a lower 1674 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1675 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1676 * 2) limit the target pause time to max_pause/2, so that the normal 1677 * small fluctuations of task_ratelimit won't trigger rule (1) and 1678 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1679 */ 1680 t = min(t, 1 + max_pause / 2); 1681 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1682 1683 /* 1684 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1685 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1686 * When the 16 consecutive reads are often interrupted by some dirty 1687 * throttling pause during the async writes, cfq will go into idles 1688 * (deadline is fine). So push nr_dirtied_pause as high as possible 1689 * until reaches DIRTY_POLL_THRESH=32 pages. 1690 */ 1691 if (pages < DIRTY_POLL_THRESH) { 1692 t = max_pause; 1693 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1694 if (pages > DIRTY_POLL_THRESH) { 1695 pages = DIRTY_POLL_THRESH; 1696 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1697 } 1698 } 1699 1700 pause = HZ * pages / (task_ratelimit + 1); 1701 if (pause > max_pause) { 1702 t = max_pause; 1703 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1704 } 1705 1706 *nr_dirtied_pause = pages; 1707 /* 1708 * The minimal pause time will normally be half the target pause time. 1709 */ 1710 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1711 } 1712 1713 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1714 { 1715 struct bdi_writeback *wb = dtc->wb; 1716 unsigned long wb_reclaimable; 1717 1718 /* 1719 * wb_thresh is not treated as some limiting factor as 1720 * dirty_thresh, due to reasons 1721 * - in JBOD setup, wb_thresh can fluctuate a lot 1722 * - in a system with HDD and USB key, the USB key may somehow 1723 * go into state (wb_dirty >> wb_thresh) either because 1724 * wb_dirty starts high, or because wb_thresh drops low. 1725 * In this case we don't want to hard throttle the USB key 1726 * dirtiers for 100 seconds until wb_dirty drops under 1727 * wb_thresh. Instead the auxiliary wb control line in 1728 * wb_position_ratio() will let the dirtier task progress 1729 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1730 */ 1731 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); 1732 dtc->wb_bg_thresh = dtc->thresh ? 1733 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1734 1735 /* 1736 * In order to avoid the stacked BDI deadlock we need 1737 * to ensure we accurately count the 'dirty' pages when 1738 * the threshold is low. 1739 * 1740 * Otherwise it would be possible to get thresh+n pages 1741 * reported dirty, even though there are thresh-m pages 1742 * actually dirty; with m+n sitting in the percpu 1743 * deltas. 1744 */ 1745 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1746 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1747 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1748 } else { 1749 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1750 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1751 } 1752 } 1753 1754 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc, 1755 bool strictlimit) 1756 { 1757 unsigned long dirty, thresh; 1758 1759 if (strictlimit) { 1760 dirty = dtc->wb_dirty; 1761 thresh = dtc->wb_thresh; 1762 } else { 1763 dirty = dtc->dirty; 1764 thresh = dtc->thresh; 1765 } 1766 1767 return dirty_poll_interval(dirty, thresh); 1768 } 1769 1770 /* 1771 * Throttle it only when the background writeback cannot catch-up. This avoids 1772 * (excessively) small writeouts when the wb limits are ramping up in case of 1773 * !strictlimit. 1774 * 1775 * In strictlimit case make decision based on the wb counters and limits. Small 1776 * writeouts when the wb limits are ramping up are the price we consciously pay 1777 * for strictlimit-ing. 1778 */ 1779 static void domain_dirty_freerun(struct dirty_throttle_control *dtc, 1780 bool strictlimit) 1781 { 1782 unsigned long dirty, thresh, bg_thresh; 1783 1784 if (unlikely(strictlimit)) { 1785 wb_dirty_limits(dtc); 1786 dirty = dtc->wb_dirty; 1787 thresh = dtc->wb_thresh; 1788 bg_thresh = dtc->wb_bg_thresh; 1789 } else { 1790 dirty = dtc->dirty; 1791 thresh = dtc->thresh; 1792 bg_thresh = dtc->bg_thresh; 1793 } 1794 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh); 1795 } 1796 1797 static void balance_domain_limits(struct dirty_throttle_control *dtc, 1798 bool strictlimit) 1799 { 1800 domain_dirty_avail(dtc, true); 1801 domain_dirty_limits(dtc); 1802 domain_dirty_freerun(dtc, strictlimit); 1803 } 1804 1805 static void wb_dirty_freerun(struct dirty_throttle_control *dtc, 1806 bool strictlimit) 1807 { 1808 dtc->freerun = false; 1809 1810 /* was already handled in domain_dirty_freerun */ 1811 if (strictlimit) 1812 return; 1813 1814 wb_dirty_limits(dtc); 1815 /* 1816 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb 1817 * freerun ceiling. 1818 */ 1819 if (!(current->flags & PF_LOCAL_THROTTLE)) 1820 return; 1821 1822 dtc->freerun = dtc->wb_dirty < 1823 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh); 1824 } 1825 1826 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc, 1827 bool strictlimit) 1828 { 1829 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) && 1830 ((dtc->dirty > dtc->thresh) || strictlimit); 1831 } 1832 1833 /* 1834 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is 1835 * in freerun state. Please don't use these invalid fields in freerun case. 1836 */ 1837 static void balance_wb_limits(struct dirty_throttle_control *dtc, 1838 bool strictlimit) 1839 { 1840 wb_dirty_freerun(dtc, strictlimit); 1841 if (dtc->freerun) 1842 return; 1843 1844 wb_dirty_exceeded(dtc, strictlimit); 1845 wb_position_ratio(dtc); 1846 } 1847 1848 /* 1849 * balance_dirty_pages() must be called by processes which are generating dirty 1850 * data. It looks at the number of dirty pages in the machine and will force 1851 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1852 * If we're over `background_thresh' then the writeback threads are woken to 1853 * perform some writeout. 1854 */ 1855 static int balance_dirty_pages(struct bdi_writeback *wb, 1856 unsigned long pages_dirtied, unsigned int flags) 1857 { 1858 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1859 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1860 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1861 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1862 &mdtc_stor : NULL; 1863 struct dirty_throttle_control *sdtc; 1864 unsigned long nr_dirty; 1865 long period; 1866 long pause; 1867 long max_pause; 1868 long min_pause; 1869 int nr_dirtied_pause; 1870 unsigned long task_ratelimit; 1871 unsigned long dirty_ratelimit; 1872 struct backing_dev_info *bdi = wb->bdi; 1873 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1874 unsigned long start_time = jiffies; 1875 int ret = 0; 1876 1877 for (;;) { 1878 unsigned long now = jiffies; 1879 1880 nr_dirty = global_node_page_state(NR_FILE_DIRTY); 1881 1882 balance_domain_limits(gdtc, strictlimit); 1883 if (mdtc) { 1884 /* 1885 * If @wb belongs to !root memcg, repeat the same 1886 * basic calculations for the memcg domain. 1887 */ 1888 balance_domain_limits(mdtc, strictlimit); 1889 } 1890 1891 /* 1892 * In laptop mode, we wait until hitting the higher threshold 1893 * before starting background writeout, and then write out all 1894 * the way down to the lower threshold. So slow writers cause 1895 * minimal disk activity. 1896 * 1897 * In normal mode, we start background writeout at the lower 1898 * background_thresh, to keep the amount of dirty memory low. 1899 */ 1900 if (!laptop_mode && nr_dirty > gdtc->bg_thresh && 1901 !writeback_in_progress(wb)) 1902 wb_start_background_writeback(wb); 1903 1904 /* 1905 * If memcg domain is in effect, @dirty should be under 1906 * both global and memcg freerun ceilings. 1907 */ 1908 if (gdtc->freerun && (!mdtc || mdtc->freerun)) { 1909 unsigned long intv; 1910 unsigned long m_intv; 1911 1912 free_running: 1913 intv = domain_poll_intv(gdtc, strictlimit); 1914 m_intv = ULONG_MAX; 1915 1916 current->dirty_paused_when = now; 1917 current->nr_dirtied = 0; 1918 if (mdtc) 1919 m_intv = domain_poll_intv(mdtc, strictlimit); 1920 current->nr_dirtied_pause = min(intv, m_intv); 1921 break; 1922 } 1923 1924 /* Start writeback even when in laptop mode */ 1925 if (unlikely(!writeback_in_progress(wb))) 1926 wb_start_background_writeback(wb); 1927 1928 mem_cgroup_flush_foreign(wb); 1929 1930 /* 1931 * Calculate global domain's pos_ratio and select the 1932 * global dtc by default. 1933 */ 1934 balance_wb_limits(gdtc, strictlimit); 1935 if (gdtc->freerun) 1936 goto free_running; 1937 sdtc = gdtc; 1938 1939 if (mdtc) { 1940 /* 1941 * If memcg domain is in effect, calculate its 1942 * pos_ratio. @wb should satisfy constraints from 1943 * both global and memcg domains. Choose the one 1944 * w/ lower pos_ratio. 1945 */ 1946 balance_wb_limits(mdtc, strictlimit); 1947 if (mdtc->freerun) 1948 goto free_running; 1949 if (mdtc->pos_ratio < gdtc->pos_ratio) 1950 sdtc = mdtc; 1951 } 1952 1953 wb->dirty_exceeded = gdtc->dirty_exceeded || 1954 (mdtc && mdtc->dirty_exceeded); 1955 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1956 BANDWIDTH_INTERVAL)) 1957 __wb_update_bandwidth(gdtc, mdtc, true); 1958 1959 /* throttle according to the chosen dtc */ 1960 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1961 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1962 RATELIMIT_CALC_SHIFT; 1963 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1964 min_pause = wb_min_pause(wb, max_pause, 1965 task_ratelimit, dirty_ratelimit, 1966 &nr_dirtied_pause); 1967 1968 if (unlikely(task_ratelimit == 0)) { 1969 period = max_pause; 1970 pause = max_pause; 1971 goto pause; 1972 } 1973 period = HZ * pages_dirtied / task_ratelimit; 1974 pause = period; 1975 if (current->dirty_paused_when) 1976 pause -= now - current->dirty_paused_when; 1977 /* 1978 * For less than 1s think time (ext3/4 may block the dirtier 1979 * for up to 800ms from time to time on 1-HDD; so does xfs, 1980 * however at much less frequency), try to compensate it in 1981 * future periods by updating the virtual time; otherwise just 1982 * do a reset, as it may be a light dirtier. 1983 */ 1984 if (pause < min_pause) { 1985 trace_balance_dirty_pages(wb, 1986 sdtc->thresh, 1987 sdtc->bg_thresh, 1988 sdtc->dirty, 1989 sdtc->wb_thresh, 1990 sdtc->wb_dirty, 1991 dirty_ratelimit, 1992 task_ratelimit, 1993 pages_dirtied, 1994 period, 1995 min(pause, 0L), 1996 start_time); 1997 if (pause < -HZ) { 1998 current->dirty_paused_when = now; 1999 current->nr_dirtied = 0; 2000 } else if (period) { 2001 current->dirty_paused_when += period; 2002 current->nr_dirtied = 0; 2003 } else if (current->nr_dirtied_pause <= pages_dirtied) 2004 current->nr_dirtied_pause += pages_dirtied; 2005 break; 2006 } 2007 if (unlikely(pause > max_pause)) { 2008 /* for occasional dropped task_ratelimit */ 2009 now += min(pause - max_pause, max_pause); 2010 pause = max_pause; 2011 } 2012 2013 pause: 2014 trace_balance_dirty_pages(wb, 2015 sdtc->thresh, 2016 sdtc->bg_thresh, 2017 sdtc->dirty, 2018 sdtc->wb_thresh, 2019 sdtc->wb_dirty, 2020 dirty_ratelimit, 2021 task_ratelimit, 2022 pages_dirtied, 2023 period, 2024 pause, 2025 start_time); 2026 if (flags & BDP_ASYNC) { 2027 ret = -EAGAIN; 2028 break; 2029 } 2030 __set_current_state(TASK_KILLABLE); 2031 bdi->last_bdp_sleep = jiffies; 2032 io_schedule_timeout(pause); 2033 2034 current->dirty_paused_when = now + pause; 2035 current->nr_dirtied = 0; 2036 current->nr_dirtied_pause = nr_dirtied_pause; 2037 2038 /* 2039 * This is typically equal to (dirty < thresh) and can also 2040 * keep "1000+ dd on a slow USB stick" under control. 2041 */ 2042 if (task_ratelimit) 2043 break; 2044 2045 /* 2046 * In the case of an unresponsive NFS server and the NFS dirty 2047 * pages exceeds dirty_thresh, give the other good wb's a pipe 2048 * to go through, so that tasks on them still remain responsive. 2049 * 2050 * In theory 1 page is enough to keep the consumer-producer 2051 * pipe going: the flusher cleans 1 page => the task dirties 1 2052 * more page. However wb_dirty has accounting errors. So use 2053 * the larger and more IO friendly wb_stat_error. 2054 */ 2055 if (sdtc->wb_dirty <= wb_stat_error()) 2056 break; 2057 2058 if (fatal_signal_pending(current)) 2059 break; 2060 } 2061 return ret; 2062 } 2063 2064 static DEFINE_PER_CPU(int, bdp_ratelimits); 2065 2066 /* 2067 * Normal tasks are throttled by 2068 * loop { 2069 * dirty tsk->nr_dirtied_pause pages; 2070 * take a snap in balance_dirty_pages(); 2071 * } 2072 * However there is a worst case. If every task exit immediately when dirtied 2073 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 2074 * called to throttle the page dirties. The solution is to save the not yet 2075 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 2076 * randomly into the running tasks. This works well for the above worst case, 2077 * as the new task will pick up and accumulate the old task's leaked dirty 2078 * count and eventually get throttled. 2079 */ 2080 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 2081 2082 /** 2083 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 2084 * @mapping: address_space which was dirtied. 2085 * @flags: BDP flags. 2086 * 2087 * Processes which are dirtying memory should call in here once for each page 2088 * which was newly dirtied. The function will periodically check the system's 2089 * dirty state and will initiate writeback if needed. 2090 * 2091 * See balance_dirty_pages_ratelimited() for details. 2092 * 2093 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2094 * indicate that memory is out of balance and the caller must wait 2095 * for I/O to complete. Otherwise, it will return 0 to indicate 2096 * that either memory was already in balance, or it was able to sleep 2097 * until the amount of dirty memory returned to balance. 2098 */ 2099 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2100 unsigned int flags) 2101 { 2102 struct inode *inode = mapping->host; 2103 struct backing_dev_info *bdi = inode_to_bdi(inode); 2104 struct bdi_writeback *wb = NULL; 2105 int ratelimit; 2106 int ret = 0; 2107 int *p; 2108 2109 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2110 return ret; 2111 2112 if (inode_cgwb_enabled(inode)) 2113 wb = wb_get_create_current(bdi, GFP_KERNEL); 2114 if (!wb) 2115 wb = &bdi->wb; 2116 2117 ratelimit = current->nr_dirtied_pause; 2118 if (wb->dirty_exceeded) 2119 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2120 2121 preempt_disable(); 2122 /* 2123 * This prevents one CPU to accumulate too many dirtied pages without 2124 * calling into balance_dirty_pages(), which can happen when there are 2125 * 1000+ tasks, all of them start dirtying pages at exactly the same 2126 * time, hence all honoured too large initial task->nr_dirtied_pause. 2127 */ 2128 p = this_cpu_ptr(&bdp_ratelimits); 2129 if (unlikely(current->nr_dirtied >= ratelimit)) 2130 *p = 0; 2131 else if (unlikely(*p >= ratelimit_pages)) { 2132 *p = 0; 2133 ratelimit = 0; 2134 } 2135 /* 2136 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2137 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2138 * the dirty throttling and livelock other long-run dirtiers. 2139 */ 2140 p = this_cpu_ptr(&dirty_throttle_leaks); 2141 if (*p > 0 && current->nr_dirtied < ratelimit) { 2142 unsigned long nr_pages_dirtied; 2143 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2144 *p -= nr_pages_dirtied; 2145 current->nr_dirtied += nr_pages_dirtied; 2146 } 2147 preempt_enable(); 2148 2149 if (unlikely(current->nr_dirtied >= ratelimit)) 2150 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2151 2152 wb_put(wb); 2153 return ret; 2154 } 2155 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2156 2157 /** 2158 * balance_dirty_pages_ratelimited - balance dirty memory state. 2159 * @mapping: address_space which was dirtied. 2160 * 2161 * Processes which are dirtying memory should call in here once for each page 2162 * which was newly dirtied. The function will periodically check the system's 2163 * dirty state and will initiate writeback if needed. 2164 * 2165 * Once we're over the dirty memory limit we decrease the ratelimiting 2166 * by a lot, to prevent individual processes from overshooting the limit 2167 * by (ratelimit_pages) each. 2168 */ 2169 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2170 { 2171 balance_dirty_pages_ratelimited_flags(mapping, 0); 2172 } 2173 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2174 2175 /* 2176 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty 2177 * and thresh, but it's for background writeback. 2178 */ 2179 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc) 2180 { 2181 struct bdi_writeback *wb = dtc->wb; 2182 2183 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh); 2184 if (dtc->wb_bg_thresh < 2 * wb_stat_error()) 2185 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE); 2186 else 2187 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE); 2188 } 2189 2190 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc) 2191 { 2192 domain_dirty_avail(dtc, false); 2193 domain_dirty_limits(dtc); 2194 if (dtc->dirty > dtc->bg_thresh) 2195 return true; 2196 2197 wb_bg_dirty_limits(dtc); 2198 if (dtc->wb_dirty > dtc->wb_bg_thresh) 2199 return true; 2200 2201 return false; 2202 } 2203 2204 /** 2205 * wb_over_bg_thresh - does @wb need to be written back? 2206 * @wb: bdi_writeback of interest 2207 * 2208 * Determines whether background writeback should keep writing @wb or it's 2209 * clean enough. 2210 * 2211 * Return: %true if writeback should continue. 2212 */ 2213 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2214 { 2215 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 2216 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 2217 2218 if (domain_over_bg_thresh(&gdtc)) 2219 return true; 2220 2221 if (mdtc_valid(&mdtc)) 2222 return domain_over_bg_thresh(&mdtc); 2223 2224 return false; 2225 } 2226 2227 #ifdef CONFIG_SYSCTL 2228 /* 2229 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2230 */ 2231 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write, 2232 void *buffer, size_t *length, loff_t *ppos) 2233 { 2234 unsigned int old_interval = dirty_writeback_interval; 2235 int ret; 2236 2237 ret = proc_dointvec(table, write, buffer, length, ppos); 2238 2239 /* 2240 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2241 * and a different non-zero value will wakeup the writeback threads. 2242 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2243 * iterate over all bdis and wbs. 2244 * The reason we do this is to make the change take effect immediately. 2245 */ 2246 if (!ret && write && dirty_writeback_interval && 2247 dirty_writeback_interval != old_interval) 2248 wakeup_flusher_threads(WB_REASON_PERIODIC); 2249 2250 return ret; 2251 } 2252 #endif 2253 2254 void laptop_mode_timer_fn(struct timer_list *t) 2255 { 2256 struct backing_dev_info *backing_dev_info = 2257 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2258 2259 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2260 } 2261 2262 /* 2263 * We've spun up the disk and we're in laptop mode: schedule writeback 2264 * of all dirty data a few seconds from now. If the flush is already scheduled 2265 * then push it back - the user is still using the disk. 2266 */ 2267 void laptop_io_completion(struct backing_dev_info *info) 2268 { 2269 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2270 } 2271 2272 /* 2273 * We're in laptop mode and we've just synced. The sync's writes will have 2274 * caused another writeback to be scheduled by laptop_io_completion. 2275 * Nothing needs to be written back anymore, so we unschedule the writeback. 2276 */ 2277 void laptop_sync_completion(void) 2278 { 2279 struct backing_dev_info *bdi; 2280 2281 rcu_read_lock(); 2282 2283 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2284 del_timer(&bdi->laptop_mode_wb_timer); 2285 2286 rcu_read_unlock(); 2287 } 2288 2289 /* 2290 * If ratelimit_pages is too high then we can get into dirty-data overload 2291 * if a large number of processes all perform writes at the same time. 2292 * 2293 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2294 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2295 * thresholds. 2296 */ 2297 2298 void writeback_set_ratelimit(void) 2299 { 2300 struct wb_domain *dom = &global_wb_domain; 2301 unsigned long background_thresh; 2302 unsigned long dirty_thresh; 2303 2304 global_dirty_limits(&background_thresh, &dirty_thresh); 2305 dom->dirty_limit = dirty_thresh; 2306 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2307 if (ratelimit_pages < 16) 2308 ratelimit_pages = 16; 2309 } 2310 2311 static int page_writeback_cpu_online(unsigned int cpu) 2312 { 2313 writeback_set_ratelimit(); 2314 return 0; 2315 } 2316 2317 #ifdef CONFIG_SYSCTL 2318 2319 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2320 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2321 2322 static struct ctl_table vm_page_writeback_sysctls[] = { 2323 { 2324 .procname = "dirty_background_ratio", 2325 .data = &dirty_background_ratio, 2326 .maxlen = sizeof(dirty_background_ratio), 2327 .mode = 0644, 2328 .proc_handler = dirty_background_ratio_handler, 2329 .extra1 = SYSCTL_ZERO, 2330 .extra2 = SYSCTL_ONE_HUNDRED, 2331 }, 2332 { 2333 .procname = "dirty_background_bytes", 2334 .data = &dirty_background_bytes, 2335 .maxlen = sizeof(dirty_background_bytes), 2336 .mode = 0644, 2337 .proc_handler = dirty_background_bytes_handler, 2338 .extra1 = SYSCTL_LONG_ONE, 2339 }, 2340 { 2341 .procname = "dirty_ratio", 2342 .data = &vm_dirty_ratio, 2343 .maxlen = sizeof(vm_dirty_ratio), 2344 .mode = 0644, 2345 .proc_handler = dirty_ratio_handler, 2346 .extra1 = SYSCTL_ZERO, 2347 .extra2 = SYSCTL_ONE_HUNDRED, 2348 }, 2349 { 2350 .procname = "dirty_bytes", 2351 .data = &vm_dirty_bytes, 2352 .maxlen = sizeof(vm_dirty_bytes), 2353 .mode = 0644, 2354 .proc_handler = dirty_bytes_handler, 2355 .extra1 = (void *)&dirty_bytes_min, 2356 }, 2357 { 2358 .procname = "dirty_writeback_centisecs", 2359 .data = &dirty_writeback_interval, 2360 .maxlen = sizeof(dirty_writeback_interval), 2361 .mode = 0644, 2362 .proc_handler = dirty_writeback_centisecs_handler, 2363 }, 2364 { 2365 .procname = "dirty_expire_centisecs", 2366 .data = &dirty_expire_interval, 2367 .maxlen = sizeof(dirty_expire_interval), 2368 .mode = 0644, 2369 .proc_handler = proc_dointvec_minmax, 2370 .extra1 = SYSCTL_ZERO, 2371 }, 2372 #ifdef CONFIG_HIGHMEM 2373 { 2374 .procname = "highmem_is_dirtyable", 2375 .data = &vm_highmem_is_dirtyable, 2376 .maxlen = sizeof(vm_highmem_is_dirtyable), 2377 .mode = 0644, 2378 .proc_handler = proc_dointvec_minmax, 2379 .extra1 = SYSCTL_ZERO, 2380 .extra2 = SYSCTL_ONE, 2381 }, 2382 #endif 2383 { 2384 .procname = "laptop_mode", 2385 .data = &laptop_mode, 2386 .maxlen = sizeof(laptop_mode), 2387 .mode = 0644, 2388 .proc_handler = proc_dointvec_jiffies, 2389 }, 2390 }; 2391 #endif 2392 2393 /* 2394 * Called early on to tune the page writeback dirty limits. 2395 * 2396 * We used to scale dirty pages according to how total memory 2397 * related to pages that could be allocated for buffers. 2398 * 2399 * However, that was when we used "dirty_ratio" to scale with 2400 * all memory, and we don't do that any more. "dirty_ratio" 2401 * is now applied to total non-HIGHPAGE memory, and as such we can't 2402 * get into the old insane situation any more where we had 2403 * large amounts of dirty pages compared to a small amount of 2404 * non-HIGHMEM memory. 2405 * 2406 * But we might still want to scale the dirty_ratio by how 2407 * much memory the box has.. 2408 */ 2409 void __init page_writeback_init(void) 2410 { 2411 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2412 2413 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2414 page_writeback_cpu_online, NULL); 2415 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2416 page_writeback_cpu_online); 2417 #ifdef CONFIG_SYSCTL 2418 register_sysctl_init("vm", vm_page_writeback_sysctls); 2419 #endif 2420 } 2421 2422 /** 2423 * tag_pages_for_writeback - tag pages to be written by writeback 2424 * @mapping: address space structure to write 2425 * @start: starting page index 2426 * @end: ending page index (inclusive) 2427 * 2428 * This function scans the page range from @start to @end (inclusive) and tags 2429 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2430 * can then use the TOWRITE tag to identify pages eligible for writeback. 2431 * This mechanism is used to avoid livelocking of writeback by a process 2432 * steadily creating new dirty pages in the file (thus it is important for this 2433 * function to be quick so that it can tag pages faster than a dirtying process 2434 * can create them). 2435 */ 2436 void tag_pages_for_writeback(struct address_space *mapping, 2437 pgoff_t start, pgoff_t end) 2438 { 2439 XA_STATE(xas, &mapping->i_pages, start); 2440 unsigned int tagged = 0; 2441 void *page; 2442 2443 xas_lock_irq(&xas); 2444 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2445 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2446 if (++tagged % XA_CHECK_SCHED) 2447 continue; 2448 2449 xas_pause(&xas); 2450 xas_unlock_irq(&xas); 2451 cond_resched(); 2452 xas_lock_irq(&xas); 2453 } 2454 xas_unlock_irq(&xas); 2455 } 2456 EXPORT_SYMBOL(tag_pages_for_writeback); 2457 2458 static bool folio_prepare_writeback(struct address_space *mapping, 2459 struct writeback_control *wbc, struct folio *folio) 2460 { 2461 /* 2462 * Folio truncated or invalidated. We can freely skip it then, 2463 * even for data integrity operations: the folio has disappeared 2464 * concurrently, so there could be no real expectation of this 2465 * data integrity operation even if there is now a new, dirty 2466 * folio at the same pagecache index. 2467 */ 2468 if (unlikely(folio->mapping != mapping)) 2469 return false; 2470 2471 /* 2472 * Did somebody else write it for us? 2473 */ 2474 if (!folio_test_dirty(folio)) 2475 return false; 2476 2477 if (folio_test_writeback(folio)) { 2478 if (wbc->sync_mode == WB_SYNC_NONE) 2479 return false; 2480 folio_wait_writeback(folio); 2481 } 2482 BUG_ON(folio_test_writeback(folio)); 2483 2484 if (!folio_clear_dirty_for_io(folio)) 2485 return false; 2486 2487 return true; 2488 } 2489 2490 static xa_mark_t wbc_to_tag(struct writeback_control *wbc) 2491 { 2492 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2493 return PAGECACHE_TAG_TOWRITE; 2494 return PAGECACHE_TAG_DIRTY; 2495 } 2496 2497 static pgoff_t wbc_end(struct writeback_control *wbc) 2498 { 2499 if (wbc->range_cyclic) 2500 return -1; 2501 return wbc->range_end >> PAGE_SHIFT; 2502 } 2503 2504 static struct folio *writeback_get_folio(struct address_space *mapping, 2505 struct writeback_control *wbc) 2506 { 2507 struct folio *folio; 2508 2509 retry: 2510 folio = folio_batch_next(&wbc->fbatch); 2511 if (!folio) { 2512 folio_batch_release(&wbc->fbatch); 2513 cond_resched(); 2514 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2515 wbc_to_tag(wbc), &wbc->fbatch); 2516 folio = folio_batch_next(&wbc->fbatch); 2517 if (!folio) 2518 return NULL; 2519 } 2520 2521 folio_lock(folio); 2522 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2523 folio_unlock(folio); 2524 goto retry; 2525 } 2526 2527 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2528 return folio; 2529 } 2530 2531 /** 2532 * writeback_iter - iterate folio of a mapping for writeback 2533 * @mapping: address space structure to write 2534 * @wbc: writeback context 2535 * @folio: previously iterated folio (%NULL to start) 2536 * @error: in-out pointer for writeback errors (see below) 2537 * 2538 * This function returns the next folio for the writeback operation described by 2539 * @wbc on @mapping and should be called in a while loop in the ->writepages 2540 * implementation. 2541 * 2542 * To start the writeback operation, %NULL is passed in the @folio argument, and 2543 * for every subsequent iteration the folio returned previously should be passed 2544 * back in. 2545 * 2546 * If there was an error in the per-folio writeback inside the writeback_iter() 2547 * loop, @error should be set to the error value. 2548 * 2549 * Once the writeback described in @wbc has finished, this function will return 2550 * %NULL and if there was an error in any iteration restore it to @error. 2551 * 2552 * Note: callers should not manually break out of the loop using break or goto 2553 * but must keep calling writeback_iter() until it returns %NULL. 2554 * 2555 * Return: the folio to write or %NULL if the loop is done. 2556 */ 2557 struct folio *writeback_iter(struct address_space *mapping, 2558 struct writeback_control *wbc, struct folio *folio, int *error) 2559 { 2560 if (!folio) { 2561 folio_batch_init(&wbc->fbatch); 2562 wbc->saved_err = *error = 0; 2563 2564 /* 2565 * For range cyclic writeback we remember where we stopped so 2566 * that we can continue where we stopped. 2567 * 2568 * For non-cyclic writeback we always start at the beginning of 2569 * the passed in range. 2570 */ 2571 if (wbc->range_cyclic) 2572 wbc->index = mapping->writeback_index; 2573 else 2574 wbc->index = wbc->range_start >> PAGE_SHIFT; 2575 2576 /* 2577 * To avoid livelocks when other processes dirty new pages, we 2578 * first tag pages which should be written back and only then 2579 * start writing them. 2580 * 2581 * For data-integrity writeback we have to be careful so that we 2582 * do not miss some pages (e.g., because some other process has 2583 * cleared the TOWRITE tag we set). The rule we follow is that 2584 * TOWRITE tag can be cleared only by the process clearing the 2585 * DIRTY tag (and submitting the page for I/O). 2586 */ 2587 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2588 tag_pages_for_writeback(mapping, wbc->index, 2589 wbc_end(wbc)); 2590 } else { 2591 wbc->nr_to_write -= folio_nr_pages(folio); 2592 2593 WARN_ON_ONCE(*error > 0); 2594 2595 /* 2596 * For integrity writeback we have to keep going until we have 2597 * written all the folios we tagged for writeback above, even if 2598 * we run past wbc->nr_to_write or encounter errors. 2599 * We stash away the first error we encounter in wbc->saved_err 2600 * so that it can be retrieved when we're done. This is because 2601 * the file system may still have state to clear for each folio. 2602 * 2603 * For background writeback we exit as soon as we run past 2604 * wbc->nr_to_write or encounter the first error. 2605 */ 2606 if (wbc->sync_mode == WB_SYNC_ALL) { 2607 if (*error && !wbc->saved_err) 2608 wbc->saved_err = *error; 2609 } else { 2610 if (*error || wbc->nr_to_write <= 0) 2611 goto done; 2612 } 2613 } 2614 2615 folio = writeback_get_folio(mapping, wbc); 2616 if (!folio) { 2617 /* 2618 * To avoid deadlocks between range_cyclic writeback and callers 2619 * that hold pages in PageWriteback to aggregate I/O until 2620 * the writeback iteration finishes, we do not loop back to the 2621 * start of the file. Doing so causes a page lock/page 2622 * writeback access order inversion - we should only ever lock 2623 * multiple pages in ascending page->index order, and looping 2624 * back to the start of the file violates that rule and causes 2625 * deadlocks. 2626 */ 2627 if (wbc->range_cyclic) 2628 mapping->writeback_index = 0; 2629 2630 /* 2631 * Return the first error we encountered (if there was any) to 2632 * the caller. 2633 */ 2634 *error = wbc->saved_err; 2635 } 2636 return folio; 2637 2638 done: 2639 if (wbc->range_cyclic) 2640 mapping->writeback_index = folio_next_index(folio); 2641 folio_batch_release(&wbc->fbatch); 2642 return NULL; 2643 } 2644 EXPORT_SYMBOL_GPL(writeback_iter); 2645 2646 /** 2647 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2648 * @mapping: address space structure to write 2649 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2650 * @writepage: function called for each page 2651 * @data: data passed to writepage function 2652 * 2653 * Return: %0 on success, negative error code otherwise 2654 * 2655 * Note: please use writeback_iter() instead. 2656 */ 2657 int write_cache_pages(struct address_space *mapping, 2658 struct writeback_control *wbc, writepage_t writepage, 2659 void *data) 2660 { 2661 struct folio *folio = NULL; 2662 int error; 2663 2664 while ((folio = writeback_iter(mapping, wbc, folio, &error))) { 2665 error = writepage(folio, wbc, data); 2666 if (error == AOP_WRITEPAGE_ACTIVATE) { 2667 folio_unlock(folio); 2668 error = 0; 2669 } 2670 } 2671 2672 return error; 2673 } 2674 EXPORT_SYMBOL(write_cache_pages); 2675 2676 static int writeback_use_writepage(struct address_space *mapping, 2677 struct writeback_control *wbc) 2678 { 2679 struct folio *folio = NULL; 2680 struct blk_plug plug; 2681 int err; 2682 2683 blk_start_plug(&plug); 2684 while ((folio = writeback_iter(mapping, wbc, folio, &err))) { 2685 err = mapping->a_ops->writepage(&folio->page, wbc); 2686 if (err == AOP_WRITEPAGE_ACTIVATE) { 2687 folio_unlock(folio); 2688 err = 0; 2689 } 2690 mapping_set_error(mapping, err); 2691 } 2692 blk_finish_plug(&plug); 2693 2694 return err; 2695 } 2696 2697 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2698 { 2699 int ret; 2700 struct bdi_writeback *wb; 2701 2702 if (wbc->nr_to_write <= 0) 2703 return 0; 2704 wb = inode_to_wb_wbc(mapping->host, wbc); 2705 wb_bandwidth_estimate_start(wb); 2706 while (1) { 2707 if (mapping->a_ops->writepages) { 2708 ret = mapping->a_ops->writepages(mapping, wbc); 2709 } else if (mapping->a_ops->writepage) { 2710 ret = writeback_use_writepage(mapping, wbc); 2711 } else { 2712 /* deal with chardevs and other special files */ 2713 ret = 0; 2714 } 2715 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2716 break; 2717 2718 /* 2719 * Lacking an allocation context or the locality or writeback 2720 * state of any of the inode's pages, throttle based on 2721 * writeback activity on the local node. It's as good a 2722 * guess as any. 2723 */ 2724 reclaim_throttle(NODE_DATA(numa_node_id()), 2725 VMSCAN_THROTTLE_WRITEBACK); 2726 } 2727 /* 2728 * Usually few pages are written by now from those we've just submitted 2729 * but if there's constant writeback being submitted, this makes sure 2730 * writeback bandwidth is updated once in a while. 2731 */ 2732 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2733 BANDWIDTH_INTERVAL)) 2734 wb_update_bandwidth(wb); 2735 return ret; 2736 } 2737 2738 /* 2739 * For address_spaces which do not use buffers nor write back. 2740 */ 2741 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2742 { 2743 if (!folio_test_dirty(folio)) 2744 return !folio_test_set_dirty(folio); 2745 return false; 2746 } 2747 EXPORT_SYMBOL(noop_dirty_folio); 2748 2749 /* 2750 * Helper function for set_page_dirty family. 2751 * 2752 * NOTE: This relies on being atomic wrt interrupts. 2753 */ 2754 static void folio_account_dirtied(struct folio *folio, 2755 struct address_space *mapping) 2756 { 2757 struct inode *inode = mapping->host; 2758 2759 trace_writeback_dirty_folio(folio, mapping); 2760 2761 if (mapping_can_writeback(mapping)) { 2762 struct bdi_writeback *wb; 2763 long nr = folio_nr_pages(folio); 2764 2765 inode_attach_wb(inode, folio); 2766 wb = inode_to_wb(inode); 2767 2768 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2769 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2770 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2771 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2772 wb_stat_mod(wb, WB_DIRTIED, nr); 2773 task_io_account_write(nr * PAGE_SIZE); 2774 current->nr_dirtied += nr; 2775 __this_cpu_add(bdp_ratelimits, nr); 2776 2777 mem_cgroup_track_foreign_dirty(folio, wb); 2778 } 2779 } 2780 2781 /* 2782 * Helper function for deaccounting dirty page without writeback. 2783 * 2784 */ 2785 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2786 { 2787 long nr = folio_nr_pages(folio); 2788 2789 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2790 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2791 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2792 task_io_account_cancelled_write(nr * PAGE_SIZE); 2793 } 2794 2795 /* 2796 * Mark the folio dirty, and set it dirty in the page cache. 2797 * 2798 * If warn is true, then emit a warning if the folio is not uptodate and has 2799 * not been truncated. 2800 * 2801 * It is the caller's responsibility to prevent the folio from being truncated 2802 * while this function is in progress, although it may have been truncated 2803 * before this function is called. Most callers have the folio locked. 2804 * A few have the folio blocked from truncation through other means (e.g. 2805 * zap_vma_pages() has it mapped and is holding the page table lock). 2806 * When called from mark_buffer_dirty(), the filesystem should hold a 2807 * reference to the buffer_head that is being marked dirty, which causes 2808 * try_to_free_buffers() to fail. 2809 */ 2810 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2811 int warn) 2812 { 2813 unsigned long flags; 2814 2815 xa_lock_irqsave(&mapping->i_pages, flags); 2816 if (folio->mapping) { /* Race with truncate? */ 2817 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2818 folio_account_dirtied(folio, mapping); 2819 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2820 PAGECACHE_TAG_DIRTY); 2821 } 2822 xa_unlock_irqrestore(&mapping->i_pages, flags); 2823 } 2824 2825 /** 2826 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2827 * @mapping: Address space this folio belongs to. 2828 * @folio: Folio to be marked as dirty. 2829 * 2830 * Filesystems which do not use buffer heads should call this function 2831 * from their dirty_folio address space operation. It ignores the 2832 * contents of folio_get_private(), so if the filesystem marks individual 2833 * blocks as dirty, the filesystem should handle that itself. 2834 * 2835 * This is also sometimes used by filesystems which use buffer_heads when 2836 * a single buffer is being dirtied: we want to set the folio dirty in 2837 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2838 * whereas block_dirty_folio() is a "top-down" dirtying. 2839 * 2840 * The caller must ensure this doesn't race with truncation. Most will 2841 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2842 * folio mapped and the pte lock held, which also locks out truncation. 2843 */ 2844 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2845 { 2846 if (folio_test_set_dirty(folio)) 2847 return false; 2848 2849 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2850 2851 if (mapping->host) { 2852 /* !PageAnon && !swapper_space */ 2853 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2854 } 2855 return true; 2856 } 2857 EXPORT_SYMBOL(filemap_dirty_folio); 2858 2859 /** 2860 * folio_redirty_for_writepage - Decline to write a dirty folio. 2861 * @wbc: The writeback control. 2862 * @folio: The folio. 2863 * 2864 * When a writepage implementation decides that it doesn't want to write 2865 * @folio for some reason, it should call this function, unlock @folio and 2866 * return 0. 2867 * 2868 * Return: True if we redirtied the folio. False if someone else dirtied 2869 * it first. 2870 */ 2871 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2872 struct folio *folio) 2873 { 2874 struct address_space *mapping = folio->mapping; 2875 long nr = folio_nr_pages(folio); 2876 bool ret; 2877 2878 wbc->pages_skipped += nr; 2879 ret = filemap_dirty_folio(mapping, folio); 2880 if (mapping && mapping_can_writeback(mapping)) { 2881 struct inode *inode = mapping->host; 2882 struct bdi_writeback *wb; 2883 struct wb_lock_cookie cookie = {}; 2884 2885 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2886 current->nr_dirtied -= nr; 2887 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2888 wb_stat_mod(wb, WB_DIRTIED, -nr); 2889 unlocked_inode_to_wb_end(inode, &cookie); 2890 } 2891 return ret; 2892 } 2893 EXPORT_SYMBOL(folio_redirty_for_writepage); 2894 2895 /** 2896 * folio_mark_dirty - Mark a folio as being modified. 2897 * @folio: The folio. 2898 * 2899 * The folio may not be truncated while this function is running. 2900 * Holding the folio lock is sufficient to prevent truncation, but some 2901 * callers cannot acquire a sleeping lock. These callers instead hold 2902 * the page table lock for a page table which contains at least one page 2903 * in this folio. Truncation will block on the page table lock as it 2904 * unmaps pages before removing the folio from its mapping. 2905 * 2906 * Return: True if the folio was newly dirtied, false if it was already dirty. 2907 */ 2908 bool folio_mark_dirty(struct folio *folio) 2909 { 2910 struct address_space *mapping = folio_mapping(folio); 2911 2912 if (likely(mapping)) { 2913 /* 2914 * readahead/folio_deactivate could remain 2915 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2916 * About readahead, if the folio is written, the flags would be 2917 * reset. So no problem. 2918 * About folio_deactivate, if the folio is redirtied, 2919 * the flag will be reset. So no problem. but if the 2920 * folio is used by readahead it will confuse readahead 2921 * and make it restart the size rampup process. But it's 2922 * a trivial problem. 2923 */ 2924 if (folio_test_reclaim(folio)) 2925 folio_clear_reclaim(folio); 2926 return mapping->a_ops->dirty_folio(mapping, folio); 2927 } 2928 2929 return noop_dirty_folio(mapping, folio); 2930 } 2931 EXPORT_SYMBOL(folio_mark_dirty); 2932 2933 /* 2934 * folio_mark_dirty() is racy if the caller has no reference against 2935 * folio->mapping->host, and if the folio is unlocked. This is because another 2936 * CPU could truncate the folio off the mapping and then free the mapping. 2937 * 2938 * Usually, the folio _is_ locked, or the caller is a user-space process which 2939 * holds a reference on the inode by having an open file. 2940 * 2941 * In other cases, the folio should be locked before running folio_mark_dirty(). 2942 */ 2943 bool folio_mark_dirty_lock(struct folio *folio) 2944 { 2945 bool ret; 2946 2947 folio_lock(folio); 2948 ret = folio_mark_dirty(folio); 2949 folio_unlock(folio); 2950 return ret; 2951 } 2952 EXPORT_SYMBOL(folio_mark_dirty_lock); 2953 2954 /* 2955 * This cancels just the dirty bit on the kernel page itself, it does NOT 2956 * actually remove dirty bits on any mmap's that may be around. It also 2957 * leaves the page tagged dirty, so any sync activity will still find it on 2958 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2959 * look at the dirty bits in the VM. 2960 * 2961 * Doing this should *normally* only ever be done when a page is truncated, 2962 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2963 * this when it notices that somebody has cleaned out all the buffers on a 2964 * page without actually doing it through the VM. Can you say "ext3 is 2965 * horribly ugly"? Thought you could. 2966 */ 2967 void __folio_cancel_dirty(struct folio *folio) 2968 { 2969 struct address_space *mapping = folio_mapping(folio); 2970 2971 if (mapping_can_writeback(mapping)) { 2972 struct inode *inode = mapping->host; 2973 struct bdi_writeback *wb; 2974 struct wb_lock_cookie cookie = {}; 2975 2976 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2977 2978 if (folio_test_clear_dirty(folio)) 2979 folio_account_cleaned(folio, wb); 2980 2981 unlocked_inode_to_wb_end(inode, &cookie); 2982 } else { 2983 folio_clear_dirty(folio); 2984 } 2985 } 2986 EXPORT_SYMBOL(__folio_cancel_dirty); 2987 2988 /* 2989 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2990 * Returns true if the folio was previously dirty. 2991 * 2992 * This is for preparing to put the folio under writeout. We leave 2993 * the folio tagged as dirty in the xarray so that a concurrent 2994 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2995 * The ->writepage implementation will run either folio_start_writeback() 2996 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2997 * and xarray dirty tag back into sync. 2998 * 2999 * This incoherency between the folio's dirty flag and xarray tag is 3000 * unfortunate, but it only exists while the folio is locked. 3001 */ 3002 bool folio_clear_dirty_for_io(struct folio *folio) 3003 { 3004 struct address_space *mapping = folio_mapping(folio); 3005 bool ret = false; 3006 3007 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3008 3009 if (mapping && mapping_can_writeback(mapping)) { 3010 struct inode *inode = mapping->host; 3011 struct bdi_writeback *wb; 3012 struct wb_lock_cookie cookie = {}; 3013 3014 /* 3015 * Yes, Virginia, this is indeed insane. 3016 * 3017 * We use this sequence to make sure that 3018 * (a) we account for dirty stats properly 3019 * (b) we tell the low-level filesystem to 3020 * mark the whole folio dirty if it was 3021 * dirty in a pagetable. Only to then 3022 * (c) clean the folio again and return 1 to 3023 * cause the writeback. 3024 * 3025 * This way we avoid all nasty races with the 3026 * dirty bit in multiple places and clearing 3027 * them concurrently from different threads. 3028 * 3029 * Note! Normally the "folio_mark_dirty(folio)" 3030 * has no effect on the actual dirty bit - since 3031 * that will already usually be set. But we 3032 * need the side effects, and it can help us 3033 * avoid races. 3034 * 3035 * We basically use the folio "master dirty bit" 3036 * as a serialization point for all the different 3037 * threads doing their things. 3038 */ 3039 if (folio_mkclean(folio)) 3040 folio_mark_dirty(folio); 3041 /* 3042 * We carefully synchronise fault handlers against 3043 * installing a dirty pte and marking the folio dirty 3044 * at this point. We do this by having them hold the 3045 * page lock while dirtying the folio, and folios are 3046 * always locked coming in here, so we get the desired 3047 * exclusion. 3048 */ 3049 wb = unlocked_inode_to_wb_begin(inode, &cookie); 3050 if (folio_test_clear_dirty(folio)) { 3051 long nr = folio_nr_pages(folio); 3052 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 3053 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3054 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 3055 ret = true; 3056 } 3057 unlocked_inode_to_wb_end(inode, &cookie); 3058 return ret; 3059 } 3060 return folio_test_clear_dirty(folio); 3061 } 3062 EXPORT_SYMBOL(folio_clear_dirty_for_io); 3063 3064 static void wb_inode_writeback_start(struct bdi_writeback *wb) 3065 { 3066 atomic_inc(&wb->writeback_inodes); 3067 } 3068 3069 static void wb_inode_writeback_end(struct bdi_writeback *wb) 3070 { 3071 unsigned long flags; 3072 atomic_dec(&wb->writeback_inodes); 3073 /* 3074 * Make sure estimate of writeback throughput gets updated after 3075 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 3076 * (which is the interval other bandwidth updates use for batching) so 3077 * that if multiple inodes end writeback at a similar time, they get 3078 * batched into one bandwidth update. 3079 */ 3080 spin_lock_irqsave(&wb->work_lock, flags); 3081 if (test_bit(WB_registered, &wb->state)) 3082 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 3083 spin_unlock_irqrestore(&wb->work_lock, flags); 3084 } 3085 3086 bool __folio_end_writeback(struct folio *folio) 3087 { 3088 long nr = folio_nr_pages(folio); 3089 struct address_space *mapping = folio_mapping(folio); 3090 bool ret; 3091 3092 if (mapping && mapping_use_writeback_tags(mapping)) { 3093 struct inode *inode = mapping->host; 3094 struct backing_dev_info *bdi = inode_to_bdi(inode); 3095 unsigned long flags; 3096 3097 xa_lock_irqsave(&mapping->i_pages, flags); 3098 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3099 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 3100 PAGECACHE_TAG_WRITEBACK); 3101 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3102 struct bdi_writeback *wb = inode_to_wb(inode); 3103 3104 wb_stat_mod(wb, WB_WRITEBACK, -nr); 3105 __wb_writeout_add(wb, nr); 3106 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 3107 wb_inode_writeback_end(wb); 3108 } 3109 3110 if (mapping->host && !mapping_tagged(mapping, 3111 PAGECACHE_TAG_WRITEBACK)) 3112 sb_clear_inode_writeback(mapping->host); 3113 3114 xa_unlock_irqrestore(&mapping->i_pages, flags); 3115 } else { 3116 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3117 } 3118 3119 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3120 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3121 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3122 3123 return ret; 3124 } 3125 3126 void __folio_start_writeback(struct folio *folio, bool keep_write) 3127 { 3128 long nr = folio_nr_pages(folio); 3129 struct address_space *mapping = folio_mapping(folio); 3130 int access_ret; 3131 3132 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 3133 3134 if (mapping && mapping_use_writeback_tags(mapping)) { 3135 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3136 struct inode *inode = mapping->host; 3137 struct backing_dev_info *bdi = inode_to_bdi(inode); 3138 unsigned long flags; 3139 bool on_wblist; 3140 3141 xas_lock_irqsave(&xas, flags); 3142 xas_load(&xas); 3143 folio_test_set_writeback(folio); 3144 3145 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 3146 3147 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3148 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3149 struct bdi_writeback *wb = inode_to_wb(inode); 3150 3151 wb_stat_mod(wb, WB_WRITEBACK, nr); 3152 if (!on_wblist) 3153 wb_inode_writeback_start(wb); 3154 } 3155 3156 /* 3157 * We can come through here when swapping anonymous 3158 * folios, so we don't necessarily have an inode to 3159 * track for sync. 3160 */ 3161 if (mapping->host && !on_wblist) 3162 sb_mark_inode_writeback(mapping->host); 3163 if (!folio_test_dirty(folio)) 3164 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3165 if (!keep_write) 3166 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3167 xas_unlock_irqrestore(&xas, flags); 3168 } else { 3169 folio_test_set_writeback(folio); 3170 } 3171 3172 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3173 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3174 3175 access_ret = arch_make_folio_accessible(folio); 3176 /* 3177 * If writeback has been triggered on a page that cannot be made 3178 * accessible, it is too late to recover here. 3179 */ 3180 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3181 } 3182 EXPORT_SYMBOL(__folio_start_writeback); 3183 3184 /** 3185 * folio_wait_writeback - Wait for a folio to finish writeback. 3186 * @folio: The folio to wait for. 3187 * 3188 * If the folio is currently being written back to storage, wait for the 3189 * I/O to complete. 3190 * 3191 * Context: Sleeps. Must be called in process context and with 3192 * no spinlocks held. Caller should hold a reference on the folio. 3193 * If the folio is not locked, writeback may start again after writeback 3194 * has finished. 3195 */ 3196 void folio_wait_writeback(struct folio *folio) 3197 { 3198 while (folio_test_writeback(folio)) { 3199 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3200 folio_wait_bit(folio, PG_writeback); 3201 } 3202 } 3203 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3204 3205 /** 3206 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3207 * @folio: The folio to wait for. 3208 * 3209 * If the folio is currently being written back to storage, wait for the 3210 * I/O to complete or a fatal signal to arrive. 3211 * 3212 * Context: Sleeps. Must be called in process context and with 3213 * no spinlocks held. Caller should hold a reference on the folio. 3214 * If the folio is not locked, writeback may start again after writeback 3215 * has finished. 3216 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3217 */ 3218 int folio_wait_writeback_killable(struct folio *folio) 3219 { 3220 while (folio_test_writeback(folio)) { 3221 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3222 if (folio_wait_bit_killable(folio, PG_writeback)) 3223 return -EINTR; 3224 } 3225 3226 return 0; 3227 } 3228 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3229 3230 /** 3231 * folio_wait_stable() - wait for writeback to finish, if necessary. 3232 * @folio: The folio to wait on. 3233 * 3234 * This function determines if the given folio is related to a backing 3235 * device that requires folio contents to be held stable during writeback. 3236 * If so, then it will wait for any pending writeback to complete. 3237 * 3238 * Context: Sleeps. Must be called in process context and with 3239 * no spinlocks held. Caller should hold a reference on the folio. 3240 * If the folio is not locked, writeback may start again after writeback 3241 * has finished. 3242 */ 3243 void folio_wait_stable(struct folio *folio) 3244 { 3245 if (mapping_stable_writes(folio_mapping(folio))) 3246 folio_wait_writeback(folio); 3247 } 3248 EXPORT_SYMBOL_GPL(folio_wait_stable); 3249