1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 #include "swap.h" 45 46 /* 47 * Sleep at most 200ms at a time in balance_dirty_pages(). 48 */ 49 #define MAX_PAUSE max(HZ/5, 1) 50 51 /* 52 * Try to keep balance_dirty_pages() call intervals higher than this many pages 53 * by raising pause time to max_pause when falls below it. 54 */ 55 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 56 57 /* 58 * Estimate write bandwidth or update dirty limit at 200ms intervals. 59 */ 60 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 61 62 #define RATELIMIT_CALC_SHIFT 10 63 64 /* 65 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 66 * will look to see if it needs to force writeback or throttling. 67 */ 68 static long ratelimit_pages = 32; 69 70 /* The following parameters are exported via /proc/sys/vm */ 71 72 /* 73 * Start background writeback (via writeback threads) at this percentage 74 */ 75 static int dirty_background_ratio = 10; 76 77 /* 78 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 79 * dirty_background_ratio * the amount of dirtyable memory 80 */ 81 static unsigned long dirty_background_bytes; 82 83 /* 84 * free highmem will not be subtracted from the total free memory 85 * for calculating free ratios if vm_highmem_is_dirtyable is true 86 */ 87 static int vm_highmem_is_dirtyable; 88 89 /* 90 * The generator of dirty data starts writeback at this percentage 91 */ 92 static int vm_dirty_ratio = 20; 93 94 /* 95 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 96 * vm_dirty_ratio * the amount of dirtyable memory 97 */ 98 static unsigned long vm_dirty_bytes; 99 100 /* 101 * The interval between `kupdate'-style writebacks 102 */ 103 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 104 105 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 106 107 /* 108 * The longest time for which data is allowed to remain dirty 109 */ 110 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 111 112 /* 113 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 114 * a full sync is triggered after this time elapses without any disk activity. 115 */ 116 int laptop_mode; 117 118 EXPORT_SYMBOL(laptop_mode); 119 120 /* End of sysctl-exported parameters */ 121 122 struct wb_domain global_wb_domain; 123 124 /* 125 * Length of period for aging writeout fractions of bdis. This is an 126 * arbitrarily chosen number. The longer the period, the slower fractions will 127 * reflect changes in current writeout rate. 128 */ 129 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 130 131 #ifdef CONFIG_CGROUP_WRITEBACK 132 133 #define GDTC_INIT(__wb) .wb = (__wb), \ 134 .dom = &global_wb_domain, \ 135 .wb_completions = &(__wb)->completions 136 137 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 138 139 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 140 .dom = mem_cgroup_wb_domain(__wb), \ 141 .wb_completions = &(__wb)->memcg_completions, \ 142 .gdtc = __gdtc 143 144 static bool mdtc_valid(struct dirty_throttle_control *dtc) 145 { 146 return dtc->dom; 147 } 148 149 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 150 { 151 return dtc->dom; 152 } 153 154 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 155 { 156 return mdtc->gdtc; 157 } 158 159 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 160 { 161 return &wb->memcg_completions; 162 } 163 164 static void wb_min_max_ratio(struct bdi_writeback *wb, 165 unsigned long *minp, unsigned long *maxp) 166 { 167 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 168 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 169 unsigned long long min = wb->bdi->min_ratio; 170 unsigned long long max = wb->bdi->max_ratio; 171 172 /* 173 * @wb may already be clean by the time control reaches here and 174 * the total may not include its bw. 175 */ 176 if (this_bw < tot_bw) { 177 if (min) { 178 min *= this_bw; 179 min = div64_ul(min, tot_bw); 180 } 181 if (max < 100 * BDI_RATIO_SCALE) { 182 max *= this_bw; 183 max = div64_ul(max, tot_bw); 184 } 185 } 186 187 *minp = min; 188 *maxp = max; 189 } 190 191 #else /* CONFIG_CGROUP_WRITEBACK */ 192 193 #define GDTC_INIT(__wb) .wb = (__wb), \ 194 .wb_completions = &(__wb)->completions 195 #define GDTC_INIT_NO_WB 196 #define MDTC_INIT(__wb, __gdtc) 197 198 static bool mdtc_valid(struct dirty_throttle_control *dtc) 199 { 200 return false; 201 } 202 203 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 204 { 205 return &global_wb_domain; 206 } 207 208 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 209 { 210 return NULL; 211 } 212 213 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 214 { 215 return NULL; 216 } 217 218 static void wb_min_max_ratio(struct bdi_writeback *wb, 219 unsigned long *minp, unsigned long *maxp) 220 { 221 *minp = wb->bdi->min_ratio; 222 *maxp = wb->bdi->max_ratio; 223 } 224 225 #endif /* CONFIG_CGROUP_WRITEBACK */ 226 227 /* 228 * In a memory zone, there is a certain amount of pages we consider 229 * available for the page cache, which is essentially the number of 230 * free and reclaimable pages, minus some zone reserves to protect 231 * lowmem and the ability to uphold the zone's watermarks without 232 * requiring writeback. 233 * 234 * This number of dirtyable pages is the base value of which the 235 * user-configurable dirty ratio is the effective number of pages that 236 * are allowed to be actually dirtied. Per individual zone, or 237 * globally by using the sum of dirtyable pages over all zones. 238 * 239 * Because the user is allowed to specify the dirty limit globally as 240 * absolute number of bytes, calculating the per-zone dirty limit can 241 * require translating the configured limit into a percentage of 242 * global dirtyable memory first. 243 */ 244 245 /** 246 * node_dirtyable_memory - number of dirtyable pages in a node 247 * @pgdat: the node 248 * 249 * Return: the node's number of pages potentially available for dirty 250 * page cache. This is the base value for the per-node dirty limits. 251 */ 252 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 253 { 254 unsigned long nr_pages = 0; 255 int z; 256 257 for (z = 0; z < MAX_NR_ZONES; z++) { 258 struct zone *zone = pgdat->node_zones + z; 259 260 if (!populated_zone(zone)) 261 continue; 262 263 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 264 } 265 266 /* 267 * Pages reserved for the kernel should not be considered 268 * dirtyable, to prevent a situation where reclaim has to 269 * clean pages in order to balance the zones. 270 */ 271 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 272 273 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 274 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 275 276 return nr_pages; 277 } 278 279 static unsigned long highmem_dirtyable_memory(unsigned long total) 280 { 281 #ifdef CONFIG_HIGHMEM 282 int node; 283 unsigned long x = 0; 284 int i; 285 286 for_each_node_state(node, N_HIGH_MEMORY) { 287 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 288 struct zone *z; 289 unsigned long nr_pages; 290 291 if (!is_highmem_idx(i)) 292 continue; 293 294 z = &NODE_DATA(node)->node_zones[i]; 295 if (!populated_zone(z)) 296 continue; 297 298 nr_pages = zone_page_state(z, NR_FREE_PAGES); 299 /* watch for underflows */ 300 nr_pages -= min(nr_pages, high_wmark_pages(z)); 301 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 302 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 303 x += nr_pages; 304 } 305 } 306 307 /* 308 * Make sure that the number of highmem pages is never larger 309 * than the number of the total dirtyable memory. This can only 310 * occur in very strange VM situations but we want to make sure 311 * that this does not occur. 312 */ 313 return min(x, total); 314 #else 315 return 0; 316 #endif 317 } 318 319 /** 320 * global_dirtyable_memory - number of globally dirtyable pages 321 * 322 * Return: the global number of pages potentially available for dirty 323 * page cache. This is the base value for the global dirty limits. 324 */ 325 static unsigned long global_dirtyable_memory(void) 326 { 327 unsigned long x; 328 329 x = global_zone_page_state(NR_FREE_PAGES); 330 /* 331 * Pages reserved for the kernel should not be considered 332 * dirtyable, to prevent a situation where reclaim has to 333 * clean pages in order to balance the zones. 334 */ 335 x -= min(x, totalreserve_pages); 336 337 x += global_node_page_state(NR_INACTIVE_FILE); 338 x += global_node_page_state(NR_ACTIVE_FILE); 339 340 if (!vm_highmem_is_dirtyable) 341 x -= highmem_dirtyable_memory(x); 342 343 return x + 1; /* Ensure that we never return 0 */ 344 } 345 346 /** 347 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 348 * @dtc: dirty_throttle_control of interest 349 * 350 * Calculate @dtc->thresh and ->bg_thresh considering 351 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 352 * must ensure that @dtc->avail is set before calling this function. The 353 * dirty limits will be lifted by 1/4 for real-time tasks. 354 */ 355 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 356 { 357 const unsigned long available_memory = dtc->avail; 358 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 359 unsigned long bytes = vm_dirty_bytes; 360 unsigned long bg_bytes = dirty_background_bytes; 361 /* convert ratios to per-PAGE_SIZE for higher precision */ 362 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 363 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 364 unsigned long thresh; 365 unsigned long bg_thresh; 366 struct task_struct *tsk; 367 368 /* gdtc is !NULL iff @dtc is for memcg domain */ 369 if (gdtc) { 370 unsigned long global_avail = gdtc->avail; 371 372 /* 373 * The byte settings can't be applied directly to memcg 374 * domains. Convert them to ratios by scaling against 375 * globally available memory. As the ratios are in 376 * per-PAGE_SIZE, they can be obtained by dividing bytes by 377 * number of pages. 378 */ 379 if (bytes) 380 ratio = min(DIV_ROUND_UP(bytes, global_avail), 381 PAGE_SIZE); 382 if (bg_bytes) 383 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 384 PAGE_SIZE); 385 bytes = bg_bytes = 0; 386 } 387 388 if (bytes) 389 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 390 else 391 thresh = (ratio * available_memory) / PAGE_SIZE; 392 393 if (bg_bytes) 394 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 395 else 396 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 397 398 tsk = current; 399 if (rt_or_dl_task(tsk)) { 400 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 401 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 402 } 403 /* 404 * Dirty throttling logic assumes the limits in page units fit into 405 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 406 */ 407 if (thresh > UINT_MAX) 408 thresh = UINT_MAX; 409 /* This makes sure bg_thresh is within 32-bits as well */ 410 if (bg_thresh >= thresh) 411 bg_thresh = thresh / 2; 412 dtc->thresh = thresh; 413 dtc->bg_thresh = bg_thresh; 414 415 /* we should eventually report the domain in the TP */ 416 if (!gdtc) 417 trace_global_dirty_state(bg_thresh, thresh); 418 } 419 420 /** 421 * global_dirty_limits - background-writeback and dirty-throttling thresholds 422 * @pbackground: out parameter for bg_thresh 423 * @pdirty: out parameter for thresh 424 * 425 * Calculate bg_thresh and thresh for global_wb_domain. See 426 * domain_dirty_limits() for details. 427 */ 428 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 429 { 430 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 431 432 gdtc.avail = global_dirtyable_memory(); 433 domain_dirty_limits(&gdtc); 434 435 *pbackground = gdtc.bg_thresh; 436 *pdirty = gdtc.thresh; 437 } 438 439 /** 440 * node_dirty_limit - maximum number of dirty pages allowed in a node 441 * @pgdat: the node 442 * 443 * Return: the maximum number of dirty pages allowed in a node, based 444 * on the node's dirtyable memory. 445 */ 446 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 447 { 448 unsigned long node_memory = node_dirtyable_memory(pgdat); 449 struct task_struct *tsk = current; 450 unsigned long dirty; 451 452 if (vm_dirty_bytes) 453 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 454 node_memory / global_dirtyable_memory(); 455 else 456 dirty = vm_dirty_ratio * node_memory / 100; 457 458 if (rt_or_dl_task(tsk)) 459 dirty += dirty / 4; 460 461 /* 462 * Dirty throttling logic assumes the limits in page units fit into 463 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 464 */ 465 return min_t(unsigned long, dirty, UINT_MAX); 466 } 467 468 /** 469 * node_dirty_ok - tells whether a node is within its dirty limits 470 * @pgdat: the node to check 471 * 472 * Return: %true when the dirty pages in @pgdat are within the node's 473 * dirty limit, %false if the limit is exceeded. 474 */ 475 bool node_dirty_ok(struct pglist_data *pgdat) 476 { 477 unsigned long limit = node_dirty_limit(pgdat); 478 unsigned long nr_pages = 0; 479 480 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 481 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 482 483 return nr_pages <= limit; 484 } 485 486 #ifdef CONFIG_SYSCTL 487 static int dirty_background_ratio_handler(const struct ctl_table *table, int write, 488 void *buffer, size_t *lenp, loff_t *ppos) 489 { 490 int ret; 491 492 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 493 if (ret == 0 && write) 494 dirty_background_bytes = 0; 495 return ret; 496 } 497 498 static int dirty_background_bytes_handler(const struct ctl_table *table, int write, 499 void *buffer, size_t *lenp, loff_t *ppos) 500 { 501 int ret; 502 unsigned long old_bytes = dirty_background_bytes; 503 504 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 505 if (ret == 0 && write) { 506 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > 507 UINT_MAX) { 508 dirty_background_bytes = old_bytes; 509 return -ERANGE; 510 } 511 dirty_background_ratio = 0; 512 } 513 return ret; 514 } 515 516 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer, 517 size_t *lenp, loff_t *ppos) 518 { 519 int old_ratio = vm_dirty_ratio; 520 int ret; 521 522 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 523 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 524 vm_dirty_bytes = 0; 525 writeback_set_ratelimit(); 526 } 527 return ret; 528 } 529 530 static int dirty_bytes_handler(const struct ctl_table *table, int write, 531 void *buffer, size_t *lenp, loff_t *ppos) 532 { 533 unsigned long old_bytes = vm_dirty_bytes; 534 int ret; 535 536 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 537 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 538 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { 539 vm_dirty_bytes = old_bytes; 540 return -ERANGE; 541 } 542 writeback_set_ratelimit(); 543 vm_dirty_ratio = 0; 544 } 545 return ret; 546 } 547 #endif 548 549 static unsigned long wp_next_time(unsigned long cur_time) 550 { 551 cur_time += VM_COMPLETIONS_PERIOD_LEN; 552 /* 0 has a special meaning... */ 553 if (!cur_time) 554 return 1; 555 return cur_time; 556 } 557 558 static void wb_domain_writeout_add(struct wb_domain *dom, 559 struct fprop_local_percpu *completions, 560 unsigned int max_prop_frac, long nr) 561 { 562 __fprop_add_percpu_max(&dom->completions, completions, 563 max_prop_frac, nr); 564 /* First event after period switching was turned off? */ 565 if (unlikely(!dom->period_time)) { 566 /* 567 * We can race with other wb_domain_writeout_add calls here but 568 * it does not cause any harm since the resulting time when 569 * timer will fire and what is in writeout_period_time will be 570 * roughly the same. 571 */ 572 dom->period_time = wp_next_time(jiffies); 573 mod_timer(&dom->period_timer, dom->period_time); 574 } 575 } 576 577 /* 578 * Increment @wb's writeout completion count and the global writeout 579 * completion count. Called from __folio_end_writeback(). 580 */ 581 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 582 { 583 struct wb_domain *cgdom; 584 585 wb_stat_mod(wb, WB_WRITTEN, nr); 586 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 587 wb->bdi->max_prop_frac, nr); 588 589 cgdom = mem_cgroup_wb_domain(wb); 590 if (cgdom) 591 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 592 wb->bdi->max_prop_frac, nr); 593 } 594 595 void wb_writeout_inc(struct bdi_writeback *wb) 596 { 597 unsigned long flags; 598 599 local_irq_save(flags); 600 __wb_writeout_add(wb, 1); 601 local_irq_restore(flags); 602 } 603 EXPORT_SYMBOL_GPL(wb_writeout_inc); 604 605 /* 606 * On idle system, we can be called long after we scheduled because we use 607 * deferred timers so count with missed periods. 608 */ 609 static void writeout_period(struct timer_list *t) 610 { 611 struct wb_domain *dom = timer_container_of(dom, t, period_timer); 612 int miss_periods = (jiffies - dom->period_time) / 613 VM_COMPLETIONS_PERIOD_LEN; 614 615 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 616 dom->period_time = wp_next_time(dom->period_time + 617 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 618 mod_timer(&dom->period_timer, dom->period_time); 619 } else { 620 /* 621 * Aging has zeroed all fractions. Stop wasting CPU on period 622 * updates. 623 */ 624 dom->period_time = 0; 625 } 626 } 627 628 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 629 { 630 memset(dom, 0, sizeof(*dom)); 631 632 spin_lock_init(&dom->lock); 633 634 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 635 636 dom->dirty_limit_tstamp = jiffies; 637 638 return fprop_global_init(&dom->completions, gfp); 639 } 640 641 #ifdef CONFIG_CGROUP_WRITEBACK 642 void wb_domain_exit(struct wb_domain *dom) 643 { 644 timer_delete_sync(&dom->period_timer); 645 fprop_global_destroy(&dom->completions); 646 } 647 #endif 648 649 /* 650 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 651 * registered backing devices, which, for obvious reasons, can not 652 * exceed 100%. 653 */ 654 static unsigned int bdi_min_ratio; 655 656 static int bdi_check_pages_limit(unsigned long pages) 657 { 658 unsigned long max_dirty_pages = global_dirtyable_memory(); 659 660 if (pages > max_dirty_pages) 661 return -EINVAL; 662 663 return 0; 664 } 665 666 static unsigned long bdi_ratio_from_pages(unsigned long pages) 667 { 668 unsigned long background_thresh; 669 unsigned long dirty_thresh; 670 unsigned long ratio; 671 672 global_dirty_limits(&background_thresh, &dirty_thresh); 673 if (!dirty_thresh) 674 return -EINVAL; 675 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 676 677 return ratio; 678 } 679 680 static u64 bdi_get_bytes(unsigned int ratio) 681 { 682 unsigned long background_thresh; 683 unsigned long dirty_thresh; 684 u64 bytes; 685 686 global_dirty_limits(&background_thresh, &dirty_thresh); 687 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 688 689 return bytes; 690 } 691 692 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 693 { 694 unsigned int delta; 695 int ret = 0; 696 697 if (min_ratio > 100 * BDI_RATIO_SCALE) 698 return -EINVAL; 699 700 spin_lock_bh(&bdi_lock); 701 if (min_ratio > bdi->max_ratio) { 702 ret = -EINVAL; 703 } else { 704 if (min_ratio < bdi->min_ratio) { 705 delta = bdi->min_ratio - min_ratio; 706 bdi_min_ratio -= delta; 707 bdi->min_ratio = min_ratio; 708 } else { 709 delta = min_ratio - bdi->min_ratio; 710 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 711 bdi_min_ratio += delta; 712 bdi->min_ratio = min_ratio; 713 } else { 714 ret = -EINVAL; 715 } 716 } 717 } 718 spin_unlock_bh(&bdi_lock); 719 720 return ret; 721 } 722 723 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 724 { 725 int ret = 0; 726 727 if (max_ratio > 100 * BDI_RATIO_SCALE) 728 return -EINVAL; 729 730 spin_lock_bh(&bdi_lock); 731 if (bdi->min_ratio > max_ratio) { 732 ret = -EINVAL; 733 } else { 734 bdi->max_ratio = max_ratio; 735 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 736 (100 * BDI_RATIO_SCALE); 737 } 738 spin_unlock_bh(&bdi_lock); 739 740 return ret; 741 } 742 743 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 744 { 745 return __bdi_set_min_ratio(bdi, min_ratio); 746 } 747 748 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 749 { 750 return __bdi_set_max_ratio(bdi, max_ratio); 751 } 752 753 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 754 { 755 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 756 } 757 758 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 759 { 760 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 761 } 762 EXPORT_SYMBOL(bdi_set_max_ratio); 763 764 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 765 { 766 return bdi_get_bytes(bdi->min_ratio); 767 } 768 769 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 770 { 771 int ret; 772 unsigned long pages = min_bytes >> PAGE_SHIFT; 773 long min_ratio; 774 775 ret = bdi_check_pages_limit(pages); 776 if (ret) 777 return ret; 778 779 min_ratio = bdi_ratio_from_pages(pages); 780 if (min_ratio < 0) 781 return min_ratio; 782 return __bdi_set_min_ratio(bdi, min_ratio); 783 } 784 785 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 786 { 787 return bdi_get_bytes(bdi->max_ratio); 788 } 789 790 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 791 { 792 int ret; 793 unsigned long pages = max_bytes >> PAGE_SHIFT; 794 long max_ratio; 795 796 ret = bdi_check_pages_limit(pages); 797 if (ret) 798 return ret; 799 800 max_ratio = bdi_ratio_from_pages(pages); 801 if (max_ratio < 0) 802 return max_ratio; 803 return __bdi_set_max_ratio(bdi, max_ratio); 804 } 805 806 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 807 { 808 if (strict_limit > 1) 809 return -EINVAL; 810 811 spin_lock_bh(&bdi_lock); 812 if (strict_limit) 813 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 814 else 815 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 816 spin_unlock_bh(&bdi_lock); 817 818 return 0; 819 } 820 821 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 822 unsigned long bg_thresh) 823 { 824 return (thresh + bg_thresh) / 2; 825 } 826 827 static unsigned long hard_dirty_limit(struct wb_domain *dom, 828 unsigned long thresh) 829 { 830 return max(thresh, dom->dirty_limit); 831 } 832 833 /* 834 * Memory which can be further allocated to a memcg domain is capped by 835 * system-wide clean memory excluding the amount being used in the domain. 836 */ 837 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 838 unsigned long filepages, unsigned long headroom) 839 { 840 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 841 unsigned long clean = filepages - min(filepages, mdtc->dirty); 842 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 843 unsigned long other_clean = global_clean - min(global_clean, clean); 844 845 mdtc->avail = filepages + min(headroom, other_clean); 846 } 847 848 static inline bool dtc_is_global(struct dirty_throttle_control *dtc) 849 { 850 return mdtc_gdtc(dtc) == NULL; 851 } 852 853 /* 854 * Dirty background will ignore pages being written as we're trying to 855 * decide whether to put more under writeback. 856 */ 857 static void domain_dirty_avail(struct dirty_throttle_control *dtc, 858 bool include_writeback) 859 { 860 if (dtc_is_global(dtc)) { 861 dtc->avail = global_dirtyable_memory(); 862 dtc->dirty = global_node_page_state(NR_FILE_DIRTY); 863 if (include_writeback) 864 dtc->dirty += global_node_page_state(NR_WRITEBACK); 865 } else { 866 unsigned long filepages = 0, headroom = 0, writeback = 0; 867 868 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty, 869 &writeback); 870 if (include_writeback) 871 dtc->dirty += writeback; 872 mdtc_calc_avail(dtc, filepages, headroom); 873 } 874 } 875 876 /** 877 * __wb_calc_thresh - @wb's share of dirty threshold 878 * @dtc: dirty_throttle_context of interest 879 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc 880 * 881 * Note that balance_dirty_pages() will only seriously take dirty throttling 882 * threshold as a hard limit when sleeping max_pause per page is not enough 883 * to keep the dirty pages under control. For example, when the device is 884 * completely stalled due to some error conditions, or when there are 1000 885 * dd tasks writing to a slow 10MB/s USB key. 886 * In the other normal situations, it acts more gently by throttling the tasks 887 * more (rather than completely block them) when the wb dirty pages go high. 888 * 889 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 890 * - starving fast devices 891 * - piling up dirty pages (that will take long time to sync) on slow devices 892 * 893 * The wb's share of dirty limit will be adapting to its throughput and 894 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 895 * 896 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term 897 * "dirty" in the context of dirty balancing includes all PG_dirty and 898 * PG_writeback pages. 899 */ 900 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, 901 unsigned long thresh) 902 { 903 struct wb_domain *dom = dtc_dom(dtc); 904 struct bdi_writeback *wb = dtc->wb; 905 u64 wb_thresh; 906 u64 wb_max_thresh; 907 unsigned long numerator, denominator; 908 unsigned long wb_min_ratio, wb_max_ratio; 909 910 /* 911 * Calculate this wb's share of the thresh ratio. 912 */ 913 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 914 &numerator, &denominator); 915 916 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 917 wb_thresh *= numerator; 918 wb_thresh = div64_ul(wb_thresh, denominator); 919 920 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio); 921 922 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 923 924 /* 925 * It's very possible that wb_thresh is close to 0 not because the 926 * device is slow, but that it has remained inactive for long time. 927 * Honour such devices a reasonable good (hopefully IO efficient) 928 * threshold, so that the occasional writes won't be blocked and active 929 * writes can rampup the threshold quickly. 930 */ 931 if (thresh > dtc->dirty) { 932 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) 933 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100); 934 else 935 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8); 936 } 937 938 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 939 if (wb_thresh > wb_max_thresh) 940 wb_thresh = wb_max_thresh; 941 942 return wb_thresh; 943 } 944 945 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 946 { 947 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 948 949 domain_dirty_avail(&gdtc, true); 950 return __wb_calc_thresh(&gdtc, thresh); 951 } 952 953 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 954 { 955 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 956 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 957 958 domain_dirty_avail(&gdtc, true); 959 domain_dirty_avail(&mdtc, true); 960 domain_dirty_limits(&mdtc); 961 962 return __wb_calc_thresh(&mdtc, mdtc.thresh); 963 } 964 965 /* 966 * setpoint - dirty 3 967 * f(dirty) := 1.0 + (----------------) 968 * limit - setpoint 969 * 970 * it's a 3rd order polynomial that subjects to 971 * 972 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 973 * (2) f(setpoint) = 1.0 => the balance point 974 * (3) f(limit) = 0 => the hard limit 975 * (4) df/dx <= 0 => negative feedback control 976 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 977 * => fast response on large errors; small oscillation near setpoint 978 */ 979 static long long pos_ratio_polynom(unsigned long setpoint, 980 unsigned long dirty, 981 unsigned long limit) 982 { 983 long long pos_ratio; 984 long x; 985 986 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 987 (limit - setpoint) | 1); 988 pos_ratio = x; 989 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 990 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 991 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 992 993 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 994 } 995 996 /* 997 * Dirty position control. 998 * 999 * (o) global/bdi setpoints 1000 * 1001 * We want the dirty pages be balanced around the global/wb setpoints. 1002 * When the number of dirty pages is higher/lower than the setpoint, the 1003 * dirty position control ratio (and hence task dirty ratelimit) will be 1004 * decreased/increased to bring the dirty pages back to the setpoint. 1005 * 1006 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 1007 * 1008 * if (dirty < setpoint) scale up pos_ratio 1009 * if (dirty > setpoint) scale down pos_ratio 1010 * 1011 * if (wb_dirty < wb_setpoint) scale up pos_ratio 1012 * if (wb_dirty > wb_setpoint) scale down pos_ratio 1013 * 1014 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 1015 * 1016 * (o) global control line 1017 * 1018 * ^ pos_ratio 1019 * | 1020 * | |<===== global dirty control scope ======>| 1021 * 2.0 * * * * * * * 1022 * | .* 1023 * | . * 1024 * | . * 1025 * | . * 1026 * | . * 1027 * | . * 1028 * 1.0 ................................* 1029 * | . . * 1030 * | . . * 1031 * | . . * 1032 * | . . * 1033 * | . . * 1034 * 0 +------------.------------------.----------------------*-------------> 1035 * freerun^ setpoint^ limit^ dirty pages 1036 * 1037 * (o) wb control line 1038 * 1039 * ^ pos_ratio 1040 * | 1041 * | * 1042 * | * 1043 * | * 1044 * | * 1045 * | * |<=========== span ============>| 1046 * 1.0 .......................* 1047 * | . * 1048 * | . * 1049 * | . * 1050 * | . * 1051 * | . * 1052 * | . * 1053 * | . * 1054 * | . * 1055 * | . * 1056 * | . * 1057 * | . * 1058 * 1/4 ...............................................* * * * * * * * * * * * 1059 * | . . 1060 * | . . 1061 * | . . 1062 * 0 +----------------------.-------------------------------.-------------> 1063 * wb_setpoint^ x_intercept^ 1064 * 1065 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1066 * be smoothly throttled down to normal if it starts high in situations like 1067 * - start writing to a slow SD card and a fast disk at the same time. The SD 1068 * card's wb_dirty may rush to many times higher than wb_setpoint. 1069 * - the wb dirty thresh drops quickly due to change of JBOD workload 1070 */ 1071 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1072 { 1073 struct bdi_writeback *wb = dtc->wb; 1074 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1075 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1076 unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1077 unsigned long wb_thresh = dtc->wb_thresh; 1078 unsigned long x_intercept; 1079 unsigned long setpoint; /* dirty pages' target balance point */ 1080 unsigned long wb_setpoint; 1081 unsigned long span; 1082 long long pos_ratio; /* for scaling up/down the rate limit */ 1083 long x; 1084 1085 dtc->pos_ratio = 0; 1086 1087 if (unlikely(dtc->dirty >= limit)) 1088 return; 1089 1090 /* 1091 * global setpoint 1092 * 1093 * See comment for pos_ratio_polynom(). 1094 */ 1095 setpoint = (freerun + limit) / 2; 1096 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1097 1098 /* 1099 * The strictlimit feature is a tool preventing mistrusted filesystems 1100 * from growing a large number of dirty pages before throttling. For 1101 * such filesystems balance_dirty_pages always checks wb counters 1102 * against wb limits. Even if global "nr_dirty" is under "freerun". 1103 * This is especially important for fuse which sets bdi->max_ratio to 1104 * 1% by default. Without strictlimit feature, fuse writeback may 1105 * consume arbitrary amount of RAM because it is accounted in 1106 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1107 * 1108 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1109 * two values: wb_dirty and wb_thresh. Let's consider an example: 1110 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1111 * limits are set by default to 10% and 20% (background and throttle). 1112 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1113 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1114 * about ~6K pages (as the average of background and throttle wb 1115 * limits). The 3rd order polynomial will provide positive feedback if 1116 * wb_dirty is under wb_setpoint and vice versa. 1117 * 1118 * Note, that we cannot use global counters in these calculations 1119 * because we want to throttle process writing to a strictlimit wb 1120 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1121 * in the example above). 1122 */ 1123 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1124 long long wb_pos_ratio; 1125 1126 if (dtc->wb_dirty >= wb_thresh) 1127 return; 1128 1129 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1130 dtc->wb_bg_thresh); 1131 1132 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1133 return; 1134 1135 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1136 wb_thresh); 1137 1138 /* 1139 * Typically, for strictlimit case, wb_setpoint << setpoint 1140 * and pos_ratio >> wb_pos_ratio. In the other words global 1141 * state ("dirty") is not limiting factor and we have to 1142 * make decision based on wb counters. But there is an 1143 * important case when global pos_ratio should get precedence: 1144 * global limits are exceeded (e.g. due to activities on other 1145 * wb's) while given strictlimit wb is below limit. 1146 * 1147 * "pos_ratio * wb_pos_ratio" would work for the case above, 1148 * but it would look too non-natural for the case of all 1149 * activity in the system coming from a single strictlimit wb 1150 * with bdi->max_ratio == 100%. 1151 * 1152 * Note that min() below somewhat changes the dynamics of the 1153 * control system. Normally, pos_ratio value can be well over 3 1154 * (when globally we are at freerun and wb is well below wb 1155 * setpoint). Now the maximum pos_ratio in the same situation 1156 * is 2. We might want to tweak this if we observe the control 1157 * system is too slow to adapt. 1158 */ 1159 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1160 return; 1161 } 1162 1163 /* 1164 * We have computed basic pos_ratio above based on global situation. If 1165 * the wb is over/under its share of dirty pages, we want to scale 1166 * pos_ratio further down/up. That is done by the following mechanism. 1167 */ 1168 1169 /* 1170 * wb setpoint 1171 * 1172 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1173 * 1174 * x_intercept - wb_dirty 1175 * := -------------------------- 1176 * x_intercept - wb_setpoint 1177 * 1178 * The main wb control line is a linear function that subjects to 1179 * 1180 * (1) f(wb_setpoint) = 1.0 1181 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1182 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1183 * 1184 * For single wb case, the dirty pages are observed to fluctuate 1185 * regularly within range 1186 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1187 * for various filesystems, where (2) can yield in a reasonable 12.5% 1188 * fluctuation range for pos_ratio. 1189 * 1190 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1191 * own size, so move the slope over accordingly and choose a slope that 1192 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1193 */ 1194 if (unlikely(wb_thresh > dtc->thresh)) 1195 wb_thresh = dtc->thresh; 1196 /* 1197 * scale global setpoint to wb's: 1198 * wb_setpoint = setpoint * wb_thresh / thresh 1199 */ 1200 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1201 wb_setpoint = setpoint * (u64)x >> 16; 1202 /* 1203 * Use span=(8*write_bw) in single wb case as indicated by 1204 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1205 * 1206 * wb_thresh thresh - wb_thresh 1207 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1208 * thresh thresh 1209 */ 1210 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1211 x_intercept = wb_setpoint + span; 1212 1213 if (dtc->wb_dirty < x_intercept - span / 4) { 1214 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1215 (x_intercept - wb_setpoint) | 1); 1216 } else 1217 pos_ratio /= 4; 1218 1219 /* 1220 * wb reserve area, safeguard against dirty pool underrun and disk idle 1221 * It may push the desired control point of global dirty pages higher 1222 * than setpoint. 1223 */ 1224 x_intercept = wb_thresh / 2; 1225 if (dtc->wb_dirty < x_intercept) { 1226 if (dtc->wb_dirty > x_intercept / 8) 1227 pos_ratio = div_u64(pos_ratio * x_intercept, 1228 dtc->wb_dirty); 1229 else 1230 pos_ratio *= 8; 1231 } 1232 1233 dtc->pos_ratio = pos_ratio; 1234 } 1235 1236 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1237 unsigned long elapsed, 1238 unsigned long written) 1239 { 1240 const unsigned long period = roundup_pow_of_two(3 * HZ); 1241 unsigned long avg = wb->avg_write_bandwidth; 1242 unsigned long old = wb->write_bandwidth; 1243 u64 bw; 1244 1245 /* 1246 * bw = written * HZ / elapsed 1247 * 1248 * bw * elapsed + write_bandwidth * (period - elapsed) 1249 * write_bandwidth = --------------------------------------------------- 1250 * period 1251 * 1252 * @written may have decreased due to folio_redirty_for_writepage(). 1253 * Avoid underflowing @bw calculation. 1254 */ 1255 bw = written - min(written, wb->written_stamp); 1256 bw *= HZ; 1257 if (unlikely(elapsed > period)) { 1258 bw = div64_ul(bw, elapsed); 1259 avg = bw; 1260 goto out; 1261 } 1262 bw += (u64)wb->write_bandwidth * (period - elapsed); 1263 bw >>= ilog2(period); 1264 1265 /* 1266 * one more level of smoothing, for filtering out sudden spikes 1267 */ 1268 if (avg > old && old >= (unsigned long)bw) 1269 avg -= (avg - old) >> 3; 1270 1271 if (avg < old && old <= (unsigned long)bw) 1272 avg += (old - avg) >> 3; 1273 1274 out: 1275 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1276 avg = max(avg, 1LU); 1277 if (wb_has_dirty_io(wb)) { 1278 long delta = avg - wb->avg_write_bandwidth; 1279 WARN_ON_ONCE(atomic_long_add_return(delta, 1280 &wb->bdi->tot_write_bandwidth) <= 0); 1281 } 1282 wb->write_bandwidth = bw; 1283 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1284 } 1285 1286 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1287 { 1288 struct wb_domain *dom = dtc_dom(dtc); 1289 unsigned long thresh = dtc->thresh; 1290 unsigned long limit = dom->dirty_limit; 1291 1292 /* 1293 * Follow up in one step. 1294 */ 1295 if (limit < thresh) { 1296 limit = thresh; 1297 goto update; 1298 } 1299 1300 /* 1301 * Follow down slowly. Use the higher one as the target, because thresh 1302 * may drop below dirty. This is exactly the reason to introduce 1303 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1304 */ 1305 thresh = max(thresh, dtc->dirty); 1306 if (limit > thresh) { 1307 limit -= (limit - thresh) >> 5; 1308 goto update; 1309 } 1310 return; 1311 update: 1312 dom->dirty_limit = limit; 1313 } 1314 1315 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1316 unsigned long now) 1317 { 1318 struct wb_domain *dom = dtc_dom(dtc); 1319 1320 /* 1321 * check locklessly first to optimize away locking for the most time 1322 */ 1323 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1324 return; 1325 1326 spin_lock(&dom->lock); 1327 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1328 update_dirty_limit(dtc); 1329 dom->dirty_limit_tstamp = now; 1330 } 1331 spin_unlock(&dom->lock); 1332 } 1333 1334 /* 1335 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1336 * 1337 * Normal wb tasks will be curbed at or below it in long term. 1338 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1339 */ 1340 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1341 unsigned long dirtied, 1342 unsigned long elapsed) 1343 { 1344 struct bdi_writeback *wb = dtc->wb; 1345 unsigned long dirty = dtc->dirty; 1346 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1347 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1348 unsigned long setpoint = (freerun + limit) / 2; 1349 unsigned long write_bw = wb->avg_write_bandwidth; 1350 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1351 unsigned long dirty_rate; 1352 unsigned long task_ratelimit; 1353 unsigned long balanced_dirty_ratelimit; 1354 unsigned long step; 1355 unsigned long x; 1356 unsigned long shift; 1357 1358 /* 1359 * The dirty rate will match the writeout rate in long term, except 1360 * when dirty pages are truncated by userspace or re-dirtied by FS. 1361 */ 1362 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1363 1364 /* 1365 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1366 */ 1367 task_ratelimit = (u64)dirty_ratelimit * 1368 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1369 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1370 1371 /* 1372 * A linear estimation of the "balanced" throttle rate. The theory is, 1373 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1374 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1375 * formula will yield the balanced rate limit (write_bw / N). 1376 * 1377 * Note that the expanded form is not a pure rate feedback: 1378 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1379 * but also takes pos_ratio into account: 1380 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1381 * 1382 * (1) is not realistic because pos_ratio also takes part in balancing 1383 * the dirty rate. Consider the state 1384 * pos_ratio = 0.5 (3) 1385 * rate = 2 * (write_bw / N) (4) 1386 * If (1) is used, it will stuck in that state! Because each dd will 1387 * be throttled at 1388 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1389 * yielding 1390 * dirty_rate = N * task_ratelimit = write_bw (6) 1391 * put (6) into (1) we get 1392 * rate_(i+1) = rate_(i) (7) 1393 * 1394 * So we end up using (2) to always keep 1395 * rate_(i+1) ~= (write_bw / N) (8) 1396 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1397 * pos_ratio is able to drive itself to 1.0, which is not only where 1398 * the dirty count meet the setpoint, but also where the slope of 1399 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1400 */ 1401 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1402 dirty_rate | 1); 1403 /* 1404 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1405 */ 1406 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1407 balanced_dirty_ratelimit = write_bw; 1408 1409 /* 1410 * We could safely do this and return immediately: 1411 * 1412 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1413 * 1414 * However to get a more stable dirty_ratelimit, the below elaborated 1415 * code makes use of task_ratelimit to filter out singular points and 1416 * limit the step size. 1417 * 1418 * The below code essentially only uses the relative value of 1419 * 1420 * task_ratelimit - dirty_ratelimit 1421 * = (pos_ratio - 1) * dirty_ratelimit 1422 * 1423 * which reflects the direction and size of dirty position error. 1424 */ 1425 1426 /* 1427 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1428 * task_ratelimit is on the same side of dirty_ratelimit, too. 1429 * For example, when 1430 * - dirty_ratelimit > balanced_dirty_ratelimit 1431 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1432 * lowering dirty_ratelimit will help meet both the position and rate 1433 * control targets. Otherwise, don't update dirty_ratelimit if it will 1434 * only help meet the rate target. After all, what the users ultimately 1435 * feel and care are stable dirty rate and small position error. 1436 * 1437 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1438 * and filter out the singular points of balanced_dirty_ratelimit. Which 1439 * keeps jumping around randomly and can even leap far away at times 1440 * due to the small 200ms estimation period of dirty_rate (we want to 1441 * keep that period small to reduce time lags). 1442 */ 1443 step = 0; 1444 1445 /* 1446 * For strictlimit case, calculations above were based on wb counters 1447 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1448 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1449 * Hence, to calculate "step" properly, we have to use wb_dirty as 1450 * "dirty" and wb_setpoint as "setpoint". 1451 */ 1452 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1453 dirty = dtc->wb_dirty; 1454 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1455 } 1456 1457 if (dirty < setpoint) { 1458 x = min3(wb->balanced_dirty_ratelimit, 1459 balanced_dirty_ratelimit, task_ratelimit); 1460 if (dirty_ratelimit < x) 1461 step = x - dirty_ratelimit; 1462 } else { 1463 x = max3(wb->balanced_dirty_ratelimit, 1464 balanced_dirty_ratelimit, task_ratelimit); 1465 if (dirty_ratelimit > x) 1466 step = dirty_ratelimit - x; 1467 } 1468 1469 /* 1470 * Don't pursue 100% rate matching. It's impossible since the balanced 1471 * rate itself is constantly fluctuating. So decrease the track speed 1472 * when it gets close to the target. Helps eliminate pointless tremors. 1473 */ 1474 shift = dirty_ratelimit / (2 * step + 1); 1475 if (shift < BITS_PER_LONG) 1476 step = DIV_ROUND_UP(step >> shift, 8); 1477 else 1478 step = 0; 1479 1480 if (dirty_ratelimit < balanced_dirty_ratelimit) 1481 dirty_ratelimit += step; 1482 else 1483 dirty_ratelimit -= step; 1484 1485 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1486 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1487 1488 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1489 } 1490 1491 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1492 struct dirty_throttle_control *mdtc, 1493 bool update_ratelimit) 1494 { 1495 struct bdi_writeback *wb = gdtc->wb; 1496 unsigned long now = jiffies; 1497 unsigned long elapsed; 1498 unsigned long dirtied; 1499 unsigned long written; 1500 1501 spin_lock(&wb->list_lock); 1502 1503 /* 1504 * Lockless checks for elapsed time are racy and delayed update after 1505 * IO completion doesn't do it at all (to make sure written pages are 1506 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1507 * division errors. 1508 */ 1509 elapsed = max(now - wb->bw_time_stamp, 1UL); 1510 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1511 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1512 1513 if (update_ratelimit) { 1514 domain_update_dirty_limit(gdtc, now); 1515 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1516 1517 /* 1518 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1519 * compiler has no way to figure that out. Help it. 1520 */ 1521 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1522 domain_update_dirty_limit(mdtc, now); 1523 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1524 } 1525 } 1526 wb_update_write_bandwidth(wb, elapsed, written); 1527 1528 wb->dirtied_stamp = dirtied; 1529 wb->written_stamp = written; 1530 WRITE_ONCE(wb->bw_time_stamp, now); 1531 spin_unlock(&wb->list_lock); 1532 } 1533 1534 void wb_update_bandwidth(struct bdi_writeback *wb) 1535 { 1536 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1537 1538 __wb_update_bandwidth(&gdtc, NULL, false); 1539 } 1540 1541 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1542 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1543 1544 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1545 { 1546 unsigned long now = jiffies; 1547 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1548 1549 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1550 !atomic_read(&wb->writeback_inodes)) { 1551 spin_lock(&wb->list_lock); 1552 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1553 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1554 WRITE_ONCE(wb->bw_time_stamp, now); 1555 spin_unlock(&wb->list_lock); 1556 } 1557 } 1558 1559 /* 1560 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1561 * will look to see if it needs to start dirty throttling. 1562 * 1563 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1564 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1565 * (the number of pages we may dirty without exceeding the dirty limits). 1566 */ 1567 static unsigned long dirty_poll_interval(unsigned long dirty, 1568 unsigned long thresh) 1569 { 1570 if (thresh > dirty) 1571 return 1UL << (ilog2(thresh - dirty) >> 1); 1572 1573 return 1; 1574 } 1575 1576 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1577 unsigned long wb_dirty) 1578 { 1579 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1580 unsigned long t; 1581 1582 /* 1583 * Limit pause time for small memory systems. If sleeping for too long 1584 * time, a small pool of dirty/writeback pages may go empty and disk go 1585 * idle. 1586 * 1587 * 8 serves as the safety ratio. 1588 */ 1589 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1590 t++; 1591 1592 return min_t(unsigned long, t, MAX_PAUSE); 1593 } 1594 1595 static long wb_min_pause(struct bdi_writeback *wb, 1596 long max_pause, 1597 unsigned long task_ratelimit, 1598 unsigned long dirty_ratelimit, 1599 int *nr_dirtied_pause) 1600 { 1601 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1602 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1603 long t; /* target pause */ 1604 long pause; /* estimated next pause */ 1605 int pages; /* target nr_dirtied_pause */ 1606 1607 /* target for 10ms pause on 1-dd case */ 1608 t = max(1, HZ / 100); 1609 1610 /* 1611 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1612 * overheads. 1613 * 1614 * (N * 10ms) on 2^N concurrent tasks. 1615 */ 1616 if (hi > lo) 1617 t += (hi - lo) * (10 * HZ) / 1024; 1618 1619 /* 1620 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1621 * on the much more stable dirty_ratelimit. However the next pause time 1622 * will be computed based on task_ratelimit and the two rate limits may 1623 * depart considerably at some time. Especially if task_ratelimit goes 1624 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1625 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1626 * result task_ratelimit won't be executed faithfully, which could 1627 * eventually bring down dirty_ratelimit. 1628 * 1629 * We apply two rules to fix it up: 1630 * 1) try to estimate the next pause time and if necessary, use a lower 1631 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1632 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1633 * 2) limit the target pause time to max_pause/2, so that the normal 1634 * small fluctuations of task_ratelimit won't trigger rule (1) and 1635 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1636 */ 1637 t = min(t, 1 + max_pause / 2); 1638 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1639 1640 /* 1641 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1642 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1643 * When the 16 consecutive reads are often interrupted by some dirty 1644 * throttling pause during the async writes, cfq will go into idles 1645 * (deadline is fine). So push nr_dirtied_pause as high as possible 1646 * until reaches DIRTY_POLL_THRESH=32 pages. 1647 */ 1648 if (pages < DIRTY_POLL_THRESH) { 1649 t = max_pause; 1650 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1651 if (pages > DIRTY_POLL_THRESH) { 1652 pages = DIRTY_POLL_THRESH; 1653 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1654 } 1655 } 1656 1657 pause = HZ * pages / (task_ratelimit + 1); 1658 if (pause > max_pause) { 1659 t = max_pause; 1660 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1661 } 1662 1663 *nr_dirtied_pause = pages; 1664 /* 1665 * The minimal pause time will normally be half the target pause time. 1666 */ 1667 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1668 } 1669 1670 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1671 { 1672 struct bdi_writeback *wb = dtc->wb; 1673 unsigned long wb_reclaimable; 1674 1675 /* 1676 * wb_thresh is not treated as some limiting factor as 1677 * dirty_thresh, due to reasons 1678 * - in JBOD setup, wb_thresh can fluctuate a lot 1679 * - in a system with HDD and USB key, the USB key may somehow 1680 * go into state (wb_dirty >> wb_thresh) either because 1681 * wb_dirty starts high, or because wb_thresh drops low. 1682 * In this case we don't want to hard throttle the USB key 1683 * dirtiers for 100 seconds until wb_dirty drops under 1684 * wb_thresh. Instead the auxiliary wb control line in 1685 * wb_position_ratio() will let the dirtier task progress 1686 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1687 */ 1688 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); 1689 dtc->wb_bg_thresh = dtc->thresh ? 1690 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1691 1692 /* 1693 * In order to avoid the stacked BDI deadlock we need 1694 * to ensure we accurately count the 'dirty' pages when 1695 * the threshold is low. 1696 * 1697 * Otherwise it would be possible to get thresh+n pages 1698 * reported dirty, even though there are thresh-m pages 1699 * actually dirty; with m+n sitting in the percpu 1700 * deltas. 1701 */ 1702 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1703 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1704 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1705 } else { 1706 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1707 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1708 } 1709 } 1710 1711 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc, 1712 bool strictlimit) 1713 { 1714 unsigned long dirty, thresh; 1715 1716 if (strictlimit) { 1717 dirty = dtc->wb_dirty; 1718 thresh = dtc->wb_thresh; 1719 } else { 1720 dirty = dtc->dirty; 1721 thresh = dtc->thresh; 1722 } 1723 1724 return dirty_poll_interval(dirty, thresh); 1725 } 1726 1727 /* 1728 * Throttle it only when the background writeback cannot catch-up. This avoids 1729 * (excessively) small writeouts when the wb limits are ramping up in case of 1730 * !strictlimit. 1731 * 1732 * In strictlimit case make decision based on the wb counters and limits. Small 1733 * writeouts when the wb limits are ramping up are the price we consciously pay 1734 * for strictlimit-ing. 1735 */ 1736 static void domain_dirty_freerun(struct dirty_throttle_control *dtc, 1737 bool strictlimit) 1738 { 1739 unsigned long dirty, thresh, bg_thresh; 1740 1741 if (unlikely(strictlimit)) { 1742 wb_dirty_limits(dtc); 1743 dirty = dtc->wb_dirty; 1744 thresh = dtc->wb_thresh; 1745 bg_thresh = dtc->wb_bg_thresh; 1746 } else { 1747 dirty = dtc->dirty; 1748 thresh = dtc->thresh; 1749 bg_thresh = dtc->bg_thresh; 1750 } 1751 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh); 1752 } 1753 1754 static void balance_domain_limits(struct dirty_throttle_control *dtc, 1755 bool strictlimit) 1756 { 1757 domain_dirty_avail(dtc, true); 1758 domain_dirty_limits(dtc); 1759 domain_dirty_freerun(dtc, strictlimit); 1760 } 1761 1762 static void wb_dirty_freerun(struct dirty_throttle_control *dtc, 1763 bool strictlimit) 1764 { 1765 dtc->freerun = false; 1766 1767 /* was already handled in domain_dirty_freerun */ 1768 if (strictlimit) 1769 return; 1770 1771 wb_dirty_limits(dtc); 1772 /* 1773 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb 1774 * freerun ceiling. 1775 */ 1776 if (!(current->flags & PF_LOCAL_THROTTLE)) 1777 return; 1778 1779 dtc->freerun = dtc->wb_dirty < 1780 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh); 1781 } 1782 1783 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc, 1784 bool strictlimit) 1785 { 1786 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) && 1787 ((dtc->dirty > dtc->thresh) || strictlimit); 1788 } 1789 1790 /* 1791 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is 1792 * in freerun state. Please don't use these invalid fields in freerun case. 1793 */ 1794 static void balance_wb_limits(struct dirty_throttle_control *dtc, 1795 bool strictlimit) 1796 { 1797 wb_dirty_freerun(dtc, strictlimit); 1798 if (dtc->freerun) 1799 return; 1800 1801 wb_dirty_exceeded(dtc, strictlimit); 1802 wb_position_ratio(dtc); 1803 } 1804 1805 /* 1806 * balance_dirty_pages() must be called by processes which are generating dirty 1807 * data. It looks at the number of dirty pages in the machine and will force 1808 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1809 * If we're over `background_thresh' then the writeback threads are woken to 1810 * perform some writeout. 1811 */ 1812 static int balance_dirty_pages(struct bdi_writeback *wb, 1813 unsigned long pages_dirtied, unsigned int flags) 1814 { 1815 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1816 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1817 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1818 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1819 &mdtc_stor : NULL; 1820 struct dirty_throttle_control *sdtc; 1821 unsigned long nr_dirty; 1822 long period; 1823 long pause; 1824 long max_pause; 1825 long min_pause; 1826 int nr_dirtied_pause; 1827 unsigned long task_ratelimit; 1828 unsigned long dirty_ratelimit; 1829 struct backing_dev_info *bdi = wb->bdi; 1830 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1831 unsigned long start_time = jiffies; 1832 int ret = 0; 1833 1834 for (;;) { 1835 unsigned long now = jiffies; 1836 1837 nr_dirty = global_node_page_state(NR_FILE_DIRTY); 1838 1839 balance_domain_limits(gdtc, strictlimit); 1840 if (mdtc) { 1841 /* 1842 * If @wb belongs to !root memcg, repeat the same 1843 * basic calculations for the memcg domain. 1844 */ 1845 balance_domain_limits(mdtc, strictlimit); 1846 } 1847 1848 /* 1849 * In laptop mode, we wait until hitting the higher threshold 1850 * before starting background writeout, and then write out all 1851 * the way down to the lower threshold. So slow writers cause 1852 * minimal disk activity. 1853 * 1854 * In normal mode, we start background writeout at the lower 1855 * background_thresh, to keep the amount of dirty memory low. 1856 */ 1857 if (!laptop_mode && nr_dirty > gdtc->bg_thresh && 1858 !writeback_in_progress(wb)) 1859 wb_start_background_writeback(wb); 1860 1861 /* 1862 * If memcg domain is in effect, @dirty should be under 1863 * both global and memcg freerun ceilings. 1864 */ 1865 if (gdtc->freerun && (!mdtc || mdtc->freerun)) { 1866 unsigned long intv; 1867 unsigned long m_intv; 1868 1869 free_running: 1870 intv = domain_poll_intv(gdtc, strictlimit); 1871 m_intv = ULONG_MAX; 1872 1873 current->dirty_paused_when = now; 1874 current->nr_dirtied = 0; 1875 if (mdtc) 1876 m_intv = domain_poll_intv(mdtc, strictlimit); 1877 current->nr_dirtied_pause = min(intv, m_intv); 1878 break; 1879 } 1880 1881 /* Start writeback even when in laptop mode */ 1882 if (unlikely(!writeback_in_progress(wb))) 1883 wb_start_background_writeback(wb); 1884 1885 mem_cgroup_flush_foreign(wb); 1886 1887 /* 1888 * Calculate global domain's pos_ratio and select the 1889 * global dtc by default. 1890 */ 1891 balance_wb_limits(gdtc, strictlimit); 1892 if (gdtc->freerun) 1893 goto free_running; 1894 sdtc = gdtc; 1895 1896 if (mdtc) { 1897 /* 1898 * If memcg domain is in effect, calculate its 1899 * pos_ratio. @wb should satisfy constraints from 1900 * both global and memcg domains. Choose the one 1901 * w/ lower pos_ratio. 1902 */ 1903 balance_wb_limits(mdtc, strictlimit); 1904 if (mdtc->freerun) 1905 goto free_running; 1906 if (mdtc->pos_ratio < gdtc->pos_ratio) 1907 sdtc = mdtc; 1908 } 1909 1910 wb->dirty_exceeded = gdtc->dirty_exceeded || 1911 (mdtc && mdtc->dirty_exceeded); 1912 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1913 BANDWIDTH_INTERVAL)) 1914 __wb_update_bandwidth(gdtc, mdtc, true); 1915 1916 /* throttle according to the chosen dtc */ 1917 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1918 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1919 RATELIMIT_CALC_SHIFT; 1920 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1921 min_pause = wb_min_pause(wb, max_pause, 1922 task_ratelimit, dirty_ratelimit, 1923 &nr_dirtied_pause); 1924 1925 if (unlikely(task_ratelimit == 0)) { 1926 period = max_pause; 1927 pause = max_pause; 1928 goto pause; 1929 } 1930 period = HZ * pages_dirtied / task_ratelimit; 1931 pause = period; 1932 if (current->dirty_paused_when) 1933 pause -= now - current->dirty_paused_when; 1934 /* 1935 * For less than 1s think time (ext3/4 may block the dirtier 1936 * for up to 800ms from time to time on 1-HDD; so does xfs, 1937 * however at much less frequency), try to compensate it in 1938 * future periods by updating the virtual time; otherwise just 1939 * do a reset, as it may be a light dirtier. 1940 */ 1941 if (pause < min_pause) { 1942 trace_balance_dirty_pages(wb, 1943 sdtc, 1944 dirty_ratelimit, 1945 task_ratelimit, 1946 pages_dirtied, 1947 period, 1948 min(pause, 0L), 1949 start_time); 1950 if (pause < -HZ) { 1951 current->dirty_paused_when = now; 1952 current->nr_dirtied = 0; 1953 } else if (period) { 1954 current->dirty_paused_when += period; 1955 current->nr_dirtied = 0; 1956 } else if (current->nr_dirtied_pause <= pages_dirtied) 1957 current->nr_dirtied_pause += pages_dirtied; 1958 break; 1959 } 1960 if (unlikely(pause > max_pause)) { 1961 /* for occasional dropped task_ratelimit */ 1962 now += min(pause - max_pause, max_pause); 1963 pause = max_pause; 1964 } 1965 1966 pause: 1967 trace_balance_dirty_pages(wb, 1968 sdtc, 1969 dirty_ratelimit, 1970 task_ratelimit, 1971 pages_dirtied, 1972 period, 1973 pause, 1974 start_time); 1975 if (flags & BDP_ASYNC) { 1976 ret = -EAGAIN; 1977 break; 1978 } 1979 __set_current_state(TASK_KILLABLE); 1980 bdi->last_bdp_sleep = jiffies; 1981 io_schedule_timeout(pause); 1982 1983 current->dirty_paused_when = now + pause; 1984 current->nr_dirtied = 0; 1985 current->nr_dirtied_pause = nr_dirtied_pause; 1986 1987 /* 1988 * This is typically equal to (dirty < thresh) and can also 1989 * keep "1000+ dd on a slow USB stick" under control. 1990 */ 1991 if (task_ratelimit) 1992 break; 1993 1994 /* 1995 * In the case of an unresponsive NFS server and the NFS dirty 1996 * pages exceeds dirty_thresh, give the other good wb's a pipe 1997 * to go through, so that tasks on them still remain responsive. 1998 * 1999 * In theory 1 page is enough to keep the consumer-producer 2000 * pipe going: the flusher cleans 1 page => the task dirties 1 2001 * more page. However wb_dirty has accounting errors. So use 2002 * the larger and more IO friendly wb_stat_error. 2003 */ 2004 if (sdtc->wb_dirty <= wb_stat_error()) 2005 break; 2006 2007 if (fatal_signal_pending(current)) 2008 break; 2009 } 2010 return ret; 2011 } 2012 2013 static DEFINE_PER_CPU(int, bdp_ratelimits); 2014 2015 /* 2016 * Normal tasks are throttled by 2017 * loop { 2018 * dirty tsk->nr_dirtied_pause pages; 2019 * take a snap in balance_dirty_pages(); 2020 * } 2021 * However there is a worst case. If every task exit immediately when dirtied 2022 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 2023 * called to throttle the page dirties. The solution is to save the not yet 2024 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 2025 * randomly into the running tasks. This works well for the above worst case, 2026 * as the new task will pick up and accumulate the old task's leaked dirty 2027 * count and eventually get throttled. 2028 */ 2029 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 2030 2031 /** 2032 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 2033 * @mapping: address_space which was dirtied. 2034 * @flags: BDP flags. 2035 * 2036 * Processes which are dirtying memory should call in here once for each page 2037 * which was newly dirtied. The function will periodically check the system's 2038 * dirty state and will initiate writeback if needed. 2039 * 2040 * See balance_dirty_pages_ratelimited() for details. 2041 * 2042 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2043 * indicate that memory is out of balance and the caller must wait 2044 * for I/O to complete. Otherwise, it will return 0 to indicate 2045 * that either memory was already in balance, or it was able to sleep 2046 * until the amount of dirty memory returned to balance. 2047 */ 2048 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2049 unsigned int flags) 2050 { 2051 struct inode *inode = mapping->host; 2052 struct backing_dev_info *bdi = inode_to_bdi(inode); 2053 struct bdi_writeback *wb = NULL; 2054 int ratelimit; 2055 int ret = 0; 2056 int *p; 2057 2058 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2059 return ret; 2060 2061 if (inode_cgwb_enabled(inode)) 2062 wb = wb_get_create_current(bdi, GFP_KERNEL); 2063 if (!wb) 2064 wb = &bdi->wb; 2065 2066 ratelimit = current->nr_dirtied_pause; 2067 if (wb->dirty_exceeded) 2068 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2069 2070 preempt_disable(); 2071 /* 2072 * This prevents one CPU to accumulate too many dirtied pages without 2073 * calling into balance_dirty_pages(), which can happen when there are 2074 * 1000+ tasks, all of them start dirtying pages at exactly the same 2075 * time, hence all honoured too large initial task->nr_dirtied_pause. 2076 */ 2077 p = this_cpu_ptr(&bdp_ratelimits); 2078 if (unlikely(current->nr_dirtied >= ratelimit)) 2079 *p = 0; 2080 else if (unlikely(*p >= ratelimit_pages)) { 2081 *p = 0; 2082 ratelimit = 0; 2083 } 2084 /* 2085 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2086 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2087 * the dirty throttling and livelock other long-run dirtiers. 2088 */ 2089 p = this_cpu_ptr(&dirty_throttle_leaks); 2090 if (*p > 0 && current->nr_dirtied < ratelimit) { 2091 unsigned long nr_pages_dirtied; 2092 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2093 *p -= nr_pages_dirtied; 2094 current->nr_dirtied += nr_pages_dirtied; 2095 } 2096 preempt_enable(); 2097 2098 if (unlikely(current->nr_dirtied >= ratelimit)) 2099 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2100 2101 wb_put(wb); 2102 return ret; 2103 } 2104 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2105 2106 /** 2107 * balance_dirty_pages_ratelimited - balance dirty memory state. 2108 * @mapping: address_space which was dirtied. 2109 * 2110 * Processes which are dirtying memory should call in here once for each page 2111 * which was newly dirtied. The function will periodically check the system's 2112 * dirty state and will initiate writeback if needed. 2113 * 2114 * Once we're over the dirty memory limit we decrease the ratelimiting 2115 * by a lot, to prevent individual processes from overshooting the limit 2116 * by (ratelimit_pages) each. 2117 */ 2118 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2119 { 2120 balance_dirty_pages_ratelimited_flags(mapping, 0); 2121 } 2122 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2123 2124 /* 2125 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty 2126 * and thresh, but it's for background writeback. 2127 */ 2128 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc) 2129 { 2130 struct bdi_writeback *wb = dtc->wb; 2131 2132 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh); 2133 if (dtc->wb_bg_thresh < 2 * wb_stat_error()) 2134 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE); 2135 else 2136 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE); 2137 } 2138 2139 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc) 2140 { 2141 domain_dirty_avail(dtc, false); 2142 domain_dirty_limits(dtc); 2143 if (dtc->dirty > dtc->bg_thresh) 2144 return true; 2145 2146 wb_bg_dirty_limits(dtc); 2147 if (dtc->wb_dirty > dtc->wb_bg_thresh) 2148 return true; 2149 2150 return false; 2151 } 2152 2153 /** 2154 * wb_over_bg_thresh - does @wb need to be written back? 2155 * @wb: bdi_writeback of interest 2156 * 2157 * Determines whether background writeback should keep writing @wb or it's 2158 * clean enough. 2159 * 2160 * Return: %true if writeback should continue. 2161 */ 2162 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2163 { 2164 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 2165 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 2166 2167 if (domain_over_bg_thresh(&gdtc)) 2168 return true; 2169 2170 if (mdtc_valid(&mdtc)) 2171 return domain_over_bg_thresh(&mdtc); 2172 2173 return false; 2174 } 2175 2176 #ifdef CONFIG_SYSCTL 2177 /* 2178 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2179 */ 2180 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write, 2181 void *buffer, size_t *length, loff_t *ppos) 2182 { 2183 unsigned int old_interval = dirty_writeback_interval; 2184 int ret; 2185 2186 ret = proc_dointvec(table, write, buffer, length, ppos); 2187 2188 /* 2189 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2190 * and a different non-zero value will wakeup the writeback threads. 2191 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2192 * iterate over all bdis and wbs. 2193 * The reason we do this is to make the change take effect immediately. 2194 */ 2195 if (!ret && write && dirty_writeback_interval && 2196 dirty_writeback_interval != old_interval) 2197 wakeup_flusher_threads(WB_REASON_PERIODIC); 2198 2199 return ret; 2200 } 2201 #endif 2202 2203 void laptop_mode_timer_fn(struct timer_list *t) 2204 { 2205 struct backing_dev_info *backing_dev_info = 2206 timer_container_of(backing_dev_info, t, laptop_mode_wb_timer); 2207 2208 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2209 } 2210 2211 /* 2212 * We've spun up the disk and we're in laptop mode: schedule writeback 2213 * of all dirty data a few seconds from now. If the flush is already scheduled 2214 * then push it back - the user is still using the disk. 2215 */ 2216 void laptop_io_completion(struct backing_dev_info *info) 2217 { 2218 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2219 } 2220 2221 /* 2222 * We're in laptop mode and we've just synced. The sync's writes will have 2223 * caused another writeback to be scheduled by laptop_io_completion. 2224 * Nothing needs to be written back anymore, so we unschedule the writeback. 2225 */ 2226 void laptop_sync_completion(void) 2227 { 2228 struct backing_dev_info *bdi; 2229 2230 rcu_read_lock(); 2231 2232 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2233 timer_delete(&bdi->laptop_mode_wb_timer); 2234 2235 rcu_read_unlock(); 2236 } 2237 2238 /* 2239 * If ratelimit_pages is too high then we can get into dirty-data overload 2240 * if a large number of processes all perform writes at the same time. 2241 * 2242 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2243 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2244 * thresholds. 2245 */ 2246 2247 void writeback_set_ratelimit(void) 2248 { 2249 struct wb_domain *dom = &global_wb_domain; 2250 unsigned long background_thresh; 2251 unsigned long dirty_thresh; 2252 2253 global_dirty_limits(&background_thresh, &dirty_thresh); 2254 dom->dirty_limit = dirty_thresh; 2255 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2256 if (ratelimit_pages < 16) 2257 ratelimit_pages = 16; 2258 } 2259 2260 static int page_writeback_cpu_online(unsigned int cpu) 2261 { 2262 writeback_set_ratelimit(); 2263 return 0; 2264 } 2265 2266 #ifdef CONFIG_SYSCTL 2267 2268 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2269 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2270 2271 static const struct ctl_table vm_page_writeback_sysctls[] = { 2272 { 2273 .procname = "dirty_background_ratio", 2274 .data = &dirty_background_ratio, 2275 .maxlen = sizeof(dirty_background_ratio), 2276 .mode = 0644, 2277 .proc_handler = dirty_background_ratio_handler, 2278 .extra1 = SYSCTL_ZERO, 2279 .extra2 = SYSCTL_ONE_HUNDRED, 2280 }, 2281 { 2282 .procname = "dirty_background_bytes", 2283 .data = &dirty_background_bytes, 2284 .maxlen = sizeof(dirty_background_bytes), 2285 .mode = 0644, 2286 .proc_handler = dirty_background_bytes_handler, 2287 .extra1 = SYSCTL_LONG_ONE, 2288 }, 2289 { 2290 .procname = "dirty_ratio", 2291 .data = &vm_dirty_ratio, 2292 .maxlen = sizeof(vm_dirty_ratio), 2293 .mode = 0644, 2294 .proc_handler = dirty_ratio_handler, 2295 .extra1 = SYSCTL_ZERO, 2296 .extra2 = SYSCTL_ONE_HUNDRED, 2297 }, 2298 { 2299 .procname = "dirty_bytes", 2300 .data = &vm_dirty_bytes, 2301 .maxlen = sizeof(vm_dirty_bytes), 2302 .mode = 0644, 2303 .proc_handler = dirty_bytes_handler, 2304 .extra1 = (void *)&dirty_bytes_min, 2305 }, 2306 { 2307 .procname = "dirty_writeback_centisecs", 2308 .data = &dirty_writeback_interval, 2309 .maxlen = sizeof(dirty_writeback_interval), 2310 .mode = 0644, 2311 .proc_handler = dirty_writeback_centisecs_handler, 2312 }, 2313 { 2314 .procname = "dirty_expire_centisecs", 2315 .data = &dirty_expire_interval, 2316 .maxlen = sizeof(dirty_expire_interval), 2317 .mode = 0644, 2318 .proc_handler = proc_dointvec_minmax, 2319 .extra1 = SYSCTL_ZERO, 2320 }, 2321 #ifdef CONFIG_HIGHMEM 2322 { 2323 .procname = "highmem_is_dirtyable", 2324 .data = &vm_highmem_is_dirtyable, 2325 .maxlen = sizeof(vm_highmem_is_dirtyable), 2326 .mode = 0644, 2327 .proc_handler = proc_dointvec_minmax, 2328 .extra1 = SYSCTL_ZERO, 2329 .extra2 = SYSCTL_ONE, 2330 }, 2331 #endif 2332 { 2333 .procname = "laptop_mode", 2334 .data = &laptop_mode, 2335 .maxlen = sizeof(laptop_mode), 2336 .mode = 0644, 2337 .proc_handler = proc_dointvec_jiffies, 2338 }, 2339 }; 2340 #endif 2341 2342 /* 2343 * Called early on to tune the page writeback dirty limits. 2344 * 2345 * We used to scale dirty pages according to how total memory 2346 * related to pages that could be allocated for buffers. 2347 * 2348 * However, that was when we used "dirty_ratio" to scale with 2349 * all memory, and we don't do that any more. "dirty_ratio" 2350 * is now applied to total non-HIGHPAGE memory, and as such we can't 2351 * get into the old insane situation any more where we had 2352 * large amounts of dirty pages compared to a small amount of 2353 * non-HIGHMEM memory. 2354 * 2355 * But we might still want to scale the dirty_ratio by how 2356 * much memory the box has.. 2357 */ 2358 void __init page_writeback_init(void) 2359 { 2360 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2361 2362 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2363 page_writeback_cpu_online, NULL); 2364 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2365 page_writeback_cpu_online); 2366 #ifdef CONFIG_SYSCTL 2367 register_sysctl_init("vm", vm_page_writeback_sysctls); 2368 #endif 2369 } 2370 2371 /** 2372 * tag_pages_for_writeback - tag pages to be written by writeback 2373 * @mapping: address space structure to write 2374 * @start: starting page index 2375 * @end: ending page index (inclusive) 2376 * 2377 * This function scans the page range from @start to @end (inclusive) and tags 2378 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2379 * can then use the TOWRITE tag to identify pages eligible for writeback. 2380 * This mechanism is used to avoid livelocking of writeback by a process 2381 * steadily creating new dirty pages in the file (thus it is important for this 2382 * function to be quick so that it can tag pages faster than a dirtying process 2383 * can create them). 2384 */ 2385 void tag_pages_for_writeback(struct address_space *mapping, 2386 pgoff_t start, pgoff_t end) 2387 { 2388 XA_STATE(xas, &mapping->i_pages, start); 2389 unsigned int tagged = 0; 2390 void *page; 2391 2392 xas_lock_irq(&xas); 2393 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2394 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2395 if (++tagged % XA_CHECK_SCHED) 2396 continue; 2397 2398 xas_pause(&xas); 2399 xas_unlock_irq(&xas); 2400 cond_resched(); 2401 xas_lock_irq(&xas); 2402 } 2403 xas_unlock_irq(&xas); 2404 } 2405 EXPORT_SYMBOL(tag_pages_for_writeback); 2406 2407 static bool folio_prepare_writeback(struct address_space *mapping, 2408 struct writeback_control *wbc, struct folio *folio) 2409 { 2410 /* 2411 * Folio truncated or invalidated. We can freely skip it then, 2412 * even for data integrity operations: the folio has disappeared 2413 * concurrently, so there could be no real expectation of this 2414 * data integrity operation even if there is now a new, dirty 2415 * folio at the same pagecache index. 2416 */ 2417 if (unlikely(folio->mapping != mapping)) 2418 return false; 2419 2420 /* 2421 * Did somebody else write it for us? 2422 */ 2423 if (!folio_test_dirty(folio)) 2424 return false; 2425 2426 if (folio_test_writeback(folio)) { 2427 if (wbc->sync_mode == WB_SYNC_NONE) 2428 return false; 2429 folio_wait_writeback(folio); 2430 } 2431 BUG_ON(folio_test_writeback(folio)); 2432 2433 if (!folio_clear_dirty_for_io(folio)) 2434 return false; 2435 2436 return true; 2437 } 2438 2439 static xa_mark_t wbc_to_tag(struct writeback_control *wbc) 2440 { 2441 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2442 return PAGECACHE_TAG_TOWRITE; 2443 return PAGECACHE_TAG_DIRTY; 2444 } 2445 2446 static pgoff_t wbc_end(struct writeback_control *wbc) 2447 { 2448 if (wbc->range_cyclic) 2449 return -1; 2450 return wbc->range_end >> PAGE_SHIFT; 2451 } 2452 2453 static struct folio *writeback_get_folio(struct address_space *mapping, 2454 struct writeback_control *wbc) 2455 { 2456 struct folio *folio; 2457 2458 retry: 2459 folio = folio_batch_next(&wbc->fbatch); 2460 if (!folio) { 2461 folio_batch_release(&wbc->fbatch); 2462 cond_resched(); 2463 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2464 wbc_to_tag(wbc), &wbc->fbatch); 2465 folio = folio_batch_next(&wbc->fbatch); 2466 if (!folio) 2467 return NULL; 2468 } 2469 2470 folio_lock(folio); 2471 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2472 folio_unlock(folio); 2473 goto retry; 2474 } 2475 2476 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2477 return folio; 2478 } 2479 2480 /** 2481 * writeback_iter - iterate folio of a mapping for writeback 2482 * @mapping: address space structure to write 2483 * @wbc: writeback context 2484 * @folio: previously iterated folio (%NULL to start) 2485 * @error: in-out pointer for writeback errors (see below) 2486 * 2487 * This function returns the next folio for the writeback operation described by 2488 * @wbc on @mapping and should be called in a while loop in the ->writepages 2489 * implementation. 2490 * 2491 * To start the writeback operation, %NULL is passed in the @folio argument, and 2492 * for every subsequent iteration the folio returned previously should be passed 2493 * back in. 2494 * 2495 * If there was an error in the per-folio writeback inside the writeback_iter() 2496 * loop, @error should be set to the error value. 2497 * 2498 * Once the writeback described in @wbc has finished, this function will return 2499 * %NULL and if there was an error in any iteration restore it to @error. 2500 * 2501 * Note: callers should not manually break out of the loop using break or goto 2502 * but must keep calling writeback_iter() until it returns %NULL. 2503 * 2504 * Return: the folio to write or %NULL if the loop is done. 2505 */ 2506 struct folio *writeback_iter(struct address_space *mapping, 2507 struct writeback_control *wbc, struct folio *folio, int *error) 2508 { 2509 if (!folio) { 2510 folio_batch_init(&wbc->fbatch); 2511 wbc->saved_err = *error = 0; 2512 2513 /* 2514 * For range cyclic writeback we remember where we stopped so 2515 * that we can continue where we stopped. 2516 * 2517 * For non-cyclic writeback we always start at the beginning of 2518 * the passed in range. 2519 */ 2520 if (wbc->range_cyclic) 2521 wbc->index = mapping->writeback_index; 2522 else 2523 wbc->index = wbc->range_start >> PAGE_SHIFT; 2524 2525 /* 2526 * To avoid livelocks when other processes dirty new pages, we 2527 * first tag pages which should be written back and only then 2528 * start writing them. 2529 * 2530 * For data-integrity writeback we have to be careful so that we 2531 * do not miss some pages (e.g., because some other process has 2532 * cleared the TOWRITE tag we set). The rule we follow is that 2533 * TOWRITE tag can be cleared only by the process clearing the 2534 * DIRTY tag (and submitting the page for I/O). 2535 */ 2536 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2537 tag_pages_for_writeback(mapping, wbc->index, 2538 wbc_end(wbc)); 2539 } else { 2540 wbc->nr_to_write -= folio_nr_pages(folio); 2541 2542 WARN_ON_ONCE(*error > 0); 2543 2544 /* 2545 * For integrity writeback we have to keep going until we have 2546 * written all the folios we tagged for writeback above, even if 2547 * we run past wbc->nr_to_write or encounter errors. 2548 * We stash away the first error we encounter in wbc->saved_err 2549 * so that it can be retrieved when we're done. This is because 2550 * the file system may still have state to clear for each folio. 2551 * 2552 * For background writeback we exit as soon as we run past 2553 * wbc->nr_to_write or encounter the first error. 2554 */ 2555 if (wbc->sync_mode == WB_SYNC_ALL) { 2556 if (*error && !wbc->saved_err) 2557 wbc->saved_err = *error; 2558 } else { 2559 if (*error || wbc->nr_to_write <= 0) 2560 goto done; 2561 } 2562 } 2563 2564 folio = writeback_get_folio(mapping, wbc); 2565 if (!folio) { 2566 /* 2567 * To avoid deadlocks between range_cyclic writeback and callers 2568 * that hold folios in writeback to aggregate I/O until 2569 * the writeback iteration finishes, we do not loop back to the 2570 * start of the file. Doing so causes a folio lock/folio 2571 * writeback access order inversion - we should only ever lock 2572 * multiple folios in ascending folio->index order, and looping 2573 * back to the start of the file violates that rule and causes 2574 * deadlocks. 2575 */ 2576 if (wbc->range_cyclic) 2577 mapping->writeback_index = 0; 2578 2579 /* 2580 * Return the first error we encountered (if there was any) to 2581 * the caller. 2582 */ 2583 *error = wbc->saved_err; 2584 } 2585 return folio; 2586 2587 done: 2588 if (wbc->range_cyclic) 2589 mapping->writeback_index = folio_next_index(folio); 2590 folio_batch_release(&wbc->fbatch); 2591 return NULL; 2592 } 2593 EXPORT_SYMBOL_GPL(writeback_iter); 2594 2595 /** 2596 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2597 * @mapping: address space structure to write 2598 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2599 * @writepage: function called for each page 2600 * @data: data passed to writepage function 2601 * 2602 * Return: %0 on success, negative error code otherwise 2603 * 2604 * Note: please use writeback_iter() instead. 2605 */ 2606 int write_cache_pages(struct address_space *mapping, 2607 struct writeback_control *wbc, writepage_t writepage, 2608 void *data) 2609 { 2610 struct folio *folio = NULL; 2611 int error; 2612 2613 while ((folio = writeback_iter(mapping, wbc, folio, &error))) { 2614 error = writepage(folio, wbc, data); 2615 if (error == AOP_WRITEPAGE_ACTIVATE) { 2616 folio_unlock(folio); 2617 error = 0; 2618 } 2619 } 2620 2621 return error; 2622 } 2623 EXPORT_SYMBOL(write_cache_pages); 2624 2625 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2626 { 2627 int ret; 2628 struct bdi_writeback *wb; 2629 2630 if (wbc->nr_to_write <= 0) 2631 return 0; 2632 wb = inode_to_wb_wbc(mapping->host, wbc); 2633 wb_bandwidth_estimate_start(wb); 2634 while (1) { 2635 if (mapping->a_ops->writepages) 2636 ret = mapping->a_ops->writepages(mapping, wbc); 2637 else 2638 /* deal with chardevs and other special files */ 2639 ret = 0; 2640 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2641 break; 2642 2643 /* 2644 * Lacking an allocation context or the locality or writeback 2645 * state of any of the inode's pages, throttle based on 2646 * writeback activity on the local node. It's as good a 2647 * guess as any. 2648 */ 2649 reclaim_throttle(NODE_DATA(numa_node_id()), 2650 VMSCAN_THROTTLE_WRITEBACK); 2651 } 2652 /* 2653 * Usually few pages are written by now from those we've just submitted 2654 * but if there's constant writeback being submitted, this makes sure 2655 * writeback bandwidth is updated once in a while. 2656 */ 2657 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2658 BANDWIDTH_INTERVAL)) 2659 wb_update_bandwidth(wb); 2660 return ret; 2661 } 2662 2663 /* 2664 * For address_spaces which do not use buffers nor write back. 2665 */ 2666 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2667 { 2668 if (!folio_test_dirty(folio)) 2669 return !folio_test_set_dirty(folio); 2670 return false; 2671 } 2672 EXPORT_SYMBOL(noop_dirty_folio); 2673 2674 /* 2675 * Helper function for set_page_dirty family. 2676 * 2677 * NOTE: This relies on being atomic wrt interrupts. 2678 */ 2679 static void folio_account_dirtied(struct folio *folio, 2680 struct address_space *mapping) 2681 { 2682 struct inode *inode = mapping->host; 2683 2684 trace_writeback_dirty_folio(folio, mapping); 2685 2686 if (mapping_can_writeback(mapping)) { 2687 struct bdi_writeback *wb; 2688 long nr = folio_nr_pages(folio); 2689 2690 inode_attach_wb(inode, folio); 2691 wb = inode_to_wb(inode); 2692 2693 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2694 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2695 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2696 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2697 wb_stat_mod(wb, WB_DIRTIED, nr); 2698 task_io_account_write(nr * PAGE_SIZE); 2699 current->nr_dirtied += nr; 2700 __this_cpu_add(bdp_ratelimits, nr); 2701 2702 mem_cgroup_track_foreign_dirty(folio, wb); 2703 } 2704 } 2705 2706 /* 2707 * Helper function for deaccounting dirty page without writeback. 2708 * 2709 */ 2710 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2711 { 2712 long nr = folio_nr_pages(folio); 2713 2714 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2715 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2716 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2717 task_io_account_cancelled_write(nr * PAGE_SIZE); 2718 } 2719 2720 /* 2721 * Mark the folio dirty, and set it dirty in the page cache. 2722 * 2723 * If warn is true, then emit a warning if the folio is not uptodate and has 2724 * not been truncated. 2725 * 2726 * It is the caller's responsibility to prevent the folio from being truncated 2727 * while this function is in progress, although it may have been truncated 2728 * before this function is called. Most callers have the folio locked. 2729 * A few have the folio blocked from truncation through other means (e.g. 2730 * zap_vma_pages() has it mapped and is holding the page table lock). 2731 * When called from mark_buffer_dirty(), the filesystem should hold a 2732 * reference to the buffer_head that is being marked dirty, which causes 2733 * try_to_free_buffers() to fail. 2734 */ 2735 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2736 int warn) 2737 { 2738 unsigned long flags; 2739 2740 xa_lock_irqsave(&mapping->i_pages, flags); 2741 if (folio->mapping) { /* Race with truncate? */ 2742 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2743 folio_account_dirtied(folio, mapping); 2744 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2745 PAGECACHE_TAG_DIRTY); 2746 } 2747 xa_unlock_irqrestore(&mapping->i_pages, flags); 2748 } 2749 2750 /** 2751 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2752 * @mapping: Address space this folio belongs to. 2753 * @folio: Folio to be marked as dirty. 2754 * 2755 * Filesystems which do not use buffer heads should call this function 2756 * from their dirty_folio address space operation. It ignores the 2757 * contents of folio_get_private(), so if the filesystem marks individual 2758 * blocks as dirty, the filesystem should handle that itself. 2759 * 2760 * This is also sometimes used by filesystems which use buffer_heads when 2761 * a single buffer is being dirtied: we want to set the folio dirty in 2762 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2763 * whereas block_dirty_folio() is a "top-down" dirtying. 2764 * 2765 * The caller must ensure this doesn't race with truncation. Most will 2766 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2767 * folio mapped and the pte lock held, which also locks out truncation. 2768 */ 2769 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2770 { 2771 if (folio_test_set_dirty(folio)) 2772 return false; 2773 2774 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2775 2776 if (mapping->host) { 2777 /* !PageAnon && !swapper_space */ 2778 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2779 } 2780 return true; 2781 } 2782 EXPORT_SYMBOL(filemap_dirty_folio); 2783 2784 /** 2785 * folio_redirty_for_writepage - Decline to write a dirty folio. 2786 * @wbc: The writeback control. 2787 * @folio: The folio. 2788 * 2789 * When a writepage implementation decides that it doesn't want to write 2790 * @folio for some reason, it should call this function, unlock @folio and 2791 * return 0. 2792 * 2793 * Return: True if we redirtied the folio. False if someone else dirtied 2794 * it first. 2795 */ 2796 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2797 struct folio *folio) 2798 { 2799 struct address_space *mapping = folio->mapping; 2800 long nr = folio_nr_pages(folio); 2801 bool ret; 2802 2803 wbc->pages_skipped += nr; 2804 ret = filemap_dirty_folio(mapping, folio); 2805 if (mapping && mapping_can_writeback(mapping)) { 2806 struct inode *inode = mapping->host; 2807 struct bdi_writeback *wb; 2808 struct wb_lock_cookie cookie = {}; 2809 2810 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2811 current->nr_dirtied -= nr; 2812 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2813 wb_stat_mod(wb, WB_DIRTIED, -nr); 2814 unlocked_inode_to_wb_end(inode, &cookie); 2815 } 2816 return ret; 2817 } 2818 EXPORT_SYMBOL(folio_redirty_for_writepage); 2819 2820 /** 2821 * folio_mark_dirty - Mark a folio as being modified. 2822 * @folio: The folio. 2823 * 2824 * The folio may not be truncated while this function is running. 2825 * Holding the folio lock is sufficient to prevent truncation, but some 2826 * callers cannot acquire a sleeping lock. These callers instead hold 2827 * the page table lock for a page table which contains at least one page 2828 * in this folio. Truncation will block on the page table lock as it 2829 * unmaps pages before removing the folio from its mapping. 2830 * 2831 * Return: True if the folio was newly dirtied, false if it was already dirty. 2832 */ 2833 bool folio_mark_dirty(struct folio *folio) 2834 { 2835 struct address_space *mapping = folio_mapping(folio); 2836 2837 if (likely(mapping)) { 2838 /* 2839 * readahead/folio_deactivate could remain 2840 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2841 * About readahead, if the folio is written, the flags would be 2842 * reset. So no problem. 2843 * About folio_deactivate, if the folio is redirtied, 2844 * the flag will be reset. So no problem. but if the 2845 * folio is used by readahead it will confuse readahead 2846 * and make it restart the size rampup process. But it's 2847 * a trivial problem. 2848 */ 2849 if (folio_test_reclaim(folio)) 2850 folio_clear_reclaim(folio); 2851 return mapping->a_ops->dirty_folio(mapping, folio); 2852 } 2853 2854 return noop_dirty_folio(mapping, folio); 2855 } 2856 EXPORT_SYMBOL(folio_mark_dirty); 2857 2858 /* 2859 * folio_mark_dirty() is racy if the caller has no reference against 2860 * folio->mapping->host, and if the folio is unlocked. This is because another 2861 * CPU could truncate the folio off the mapping and then free the mapping. 2862 * 2863 * Usually, the folio _is_ locked, or the caller is a user-space process which 2864 * holds a reference on the inode by having an open file. 2865 * 2866 * In other cases, the folio should be locked before running folio_mark_dirty(). 2867 */ 2868 bool folio_mark_dirty_lock(struct folio *folio) 2869 { 2870 bool ret; 2871 2872 folio_lock(folio); 2873 ret = folio_mark_dirty(folio); 2874 folio_unlock(folio); 2875 return ret; 2876 } 2877 EXPORT_SYMBOL(folio_mark_dirty_lock); 2878 2879 /* 2880 * This cancels just the dirty bit on the kernel page itself, it does NOT 2881 * actually remove dirty bits on any mmap's that may be around. It also 2882 * leaves the page tagged dirty, so any sync activity will still find it on 2883 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2884 * look at the dirty bits in the VM. 2885 * 2886 * Doing this should *normally* only ever be done when a page is truncated, 2887 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2888 * this when it notices that somebody has cleaned out all the buffers on a 2889 * page without actually doing it through the VM. Can you say "ext3 is 2890 * horribly ugly"? Thought you could. 2891 */ 2892 void __folio_cancel_dirty(struct folio *folio) 2893 { 2894 struct address_space *mapping = folio_mapping(folio); 2895 2896 if (mapping_can_writeback(mapping)) { 2897 struct inode *inode = mapping->host; 2898 struct bdi_writeback *wb; 2899 struct wb_lock_cookie cookie = {}; 2900 2901 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2902 2903 if (folio_test_clear_dirty(folio)) 2904 folio_account_cleaned(folio, wb); 2905 2906 unlocked_inode_to_wb_end(inode, &cookie); 2907 } else { 2908 folio_clear_dirty(folio); 2909 } 2910 } 2911 EXPORT_SYMBOL(__folio_cancel_dirty); 2912 2913 /* 2914 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2915 * Returns true if the folio was previously dirty. 2916 * 2917 * This is for preparing to put the folio under writeout. We leave 2918 * the folio tagged as dirty in the xarray so that a concurrent 2919 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2920 * The ->writepage implementation will run either folio_start_writeback() 2921 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2922 * and xarray dirty tag back into sync. 2923 * 2924 * This incoherency between the folio's dirty flag and xarray tag is 2925 * unfortunate, but it only exists while the folio is locked. 2926 */ 2927 bool folio_clear_dirty_for_io(struct folio *folio) 2928 { 2929 struct address_space *mapping = folio_mapping(folio); 2930 bool ret = false; 2931 2932 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2933 2934 if (mapping && mapping_can_writeback(mapping)) { 2935 struct inode *inode = mapping->host; 2936 struct bdi_writeback *wb; 2937 struct wb_lock_cookie cookie = {}; 2938 2939 /* 2940 * Yes, Virginia, this is indeed insane. 2941 * 2942 * We use this sequence to make sure that 2943 * (a) we account for dirty stats properly 2944 * (b) we tell the low-level filesystem to 2945 * mark the whole folio dirty if it was 2946 * dirty in a pagetable. Only to then 2947 * (c) clean the folio again and return 1 to 2948 * cause the writeback. 2949 * 2950 * This way we avoid all nasty races with the 2951 * dirty bit in multiple places and clearing 2952 * them concurrently from different threads. 2953 * 2954 * Note! Normally the "folio_mark_dirty(folio)" 2955 * has no effect on the actual dirty bit - since 2956 * that will already usually be set. But we 2957 * need the side effects, and it can help us 2958 * avoid races. 2959 * 2960 * We basically use the folio "master dirty bit" 2961 * as a serialization point for all the different 2962 * threads doing their things. 2963 */ 2964 if (folio_mkclean(folio)) 2965 folio_mark_dirty(folio); 2966 /* 2967 * We carefully synchronise fault handlers against 2968 * installing a dirty pte and marking the folio dirty 2969 * at this point. We do this by having them hold the 2970 * page lock while dirtying the folio, and folios are 2971 * always locked coming in here, so we get the desired 2972 * exclusion. 2973 */ 2974 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2975 if (folio_test_clear_dirty(folio)) { 2976 long nr = folio_nr_pages(folio); 2977 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2978 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2979 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2980 ret = true; 2981 } 2982 unlocked_inode_to_wb_end(inode, &cookie); 2983 return ret; 2984 } 2985 return folio_test_clear_dirty(folio); 2986 } 2987 EXPORT_SYMBOL(folio_clear_dirty_for_io); 2988 2989 static void wb_inode_writeback_start(struct bdi_writeback *wb) 2990 { 2991 atomic_inc(&wb->writeback_inodes); 2992 } 2993 2994 static void wb_inode_writeback_end(struct bdi_writeback *wb) 2995 { 2996 unsigned long flags; 2997 atomic_dec(&wb->writeback_inodes); 2998 /* 2999 * Make sure estimate of writeback throughput gets updated after 3000 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 3001 * (which is the interval other bandwidth updates use for batching) so 3002 * that if multiple inodes end writeback at a similar time, they get 3003 * batched into one bandwidth update. 3004 */ 3005 spin_lock_irqsave(&wb->work_lock, flags); 3006 if (test_bit(WB_registered, &wb->state)) 3007 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 3008 spin_unlock_irqrestore(&wb->work_lock, flags); 3009 } 3010 3011 bool __folio_end_writeback(struct folio *folio) 3012 { 3013 long nr = folio_nr_pages(folio); 3014 struct address_space *mapping = folio_mapping(folio); 3015 bool ret; 3016 3017 if (mapping && mapping_use_writeback_tags(mapping)) { 3018 struct inode *inode = mapping->host; 3019 struct backing_dev_info *bdi = inode_to_bdi(inode); 3020 unsigned long flags; 3021 3022 xa_lock_irqsave(&mapping->i_pages, flags); 3023 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3024 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 3025 PAGECACHE_TAG_WRITEBACK); 3026 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3027 struct bdi_writeback *wb = inode_to_wb(inode); 3028 3029 wb_stat_mod(wb, WB_WRITEBACK, -nr); 3030 __wb_writeout_add(wb, nr); 3031 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 3032 wb_inode_writeback_end(wb); 3033 } 3034 3035 if (mapping->host && !mapping_tagged(mapping, 3036 PAGECACHE_TAG_WRITEBACK)) 3037 sb_clear_inode_writeback(mapping->host); 3038 3039 xa_unlock_irqrestore(&mapping->i_pages, flags); 3040 } else { 3041 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3042 } 3043 3044 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3045 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3046 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3047 3048 return ret; 3049 } 3050 3051 void __folio_start_writeback(struct folio *folio, bool keep_write) 3052 { 3053 long nr = folio_nr_pages(folio); 3054 struct address_space *mapping = folio_mapping(folio); 3055 int access_ret; 3056 3057 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 3058 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3059 3060 if (mapping && mapping_use_writeback_tags(mapping)) { 3061 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3062 struct inode *inode = mapping->host; 3063 struct backing_dev_info *bdi = inode_to_bdi(inode); 3064 unsigned long flags; 3065 bool on_wblist; 3066 3067 xas_lock_irqsave(&xas, flags); 3068 xas_load(&xas); 3069 folio_test_set_writeback(folio); 3070 3071 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 3072 3073 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3074 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3075 struct bdi_writeback *wb = inode_to_wb(inode); 3076 3077 wb_stat_mod(wb, WB_WRITEBACK, nr); 3078 if (!on_wblist) 3079 wb_inode_writeback_start(wb); 3080 } 3081 3082 /* 3083 * We can come through here when swapping anonymous 3084 * folios, so we don't necessarily have an inode to 3085 * track for sync. 3086 */ 3087 if (mapping->host && !on_wblist) 3088 sb_mark_inode_writeback(mapping->host); 3089 if (!folio_test_dirty(folio)) 3090 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3091 if (!keep_write) 3092 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3093 xas_unlock_irqrestore(&xas, flags); 3094 } else { 3095 folio_test_set_writeback(folio); 3096 } 3097 3098 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3099 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3100 3101 access_ret = arch_make_folio_accessible(folio); 3102 /* 3103 * If writeback has been triggered on a page that cannot be made 3104 * accessible, it is too late to recover here. 3105 */ 3106 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3107 } 3108 EXPORT_SYMBOL(__folio_start_writeback); 3109 3110 /** 3111 * folio_wait_writeback - Wait for a folio to finish writeback. 3112 * @folio: The folio to wait for. 3113 * 3114 * If the folio is currently being written back to storage, wait for the 3115 * I/O to complete. 3116 * 3117 * Context: Sleeps. Must be called in process context and with 3118 * no spinlocks held. Caller should hold a reference on the folio. 3119 * If the folio is not locked, writeback may start again after writeback 3120 * has finished. 3121 */ 3122 void folio_wait_writeback(struct folio *folio) 3123 { 3124 while (folio_test_writeback(folio)) { 3125 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3126 folio_wait_bit(folio, PG_writeback); 3127 } 3128 } 3129 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3130 3131 /** 3132 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3133 * @folio: The folio to wait for. 3134 * 3135 * If the folio is currently being written back to storage, wait for the 3136 * I/O to complete or a fatal signal to arrive. 3137 * 3138 * Context: Sleeps. Must be called in process context and with 3139 * no spinlocks held. Caller should hold a reference on the folio. 3140 * If the folio is not locked, writeback may start again after writeback 3141 * has finished. 3142 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3143 */ 3144 int folio_wait_writeback_killable(struct folio *folio) 3145 { 3146 while (folio_test_writeback(folio)) { 3147 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3148 if (folio_wait_bit_killable(folio, PG_writeback)) 3149 return -EINTR; 3150 } 3151 3152 return 0; 3153 } 3154 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3155 3156 /** 3157 * folio_wait_stable() - wait for writeback to finish, if necessary. 3158 * @folio: The folio to wait on. 3159 * 3160 * This function determines if the given folio is related to a backing 3161 * device that requires folio contents to be held stable during writeback. 3162 * If so, then it will wait for any pending writeback to complete. 3163 * 3164 * Context: Sleeps. Must be called in process context and with 3165 * no spinlocks held. Caller should hold a reference on the folio. 3166 * If the folio is not locked, writeback may start again after writeback 3167 * has finished. 3168 */ 3169 void folio_wait_stable(struct folio *folio) 3170 { 3171 if (mapping_stable_writes(folio_mapping(folio))) 3172 folio_wait_writeback(folio); 3173 } 3174 EXPORT_SYMBOL_GPL(folio_wait_stable); 3175