xref: /linux/mm/page-writeback.c (revision 9d14070f656addddce3d63fd483de46930b51850)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38 
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE		max(HZ/5, 1)
43 
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
48 
49 #define RATELIMIT_CALC_SHIFT	10
50 
51 /*
52  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53  * will look to see if it needs to force writeback or throttling.
54  */
55 static long ratelimit_pages = 32;
56 
57 /* The following parameters are exported via /proc/sys/vm */
58 
59 /*
60  * Start background writeback (via writeback threads) at this percentage
61  */
62 int dirty_background_ratio = 10;
63 
64 /*
65  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66  * dirty_background_ratio * the amount of dirtyable memory
67  */
68 unsigned long dirty_background_bytes;
69 
70 /*
71  * free highmem will not be subtracted from the total free memory
72  * for calculating free ratios if vm_highmem_is_dirtyable is true
73  */
74 int vm_highmem_is_dirtyable;
75 
76 /*
77  * The generator of dirty data starts writeback at this percentage
78  */
79 int vm_dirty_ratio = 20;
80 
81 /*
82  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83  * vm_dirty_ratio * the amount of dirtyable memory
84  */
85 unsigned long vm_dirty_bytes;
86 
87 /*
88  * The interval between `kupdate'-style writebacks
89  */
90 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
91 
92 /*
93  * The longest time for which data is allowed to remain dirty
94  */
95 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
96 
97 /*
98  * Flag that makes the machine dump writes/reads and block dirtyings.
99  */
100 int block_dump;
101 
102 /*
103  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104  * a full sync is triggered after this time elapses without any disk activity.
105  */
106 int laptop_mode;
107 
108 EXPORT_SYMBOL(laptop_mode);
109 
110 /* End of sysctl-exported parameters */
111 
112 unsigned long global_dirty_limit;
113 
114 /*
115  * Scale the writeback cache size proportional to the relative writeout speeds.
116  *
117  * We do this by keeping a floating proportion between BDIs, based on page
118  * writeback completions [end_page_writeback()]. Those devices that write out
119  * pages fastest will get the larger share, while the slower will get a smaller
120  * share.
121  *
122  * We use page writeout completions because we are interested in getting rid of
123  * dirty pages. Having them written out is the primary goal.
124  *
125  * We introduce a concept of time, a period over which we measure these events,
126  * because demand can/will vary over time. The length of this period itself is
127  * measured in page writeback completions.
128  *
129  */
130 static struct prop_descriptor vm_completions;
131 
132 /*
133  * couple the period to the dirty_ratio:
134  *
135  *   period/2 ~ roundup_pow_of_two(dirty limit)
136  */
137 static int calc_period_shift(void)
138 {
139 	unsigned long dirty_total;
140 
141 	if (vm_dirty_bytes)
142 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
143 	else
144 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
145 				100;
146 	return 2 + ilog2(dirty_total - 1);
147 }
148 
149 /*
150  * update the period when the dirty threshold changes.
151  */
152 static void update_completion_period(void)
153 {
154 	int shift = calc_period_shift();
155 	prop_change_shift(&vm_completions, shift);
156 
157 	writeback_set_ratelimit();
158 }
159 
160 int dirty_background_ratio_handler(struct ctl_table *table, int write,
161 		void __user *buffer, size_t *lenp,
162 		loff_t *ppos)
163 {
164 	int ret;
165 
166 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
167 	if (ret == 0 && write)
168 		dirty_background_bytes = 0;
169 	return ret;
170 }
171 
172 int dirty_background_bytes_handler(struct ctl_table *table, int write,
173 		void __user *buffer, size_t *lenp,
174 		loff_t *ppos)
175 {
176 	int ret;
177 
178 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
179 	if (ret == 0 && write)
180 		dirty_background_ratio = 0;
181 	return ret;
182 }
183 
184 int dirty_ratio_handler(struct ctl_table *table, int write,
185 		void __user *buffer, size_t *lenp,
186 		loff_t *ppos)
187 {
188 	int old_ratio = vm_dirty_ratio;
189 	int ret;
190 
191 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
192 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
193 		update_completion_period();
194 		vm_dirty_bytes = 0;
195 	}
196 	return ret;
197 }
198 
199 
200 int dirty_bytes_handler(struct ctl_table *table, int write,
201 		void __user *buffer, size_t *lenp,
202 		loff_t *ppos)
203 {
204 	unsigned long old_bytes = vm_dirty_bytes;
205 	int ret;
206 
207 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
208 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
209 		update_completion_period();
210 		vm_dirty_ratio = 0;
211 	}
212 	return ret;
213 }
214 
215 /*
216  * Increment the BDI's writeout completion count and the global writeout
217  * completion count. Called from test_clear_page_writeback().
218  */
219 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
220 {
221 	__inc_bdi_stat(bdi, BDI_WRITTEN);
222 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 			      bdi->max_prop_frac);
224 }
225 
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228 	unsigned long flags;
229 
230 	local_irq_save(flags);
231 	__bdi_writeout_inc(bdi);
232 	local_irq_restore(flags);
233 }
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235 
236 /*
237  * Obtain an accurate fraction of the BDI's portion.
238  */
239 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
240 		long *numerator, long *denominator)
241 {
242 	prop_fraction_percpu(&vm_completions, &bdi->completions,
243 				numerator, denominator);
244 }
245 
246 /*
247  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
248  * registered backing devices, which, for obvious reasons, can not
249  * exceed 100%.
250  */
251 static unsigned int bdi_min_ratio;
252 
253 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
254 {
255 	int ret = 0;
256 
257 	spin_lock_bh(&bdi_lock);
258 	if (min_ratio > bdi->max_ratio) {
259 		ret = -EINVAL;
260 	} else {
261 		min_ratio -= bdi->min_ratio;
262 		if (bdi_min_ratio + min_ratio < 100) {
263 			bdi_min_ratio += min_ratio;
264 			bdi->min_ratio += min_ratio;
265 		} else {
266 			ret = -EINVAL;
267 		}
268 	}
269 	spin_unlock_bh(&bdi_lock);
270 
271 	return ret;
272 }
273 
274 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
275 {
276 	int ret = 0;
277 
278 	if (max_ratio > 100)
279 		return -EINVAL;
280 
281 	spin_lock_bh(&bdi_lock);
282 	if (bdi->min_ratio > max_ratio) {
283 		ret = -EINVAL;
284 	} else {
285 		bdi->max_ratio = max_ratio;
286 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
287 	}
288 	spin_unlock_bh(&bdi_lock);
289 
290 	return ret;
291 }
292 EXPORT_SYMBOL(bdi_set_max_ratio);
293 
294 /*
295  * Work out the current dirty-memory clamping and background writeout
296  * thresholds.
297  *
298  * The main aim here is to lower them aggressively if there is a lot of mapped
299  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
300  * pages.  It is better to clamp down on writers than to start swapping, and
301  * performing lots of scanning.
302  *
303  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
304  *
305  * We don't permit the clamping level to fall below 5% - that is getting rather
306  * excessive.
307  *
308  * We make sure that the background writeout level is below the adjusted
309  * clamping level.
310  */
311 
312 static unsigned long highmem_dirtyable_memory(unsigned long total)
313 {
314 #ifdef CONFIG_HIGHMEM
315 	int node;
316 	unsigned long x = 0;
317 
318 	for_each_node_state(node, N_HIGH_MEMORY) {
319 		struct zone *z =
320 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
321 
322 		x += zone_page_state(z, NR_FREE_PAGES) +
323 		     zone_reclaimable_pages(z);
324 	}
325 	/*
326 	 * Make sure that the number of highmem pages is never larger
327 	 * than the number of the total dirtyable memory. This can only
328 	 * occur in very strange VM situations but we want to make sure
329 	 * that this does not occur.
330 	 */
331 	return min(x, total);
332 #else
333 	return 0;
334 #endif
335 }
336 
337 /**
338  * determine_dirtyable_memory - amount of memory that may be used
339  *
340  * Returns the numebr of pages that can currently be freed and used
341  * by the kernel for direct mappings.
342  */
343 unsigned long determine_dirtyable_memory(void)
344 {
345 	unsigned long x;
346 
347 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
348 
349 	if (!vm_highmem_is_dirtyable)
350 		x -= highmem_dirtyable_memory(x);
351 
352 	return x + 1;	/* Ensure that we never return 0 */
353 }
354 
355 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
356 					   unsigned long bg_thresh)
357 {
358 	return (thresh + bg_thresh) / 2;
359 }
360 
361 static unsigned long hard_dirty_limit(unsigned long thresh)
362 {
363 	return max(thresh, global_dirty_limit);
364 }
365 
366 /*
367  * global_dirty_limits - background-writeback and dirty-throttling thresholds
368  *
369  * Calculate the dirty thresholds based on sysctl parameters
370  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
371  * - vm.dirty_ratio             or  vm.dirty_bytes
372  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
373  * real-time tasks.
374  */
375 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
376 {
377 	unsigned long background;
378 	unsigned long dirty;
379 	unsigned long uninitialized_var(available_memory);
380 	struct task_struct *tsk;
381 
382 	if (!vm_dirty_bytes || !dirty_background_bytes)
383 		available_memory = determine_dirtyable_memory();
384 
385 	if (vm_dirty_bytes)
386 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
387 	else
388 		dirty = (vm_dirty_ratio * available_memory) / 100;
389 
390 	if (dirty_background_bytes)
391 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
392 	else
393 		background = (dirty_background_ratio * available_memory) / 100;
394 
395 	if (background >= dirty)
396 		background = dirty / 2;
397 	tsk = current;
398 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
399 		background += background / 4;
400 		dirty += dirty / 4;
401 	}
402 	*pbackground = background;
403 	*pdirty = dirty;
404 	trace_global_dirty_state(background, dirty);
405 }
406 
407 /**
408  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
409  * @bdi: the backing_dev_info to query
410  * @dirty: global dirty limit in pages
411  *
412  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
413  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
414  *
415  * Note that balance_dirty_pages() will only seriously take it as a hard limit
416  * when sleeping max_pause per page is not enough to keep the dirty pages under
417  * control. For example, when the device is completely stalled due to some error
418  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
419  * In the other normal situations, it acts more gently by throttling the tasks
420  * more (rather than completely block them) when the bdi dirty pages go high.
421  *
422  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
423  * - starving fast devices
424  * - piling up dirty pages (that will take long time to sync) on slow devices
425  *
426  * The bdi's share of dirty limit will be adapting to its throughput and
427  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
428  */
429 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
430 {
431 	u64 bdi_dirty;
432 	long numerator, denominator;
433 
434 	/*
435 	 * Calculate this BDI's share of the dirty ratio.
436 	 */
437 	bdi_writeout_fraction(bdi, &numerator, &denominator);
438 
439 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
440 	bdi_dirty *= numerator;
441 	do_div(bdi_dirty, denominator);
442 
443 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
444 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
445 		bdi_dirty = dirty * bdi->max_ratio / 100;
446 
447 	return bdi_dirty;
448 }
449 
450 /*
451  * Dirty position control.
452  *
453  * (o) global/bdi setpoints
454  *
455  * We want the dirty pages be balanced around the global/bdi setpoints.
456  * When the number of dirty pages is higher/lower than the setpoint, the
457  * dirty position control ratio (and hence task dirty ratelimit) will be
458  * decreased/increased to bring the dirty pages back to the setpoint.
459  *
460  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
461  *
462  *     if (dirty < setpoint) scale up   pos_ratio
463  *     if (dirty > setpoint) scale down pos_ratio
464  *
465  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
466  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
467  *
468  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
469  *
470  * (o) global control line
471  *
472  *     ^ pos_ratio
473  *     |
474  *     |            |<===== global dirty control scope ======>|
475  * 2.0 .............*
476  *     |            .*
477  *     |            . *
478  *     |            .   *
479  *     |            .     *
480  *     |            .        *
481  *     |            .            *
482  * 1.0 ................................*
483  *     |            .                  .     *
484  *     |            .                  .          *
485  *     |            .                  .              *
486  *     |            .                  .                 *
487  *     |            .                  .                    *
488  *   0 +------------.------------------.----------------------*------------->
489  *           freerun^          setpoint^                 limit^   dirty pages
490  *
491  * (o) bdi control line
492  *
493  *     ^ pos_ratio
494  *     |
495  *     |            *
496  *     |              *
497  *     |                *
498  *     |                  *
499  *     |                    * |<=========== span ============>|
500  * 1.0 .......................*
501  *     |                      . *
502  *     |                      .   *
503  *     |                      .     *
504  *     |                      .       *
505  *     |                      .         *
506  *     |                      .           *
507  *     |                      .             *
508  *     |                      .               *
509  *     |                      .                 *
510  *     |                      .                   *
511  *     |                      .                     *
512  * 1/4 ...............................................* * * * * * * * * * * *
513  *     |                      .                         .
514  *     |                      .                           .
515  *     |                      .                             .
516  *   0 +----------------------.-------------------------------.------------->
517  *                bdi_setpoint^                    x_intercept^
518  *
519  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
520  * be smoothly throttled down to normal if it starts high in situations like
521  * - start writing to a slow SD card and a fast disk at the same time. The SD
522  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
523  * - the bdi dirty thresh drops quickly due to change of JBOD workload
524  */
525 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
526 					unsigned long thresh,
527 					unsigned long bg_thresh,
528 					unsigned long dirty,
529 					unsigned long bdi_thresh,
530 					unsigned long bdi_dirty)
531 {
532 	unsigned long write_bw = bdi->avg_write_bandwidth;
533 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
534 	unsigned long limit = hard_dirty_limit(thresh);
535 	unsigned long x_intercept;
536 	unsigned long setpoint;		/* dirty pages' target balance point */
537 	unsigned long bdi_setpoint;
538 	unsigned long span;
539 	long long pos_ratio;		/* for scaling up/down the rate limit */
540 	long x;
541 
542 	if (unlikely(dirty >= limit))
543 		return 0;
544 
545 	/*
546 	 * global setpoint
547 	 *
548 	 *                           setpoint - dirty 3
549 	 *        f(dirty) := 1.0 + (----------------)
550 	 *                           limit - setpoint
551 	 *
552 	 * it's a 3rd order polynomial that subjects to
553 	 *
554 	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
555 	 * (2) f(setpoint) = 1.0 => the balance point
556 	 * (3) f(limit)    = 0   => the hard limit
557 	 * (4) df/dx      <= 0	 => negative feedback control
558 	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
559 	 *     => fast response on large errors; small oscillation near setpoint
560 	 */
561 	setpoint = (freerun + limit) / 2;
562 	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
563 		    limit - setpoint + 1);
564 	pos_ratio = x;
565 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
566 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
567 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
568 
569 	/*
570 	 * We have computed basic pos_ratio above based on global situation. If
571 	 * the bdi is over/under its share of dirty pages, we want to scale
572 	 * pos_ratio further down/up. That is done by the following mechanism.
573 	 */
574 
575 	/*
576 	 * bdi setpoint
577 	 *
578 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
579 	 *
580 	 *                        x_intercept - bdi_dirty
581 	 *                     := --------------------------
582 	 *                        x_intercept - bdi_setpoint
583 	 *
584 	 * The main bdi control line is a linear function that subjects to
585 	 *
586 	 * (1) f(bdi_setpoint) = 1.0
587 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
588 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
589 	 *
590 	 * For single bdi case, the dirty pages are observed to fluctuate
591 	 * regularly within range
592 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
593 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
594 	 * fluctuation range for pos_ratio.
595 	 *
596 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
597 	 * own size, so move the slope over accordingly and choose a slope that
598 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
599 	 */
600 	if (unlikely(bdi_thresh > thresh))
601 		bdi_thresh = thresh;
602 	/*
603 	 * It's very possible that bdi_thresh is close to 0 not because the
604 	 * device is slow, but that it has remained inactive for long time.
605 	 * Honour such devices a reasonable good (hopefully IO efficient)
606 	 * threshold, so that the occasional writes won't be blocked and active
607 	 * writes can rampup the threshold quickly.
608 	 */
609 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
610 	/*
611 	 * scale global setpoint to bdi's:
612 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
613 	 */
614 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
615 	bdi_setpoint = setpoint * (u64)x >> 16;
616 	/*
617 	 * Use span=(8*write_bw) in single bdi case as indicated by
618 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
619 	 *
620 	 *        bdi_thresh                    thresh - bdi_thresh
621 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
622 	 *          thresh                            thresh
623 	 */
624 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
625 	x_intercept = bdi_setpoint + span;
626 
627 	if (bdi_dirty < x_intercept - span / 4) {
628 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
629 				    x_intercept - bdi_setpoint + 1);
630 	} else
631 		pos_ratio /= 4;
632 
633 	/*
634 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
635 	 * It may push the desired control point of global dirty pages higher
636 	 * than setpoint.
637 	 */
638 	x_intercept = bdi_thresh / 2;
639 	if (bdi_dirty < x_intercept) {
640 		if (bdi_dirty > x_intercept / 8)
641 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
642 		else
643 			pos_ratio *= 8;
644 	}
645 
646 	return pos_ratio;
647 }
648 
649 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
650 				       unsigned long elapsed,
651 				       unsigned long written)
652 {
653 	const unsigned long period = roundup_pow_of_two(3 * HZ);
654 	unsigned long avg = bdi->avg_write_bandwidth;
655 	unsigned long old = bdi->write_bandwidth;
656 	u64 bw;
657 
658 	/*
659 	 * bw = written * HZ / elapsed
660 	 *
661 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
662 	 * write_bandwidth = ---------------------------------------------------
663 	 *                                          period
664 	 */
665 	bw = written - bdi->written_stamp;
666 	bw *= HZ;
667 	if (unlikely(elapsed > period)) {
668 		do_div(bw, elapsed);
669 		avg = bw;
670 		goto out;
671 	}
672 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
673 	bw >>= ilog2(period);
674 
675 	/*
676 	 * one more level of smoothing, for filtering out sudden spikes
677 	 */
678 	if (avg > old && old >= (unsigned long)bw)
679 		avg -= (avg - old) >> 3;
680 
681 	if (avg < old && old <= (unsigned long)bw)
682 		avg += (old - avg) >> 3;
683 
684 out:
685 	bdi->write_bandwidth = bw;
686 	bdi->avg_write_bandwidth = avg;
687 }
688 
689 /*
690  * The global dirtyable memory and dirty threshold could be suddenly knocked
691  * down by a large amount (eg. on the startup of KVM in a swapless system).
692  * This may throw the system into deep dirty exceeded state and throttle
693  * heavy/light dirtiers alike. To retain good responsiveness, maintain
694  * global_dirty_limit for tracking slowly down to the knocked down dirty
695  * threshold.
696  */
697 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
698 {
699 	unsigned long limit = global_dirty_limit;
700 
701 	/*
702 	 * Follow up in one step.
703 	 */
704 	if (limit < thresh) {
705 		limit = thresh;
706 		goto update;
707 	}
708 
709 	/*
710 	 * Follow down slowly. Use the higher one as the target, because thresh
711 	 * may drop below dirty. This is exactly the reason to introduce
712 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
713 	 */
714 	thresh = max(thresh, dirty);
715 	if (limit > thresh) {
716 		limit -= (limit - thresh) >> 5;
717 		goto update;
718 	}
719 	return;
720 update:
721 	global_dirty_limit = limit;
722 }
723 
724 static void global_update_bandwidth(unsigned long thresh,
725 				    unsigned long dirty,
726 				    unsigned long now)
727 {
728 	static DEFINE_SPINLOCK(dirty_lock);
729 	static unsigned long update_time;
730 
731 	/*
732 	 * check locklessly first to optimize away locking for the most time
733 	 */
734 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
735 		return;
736 
737 	spin_lock(&dirty_lock);
738 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
739 		update_dirty_limit(thresh, dirty);
740 		update_time = now;
741 	}
742 	spin_unlock(&dirty_lock);
743 }
744 
745 /*
746  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
747  *
748  * Normal bdi tasks will be curbed at or below it in long term.
749  * Obviously it should be around (write_bw / N) when there are N dd tasks.
750  */
751 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
752 				       unsigned long thresh,
753 				       unsigned long bg_thresh,
754 				       unsigned long dirty,
755 				       unsigned long bdi_thresh,
756 				       unsigned long bdi_dirty,
757 				       unsigned long dirtied,
758 				       unsigned long elapsed)
759 {
760 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
761 	unsigned long limit = hard_dirty_limit(thresh);
762 	unsigned long setpoint = (freerun + limit) / 2;
763 	unsigned long write_bw = bdi->avg_write_bandwidth;
764 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
765 	unsigned long dirty_rate;
766 	unsigned long task_ratelimit;
767 	unsigned long balanced_dirty_ratelimit;
768 	unsigned long pos_ratio;
769 	unsigned long step;
770 	unsigned long x;
771 
772 	/*
773 	 * The dirty rate will match the writeout rate in long term, except
774 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
775 	 */
776 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
777 
778 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
779 				       bdi_thresh, bdi_dirty);
780 	/*
781 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
782 	 */
783 	task_ratelimit = (u64)dirty_ratelimit *
784 					pos_ratio >> RATELIMIT_CALC_SHIFT;
785 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
786 
787 	/*
788 	 * A linear estimation of the "balanced" throttle rate. The theory is,
789 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
790 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
791 	 * formula will yield the balanced rate limit (write_bw / N).
792 	 *
793 	 * Note that the expanded form is not a pure rate feedback:
794 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
795 	 * but also takes pos_ratio into account:
796 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
797 	 *
798 	 * (1) is not realistic because pos_ratio also takes part in balancing
799 	 * the dirty rate.  Consider the state
800 	 *	pos_ratio = 0.5						     (3)
801 	 *	rate = 2 * (write_bw / N)				     (4)
802 	 * If (1) is used, it will stuck in that state! Because each dd will
803 	 * be throttled at
804 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
805 	 * yielding
806 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
807 	 * put (6) into (1) we get
808 	 *	rate_(i+1) = rate_(i)					     (7)
809 	 *
810 	 * So we end up using (2) to always keep
811 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
812 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
813 	 * pos_ratio is able to drive itself to 1.0, which is not only where
814 	 * the dirty count meet the setpoint, but also where the slope of
815 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
816 	 */
817 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
818 					   dirty_rate | 1);
819 
820 	/*
821 	 * We could safely do this and return immediately:
822 	 *
823 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
824 	 *
825 	 * However to get a more stable dirty_ratelimit, the below elaborated
826 	 * code makes use of task_ratelimit to filter out sigular points and
827 	 * limit the step size.
828 	 *
829 	 * The below code essentially only uses the relative value of
830 	 *
831 	 *	task_ratelimit - dirty_ratelimit
832 	 *	= (pos_ratio - 1) * dirty_ratelimit
833 	 *
834 	 * which reflects the direction and size of dirty position error.
835 	 */
836 
837 	/*
838 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
839 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
840 	 * For example, when
841 	 * - dirty_ratelimit > balanced_dirty_ratelimit
842 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
843 	 * lowering dirty_ratelimit will help meet both the position and rate
844 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
845 	 * only help meet the rate target. After all, what the users ultimately
846 	 * feel and care are stable dirty rate and small position error.
847 	 *
848 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
849 	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
850 	 * keeps jumping around randomly and can even leap far away at times
851 	 * due to the small 200ms estimation period of dirty_rate (we want to
852 	 * keep that period small to reduce time lags).
853 	 */
854 	step = 0;
855 	if (dirty < setpoint) {
856 		x = min(bdi->balanced_dirty_ratelimit,
857 			 min(balanced_dirty_ratelimit, task_ratelimit));
858 		if (dirty_ratelimit < x)
859 			step = x - dirty_ratelimit;
860 	} else {
861 		x = max(bdi->balanced_dirty_ratelimit,
862 			 max(balanced_dirty_ratelimit, task_ratelimit));
863 		if (dirty_ratelimit > x)
864 			step = dirty_ratelimit - x;
865 	}
866 
867 	/*
868 	 * Don't pursue 100% rate matching. It's impossible since the balanced
869 	 * rate itself is constantly fluctuating. So decrease the track speed
870 	 * when it gets close to the target. Helps eliminate pointless tremors.
871 	 */
872 	step >>= dirty_ratelimit / (2 * step + 1);
873 	/*
874 	 * Limit the tracking speed to avoid overshooting.
875 	 */
876 	step = (step + 7) / 8;
877 
878 	if (dirty_ratelimit < balanced_dirty_ratelimit)
879 		dirty_ratelimit += step;
880 	else
881 		dirty_ratelimit -= step;
882 
883 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
884 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
885 
886 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
887 }
888 
889 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
890 			    unsigned long thresh,
891 			    unsigned long bg_thresh,
892 			    unsigned long dirty,
893 			    unsigned long bdi_thresh,
894 			    unsigned long bdi_dirty,
895 			    unsigned long start_time)
896 {
897 	unsigned long now = jiffies;
898 	unsigned long elapsed = now - bdi->bw_time_stamp;
899 	unsigned long dirtied;
900 	unsigned long written;
901 
902 	/*
903 	 * rate-limit, only update once every 200ms.
904 	 */
905 	if (elapsed < BANDWIDTH_INTERVAL)
906 		return;
907 
908 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
909 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
910 
911 	/*
912 	 * Skip quiet periods when disk bandwidth is under-utilized.
913 	 * (at least 1s idle time between two flusher runs)
914 	 */
915 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
916 		goto snapshot;
917 
918 	if (thresh) {
919 		global_update_bandwidth(thresh, dirty, now);
920 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
921 					   bdi_thresh, bdi_dirty,
922 					   dirtied, elapsed);
923 	}
924 	bdi_update_write_bandwidth(bdi, elapsed, written);
925 
926 snapshot:
927 	bdi->dirtied_stamp = dirtied;
928 	bdi->written_stamp = written;
929 	bdi->bw_time_stamp = now;
930 }
931 
932 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
933 				 unsigned long thresh,
934 				 unsigned long bg_thresh,
935 				 unsigned long dirty,
936 				 unsigned long bdi_thresh,
937 				 unsigned long bdi_dirty,
938 				 unsigned long start_time)
939 {
940 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
941 		return;
942 	spin_lock(&bdi->wb.list_lock);
943 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
944 			       bdi_thresh, bdi_dirty, start_time);
945 	spin_unlock(&bdi->wb.list_lock);
946 }
947 
948 /*
949  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
950  * will look to see if it needs to start dirty throttling.
951  *
952  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
953  * global_page_state() too often. So scale it near-sqrt to the safety margin
954  * (the number of pages we may dirty without exceeding the dirty limits).
955  */
956 static unsigned long dirty_poll_interval(unsigned long dirty,
957 					 unsigned long thresh)
958 {
959 	if (thresh > dirty)
960 		return 1UL << (ilog2(thresh - dirty) >> 1);
961 
962 	return 1;
963 }
964 
965 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
966 				   unsigned long bdi_dirty)
967 {
968 	unsigned long bw = bdi->avg_write_bandwidth;
969 	unsigned long hi = ilog2(bw);
970 	unsigned long lo = ilog2(bdi->dirty_ratelimit);
971 	unsigned long t;
972 
973 	/* target for 20ms max pause on 1-dd case */
974 	t = HZ / 50;
975 
976 	/*
977 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
978 	 * overheads.
979 	 *
980 	 * (N * 20ms) on 2^N concurrent tasks.
981 	 */
982 	if (hi > lo)
983 		t += (hi - lo) * (20 * HZ) / 1024;
984 
985 	/*
986 	 * Limit pause time for small memory systems. If sleeping for too long
987 	 * time, a small pool of dirty/writeback pages may go empty and disk go
988 	 * idle.
989 	 *
990 	 * 8 serves as the safety ratio.
991 	 */
992 	t = min(t, bdi_dirty * HZ / (8 * bw + 1));
993 
994 	/*
995 	 * The pause time will be settled within range (max_pause/4, max_pause).
996 	 * Apply a minimal value of 4 to get a non-zero max_pause/4.
997 	 */
998 	return clamp_val(t, 4, MAX_PAUSE);
999 }
1000 
1001 /*
1002  * balance_dirty_pages() must be called by processes which are generating dirty
1003  * data.  It looks at the number of dirty pages in the machine and will force
1004  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1005  * If we're over `background_thresh' then the writeback threads are woken to
1006  * perform some writeout.
1007  */
1008 static void balance_dirty_pages(struct address_space *mapping,
1009 				unsigned long pages_dirtied)
1010 {
1011 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1012 	unsigned long bdi_reclaimable;
1013 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1014 	unsigned long bdi_dirty;
1015 	unsigned long freerun;
1016 	unsigned long background_thresh;
1017 	unsigned long dirty_thresh;
1018 	unsigned long bdi_thresh;
1019 	long pause = 0;
1020 	long uninitialized_var(max_pause);
1021 	bool dirty_exceeded = false;
1022 	unsigned long task_ratelimit;
1023 	unsigned long uninitialized_var(dirty_ratelimit);
1024 	unsigned long pos_ratio;
1025 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1026 	unsigned long start_time = jiffies;
1027 
1028 	for (;;) {
1029 		/*
1030 		 * Unstable writes are a feature of certain networked
1031 		 * filesystems (i.e. NFS) in which data may have been
1032 		 * written to the server's write cache, but has not yet
1033 		 * been flushed to permanent storage.
1034 		 */
1035 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1036 					global_page_state(NR_UNSTABLE_NFS);
1037 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1038 
1039 		global_dirty_limits(&background_thresh, &dirty_thresh);
1040 
1041 		/*
1042 		 * Throttle it only when the background writeback cannot
1043 		 * catch-up. This avoids (excessively) small writeouts
1044 		 * when the bdi limits are ramping up.
1045 		 */
1046 		freerun = dirty_freerun_ceiling(dirty_thresh,
1047 						background_thresh);
1048 		if (nr_dirty <= freerun)
1049 			break;
1050 
1051 		if (unlikely(!writeback_in_progress(bdi)))
1052 			bdi_start_background_writeback(bdi);
1053 
1054 		/*
1055 		 * bdi_thresh is not treated as some limiting factor as
1056 		 * dirty_thresh, due to reasons
1057 		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1058 		 * - in a system with HDD and USB key, the USB key may somehow
1059 		 *   go into state (bdi_dirty >> bdi_thresh) either because
1060 		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1061 		 *   In this case we don't want to hard throttle the USB key
1062 		 *   dirtiers for 100 seconds until bdi_dirty drops under
1063 		 *   bdi_thresh. Instead the auxiliary bdi control line in
1064 		 *   bdi_position_ratio() will let the dirtier task progress
1065 		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1066 		 */
1067 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1068 
1069 		/*
1070 		 * In order to avoid the stacked BDI deadlock we need
1071 		 * to ensure we accurately count the 'dirty' pages when
1072 		 * the threshold is low.
1073 		 *
1074 		 * Otherwise it would be possible to get thresh+n pages
1075 		 * reported dirty, even though there are thresh-m pages
1076 		 * actually dirty; with m+n sitting in the percpu
1077 		 * deltas.
1078 		 */
1079 		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1080 			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1081 			bdi_dirty = bdi_reclaimable +
1082 				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1083 		} else {
1084 			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1085 			bdi_dirty = bdi_reclaimable +
1086 				    bdi_stat(bdi, BDI_WRITEBACK);
1087 		}
1088 
1089 		dirty_exceeded = (bdi_dirty > bdi_thresh) ||
1090 				  (nr_dirty > dirty_thresh);
1091 		if (dirty_exceeded && !bdi->dirty_exceeded)
1092 			bdi->dirty_exceeded = 1;
1093 
1094 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1095 				     nr_dirty, bdi_thresh, bdi_dirty,
1096 				     start_time);
1097 
1098 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1099 
1100 		dirty_ratelimit = bdi->dirty_ratelimit;
1101 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1102 					       background_thresh, nr_dirty,
1103 					       bdi_thresh, bdi_dirty);
1104 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1105 							RATELIMIT_CALC_SHIFT;
1106 		if (unlikely(task_ratelimit == 0)) {
1107 			pause = max_pause;
1108 			goto pause;
1109 		}
1110 		pause = HZ * pages_dirtied / task_ratelimit;
1111 		if (unlikely(pause <= 0)) {
1112 			trace_balance_dirty_pages(bdi,
1113 						  dirty_thresh,
1114 						  background_thresh,
1115 						  nr_dirty,
1116 						  bdi_thresh,
1117 						  bdi_dirty,
1118 						  dirty_ratelimit,
1119 						  task_ratelimit,
1120 						  pages_dirtied,
1121 						  pause,
1122 						  start_time);
1123 			pause = 1; /* avoid resetting nr_dirtied_pause below */
1124 			break;
1125 		}
1126 		pause = min(pause, max_pause);
1127 
1128 pause:
1129 		trace_balance_dirty_pages(bdi,
1130 					  dirty_thresh,
1131 					  background_thresh,
1132 					  nr_dirty,
1133 					  bdi_thresh,
1134 					  bdi_dirty,
1135 					  dirty_ratelimit,
1136 					  task_ratelimit,
1137 					  pages_dirtied,
1138 					  pause,
1139 					  start_time);
1140 		__set_current_state(TASK_KILLABLE);
1141 		io_schedule_timeout(pause);
1142 
1143 		/*
1144 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1145 		 * also keep "1000+ dd on a slow USB stick" under control.
1146 		 */
1147 		if (task_ratelimit)
1148 			break;
1149 
1150 		/*
1151 		 * In the case of an unresponding NFS server and the NFS dirty
1152 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1153 		 * to go through, so that tasks on them still remain responsive.
1154 		 *
1155 		 * In theory 1 page is enough to keep the comsumer-producer
1156 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1157 		 * more page. However bdi_dirty has accounting errors.  So use
1158 		 * the larger and more IO friendly bdi_stat_error.
1159 		 */
1160 		if (bdi_dirty <= bdi_stat_error(bdi))
1161 			break;
1162 
1163 		if (fatal_signal_pending(current))
1164 			break;
1165 	}
1166 
1167 	if (!dirty_exceeded && bdi->dirty_exceeded)
1168 		bdi->dirty_exceeded = 0;
1169 
1170 	current->nr_dirtied = 0;
1171 	if (pause == 0) { /* in freerun area */
1172 		current->nr_dirtied_pause =
1173 				dirty_poll_interval(nr_dirty, dirty_thresh);
1174 	} else if (pause <= max_pause / 4 &&
1175 		   pages_dirtied >= current->nr_dirtied_pause) {
1176 		current->nr_dirtied_pause = clamp_val(
1177 					dirty_ratelimit * (max_pause / 2) / HZ,
1178 					pages_dirtied + pages_dirtied / 8,
1179 					pages_dirtied * 4);
1180 	} else if (pause >= max_pause) {
1181 		current->nr_dirtied_pause = 1 | clamp_val(
1182 					dirty_ratelimit * (max_pause / 2) / HZ,
1183 					pages_dirtied / 4,
1184 					pages_dirtied - pages_dirtied / 8);
1185 	}
1186 
1187 	if (writeback_in_progress(bdi))
1188 		return;
1189 
1190 	/*
1191 	 * In laptop mode, we wait until hitting the higher threshold before
1192 	 * starting background writeout, and then write out all the way down
1193 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1194 	 *
1195 	 * In normal mode, we start background writeout at the lower
1196 	 * background_thresh, to keep the amount of dirty memory low.
1197 	 */
1198 	if (laptop_mode)
1199 		return;
1200 
1201 	if (nr_reclaimable > background_thresh)
1202 		bdi_start_background_writeback(bdi);
1203 }
1204 
1205 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1206 {
1207 	if (set_page_dirty(page) || page_mkwrite) {
1208 		struct address_space *mapping = page_mapping(page);
1209 
1210 		if (mapping)
1211 			balance_dirty_pages_ratelimited(mapping);
1212 	}
1213 }
1214 
1215 static DEFINE_PER_CPU(int, bdp_ratelimits);
1216 
1217 /**
1218  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1219  * @mapping: address_space which was dirtied
1220  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1221  *
1222  * Processes which are dirtying memory should call in here once for each page
1223  * which was newly dirtied.  The function will periodically check the system's
1224  * dirty state and will initiate writeback if needed.
1225  *
1226  * On really big machines, get_writeback_state is expensive, so try to avoid
1227  * calling it too often (ratelimiting).  But once we're over the dirty memory
1228  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1229  * from overshooting the limit by (ratelimit_pages) each.
1230  */
1231 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1232 					unsigned long nr_pages_dirtied)
1233 {
1234 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1235 	int ratelimit;
1236 	int *p;
1237 
1238 	if (!bdi_cap_account_dirty(bdi))
1239 		return;
1240 
1241 	ratelimit = current->nr_dirtied_pause;
1242 	if (bdi->dirty_exceeded)
1243 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1244 
1245 	current->nr_dirtied += nr_pages_dirtied;
1246 
1247 	preempt_disable();
1248 	/*
1249 	 * This prevents one CPU to accumulate too many dirtied pages without
1250 	 * calling into balance_dirty_pages(), which can happen when there are
1251 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1252 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1253 	 */
1254 	p =  &__get_cpu_var(bdp_ratelimits);
1255 	if (unlikely(current->nr_dirtied >= ratelimit))
1256 		*p = 0;
1257 	else {
1258 		*p += nr_pages_dirtied;
1259 		if (unlikely(*p >= ratelimit_pages)) {
1260 			*p = 0;
1261 			ratelimit = 0;
1262 		}
1263 	}
1264 	preempt_enable();
1265 
1266 	if (unlikely(current->nr_dirtied >= ratelimit))
1267 		balance_dirty_pages(mapping, current->nr_dirtied);
1268 }
1269 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1270 
1271 void throttle_vm_writeout(gfp_t gfp_mask)
1272 {
1273 	unsigned long background_thresh;
1274 	unsigned long dirty_thresh;
1275 
1276         for ( ; ; ) {
1277 		global_dirty_limits(&background_thresh, &dirty_thresh);
1278 
1279                 /*
1280                  * Boost the allowable dirty threshold a bit for page
1281                  * allocators so they don't get DoS'ed by heavy writers
1282                  */
1283                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1284 
1285                 if (global_page_state(NR_UNSTABLE_NFS) +
1286 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1287                         	break;
1288                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1289 
1290 		/*
1291 		 * The caller might hold locks which can prevent IO completion
1292 		 * or progress in the filesystem.  So we cannot just sit here
1293 		 * waiting for IO to complete.
1294 		 */
1295 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1296 			break;
1297         }
1298 }
1299 
1300 /*
1301  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1302  */
1303 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1304 	void __user *buffer, size_t *length, loff_t *ppos)
1305 {
1306 	proc_dointvec(table, write, buffer, length, ppos);
1307 	bdi_arm_supers_timer();
1308 	return 0;
1309 }
1310 
1311 #ifdef CONFIG_BLOCK
1312 void laptop_mode_timer_fn(unsigned long data)
1313 {
1314 	struct request_queue *q = (struct request_queue *)data;
1315 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1316 		global_page_state(NR_UNSTABLE_NFS);
1317 
1318 	/*
1319 	 * We want to write everything out, not just down to the dirty
1320 	 * threshold
1321 	 */
1322 	if (bdi_has_dirty_io(&q->backing_dev_info))
1323 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1324 					WB_REASON_LAPTOP_TIMER);
1325 }
1326 
1327 /*
1328  * We've spun up the disk and we're in laptop mode: schedule writeback
1329  * of all dirty data a few seconds from now.  If the flush is already scheduled
1330  * then push it back - the user is still using the disk.
1331  */
1332 void laptop_io_completion(struct backing_dev_info *info)
1333 {
1334 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1335 }
1336 
1337 /*
1338  * We're in laptop mode and we've just synced. The sync's writes will have
1339  * caused another writeback to be scheduled by laptop_io_completion.
1340  * Nothing needs to be written back anymore, so we unschedule the writeback.
1341  */
1342 void laptop_sync_completion(void)
1343 {
1344 	struct backing_dev_info *bdi;
1345 
1346 	rcu_read_lock();
1347 
1348 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1349 		del_timer(&bdi->laptop_mode_wb_timer);
1350 
1351 	rcu_read_unlock();
1352 }
1353 #endif
1354 
1355 /*
1356  * If ratelimit_pages is too high then we can get into dirty-data overload
1357  * if a large number of processes all perform writes at the same time.
1358  * If it is too low then SMP machines will call the (expensive)
1359  * get_writeback_state too often.
1360  *
1361  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1362  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1363  * thresholds.
1364  */
1365 
1366 void writeback_set_ratelimit(void)
1367 {
1368 	unsigned long background_thresh;
1369 	unsigned long dirty_thresh;
1370 	global_dirty_limits(&background_thresh, &dirty_thresh);
1371 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1372 	if (ratelimit_pages < 16)
1373 		ratelimit_pages = 16;
1374 }
1375 
1376 static int __cpuinit
1377 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1378 {
1379 	writeback_set_ratelimit();
1380 	return NOTIFY_DONE;
1381 }
1382 
1383 static struct notifier_block __cpuinitdata ratelimit_nb = {
1384 	.notifier_call	= ratelimit_handler,
1385 	.next		= NULL,
1386 };
1387 
1388 /*
1389  * Called early on to tune the page writeback dirty limits.
1390  *
1391  * We used to scale dirty pages according to how total memory
1392  * related to pages that could be allocated for buffers (by
1393  * comparing nr_free_buffer_pages() to vm_total_pages.
1394  *
1395  * However, that was when we used "dirty_ratio" to scale with
1396  * all memory, and we don't do that any more. "dirty_ratio"
1397  * is now applied to total non-HIGHPAGE memory (by subtracting
1398  * totalhigh_pages from vm_total_pages), and as such we can't
1399  * get into the old insane situation any more where we had
1400  * large amounts of dirty pages compared to a small amount of
1401  * non-HIGHMEM memory.
1402  *
1403  * But we might still want to scale the dirty_ratio by how
1404  * much memory the box has..
1405  */
1406 void __init page_writeback_init(void)
1407 {
1408 	int shift;
1409 
1410 	writeback_set_ratelimit();
1411 	register_cpu_notifier(&ratelimit_nb);
1412 
1413 	shift = calc_period_shift();
1414 	prop_descriptor_init(&vm_completions, shift);
1415 }
1416 
1417 /**
1418  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1419  * @mapping: address space structure to write
1420  * @start: starting page index
1421  * @end: ending page index (inclusive)
1422  *
1423  * This function scans the page range from @start to @end (inclusive) and tags
1424  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1425  * that write_cache_pages (or whoever calls this function) will then use
1426  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1427  * used to avoid livelocking of writeback by a process steadily creating new
1428  * dirty pages in the file (thus it is important for this function to be quick
1429  * so that it can tag pages faster than a dirtying process can create them).
1430  */
1431 /*
1432  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1433  */
1434 void tag_pages_for_writeback(struct address_space *mapping,
1435 			     pgoff_t start, pgoff_t end)
1436 {
1437 #define WRITEBACK_TAG_BATCH 4096
1438 	unsigned long tagged;
1439 
1440 	do {
1441 		spin_lock_irq(&mapping->tree_lock);
1442 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1443 				&start, end, WRITEBACK_TAG_BATCH,
1444 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1445 		spin_unlock_irq(&mapping->tree_lock);
1446 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1447 		cond_resched();
1448 		/* We check 'start' to handle wrapping when end == ~0UL */
1449 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1450 }
1451 EXPORT_SYMBOL(tag_pages_for_writeback);
1452 
1453 /**
1454  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1455  * @mapping: address space structure to write
1456  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1457  * @writepage: function called for each page
1458  * @data: data passed to writepage function
1459  *
1460  * If a page is already under I/O, write_cache_pages() skips it, even
1461  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1462  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1463  * and msync() need to guarantee that all the data which was dirty at the time
1464  * the call was made get new I/O started against them.  If wbc->sync_mode is
1465  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1466  * existing IO to complete.
1467  *
1468  * To avoid livelocks (when other process dirties new pages), we first tag
1469  * pages which should be written back with TOWRITE tag and only then start
1470  * writing them. For data-integrity sync we have to be careful so that we do
1471  * not miss some pages (e.g., because some other process has cleared TOWRITE
1472  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1473  * by the process clearing the DIRTY tag (and submitting the page for IO).
1474  */
1475 int write_cache_pages(struct address_space *mapping,
1476 		      struct writeback_control *wbc, writepage_t writepage,
1477 		      void *data)
1478 {
1479 	int ret = 0;
1480 	int done = 0;
1481 	struct pagevec pvec;
1482 	int nr_pages;
1483 	pgoff_t uninitialized_var(writeback_index);
1484 	pgoff_t index;
1485 	pgoff_t end;		/* Inclusive */
1486 	pgoff_t done_index;
1487 	int cycled;
1488 	int range_whole = 0;
1489 	int tag;
1490 
1491 	pagevec_init(&pvec, 0);
1492 	if (wbc->range_cyclic) {
1493 		writeback_index = mapping->writeback_index; /* prev offset */
1494 		index = writeback_index;
1495 		if (index == 0)
1496 			cycled = 1;
1497 		else
1498 			cycled = 0;
1499 		end = -1;
1500 	} else {
1501 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1502 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1503 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1504 			range_whole = 1;
1505 		cycled = 1; /* ignore range_cyclic tests */
1506 	}
1507 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1508 		tag = PAGECACHE_TAG_TOWRITE;
1509 	else
1510 		tag = PAGECACHE_TAG_DIRTY;
1511 retry:
1512 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1513 		tag_pages_for_writeback(mapping, index, end);
1514 	done_index = index;
1515 	while (!done && (index <= end)) {
1516 		int i;
1517 
1518 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1519 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1520 		if (nr_pages == 0)
1521 			break;
1522 
1523 		for (i = 0; i < nr_pages; i++) {
1524 			struct page *page = pvec.pages[i];
1525 
1526 			/*
1527 			 * At this point, the page may be truncated or
1528 			 * invalidated (changing page->mapping to NULL), or
1529 			 * even swizzled back from swapper_space to tmpfs file
1530 			 * mapping. However, page->index will not change
1531 			 * because we have a reference on the page.
1532 			 */
1533 			if (page->index > end) {
1534 				/*
1535 				 * can't be range_cyclic (1st pass) because
1536 				 * end == -1 in that case.
1537 				 */
1538 				done = 1;
1539 				break;
1540 			}
1541 
1542 			done_index = page->index;
1543 
1544 			lock_page(page);
1545 
1546 			/*
1547 			 * Page truncated or invalidated. We can freely skip it
1548 			 * then, even for data integrity operations: the page
1549 			 * has disappeared concurrently, so there could be no
1550 			 * real expectation of this data interity operation
1551 			 * even if there is now a new, dirty page at the same
1552 			 * pagecache address.
1553 			 */
1554 			if (unlikely(page->mapping != mapping)) {
1555 continue_unlock:
1556 				unlock_page(page);
1557 				continue;
1558 			}
1559 
1560 			if (!PageDirty(page)) {
1561 				/* someone wrote it for us */
1562 				goto continue_unlock;
1563 			}
1564 
1565 			if (PageWriteback(page)) {
1566 				if (wbc->sync_mode != WB_SYNC_NONE)
1567 					wait_on_page_writeback(page);
1568 				else
1569 					goto continue_unlock;
1570 			}
1571 
1572 			BUG_ON(PageWriteback(page));
1573 			if (!clear_page_dirty_for_io(page))
1574 				goto continue_unlock;
1575 
1576 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1577 			ret = (*writepage)(page, wbc, data);
1578 			if (unlikely(ret)) {
1579 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1580 					unlock_page(page);
1581 					ret = 0;
1582 				} else {
1583 					/*
1584 					 * done_index is set past this page,
1585 					 * so media errors will not choke
1586 					 * background writeout for the entire
1587 					 * file. This has consequences for
1588 					 * range_cyclic semantics (ie. it may
1589 					 * not be suitable for data integrity
1590 					 * writeout).
1591 					 */
1592 					done_index = page->index + 1;
1593 					done = 1;
1594 					break;
1595 				}
1596 			}
1597 
1598 			/*
1599 			 * We stop writing back only if we are not doing
1600 			 * integrity sync. In case of integrity sync we have to
1601 			 * keep going until we have written all the pages
1602 			 * we tagged for writeback prior to entering this loop.
1603 			 */
1604 			if (--wbc->nr_to_write <= 0 &&
1605 			    wbc->sync_mode == WB_SYNC_NONE) {
1606 				done = 1;
1607 				break;
1608 			}
1609 		}
1610 		pagevec_release(&pvec);
1611 		cond_resched();
1612 	}
1613 	if (!cycled && !done) {
1614 		/*
1615 		 * range_cyclic:
1616 		 * We hit the last page and there is more work to be done: wrap
1617 		 * back to the start of the file
1618 		 */
1619 		cycled = 1;
1620 		index = 0;
1621 		end = writeback_index - 1;
1622 		goto retry;
1623 	}
1624 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1625 		mapping->writeback_index = done_index;
1626 
1627 	return ret;
1628 }
1629 EXPORT_SYMBOL(write_cache_pages);
1630 
1631 /*
1632  * Function used by generic_writepages to call the real writepage
1633  * function and set the mapping flags on error
1634  */
1635 static int __writepage(struct page *page, struct writeback_control *wbc,
1636 		       void *data)
1637 {
1638 	struct address_space *mapping = data;
1639 	int ret = mapping->a_ops->writepage(page, wbc);
1640 	mapping_set_error(mapping, ret);
1641 	return ret;
1642 }
1643 
1644 /**
1645  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1646  * @mapping: address space structure to write
1647  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1648  *
1649  * This is a library function, which implements the writepages()
1650  * address_space_operation.
1651  */
1652 int generic_writepages(struct address_space *mapping,
1653 		       struct writeback_control *wbc)
1654 {
1655 	struct blk_plug plug;
1656 	int ret;
1657 
1658 	/* deal with chardevs and other special file */
1659 	if (!mapping->a_ops->writepage)
1660 		return 0;
1661 
1662 	blk_start_plug(&plug);
1663 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1664 	blk_finish_plug(&plug);
1665 	return ret;
1666 }
1667 
1668 EXPORT_SYMBOL(generic_writepages);
1669 
1670 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1671 {
1672 	int ret;
1673 
1674 	if (wbc->nr_to_write <= 0)
1675 		return 0;
1676 	if (mapping->a_ops->writepages)
1677 		ret = mapping->a_ops->writepages(mapping, wbc);
1678 	else
1679 		ret = generic_writepages(mapping, wbc);
1680 	return ret;
1681 }
1682 
1683 /**
1684  * write_one_page - write out a single page and optionally wait on I/O
1685  * @page: the page to write
1686  * @wait: if true, wait on writeout
1687  *
1688  * The page must be locked by the caller and will be unlocked upon return.
1689  *
1690  * write_one_page() returns a negative error code if I/O failed.
1691  */
1692 int write_one_page(struct page *page, int wait)
1693 {
1694 	struct address_space *mapping = page->mapping;
1695 	int ret = 0;
1696 	struct writeback_control wbc = {
1697 		.sync_mode = WB_SYNC_ALL,
1698 		.nr_to_write = 1,
1699 	};
1700 
1701 	BUG_ON(!PageLocked(page));
1702 
1703 	if (wait)
1704 		wait_on_page_writeback(page);
1705 
1706 	if (clear_page_dirty_for_io(page)) {
1707 		page_cache_get(page);
1708 		ret = mapping->a_ops->writepage(page, &wbc);
1709 		if (ret == 0 && wait) {
1710 			wait_on_page_writeback(page);
1711 			if (PageError(page))
1712 				ret = -EIO;
1713 		}
1714 		page_cache_release(page);
1715 	} else {
1716 		unlock_page(page);
1717 	}
1718 	return ret;
1719 }
1720 EXPORT_SYMBOL(write_one_page);
1721 
1722 /*
1723  * For address_spaces which do not use buffers nor write back.
1724  */
1725 int __set_page_dirty_no_writeback(struct page *page)
1726 {
1727 	if (!PageDirty(page))
1728 		return !TestSetPageDirty(page);
1729 	return 0;
1730 }
1731 
1732 /*
1733  * Helper function for set_page_dirty family.
1734  * NOTE: This relies on being atomic wrt interrupts.
1735  */
1736 void account_page_dirtied(struct page *page, struct address_space *mapping)
1737 {
1738 	if (mapping_cap_account_dirty(mapping)) {
1739 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1740 		__inc_zone_page_state(page, NR_DIRTIED);
1741 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1742 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1743 		task_io_account_write(PAGE_CACHE_SIZE);
1744 	}
1745 }
1746 EXPORT_SYMBOL(account_page_dirtied);
1747 
1748 /*
1749  * Helper function for set_page_writeback family.
1750  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1751  * wrt interrupts.
1752  */
1753 void account_page_writeback(struct page *page)
1754 {
1755 	inc_zone_page_state(page, NR_WRITEBACK);
1756 }
1757 EXPORT_SYMBOL(account_page_writeback);
1758 
1759 /*
1760  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1761  * its radix tree.
1762  *
1763  * This is also used when a single buffer is being dirtied: we want to set the
1764  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1765  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1766  *
1767  * Most callers have locked the page, which pins the address_space in memory.
1768  * But zap_pte_range() does not lock the page, however in that case the
1769  * mapping is pinned by the vma's ->vm_file reference.
1770  *
1771  * We take care to handle the case where the page was truncated from the
1772  * mapping by re-checking page_mapping() inside tree_lock.
1773  */
1774 int __set_page_dirty_nobuffers(struct page *page)
1775 {
1776 	if (!TestSetPageDirty(page)) {
1777 		struct address_space *mapping = page_mapping(page);
1778 		struct address_space *mapping2;
1779 
1780 		if (!mapping)
1781 			return 1;
1782 
1783 		spin_lock_irq(&mapping->tree_lock);
1784 		mapping2 = page_mapping(page);
1785 		if (mapping2) { /* Race with truncate? */
1786 			BUG_ON(mapping2 != mapping);
1787 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1788 			account_page_dirtied(page, mapping);
1789 			radix_tree_tag_set(&mapping->page_tree,
1790 				page_index(page), PAGECACHE_TAG_DIRTY);
1791 		}
1792 		spin_unlock_irq(&mapping->tree_lock);
1793 		if (mapping->host) {
1794 			/* !PageAnon && !swapper_space */
1795 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1796 		}
1797 		return 1;
1798 	}
1799 	return 0;
1800 }
1801 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1802 
1803 /*
1804  * When a writepage implementation decides that it doesn't want to write this
1805  * page for some reason, it should redirty the locked page via
1806  * redirty_page_for_writepage() and it should then unlock the page and return 0
1807  */
1808 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1809 {
1810 	wbc->pages_skipped++;
1811 	return __set_page_dirty_nobuffers(page);
1812 }
1813 EXPORT_SYMBOL(redirty_page_for_writepage);
1814 
1815 /*
1816  * Dirty a page.
1817  *
1818  * For pages with a mapping this should be done under the page lock
1819  * for the benefit of asynchronous memory errors who prefer a consistent
1820  * dirty state. This rule can be broken in some special cases,
1821  * but should be better not to.
1822  *
1823  * If the mapping doesn't provide a set_page_dirty a_op, then
1824  * just fall through and assume that it wants buffer_heads.
1825  */
1826 int set_page_dirty(struct page *page)
1827 {
1828 	struct address_space *mapping = page_mapping(page);
1829 
1830 	if (likely(mapping)) {
1831 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1832 		/*
1833 		 * readahead/lru_deactivate_page could remain
1834 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1835 		 * About readahead, if the page is written, the flags would be
1836 		 * reset. So no problem.
1837 		 * About lru_deactivate_page, if the page is redirty, the flag
1838 		 * will be reset. So no problem. but if the page is used by readahead
1839 		 * it will confuse readahead and make it restart the size rampup
1840 		 * process. But it's a trivial problem.
1841 		 */
1842 		ClearPageReclaim(page);
1843 #ifdef CONFIG_BLOCK
1844 		if (!spd)
1845 			spd = __set_page_dirty_buffers;
1846 #endif
1847 		return (*spd)(page);
1848 	}
1849 	if (!PageDirty(page)) {
1850 		if (!TestSetPageDirty(page))
1851 			return 1;
1852 	}
1853 	return 0;
1854 }
1855 EXPORT_SYMBOL(set_page_dirty);
1856 
1857 /*
1858  * set_page_dirty() is racy if the caller has no reference against
1859  * page->mapping->host, and if the page is unlocked.  This is because another
1860  * CPU could truncate the page off the mapping and then free the mapping.
1861  *
1862  * Usually, the page _is_ locked, or the caller is a user-space process which
1863  * holds a reference on the inode by having an open file.
1864  *
1865  * In other cases, the page should be locked before running set_page_dirty().
1866  */
1867 int set_page_dirty_lock(struct page *page)
1868 {
1869 	int ret;
1870 
1871 	lock_page(page);
1872 	ret = set_page_dirty(page);
1873 	unlock_page(page);
1874 	return ret;
1875 }
1876 EXPORT_SYMBOL(set_page_dirty_lock);
1877 
1878 /*
1879  * Clear a page's dirty flag, while caring for dirty memory accounting.
1880  * Returns true if the page was previously dirty.
1881  *
1882  * This is for preparing to put the page under writeout.  We leave the page
1883  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1884  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1885  * implementation will run either set_page_writeback() or set_page_dirty(),
1886  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1887  * back into sync.
1888  *
1889  * This incoherency between the page's dirty flag and radix-tree tag is
1890  * unfortunate, but it only exists while the page is locked.
1891  */
1892 int clear_page_dirty_for_io(struct page *page)
1893 {
1894 	struct address_space *mapping = page_mapping(page);
1895 
1896 	BUG_ON(!PageLocked(page));
1897 
1898 	if (mapping && mapping_cap_account_dirty(mapping)) {
1899 		/*
1900 		 * Yes, Virginia, this is indeed insane.
1901 		 *
1902 		 * We use this sequence to make sure that
1903 		 *  (a) we account for dirty stats properly
1904 		 *  (b) we tell the low-level filesystem to
1905 		 *      mark the whole page dirty if it was
1906 		 *      dirty in a pagetable. Only to then
1907 		 *  (c) clean the page again and return 1 to
1908 		 *      cause the writeback.
1909 		 *
1910 		 * This way we avoid all nasty races with the
1911 		 * dirty bit in multiple places and clearing
1912 		 * them concurrently from different threads.
1913 		 *
1914 		 * Note! Normally the "set_page_dirty(page)"
1915 		 * has no effect on the actual dirty bit - since
1916 		 * that will already usually be set. But we
1917 		 * need the side effects, and it can help us
1918 		 * avoid races.
1919 		 *
1920 		 * We basically use the page "master dirty bit"
1921 		 * as a serialization point for all the different
1922 		 * threads doing their things.
1923 		 */
1924 		if (page_mkclean(page))
1925 			set_page_dirty(page);
1926 		/*
1927 		 * We carefully synchronise fault handlers against
1928 		 * installing a dirty pte and marking the page dirty
1929 		 * at this point. We do this by having them hold the
1930 		 * page lock at some point after installing their
1931 		 * pte, but before marking the page dirty.
1932 		 * Pages are always locked coming in here, so we get
1933 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1934 		 * for more comments.
1935 		 */
1936 		if (TestClearPageDirty(page)) {
1937 			dec_zone_page_state(page, NR_FILE_DIRTY);
1938 			dec_bdi_stat(mapping->backing_dev_info,
1939 					BDI_RECLAIMABLE);
1940 			return 1;
1941 		}
1942 		return 0;
1943 	}
1944 	return TestClearPageDirty(page);
1945 }
1946 EXPORT_SYMBOL(clear_page_dirty_for_io);
1947 
1948 int test_clear_page_writeback(struct page *page)
1949 {
1950 	struct address_space *mapping = page_mapping(page);
1951 	int ret;
1952 
1953 	if (mapping) {
1954 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1955 		unsigned long flags;
1956 
1957 		spin_lock_irqsave(&mapping->tree_lock, flags);
1958 		ret = TestClearPageWriteback(page);
1959 		if (ret) {
1960 			radix_tree_tag_clear(&mapping->page_tree,
1961 						page_index(page),
1962 						PAGECACHE_TAG_WRITEBACK);
1963 			if (bdi_cap_account_writeback(bdi)) {
1964 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1965 				__bdi_writeout_inc(bdi);
1966 			}
1967 		}
1968 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1969 	} else {
1970 		ret = TestClearPageWriteback(page);
1971 	}
1972 	if (ret) {
1973 		dec_zone_page_state(page, NR_WRITEBACK);
1974 		inc_zone_page_state(page, NR_WRITTEN);
1975 	}
1976 	return ret;
1977 }
1978 
1979 int test_set_page_writeback(struct page *page)
1980 {
1981 	struct address_space *mapping = page_mapping(page);
1982 	int ret;
1983 
1984 	if (mapping) {
1985 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1986 		unsigned long flags;
1987 
1988 		spin_lock_irqsave(&mapping->tree_lock, flags);
1989 		ret = TestSetPageWriteback(page);
1990 		if (!ret) {
1991 			radix_tree_tag_set(&mapping->page_tree,
1992 						page_index(page),
1993 						PAGECACHE_TAG_WRITEBACK);
1994 			if (bdi_cap_account_writeback(bdi))
1995 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1996 		}
1997 		if (!PageDirty(page))
1998 			radix_tree_tag_clear(&mapping->page_tree,
1999 						page_index(page),
2000 						PAGECACHE_TAG_DIRTY);
2001 		radix_tree_tag_clear(&mapping->page_tree,
2002 				     page_index(page),
2003 				     PAGECACHE_TAG_TOWRITE);
2004 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2005 	} else {
2006 		ret = TestSetPageWriteback(page);
2007 	}
2008 	if (!ret)
2009 		account_page_writeback(page);
2010 	return ret;
2011 
2012 }
2013 EXPORT_SYMBOL(test_set_page_writeback);
2014 
2015 /*
2016  * Return true if any of the pages in the mapping are marked with the
2017  * passed tag.
2018  */
2019 int mapping_tagged(struct address_space *mapping, int tag)
2020 {
2021 	return radix_tree_tagged(&mapping->page_tree, tag);
2022 }
2023 EXPORT_SYMBOL(mapping_tagged);
2024