xref: /linux/mm/page-writeback.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40  * will look to see if it needs to force writeback or throttling.
41  */
42 static long ratelimit_pages = 32;
43 
44 /*
45  * When balance_dirty_pages decides that the caller needs to perform some
46  * non-background writeback, this is how many pages it will attempt to write.
47  * It should be somewhat larger than dirtied pages to ensure that reasonably
48  * large amounts of I/O are submitted.
49  */
50 static inline long sync_writeback_pages(unsigned long dirtied)
51 {
52 	if (dirtied < ratelimit_pages)
53 		dirtied = ratelimit_pages;
54 
55 	return dirtied + dirtied / 2;
56 }
57 
58 /* The following parameters are exported via /proc/sys/vm */
59 
60 /*
61  * Start background writeback (via writeback threads) at this percentage
62  */
63 int dirty_background_ratio = 10;
64 
65 /*
66  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
67  * dirty_background_ratio * the amount of dirtyable memory
68  */
69 unsigned long dirty_background_bytes;
70 
71 /*
72  * free highmem will not be subtracted from the total free memory
73  * for calculating free ratios if vm_highmem_is_dirtyable is true
74  */
75 int vm_highmem_is_dirtyable;
76 
77 /*
78  * The generator of dirty data starts writeback at this percentage
79  */
80 int vm_dirty_ratio = 20;
81 
82 /*
83  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
84  * vm_dirty_ratio * the amount of dirtyable memory
85  */
86 unsigned long vm_dirty_bytes;
87 
88 /*
89  * The interval between `kupdate'-style writebacks
90  */
91 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
92 
93 /*
94  * The longest time for which data is allowed to remain dirty
95  */
96 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
97 
98 /*
99  * Flag that makes the machine dump writes/reads and block dirtyings.
100  */
101 int block_dump;
102 
103 /*
104  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
105  * a full sync is triggered after this time elapses without any disk activity.
106  */
107 int laptop_mode;
108 
109 EXPORT_SYMBOL(laptop_mode);
110 
111 /* End of sysctl-exported parameters */
112 
113 
114 /*
115  * Scale the writeback cache size proportional to the relative writeout speeds.
116  *
117  * We do this by keeping a floating proportion between BDIs, based on page
118  * writeback completions [end_page_writeback()]. Those devices that write out
119  * pages fastest will get the larger share, while the slower will get a smaller
120  * share.
121  *
122  * We use page writeout completions because we are interested in getting rid of
123  * dirty pages. Having them written out is the primary goal.
124  *
125  * We introduce a concept of time, a period over which we measure these events,
126  * because demand can/will vary over time. The length of this period itself is
127  * measured in page writeback completions.
128  *
129  */
130 static struct prop_descriptor vm_completions;
131 static struct prop_descriptor vm_dirties;
132 
133 /*
134  * couple the period to the dirty_ratio:
135  *
136  *   period/2 ~ roundup_pow_of_two(dirty limit)
137  */
138 static int calc_period_shift(void)
139 {
140 	unsigned long dirty_total;
141 
142 	if (vm_dirty_bytes)
143 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
144 	else
145 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
146 				100;
147 	return 2 + ilog2(dirty_total - 1);
148 }
149 
150 /*
151  * update the period when the dirty threshold changes.
152  */
153 static void update_completion_period(void)
154 {
155 	int shift = calc_period_shift();
156 	prop_change_shift(&vm_completions, shift);
157 	prop_change_shift(&vm_dirties, shift);
158 }
159 
160 int dirty_background_ratio_handler(struct ctl_table *table, int write,
161 		void __user *buffer, size_t *lenp,
162 		loff_t *ppos)
163 {
164 	int ret;
165 
166 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
167 	if (ret == 0 && write)
168 		dirty_background_bytes = 0;
169 	return ret;
170 }
171 
172 int dirty_background_bytes_handler(struct ctl_table *table, int write,
173 		void __user *buffer, size_t *lenp,
174 		loff_t *ppos)
175 {
176 	int ret;
177 
178 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
179 	if (ret == 0 && write)
180 		dirty_background_ratio = 0;
181 	return ret;
182 }
183 
184 int dirty_ratio_handler(struct ctl_table *table, int write,
185 		void __user *buffer, size_t *lenp,
186 		loff_t *ppos)
187 {
188 	int old_ratio = vm_dirty_ratio;
189 	int ret;
190 
191 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
192 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
193 		update_completion_period();
194 		vm_dirty_bytes = 0;
195 	}
196 	return ret;
197 }
198 
199 
200 int dirty_bytes_handler(struct ctl_table *table, int write,
201 		void __user *buffer, size_t *lenp,
202 		loff_t *ppos)
203 {
204 	unsigned long old_bytes = vm_dirty_bytes;
205 	int ret;
206 
207 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
208 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
209 		update_completion_period();
210 		vm_dirty_ratio = 0;
211 	}
212 	return ret;
213 }
214 
215 /*
216  * Increment the BDI's writeout completion count and the global writeout
217  * completion count. Called from test_clear_page_writeback().
218  */
219 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
220 {
221 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
222 			      bdi->max_prop_frac);
223 }
224 
225 void bdi_writeout_inc(struct backing_dev_info *bdi)
226 {
227 	unsigned long flags;
228 
229 	local_irq_save(flags);
230 	__bdi_writeout_inc(bdi);
231 	local_irq_restore(flags);
232 }
233 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
234 
235 void task_dirty_inc(struct task_struct *tsk)
236 {
237 	prop_inc_single(&vm_dirties, &tsk->dirties);
238 }
239 
240 /*
241  * Obtain an accurate fraction of the BDI's portion.
242  */
243 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
244 		long *numerator, long *denominator)
245 {
246 	if (bdi_cap_writeback_dirty(bdi)) {
247 		prop_fraction_percpu(&vm_completions, &bdi->completions,
248 				numerator, denominator);
249 	} else {
250 		*numerator = 0;
251 		*denominator = 1;
252 	}
253 }
254 
255 /*
256  * Clip the earned share of dirty pages to that which is actually available.
257  * This avoids exceeding the total dirty_limit when the floating averages
258  * fluctuate too quickly.
259  */
260 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
261 		unsigned long dirty, unsigned long *pbdi_dirty)
262 {
263 	unsigned long avail_dirty;
264 
265 	avail_dirty = global_page_state(NR_FILE_DIRTY) +
266 		 global_page_state(NR_WRITEBACK) +
267 		 global_page_state(NR_UNSTABLE_NFS) +
268 		 global_page_state(NR_WRITEBACK_TEMP);
269 
270 	if (avail_dirty < dirty)
271 		avail_dirty = dirty - avail_dirty;
272 	else
273 		avail_dirty = 0;
274 
275 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
276 		bdi_stat(bdi, BDI_WRITEBACK);
277 
278 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
279 }
280 
281 static inline void task_dirties_fraction(struct task_struct *tsk,
282 		long *numerator, long *denominator)
283 {
284 	prop_fraction_single(&vm_dirties, &tsk->dirties,
285 				numerator, denominator);
286 }
287 
288 /*
289  * scale the dirty limit
290  *
291  * task specific dirty limit:
292  *
293  *   dirty -= (dirty/8) * p_{t}
294  */
295 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
296 {
297 	long numerator, denominator;
298 	unsigned long dirty = *pdirty;
299 	u64 inv = dirty >> 3;
300 
301 	task_dirties_fraction(tsk, &numerator, &denominator);
302 	inv *= numerator;
303 	do_div(inv, denominator);
304 
305 	dirty -= inv;
306 	if (dirty < *pdirty/2)
307 		dirty = *pdirty/2;
308 
309 	*pdirty = dirty;
310 }
311 
312 /*
313  *
314  */
315 static unsigned int bdi_min_ratio;
316 
317 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
318 {
319 	int ret = 0;
320 
321 	spin_lock_bh(&bdi_lock);
322 	if (min_ratio > bdi->max_ratio) {
323 		ret = -EINVAL;
324 	} else {
325 		min_ratio -= bdi->min_ratio;
326 		if (bdi_min_ratio + min_ratio < 100) {
327 			bdi_min_ratio += min_ratio;
328 			bdi->min_ratio += min_ratio;
329 		} else {
330 			ret = -EINVAL;
331 		}
332 	}
333 	spin_unlock_bh(&bdi_lock);
334 
335 	return ret;
336 }
337 
338 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
339 {
340 	int ret = 0;
341 
342 	if (max_ratio > 100)
343 		return -EINVAL;
344 
345 	spin_lock_bh(&bdi_lock);
346 	if (bdi->min_ratio > max_ratio) {
347 		ret = -EINVAL;
348 	} else {
349 		bdi->max_ratio = max_ratio;
350 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
351 	}
352 	spin_unlock_bh(&bdi_lock);
353 
354 	return ret;
355 }
356 EXPORT_SYMBOL(bdi_set_max_ratio);
357 
358 /*
359  * Work out the current dirty-memory clamping and background writeout
360  * thresholds.
361  *
362  * The main aim here is to lower them aggressively if there is a lot of mapped
363  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
364  * pages.  It is better to clamp down on writers than to start swapping, and
365  * performing lots of scanning.
366  *
367  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
368  *
369  * We don't permit the clamping level to fall below 5% - that is getting rather
370  * excessive.
371  *
372  * We make sure that the background writeout level is below the adjusted
373  * clamping level.
374  */
375 
376 static unsigned long highmem_dirtyable_memory(unsigned long total)
377 {
378 #ifdef CONFIG_HIGHMEM
379 	int node;
380 	unsigned long x = 0;
381 
382 	for_each_node_state(node, N_HIGH_MEMORY) {
383 		struct zone *z =
384 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
385 
386 		x += zone_page_state(z, NR_FREE_PAGES) +
387 		     zone_reclaimable_pages(z);
388 	}
389 	/*
390 	 * Make sure that the number of highmem pages is never larger
391 	 * than the number of the total dirtyable memory. This can only
392 	 * occur in very strange VM situations but we want to make sure
393 	 * that this does not occur.
394 	 */
395 	return min(x, total);
396 #else
397 	return 0;
398 #endif
399 }
400 
401 /**
402  * determine_dirtyable_memory - amount of memory that may be used
403  *
404  * Returns the numebr of pages that can currently be freed and used
405  * by the kernel for direct mappings.
406  */
407 unsigned long determine_dirtyable_memory(void)
408 {
409 	unsigned long x;
410 
411 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
412 
413 	if (!vm_highmem_is_dirtyable)
414 		x -= highmem_dirtyable_memory(x);
415 
416 	return x + 1;	/* Ensure that we never return 0 */
417 }
418 
419 void
420 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
421 		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
422 {
423 	unsigned long background;
424 	unsigned long dirty;
425 	unsigned long available_memory = determine_dirtyable_memory();
426 	struct task_struct *tsk;
427 
428 	if (vm_dirty_bytes)
429 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
430 	else {
431 		int dirty_ratio;
432 
433 		dirty_ratio = vm_dirty_ratio;
434 		if (dirty_ratio < 5)
435 			dirty_ratio = 5;
436 		dirty = (dirty_ratio * available_memory) / 100;
437 	}
438 
439 	if (dirty_background_bytes)
440 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
441 	else
442 		background = (dirty_background_ratio * available_memory) / 100;
443 
444 	if (background >= dirty)
445 		background = dirty / 2;
446 	tsk = current;
447 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
448 		background += background / 4;
449 		dirty += dirty / 4;
450 	}
451 	*pbackground = background;
452 	*pdirty = dirty;
453 
454 	if (bdi) {
455 		u64 bdi_dirty;
456 		long numerator, denominator;
457 
458 		/*
459 		 * Calculate this BDI's share of the dirty ratio.
460 		 */
461 		bdi_writeout_fraction(bdi, &numerator, &denominator);
462 
463 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
464 		bdi_dirty *= numerator;
465 		do_div(bdi_dirty, denominator);
466 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
467 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
468 			bdi_dirty = dirty * bdi->max_ratio / 100;
469 
470 		*pbdi_dirty = bdi_dirty;
471 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
472 		task_dirty_limit(current, pbdi_dirty);
473 	}
474 }
475 
476 /*
477  * balance_dirty_pages() must be called by processes which are generating dirty
478  * data.  It looks at the number of dirty pages in the machine and will force
479  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
480  * If we're over `background_thresh' then the writeback threads are woken to
481  * perform some writeout.
482  */
483 static void balance_dirty_pages(struct address_space *mapping,
484 				unsigned long write_chunk)
485 {
486 	long nr_reclaimable, bdi_nr_reclaimable;
487 	long nr_writeback, bdi_nr_writeback;
488 	unsigned long background_thresh;
489 	unsigned long dirty_thresh;
490 	unsigned long bdi_thresh;
491 	unsigned long pages_written = 0;
492 	unsigned long pause = 1;
493 
494 	struct backing_dev_info *bdi = mapping->backing_dev_info;
495 
496 	for (;;) {
497 		struct writeback_control wbc = {
498 			.bdi		= bdi,
499 			.sync_mode	= WB_SYNC_NONE,
500 			.older_than_this = NULL,
501 			.nr_to_write	= write_chunk,
502 			.range_cyclic	= 1,
503 		};
504 
505 		get_dirty_limits(&background_thresh, &dirty_thresh,
506 				&bdi_thresh, bdi);
507 
508 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
509 					global_page_state(NR_UNSTABLE_NFS);
510 		nr_writeback = global_page_state(NR_WRITEBACK);
511 
512 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
513 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
514 
515 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
516 			break;
517 
518 		/*
519 		 * Throttle it only when the background writeback cannot
520 		 * catch-up. This avoids (excessively) small writeouts
521 		 * when the bdi limits are ramping up.
522 		 */
523 		if (nr_reclaimable + nr_writeback <
524 				(background_thresh + dirty_thresh) / 2)
525 			break;
526 
527 		if (!bdi->dirty_exceeded)
528 			bdi->dirty_exceeded = 1;
529 
530 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
531 		 * Unstable writes are a feature of certain networked
532 		 * filesystems (i.e. NFS) in which data may have been
533 		 * written to the server's write cache, but has not yet
534 		 * been flushed to permanent storage.
535 		 * Only move pages to writeback if this bdi is over its
536 		 * threshold otherwise wait until the disk writes catch
537 		 * up.
538 		 */
539 		if (bdi_nr_reclaimable > bdi_thresh) {
540 			writeback_inodes_wbc(&wbc);
541 			pages_written += write_chunk - wbc.nr_to_write;
542 			get_dirty_limits(&background_thresh, &dirty_thresh,
543 				       &bdi_thresh, bdi);
544 		}
545 
546 		/*
547 		 * In order to avoid the stacked BDI deadlock we need
548 		 * to ensure we accurately count the 'dirty' pages when
549 		 * the threshold is low.
550 		 *
551 		 * Otherwise it would be possible to get thresh+n pages
552 		 * reported dirty, even though there are thresh-m pages
553 		 * actually dirty; with m+n sitting in the percpu
554 		 * deltas.
555 		 */
556 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
557 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
558 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
559 		} else if (bdi_nr_reclaimable) {
560 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
561 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
562 		}
563 
564 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
565 			break;
566 		if (pages_written >= write_chunk)
567 			break;		/* We've done our duty */
568 
569 		schedule_timeout_interruptible(pause);
570 
571 		/*
572 		 * Increase the delay for each loop, up to our previous
573 		 * default of taking a 100ms nap.
574 		 */
575 		pause <<= 1;
576 		if (pause > HZ / 10)
577 			pause = HZ / 10;
578 	}
579 
580 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
581 			bdi->dirty_exceeded)
582 		bdi->dirty_exceeded = 0;
583 
584 	if (writeback_in_progress(bdi))
585 		return;
586 
587 	/*
588 	 * In laptop mode, we wait until hitting the higher threshold before
589 	 * starting background writeout, and then write out all the way down
590 	 * to the lower threshold.  So slow writers cause minimal disk activity.
591 	 *
592 	 * In normal mode, we start background writeout at the lower
593 	 * background_thresh, to keep the amount of dirty memory low.
594 	 */
595 	if ((laptop_mode && pages_written) ||
596 	    (!laptop_mode && ((global_page_state(NR_FILE_DIRTY)
597 			       + global_page_state(NR_UNSTABLE_NFS))
598 					  > background_thresh)))
599 		bdi_start_writeback(bdi, NULL, 0);
600 }
601 
602 void set_page_dirty_balance(struct page *page, int page_mkwrite)
603 {
604 	if (set_page_dirty(page) || page_mkwrite) {
605 		struct address_space *mapping = page_mapping(page);
606 
607 		if (mapping)
608 			balance_dirty_pages_ratelimited(mapping);
609 	}
610 }
611 
612 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
613 
614 /**
615  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
616  * @mapping: address_space which was dirtied
617  * @nr_pages_dirtied: number of pages which the caller has just dirtied
618  *
619  * Processes which are dirtying memory should call in here once for each page
620  * which was newly dirtied.  The function will periodically check the system's
621  * dirty state and will initiate writeback if needed.
622  *
623  * On really big machines, get_writeback_state is expensive, so try to avoid
624  * calling it too often (ratelimiting).  But once we're over the dirty memory
625  * limit we decrease the ratelimiting by a lot, to prevent individual processes
626  * from overshooting the limit by (ratelimit_pages) each.
627  */
628 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
629 					unsigned long nr_pages_dirtied)
630 {
631 	unsigned long ratelimit;
632 	unsigned long *p;
633 
634 	ratelimit = ratelimit_pages;
635 	if (mapping->backing_dev_info->dirty_exceeded)
636 		ratelimit = 8;
637 
638 	/*
639 	 * Check the rate limiting. Also, we do not want to throttle real-time
640 	 * tasks in balance_dirty_pages(). Period.
641 	 */
642 	preempt_disable();
643 	p =  &__get_cpu_var(bdp_ratelimits);
644 	*p += nr_pages_dirtied;
645 	if (unlikely(*p >= ratelimit)) {
646 		ratelimit = sync_writeback_pages(*p);
647 		*p = 0;
648 		preempt_enable();
649 		balance_dirty_pages(mapping, ratelimit);
650 		return;
651 	}
652 	preempt_enable();
653 }
654 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
655 
656 void throttle_vm_writeout(gfp_t gfp_mask)
657 {
658 	unsigned long background_thresh;
659 	unsigned long dirty_thresh;
660 
661         for ( ; ; ) {
662 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
663 
664                 /*
665                  * Boost the allowable dirty threshold a bit for page
666                  * allocators so they don't get DoS'ed by heavy writers
667                  */
668                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
669 
670                 if (global_page_state(NR_UNSTABLE_NFS) +
671 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
672                         	break;
673                 congestion_wait(BLK_RW_ASYNC, HZ/10);
674 
675 		/*
676 		 * The caller might hold locks which can prevent IO completion
677 		 * or progress in the filesystem.  So we cannot just sit here
678 		 * waiting for IO to complete.
679 		 */
680 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
681 			break;
682         }
683 }
684 
685 static void laptop_timer_fn(unsigned long unused);
686 
687 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
688 
689 /*
690  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
691  */
692 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
693 	void __user *buffer, size_t *length, loff_t *ppos)
694 {
695 	proc_dointvec(table, write, buffer, length, ppos);
696 	return 0;
697 }
698 
699 static void do_laptop_sync(struct work_struct *work)
700 {
701 	wakeup_flusher_threads(0);
702 	kfree(work);
703 }
704 
705 static void laptop_timer_fn(unsigned long unused)
706 {
707 	struct work_struct *work;
708 
709 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
710 	if (work) {
711 		INIT_WORK(work, do_laptop_sync);
712 		schedule_work(work);
713 	}
714 }
715 
716 /*
717  * We've spun up the disk and we're in laptop mode: schedule writeback
718  * of all dirty data a few seconds from now.  If the flush is already scheduled
719  * then push it back - the user is still using the disk.
720  */
721 void laptop_io_completion(void)
722 {
723 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
724 }
725 
726 /*
727  * We're in laptop mode and we've just synced. The sync's writes will have
728  * caused another writeback to be scheduled by laptop_io_completion.
729  * Nothing needs to be written back anymore, so we unschedule the writeback.
730  */
731 void laptop_sync_completion(void)
732 {
733 	del_timer(&laptop_mode_wb_timer);
734 }
735 
736 /*
737  * If ratelimit_pages is too high then we can get into dirty-data overload
738  * if a large number of processes all perform writes at the same time.
739  * If it is too low then SMP machines will call the (expensive)
740  * get_writeback_state too often.
741  *
742  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
743  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
744  * thresholds before writeback cuts in.
745  *
746  * But the limit should not be set too high.  Because it also controls the
747  * amount of memory which the balance_dirty_pages() caller has to write back.
748  * If this is too large then the caller will block on the IO queue all the
749  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
750  * will write six megabyte chunks, max.
751  */
752 
753 void writeback_set_ratelimit(void)
754 {
755 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
756 	if (ratelimit_pages < 16)
757 		ratelimit_pages = 16;
758 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
759 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
760 }
761 
762 static int __cpuinit
763 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
764 {
765 	writeback_set_ratelimit();
766 	return NOTIFY_DONE;
767 }
768 
769 static struct notifier_block __cpuinitdata ratelimit_nb = {
770 	.notifier_call	= ratelimit_handler,
771 	.next		= NULL,
772 };
773 
774 /*
775  * Called early on to tune the page writeback dirty limits.
776  *
777  * We used to scale dirty pages according to how total memory
778  * related to pages that could be allocated for buffers (by
779  * comparing nr_free_buffer_pages() to vm_total_pages.
780  *
781  * However, that was when we used "dirty_ratio" to scale with
782  * all memory, and we don't do that any more. "dirty_ratio"
783  * is now applied to total non-HIGHPAGE memory (by subtracting
784  * totalhigh_pages from vm_total_pages), and as such we can't
785  * get into the old insane situation any more where we had
786  * large amounts of dirty pages compared to a small amount of
787  * non-HIGHMEM memory.
788  *
789  * But we might still want to scale the dirty_ratio by how
790  * much memory the box has..
791  */
792 void __init page_writeback_init(void)
793 {
794 	int shift;
795 
796 	writeback_set_ratelimit();
797 	register_cpu_notifier(&ratelimit_nb);
798 
799 	shift = calc_period_shift();
800 	prop_descriptor_init(&vm_completions, shift);
801 	prop_descriptor_init(&vm_dirties, shift);
802 }
803 
804 /**
805  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
806  * @mapping: address space structure to write
807  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
808  * @writepage: function called for each page
809  * @data: data passed to writepage function
810  *
811  * If a page is already under I/O, write_cache_pages() skips it, even
812  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
813  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
814  * and msync() need to guarantee that all the data which was dirty at the time
815  * the call was made get new I/O started against them.  If wbc->sync_mode is
816  * WB_SYNC_ALL then we were called for data integrity and we must wait for
817  * existing IO to complete.
818  */
819 int write_cache_pages(struct address_space *mapping,
820 		      struct writeback_control *wbc, writepage_t writepage,
821 		      void *data)
822 {
823 	struct backing_dev_info *bdi = mapping->backing_dev_info;
824 	int ret = 0;
825 	int done = 0;
826 	struct pagevec pvec;
827 	int nr_pages;
828 	pgoff_t uninitialized_var(writeback_index);
829 	pgoff_t index;
830 	pgoff_t end;		/* Inclusive */
831 	pgoff_t done_index;
832 	int cycled;
833 	int range_whole = 0;
834 	long nr_to_write = wbc->nr_to_write;
835 
836 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
837 		wbc->encountered_congestion = 1;
838 		return 0;
839 	}
840 
841 	pagevec_init(&pvec, 0);
842 	if (wbc->range_cyclic) {
843 		writeback_index = mapping->writeback_index; /* prev offset */
844 		index = writeback_index;
845 		if (index == 0)
846 			cycled = 1;
847 		else
848 			cycled = 0;
849 		end = -1;
850 	} else {
851 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
852 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
853 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
854 			range_whole = 1;
855 		cycled = 1; /* ignore range_cyclic tests */
856 	}
857 retry:
858 	done_index = index;
859 	while (!done && (index <= end)) {
860 		int i;
861 
862 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
863 			      PAGECACHE_TAG_DIRTY,
864 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
865 		if (nr_pages == 0)
866 			break;
867 
868 		for (i = 0; i < nr_pages; i++) {
869 			struct page *page = pvec.pages[i];
870 
871 			/*
872 			 * At this point, the page may be truncated or
873 			 * invalidated (changing page->mapping to NULL), or
874 			 * even swizzled back from swapper_space to tmpfs file
875 			 * mapping. However, page->index will not change
876 			 * because we have a reference on the page.
877 			 */
878 			if (page->index > end) {
879 				/*
880 				 * can't be range_cyclic (1st pass) because
881 				 * end == -1 in that case.
882 				 */
883 				done = 1;
884 				break;
885 			}
886 
887 			done_index = page->index + 1;
888 
889 			lock_page(page);
890 
891 			/*
892 			 * Page truncated or invalidated. We can freely skip it
893 			 * then, even for data integrity operations: the page
894 			 * has disappeared concurrently, so there could be no
895 			 * real expectation of this data interity operation
896 			 * even if there is now a new, dirty page at the same
897 			 * pagecache address.
898 			 */
899 			if (unlikely(page->mapping != mapping)) {
900 continue_unlock:
901 				unlock_page(page);
902 				continue;
903 			}
904 
905 			if (!PageDirty(page)) {
906 				/* someone wrote it for us */
907 				goto continue_unlock;
908 			}
909 
910 			if (PageWriteback(page)) {
911 				if (wbc->sync_mode != WB_SYNC_NONE)
912 					wait_on_page_writeback(page);
913 				else
914 					goto continue_unlock;
915 			}
916 
917 			BUG_ON(PageWriteback(page));
918 			if (!clear_page_dirty_for_io(page))
919 				goto continue_unlock;
920 
921 			ret = (*writepage)(page, wbc, data);
922 			if (unlikely(ret)) {
923 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
924 					unlock_page(page);
925 					ret = 0;
926 				} else {
927 					/*
928 					 * done_index is set past this page,
929 					 * so media errors will not choke
930 					 * background writeout for the entire
931 					 * file. This has consequences for
932 					 * range_cyclic semantics (ie. it may
933 					 * not be suitable for data integrity
934 					 * writeout).
935 					 */
936 					done = 1;
937 					break;
938 				}
939  			}
940 
941 			if (nr_to_write > 0) {
942 				nr_to_write--;
943 				if (nr_to_write == 0 &&
944 				    wbc->sync_mode == WB_SYNC_NONE) {
945 					/*
946 					 * We stop writing back only if we are
947 					 * not doing integrity sync. In case of
948 					 * integrity sync we have to keep going
949 					 * because someone may be concurrently
950 					 * dirtying pages, and we might have
951 					 * synced a lot of newly appeared dirty
952 					 * pages, but have not synced all of the
953 					 * old dirty pages.
954 					 */
955 					done = 1;
956 					break;
957 				}
958 			}
959 
960 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
961 				wbc->encountered_congestion = 1;
962 				done = 1;
963 				break;
964 			}
965 		}
966 		pagevec_release(&pvec);
967 		cond_resched();
968 	}
969 	if (!cycled && !done) {
970 		/*
971 		 * range_cyclic:
972 		 * We hit the last page and there is more work to be done: wrap
973 		 * back to the start of the file
974 		 */
975 		cycled = 1;
976 		index = 0;
977 		end = writeback_index - 1;
978 		goto retry;
979 	}
980 	if (!wbc->no_nrwrite_index_update) {
981 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
982 			mapping->writeback_index = done_index;
983 		wbc->nr_to_write = nr_to_write;
984 	}
985 
986 	return ret;
987 }
988 EXPORT_SYMBOL(write_cache_pages);
989 
990 /*
991  * Function used by generic_writepages to call the real writepage
992  * function and set the mapping flags on error
993  */
994 static int __writepage(struct page *page, struct writeback_control *wbc,
995 		       void *data)
996 {
997 	struct address_space *mapping = data;
998 	int ret = mapping->a_ops->writepage(page, wbc);
999 	mapping_set_error(mapping, ret);
1000 	return ret;
1001 }
1002 
1003 /**
1004  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1005  * @mapping: address space structure to write
1006  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1007  *
1008  * This is a library function, which implements the writepages()
1009  * address_space_operation.
1010  */
1011 int generic_writepages(struct address_space *mapping,
1012 		       struct writeback_control *wbc)
1013 {
1014 	/* deal with chardevs and other special file */
1015 	if (!mapping->a_ops->writepage)
1016 		return 0;
1017 
1018 	return write_cache_pages(mapping, wbc, __writepage, mapping);
1019 }
1020 
1021 EXPORT_SYMBOL(generic_writepages);
1022 
1023 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1024 {
1025 	int ret;
1026 
1027 	if (wbc->nr_to_write <= 0)
1028 		return 0;
1029 	if (mapping->a_ops->writepages)
1030 		ret = mapping->a_ops->writepages(mapping, wbc);
1031 	else
1032 		ret = generic_writepages(mapping, wbc);
1033 	return ret;
1034 }
1035 
1036 /**
1037  * write_one_page - write out a single page and optionally wait on I/O
1038  * @page: the page to write
1039  * @wait: if true, wait on writeout
1040  *
1041  * The page must be locked by the caller and will be unlocked upon return.
1042  *
1043  * write_one_page() returns a negative error code if I/O failed.
1044  */
1045 int write_one_page(struct page *page, int wait)
1046 {
1047 	struct address_space *mapping = page->mapping;
1048 	int ret = 0;
1049 	struct writeback_control wbc = {
1050 		.sync_mode = WB_SYNC_ALL,
1051 		.nr_to_write = 1,
1052 	};
1053 
1054 	BUG_ON(!PageLocked(page));
1055 
1056 	if (wait)
1057 		wait_on_page_writeback(page);
1058 
1059 	if (clear_page_dirty_for_io(page)) {
1060 		page_cache_get(page);
1061 		ret = mapping->a_ops->writepage(page, &wbc);
1062 		if (ret == 0 && wait) {
1063 			wait_on_page_writeback(page);
1064 			if (PageError(page))
1065 				ret = -EIO;
1066 		}
1067 		page_cache_release(page);
1068 	} else {
1069 		unlock_page(page);
1070 	}
1071 	return ret;
1072 }
1073 EXPORT_SYMBOL(write_one_page);
1074 
1075 /*
1076  * For address_spaces which do not use buffers nor write back.
1077  */
1078 int __set_page_dirty_no_writeback(struct page *page)
1079 {
1080 	if (!PageDirty(page))
1081 		SetPageDirty(page);
1082 	return 0;
1083 }
1084 
1085 /*
1086  * Helper function for set_page_dirty family.
1087  * NOTE: This relies on being atomic wrt interrupts.
1088  */
1089 void account_page_dirtied(struct page *page, struct address_space *mapping)
1090 {
1091 	if (mapping_cap_account_dirty(mapping)) {
1092 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1093 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1094 		task_dirty_inc(current);
1095 		task_io_account_write(PAGE_CACHE_SIZE);
1096 	}
1097 }
1098 
1099 /*
1100  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1101  * its radix tree.
1102  *
1103  * This is also used when a single buffer is being dirtied: we want to set the
1104  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1105  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1106  *
1107  * Most callers have locked the page, which pins the address_space in memory.
1108  * But zap_pte_range() does not lock the page, however in that case the
1109  * mapping is pinned by the vma's ->vm_file reference.
1110  *
1111  * We take care to handle the case where the page was truncated from the
1112  * mapping by re-checking page_mapping() inside tree_lock.
1113  */
1114 int __set_page_dirty_nobuffers(struct page *page)
1115 {
1116 	if (!TestSetPageDirty(page)) {
1117 		struct address_space *mapping = page_mapping(page);
1118 		struct address_space *mapping2;
1119 
1120 		if (!mapping)
1121 			return 1;
1122 
1123 		spin_lock_irq(&mapping->tree_lock);
1124 		mapping2 = page_mapping(page);
1125 		if (mapping2) { /* Race with truncate? */
1126 			BUG_ON(mapping2 != mapping);
1127 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1128 			account_page_dirtied(page, mapping);
1129 			radix_tree_tag_set(&mapping->page_tree,
1130 				page_index(page), PAGECACHE_TAG_DIRTY);
1131 		}
1132 		spin_unlock_irq(&mapping->tree_lock);
1133 		if (mapping->host) {
1134 			/* !PageAnon && !swapper_space */
1135 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1136 		}
1137 		return 1;
1138 	}
1139 	return 0;
1140 }
1141 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1142 
1143 /*
1144  * When a writepage implementation decides that it doesn't want to write this
1145  * page for some reason, it should redirty the locked page via
1146  * redirty_page_for_writepage() and it should then unlock the page and return 0
1147  */
1148 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1149 {
1150 	wbc->pages_skipped++;
1151 	return __set_page_dirty_nobuffers(page);
1152 }
1153 EXPORT_SYMBOL(redirty_page_for_writepage);
1154 
1155 /*
1156  * Dirty a page.
1157  *
1158  * For pages with a mapping this should be done under the page lock
1159  * for the benefit of asynchronous memory errors who prefer a consistent
1160  * dirty state. This rule can be broken in some special cases,
1161  * but should be better not to.
1162  *
1163  * If the mapping doesn't provide a set_page_dirty a_op, then
1164  * just fall through and assume that it wants buffer_heads.
1165  */
1166 int set_page_dirty(struct page *page)
1167 {
1168 	struct address_space *mapping = page_mapping(page);
1169 
1170 	if (likely(mapping)) {
1171 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1172 #ifdef CONFIG_BLOCK
1173 		if (!spd)
1174 			spd = __set_page_dirty_buffers;
1175 #endif
1176 		return (*spd)(page);
1177 	}
1178 	if (!PageDirty(page)) {
1179 		if (!TestSetPageDirty(page))
1180 			return 1;
1181 	}
1182 	return 0;
1183 }
1184 EXPORT_SYMBOL(set_page_dirty);
1185 
1186 /*
1187  * set_page_dirty() is racy if the caller has no reference against
1188  * page->mapping->host, and if the page is unlocked.  This is because another
1189  * CPU could truncate the page off the mapping and then free the mapping.
1190  *
1191  * Usually, the page _is_ locked, or the caller is a user-space process which
1192  * holds a reference on the inode by having an open file.
1193  *
1194  * In other cases, the page should be locked before running set_page_dirty().
1195  */
1196 int set_page_dirty_lock(struct page *page)
1197 {
1198 	int ret;
1199 
1200 	lock_page_nosync(page);
1201 	ret = set_page_dirty(page);
1202 	unlock_page(page);
1203 	return ret;
1204 }
1205 EXPORT_SYMBOL(set_page_dirty_lock);
1206 
1207 /*
1208  * Clear a page's dirty flag, while caring for dirty memory accounting.
1209  * Returns true if the page was previously dirty.
1210  *
1211  * This is for preparing to put the page under writeout.  We leave the page
1212  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1213  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1214  * implementation will run either set_page_writeback() or set_page_dirty(),
1215  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1216  * back into sync.
1217  *
1218  * This incoherency between the page's dirty flag and radix-tree tag is
1219  * unfortunate, but it only exists while the page is locked.
1220  */
1221 int clear_page_dirty_for_io(struct page *page)
1222 {
1223 	struct address_space *mapping = page_mapping(page);
1224 
1225 	BUG_ON(!PageLocked(page));
1226 
1227 	ClearPageReclaim(page);
1228 	if (mapping && mapping_cap_account_dirty(mapping)) {
1229 		/*
1230 		 * Yes, Virginia, this is indeed insane.
1231 		 *
1232 		 * We use this sequence to make sure that
1233 		 *  (a) we account for dirty stats properly
1234 		 *  (b) we tell the low-level filesystem to
1235 		 *      mark the whole page dirty if it was
1236 		 *      dirty in a pagetable. Only to then
1237 		 *  (c) clean the page again and return 1 to
1238 		 *      cause the writeback.
1239 		 *
1240 		 * This way we avoid all nasty races with the
1241 		 * dirty bit in multiple places and clearing
1242 		 * them concurrently from different threads.
1243 		 *
1244 		 * Note! Normally the "set_page_dirty(page)"
1245 		 * has no effect on the actual dirty bit - since
1246 		 * that will already usually be set. But we
1247 		 * need the side effects, and it can help us
1248 		 * avoid races.
1249 		 *
1250 		 * We basically use the page "master dirty bit"
1251 		 * as a serialization point for all the different
1252 		 * threads doing their things.
1253 		 */
1254 		if (page_mkclean(page))
1255 			set_page_dirty(page);
1256 		/*
1257 		 * We carefully synchronise fault handlers against
1258 		 * installing a dirty pte and marking the page dirty
1259 		 * at this point. We do this by having them hold the
1260 		 * page lock at some point after installing their
1261 		 * pte, but before marking the page dirty.
1262 		 * Pages are always locked coming in here, so we get
1263 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1264 		 * for more comments.
1265 		 */
1266 		if (TestClearPageDirty(page)) {
1267 			dec_zone_page_state(page, NR_FILE_DIRTY);
1268 			dec_bdi_stat(mapping->backing_dev_info,
1269 					BDI_RECLAIMABLE);
1270 			return 1;
1271 		}
1272 		return 0;
1273 	}
1274 	return TestClearPageDirty(page);
1275 }
1276 EXPORT_SYMBOL(clear_page_dirty_for_io);
1277 
1278 int test_clear_page_writeback(struct page *page)
1279 {
1280 	struct address_space *mapping = page_mapping(page);
1281 	int ret;
1282 
1283 	if (mapping) {
1284 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1285 		unsigned long flags;
1286 
1287 		spin_lock_irqsave(&mapping->tree_lock, flags);
1288 		ret = TestClearPageWriteback(page);
1289 		if (ret) {
1290 			radix_tree_tag_clear(&mapping->page_tree,
1291 						page_index(page),
1292 						PAGECACHE_TAG_WRITEBACK);
1293 			if (bdi_cap_account_writeback(bdi)) {
1294 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1295 				__bdi_writeout_inc(bdi);
1296 			}
1297 		}
1298 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1299 	} else {
1300 		ret = TestClearPageWriteback(page);
1301 	}
1302 	if (ret)
1303 		dec_zone_page_state(page, NR_WRITEBACK);
1304 	return ret;
1305 }
1306 
1307 int test_set_page_writeback(struct page *page)
1308 {
1309 	struct address_space *mapping = page_mapping(page);
1310 	int ret;
1311 
1312 	if (mapping) {
1313 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1314 		unsigned long flags;
1315 
1316 		spin_lock_irqsave(&mapping->tree_lock, flags);
1317 		ret = TestSetPageWriteback(page);
1318 		if (!ret) {
1319 			radix_tree_tag_set(&mapping->page_tree,
1320 						page_index(page),
1321 						PAGECACHE_TAG_WRITEBACK);
1322 			if (bdi_cap_account_writeback(bdi))
1323 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1324 		}
1325 		if (!PageDirty(page))
1326 			radix_tree_tag_clear(&mapping->page_tree,
1327 						page_index(page),
1328 						PAGECACHE_TAG_DIRTY);
1329 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1330 	} else {
1331 		ret = TestSetPageWriteback(page);
1332 	}
1333 	if (!ret)
1334 		inc_zone_page_state(page, NR_WRITEBACK);
1335 	return ret;
1336 
1337 }
1338 EXPORT_SYMBOL(test_set_page_writeback);
1339 
1340 /*
1341  * Return true if any of the pages in the mapping are marked with the
1342  * passed tag.
1343  */
1344 int mapping_tagged(struct address_space *mapping, int tag)
1345 {
1346 	int ret;
1347 	rcu_read_lock();
1348 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1349 	rcu_read_unlock();
1350 	return ret;
1351 }
1352 EXPORT_SYMBOL(mapping_tagged);
1353