xref: /linux/mm/page-writeback.c (revision 9ad8d22f2f3fad7a366c9772362795ef6d6a2d51)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth or update dirty limit at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 static int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 static unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 static int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 static int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 static unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116 
117 EXPORT_SYMBOL(laptop_mode);
118 
119 /* End of sysctl-exported parameters */
120 
121 struct wb_domain global_wb_domain;
122 
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 	struct wb_domain	*dom;
127 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
128 #endif
129 	struct bdi_writeback	*wb;
130 	struct fprop_local_percpu *wb_completions;
131 
132 	unsigned long		avail;		/* dirtyable */
133 	unsigned long		dirty;		/* file_dirty + write + nfs */
134 	unsigned long		thresh;		/* dirty threshold */
135 	unsigned long		bg_thresh;	/* dirty background threshold */
136 
137 	unsigned long		wb_dirty;	/* per-wb counterparts */
138 	unsigned long		wb_thresh;
139 	unsigned long		wb_bg_thresh;
140 
141 	unsigned long		pos_ratio;
142 	bool			freerun;
143 	bool			dirty_exceeded;
144 };
145 
146 /*
147  * Length of period for aging writeout fractions of bdis. This is an
148  * arbitrarily chosen number. The longer the period, the slower fractions will
149  * reflect changes in current writeout rate.
150  */
151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
152 
153 #ifdef CONFIG_CGROUP_WRITEBACK
154 
155 #define GDTC_INIT(__wb)		.wb = (__wb),				\
156 				.dom = &global_wb_domain,		\
157 				.wb_completions = &(__wb)->completions
158 
159 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
160 
161 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
162 				.dom = mem_cgroup_wb_domain(__wb),	\
163 				.wb_completions = &(__wb)->memcg_completions, \
164 				.gdtc = __gdtc
165 
166 static bool mdtc_valid(struct dirty_throttle_control *dtc)
167 {
168 	return dtc->dom;
169 }
170 
171 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
172 {
173 	return dtc->dom;
174 }
175 
176 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
177 {
178 	return mdtc->gdtc;
179 }
180 
181 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
182 {
183 	return &wb->memcg_completions;
184 }
185 
186 static void wb_min_max_ratio(struct bdi_writeback *wb,
187 			     unsigned long *minp, unsigned long *maxp)
188 {
189 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
190 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
191 	unsigned long long min = wb->bdi->min_ratio;
192 	unsigned long long max = wb->bdi->max_ratio;
193 
194 	/*
195 	 * @wb may already be clean by the time control reaches here and
196 	 * the total may not include its bw.
197 	 */
198 	if (this_bw < tot_bw) {
199 		if (min) {
200 			min *= this_bw;
201 			min = div64_ul(min, tot_bw);
202 		}
203 		if (max < 100 * BDI_RATIO_SCALE) {
204 			max *= this_bw;
205 			max = div64_ul(max, tot_bw);
206 		}
207 	}
208 
209 	*minp = min;
210 	*maxp = max;
211 }
212 
213 #else	/* CONFIG_CGROUP_WRITEBACK */
214 
215 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
216 				.wb_completions = &(__wb)->completions
217 #define GDTC_INIT_NO_WB
218 #define MDTC_INIT(__wb, __gdtc)
219 
220 static bool mdtc_valid(struct dirty_throttle_control *dtc)
221 {
222 	return false;
223 }
224 
225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
226 {
227 	return &global_wb_domain;
228 }
229 
230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
231 {
232 	return NULL;
233 }
234 
235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
236 {
237 	return NULL;
238 }
239 
240 static void wb_min_max_ratio(struct bdi_writeback *wb,
241 			     unsigned long *minp, unsigned long *maxp)
242 {
243 	*minp = wb->bdi->min_ratio;
244 	*maxp = wb->bdi->max_ratio;
245 }
246 
247 #endif	/* CONFIG_CGROUP_WRITEBACK */
248 
249 /*
250  * In a memory zone, there is a certain amount of pages we consider
251  * available for the page cache, which is essentially the number of
252  * free and reclaimable pages, minus some zone reserves to protect
253  * lowmem and the ability to uphold the zone's watermarks without
254  * requiring writeback.
255  *
256  * This number of dirtyable pages is the base value of which the
257  * user-configurable dirty ratio is the effective number of pages that
258  * are allowed to be actually dirtied.  Per individual zone, or
259  * globally by using the sum of dirtyable pages over all zones.
260  *
261  * Because the user is allowed to specify the dirty limit globally as
262  * absolute number of bytes, calculating the per-zone dirty limit can
263  * require translating the configured limit into a percentage of
264  * global dirtyable memory first.
265  */
266 
267 /**
268  * node_dirtyable_memory - number of dirtyable pages in a node
269  * @pgdat: the node
270  *
271  * Return: the node's number of pages potentially available for dirty
272  * page cache.  This is the base value for the per-node dirty limits.
273  */
274 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
275 {
276 	unsigned long nr_pages = 0;
277 	int z;
278 
279 	for (z = 0; z < MAX_NR_ZONES; z++) {
280 		struct zone *zone = pgdat->node_zones + z;
281 
282 		if (!populated_zone(zone))
283 			continue;
284 
285 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
286 	}
287 
288 	/*
289 	 * Pages reserved for the kernel should not be considered
290 	 * dirtyable, to prevent a situation where reclaim has to
291 	 * clean pages in order to balance the zones.
292 	 */
293 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
294 
295 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
296 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
297 
298 	return nr_pages;
299 }
300 
301 static unsigned long highmem_dirtyable_memory(unsigned long total)
302 {
303 #ifdef CONFIG_HIGHMEM
304 	int node;
305 	unsigned long x = 0;
306 	int i;
307 
308 	for_each_node_state(node, N_HIGH_MEMORY) {
309 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
310 			struct zone *z;
311 			unsigned long nr_pages;
312 
313 			if (!is_highmem_idx(i))
314 				continue;
315 
316 			z = &NODE_DATA(node)->node_zones[i];
317 			if (!populated_zone(z))
318 				continue;
319 
320 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
321 			/* watch for underflows */
322 			nr_pages -= min(nr_pages, high_wmark_pages(z));
323 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
324 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
325 			x += nr_pages;
326 		}
327 	}
328 
329 	/*
330 	 * Make sure that the number of highmem pages is never larger
331 	 * than the number of the total dirtyable memory. This can only
332 	 * occur in very strange VM situations but we want to make sure
333 	 * that this does not occur.
334 	 */
335 	return min(x, total);
336 #else
337 	return 0;
338 #endif
339 }
340 
341 /**
342  * global_dirtyable_memory - number of globally dirtyable pages
343  *
344  * Return: the global number of pages potentially available for dirty
345  * page cache.  This is the base value for the global dirty limits.
346  */
347 static unsigned long global_dirtyable_memory(void)
348 {
349 	unsigned long x;
350 
351 	x = global_zone_page_state(NR_FREE_PAGES);
352 	/*
353 	 * Pages reserved for the kernel should not be considered
354 	 * dirtyable, to prevent a situation where reclaim has to
355 	 * clean pages in order to balance the zones.
356 	 */
357 	x -= min(x, totalreserve_pages);
358 
359 	x += global_node_page_state(NR_INACTIVE_FILE);
360 	x += global_node_page_state(NR_ACTIVE_FILE);
361 
362 	if (!vm_highmem_is_dirtyable)
363 		x -= highmem_dirtyable_memory(x);
364 
365 	return x + 1;	/* Ensure that we never return 0 */
366 }
367 
368 /**
369  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
370  * @dtc: dirty_throttle_control of interest
371  *
372  * Calculate @dtc->thresh and ->bg_thresh considering
373  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
374  * must ensure that @dtc->avail is set before calling this function.  The
375  * dirty limits will be lifted by 1/4 for real-time tasks.
376  */
377 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
378 {
379 	const unsigned long available_memory = dtc->avail;
380 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
381 	unsigned long bytes = vm_dirty_bytes;
382 	unsigned long bg_bytes = dirty_background_bytes;
383 	/* convert ratios to per-PAGE_SIZE for higher precision */
384 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
385 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
386 	unsigned long thresh;
387 	unsigned long bg_thresh;
388 	struct task_struct *tsk;
389 
390 	/* gdtc is !NULL iff @dtc is for memcg domain */
391 	if (gdtc) {
392 		unsigned long global_avail = gdtc->avail;
393 
394 		/*
395 		 * The byte settings can't be applied directly to memcg
396 		 * domains.  Convert them to ratios by scaling against
397 		 * globally available memory.  As the ratios are in
398 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
399 		 * number of pages.
400 		 */
401 		if (bytes)
402 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
403 				    PAGE_SIZE);
404 		if (bg_bytes)
405 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
406 				       PAGE_SIZE);
407 		bytes = bg_bytes = 0;
408 	}
409 
410 	if (bytes)
411 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
412 	else
413 		thresh = (ratio * available_memory) / PAGE_SIZE;
414 
415 	if (bg_bytes)
416 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
417 	else
418 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
419 
420 	tsk = current;
421 	if (rt_or_dl_task(tsk)) {
422 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
424 	}
425 	/*
426 	 * Dirty throttling logic assumes the limits in page units fit into
427 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
428 	 */
429 	if (thresh > UINT_MAX)
430 		thresh = UINT_MAX;
431 	/* This makes sure bg_thresh is within 32-bits as well */
432 	if (bg_thresh >= thresh)
433 		bg_thresh = thresh / 2;
434 	dtc->thresh = thresh;
435 	dtc->bg_thresh = bg_thresh;
436 
437 	/* we should eventually report the domain in the TP */
438 	if (!gdtc)
439 		trace_global_dirty_state(bg_thresh, thresh);
440 }
441 
442 /**
443  * global_dirty_limits - background-writeback and dirty-throttling thresholds
444  * @pbackground: out parameter for bg_thresh
445  * @pdirty: out parameter for thresh
446  *
447  * Calculate bg_thresh and thresh for global_wb_domain.  See
448  * domain_dirty_limits() for details.
449  */
450 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
451 {
452 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
453 
454 	gdtc.avail = global_dirtyable_memory();
455 	domain_dirty_limits(&gdtc);
456 
457 	*pbackground = gdtc.bg_thresh;
458 	*pdirty = gdtc.thresh;
459 }
460 
461 /**
462  * node_dirty_limit - maximum number of dirty pages allowed in a node
463  * @pgdat: the node
464  *
465  * Return: the maximum number of dirty pages allowed in a node, based
466  * on the node's dirtyable memory.
467  */
468 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
469 {
470 	unsigned long node_memory = node_dirtyable_memory(pgdat);
471 	struct task_struct *tsk = current;
472 	unsigned long dirty;
473 
474 	if (vm_dirty_bytes)
475 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
476 			node_memory / global_dirtyable_memory();
477 	else
478 		dirty = vm_dirty_ratio * node_memory / 100;
479 
480 	if (rt_or_dl_task(tsk))
481 		dirty += dirty / 4;
482 
483 	/*
484 	 * Dirty throttling logic assumes the limits in page units fit into
485 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
486 	 */
487 	return min_t(unsigned long, dirty, UINT_MAX);
488 }
489 
490 /**
491  * node_dirty_ok - tells whether a node is within its dirty limits
492  * @pgdat: the node to check
493  *
494  * Return: %true when the dirty pages in @pgdat are within the node's
495  * dirty limit, %false if the limit is exceeded.
496  */
497 bool node_dirty_ok(struct pglist_data *pgdat)
498 {
499 	unsigned long limit = node_dirty_limit(pgdat);
500 	unsigned long nr_pages = 0;
501 
502 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
503 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
504 
505 	return nr_pages <= limit;
506 }
507 
508 #ifdef CONFIG_SYSCTL
509 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
510 		void *buffer, size_t *lenp, loff_t *ppos)
511 {
512 	int ret;
513 
514 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 	if (ret == 0 && write)
516 		dirty_background_bytes = 0;
517 	return ret;
518 }
519 
520 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
521 		void *buffer, size_t *lenp, loff_t *ppos)
522 {
523 	int ret;
524 	unsigned long old_bytes = dirty_background_bytes;
525 
526 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
527 	if (ret == 0 && write) {
528 		if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
529 								UINT_MAX) {
530 			dirty_background_bytes = old_bytes;
531 			return -ERANGE;
532 		}
533 		dirty_background_ratio = 0;
534 	}
535 	return ret;
536 }
537 
538 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
539 		size_t *lenp, loff_t *ppos)
540 {
541 	int old_ratio = vm_dirty_ratio;
542 	int ret;
543 
544 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
545 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
546 		writeback_set_ratelimit();
547 		vm_dirty_bytes = 0;
548 	}
549 	return ret;
550 }
551 
552 static int dirty_bytes_handler(const struct ctl_table *table, int write,
553 		void *buffer, size_t *lenp, loff_t *ppos)
554 {
555 	unsigned long old_bytes = vm_dirty_bytes;
556 	int ret;
557 
558 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
559 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
560 		if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
561 			vm_dirty_bytes = old_bytes;
562 			return -ERANGE;
563 		}
564 		writeback_set_ratelimit();
565 		vm_dirty_ratio = 0;
566 	}
567 	return ret;
568 }
569 #endif
570 
571 static unsigned long wp_next_time(unsigned long cur_time)
572 {
573 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
574 	/* 0 has a special meaning... */
575 	if (!cur_time)
576 		return 1;
577 	return cur_time;
578 }
579 
580 static void wb_domain_writeout_add(struct wb_domain *dom,
581 				   struct fprop_local_percpu *completions,
582 				   unsigned int max_prop_frac, long nr)
583 {
584 	__fprop_add_percpu_max(&dom->completions, completions,
585 			       max_prop_frac, nr);
586 	/* First event after period switching was turned off? */
587 	if (unlikely(!dom->period_time)) {
588 		/*
589 		 * We can race with other wb_domain_writeout_add calls here but
590 		 * it does not cause any harm since the resulting time when
591 		 * timer will fire and what is in writeout_period_time will be
592 		 * roughly the same.
593 		 */
594 		dom->period_time = wp_next_time(jiffies);
595 		mod_timer(&dom->period_timer, dom->period_time);
596 	}
597 }
598 
599 /*
600  * Increment @wb's writeout completion count and the global writeout
601  * completion count. Called from __folio_end_writeback().
602  */
603 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
604 {
605 	struct wb_domain *cgdom;
606 
607 	wb_stat_mod(wb, WB_WRITTEN, nr);
608 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
609 			       wb->bdi->max_prop_frac, nr);
610 
611 	cgdom = mem_cgroup_wb_domain(wb);
612 	if (cgdom)
613 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
614 				       wb->bdi->max_prop_frac, nr);
615 }
616 
617 void wb_writeout_inc(struct bdi_writeback *wb)
618 {
619 	unsigned long flags;
620 
621 	local_irq_save(flags);
622 	__wb_writeout_add(wb, 1);
623 	local_irq_restore(flags);
624 }
625 EXPORT_SYMBOL_GPL(wb_writeout_inc);
626 
627 /*
628  * On idle system, we can be called long after we scheduled because we use
629  * deferred timers so count with missed periods.
630  */
631 static void writeout_period(struct timer_list *t)
632 {
633 	struct wb_domain *dom = from_timer(dom, t, period_timer);
634 	int miss_periods = (jiffies - dom->period_time) /
635 						 VM_COMPLETIONS_PERIOD_LEN;
636 
637 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
638 		dom->period_time = wp_next_time(dom->period_time +
639 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
640 		mod_timer(&dom->period_timer, dom->period_time);
641 	} else {
642 		/*
643 		 * Aging has zeroed all fractions. Stop wasting CPU on period
644 		 * updates.
645 		 */
646 		dom->period_time = 0;
647 	}
648 }
649 
650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
651 {
652 	memset(dom, 0, sizeof(*dom));
653 
654 	spin_lock_init(&dom->lock);
655 
656 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
657 
658 	dom->dirty_limit_tstamp = jiffies;
659 
660 	return fprop_global_init(&dom->completions, gfp);
661 }
662 
663 #ifdef CONFIG_CGROUP_WRITEBACK
664 void wb_domain_exit(struct wb_domain *dom)
665 {
666 	del_timer_sync(&dom->period_timer);
667 	fprop_global_destroy(&dom->completions);
668 }
669 #endif
670 
671 /*
672  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
673  * registered backing devices, which, for obvious reasons, can not
674  * exceed 100%.
675  */
676 static unsigned int bdi_min_ratio;
677 
678 static int bdi_check_pages_limit(unsigned long pages)
679 {
680 	unsigned long max_dirty_pages = global_dirtyable_memory();
681 
682 	if (pages > max_dirty_pages)
683 		return -EINVAL;
684 
685 	return 0;
686 }
687 
688 static unsigned long bdi_ratio_from_pages(unsigned long pages)
689 {
690 	unsigned long background_thresh;
691 	unsigned long dirty_thresh;
692 	unsigned long ratio;
693 
694 	global_dirty_limits(&background_thresh, &dirty_thresh);
695 	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
696 
697 	return ratio;
698 }
699 
700 static u64 bdi_get_bytes(unsigned int ratio)
701 {
702 	unsigned long background_thresh;
703 	unsigned long dirty_thresh;
704 	u64 bytes;
705 
706 	global_dirty_limits(&background_thresh, &dirty_thresh);
707 	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
708 
709 	return bytes;
710 }
711 
712 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
713 {
714 	unsigned int delta;
715 	int ret = 0;
716 
717 	if (min_ratio > 100 * BDI_RATIO_SCALE)
718 		return -EINVAL;
719 
720 	spin_lock_bh(&bdi_lock);
721 	if (min_ratio > bdi->max_ratio) {
722 		ret = -EINVAL;
723 	} else {
724 		if (min_ratio < bdi->min_ratio) {
725 			delta = bdi->min_ratio - min_ratio;
726 			bdi_min_ratio -= delta;
727 			bdi->min_ratio = min_ratio;
728 		} else {
729 			delta = min_ratio - bdi->min_ratio;
730 			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
731 				bdi_min_ratio += delta;
732 				bdi->min_ratio = min_ratio;
733 			} else {
734 				ret = -EINVAL;
735 			}
736 		}
737 	}
738 	spin_unlock_bh(&bdi_lock);
739 
740 	return ret;
741 }
742 
743 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
744 {
745 	int ret = 0;
746 
747 	if (max_ratio > 100 * BDI_RATIO_SCALE)
748 		return -EINVAL;
749 
750 	spin_lock_bh(&bdi_lock);
751 	if (bdi->min_ratio > max_ratio) {
752 		ret = -EINVAL;
753 	} else {
754 		bdi->max_ratio = max_ratio;
755 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
756 						(100 * BDI_RATIO_SCALE);
757 	}
758 	spin_unlock_bh(&bdi_lock);
759 
760 	return ret;
761 }
762 
763 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
764 {
765 	return __bdi_set_min_ratio(bdi, min_ratio);
766 }
767 
768 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
769 {
770 	return __bdi_set_max_ratio(bdi, max_ratio);
771 }
772 
773 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
774 {
775 	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
776 }
777 
778 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
779 {
780 	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
781 }
782 EXPORT_SYMBOL(bdi_set_max_ratio);
783 
784 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
785 {
786 	return bdi_get_bytes(bdi->min_ratio);
787 }
788 
789 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
790 {
791 	int ret;
792 	unsigned long pages = min_bytes >> PAGE_SHIFT;
793 	unsigned long min_ratio;
794 
795 	ret = bdi_check_pages_limit(pages);
796 	if (ret)
797 		return ret;
798 
799 	min_ratio = bdi_ratio_from_pages(pages);
800 	return __bdi_set_min_ratio(bdi, min_ratio);
801 }
802 
803 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
804 {
805 	return bdi_get_bytes(bdi->max_ratio);
806 }
807 
808 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
809 {
810 	int ret;
811 	unsigned long pages = max_bytes >> PAGE_SHIFT;
812 	unsigned long max_ratio;
813 
814 	ret = bdi_check_pages_limit(pages);
815 	if (ret)
816 		return ret;
817 
818 	max_ratio = bdi_ratio_from_pages(pages);
819 	return __bdi_set_max_ratio(bdi, max_ratio);
820 }
821 
822 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
823 {
824 	if (strict_limit > 1)
825 		return -EINVAL;
826 
827 	spin_lock_bh(&bdi_lock);
828 	if (strict_limit)
829 		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
830 	else
831 		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
832 	spin_unlock_bh(&bdi_lock);
833 
834 	return 0;
835 }
836 
837 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
838 					   unsigned long bg_thresh)
839 {
840 	return (thresh + bg_thresh) / 2;
841 }
842 
843 static unsigned long hard_dirty_limit(struct wb_domain *dom,
844 				      unsigned long thresh)
845 {
846 	return max(thresh, dom->dirty_limit);
847 }
848 
849 /*
850  * Memory which can be further allocated to a memcg domain is capped by
851  * system-wide clean memory excluding the amount being used in the domain.
852  */
853 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
854 			    unsigned long filepages, unsigned long headroom)
855 {
856 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
857 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
858 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
859 	unsigned long other_clean = global_clean - min(global_clean, clean);
860 
861 	mdtc->avail = filepages + min(headroom, other_clean);
862 }
863 
864 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
865 {
866 	return mdtc_gdtc(dtc) == NULL;
867 }
868 
869 /*
870  * Dirty background will ignore pages being written as we're trying to
871  * decide whether to put more under writeback.
872  */
873 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
874 			       bool include_writeback)
875 {
876 	if (dtc_is_global(dtc)) {
877 		dtc->avail = global_dirtyable_memory();
878 		dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
879 		if (include_writeback)
880 			dtc->dirty += global_node_page_state(NR_WRITEBACK);
881 	} else {
882 		unsigned long filepages = 0, headroom = 0, writeback = 0;
883 
884 		mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
885 				    &writeback);
886 		if (include_writeback)
887 			dtc->dirty += writeback;
888 		mdtc_calc_avail(dtc, filepages, headroom);
889 	}
890 }
891 
892 /**
893  * __wb_calc_thresh - @wb's share of dirty threshold
894  * @dtc: dirty_throttle_context of interest
895  * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
896  *
897  * Note that balance_dirty_pages() will only seriously take dirty throttling
898  * threshold as a hard limit when sleeping max_pause per page is not enough
899  * to keep the dirty pages under control. For example, when the device is
900  * completely stalled due to some error conditions, or when there are 1000
901  * dd tasks writing to a slow 10MB/s USB key.
902  * In the other normal situations, it acts more gently by throttling the tasks
903  * more (rather than completely block them) when the wb dirty pages go high.
904  *
905  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
906  * - starving fast devices
907  * - piling up dirty pages (that will take long time to sync) on slow devices
908  *
909  * The wb's share of dirty limit will be adapting to its throughput and
910  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
911  *
912  * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
913  * "dirty" in the context of dirty balancing includes all PG_dirty and
914  * PG_writeback pages.
915  */
916 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
917 				      unsigned long thresh)
918 {
919 	struct wb_domain *dom = dtc_dom(dtc);
920 	struct bdi_writeback *wb = dtc->wb;
921 	u64 wb_thresh;
922 	u64 wb_max_thresh;
923 	unsigned long numerator, denominator;
924 	unsigned long wb_min_ratio, wb_max_ratio;
925 
926 	/*
927 	 * Calculate this wb's share of the thresh ratio.
928 	 */
929 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
930 			      &numerator, &denominator);
931 
932 	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
933 	wb_thresh *= numerator;
934 	wb_thresh = div64_ul(wb_thresh, denominator);
935 
936 	wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
937 
938 	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
939 	wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
940 	if (wb_thresh > wb_max_thresh)
941 		wb_thresh = wb_max_thresh;
942 
943 	/*
944 	 * With strictlimit flag, the wb_thresh is treated as
945 	 * a hard limit in balance_dirty_pages() and wb_position_ratio().
946 	 * It's possible that wb_thresh is close to zero, not because
947 	 * the device is slow, but because it has been inactive.
948 	 * To prevent occasional writes from being blocked, we raise wb_thresh.
949 	 */
950 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
951 		unsigned long limit = hard_dirty_limit(dom, dtc->thresh);
952 		u64 wb_scale_thresh = 0;
953 
954 		if (limit > dtc->dirty)
955 			wb_scale_thresh = (limit - dtc->dirty) / 100;
956 		wb_thresh = max(wb_thresh, min(wb_scale_thresh, wb_max_thresh / 4));
957 	}
958 
959 	return wb_thresh;
960 }
961 
962 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
963 {
964 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
965 
966 	return __wb_calc_thresh(&gdtc, thresh);
967 }
968 
969 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
970 {
971 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
972 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
973 
974 	domain_dirty_avail(&gdtc, true);
975 	domain_dirty_avail(&mdtc, true);
976 	domain_dirty_limits(&mdtc);
977 
978 	return __wb_calc_thresh(&mdtc, mdtc.thresh);
979 }
980 
981 /*
982  *                           setpoint - dirty 3
983  *        f(dirty) := 1.0 + (----------------)
984  *                           limit - setpoint
985  *
986  * it's a 3rd order polynomial that subjects to
987  *
988  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
989  * (2) f(setpoint) = 1.0 => the balance point
990  * (3) f(limit)    = 0   => the hard limit
991  * (4) df/dx      <= 0	 => negative feedback control
992  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
993  *     => fast response on large errors; small oscillation near setpoint
994  */
995 static long long pos_ratio_polynom(unsigned long setpoint,
996 					  unsigned long dirty,
997 					  unsigned long limit)
998 {
999 	long long pos_ratio;
1000 	long x;
1001 
1002 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
1003 		      (limit - setpoint) | 1);
1004 	pos_ratio = x;
1005 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
1006 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
1007 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
1008 
1009 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
1010 }
1011 
1012 /*
1013  * Dirty position control.
1014  *
1015  * (o) global/bdi setpoints
1016  *
1017  * We want the dirty pages be balanced around the global/wb setpoints.
1018  * When the number of dirty pages is higher/lower than the setpoint, the
1019  * dirty position control ratio (and hence task dirty ratelimit) will be
1020  * decreased/increased to bring the dirty pages back to the setpoint.
1021  *
1022  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1023  *
1024  *     if (dirty < setpoint) scale up   pos_ratio
1025  *     if (dirty > setpoint) scale down pos_ratio
1026  *
1027  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
1028  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
1029  *
1030  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1031  *
1032  * (o) global control line
1033  *
1034  *     ^ pos_ratio
1035  *     |
1036  *     |            |<===== global dirty control scope ======>|
1037  * 2.0  * * * * * * *
1038  *     |            .*
1039  *     |            . *
1040  *     |            .   *
1041  *     |            .     *
1042  *     |            .        *
1043  *     |            .            *
1044  * 1.0 ................................*
1045  *     |            .                  .     *
1046  *     |            .                  .          *
1047  *     |            .                  .              *
1048  *     |            .                  .                 *
1049  *     |            .                  .                    *
1050  *   0 +------------.------------------.----------------------*------------->
1051  *           freerun^          setpoint^                 limit^   dirty pages
1052  *
1053  * (o) wb control line
1054  *
1055  *     ^ pos_ratio
1056  *     |
1057  *     |            *
1058  *     |              *
1059  *     |                *
1060  *     |                  *
1061  *     |                    * |<=========== span ============>|
1062  * 1.0 .......................*
1063  *     |                      . *
1064  *     |                      .   *
1065  *     |                      .     *
1066  *     |                      .       *
1067  *     |                      .         *
1068  *     |                      .           *
1069  *     |                      .             *
1070  *     |                      .               *
1071  *     |                      .                 *
1072  *     |                      .                   *
1073  *     |                      .                     *
1074  * 1/4 ...............................................* * * * * * * * * * * *
1075  *     |                      .                         .
1076  *     |                      .                           .
1077  *     |                      .                             .
1078  *   0 +----------------------.-------------------------------.------------->
1079  *                wb_setpoint^                    x_intercept^
1080  *
1081  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1082  * be smoothly throttled down to normal if it starts high in situations like
1083  * - start writing to a slow SD card and a fast disk at the same time. The SD
1084  *   card's wb_dirty may rush to many times higher than wb_setpoint.
1085  * - the wb dirty thresh drops quickly due to change of JBOD workload
1086  */
1087 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1088 {
1089 	struct bdi_writeback *wb = dtc->wb;
1090 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1091 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1092 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1093 	unsigned long wb_thresh = dtc->wb_thresh;
1094 	unsigned long x_intercept;
1095 	unsigned long setpoint;		/* dirty pages' target balance point */
1096 	unsigned long wb_setpoint;
1097 	unsigned long span;
1098 	long long pos_ratio;		/* for scaling up/down the rate limit */
1099 	long x;
1100 
1101 	dtc->pos_ratio = 0;
1102 
1103 	if (unlikely(dtc->dirty >= limit))
1104 		return;
1105 
1106 	/*
1107 	 * global setpoint
1108 	 *
1109 	 * See comment for pos_ratio_polynom().
1110 	 */
1111 	setpoint = (freerun + limit) / 2;
1112 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1113 
1114 	/*
1115 	 * The strictlimit feature is a tool preventing mistrusted filesystems
1116 	 * from growing a large number of dirty pages before throttling. For
1117 	 * such filesystems balance_dirty_pages always checks wb counters
1118 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1119 	 * This is especially important for fuse which sets bdi->max_ratio to
1120 	 * 1% by default. Without strictlimit feature, fuse writeback may
1121 	 * consume arbitrary amount of RAM because it is accounted in
1122 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1123 	 *
1124 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1125 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1126 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1127 	 * limits are set by default to 10% and 20% (background and throttle).
1128 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1129 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1130 	 * about ~6K pages (as the average of background and throttle wb
1131 	 * limits). The 3rd order polynomial will provide positive feedback if
1132 	 * wb_dirty is under wb_setpoint and vice versa.
1133 	 *
1134 	 * Note, that we cannot use global counters in these calculations
1135 	 * because we want to throttle process writing to a strictlimit wb
1136 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1137 	 * in the example above).
1138 	 */
1139 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1140 		long long wb_pos_ratio;
1141 
1142 		if (dtc->wb_dirty < 8) {
1143 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1144 					   2 << RATELIMIT_CALC_SHIFT);
1145 			return;
1146 		}
1147 
1148 		if (dtc->wb_dirty >= wb_thresh)
1149 			return;
1150 
1151 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1152 						    dtc->wb_bg_thresh);
1153 
1154 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1155 			return;
1156 
1157 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1158 						 wb_thresh);
1159 
1160 		/*
1161 		 * Typically, for strictlimit case, wb_setpoint << setpoint
1162 		 * and pos_ratio >> wb_pos_ratio. In the other words global
1163 		 * state ("dirty") is not limiting factor and we have to
1164 		 * make decision based on wb counters. But there is an
1165 		 * important case when global pos_ratio should get precedence:
1166 		 * global limits are exceeded (e.g. due to activities on other
1167 		 * wb's) while given strictlimit wb is below limit.
1168 		 *
1169 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1170 		 * but it would look too non-natural for the case of all
1171 		 * activity in the system coming from a single strictlimit wb
1172 		 * with bdi->max_ratio == 100%.
1173 		 *
1174 		 * Note that min() below somewhat changes the dynamics of the
1175 		 * control system. Normally, pos_ratio value can be well over 3
1176 		 * (when globally we are at freerun and wb is well below wb
1177 		 * setpoint). Now the maximum pos_ratio in the same situation
1178 		 * is 2. We might want to tweak this if we observe the control
1179 		 * system is too slow to adapt.
1180 		 */
1181 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1182 		return;
1183 	}
1184 
1185 	/*
1186 	 * We have computed basic pos_ratio above based on global situation. If
1187 	 * the wb is over/under its share of dirty pages, we want to scale
1188 	 * pos_ratio further down/up. That is done by the following mechanism.
1189 	 */
1190 
1191 	/*
1192 	 * wb setpoint
1193 	 *
1194 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1195 	 *
1196 	 *                        x_intercept - wb_dirty
1197 	 *                     := --------------------------
1198 	 *                        x_intercept - wb_setpoint
1199 	 *
1200 	 * The main wb control line is a linear function that subjects to
1201 	 *
1202 	 * (1) f(wb_setpoint) = 1.0
1203 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1204 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1205 	 *
1206 	 * For single wb case, the dirty pages are observed to fluctuate
1207 	 * regularly within range
1208 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1209 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1210 	 * fluctuation range for pos_ratio.
1211 	 *
1212 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1213 	 * own size, so move the slope over accordingly and choose a slope that
1214 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1215 	 */
1216 	if (unlikely(wb_thresh > dtc->thresh))
1217 		wb_thresh = dtc->thresh;
1218 	/*
1219 	 * It's very possible that wb_thresh is close to 0 not because the
1220 	 * device is slow, but that it has remained inactive for long time.
1221 	 * Honour such devices a reasonable good (hopefully IO efficient)
1222 	 * threshold, so that the occasional writes won't be blocked and active
1223 	 * writes can rampup the threshold quickly.
1224 	 */
1225 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1226 	/*
1227 	 * scale global setpoint to wb's:
1228 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1229 	 */
1230 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1231 	wb_setpoint = setpoint * (u64)x >> 16;
1232 	/*
1233 	 * Use span=(8*write_bw) in single wb case as indicated by
1234 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1235 	 *
1236 	 *        wb_thresh                    thresh - wb_thresh
1237 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1238 	 *         thresh                           thresh
1239 	 */
1240 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1241 	x_intercept = wb_setpoint + span;
1242 
1243 	if (dtc->wb_dirty < x_intercept - span / 4) {
1244 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1245 				      (x_intercept - wb_setpoint) | 1);
1246 	} else
1247 		pos_ratio /= 4;
1248 
1249 	/*
1250 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1251 	 * It may push the desired control point of global dirty pages higher
1252 	 * than setpoint.
1253 	 */
1254 	x_intercept = wb_thresh / 2;
1255 	if (dtc->wb_dirty < x_intercept) {
1256 		if (dtc->wb_dirty > x_intercept / 8)
1257 			pos_ratio = div_u64(pos_ratio * x_intercept,
1258 					    dtc->wb_dirty);
1259 		else
1260 			pos_ratio *= 8;
1261 	}
1262 
1263 	dtc->pos_ratio = pos_ratio;
1264 }
1265 
1266 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1267 				      unsigned long elapsed,
1268 				      unsigned long written)
1269 {
1270 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1271 	unsigned long avg = wb->avg_write_bandwidth;
1272 	unsigned long old = wb->write_bandwidth;
1273 	u64 bw;
1274 
1275 	/*
1276 	 * bw = written * HZ / elapsed
1277 	 *
1278 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1279 	 * write_bandwidth = ---------------------------------------------------
1280 	 *                                          period
1281 	 *
1282 	 * @written may have decreased due to folio_redirty_for_writepage().
1283 	 * Avoid underflowing @bw calculation.
1284 	 */
1285 	bw = written - min(written, wb->written_stamp);
1286 	bw *= HZ;
1287 	if (unlikely(elapsed > period)) {
1288 		bw = div64_ul(bw, elapsed);
1289 		avg = bw;
1290 		goto out;
1291 	}
1292 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1293 	bw >>= ilog2(period);
1294 
1295 	/*
1296 	 * one more level of smoothing, for filtering out sudden spikes
1297 	 */
1298 	if (avg > old && old >= (unsigned long)bw)
1299 		avg -= (avg - old) >> 3;
1300 
1301 	if (avg < old && old <= (unsigned long)bw)
1302 		avg += (old - avg) >> 3;
1303 
1304 out:
1305 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1306 	avg = max(avg, 1LU);
1307 	if (wb_has_dirty_io(wb)) {
1308 		long delta = avg - wb->avg_write_bandwidth;
1309 		WARN_ON_ONCE(atomic_long_add_return(delta,
1310 					&wb->bdi->tot_write_bandwidth) <= 0);
1311 	}
1312 	wb->write_bandwidth = bw;
1313 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1314 }
1315 
1316 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1317 {
1318 	struct wb_domain *dom = dtc_dom(dtc);
1319 	unsigned long thresh = dtc->thresh;
1320 	unsigned long limit = dom->dirty_limit;
1321 
1322 	/*
1323 	 * Follow up in one step.
1324 	 */
1325 	if (limit < thresh) {
1326 		limit = thresh;
1327 		goto update;
1328 	}
1329 
1330 	/*
1331 	 * Follow down slowly. Use the higher one as the target, because thresh
1332 	 * may drop below dirty. This is exactly the reason to introduce
1333 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1334 	 */
1335 	thresh = max(thresh, dtc->dirty);
1336 	if (limit > thresh) {
1337 		limit -= (limit - thresh) >> 5;
1338 		goto update;
1339 	}
1340 	return;
1341 update:
1342 	dom->dirty_limit = limit;
1343 }
1344 
1345 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1346 				      unsigned long now)
1347 {
1348 	struct wb_domain *dom = dtc_dom(dtc);
1349 
1350 	/*
1351 	 * check locklessly first to optimize away locking for the most time
1352 	 */
1353 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1354 		return;
1355 
1356 	spin_lock(&dom->lock);
1357 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1358 		update_dirty_limit(dtc);
1359 		dom->dirty_limit_tstamp = now;
1360 	}
1361 	spin_unlock(&dom->lock);
1362 }
1363 
1364 /*
1365  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1366  *
1367  * Normal wb tasks will be curbed at or below it in long term.
1368  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1369  */
1370 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1371 				      unsigned long dirtied,
1372 				      unsigned long elapsed)
1373 {
1374 	struct bdi_writeback *wb = dtc->wb;
1375 	unsigned long dirty = dtc->dirty;
1376 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1377 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1378 	unsigned long setpoint = (freerun + limit) / 2;
1379 	unsigned long write_bw = wb->avg_write_bandwidth;
1380 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1381 	unsigned long dirty_rate;
1382 	unsigned long task_ratelimit;
1383 	unsigned long balanced_dirty_ratelimit;
1384 	unsigned long step;
1385 	unsigned long x;
1386 	unsigned long shift;
1387 
1388 	/*
1389 	 * The dirty rate will match the writeout rate in long term, except
1390 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1391 	 */
1392 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1393 
1394 	/*
1395 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1396 	 */
1397 	task_ratelimit = (u64)dirty_ratelimit *
1398 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1399 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1400 
1401 	/*
1402 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1403 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1404 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1405 	 * formula will yield the balanced rate limit (write_bw / N).
1406 	 *
1407 	 * Note that the expanded form is not a pure rate feedback:
1408 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1409 	 * but also takes pos_ratio into account:
1410 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1411 	 *
1412 	 * (1) is not realistic because pos_ratio also takes part in balancing
1413 	 * the dirty rate.  Consider the state
1414 	 *	pos_ratio = 0.5						     (3)
1415 	 *	rate = 2 * (write_bw / N)				     (4)
1416 	 * If (1) is used, it will stuck in that state! Because each dd will
1417 	 * be throttled at
1418 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1419 	 * yielding
1420 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1421 	 * put (6) into (1) we get
1422 	 *	rate_(i+1) = rate_(i)					     (7)
1423 	 *
1424 	 * So we end up using (2) to always keep
1425 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1426 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1427 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1428 	 * the dirty count meet the setpoint, but also where the slope of
1429 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1430 	 */
1431 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1432 					   dirty_rate | 1);
1433 	/*
1434 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1435 	 */
1436 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1437 		balanced_dirty_ratelimit = write_bw;
1438 
1439 	/*
1440 	 * We could safely do this and return immediately:
1441 	 *
1442 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1443 	 *
1444 	 * However to get a more stable dirty_ratelimit, the below elaborated
1445 	 * code makes use of task_ratelimit to filter out singular points and
1446 	 * limit the step size.
1447 	 *
1448 	 * The below code essentially only uses the relative value of
1449 	 *
1450 	 *	task_ratelimit - dirty_ratelimit
1451 	 *	= (pos_ratio - 1) * dirty_ratelimit
1452 	 *
1453 	 * which reflects the direction and size of dirty position error.
1454 	 */
1455 
1456 	/*
1457 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1458 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1459 	 * For example, when
1460 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1461 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1462 	 * lowering dirty_ratelimit will help meet both the position and rate
1463 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1464 	 * only help meet the rate target. After all, what the users ultimately
1465 	 * feel and care are stable dirty rate and small position error.
1466 	 *
1467 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1468 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1469 	 * keeps jumping around randomly and can even leap far away at times
1470 	 * due to the small 200ms estimation period of dirty_rate (we want to
1471 	 * keep that period small to reduce time lags).
1472 	 */
1473 	step = 0;
1474 
1475 	/*
1476 	 * For strictlimit case, calculations above were based on wb counters
1477 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1478 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1479 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1480 	 * "dirty" and wb_setpoint as "setpoint".
1481 	 *
1482 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1483 	 * it's possible that wb_thresh is close to zero due to inactivity
1484 	 * of backing device.
1485 	 */
1486 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1487 		dirty = dtc->wb_dirty;
1488 		if (dtc->wb_dirty < 8)
1489 			setpoint = dtc->wb_dirty + 1;
1490 		else
1491 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1492 	}
1493 
1494 	if (dirty < setpoint) {
1495 		x = min3(wb->balanced_dirty_ratelimit,
1496 			 balanced_dirty_ratelimit, task_ratelimit);
1497 		if (dirty_ratelimit < x)
1498 			step = x - dirty_ratelimit;
1499 	} else {
1500 		x = max3(wb->balanced_dirty_ratelimit,
1501 			 balanced_dirty_ratelimit, task_ratelimit);
1502 		if (dirty_ratelimit > x)
1503 			step = dirty_ratelimit - x;
1504 	}
1505 
1506 	/*
1507 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1508 	 * rate itself is constantly fluctuating. So decrease the track speed
1509 	 * when it gets close to the target. Helps eliminate pointless tremors.
1510 	 */
1511 	shift = dirty_ratelimit / (2 * step + 1);
1512 	if (shift < BITS_PER_LONG)
1513 		step = DIV_ROUND_UP(step >> shift, 8);
1514 	else
1515 		step = 0;
1516 
1517 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1518 		dirty_ratelimit += step;
1519 	else
1520 		dirty_ratelimit -= step;
1521 
1522 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1523 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1524 
1525 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1526 }
1527 
1528 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1529 				  struct dirty_throttle_control *mdtc,
1530 				  bool update_ratelimit)
1531 {
1532 	struct bdi_writeback *wb = gdtc->wb;
1533 	unsigned long now = jiffies;
1534 	unsigned long elapsed;
1535 	unsigned long dirtied;
1536 	unsigned long written;
1537 
1538 	spin_lock(&wb->list_lock);
1539 
1540 	/*
1541 	 * Lockless checks for elapsed time are racy and delayed update after
1542 	 * IO completion doesn't do it at all (to make sure written pages are
1543 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1544 	 * division errors.
1545 	 */
1546 	elapsed = max(now - wb->bw_time_stamp, 1UL);
1547 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1548 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1549 
1550 	if (update_ratelimit) {
1551 		domain_update_dirty_limit(gdtc, now);
1552 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1553 
1554 		/*
1555 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1556 		 * compiler has no way to figure that out.  Help it.
1557 		 */
1558 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1559 			domain_update_dirty_limit(mdtc, now);
1560 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1561 		}
1562 	}
1563 	wb_update_write_bandwidth(wb, elapsed, written);
1564 
1565 	wb->dirtied_stamp = dirtied;
1566 	wb->written_stamp = written;
1567 	WRITE_ONCE(wb->bw_time_stamp, now);
1568 	spin_unlock(&wb->list_lock);
1569 }
1570 
1571 void wb_update_bandwidth(struct bdi_writeback *wb)
1572 {
1573 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1574 
1575 	__wb_update_bandwidth(&gdtc, NULL, false);
1576 }
1577 
1578 /* Interval after which we consider wb idle and don't estimate bandwidth */
1579 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1580 
1581 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1582 {
1583 	unsigned long now = jiffies;
1584 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1585 
1586 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1587 	    !atomic_read(&wb->writeback_inodes)) {
1588 		spin_lock(&wb->list_lock);
1589 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1590 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1591 		WRITE_ONCE(wb->bw_time_stamp, now);
1592 		spin_unlock(&wb->list_lock);
1593 	}
1594 }
1595 
1596 /*
1597  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1598  * will look to see if it needs to start dirty throttling.
1599  *
1600  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1601  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1602  * (the number of pages we may dirty without exceeding the dirty limits).
1603  */
1604 static unsigned long dirty_poll_interval(unsigned long dirty,
1605 					 unsigned long thresh)
1606 {
1607 	if (thresh > dirty)
1608 		return 1UL << (ilog2(thresh - dirty) >> 1);
1609 
1610 	return 1;
1611 }
1612 
1613 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1614 				  unsigned long wb_dirty)
1615 {
1616 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1617 	unsigned long t;
1618 
1619 	/*
1620 	 * Limit pause time for small memory systems. If sleeping for too long
1621 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1622 	 * idle.
1623 	 *
1624 	 * 8 serves as the safety ratio.
1625 	 */
1626 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1627 	t++;
1628 
1629 	return min_t(unsigned long, t, MAX_PAUSE);
1630 }
1631 
1632 static long wb_min_pause(struct bdi_writeback *wb,
1633 			 long max_pause,
1634 			 unsigned long task_ratelimit,
1635 			 unsigned long dirty_ratelimit,
1636 			 int *nr_dirtied_pause)
1637 {
1638 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1639 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1640 	long t;		/* target pause */
1641 	long pause;	/* estimated next pause */
1642 	int pages;	/* target nr_dirtied_pause */
1643 
1644 	/* target for 10ms pause on 1-dd case */
1645 	t = max(1, HZ / 100);
1646 
1647 	/*
1648 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1649 	 * overheads.
1650 	 *
1651 	 * (N * 10ms) on 2^N concurrent tasks.
1652 	 */
1653 	if (hi > lo)
1654 		t += (hi - lo) * (10 * HZ) / 1024;
1655 
1656 	/*
1657 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1658 	 * on the much more stable dirty_ratelimit. However the next pause time
1659 	 * will be computed based on task_ratelimit and the two rate limits may
1660 	 * depart considerably at some time. Especially if task_ratelimit goes
1661 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1662 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1663 	 * result task_ratelimit won't be executed faithfully, which could
1664 	 * eventually bring down dirty_ratelimit.
1665 	 *
1666 	 * We apply two rules to fix it up:
1667 	 * 1) try to estimate the next pause time and if necessary, use a lower
1668 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1669 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1670 	 * 2) limit the target pause time to max_pause/2, so that the normal
1671 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1672 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1673 	 */
1674 	t = min(t, 1 + max_pause / 2);
1675 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1676 
1677 	/*
1678 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1679 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1680 	 * When the 16 consecutive reads are often interrupted by some dirty
1681 	 * throttling pause during the async writes, cfq will go into idles
1682 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1683 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1684 	 */
1685 	if (pages < DIRTY_POLL_THRESH) {
1686 		t = max_pause;
1687 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1688 		if (pages > DIRTY_POLL_THRESH) {
1689 			pages = DIRTY_POLL_THRESH;
1690 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1691 		}
1692 	}
1693 
1694 	pause = HZ * pages / (task_ratelimit + 1);
1695 	if (pause > max_pause) {
1696 		t = max_pause;
1697 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1698 	}
1699 
1700 	*nr_dirtied_pause = pages;
1701 	/*
1702 	 * The minimal pause time will normally be half the target pause time.
1703 	 */
1704 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1705 }
1706 
1707 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1708 {
1709 	struct bdi_writeback *wb = dtc->wb;
1710 	unsigned long wb_reclaimable;
1711 
1712 	/*
1713 	 * wb_thresh is not treated as some limiting factor as
1714 	 * dirty_thresh, due to reasons
1715 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1716 	 * - in a system with HDD and USB key, the USB key may somehow
1717 	 *   go into state (wb_dirty >> wb_thresh) either because
1718 	 *   wb_dirty starts high, or because wb_thresh drops low.
1719 	 *   In this case we don't want to hard throttle the USB key
1720 	 *   dirtiers for 100 seconds until wb_dirty drops under
1721 	 *   wb_thresh. Instead the auxiliary wb control line in
1722 	 *   wb_position_ratio() will let the dirtier task progress
1723 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1724 	 */
1725 	dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1726 	dtc->wb_bg_thresh = dtc->thresh ?
1727 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1728 
1729 	/*
1730 	 * In order to avoid the stacked BDI deadlock we need
1731 	 * to ensure we accurately count the 'dirty' pages when
1732 	 * the threshold is low.
1733 	 *
1734 	 * Otherwise it would be possible to get thresh+n pages
1735 	 * reported dirty, even though there are thresh-m pages
1736 	 * actually dirty; with m+n sitting in the percpu
1737 	 * deltas.
1738 	 */
1739 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1740 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1741 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1742 	} else {
1743 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1744 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1745 	}
1746 }
1747 
1748 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1749 				      bool strictlimit)
1750 {
1751 	unsigned long dirty, thresh;
1752 
1753 	if (strictlimit) {
1754 		dirty = dtc->wb_dirty;
1755 		thresh = dtc->wb_thresh;
1756 	} else {
1757 		dirty = dtc->dirty;
1758 		thresh = dtc->thresh;
1759 	}
1760 
1761 	return dirty_poll_interval(dirty, thresh);
1762 }
1763 
1764 /*
1765  * Throttle it only when the background writeback cannot catch-up. This avoids
1766  * (excessively) small writeouts when the wb limits are ramping up in case of
1767  * !strictlimit.
1768  *
1769  * In strictlimit case make decision based on the wb counters and limits. Small
1770  * writeouts when the wb limits are ramping up are the price we consciously pay
1771  * for strictlimit-ing.
1772  */
1773 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1774 				 bool strictlimit)
1775 {
1776 	unsigned long dirty, thresh, bg_thresh;
1777 
1778 	if (unlikely(strictlimit)) {
1779 		wb_dirty_limits(dtc);
1780 		dirty = dtc->wb_dirty;
1781 		thresh = dtc->wb_thresh;
1782 		bg_thresh = dtc->wb_bg_thresh;
1783 	} else {
1784 		dirty = dtc->dirty;
1785 		thresh = dtc->thresh;
1786 		bg_thresh = dtc->bg_thresh;
1787 	}
1788 	dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1789 }
1790 
1791 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1792 				  bool strictlimit)
1793 {
1794 	domain_dirty_avail(dtc, true);
1795 	domain_dirty_limits(dtc);
1796 	domain_dirty_freerun(dtc, strictlimit);
1797 }
1798 
1799 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1800 			     bool strictlimit)
1801 {
1802 	dtc->freerun = false;
1803 
1804 	/* was already handled in domain_dirty_freerun */
1805 	if (strictlimit)
1806 		return;
1807 
1808 	wb_dirty_limits(dtc);
1809 	/*
1810 	 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1811 	 * freerun ceiling.
1812 	 */
1813 	if (!(current->flags & PF_LOCAL_THROTTLE))
1814 		return;
1815 
1816 	dtc->freerun = dtc->wb_dirty <
1817 		       dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1818 }
1819 
1820 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1821 				     bool strictlimit)
1822 {
1823 	dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1824 		((dtc->dirty > dtc->thresh) || strictlimit);
1825 }
1826 
1827 /*
1828  * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1829  * in freerun state. Please don't use these invalid fields in freerun case.
1830  */
1831 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1832 			      bool strictlimit)
1833 {
1834 	wb_dirty_freerun(dtc, strictlimit);
1835 	if (dtc->freerun)
1836 		return;
1837 
1838 	wb_dirty_exceeded(dtc, strictlimit);
1839 	wb_position_ratio(dtc);
1840 }
1841 
1842 /*
1843  * balance_dirty_pages() must be called by processes which are generating dirty
1844  * data.  It looks at the number of dirty pages in the machine and will force
1845  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1846  * If we're over `background_thresh' then the writeback threads are woken to
1847  * perform some writeout.
1848  */
1849 static int balance_dirty_pages(struct bdi_writeback *wb,
1850 			       unsigned long pages_dirtied, unsigned int flags)
1851 {
1852 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1853 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1854 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1855 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1856 						     &mdtc_stor : NULL;
1857 	struct dirty_throttle_control *sdtc;
1858 	unsigned long nr_dirty;
1859 	long period;
1860 	long pause;
1861 	long max_pause;
1862 	long min_pause;
1863 	int nr_dirtied_pause;
1864 	unsigned long task_ratelimit;
1865 	unsigned long dirty_ratelimit;
1866 	struct backing_dev_info *bdi = wb->bdi;
1867 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1868 	unsigned long start_time = jiffies;
1869 	int ret = 0;
1870 
1871 	for (;;) {
1872 		unsigned long now = jiffies;
1873 
1874 		nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1875 
1876 		balance_domain_limits(gdtc, strictlimit);
1877 		if (mdtc) {
1878 			/*
1879 			 * If @wb belongs to !root memcg, repeat the same
1880 			 * basic calculations for the memcg domain.
1881 			 */
1882 			balance_domain_limits(mdtc, strictlimit);
1883 		}
1884 
1885 		/*
1886 		 * In laptop mode, we wait until hitting the higher threshold
1887 		 * before starting background writeout, and then write out all
1888 		 * the way down to the lower threshold.  So slow writers cause
1889 		 * minimal disk activity.
1890 		 *
1891 		 * In normal mode, we start background writeout at the lower
1892 		 * background_thresh, to keep the amount of dirty memory low.
1893 		 */
1894 		if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1895 		    !writeback_in_progress(wb))
1896 			wb_start_background_writeback(wb);
1897 
1898 		/*
1899 		 * If memcg domain is in effect, @dirty should be under
1900 		 * both global and memcg freerun ceilings.
1901 		 */
1902 		if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1903 			unsigned long intv;
1904 			unsigned long m_intv;
1905 
1906 free_running:
1907 			intv = domain_poll_intv(gdtc, strictlimit);
1908 			m_intv = ULONG_MAX;
1909 
1910 			current->dirty_paused_when = now;
1911 			current->nr_dirtied = 0;
1912 			if (mdtc)
1913 				m_intv = domain_poll_intv(mdtc, strictlimit);
1914 			current->nr_dirtied_pause = min(intv, m_intv);
1915 			break;
1916 		}
1917 
1918 		/* Start writeback even when in laptop mode */
1919 		if (unlikely(!writeback_in_progress(wb)))
1920 			wb_start_background_writeback(wb);
1921 
1922 		mem_cgroup_flush_foreign(wb);
1923 
1924 		/*
1925 		 * Calculate global domain's pos_ratio and select the
1926 		 * global dtc by default.
1927 		 */
1928 		balance_wb_limits(gdtc, strictlimit);
1929 		if (gdtc->freerun)
1930 			goto free_running;
1931 		sdtc = gdtc;
1932 
1933 		if (mdtc) {
1934 			/*
1935 			 * If memcg domain is in effect, calculate its
1936 			 * pos_ratio.  @wb should satisfy constraints from
1937 			 * both global and memcg domains.  Choose the one
1938 			 * w/ lower pos_ratio.
1939 			 */
1940 			balance_wb_limits(mdtc, strictlimit);
1941 			if (mdtc->freerun)
1942 				goto free_running;
1943 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1944 				sdtc = mdtc;
1945 		}
1946 
1947 		wb->dirty_exceeded = gdtc->dirty_exceeded ||
1948 				     (mdtc && mdtc->dirty_exceeded);
1949 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1950 					   BANDWIDTH_INTERVAL))
1951 			__wb_update_bandwidth(gdtc, mdtc, true);
1952 
1953 		/* throttle according to the chosen dtc */
1954 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1955 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1956 							RATELIMIT_CALC_SHIFT;
1957 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1958 		min_pause = wb_min_pause(wb, max_pause,
1959 					 task_ratelimit, dirty_ratelimit,
1960 					 &nr_dirtied_pause);
1961 
1962 		if (unlikely(task_ratelimit == 0)) {
1963 			period = max_pause;
1964 			pause = max_pause;
1965 			goto pause;
1966 		}
1967 		period = HZ * pages_dirtied / task_ratelimit;
1968 		pause = period;
1969 		if (current->dirty_paused_when)
1970 			pause -= now - current->dirty_paused_when;
1971 		/*
1972 		 * For less than 1s think time (ext3/4 may block the dirtier
1973 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1974 		 * however at much less frequency), try to compensate it in
1975 		 * future periods by updating the virtual time; otherwise just
1976 		 * do a reset, as it may be a light dirtier.
1977 		 */
1978 		if (pause < min_pause) {
1979 			trace_balance_dirty_pages(wb,
1980 						  sdtc->thresh,
1981 						  sdtc->bg_thresh,
1982 						  sdtc->dirty,
1983 						  sdtc->wb_thresh,
1984 						  sdtc->wb_dirty,
1985 						  dirty_ratelimit,
1986 						  task_ratelimit,
1987 						  pages_dirtied,
1988 						  period,
1989 						  min(pause, 0L),
1990 						  start_time);
1991 			if (pause < -HZ) {
1992 				current->dirty_paused_when = now;
1993 				current->nr_dirtied = 0;
1994 			} else if (period) {
1995 				current->dirty_paused_when += period;
1996 				current->nr_dirtied = 0;
1997 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1998 				current->nr_dirtied_pause += pages_dirtied;
1999 			break;
2000 		}
2001 		if (unlikely(pause > max_pause)) {
2002 			/* for occasional dropped task_ratelimit */
2003 			now += min(pause - max_pause, max_pause);
2004 			pause = max_pause;
2005 		}
2006 
2007 pause:
2008 		trace_balance_dirty_pages(wb,
2009 					  sdtc->thresh,
2010 					  sdtc->bg_thresh,
2011 					  sdtc->dirty,
2012 					  sdtc->wb_thresh,
2013 					  sdtc->wb_dirty,
2014 					  dirty_ratelimit,
2015 					  task_ratelimit,
2016 					  pages_dirtied,
2017 					  period,
2018 					  pause,
2019 					  start_time);
2020 		if (flags & BDP_ASYNC) {
2021 			ret = -EAGAIN;
2022 			break;
2023 		}
2024 		__set_current_state(TASK_KILLABLE);
2025 		bdi->last_bdp_sleep = jiffies;
2026 		io_schedule_timeout(pause);
2027 
2028 		current->dirty_paused_when = now + pause;
2029 		current->nr_dirtied = 0;
2030 		current->nr_dirtied_pause = nr_dirtied_pause;
2031 
2032 		/*
2033 		 * This is typically equal to (dirty < thresh) and can also
2034 		 * keep "1000+ dd on a slow USB stick" under control.
2035 		 */
2036 		if (task_ratelimit)
2037 			break;
2038 
2039 		/*
2040 		 * In the case of an unresponsive NFS server and the NFS dirty
2041 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
2042 		 * to go through, so that tasks on them still remain responsive.
2043 		 *
2044 		 * In theory 1 page is enough to keep the consumer-producer
2045 		 * pipe going: the flusher cleans 1 page => the task dirties 1
2046 		 * more page. However wb_dirty has accounting errors.  So use
2047 		 * the larger and more IO friendly wb_stat_error.
2048 		 */
2049 		if (sdtc->wb_dirty <= wb_stat_error())
2050 			break;
2051 
2052 		if (fatal_signal_pending(current))
2053 			break;
2054 	}
2055 	return ret;
2056 }
2057 
2058 static DEFINE_PER_CPU(int, bdp_ratelimits);
2059 
2060 /*
2061  * Normal tasks are throttled by
2062  *	loop {
2063  *		dirty tsk->nr_dirtied_pause pages;
2064  *		take a snap in balance_dirty_pages();
2065  *	}
2066  * However there is a worst case. If every task exit immediately when dirtied
2067  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2068  * called to throttle the page dirties. The solution is to save the not yet
2069  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2070  * randomly into the running tasks. This works well for the above worst case,
2071  * as the new task will pick up and accumulate the old task's leaked dirty
2072  * count and eventually get throttled.
2073  */
2074 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2075 
2076 /**
2077  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2078  * @mapping: address_space which was dirtied.
2079  * @flags: BDP flags.
2080  *
2081  * Processes which are dirtying memory should call in here once for each page
2082  * which was newly dirtied.  The function will periodically check the system's
2083  * dirty state and will initiate writeback if needed.
2084  *
2085  * See balance_dirty_pages_ratelimited() for details.
2086  *
2087  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2088  * indicate that memory is out of balance and the caller must wait
2089  * for I/O to complete.  Otherwise, it will return 0 to indicate
2090  * that either memory was already in balance, or it was able to sleep
2091  * until the amount of dirty memory returned to balance.
2092  */
2093 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2094 					unsigned int flags)
2095 {
2096 	struct inode *inode = mapping->host;
2097 	struct backing_dev_info *bdi = inode_to_bdi(inode);
2098 	struct bdi_writeback *wb = NULL;
2099 	int ratelimit;
2100 	int ret = 0;
2101 	int *p;
2102 
2103 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2104 		return ret;
2105 
2106 	if (inode_cgwb_enabled(inode))
2107 		wb = wb_get_create_current(bdi, GFP_KERNEL);
2108 	if (!wb)
2109 		wb = &bdi->wb;
2110 
2111 	ratelimit = current->nr_dirtied_pause;
2112 	if (wb->dirty_exceeded)
2113 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2114 
2115 	preempt_disable();
2116 	/*
2117 	 * This prevents one CPU to accumulate too many dirtied pages without
2118 	 * calling into balance_dirty_pages(), which can happen when there are
2119 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2120 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2121 	 */
2122 	p =  this_cpu_ptr(&bdp_ratelimits);
2123 	if (unlikely(current->nr_dirtied >= ratelimit))
2124 		*p = 0;
2125 	else if (unlikely(*p >= ratelimit_pages)) {
2126 		*p = 0;
2127 		ratelimit = 0;
2128 	}
2129 	/*
2130 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2131 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2132 	 * the dirty throttling and livelock other long-run dirtiers.
2133 	 */
2134 	p = this_cpu_ptr(&dirty_throttle_leaks);
2135 	if (*p > 0 && current->nr_dirtied < ratelimit) {
2136 		unsigned long nr_pages_dirtied;
2137 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2138 		*p -= nr_pages_dirtied;
2139 		current->nr_dirtied += nr_pages_dirtied;
2140 	}
2141 	preempt_enable();
2142 
2143 	if (unlikely(current->nr_dirtied >= ratelimit))
2144 		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2145 
2146 	wb_put(wb);
2147 	return ret;
2148 }
2149 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2150 
2151 /**
2152  * balance_dirty_pages_ratelimited - balance dirty memory state.
2153  * @mapping: address_space which was dirtied.
2154  *
2155  * Processes which are dirtying memory should call in here once for each page
2156  * which was newly dirtied.  The function will periodically check the system's
2157  * dirty state and will initiate writeback if needed.
2158  *
2159  * Once we're over the dirty memory limit we decrease the ratelimiting
2160  * by a lot, to prevent individual processes from overshooting the limit
2161  * by (ratelimit_pages) each.
2162  */
2163 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2164 {
2165 	balance_dirty_pages_ratelimited_flags(mapping, 0);
2166 }
2167 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2168 
2169 /*
2170  * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2171  * and thresh, but it's for background writeback.
2172  */
2173 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2174 {
2175 	struct bdi_writeback *wb = dtc->wb;
2176 
2177 	dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2178 	if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2179 		dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2180 	else
2181 		dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2182 }
2183 
2184 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2185 {
2186 	domain_dirty_avail(dtc, false);
2187 	domain_dirty_limits(dtc);
2188 	if (dtc->dirty > dtc->bg_thresh)
2189 		return true;
2190 
2191 	wb_bg_dirty_limits(dtc);
2192 	if (dtc->wb_dirty > dtc->wb_bg_thresh)
2193 		return true;
2194 
2195 	return false;
2196 }
2197 
2198 /**
2199  * wb_over_bg_thresh - does @wb need to be written back?
2200  * @wb: bdi_writeback of interest
2201  *
2202  * Determines whether background writeback should keep writing @wb or it's
2203  * clean enough.
2204  *
2205  * Return: %true if writeback should continue.
2206  */
2207 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2208 {
2209 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2210 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2211 
2212 	if (domain_over_bg_thresh(&gdtc))
2213 		return true;
2214 
2215 	if (mdtc_valid(&mdtc))
2216 		return domain_over_bg_thresh(&mdtc);
2217 
2218 	return false;
2219 }
2220 
2221 #ifdef CONFIG_SYSCTL
2222 /*
2223  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2224  */
2225 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2226 		void *buffer, size_t *length, loff_t *ppos)
2227 {
2228 	unsigned int old_interval = dirty_writeback_interval;
2229 	int ret;
2230 
2231 	ret = proc_dointvec(table, write, buffer, length, ppos);
2232 
2233 	/*
2234 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2235 	 * and a different non-zero value will wakeup the writeback threads.
2236 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2237 	 * iterate over all bdis and wbs.
2238 	 * The reason we do this is to make the change take effect immediately.
2239 	 */
2240 	if (!ret && write && dirty_writeback_interval &&
2241 		dirty_writeback_interval != old_interval)
2242 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2243 
2244 	return ret;
2245 }
2246 #endif
2247 
2248 void laptop_mode_timer_fn(struct timer_list *t)
2249 {
2250 	struct backing_dev_info *backing_dev_info =
2251 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2252 
2253 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2254 }
2255 
2256 /*
2257  * We've spun up the disk and we're in laptop mode: schedule writeback
2258  * of all dirty data a few seconds from now.  If the flush is already scheduled
2259  * then push it back - the user is still using the disk.
2260  */
2261 void laptop_io_completion(struct backing_dev_info *info)
2262 {
2263 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2264 }
2265 
2266 /*
2267  * We're in laptop mode and we've just synced. The sync's writes will have
2268  * caused another writeback to be scheduled by laptop_io_completion.
2269  * Nothing needs to be written back anymore, so we unschedule the writeback.
2270  */
2271 void laptop_sync_completion(void)
2272 {
2273 	struct backing_dev_info *bdi;
2274 
2275 	rcu_read_lock();
2276 
2277 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2278 		del_timer(&bdi->laptop_mode_wb_timer);
2279 
2280 	rcu_read_unlock();
2281 }
2282 
2283 /*
2284  * If ratelimit_pages is too high then we can get into dirty-data overload
2285  * if a large number of processes all perform writes at the same time.
2286  *
2287  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2288  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2289  * thresholds.
2290  */
2291 
2292 void writeback_set_ratelimit(void)
2293 {
2294 	struct wb_domain *dom = &global_wb_domain;
2295 	unsigned long background_thresh;
2296 	unsigned long dirty_thresh;
2297 
2298 	global_dirty_limits(&background_thresh, &dirty_thresh);
2299 	dom->dirty_limit = dirty_thresh;
2300 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2301 	if (ratelimit_pages < 16)
2302 		ratelimit_pages = 16;
2303 }
2304 
2305 static int page_writeback_cpu_online(unsigned int cpu)
2306 {
2307 	writeback_set_ratelimit();
2308 	return 0;
2309 }
2310 
2311 #ifdef CONFIG_SYSCTL
2312 
2313 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2314 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2315 
2316 static struct ctl_table vm_page_writeback_sysctls[] = {
2317 	{
2318 		.procname   = "dirty_background_ratio",
2319 		.data       = &dirty_background_ratio,
2320 		.maxlen     = sizeof(dirty_background_ratio),
2321 		.mode       = 0644,
2322 		.proc_handler   = dirty_background_ratio_handler,
2323 		.extra1     = SYSCTL_ZERO,
2324 		.extra2     = SYSCTL_ONE_HUNDRED,
2325 	},
2326 	{
2327 		.procname   = "dirty_background_bytes",
2328 		.data       = &dirty_background_bytes,
2329 		.maxlen     = sizeof(dirty_background_bytes),
2330 		.mode       = 0644,
2331 		.proc_handler   = dirty_background_bytes_handler,
2332 		.extra1     = SYSCTL_LONG_ONE,
2333 	},
2334 	{
2335 		.procname   = "dirty_ratio",
2336 		.data       = &vm_dirty_ratio,
2337 		.maxlen     = sizeof(vm_dirty_ratio),
2338 		.mode       = 0644,
2339 		.proc_handler   = dirty_ratio_handler,
2340 		.extra1     = SYSCTL_ZERO,
2341 		.extra2     = SYSCTL_ONE_HUNDRED,
2342 	},
2343 	{
2344 		.procname   = "dirty_bytes",
2345 		.data       = &vm_dirty_bytes,
2346 		.maxlen     = sizeof(vm_dirty_bytes),
2347 		.mode       = 0644,
2348 		.proc_handler   = dirty_bytes_handler,
2349 		.extra1     = (void *)&dirty_bytes_min,
2350 	},
2351 	{
2352 		.procname   = "dirty_writeback_centisecs",
2353 		.data       = &dirty_writeback_interval,
2354 		.maxlen     = sizeof(dirty_writeback_interval),
2355 		.mode       = 0644,
2356 		.proc_handler   = dirty_writeback_centisecs_handler,
2357 	},
2358 	{
2359 		.procname   = "dirty_expire_centisecs",
2360 		.data       = &dirty_expire_interval,
2361 		.maxlen     = sizeof(dirty_expire_interval),
2362 		.mode       = 0644,
2363 		.proc_handler   = proc_dointvec_minmax,
2364 		.extra1     = SYSCTL_ZERO,
2365 	},
2366 #ifdef CONFIG_HIGHMEM
2367 	{
2368 		.procname	= "highmem_is_dirtyable",
2369 		.data		= &vm_highmem_is_dirtyable,
2370 		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2371 		.mode		= 0644,
2372 		.proc_handler	= proc_dointvec_minmax,
2373 		.extra1		= SYSCTL_ZERO,
2374 		.extra2		= SYSCTL_ONE,
2375 	},
2376 #endif
2377 	{
2378 		.procname	= "laptop_mode",
2379 		.data		= &laptop_mode,
2380 		.maxlen		= sizeof(laptop_mode),
2381 		.mode		= 0644,
2382 		.proc_handler	= proc_dointvec_jiffies,
2383 	},
2384 };
2385 #endif
2386 
2387 /*
2388  * Called early on to tune the page writeback dirty limits.
2389  *
2390  * We used to scale dirty pages according to how total memory
2391  * related to pages that could be allocated for buffers.
2392  *
2393  * However, that was when we used "dirty_ratio" to scale with
2394  * all memory, and we don't do that any more. "dirty_ratio"
2395  * is now applied to total non-HIGHPAGE memory, and as such we can't
2396  * get into the old insane situation any more where we had
2397  * large amounts of dirty pages compared to a small amount of
2398  * non-HIGHMEM memory.
2399  *
2400  * But we might still want to scale the dirty_ratio by how
2401  * much memory the box has..
2402  */
2403 void __init page_writeback_init(void)
2404 {
2405 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2406 
2407 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2408 			  page_writeback_cpu_online, NULL);
2409 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2410 			  page_writeback_cpu_online);
2411 #ifdef CONFIG_SYSCTL
2412 	register_sysctl_init("vm", vm_page_writeback_sysctls);
2413 #endif
2414 }
2415 
2416 /**
2417  * tag_pages_for_writeback - tag pages to be written by writeback
2418  * @mapping: address space structure to write
2419  * @start: starting page index
2420  * @end: ending page index (inclusive)
2421  *
2422  * This function scans the page range from @start to @end (inclusive) and tags
2423  * all pages that have DIRTY tag set with a special TOWRITE tag.  The caller
2424  * can then use the TOWRITE tag to identify pages eligible for writeback.
2425  * This mechanism is used to avoid livelocking of writeback by a process
2426  * steadily creating new dirty pages in the file (thus it is important for this
2427  * function to be quick so that it can tag pages faster than a dirtying process
2428  * can create them).
2429  */
2430 void tag_pages_for_writeback(struct address_space *mapping,
2431 			     pgoff_t start, pgoff_t end)
2432 {
2433 	XA_STATE(xas, &mapping->i_pages, start);
2434 	unsigned int tagged = 0;
2435 	void *page;
2436 
2437 	xas_lock_irq(&xas);
2438 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2439 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2440 		if (++tagged % XA_CHECK_SCHED)
2441 			continue;
2442 
2443 		xas_pause(&xas);
2444 		xas_unlock_irq(&xas);
2445 		cond_resched();
2446 		xas_lock_irq(&xas);
2447 	}
2448 	xas_unlock_irq(&xas);
2449 }
2450 EXPORT_SYMBOL(tag_pages_for_writeback);
2451 
2452 static bool folio_prepare_writeback(struct address_space *mapping,
2453 		struct writeback_control *wbc, struct folio *folio)
2454 {
2455 	/*
2456 	 * Folio truncated or invalidated. We can freely skip it then,
2457 	 * even for data integrity operations: the folio has disappeared
2458 	 * concurrently, so there could be no real expectation of this
2459 	 * data integrity operation even if there is now a new, dirty
2460 	 * folio at the same pagecache index.
2461 	 */
2462 	if (unlikely(folio->mapping != mapping))
2463 		return false;
2464 
2465 	/*
2466 	 * Did somebody else write it for us?
2467 	 */
2468 	if (!folio_test_dirty(folio))
2469 		return false;
2470 
2471 	if (folio_test_writeback(folio)) {
2472 		if (wbc->sync_mode == WB_SYNC_NONE)
2473 			return false;
2474 		folio_wait_writeback(folio);
2475 	}
2476 	BUG_ON(folio_test_writeback(folio));
2477 
2478 	if (!folio_clear_dirty_for_io(folio))
2479 		return false;
2480 
2481 	return true;
2482 }
2483 
2484 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2485 {
2486 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2487 		return PAGECACHE_TAG_TOWRITE;
2488 	return PAGECACHE_TAG_DIRTY;
2489 }
2490 
2491 static pgoff_t wbc_end(struct writeback_control *wbc)
2492 {
2493 	if (wbc->range_cyclic)
2494 		return -1;
2495 	return wbc->range_end >> PAGE_SHIFT;
2496 }
2497 
2498 static struct folio *writeback_get_folio(struct address_space *mapping,
2499 		struct writeback_control *wbc)
2500 {
2501 	struct folio *folio;
2502 
2503 retry:
2504 	folio = folio_batch_next(&wbc->fbatch);
2505 	if (!folio) {
2506 		folio_batch_release(&wbc->fbatch);
2507 		cond_resched();
2508 		filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2509 				wbc_to_tag(wbc), &wbc->fbatch);
2510 		folio = folio_batch_next(&wbc->fbatch);
2511 		if (!folio)
2512 			return NULL;
2513 	}
2514 
2515 	folio_lock(folio);
2516 	if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2517 		folio_unlock(folio);
2518 		goto retry;
2519 	}
2520 
2521 	trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2522 	return folio;
2523 }
2524 
2525 /**
2526  * writeback_iter - iterate folio of a mapping for writeback
2527  * @mapping: address space structure to write
2528  * @wbc: writeback context
2529  * @folio: previously iterated folio (%NULL to start)
2530  * @error: in-out pointer for writeback errors (see below)
2531  *
2532  * This function returns the next folio for the writeback operation described by
2533  * @wbc on @mapping and  should be called in a while loop in the ->writepages
2534  * implementation.
2535  *
2536  * To start the writeback operation, %NULL is passed in the @folio argument, and
2537  * for every subsequent iteration the folio returned previously should be passed
2538  * back in.
2539  *
2540  * If there was an error in the per-folio writeback inside the writeback_iter()
2541  * loop, @error should be set to the error value.
2542  *
2543  * Once the writeback described in @wbc has finished, this function will return
2544  * %NULL and if there was an error in any iteration restore it to @error.
2545  *
2546  * Note: callers should not manually break out of the loop using break or goto
2547  * but must keep calling writeback_iter() until it returns %NULL.
2548  *
2549  * Return: the folio to write or %NULL if the loop is done.
2550  */
2551 struct folio *writeback_iter(struct address_space *mapping,
2552 		struct writeback_control *wbc, struct folio *folio, int *error)
2553 {
2554 	if (!folio) {
2555 		folio_batch_init(&wbc->fbatch);
2556 		wbc->saved_err = *error = 0;
2557 
2558 		/*
2559 		 * For range cyclic writeback we remember where we stopped so
2560 		 * that we can continue where we stopped.
2561 		 *
2562 		 * For non-cyclic writeback we always start at the beginning of
2563 		 * the passed in range.
2564 		 */
2565 		if (wbc->range_cyclic)
2566 			wbc->index = mapping->writeback_index;
2567 		else
2568 			wbc->index = wbc->range_start >> PAGE_SHIFT;
2569 
2570 		/*
2571 		 * To avoid livelocks when other processes dirty new pages, we
2572 		 * first tag pages which should be written back and only then
2573 		 * start writing them.
2574 		 *
2575 		 * For data-integrity writeback we have to be careful so that we
2576 		 * do not miss some pages (e.g., because some other process has
2577 		 * cleared the TOWRITE tag we set).  The rule we follow is that
2578 		 * TOWRITE tag can be cleared only by the process clearing the
2579 		 * DIRTY tag (and submitting the page for I/O).
2580 		 */
2581 		if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2582 			tag_pages_for_writeback(mapping, wbc->index,
2583 					wbc_end(wbc));
2584 	} else {
2585 		wbc->nr_to_write -= folio_nr_pages(folio);
2586 
2587 		WARN_ON_ONCE(*error > 0);
2588 
2589 		/*
2590 		 * For integrity writeback we have to keep going until we have
2591 		 * written all the folios we tagged for writeback above, even if
2592 		 * we run past wbc->nr_to_write or encounter errors.
2593 		 * We stash away the first error we encounter in wbc->saved_err
2594 		 * so that it can be retrieved when we're done.  This is because
2595 		 * the file system may still have state to clear for each folio.
2596 		 *
2597 		 * For background writeback we exit as soon as we run past
2598 		 * wbc->nr_to_write or encounter the first error.
2599 		 */
2600 		if (wbc->sync_mode == WB_SYNC_ALL) {
2601 			if (*error && !wbc->saved_err)
2602 				wbc->saved_err = *error;
2603 		} else {
2604 			if (*error || wbc->nr_to_write <= 0)
2605 				goto done;
2606 		}
2607 	}
2608 
2609 	folio = writeback_get_folio(mapping, wbc);
2610 	if (!folio) {
2611 		/*
2612 		 * To avoid deadlocks between range_cyclic writeback and callers
2613 		 * that hold pages in PageWriteback to aggregate I/O until
2614 		 * the writeback iteration finishes, we do not loop back to the
2615 		 * start of the file.  Doing so causes a page lock/page
2616 		 * writeback access order inversion - we should only ever lock
2617 		 * multiple pages in ascending page->index order, and looping
2618 		 * back to the start of the file violates that rule and causes
2619 		 * deadlocks.
2620 		 */
2621 		if (wbc->range_cyclic)
2622 			mapping->writeback_index = 0;
2623 
2624 		/*
2625 		 * Return the first error we encountered (if there was any) to
2626 		 * the caller.
2627 		 */
2628 		*error = wbc->saved_err;
2629 	}
2630 	return folio;
2631 
2632 done:
2633 	if (wbc->range_cyclic)
2634 		mapping->writeback_index = folio_next_index(folio);
2635 	folio_batch_release(&wbc->fbatch);
2636 	return NULL;
2637 }
2638 EXPORT_SYMBOL_GPL(writeback_iter);
2639 
2640 /**
2641  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2642  * @mapping: address space structure to write
2643  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2644  * @writepage: function called for each page
2645  * @data: data passed to writepage function
2646  *
2647  * Return: %0 on success, negative error code otherwise
2648  *
2649  * Note: please use writeback_iter() instead.
2650  */
2651 int write_cache_pages(struct address_space *mapping,
2652 		      struct writeback_control *wbc, writepage_t writepage,
2653 		      void *data)
2654 {
2655 	struct folio *folio = NULL;
2656 	int error;
2657 
2658 	while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2659 		error = writepage(folio, wbc, data);
2660 		if (error == AOP_WRITEPAGE_ACTIVATE) {
2661 			folio_unlock(folio);
2662 			error = 0;
2663 		}
2664 	}
2665 
2666 	return error;
2667 }
2668 EXPORT_SYMBOL(write_cache_pages);
2669 
2670 static int writeback_use_writepage(struct address_space *mapping,
2671 		struct writeback_control *wbc)
2672 {
2673 	struct folio *folio = NULL;
2674 	struct blk_plug plug;
2675 	int err;
2676 
2677 	blk_start_plug(&plug);
2678 	while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2679 		err = mapping->a_ops->writepage(&folio->page, wbc);
2680 		if (err == AOP_WRITEPAGE_ACTIVATE) {
2681 			folio_unlock(folio);
2682 			err = 0;
2683 		}
2684 		mapping_set_error(mapping, err);
2685 	}
2686 	blk_finish_plug(&plug);
2687 
2688 	return err;
2689 }
2690 
2691 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2692 {
2693 	int ret;
2694 	struct bdi_writeback *wb;
2695 
2696 	if (wbc->nr_to_write <= 0)
2697 		return 0;
2698 	wb = inode_to_wb_wbc(mapping->host, wbc);
2699 	wb_bandwidth_estimate_start(wb);
2700 	while (1) {
2701 		if (mapping->a_ops->writepages) {
2702 			ret = mapping->a_ops->writepages(mapping, wbc);
2703 		} else if (mapping->a_ops->writepage) {
2704 			ret = writeback_use_writepage(mapping, wbc);
2705 		} else {
2706 			/* deal with chardevs and other special files */
2707 			ret = 0;
2708 		}
2709 		if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2710 			break;
2711 
2712 		/*
2713 		 * Lacking an allocation context or the locality or writeback
2714 		 * state of any of the inode's pages, throttle based on
2715 		 * writeback activity on the local node. It's as good a
2716 		 * guess as any.
2717 		 */
2718 		reclaim_throttle(NODE_DATA(numa_node_id()),
2719 			VMSCAN_THROTTLE_WRITEBACK);
2720 	}
2721 	/*
2722 	 * Usually few pages are written by now from those we've just submitted
2723 	 * but if there's constant writeback being submitted, this makes sure
2724 	 * writeback bandwidth is updated once in a while.
2725 	 */
2726 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2727 				   BANDWIDTH_INTERVAL))
2728 		wb_update_bandwidth(wb);
2729 	return ret;
2730 }
2731 
2732 /*
2733  * For address_spaces which do not use buffers nor write back.
2734  */
2735 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2736 {
2737 	if (!folio_test_dirty(folio))
2738 		return !folio_test_set_dirty(folio);
2739 	return false;
2740 }
2741 EXPORT_SYMBOL(noop_dirty_folio);
2742 
2743 /*
2744  * Helper function for set_page_dirty family.
2745  *
2746  * NOTE: This relies on being atomic wrt interrupts.
2747  */
2748 static void folio_account_dirtied(struct folio *folio,
2749 		struct address_space *mapping)
2750 {
2751 	struct inode *inode = mapping->host;
2752 
2753 	trace_writeback_dirty_folio(folio, mapping);
2754 
2755 	if (mapping_can_writeback(mapping)) {
2756 		struct bdi_writeback *wb;
2757 		long nr = folio_nr_pages(folio);
2758 
2759 		inode_attach_wb(inode, folio);
2760 		wb = inode_to_wb(inode);
2761 
2762 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2763 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2764 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2765 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2766 		wb_stat_mod(wb, WB_DIRTIED, nr);
2767 		task_io_account_write(nr * PAGE_SIZE);
2768 		current->nr_dirtied += nr;
2769 		__this_cpu_add(bdp_ratelimits, nr);
2770 
2771 		mem_cgroup_track_foreign_dirty(folio, wb);
2772 	}
2773 }
2774 
2775 /*
2776  * Helper function for deaccounting dirty page without writeback.
2777  *
2778  */
2779 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2780 {
2781 	long nr = folio_nr_pages(folio);
2782 
2783 	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2784 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2785 	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2786 	task_io_account_cancelled_write(nr * PAGE_SIZE);
2787 }
2788 
2789 /*
2790  * Mark the folio dirty, and set it dirty in the page cache.
2791  *
2792  * If warn is true, then emit a warning if the folio is not uptodate and has
2793  * not been truncated.
2794  *
2795  * It is the caller's responsibility to prevent the folio from being truncated
2796  * while this function is in progress, although it may have been truncated
2797  * before this function is called.  Most callers have the folio locked.
2798  * A few have the folio blocked from truncation through other means (e.g.
2799  * zap_vma_pages() has it mapped and is holding the page table lock).
2800  * When called from mark_buffer_dirty(), the filesystem should hold a
2801  * reference to the buffer_head that is being marked dirty, which causes
2802  * try_to_free_buffers() to fail.
2803  */
2804 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2805 			     int warn)
2806 {
2807 	unsigned long flags;
2808 
2809 	xa_lock_irqsave(&mapping->i_pages, flags);
2810 	if (folio->mapping) {	/* Race with truncate? */
2811 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2812 		folio_account_dirtied(folio, mapping);
2813 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2814 				PAGECACHE_TAG_DIRTY);
2815 	}
2816 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2817 }
2818 
2819 /**
2820  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2821  * @mapping: Address space this folio belongs to.
2822  * @folio: Folio to be marked as dirty.
2823  *
2824  * Filesystems which do not use buffer heads should call this function
2825  * from their dirty_folio address space operation.  It ignores the
2826  * contents of folio_get_private(), so if the filesystem marks individual
2827  * blocks as dirty, the filesystem should handle that itself.
2828  *
2829  * This is also sometimes used by filesystems which use buffer_heads when
2830  * a single buffer is being dirtied: we want to set the folio dirty in
2831  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2832  * whereas block_dirty_folio() is a "top-down" dirtying.
2833  *
2834  * The caller must ensure this doesn't race with truncation.  Most will
2835  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2836  * folio mapped and the pte lock held, which also locks out truncation.
2837  */
2838 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2839 {
2840 	if (folio_test_set_dirty(folio))
2841 		return false;
2842 
2843 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2844 
2845 	if (mapping->host) {
2846 		/* !PageAnon && !swapper_space */
2847 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2848 	}
2849 	return true;
2850 }
2851 EXPORT_SYMBOL(filemap_dirty_folio);
2852 
2853 /**
2854  * folio_redirty_for_writepage - Decline to write a dirty folio.
2855  * @wbc: The writeback control.
2856  * @folio: The folio.
2857  *
2858  * When a writepage implementation decides that it doesn't want to write
2859  * @folio for some reason, it should call this function, unlock @folio and
2860  * return 0.
2861  *
2862  * Return: True if we redirtied the folio.  False if someone else dirtied
2863  * it first.
2864  */
2865 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2866 		struct folio *folio)
2867 {
2868 	struct address_space *mapping = folio->mapping;
2869 	long nr = folio_nr_pages(folio);
2870 	bool ret;
2871 
2872 	wbc->pages_skipped += nr;
2873 	ret = filemap_dirty_folio(mapping, folio);
2874 	if (mapping && mapping_can_writeback(mapping)) {
2875 		struct inode *inode = mapping->host;
2876 		struct bdi_writeback *wb;
2877 		struct wb_lock_cookie cookie = {};
2878 
2879 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2880 		current->nr_dirtied -= nr;
2881 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2882 		wb_stat_mod(wb, WB_DIRTIED, -nr);
2883 		unlocked_inode_to_wb_end(inode, &cookie);
2884 	}
2885 	return ret;
2886 }
2887 EXPORT_SYMBOL(folio_redirty_for_writepage);
2888 
2889 /**
2890  * folio_mark_dirty - Mark a folio as being modified.
2891  * @folio: The folio.
2892  *
2893  * The folio may not be truncated while this function is running.
2894  * Holding the folio lock is sufficient to prevent truncation, but some
2895  * callers cannot acquire a sleeping lock.  These callers instead hold
2896  * the page table lock for a page table which contains at least one page
2897  * in this folio.  Truncation will block on the page table lock as it
2898  * unmaps pages before removing the folio from its mapping.
2899  *
2900  * Return: True if the folio was newly dirtied, false if it was already dirty.
2901  */
2902 bool folio_mark_dirty(struct folio *folio)
2903 {
2904 	struct address_space *mapping = folio_mapping(folio);
2905 
2906 	if (likely(mapping)) {
2907 		/*
2908 		 * readahead/folio_deactivate could remain
2909 		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2910 		 * About readahead, if the folio is written, the flags would be
2911 		 * reset. So no problem.
2912 		 * About folio_deactivate, if the folio is redirtied,
2913 		 * the flag will be reset. So no problem. but if the
2914 		 * folio is used by readahead it will confuse readahead
2915 		 * and make it restart the size rampup process. But it's
2916 		 * a trivial problem.
2917 		 */
2918 		if (folio_test_reclaim(folio))
2919 			folio_clear_reclaim(folio);
2920 		return mapping->a_ops->dirty_folio(mapping, folio);
2921 	}
2922 
2923 	return noop_dirty_folio(mapping, folio);
2924 }
2925 EXPORT_SYMBOL(folio_mark_dirty);
2926 
2927 /*
2928  * folio_mark_dirty() is racy if the caller has no reference against
2929  * folio->mapping->host, and if the folio is unlocked.  This is because another
2930  * CPU could truncate the folio off the mapping and then free the mapping.
2931  *
2932  * Usually, the folio _is_ locked, or the caller is a user-space process which
2933  * holds a reference on the inode by having an open file.
2934  *
2935  * In other cases, the folio should be locked before running folio_mark_dirty().
2936  */
2937 bool folio_mark_dirty_lock(struct folio *folio)
2938 {
2939 	bool ret;
2940 
2941 	folio_lock(folio);
2942 	ret = folio_mark_dirty(folio);
2943 	folio_unlock(folio);
2944 	return ret;
2945 }
2946 EXPORT_SYMBOL(folio_mark_dirty_lock);
2947 
2948 /*
2949  * This cancels just the dirty bit on the kernel page itself, it does NOT
2950  * actually remove dirty bits on any mmap's that may be around. It also
2951  * leaves the page tagged dirty, so any sync activity will still find it on
2952  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2953  * look at the dirty bits in the VM.
2954  *
2955  * Doing this should *normally* only ever be done when a page is truncated,
2956  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2957  * this when it notices that somebody has cleaned out all the buffers on a
2958  * page without actually doing it through the VM. Can you say "ext3 is
2959  * horribly ugly"? Thought you could.
2960  */
2961 void __folio_cancel_dirty(struct folio *folio)
2962 {
2963 	struct address_space *mapping = folio_mapping(folio);
2964 
2965 	if (mapping_can_writeback(mapping)) {
2966 		struct inode *inode = mapping->host;
2967 		struct bdi_writeback *wb;
2968 		struct wb_lock_cookie cookie = {};
2969 
2970 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2971 
2972 		if (folio_test_clear_dirty(folio))
2973 			folio_account_cleaned(folio, wb);
2974 
2975 		unlocked_inode_to_wb_end(inode, &cookie);
2976 	} else {
2977 		folio_clear_dirty(folio);
2978 	}
2979 }
2980 EXPORT_SYMBOL(__folio_cancel_dirty);
2981 
2982 /*
2983  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2984  * Returns true if the folio was previously dirty.
2985  *
2986  * This is for preparing to put the folio under writeout.  We leave
2987  * the folio tagged as dirty in the xarray so that a concurrent
2988  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2989  * The ->writepage implementation will run either folio_start_writeback()
2990  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2991  * and xarray dirty tag back into sync.
2992  *
2993  * This incoherency between the folio's dirty flag and xarray tag is
2994  * unfortunate, but it only exists while the folio is locked.
2995  */
2996 bool folio_clear_dirty_for_io(struct folio *folio)
2997 {
2998 	struct address_space *mapping = folio_mapping(folio);
2999 	bool ret = false;
3000 
3001 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3002 
3003 	if (mapping && mapping_can_writeback(mapping)) {
3004 		struct inode *inode = mapping->host;
3005 		struct bdi_writeback *wb;
3006 		struct wb_lock_cookie cookie = {};
3007 
3008 		/*
3009 		 * Yes, Virginia, this is indeed insane.
3010 		 *
3011 		 * We use this sequence to make sure that
3012 		 *  (a) we account for dirty stats properly
3013 		 *  (b) we tell the low-level filesystem to
3014 		 *      mark the whole folio dirty if it was
3015 		 *      dirty in a pagetable. Only to then
3016 		 *  (c) clean the folio again and return 1 to
3017 		 *      cause the writeback.
3018 		 *
3019 		 * This way we avoid all nasty races with the
3020 		 * dirty bit in multiple places and clearing
3021 		 * them concurrently from different threads.
3022 		 *
3023 		 * Note! Normally the "folio_mark_dirty(folio)"
3024 		 * has no effect on the actual dirty bit - since
3025 		 * that will already usually be set. But we
3026 		 * need the side effects, and it can help us
3027 		 * avoid races.
3028 		 *
3029 		 * We basically use the folio "master dirty bit"
3030 		 * as a serialization point for all the different
3031 		 * threads doing their things.
3032 		 */
3033 		if (folio_mkclean(folio))
3034 			folio_mark_dirty(folio);
3035 		/*
3036 		 * We carefully synchronise fault handlers against
3037 		 * installing a dirty pte and marking the folio dirty
3038 		 * at this point.  We do this by having them hold the
3039 		 * page lock while dirtying the folio, and folios are
3040 		 * always locked coming in here, so we get the desired
3041 		 * exclusion.
3042 		 */
3043 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
3044 		if (folio_test_clear_dirty(folio)) {
3045 			long nr = folio_nr_pages(folio);
3046 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3047 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3048 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3049 			ret = true;
3050 		}
3051 		unlocked_inode_to_wb_end(inode, &cookie);
3052 		return ret;
3053 	}
3054 	return folio_test_clear_dirty(folio);
3055 }
3056 EXPORT_SYMBOL(folio_clear_dirty_for_io);
3057 
3058 static void wb_inode_writeback_start(struct bdi_writeback *wb)
3059 {
3060 	atomic_inc(&wb->writeback_inodes);
3061 }
3062 
3063 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3064 {
3065 	unsigned long flags;
3066 	atomic_dec(&wb->writeback_inodes);
3067 	/*
3068 	 * Make sure estimate of writeback throughput gets updated after
3069 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3070 	 * (which is the interval other bandwidth updates use for batching) so
3071 	 * that if multiple inodes end writeback at a similar time, they get
3072 	 * batched into one bandwidth update.
3073 	 */
3074 	spin_lock_irqsave(&wb->work_lock, flags);
3075 	if (test_bit(WB_registered, &wb->state))
3076 		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3077 	spin_unlock_irqrestore(&wb->work_lock, flags);
3078 }
3079 
3080 bool __folio_end_writeback(struct folio *folio)
3081 {
3082 	long nr = folio_nr_pages(folio);
3083 	struct address_space *mapping = folio_mapping(folio);
3084 	bool ret;
3085 
3086 	if (mapping && mapping_use_writeback_tags(mapping)) {
3087 		struct inode *inode = mapping->host;
3088 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3089 		unsigned long flags;
3090 
3091 		xa_lock_irqsave(&mapping->i_pages, flags);
3092 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3093 		__xa_clear_mark(&mapping->i_pages, folio_index(folio),
3094 					PAGECACHE_TAG_WRITEBACK);
3095 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3096 			struct bdi_writeback *wb = inode_to_wb(inode);
3097 
3098 			wb_stat_mod(wb, WB_WRITEBACK, -nr);
3099 			__wb_writeout_add(wb, nr);
3100 			if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3101 				wb_inode_writeback_end(wb);
3102 		}
3103 
3104 		if (mapping->host && !mapping_tagged(mapping,
3105 						     PAGECACHE_TAG_WRITEBACK))
3106 			sb_clear_inode_writeback(mapping->host);
3107 
3108 		xa_unlock_irqrestore(&mapping->i_pages, flags);
3109 	} else {
3110 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3111 	}
3112 
3113 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3114 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3115 	node_stat_mod_folio(folio, NR_WRITTEN, nr);
3116 
3117 	return ret;
3118 }
3119 
3120 void __folio_start_writeback(struct folio *folio, bool keep_write)
3121 {
3122 	long nr = folio_nr_pages(folio);
3123 	struct address_space *mapping = folio_mapping(folio);
3124 	int access_ret;
3125 
3126 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3127 
3128 	if (mapping && mapping_use_writeback_tags(mapping)) {
3129 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3130 		struct inode *inode = mapping->host;
3131 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3132 		unsigned long flags;
3133 		bool on_wblist;
3134 
3135 		xas_lock_irqsave(&xas, flags);
3136 		xas_load(&xas);
3137 		folio_test_set_writeback(folio);
3138 
3139 		on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3140 
3141 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3142 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3143 			struct bdi_writeback *wb = inode_to_wb(inode);
3144 
3145 			wb_stat_mod(wb, WB_WRITEBACK, nr);
3146 			if (!on_wblist)
3147 				wb_inode_writeback_start(wb);
3148 		}
3149 
3150 		/*
3151 		 * We can come through here when swapping anonymous
3152 		 * folios, so we don't necessarily have an inode to
3153 		 * track for sync.
3154 		 */
3155 		if (mapping->host && !on_wblist)
3156 			sb_mark_inode_writeback(mapping->host);
3157 		if (!folio_test_dirty(folio))
3158 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3159 		if (!keep_write)
3160 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3161 		xas_unlock_irqrestore(&xas, flags);
3162 	} else {
3163 		folio_test_set_writeback(folio);
3164 	}
3165 
3166 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3167 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3168 
3169 	access_ret = arch_make_folio_accessible(folio);
3170 	/*
3171 	 * If writeback has been triggered on a page that cannot be made
3172 	 * accessible, it is too late to recover here.
3173 	 */
3174 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3175 }
3176 EXPORT_SYMBOL(__folio_start_writeback);
3177 
3178 /**
3179  * folio_wait_writeback - Wait for a folio to finish writeback.
3180  * @folio: The folio to wait for.
3181  *
3182  * If the folio is currently being written back to storage, wait for the
3183  * I/O to complete.
3184  *
3185  * Context: Sleeps.  Must be called in process context and with
3186  * no spinlocks held.  Caller should hold a reference on the folio.
3187  * If the folio is not locked, writeback may start again after writeback
3188  * has finished.
3189  */
3190 void folio_wait_writeback(struct folio *folio)
3191 {
3192 	while (folio_test_writeback(folio)) {
3193 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3194 		folio_wait_bit(folio, PG_writeback);
3195 	}
3196 }
3197 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3198 
3199 /**
3200  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3201  * @folio: The folio to wait for.
3202  *
3203  * If the folio is currently being written back to storage, wait for the
3204  * I/O to complete or a fatal signal to arrive.
3205  *
3206  * Context: Sleeps.  Must be called in process context and with
3207  * no spinlocks held.  Caller should hold a reference on the folio.
3208  * If the folio is not locked, writeback may start again after writeback
3209  * has finished.
3210  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3211  */
3212 int folio_wait_writeback_killable(struct folio *folio)
3213 {
3214 	while (folio_test_writeback(folio)) {
3215 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3216 		if (folio_wait_bit_killable(folio, PG_writeback))
3217 			return -EINTR;
3218 	}
3219 
3220 	return 0;
3221 }
3222 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3223 
3224 /**
3225  * folio_wait_stable() - wait for writeback to finish, if necessary.
3226  * @folio: The folio to wait on.
3227  *
3228  * This function determines if the given folio is related to a backing
3229  * device that requires folio contents to be held stable during writeback.
3230  * If so, then it will wait for any pending writeback to complete.
3231  *
3232  * Context: Sleeps.  Must be called in process context and with
3233  * no spinlocks held.  Caller should hold a reference on the folio.
3234  * If the folio is not locked, writeback may start again after writeback
3235  * has finished.
3236  */
3237 void folio_wait_stable(struct folio *folio)
3238 {
3239 	if (mapping_stable_writes(folio_mapping(folio)))
3240 		folio_wait_writeback(folio);
3241 }
3242 EXPORT_SYMBOL_GPL(folio_wait_stable);
3243