1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 }; 143 144 /* 145 * Length of period for aging writeout fractions of bdis. This is an 146 * arbitrarily chosen number. The longer the period, the slower fractions will 147 * reflect changes in current writeout rate. 148 */ 149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 150 151 #ifdef CONFIG_CGROUP_WRITEBACK 152 153 #define GDTC_INIT(__wb) .wb = (__wb), \ 154 .dom = &global_wb_domain, \ 155 .wb_completions = &(__wb)->completions 156 157 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 158 159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 160 .dom = mem_cgroup_wb_domain(__wb), \ 161 .wb_completions = &(__wb)->memcg_completions, \ 162 .gdtc = __gdtc 163 164 static bool mdtc_valid(struct dirty_throttle_control *dtc) 165 { 166 return dtc->dom; 167 } 168 169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 175 { 176 return mdtc->gdtc; 177 } 178 179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 180 { 181 return &wb->memcg_completions; 182 } 183 184 static void wb_min_max_ratio(struct bdi_writeback *wb, 185 unsigned long *minp, unsigned long *maxp) 186 { 187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 189 unsigned long long min = wb->bdi->min_ratio; 190 unsigned long long max = wb->bdi->max_ratio; 191 192 /* 193 * @wb may already be clean by the time control reaches here and 194 * the total may not include its bw. 195 */ 196 if (this_bw < tot_bw) { 197 if (min) { 198 min *= this_bw; 199 min = div64_ul(min, tot_bw); 200 } 201 if (max < 100 * BDI_RATIO_SCALE) { 202 max *= this_bw; 203 max = div64_ul(max, tot_bw); 204 } 205 } 206 207 *minp = min; 208 *maxp = max; 209 } 210 211 #else /* CONFIG_CGROUP_WRITEBACK */ 212 213 #define GDTC_INIT(__wb) .wb = (__wb), \ 214 .wb_completions = &(__wb)->completions 215 #define GDTC_INIT_NO_WB 216 #define MDTC_INIT(__wb, __gdtc) 217 218 static bool mdtc_valid(struct dirty_throttle_control *dtc) 219 { 220 return false; 221 } 222 223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 224 { 225 return &global_wb_domain; 226 } 227 228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 229 { 230 return NULL; 231 } 232 233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 234 { 235 return NULL; 236 } 237 238 static void wb_min_max_ratio(struct bdi_writeback *wb, 239 unsigned long *minp, unsigned long *maxp) 240 { 241 *minp = wb->bdi->min_ratio; 242 *maxp = wb->bdi->max_ratio; 243 } 244 245 #endif /* CONFIG_CGROUP_WRITEBACK */ 246 247 /* 248 * In a memory zone, there is a certain amount of pages we consider 249 * available for the page cache, which is essentially the number of 250 * free and reclaimable pages, minus some zone reserves to protect 251 * lowmem and the ability to uphold the zone's watermarks without 252 * requiring writeback. 253 * 254 * This number of dirtyable pages is the base value of which the 255 * user-configurable dirty ratio is the effective number of pages that 256 * are allowed to be actually dirtied. Per individual zone, or 257 * globally by using the sum of dirtyable pages over all zones. 258 * 259 * Because the user is allowed to specify the dirty limit globally as 260 * absolute number of bytes, calculating the per-zone dirty limit can 261 * require translating the configured limit into a percentage of 262 * global dirtyable memory first. 263 */ 264 265 /** 266 * node_dirtyable_memory - number of dirtyable pages in a node 267 * @pgdat: the node 268 * 269 * Return: the node's number of pages potentially available for dirty 270 * page cache. This is the base value for the per-node dirty limits. 271 */ 272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 273 { 274 unsigned long nr_pages = 0; 275 int z; 276 277 for (z = 0; z < MAX_NR_ZONES; z++) { 278 struct zone *zone = pgdat->node_zones + z; 279 280 if (!populated_zone(zone)) 281 continue; 282 283 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 284 } 285 286 /* 287 * Pages reserved for the kernel should not be considered 288 * dirtyable, to prevent a situation where reclaim has to 289 * clean pages in order to balance the zones. 290 */ 291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 292 293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 295 296 return nr_pages; 297 } 298 299 static unsigned long highmem_dirtyable_memory(unsigned long total) 300 { 301 #ifdef CONFIG_HIGHMEM 302 int node; 303 unsigned long x = 0; 304 int i; 305 306 for_each_node_state(node, N_HIGH_MEMORY) { 307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 308 struct zone *z; 309 unsigned long nr_pages; 310 311 if (!is_highmem_idx(i)) 312 continue; 313 314 z = &NODE_DATA(node)->node_zones[i]; 315 if (!populated_zone(z)) 316 continue; 317 318 nr_pages = zone_page_state(z, NR_FREE_PAGES); 319 /* watch for underflows */ 320 nr_pages -= min(nr_pages, high_wmark_pages(z)); 321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 323 x += nr_pages; 324 } 325 } 326 327 /* 328 * Make sure that the number of highmem pages is never larger 329 * than the number of the total dirtyable memory. This can only 330 * occur in very strange VM situations but we want to make sure 331 * that this does not occur. 332 */ 333 return min(x, total); 334 #else 335 return 0; 336 #endif 337 } 338 339 /** 340 * global_dirtyable_memory - number of globally dirtyable pages 341 * 342 * Return: the global number of pages potentially available for dirty 343 * page cache. This is the base value for the global dirty limits. 344 */ 345 static unsigned long global_dirtyable_memory(void) 346 { 347 unsigned long x; 348 349 x = global_zone_page_state(NR_FREE_PAGES); 350 /* 351 * Pages reserved for the kernel should not be considered 352 * dirtyable, to prevent a situation where reclaim has to 353 * clean pages in order to balance the zones. 354 */ 355 x -= min(x, totalreserve_pages); 356 357 x += global_node_page_state(NR_INACTIVE_FILE); 358 x += global_node_page_state(NR_ACTIVE_FILE); 359 360 if (!vm_highmem_is_dirtyable) 361 x -= highmem_dirtyable_memory(x); 362 363 return x + 1; /* Ensure that we never return 0 */ 364 } 365 366 /** 367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 368 * @dtc: dirty_throttle_control of interest 369 * 370 * Calculate @dtc->thresh and ->bg_thresh considering 371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 372 * must ensure that @dtc->avail is set before calling this function. The 373 * dirty limits will be lifted by 1/4 for real-time tasks. 374 */ 375 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 376 { 377 const unsigned long available_memory = dtc->avail; 378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 379 unsigned long bytes = vm_dirty_bytes; 380 unsigned long bg_bytes = dirty_background_bytes; 381 /* convert ratios to per-PAGE_SIZE for higher precision */ 382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 384 unsigned long thresh; 385 unsigned long bg_thresh; 386 struct task_struct *tsk; 387 388 /* gdtc is !NULL iff @dtc is for memcg domain */ 389 if (gdtc) { 390 unsigned long global_avail = gdtc->avail; 391 392 /* 393 * The byte settings can't be applied directly to memcg 394 * domains. Convert them to ratios by scaling against 395 * globally available memory. As the ratios are in 396 * per-PAGE_SIZE, they can be obtained by dividing bytes by 397 * number of pages. 398 */ 399 if (bytes) 400 ratio = min(DIV_ROUND_UP(bytes, global_avail), 401 PAGE_SIZE); 402 if (bg_bytes) 403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 404 PAGE_SIZE); 405 bytes = bg_bytes = 0; 406 } 407 408 if (bytes) 409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 410 else 411 thresh = (ratio * available_memory) / PAGE_SIZE; 412 413 if (bg_bytes) 414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 415 else 416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 417 418 if (bg_thresh >= thresh) 419 bg_thresh = thresh / 2; 420 tsk = current; 421 if (rt_task(tsk)) { 422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 424 } 425 dtc->thresh = thresh; 426 dtc->bg_thresh = bg_thresh; 427 428 /* we should eventually report the domain in the TP */ 429 if (!gdtc) 430 trace_global_dirty_state(bg_thresh, thresh); 431 } 432 433 /** 434 * global_dirty_limits - background-writeback and dirty-throttling thresholds 435 * @pbackground: out parameter for bg_thresh 436 * @pdirty: out parameter for thresh 437 * 438 * Calculate bg_thresh and thresh for global_wb_domain. See 439 * domain_dirty_limits() for details. 440 */ 441 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 442 { 443 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 444 445 gdtc.avail = global_dirtyable_memory(); 446 domain_dirty_limits(&gdtc); 447 448 *pbackground = gdtc.bg_thresh; 449 *pdirty = gdtc.thresh; 450 } 451 452 /** 453 * node_dirty_limit - maximum number of dirty pages allowed in a node 454 * @pgdat: the node 455 * 456 * Return: the maximum number of dirty pages allowed in a node, based 457 * on the node's dirtyable memory. 458 */ 459 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 460 { 461 unsigned long node_memory = node_dirtyable_memory(pgdat); 462 struct task_struct *tsk = current; 463 unsigned long dirty; 464 465 if (vm_dirty_bytes) 466 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 467 node_memory / global_dirtyable_memory(); 468 else 469 dirty = vm_dirty_ratio * node_memory / 100; 470 471 if (rt_task(tsk)) 472 dirty += dirty / 4; 473 474 return dirty; 475 } 476 477 /** 478 * node_dirty_ok - tells whether a node is within its dirty limits 479 * @pgdat: the node to check 480 * 481 * Return: %true when the dirty pages in @pgdat are within the node's 482 * dirty limit, %false if the limit is exceeded. 483 */ 484 bool node_dirty_ok(struct pglist_data *pgdat) 485 { 486 unsigned long limit = node_dirty_limit(pgdat); 487 unsigned long nr_pages = 0; 488 489 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 490 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 491 492 return nr_pages <= limit; 493 } 494 495 #ifdef CONFIG_SYSCTL 496 static int dirty_background_ratio_handler(struct ctl_table *table, int write, 497 void *buffer, size_t *lenp, loff_t *ppos) 498 { 499 int ret; 500 501 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 502 if (ret == 0 && write) 503 dirty_background_bytes = 0; 504 return ret; 505 } 506 507 static int dirty_background_bytes_handler(struct ctl_table *table, int write, 508 void *buffer, size_t *lenp, loff_t *ppos) 509 { 510 int ret; 511 512 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 513 if (ret == 0 && write) 514 dirty_background_ratio = 0; 515 return ret; 516 } 517 518 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 519 size_t *lenp, loff_t *ppos) 520 { 521 int old_ratio = vm_dirty_ratio; 522 int ret; 523 524 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 525 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 526 writeback_set_ratelimit(); 527 vm_dirty_bytes = 0; 528 } 529 return ret; 530 } 531 532 static int dirty_bytes_handler(struct ctl_table *table, int write, 533 void *buffer, size_t *lenp, loff_t *ppos) 534 { 535 unsigned long old_bytes = vm_dirty_bytes; 536 int ret; 537 538 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 539 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 540 writeback_set_ratelimit(); 541 vm_dirty_ratio = 0; 542 } 543 return ret; 544 } 545 #endif 546 547 static unsigned long wp_next_time(unsigned long cur_time) 548 { 549 cur_time += VM_COMPLETIONS_PERIOD_LEN; 550 /* 0 has a special meaning... */ 551 if (!cur_time) 552 return 1; 553 return cur_time; 554 } 555 556 static void wb_domain_writeout_add(struct wb_domain *dom, 557 struct fprop_local_percpu *completions, 558 unsigned int max_prop_frac, long nr) 559 { 560 __fprop_add_percpu_max(&dom->completions, completions, 561 max_prop_frac, nr); 562 /* First event after period switching was turned off? */ 563 if (unlikely(!dom->period_time)) { 564 /* 565 * We can race with other __bdi_writeout_inc calls here but 566 * it does not cause any harm since the resulting time when 567 * timer will fire and what is in writeout_period_time will be 568 * roughly the same. 569 */ 570 dom->period_time = wp_next_time(jiffies); 571 mod_timer(&dom->period_timer, dom->period_time); 572 } 573 } 574 575 /* 576 * Increment @wb's writeout completion count and the global writeout 577 * completion count. Called from __folio_end_writeback(). 578 */ 579 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 580 { 581 struct wb_domain *cgdom; 582 583 wb_stat_mod(wb, WB_WRITTEN, nr); 584 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 585 wb->bdi->max_prop_frac, nr); 586 587 cgdom = mem_cgroup_wb_domain(wb); 588 if (cgdom) 589 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 590 wb->bdi->max_prop_frac, nr); 591 } 592 593 void wb_writeout_inc(struct bdi_writeback *wb) 594 { 595 unsigned long flags; 596 597 local_irq_save(flags); 598 __wb_writeout_add(wb, 1); 599 local_irq_restore(flags); 600 } 601 EXPORT_SYMBOL_GPL(wb_writeout_inc); 602 603 /* 604 * On idle system, we can be called long after we scheduled because we use 605 * deferred timers so count with missed periods. 606 */ 607 static void writeout_period(struct timer_list *t) 608 { 609 struct wb_domain *dom = from_timer(dom, t, period_timer); 610 int miss_periods = (jiffies - dom->period_time) / 611 VM_COMPLETIONS_PERIOD_LEN; 612 613 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 614 dom->period_time = wp_next_time(dom->period_time + 615 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 616 mod_timer(&dom->period_timer, dom->period_time); 617 } else { 618 /* 619 * Aging has zeroed all fractions. Stop wasting CPU on period 620 * updates. 621 */ 622 dom->period_time = 0; 623 } 624 } 625 626 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 627 { 628 memset(dom, 0, sizeof(*dom)); 629 630 spin_lock_init(&dom->lock); 631 632 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 633 634 dom->dirty_limit_tstamp = jiffies; 635 636 return fprop_global_init(&dom->completions, gfp); 637 } 638 639 #ifdef CONFIG_CGROUP_WRITEBACK 640 void wb_domain_exit(struct wb_domain *dom) 641 { 642 del_timer_sync(&dom->period_timer); 643 fprop_global_destroy(&dom->completions); 644 } 645 #endif 646 647 /* 648 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 649 * registered backing devices, which, for obvious reasons, can not 650 * exceed 100%. 651 */ 652 static unsigned int bdi_min_ratio; 653 654 static int bdi_check_pages_limit(unsigned long pages) 655 { 656 unsigned long max_dirty_pages = global_dirtyable_memory(); 657 658 if (pages > max_dirty_pages) 659 return -EINVAL; 660 661 return 0; 662 } 663 664 static unsigned long bdi_ratio_from_pages(unsigned long pages) 665 { 666 unsigned long background_thresh; 667 unsigned long dirty_thresh; 668 unsigned long ratio; 669 670 global_dirty_limits(&background_thresh, &dirty_thresh); 671 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 672 673 return ratio; 674 } 675 676 static u64 bdi_get_bytes(unsigned int ratio) 677 { 678 unsigned long background_thresh; 679 unsigned long dirty_thresh; 680 u64 bytes; 681 682 global_dirty_limits(&background_thresh, &dirty_thresh); 683 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 684 685 return bytes; 686 } 687 688 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 689 { 690 unsigned int delta; 691 int ret = 0; 692 693 if (min_ratio > 100 * BDI_RATIO_SCALE) 694 return -EINVAL; 695 696 spin_lock_bh(&bdi_lock); 697 if (min_ratio > bdi->max_ratio) { 698 ret = -EINVAL; 699 } else { 700 if (min_ratio < bdi->min_ratio) { 701 delta = bdi->min_ratio - min_ratio; 702 bdi_min_ratio -= delta; 703 bdi->min_ratio = min_ratio; 704 } else { 705 delta = min_ratio - bdi->min_ratio; 706 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 707 bdi_min_ratio += delta; 708 bdi->min_ratio = min_ratio; 709 } else { 710 ret = -EINVAL; 711 } 712 } 713 } 714 spin_unlock_bh(&bdi_lock); 715 716 return ret; 717 } 718 719 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 720 { 721 int ret = 0; 722 723 if (max_ratio > 100 * BDI_RATIO_SCALE) 724 return -EINVAL; 725 726 spin_lock_bh(&bdi_lock); 727 if (bdi->min_ratio > max_ratio) { 728 ret = -EINVAL; 729 } else { 730 bdi->max_ratio = max_ratio; 731 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 732 (100 * BDI_RATIO_SCALE); 733 } 734 spin_unlock_bh(&bdi_lock); 735 736 return ret; 737 } 738 739 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 740 { 741 return __bdi_set_min_ratio(bdi, min_ratio); 742 } 743 744 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 745 { 746 return __bdi_set_max_ratio(bdi, max_ratio); 747 } 748 749 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 750 { 751 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 752 } 753 754 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 755 { 756 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 757 } 758 EXPORT_SYMBOL(bdi_set_max_ratio); 759 760 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 761 { 762 return bdi_get_bytes(bdi->min_ratio); 763 } 764 765 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 766 { 767 int ret; 768 unsigned long pages = min_bytes >> PAGE_SHIFT; 769 unsigned long min_ratio; 770 771 ret = bdi_check_pages_limit(pages); 772 if (ret) 773 return ret; 774 775 min_ratio = bdi_ratio_from_pages(pages); 776 return __bdi_set_min_ratio(bdi, min_ratio); 777 } 778 779 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 780 { 781 return bdi_get_bytes(bdi->max_ratio); 782 } 783 784 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 785 { 786 int ret; 787 unsigned long pages = max_bytes >> PAGE_SHIFT; 788 unsigned long max_ratio; 789 790 ret = bdi_check_pages_limit(pages); 791 if (ret) 792 return ret; 793 794 max_ratio = bdi_ratio_from_pages(pages); 795 return __bdi_set_max_ratio(bdi, max_ratio); 796 } 797 798 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 799 { 800 if (strict_limit > 1) 801 return -EINVAL; 802 803 spin_lock_bh(&bdi_lock); 804 if (strict_limit) 805 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 806 else 807 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 808 spin_unlock_bh(&bdi_lock); 809 810 return 0; 811 } 812 813 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 814 unsigned long bg_thresh) 815 { 816 return (thresh + bg_thresh) / 2; 817 } 818 819 static unsigned long hard_dirty_limit(struct wb_domain *dom, 820 unsigned long thresh) 821 { 822 return max(thresh, dom->dirty_limit); 823 } 824 825 /* 826 * Memory which can be further allocated to a memcg domain is capped by 827 * system-wide clean memory excluding the amount being used in the domain. 828 */ 829 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 830 unsigned long filepages, unsigned long headroom) 831 { 832 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 833 unsigned long clean = filepages - min(filepages, mdtc->dirty); 834 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 835 unsigned long other_clean = global_clean - min(global_clean, clean); 836 837 mdtc->avail = filepages + min(headroom, other_clean); 838 } 839 840 /** 841 * __wb_calc_thresh - @wb's share of dirty threshold 842 * @dtc: dirty_throttle_context of interest 843 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc 844 * 845 * Note that balance_dirty_pages() will only seriously take dirty throttling 846 * threshold as a hard limit when sleeping max_pause per page is not enough 847 * to keep the dirty pages under control. For example, when the device is 848 * completely stalled due to some error conditions, or when there are 1000 849 * dd tasks writing to a slow 10MB/s USB key. 850 * In the other normal situations, it acts more gently by throttling the tasks 851 * more (rather than completely block them) when the wb dirty pages go high. 852 * 853 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 854 * - starving fast devices 855 * - piling up dirty pages (that will take long time to sync) on slow devices 856 * 857 * The wb's share of dirty limit will be adapting to its throughput and 858 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 859 * 860 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term 861 * "dirty" in the context of dirty balancing includes all PG_dirty and 862 * PG_writeback pages. 863 */ 864 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, 865 unsigned long thresh) 866 { 867 struct wb_domain *dom = dtc_dom(dtc); 868 u64 wb_thresh; 869 unsigned long numerator, denominator; 870 unsigned long wb_min_ratio, wb_max_ratio; 871 872 /* 873 * Calculate this wb's share of the thresh ratio. 874 */ 875 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 876 &numerator, &denominator); 877 878 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 879 wb_thresh *= numerator; 880 wb_thresh = div64_ul(wb_thresh, denominator); 881 882 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 883 884 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 885 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE)) 886 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 887 888 return wb_thresh; 889 } 890 891 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 892 { 893 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 894 895 return __wb_calc_thresh(&gdtc, thresh); 896 } 897 898 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 899 { 900 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 901 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 902 unsigned long filepages = 0, headroom = 0, writeback = 0; 903 904 gdtc.avail = global_dirtyable_memory(); 905 gdtc.dirty = global_node_page_state(NR_FILE_DIRTY) + 906 global_node_page_state(NR_WRITEBACK); 907 908 mem_cgroup_wb_stats(wb, &filepages, &headroom, 909 &mdtc.dirty, &writeback); 910 mdtc.dirty += writeback; 911 mdtc_calc_avail(&mdtc, filepages, headroom); 912 domain_dirty_limits(&mdtc); 913 914 return __wb_calc_thresh(&mdtc, mdtc.thresh); 915 } 916 917 /* 918 * setpoint - dirty 3 919 * f(dirty) := 1.0 + (----------------) 920 * limit - setpoint 921 * 922 * it's a 3rd order polynomial that subjects to 923 * 924 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 925 * (2) f(setpoint) = 1.0 => the balance point 926 * (3) f(limit) = 0 => the hard limit 927 * (4) df/dx <= 0 => negative feedback control 928 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 929 * => fast response on large errors; small oscillation near setpoint 930 */ 931 static long long pos_ratio_polynom(unsigned long setpoint, 932 unsigned long dirty, 933 unsigned long limit) 934 { 935 long long pos_ratio; 936 long x; 937 938 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 939 (limit - setpoint) | 1); 940 pos_ratio = x; 941 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 942 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 943 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 944 945 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 946 } 947 948 /* 949 * Dirty position control. 950 * 951 * (o) global/bdi setpoints 952 * 953 * We want the dirty pages be balanced around the global/wb setpoints. 954 * When the number of dirty pages is higher/lower than the setpoint, the 955 * dirty position control ratio (and hence task dirty ratelimit) will be 956 * decreased/increased to bring the dirty pages back to the setpoint. 957 * 958 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 959 * 960 * if (dirty < setpoint) scale up pos_ratio 961 * if (dirty > setpoint) scale down pos_ratio 962 * 963 * if (wb_dirty < wb_setpoint) scale up pos_ratio 964 * if (wb_dirty > wb_setpoint) scale down pos_ratio 965 * 966 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 967 * 968 * (o) global control line 969 * 970 * ^ pos_ratio 971 * | 972 * | |<===== global dirty control scope ======>| 973 * 2.0 * * * * * * * 974 * | .* 975 * | . * 976 * | . * 977 * | . * 978 * | . * 979 * | . * 980 * 1.0 ................................* 981 * | . . * 982 * | . . * 983 * | . . * 984 * | . . * 985 * | . . * 986 * 0 +------------.------------------.----------------------*-------------> 987 * freerun^ setpoint^ limit^ dirty pages 988 * 989 * (o) wb control line 990 * 991 * ^ pos_ratio 992 * | 993 * | * 994 * | * 995 * | * 996 * | * 997 * | * |<=========== span ============>| 998 * 1.0 .......................* 999 * | . * 1000 * | . * 1001 * | . * 1002 * | . * 1003 * | . * 1004 * | . * 1005 * | . * 1006 * | . * 1007 * | . * 1008 * | . * 1009 * | . * 1010 * 1/4 ...............................................* * * * * * * * * * * * 1011 * | . . 1012 * | . . 1013 * | . . 1014 * 0 +----------------------.-------------------------------.-------------> 1015 * wb_setpoint^ x_intercept^ 1016 * 1017 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1018 * be smoothly throttled down to normal if it starts high in situations like 1019 * - start writing to a slow SD card and a fast disk at the same time. The SD 1020 * card's wb_dirty may rush to many times higher than wb_setpoint. 1021 * - the wb dirty thresh drops quickly due to change of JBOD workload 1022 */ 1023 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1024 { 1025 struct bdi_writeback *wb = dtc->wb; 1026 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1027 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1028 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1029 unsigned long wb_thresh = dtc->wb_thresh; 1030 unsigned long x_intercept; 1031 unsigned long setpoint; /* dirty pages' target balance point */ 1032 unsigned long wb_setpoint; 1033 unsigned long span; 1034 long long pos_ratio; /* for scaling up/down the rate limit */ 1035 long x; 1036 1037 dtc->pos_ratio = 0; 1038 1039 if (unlikely(dtc->dirty >= limit)) 1040 return; 1041 1042 /* 1043 * global setpoint 1044 * 1045 * See comment for pos_ratio_polynom(). 1046 */ 1047 setpoint = (freerun + limit) / 2; 1048 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1049 1050 /* 1051 * The strictlimit feature is a tool preventing mistrusted filesystems 1052 * from growing a large number of dirty pages before throttling. For 1053 * such filesystems balance_dirty_pages always checks wb counters 1054 * against wb limits. Even if global "nr_dirty" is under "freerun". 1055 * This is especially important for fuse which sets bdi->max_ratio to 1056 * 1% by default. Without strictlimit feature, fuse writeback may 1057 * consume arbitrary amount of RAM because it is accounted in 1058 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1059 * 1060 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1061 * two values: wb_dirty and wb_thresh. Let's consider an example: 1062 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1063 * limits are set by default to 10% and 20% (background and throttle). 1064 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1065 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1066 * about ~6K pages (as the average of background and throttle wb 1067 * limits). The 3rd order polynomial will provide positive feedback if 1068 * wb_dirty is under wb_setpoint and vice versa. 1069 * 1070 * Note, that we cannot use global counters in these calculations 1071 * because we want to throttle process writing to a strictlimit wb 1072 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1073 * in the example above). 1074 */ 1075 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1076 long long wb_pos_ratio; 1077 1078 if (dtc->wb_dirty < 8) { 1079 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 1080 2 << RATELIMIT_CALC_SHIFT); 1081 return; 1082 } 1083 1084 if (dtc->wb_dirty >= wb_thresh) 1085 return; 1086 1087 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1088 dtc->wb_bg_thresh); 1089 1090 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1091 return; 1092 1093 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1094 wb_thresh); 1095 1096 /* 1097 * Typically, for strictlimit case, wb_setpoint << setpoint 1098 * and pos_ratio >> wb_pos_ratio. In the other words global 1099 * state ("dirty") is not limiting factor and we have to 1100 * make decision based on wb counters. But there is an 1101 * important case when global pos_ratio should get precedence: 1102 * global limits are exceeded (e.g. due to activities on other 1103 * wb's) while given strictlimit wb is below limit. 1104 * 1105 * "pos_ratio * wb_pos_ratio" would work for the case above, 1106 * but it would look too non-natural for the case of all 1107 * activity in the system coming from a single strictlimit wb 1108 * with bdi->max_ratio == 100%. 1109 * 1110 * Note that min() below somewhat changes the dynamics of the 1111 * control system. Normally, pos_ratio value can be well over 3 1112 * (when globally we are at freerun and wb is well below wb 1113 * setpoint). Now the maximum pos_ratio in the same situation 1114 * is 2. We might want to tweak this if we observe the control 1115 * system is too slow to adapt. 1116 */ 1117 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1118 return; 1119 } 1120 1121 /* 1122 * We have computed basic pos_ratio above based on global situation. If 1123 * the wb is over/under its share of dirty pages, we want to scale 1124 * pos_ratio further down/up. That is done by the following mechanism. 1125 */ 1126 1127 /* 1128 * wb setpoint 1129 * 1130 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1131 * 1132 * x_intercept - wb_dirty 1133 * := -------------------------- 1134 * x_intercept - wb_setpoint 1135 * 1136 * The main wb control line is a linear function that subjects to 1137 * 1138 * (1) f(wb_setpoint) = 1.0 1139 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1140 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1141 * 1142 * For single wb case, the dirty pages are observed to fluctuate 1143 * regularly within range 1144 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1145 * for various filesystems, where (2) can yield in a reasonable 12.5% 1146 * fluctuation range for pos_ratio. 1147 * 1148 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1149 * own size, so move the slope over accordingly and choose a slope that 1150 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1151 */ 1152 if (unlikely(wb_thresh > dtc->thresh)) 1153 wb_thresh = dtc->thresh; 1154 /* 1155 * It's very possible that wb_thresh is close to 0 not because the 1156 * device is slow, but that it has remained inactive for long time. 1157 * Honour such devices a reasonable good (hopefully IO efficient) 1158 * threshold, so that the occasional writes won't be blocked and active 1159 * writes can rampup the threshold quickly. 1160 */ 1161 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1162 /* 1163 * scale global setpoint to wb's: 1164 * wb_setpoint = setpoint * wb_thresh / thresh 1165 */ 1166 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1167 wb_setpoint = setpoint * (u64)x >> 16; 1168 /* 1169 * Use span=(8*write_bw) in single wb case as indicated by 1170 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1171 * 1172 * wb_thresh thresh - wb_thresh 1173 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1174 * thresh thresh 1175 */ 1176 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1177 x_intercept = wb_setpoint + span; 1178 1179 if (dtc->wb_dirty < x_intercept - span / 4) { 1180 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1181 (x_intercept - wb_setpoint) | 1); 1182 } else 1183 pos_ratio /= 4; 1184 1185 /* 1186 * wb reserve area, safeguard against dirty pool underrun and disk idle 1187 * It may push the desired control point of global dirty pages higher 1188 * than setpoint. 1189 */ 1190 x_intercept = wb_thresh / 2; 1191 if (dtc->wb_dirty < x_intercept) { 1192 if (dtc->wb_dirty > x_intercept / 8) 1193 pos_ratio = div_u64(pos_ratio * x_intercept, 1194 dtc->wb_dirty); 1195 else 1196 pos_ratio *= 8; 1197 } 1198 1199 dtc->pos_ratio = pos_ratio; 1200 } 1201 1202 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1203 unsigned long elapsed, 1204 unsigned long written) 1205 { 1206 const unsigned long period = roundup_pow_of_two(3 * HZ); 1207 unsigned long avg = wb->avg_write_bandwidth; 1208 unsigned long old = wb->write_bandwidth; 1209 u64 bw; 1210 1211 /* 1212 * bw = written * HZ / elapsed 1213 * 1214 * bw * elapsed + write_bandwidth * (period - elapsed) 1215 * write_bandwidth = --------------------------------------------------- 1216 * period 1217 * 1218 * @written may have decreased due to folio_redirty_for_writepage(). 1219 * Avoid underflowing @bw calculation. 1220 */ 1221 bw = written - min(written, wb->written_stamp); 1222 bw *= HZ; 1223 if (unlikely(elapsed > period)) { 1224 bw = div64_ul(bw, elapsed); 1225 avg = bw; 1226 goto out; 1227 } 1228 bw += (u64)wb->write_bandwidth * (period - elapsed); 1229 bw >>= ilog2(period); 1230 1231 /* 1232 * one more level of smoothing, for filtering out sudden spikes 1233 */ 1234 if (avg > old && old >= (unsigned long)bw) 1235 avg -= (avg - old) >> 3; 1236 1237 if (avg < old && old <= (unsigned long)bw) 1238 avg += (old - avg) >> 3; 1239 1240 out: 1241 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1242 avg = max(avg, 1LU); 1243 if (wb_has_dirty_io(wb)) { 1244 long delta = avg - wb->avg_write_bandwidth; 1245 WARN_ON_ONCE(atomic_long_add_return(delta, 1246 &wb->bdi->tot_write_bandwidth) <= 0); 1247 } 1248 wb->write_bandwidth = bw; 1249 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1250 } 1251 1252 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1253 { 1254 struct wb_domain *dom = dtc_dom(dtc); 1255 unsigned long thresh = dtc->thresh; 1256 unsigned long limit = dom->dirty_limit; 1257 1258 /* 1259 * Follow up in one step. 1260 */ 1261 if (limit < thresh) { 1262 limit = thresh; 1263 goto update; 1264 } 1265 1266 /* 1267 * Follow down slowly. Use the higher one as the target, because thresh 1268 * may drop below dirty. This is exactly the reason to introduce 1269 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1270 */ 1271 thresh = max(thresh, dtc->dirty); 1272 if (limit > thresh) { 1273 limit -= (limit - thresh) >> 5; 1274 goto update; 1275 } 1276 return; 1277 update: 1278 dom->dirty_limit = limit; 1279 } 1280 1281 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1282 unsigned long now) 1283 { 1284 struct wb_domain *dom = dtc_dom(dtc); 1285 1286 /* 1287 * check locklessly first to optimize away locking for the most time 1288 */ 1289 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1290 return; 1291 1292 spin_lock(&dom->lock); 1293 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1294 update_dirty_limit(dtc); 1295 dom->dirty_limit_tstamp = now; 1296 } 1297 spin_unlock(&dom->lock); 1298 } 1299 1300 /* 1301 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1302 * 1303 * Normal wb tasks will be curbed at or below it in long term. 1304 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1305 */ 1306 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1307 unsigned long dirtied, 1308 unsigned long elapsed) 1309 { 1310 struct bdi_writeback *wb = dtc->wb; 1311 unsigned long dirty = dtc->dirty; 1312 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1313 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1314 unsigned long setpoint = (freerun + limit) / 2; 1315 unsigned long write_bw = wb->avg_write_bandwidth; 1316 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1317 unsigned long dirty_rate; 1318 unsigned long task_ratelimit; 1319 unsigned long balanced_dirty_ratelimit; 1320 unsigned long step; 1321 unsigned long x; 1322 unsigned long shift; 1323 1324 /* 1325 * The dirty rate will match the writeout rate in long term, except 1326 * when dirty pages are truncated by userspace or re-dirtied by FS. 1327 */ 1328 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1329 1330 /* 1331 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1332 */ 1333 task_ratelimit = (u64)dirty_ratelimit * 1334 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1335 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1336 1337 /* 1338 * A linear estimation of the "balanced" throttle rate. The theory is, 1339 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1340 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1341 * formula will yield the balanced rate limit (write_bw / N). 1342 * 1343 * Note that the expanded form is not a pure rate feedback: 1344 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1345 * but also takes pos_ratio into account: 1346 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1347 * 1348 * (1) is not realistic because pos_ratio also takes part in balancing 1349 * the dirty rate. Consider the state 1350 * pos_ratio = 0.5 (3) 1351 * rate = 2 * (write_bw / N) (4) 1352 * If (1) is used, it will stuck in that state! Because each dd will 1353 * be throttled at 1354 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1355 * yielding 1356 * dirty_rate = N * task_ratelimit = write_bw (6) 1357 * put (6) into (1) we get 1358 * rate_(i+1) = rate_(i) (7) 1359 * 1360 * So we end up using (2) to always keep 1361 * rate_(i+1) ~= (write_bw / N) (8) 1362 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1363 * pos_ratio is able to drive itself to 1.0, which is not only where 1364 * the dirty count meet the setpoint, but also where the slope of 1365 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1366 */ 1367 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1368 dirty_rate | 1); 1369 /* 1370 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1371 */ 1372 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1373 balanced_dirty_ratelimit = write_bw; 1374 1375 /* 1376 * We could safely do this and return immediately: 1377 * 1378 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1379 * 1380 * However to get a more stable dirty_ratelimit, the below elaborated 1381 * code makes use of task_ratelimit to filter out singular points and 1382 * limit the step size. 1383 * 1384 * The below code essentially only uses the relative value of 1385 * 1386 * task_ratelimit - dirty_ratelimit 1387 * = (pos_ratio - 1) * dirty_ratelimit 1388 * 1389 * which reflects the direction and size of dirty position error. 1390 */ 1391 1392 /* 1393 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1394 * task_ratelimit is on the same side of dirty_ratelimit, too. 1395 * For example, when 1396 * - dirty_ratelimit > balanced_dirty_ratelimit 1397 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1398 * lowering dirty_ratelimit will help meet both the position and rate 1399 * control targets. Otherwise, don't update dirty_ratelimit if it will 1400 * only help meet the rate target. After all, what the users ultimately 1401 * feel and care are stable dirty rate and small position error. 1402 * 1403 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1404 * and filter out the singular points of balanced_dirty_ratelimit. Which 1405 * keeps jumping around randomly and can even leap far away at times 1406 * due to the small 200ms estimation period of dirty_rate (we want to 1407 * keep that period small to reduce time lags). 1408 */ 1409 step = 0; 1410 1411 /* 1412 * For strictlimit case, calculations above were based on wb counters 1413 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1414 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1415 * Hence, to calculate "step" properly, we have to use wb_dirty as 1416 * "dirty" and wb_setpoint as "setpoint". 1417 * 1418 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1419 * it's possible that wb_thresh is close to zero due to inactivity 1420 * of backing device. 1421 */ 1422 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1423 dirty = dtc->wb_dirty; 1424 if (dtc->wb_dirty < 8) 1425 setpoint = dtc->wb_dirty + 1; 1426 else 1427 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1428 } 1429 1430 if (dirty < setpoint) { 1431 x = min3(wb->balanced_dirty_ratelimit, 1432 balanced_dirty_ratelimit, task_ratelimit); 1433 if (dirty_ratelimit < x) 1434 step = x - dirty_ratelimit; 1435 } else { 1436 x = max3(wb->balanced_dirty_ratelimit, 1437 balanced_dirty_ratelimit, task_ratelimit); 1438 if (dirty_ratelimit > x) 1439 step = dirty_ratelimit - x; 1440 } 1441 1442 /* 1443 * Don't pursue 100% rate matching. It's impossible since the balanced 1444 * rate itself is constantly fluctuating. So decrease the track speed 1445 * when it gets close to the target. Helps eliminate pointless tremors. 1446 */ 1447 shift = dirty_ratelimit / (2 * step + 1); 1448 if (shift < BITS_PER_LONG) 1449 step = DIV_ROUND_UP(step >> shift, 8); 1450 else 1451 step = 0; 1452 1453 if (dirty_ratelimit < balanced_dirty_ratelimit) 1454 dirty_ratelimit += step; 1455 else 1456 dirty_ratelimit -= step; 1457 1458 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1459 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1460 1461 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1462 } 1463 1464 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1465 struct dirty_throttle_control *mdtc, 1466 bool update_ratelimit) 1467 { 1468 struct bdi_writeback *wb = gdtc->wb; 1469 unsigned long now = jiffies; 1470 unsigned long elapsed; 1471 unsigned long dirtied; 1472 unsigned long written; 1473 1474 spin_lock(&wb->list_lock); 1475 1476 /* 1477 * Lockless checks for elapsed time are racy and delayed update after 1478 * IO completion doesn't do it at all (to make sure written pages are 1479 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1480 * division errors. 1481 */ 1482 elapsed = max(now - wb->bw_time_stamp, 1UL); 1483 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1484 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1485 1486 if (update_ratelimit) { 1487 domain_update_dirty_limit(gdtc, now); 1488 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1489 1490 /* 1491 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1492 * compiler has no way to figure that out. Help it. 1493 */ 1494 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1495 domain_update_dirty_limit(mdtc, now); 1496 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1497 } 1498 } 1499 wb_update_write_bandwidth(wb, elapsed, written); 1500 1501 wb->dirtied_stamp = dirtied; 1502 wb->written_stamp = written; 1503 WRITE_ONCE(wb->bw_time_stamp, now); 1504 spin_unlock(&wb->list_lock); 1505 } 1506 1507 void wb_update_bandwidth(struct bdi_writeback *wb) 1508 { 1509 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1510 1511 __wb_update_bandwidth(&gdtc, NULL, false); 1512 } 1513 1514 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1515 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1516 1517 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1518 { 1519 unsigned long now = jiffies; 1520 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1521 1522 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1523 !atomic_read(&wb->writeback_inodes)) { 1524 spin_lock(&wb->list_lock); 1525 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1526 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1527 WRITE_ONCE(wb->bw_time_stamp, now); 1528 spin_unlock(&wb->list_lock); 1529 } 1530 } 1531 1532 /* 1533 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1534 * will look to see if it needs to start dirty throttling. 1535 * 1536 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1537 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1538 * (the number of pages we may dirty without exceeding the dirty limits). 1539 */ 1540 static unsigned long dirty_poll_interval(unsigned long dirty, 1541 unsigned long thresh) 1542 { 1543 if (thresh > dirty) 1544 return 1UL << (ilog2(thresh - dirty) >> 1); 1545 1546 return 1; 1547 } 1548 1549 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1550 unsigned long wb_dirty) 1551 { 1552 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1553 unsigned long t; 1554 1555 /* 1556 * Limit pause time for small memory systems. If sleeping for too long 1557 * time, a small pool of dirty/writeback pages may go empty and disk go 1558 * idle. 1559 * 1560 * 8 serves as the safety ratio. 1561 */ 1562 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1563 t++; 1564 1565 return min_t(unsigned long, t, MAX_PAUSE); 1566 } 1567 1568 static long wb_min_pause(struct bdi_writeback *wb, 1569 long max_pause, 1570 unsigned long task_ratelimit, 1571 unsigned long dirty_ratelimit, 1572 int *nr_dirtied_pause) 1573 { 1574 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1575 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1576 long t; /* target pause */ 1577 long pause; /* estimated next pause */ 1578 int pages; /* target nr_dirtied_pause */ 1579 1580 /* target for 10ms pause on 1-dd case */ 1581 t = max(1, HZ / 100); 1582 1583 /* 1584 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1585 * overheads. 1586 * 1587 * (N * 10ms) on 2^N concurrent tasks. 1588 */ 1589 if (hi > lo) 1590 t += (hi - lo) * (10 * HZ) / 1024; 1591 1592 /* 1593 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1594 * on the much more stable dirty_ratelimit. However the next pause time 1595 * will be computed based on task_ratelimit and the two rate limits may 1596 * depart considerably at some time. Especially if task_ratelimit goes 1597 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1598 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1599 * result task_ratelimit won't be executed faithfully, which could 1600 * eventually bring down dirty_ratelimit. 1601 * 1602 * We apply two rules to fix it up: 1603 * 1) try to estimate the next pause time and if necessary, use a lower 1604 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1605 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1606 * 2) limit the target pause time to max_pause/2, so that the normal 1607 * small fluctuations of task_ratelimit won't trigger rule (1) and 1608 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1609 */ 1610 t = min(t, 1 + max_pause / 2); 1611 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1612 1613 /* 1614 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1615 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1616 * When the 16 consecutive reads are often interrupted by some dirty 1617 * throttling pause during the async writes, cfq will go into idles 1618 * (deadline is fine). So push nr_dirtied_pause as high as possible 1619 * until reaches DIRTY_POLL_THRESH=32 pages. 1620 */ 1621 if (pages < DIRTY_POLL_THRESH) { 1622 t = max_pause; 1623 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1624 if (pages > DIRTY_POLL_THRESH) { 1625 pages = DIRTY_POLL_THRESH; 1626 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1627 } 1628 } 1629 1630 pause = HZ * pages / (task_ratelimit + 1); 1631 if (pause > max_pause) { 1632 t = max_pause; 1633 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1634 } 1635 1636 *nr_dirtied_pause = pages; 1637 /* 1638 * The minimal pause time will normally be half the target pause time. 1639 */ 1640 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1641 } 1642 1643 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1644 { 1645 struct bdi_writeback *wb = dtc->wb; 1646 unsigned long wb_reclaimable; 1647 1648 /* 1649 * wb_thresh is not treated as some limiting factor as 1650 * dirty_thresh, due to reasons 1651 * - in JBOD setup, wb_thresh can fluctuate a lot 1652 * - in a system with HDD and USB key, the USB key may somehow 1653 * go into state (wb_dirty >> wb_thresh) either because 1654 * wb_dirty starts high, or because wb_thresh drops low. 1655 * In this case we don't want to hard throttle the USB key 1656 * dirtiers for 100 seconds until wb_dirty drops under 1657 * wb_thresh. Instead the auxiliary wb control line in 1658 * wb_position_ratio() will let the dirtier task progress 1659 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1660 */ 1661 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); 1662 dtc->wb_bg_thresh = dtc->thresh ? 1663 div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1664 1665 /* 1666 * In order to avoid the stacked BDI deadlock we need 1667 * to ensure we accurately count the 'dirty' pages when 1668 * the threshold is low. 1669 * 1670 * Otherwise it would be possible to get thresh+n pages 1671 * reported dirty, even though there are thresh-m pages 1672 * actually dirty; with m+n sitting in the percpu 1673 * deltas. 1674 */ 1675 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1676 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1677 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1678 } else { 1679 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1680 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1681 } 1682 } 1683 1684 /* 1685 * balance_dirty_pages() must be called by processes which are generating dirty 1686 * data. It looks at the number of dirty pages in the machine and will force 1687 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1688 * If we're over `background_thresh' then the writeback threads are woken to 1689 * perform some writeout. 1690 */ 1691 static int balance_dirty_pages(struct bdi_writeback *wb, 1692 unsigned long pages_dirtied, unsigned int flags) 1693 { 1694 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1695 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1696 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1697 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1698 &mdtc_stor : NULL; 1699 struct dirty_throttle_control *sdtc; 1700 unsigned long nr_dirty; 1701 long period; 1702 long pause; 1703 long max_pause; 1704 long min_pause; 1705 int nr_dirtied_pause; 1706 bool dirty_exceeded = false; 1707 unsigned long task_ratelimit; 1708 unsigned long dirty_ratelimit; 1709 struct backing_dev_info *bdi = wb->bdi; 1710 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1711 unsigned long start_time = jiffies; 1712 int ret = 0; 1713 1714 for (;;) { 1715 unsigned long now = jiffies; 1716 unsigned long dirty, thresh, bg_thresh; 1717 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1718 unsigned long m_thresh = 0; 1719 unsigned long m_bg_thresh = 0; 1720 1721 nr_dirty = global_node_page_state(NR_FILE_DIRTY); 1722 gdtc->avail = global_dirtyable_memory(); 1723 gdtc->dirty = nr_dirty + global_node_page_state(NR_WRITEBACK); 1724 1725 domain_dirty_limits(gdtc); 1726 1727 if (unlikely(strictlimit)) { 1728 wb_dirty_limits(gdtc); 1729 1730 dirty = gdtc->wb_dirty; 1731 thresh = gdtc->wb_thresh; 1732 bg_thresh = gdtc->wb_bg_thresh; 1733 } else { 1734 dirty = gdtc->dirty; 1735 thresh = gdtc->thresh; 1736 bg_thresh = gdtc->bg_thresh; 1737 } 1738 1739 if (mdtc) { 1740 unsigned long filepages, headroom, writeback; 1741 1742 /* 1743 * If @wb belongs to !root memcg, repeat the same 1744 * basic calculations for the memcg domain. 1745 */ 1746 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1747 &mdtc->dirty, &writeback); 1748 mdtc->dirty += writeback; 1749 mdtc_calc_avail(mdtc, filepages, headroom); 1750 1751 domain_dirty_limits(mdtc); 1752 1753 if (unlikely(strictlimit)) { 1754 wb_dirty_limits(mdtc); 1755 m_dirty = mdtc->wb_dirty; 1756 m_thresh = mdtc->wb_thresh; 1757 m_bg_thresh = mdtc->wb_bg_thresh; 1758 } else { 1759 m_dirty = mdtc->dirty; 1760 m_thresh = mdtc->thresh; 1761 m_bg_thresh = mdtc->bg_thresh; 1762 } 1763 } 1764 1765 /* 1766 * In laptop mode, we wait until hitting the higher threshold 1767 * before starting background writeout, and then write out all 1768 * the way down to the lower threshold. So slow writers cause 1769 * minimal disk activity. 1770 * 1771 * In normal mode, we start background writeout at the lower 1772 * background_thresh, to keep the amount of dirty memory low. 1773 */ 1774 if (!laptop_mode && nr_dirty > gdtc->bg_thresh && 1775 !writeback_in_progress(wb)) 1776 wb_start_background_writeback(wb); 1777 1778 /* 1779 * Throttle it only when the background writeback cannot 1780 * catch-up. This avoids (excessively) small writeouts 1781 * when the wb limits are ramping up in case of !strictlimit. 1782 * 1783 * In strictlimit case make decision based on the wb counters 1784 * and limits. Small writeouts when the wb limits are ramping 1785 * up are the price we consciously pay for strictlimit-ing. 1786 * 1787 * If memcg domain is in effect, @dirty should be under 1788 * both global and memcg freerun ceilings. 1789 */ 1790 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1791 (!mdtc || 1792 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1793 unsigned long intv; 1794 unsigned long m_intv; 1795 1796 free_running: 1797 intv = dirty_poll_interval(dirty, thresh); 1798 m_intv = ULONG_MAX; 1799 1800 current->dirty_paused_when = now; 1801 current->nr_dirtied = 0; 1802 if (mdtc) 1803 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1804 current->nr_dirtied_pause = min(intv, m_intv); 1805 break; 1806 } 1807 1808 /* Start writeback even when in laptop mode */ 1809 if (unlikely(!writeback_in_progress(wb))) 1810 wb_start_background_writeback(wb); 1811 1812 mem_cgroup_flush_foreign(wb); 1813 1814 /* 1815 * Calculate global domain's pos_ratio and select the 1816 * global dtc by default. 1817 */ 1818 if (!strictlimit) { 1819 wb_dirty_limits(gdtc); 1820 1821 if ((current->flags & PF_LOCAL_THROTTLE) && 1822 gdtc->wb_dirty < 1823 dirty_freerun_ceiling(gdtc->wb_thresh, 1824 gdtc->wb_bg_thresh)) 1825 /* 1826 * LOCAL_THROTTLE tasks must not be throttled 1827 * when below the per-wb freerun ceiling. 1828 */ 1829 goto free_running; 1830 } 1831 1832 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1833 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1834 1835 wb_position_ratio(gdtc); 1836 sdtc = gdtc; 1837 1838 if (mdtc) { 1839 /* 1840 * If memcg domain is in effect, calculate its 1841 * pos_ratio. @wb should satisfy constraints from 1842 * both global and memcg domains. Choose the one 1843 * w/ lower pos_ratio. 1844 */ 1845 if (!strictlimit) { 1846 wb_dirty_limits(mdtc); 1847 1848 if ((current->flags & PF_LOCAL_THROTTLE) && 1849 mdtc->wb_dirty < 1850 dirty_freerun_ceiling(mdtc->wb_thresh, 1851 mdtc->wb_bg_thresh)) 1852 /* 1853 * LOCAL_THROTTLE tasks must not be 1854 * throttled when below the per-wb 1855 * freerun ceiling. 1856 */ 1857 goto free_running; 1858 } 1859 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1860 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1861 1862 wb_position_ratio(mdtc); 1863 if (mdtc->pos_ratio < gdtc->pos_ratio) 1864 sdtc = mdtc; 1865 } 1866 1867 if (dirty_exceeded != wb->dirty_exceeded) 1868 wb->dirty_exceeded = dirty_exceeded; 1869 1870 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1871 BANDWIDTH_INTERVAL)) 1872 __wb_update_bandwidth(gdtc, mdtc, true); 1873 1874 /* throttle according to the chosen dtc */ 1875 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1876 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1877 RATELIMIT_CALC_SHIFT; 1878 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1879 min_pause = wb_min_pause(wb, max_pause, 1880 task_ratelimit, dirty_ratelimit, 1881 &nr_dirtied_pause); 1882 1883 if (unlikely(task_ratelimit == 0)) { 1884 period = max_pause; 1885 pause = max_pause; 1886 goto pause; 1887 } 1888 period = HZ * pages_dirtied / task_ratelimit; 1889 pause = period; 1890 if (current->dirty_paused_when) 1891 pause -= now - current->dirty_paused_when; 1892 /* 1893 * For less than 1s think time (ext3/4 may block the dirtier 1894 * for up to 800ms from time to time on 1-HDD; so does xfs, 1895 * however at much less frequency), try to compensate it in 1896 * future periods by updating the virtual time; otherwise just 1897 * do a reset, as it may be a light dirtier. 1898 */ 1899 if (pause < min_pause) { 1900 trace_balance_dirty_pages(wb, 1901 sdtc->thresh, 1902 sdtc->bg_thresh, 1903 sdtc->dirty, 1904 sdtc->wb_thresh, 1905 sdtc->wb_dirty, 1906 dirty_ratelimit, 1907 task_ratelimit, 1908 pages_dirtied, 1909 period, 1910 min(pause, 0L), 1911 start_time); 1912 if (pause < -HZ) { 1913 current->dirty_paused_when = now; 1914 current->nr_dirtied = 0; 1915 } else if (period) { 1916 current->dirty_paused_when += period; 1917 current->nr_dirtied = 0; 1918 } else if (current->nr_dirtied_pause <= pages_dirtied) 1919 current->nr_dirtied_pause += pages_dirtied; 1920 break; 1921 } 1922 if (unlikely(pause > max_pause)) { 1923 /* for occasional dropped task_ratelimit */ 1924 now += min(pause - max_pause, max_pause); 1925 pause = max_pause; 1926 } 1927 1928 pause: 1929 trace_balance_dirty_pages(wb, 1930 sdtc->thresh, 1931 sdtc->bg_thresh, 1932 sdtc->dirty, 1933 sdtc->wb_thresh, 1934 sdtc->wb_dirty, 1935 dirty_ratelimit, 1936 task_ratelimit, 1937 pages_dirtied, 1938 period, 1939 pause, 1940 start_time); 1941 if (flags & BDP_ASYNC) { 1942 ret = -EAGAIN; 1943 break; 1944 } 1945 __set_current_state(TASK_KILLABLE); 1946 bdi->last_bdp_sleep = jiffies; 1947 io_schedule_timeout(pause); 1948 1949 current->dirty_paused_when = now + pause; 1950 current->nr_dirtied = 0; 1951 current->nr_dirtied_pause = nr_dirtied_pause; 1952 1953 /* 1954 * This is typically equal to (dirty < thresh) and can also 1955 * keep "1000+ dd on a slow USB stick" under control. 1956 */ 1957 if (task_ratelimit) 1958 break; 1959 1960 /* 1961 * In the case of an unresponsive NFS server and the NFS dirty 1962 * pages exceeds dirty_thresh, give the other good wb's a pipe 1963 * to go through, so that tasks on them still remain responsive. 1964 * 1965 * In theory 1 page is enough to keep the consumer-producer 1966 * pipe going: the flusher cleans 1 page => the task dirties 1 1967 * more page. However wb_dirty has accounting errors. So use 1968 * the larger and more IO friendly wb_stat_error. 1969 */ 1970 if (sdtc->wb_dirty <= wb_stat_error()) 1971 break; 1972 1973 if (fatal_signal_pending(current)) 1974 break; 1975 } 1976 return ret; 1977 } 1978 1979 static DEFINE_PER_CPU(int, bdp_ratelimits); 1980 1981 /* 1982 * Normal tasks are throttled by 1983 * loop { 1984 * dirty tsk->nr_dirtied_pause pages; 1985 * take a snap in balance_dirty_pages(); 1986 * } 1987 * However there is a worst case. If every task exit immediately when dirtied 1988 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1989 * called to throttle the page dirties. The solution is to save the not yet 1990 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1991 * randomly into the running tasks. This works well for the above worst case, 1992 * as the new task will pick up and accumulate the old task's leaked dirty 1993 * count and eventually get throttled. 1994 */ 1995 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1996 1997 /** 1998 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 1999 * @mapping: address_space which was dirtied. 2000 * @flags: BDP flags. 2001 * 2002 * Processes which are dirtying memory should call in here once for each page 2003 * which was newly dirtied. The function will periodically check the system's 2004 * dirty state and will initiate writeback if needed. 2005 * 2006 * See balance_dirty_pages_ratelimited() for details. 2007 * 2008 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2009 * indicate that memory is out of balance and the caller must wait 2010 * for I/O to complete. Otherwise, it will return 0 to indicate 2011 * that either memory was already in balance, or it was able to sleep 2012 * until the amount of dirty memory returned to balance. 2013 */ 2014 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2015 unsigned int flags) 2016 { 2017 struct inode *inode = mapping->host; 2018 struct backing_dev_info *bdi = inode_to_bdi(inode); 2019 struct bdi_writeback *wb = NULL; 2020 int ratelimit; 2021 int ret = 0; 2022 int *p; 2023 2024 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2025 return ret; 2026 2027 if (inode_cgwb_enabled(inode)) 2028 wb = wb_get_create_current(bdi, GFP_KERNEL); 2029 if (!wb) 2030 wb = &bdi->wb; 2031 2032 ratelimit = current->nr_dirtied_pause; 2033 if (wb->dirty_exceeded) 2034 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2035 2036 preempt_disable(); 2037 /* 2038 * This prevents one CPU to accumulate too many dirtied pages without 2039 * calling into balance_dirty_pages(), which can happen when there are 2040 * 1000+ tasks, all of them start dirtying pages at exactly the same 2041 * time, hence all honoured too large initial task->nr_dirtied_pause. 2042 */ 2043 p = this_cpu_ptr(&bdp_ratelimits); 2044 if (unlikely(current->nr_dirtied >= ratelimit)) 2045 *p = 0; 2046 else if (unlikely(*p >= ratelimit_pages)) { 2047 *p = 0; 2048 ratelimit = 0; 2049 } 2050 /* 2051 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2052 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2053 * the dirty throttling and livelock other long-run dirtiers. 2054 */ 2055 p = this_cpu_ptr(&dirty_throttle_leaks); 2056 if (*p > 0 && current->nr_dirtied < ratelimit) { 2057 unsigned long nr_pages_dirtied; 2058 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2059 *p -= nr_pages_dirtied; 2060 current->nr_dirtied += nr_pages_dirtied; 2061 } 2062 preempt_enable(); 2063 2064 if (unlikely(current->nr_dirtied >= ratelimit)) 2065 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2066 2067 wb_put(wb); 2068 return ret; 2069 } 2070 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2071 2072 /** 2073 * balance_dirty_pages_ratelimited - balance dirty memory state. 2074 * @mapping: address_space which was dirtied. 2075 * 2076 * Processes which are dirtying memory should call in here once for each page 2077 * which was newly dirtied. The function will periodically check the system's 2078 * dirty state and will initiate writeback if needed. 2079 * 2080 * Once we're over the dirty memory limit we decrease the ratelimiting 2081 * by a lot, to prevent individual processes from overshooting the limit 2082 * by (ratelimit_pages) each. 2083 */ 2084 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2085 { 2086 balance_dirty_pages_ratelimited_flags(mapping, 0); 2087 } 2088 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2089 2090 /** 2091 * wb_over_bg_thresh - does @wb need to be written back? 2092 * @wb: bdi_writeback of interest 2093 * 2094 * Determines whether background writeback should keep writing @wb or it's 2095 * clean enough. 2096 * 2097 * Return: %true if writeback should continue. 2098 */ 2099 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2100 { 2101 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 2102 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 2103 struct dirty_throttle_control * const gdtc = &gdtc_stor; 2104 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 2105 &mdtc_stor : NULL; 2106 unsigned long reclaimable; 2107 unsigned long thresh; 2108 2109 /* 2110 * Similar to balance_dirty_pages() but ignores pages being written 2111 * as we're trying to decide whether to put more under writeback. 2112 */ 2113 gdtc->avail = global_dirtyable_memory(); 2114 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 2115 domain_dirty_limits(gdtc); 2116 2117 if (gdtc->dirty > gdtc->bg_thresh) 2118 return true; 2119 2120 thresh = __wb_calc_thresh(gdtc, gdtc->bg_thresh); 2121 if (thresh < 2 * wb_stat_error()) 2122 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2123 else 2124 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2125 2126 if (reclaimable > thresh) 2127 return true; 2128 2129 if (mdtc) { 2130 unsigned long filepages, headroom, writeback; 2131 2132 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 2133 &writeback); 2134 mdtc_calc_avail(mdtc, filepages, headroom); 2135 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 2136 2137 if (mdtc->dirty > mdtc->bg_thresh) 2138 return true; 2139 2140 thresh = __wb_calc_thresh(mdtc, mdtc->bg_thresh); 2141 if (thresh < 2 * wb_stat_error()) 2142 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2143 else 2144 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2145 2146 if (reclaimable > thresh) 2147 return true; 2148 } 2149 2150 return false; 2151 } 2152 2153 #ifdef CONFIG_SYSCTL 2154 /* 2155 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2156 */ 2157 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 2158 void *buffer, size_t *length, loff_t *ppos) 2159 { 2160 unsigned int old_interval = dirty_writeback_interval; 2161 int ret; 2162 2163 ret = proc_dointvec(table, write, buffer, length, ppos); 2164 2165 /* 2166 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2167 * and a different non-zero value will wakeup the writeback threads. 2168 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2169 * iterate over all bdis and wbs. 2170 * The reason we do this is to make the change take effect immediately. 2171 */ 2172 if (!ret && write && dirty_writeback_interval && 2173 dirty_writeback_interval != old_interval) 2174 wakeup_flusher_threads(WB_REASON_PERIODIC); 2175 2176 return ret; 2177 } 2178 #endif 2179 2180 void laptop_mode_timer_fn(struct timer_list *t) 2181 { 2182 struct backing_dev_info *backing_dev_info = 2183 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2184 2185 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2186 } 2187 2188 /* 2189 * We've spun up the disk and we're in laptop mode: schedule writeback 2190 * of all dirty data a few seconds from now. If the flush is already scheduled 2191 * then push it back - the user is still using the disk. 2192 */ 2193 void laptop_io_completion(struct backing_dev_info *info) 2194 { 2195 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2196 } 2197 2198 /* 2199 * We're in laptop mode and we've just synced. The sync's writes will have 2200 * caused another writeback to be scheduled by laptop_io_completion. 2201 * Nothing needs to be written back anymore, so we unschedule the writeback. 2202 */ 2203 void laptop_sync_completion(void) 2204 { 2205 struct backing_dev_info *bdi; 2206 2207 rcu_read_lock(); 2208 2209 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2210 del_timer(&bdi->laptop_mode_wb_timer); 2211 2212 rcu_read_unlock(); 2213 } 2214 2215 /* 2216 * If ratelimit_pages is too high then we can get into dirty-data overload 2217 * if a large number of processes all perform writes at the same time. 2218 * 2219 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2220 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2221 * thresholds. 2222 */ 2223 2224 void writeback_set_ratelimit(void) 2225 { 2226 struct wb_domain *dom = &global_wb_domain; 2227 unsigned long background_thresh; 2228 unsigned long dirty_thresh; 2229 2230 global_dirty_limits(&background_thresh, &dirty_thresh); 2231 dom->dirty_limit = dirty_thresh; 2232 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2233 if (ratelimit_pages < 16) 2234 ratelimit_pages = 16; 2235 } 2236 2237 static int page_writeback_cpu_online(unsigned int cpu) 2238 { 2239 writeback_set_ratelimit(); 2240 return 0; 2241 } 2242 2243 #ifdef CONFIG_SYSCTL 2244 2245 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2246 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2247 2248 static struct ctl_table vm_page_writeback_sysctls[] = { 2249 { 2250 .procname = "dirty_background_ratio", 2251 .data = &dirty_background_ratio, 2252 .maxlen = sizeof(dirty_background_ratio), 2253 .mode = 0644, 2254 .proc_handler = dirty_background_ratio_handler, 2255 .extra1 = SYSCTL_ZERO, 2256 .extra2 = SYSCTL_ONE_HUNDRED, 2257 }, 2258 { 2259 .procname = "dirty_background_bytes", 2260 .data = &dirty_background_bytes, 2261 .maxlen = sizeof(dirty_background_bytes), 2262 .mode = 0644, 2263 .proc_handler = dirty_background_bytes_handler, 2264 .extra1 = SYSCTL_LONG_ONE, 2265 }, 2266 { 2267 .procname = "dirty_ratio", 2268 .data = &vm_dirty_ratio, 2269 .maxlen = sizeof(vm_dirty_ratio), 2270 .mode = 0644, 2271 .proc_handler = dirty_ratio_handler, 2272 .extra1 = SYSCTL_ZERO, 2273 .extra2 = SYSCTL_ONE_HUNDRED, 2274 }, 2275 { 2276 .procname = "dirty_bytes", 2277 .data = &vm_dirty_bytes, 2278 .maxlen = sizeof(vm_dirty_bytes), 2279 .mode = 0644, 2280 .proc_handler = dirty_bytes_handler, 2281 .extra1 = (void *)&dirty_bytes_min, 2282 }, 2283 { 2284 .procname = "dirty_writeback_centisecs", 2285 .data = &dirty_writeback_interval, 2286 .maxlen = sizeof(dirty_writeback_interval), 2287 .mode = 0644, 2288 .proc_handler = dirty_writeback_centisecs_handler, 2289 }, 2290 { 2291 .procname = "dirty_expire_centisecs", 2292 .data = &dirty_expire_interval, 2293 .maxlen = sizeof(dirty_expire_interval), 2294 .mode = 0644, 2295 .proc_handler = proc_dointvec_minmax, 2296 .extra1 = SYSCTL_ZERO, 2297 }, 2298 #ifdef CONFIG_HIGHMEM 2299 { 2300 .procname = "highmem_is_dirtyable", 2301 .data = &vm_highmem_is_dirtyable, 2302 .maxlen = sizeof(vm_highmem_is_dirtyable), 2303 .mode = 0644, 2304 .proc_handler = proc_dointvec_minmax, 2305 .extra1 = SYSCTL_ZERO, 2306 .extra2 = SYSCTL_ONE, 2307 }, 2308 #endif 2309 { 2310 .procname = "laptop_mode", 2311 .data = &laptop_mode, 2312 .maxlen = sizeof(laptop_mode), 2313 .mode = 0644, 2314 .proc_handler = proc_dointvec_jiffies, 2315 }, 2316 }; 2317 #endif 2318 2319 /* 2320 * Called early on to tune the page writeback dirty limits. 2321 * 2322 * We used to scale dirty pages according to how total memory 2323 * related to pages that could be allocated for buffers. 2324 * 2325 * However, that was when we used "dirty_ratio" to scale with 2326 * all memory, and we don't do that any more. "dirty_ratio" 2327 * is now applied to total non-HIGHPAGE memory, and as such we can't 2328 * get into the old insane situation any more where we had 2329 * large amounts of dirty pages compared to a small amount of 2330 * non-HIGHMEM memory. 2331 * 2332 * But we might still want to scale the dirty_ratio by how 2333 * much memory the box has.. 2334 */ 2335 void __init page_writeback_init(void) 2336 { 2337 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2338 2339 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2340 page_writeback_cpu_online, NULL); 2341 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2342 page_writeback_cpu_online); 2343 #ifdef CONFIG_SYSCTL 2344 register_sysctl_init("vm", vm_page_writeback_sysctls); 2345 #endif 2346 } 2347 2348 /** 2349 * tag_pages_for_writeback - tag pages to be written by writeback 2350 * @mapping: address space structure to write 2351 * @start: starting page index 2352 * @end: ending page index (inclusive) 2353 * 2354 * This function scans the page range from @start to @end (inclusive) and tags 2355 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2356 * can then use the TOWRITE tag to identify pages eligible for writeback. 2357 * This mechanism is used to avoid livelocking of writeback by a process 2358 * steadily creating new dirty pages in the file (thus it is important for this 2359 * function to be quick so that it can tag pages faster than a dirtying process 2360 * can create them). 2361 */ 2362 void tag_pages_for_writeback(struct address_space *mapping, 2363 pgoff_t start, pgoff_t end) 2364 { 2365 XA_STATE(xas, &mapping->i_pages, start); 2366 unsigned int tagged = 0; 2367 void *page; 2368 2369 xas_lock_irq(&xas); 2370 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2371 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2372 if (++tagged % XA_CHECK_SCHED) 2373 continue; 2374 2375 xas_pause(&xas); 2376 xas_unlock_irq(&xas); 2377 cond_resched(); 2378 xas_lock_irq(&xas); 2379 } 2380 xas_unlock_irq(&xas); 2381 } 2382 EXPORT_SYMBOL(tag_pages_for_writeback); 2383 2384 static bool folio_prepare_writeback(struct address_space *mapping, 2385 struct writeback_control *wbc, struct folio *folio) 2386 { 2387 /* 2388 * Folio truncated or invalidated. We can freely skip it then, 2389 * even for data integrity operations: the folio has disappeared 2390 * concurrently, so there could be no real expectation of this 2391 * data integrity operation even if there is now a new, dirty 2392 * folio at the same pagecache index. 2393 */ 2394 if (unlikely(folio->mapping != mapping)) 2395 return false; 2396 2397 /* 2398 * Did somebody else write it for us? 2399 */ 2400 if (!folio_test_dirty(folio)) 2401 return false; 2402 2403 if (folio_test_writeback(folio)) { 2404 if (wbc->sync_mode == WB_SYNC_NONE) 2405 return false; 2406 folio_wait_writeback(folio); 2407 } 2408 BUG_ON(folio_test_writeback(folio)); 2409 2410 if (!folio_clear_dirty_for_io(folio)) 2411 return false; 2412 2413 return true; 2414 } 2415 2416 static xa_mark_t wbc_to_tag(struct writeback_control *wbc) 2417 { 2418 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2419 return PAGECACHE_TAG_TOWRITE; 2420 return PAGECACHE_TAG_DIRTY; 2421 } 2422 2423 static pgoff_t wbc_end(struct writeback_control *wbc) 2424 { 2425 if (wbc->range_cyclic) 2426 return -1; 2427 return wbc->range_end >> PAGE_SHIFT; 2428 } 2429 2430 static struct folio *writeback_get_folio(struct address_space *mapping, 2431 struct writeback_control *wbc) 2432 { 2433 struct folio *folio; 2434 2435 retry: 2436 folio = folio_batch_next(&wbc->fbatch); 2437 if (!folio) { 2438 folio_batch_release(&wbc->fbatch); 2439 cond_resched(); 2440 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2441 wbc_to_tag(wbc), &wbc->fbatch); 2442 folio = folio_batch_next(&wbc->fbatch); 2443 if (!folio) 2444 return NULL; 2445 } 2446 2447 folio_lock(folio); 2448 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2449 folio_unlock(folio); 2450 goto retry; 2451 } 2452 2453 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2454 return folio; 2455 } 2456 2457 /** 2458 * writeback_iter - iterate folio of a mapping for writeback 2459 * @mapping: address space structure to write 2460 * @wbc: writeback context 2461 * @folio: previously iterated folio (%NULL to start) 2462 * @error: in-out pointer for writeback errors (see below) 2463 * 2464 * This function returns the next folio for the writeback operation described by 2465 * @wbc on @mapping and should be called in a while loop in the ->writepages 2466 * implementation. 2467 * 2468 * To start the writeback operation, %NULL is passed in the @folio argument, and 2469 * for every subsequent iteration the folio returned previously should be passed 2470 * back in. 2471 * 2472 * If there was an error in the per-folio writeback inside the writeback_iter() 2473 * loop, @error should be set to the error value. 2474 * 2475 * Once the writeback described in @wbc has finished, this function will return 2476 * %NULL and if there was an error in any iteration restore it to @error. 2477 * 2478 * Note: callers should not manually break out of the loop using break or goto 2479 * but must keep calling writeback_iter() until it returns %NULL. 2480 * 2481 * Return: the folio to write or %NULL if the loop is done. 2482 */ 2483 struct folio *writeback_iter(struct address_space *mapping, 2484 struct writeback_control *wbc, struct folio *folio, int *error) 2485 { 2486 if (!folio) { 2487 folio_batch_init(&wbc->fbatch); 2488 wbc->saved_err = *error = 0; 2489 2490 /* 2491 * For range cyclic writeback we remember where we stopped so 2492 * that we can continue where we stopped. 2493 * 2494 * For non-cyclic writeback we always start at the beginning of 2495 * the passed in range. 2496 */ 2497 if (wbc->range_cyclic) 2498 wbc->index = mapping->writeback_index; 2499 else 2500 wbc->index = wbc->range_start >> PAGE_SHIFT; 2501 2502 /* 2503 * To avoid livelocks when other processes dirty new pages, we 2504 * first tag pages which should be written back and only then 2505 * start writing them. 2506 * 2507 * For data-integrity writeback we have to be careful so that we 2508 * do not miss some pages (e.g., because some other process has 2509 * cleared the TOWRITE tag we set). The rule we follow is that 2510 * TOWRITE tag can be cleared only by the process clearing the 2511 * DIRTY tag (and submitting the page for I/O). 2512 */ 2513 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2514 tag_pages_for_writeback(mapping, wbc->index, 2515 wbc_end(wbc)); 2516 } else { 2517 wbc->nr_to_write -= folio_nr_pages(folio); 2518 2519 WARN_ON_ONCE(*error > 0); 2520 2521 /* 2522 * For integrity writeback we have to keep going until we have 2523 * written all the folios we tagged for writeback above, even if 2524 * we run past wbc->nr_to_write or encounter errors. 2525 * We stash away the first error we encounter in wbc->saved_err 2526 * so that it can be retrieved when we're done. This is because 2527 * the file system may still have state to clear for each folio. 2528 * 2529 * For background writeback we exit as soon as we run past 2530 * wbc->nr_to_write or encounter the first error. 2531 */ 2532 if (wbc->sync_mode == WB_SYNC_ALL) { 2533 if (*error && !wbc->saved_err) 2534 wbc->saved_err = *error; 2535 } else { 2536 if (*error || wbc->nr_to_write <= 0) 2537 goto done; 2538 } 2539 } 2540 2541 folio = writeback_get_folio(mapping, wbc); 2542 if (!folio) { 2543 /* 2544 * To avoid deadlocks between range_cyclic writeback and callers 2545 * that hold pages in PageWriteback to aggregate I/O until 2546 * the writeback iteration finishes, we do not loop back to the 2547 * start of the file. Doing so causes a page lock/page 2548 * writeback access order inversion - we should only ever lock 2549 * multiple pages in ascending page->index order, and looping 2550 * back to the start of the file violates that rule and causes 2551 * deadlocks. 2552 */ 2553 if (wbc->range_cyclic) 2554 mapping->writeback_index = 0; 2555 2556 /* 2557 * Return the first error we encountered (if there was any) to 2558 * the caller. 2559 */ 2560 *error = wbc->saved_err; 2561 } 2562 return folio; 2563 2564 done: 2565 if (wbc->range_cyclic) 2566 mapping->writeback_index = folio->index + folio_nr_pages(folio); 2567 folio_batch_release(&wbc->fbatch); 2568 return NULL; 2569 } 2570 EXPORT_SYMBOL_GPL(writeback_iter); 2571 2572 /** 2573 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2574 * @mapping: address space structure to write 2575 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2576 * @writepage: function called for each page 2577 * @data: data passed to writepage function 2578 * 2579 * Return: %0 on success, negative error code otherwise 2580 * 2581 * Note: please use writeback_iter() instead. 2582 */ 2583 int write_cache_pages(struct address_space *mapping, 2584 struct writeback_control *wbc, writepage_t writepage, 2585 void *data) 2586 { 2587 struct folio *folio = NULL; 2588 int error; 2589 2590 while ((folio = writeback_iter(mapping, wbc, folio, &error))) { 2591 error = writepage(folio, wbc, data); 2592 if (error == AOP_WRITEPAGE_ACTIVATE) { 2593 folio_unlock(folio); 2594 error = 0; 2595 } 2596 } 2597 2598 return error; 2599 } 2600 EXPORT_SYMBOL(write_cache_pages); 2601 2602 static int writeback_use_writepage(struct address_space *mapping, 2603 struct writeback_control *wbc) 2604 { 2605 struct folio *folio = NULL; 2606 struct blk_plug plug; 2607 int err; 2608 2609 blk_start_plug(&plug); 2610 while ((folio = writeback_iter(mapping, wbc, folio, &err))) { 2611 err = mapping->a_ops->writepage(&folio->page, wbc); 2612 if (err == AOP_WRITEPAGE_ACTIVATE) { 2613 folio_unlock(folio); 2614 err = 0; 2615 } 2616 mapping_set_error(mapping, err); 2617 } 2618 blk_finish_plug(&plug); 2619 2620 return err; 2621 } 2622 2623 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2624 { 2625 int ret; 2626 struct bdi_writeback *wb; 2627 2628 if (wbc->nr_to_write <= 0) 2629 return 0; 2630 wb = inode_to_wb_wbc(mapping->host, wbc); 2631 wb_bandwidth_estimate_start(wb); 2632 while (1) { 2633 if (mapping->a_ops->writepages) { 2634 ret = mapping->a_ops->writepages(mapping, wbc); 2635 } else if (mapping->a_ops->writepage) { 2636 ret = writeback_use_writepage(mapping, wbc); 2637 } else { 2638 /* deal with chardevs and other special files */ 2639 ret = 0; 2640 } 2641 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2642 break; 2643 2644 /* 2645 * Lacking an allocation context or the locality or writeback 2646 * state of any of the inode's pages, throttle based on 2647 * writeback activity on the local node. It's as good a 2648 * guess as any. 2649 */ 2650 reclaim_throttle(NODE_DATA(numa_node_id()), 2651 VMSCAN_THROTTLE_WRITEBACK); 2652 } 2653 /* 2654 * Usually few pages are written by now from those we've just submitted 2655 * but if there's constant writeback being submitted, this makes sure 2656 * writeback bandwidth is updated once in a while. 2657 */ 2658 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2659 BANDWIDTH_INTERVAL)) 2660 wb_update_bandwidth(wb); 2661 return ret; 2662 } 2663 2664 /* 2665 * For address_spaces which do not use buffers nor write back. 2666 */ 2667 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2668 { 2669 if (!folio_test_dirty(folio)) 2670 return !folio_test_set_dirty(folio); 2671 return false; 2672 } 2673 EXPORT_SYMBOL(noop_dirty_folio); 2674 2675 /* 2676 * Helper function for set_page_dirty family. 2677 * 2678 * Caller must hold folio_memcg_lock(). 2679 * 2680 * NOTE: This relies on being atomic wrt interrupts. 2681 */ 2682 static void folio_account_dirtied(struct folio *folio, 2683 struct address_space *mapping) 2684 { 2685 struct inode *inode = mapping->host; 2686 2687 trace_writeback_dirty_folio(folio, mapping); 2688 2689 if (mapping_can_writeback(mapping)) { 2690 struct bdi_writeback *wb; 2691 long nr = folio_nr_pages(folio); 2692 2693 inode_attach_wb(inode, folio); 2694 wb = inode_to_wb(inode); 2695 2696 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2697 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2698 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2699 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2700 wb_stat_mod(wb, WB_DIRTIED, nr); 2701 task_io_account_write(nr * PAGE_SIZE); 2702 current->nr_dirtied += nr; 2703 __this_cpu_add(bdp_ratelimits, nr); 2704 2705 mem_cgroup_track_foreign_dirty(folio, wb); 2706 } 2707 } 2708 2709 /* 2710 * Helper function for deaccounting dirty page without writeback. 2711 * 2712 * Caller must hold folio_memcg_lock(). 2713 */ 2714 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2715 { 2716 long nr = folio_nr_pages(folio); 2717 2718 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2719 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2720 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2721 task_io_account_cancelled_write(nr * PAGE_SIZE); 2722 } 2723 2724 /* 2725 * Mark the folio dirty, and set it dirty in the page cache. 2726 * 2727 * If warn is true, then emit a warning if the folio is not uptodate and has 2728 * not been truncated. 2729 * 2730 * The caller must hold folio_memcg_lock(). It is the caller's 2731 * responsibility to prevent the folio from being truncated while 2732 * this function is in progress, although it may have been truncated 2733 * before this function is called. Most callers have the folio locked. 2734 * A few have the folio blocked from truncation through other means (e.g. 2735 * zap_vma_pages() has it mapped and is holding the page table lock). 2736 * When called from mark_buffer_dirty(), the filesystem should hold a 2737 * reference to the buffer_head that is being marked dirty, which causes 2738 * try_to_free_buffers() to fail. 2739 */ 2740 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2741 int warn) 2742 { 2743 unsigned long flags; 2744 2745 xa_lock_irqsave(&mapping->i_pages, flags); 2746 if (folio->mapping) { /* Race with truncate? */ 2747 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2748 folio_account_dirtied(folio, mapping); 2749 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2750 PAGECACHE_TAG_DIRTY); 2751 } 2752 xa_unlock_irqrestore(&mapping->i_pages, flags); 2753 } 2754 2755 /** 2756 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2757 * @mapping: Address space this folio belongs to. 2758 * @folio: Folio to be marked as dirty. 2759 * 2760 * Filesystems which do not use buffer heads should call this function 2761 * from their dirty_folio address space operation. It ignores the 2762 * contents of folio_get_private(), so if the filesystem marks individual 2763 * blocks as dirty, the filesystem should handle that itself. 2764 * 2765 * This is also sometimes used by filesystems which use buffer_heads when 2766 * a single buffer is being dirtied: we want to set the folio dirty in 2767 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2768 * whereas block_dirty_folio() is a "top-down" dirtying. 2769 * 2770 * The caller must ensure this doesn't race with truncation. Most will 2771 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2772 * folio mapped and the pte lock held, which also locks out truncation. 2773 */ 2774 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2775 { 2776 folio_memcg_lock(folio); 2777 if (folio_test_set_dirty(folio)) { 2778 folio_memcg_unlock(folio); 2779 return false; 2780 } 2781 2782 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2783 folio_memcg_unlock(folio); 2784 2785 if (mapping->host) { 2786 /* !PageAnon && !swapper_space */ 2787 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2788 } 2789 return true; 2790 } 2791 EXPORT_SYMBOL(filemap_dirty_folio); 2792 2793 /** 2794 * folio_redirty_for_writepage - Decline to write a dirty folio. 2795 * @wbc: The writeback control. 2796 * @folio: The folio. 2797 * 2798 * When a writepage implementation decides that it doesn't want to write 2799 * @folio for some reason, it should call this function, unlock @folio and 2800 * return 0. 2801 * 2802 * Return: True if we redirtied the folio. False if someone else dirtied 2803 * it first. 2804 */ 2805 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2806 struct folio *folio) 2807 { 2808 struct address_space *mapping = folio->mapping; 2809 long nr = folio_nr_pages(folio); 2810 bool ret; 2811 2812 wbc->pages_skipped += nr; 2813 ret = filemap_dirty_folio(mapping, folio); 2814 if (mapping && mapping_can_writeback(mapping)) { 2815 struct inode *inode = mapping->host; 2816 struct bdi_writeback *wb; 2817 struct wb_lock_cookie cookie = {}; 2818 2819 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2820 current->nr_dirtied -= nr; 2821 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2822 wb_stat_mod(wb, WB_DIRTIED, -nr); 2823 unlocked_inode_to_wb_end(inode, &cookie); 2824 } 2825 return ret; 2826 } 2827 EXPORT_SYMBOL(folio_redirty_for_writepage); 2828 2829 /** 2830 * folio_mark_dirty - Mark a folio as being modified. 2831 * @folio: The folio. 2832 * 2833 * The folio may not be truncated while this function is running. 2834 * Holding the folio lock is sufficient to prevent truncation, but some 2835 * callers cannot acquire a sleeping lock. These callers instead hold 2836 * the page table lock for a page table which contains at least one page 2837 * in this folio. Truncation will block on the page table lock as it 2838 * unmaps pages before removing the folio from its mapping. 2839 * 2840 * Return: True if the folio was newly dirtied, false if it was already dirty. 2841 */ 2842 bool folio_mark_dirty(struct folio *folio) 2843 { 2844 struct address_space *mapping = folio_mapping(folio); 2845 2846 if (likely(mapping)) { 2847 /* 2848 * readahead/folio_deactivate could remain 2849 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2850 * About readahead, if the folio is written, the flags would be 2851 * reset. So no problem. 2852 * About folio_deactivate, if the folio is redirtied, 2853 * the flag will be reset. So no problem. but if the 2854 * folio is used by readahead it will confuse readahead 2855 * and make it restart the size rampup process. But it's 2856 * a trivial problem. 2857 */ 2858 if (folio_test_reclaim(folio)) 2859 folio_clear_reclaim(folio); 2860 return mapping->a_ops->dirty_folio(mapping, folio); 2861 } 2862 2863 return noop_dirty_folio(mapping, folio); 2864 } 2865 EXPORT_SYMBOL(folio_mark_dirty); 2866 2867 /* 2868 * set_page_dirty() is racy if the caller has no reference against 2869 * page->mapping->host, and if the page is unlocked. This is because another 2870 * CPU could truncate the page off the mapping and then free the mapping. 2871 * 2872 * Usually, the page _is_ locked, or the caller is a user-space process which 2873 * holds a reference on the inode by having an open file. 2874 * 2875 * In other cases, the page should be locked before running set_page_dirty(). 2876 */ 2877 int set_page_dirty_lock(struct page *page) 2878 { 2879 int ret; 2880 2881 lock_page(page); 2882 ret = set_page_dirty(page); 2883 unlock_page(page); 2884 return ret; 2885 } 2886 EXPORT_SYMBOL(set_page_dirty_lock); 2887 2888 /* 2889 * This cancels just the dirty bit on the kernel page itself, it does NOT 2890 * actually remove dirty bits on any mmap's that may be around. It also 2891 * leaves the page tagged dirty, so any sync activity will still find it on 2892 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2893 * look at the dirty bits in the VM. 2894 * 2895 * Doing this should *normally* only ever be done when a page is truncated, 2896 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2897 * this when it notices that somebody has cleaned out all the buffers on a 2898 * page without actually doing it through the VM. Can you say "ext3 is 2899 * horribly ugly"? Thought you could. 2900 */ 2901 void __folio_cancel_dirty(struct folio *folio) 2902 { 2903 struct address_space *mapping = folio_mapping(folio); 2904 2905 if (mapping_can_writeback(mapping)) { 2906 struct inode *inode = mapping->host; 2907 struct bdi_writeback *wb; 2908 struct wb_lock_cookie cookie = {}; 2909 2910 folio_memcg_lock(folio); 2911 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2912 2913 if (folio_test_clear_dirty(folio)) 2914 folio_account_cleaned(folio, wb); 2915 2916 unlocked_inode_to_wb_end(inode, &cookie); 2917 folio_memcg_unlock(folio); 2918 } else { 2919 folio_clear_dirty(folio); 2920 } 2921 } 2922 EXPORT_SYMBOL(__folio_cancel_dirty); 2923 2924 /* 2925 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2926 * Returns true if the folio was previously dirty. 2927 * 2928 * This is for preparing to put the folio under writeout. We leave 2929 * the folio tagged as dirty in the xarray so that a concurrent 2930 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2931 * The ->writepage implementation will run either folio_start_writeback() 2932 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2933 * and xarray dirty tag back into sync. 2934 * 2935 * This incoherency between the folio's dirty flag and xarray tag is 2936 * unfortunate, but it only exists while the folio is locked. 2937 */ 2938 bool folio_clear_dirty_for_io(struct folio *folio) 2939 { 2940 struct address_space *mapping = folio_mapping(folio); 2941 bool ret = false; 2942 2943 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2944 2945 if (mapping && mapping_can_writeback(mapping)) { 2946 struct inode *inode = mapping->host; 2947 struct bdi_writeback *wb; 2948 struct wb_lock_cookie cookie = {}; 2949 2950 /* 2951 * Yes, Virginia, this is indeed insane. 2952 * 2953 * We use this sequence to make sure that 2954 * (a) we account for dirty stats properly 2955 * (b) we tell the low-level filesystem to 2956 * mark the whole folio dirty if it was 2957 * dirty in a pagetable. Only to then 2958 * (c) clean the folio again and return 1 to 2959 * cause the writeback. 2960 * 2961 * This way we avoid all nasty races with the 2962 * dirty bit in multiple places and clearing 2963 * them concurrently from different threads. 2964 * 2965 * Note! Normally the "folio_mark_dirty(folio)" 2966 * has no effect on the actual dirty bit - since 2967 * that will already usually be set. But we 2968 * need the side effects, and it can help us 2969 * avoid races. 2970 * 2971 * We basically use the folio "master dirty bit" 2972 * as a serialization point for all the different 2973 * threads doing their things. 2974 */ 2975 if (folio_mkclean(folio)) 2976 folio_mark_dirty(folio); 2977 /* 2978 * We carefully synchronise fault handlers against 2979 * installing a dirty pte and marking the folio dirty 2980 * at this point. We do this by having them hold the 2981 * page lock while dirtying the folio, and folios are 2982 * always locked coming in here, so we get the desired 2983 * exclusion. 2984 */ 2985 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2986 if (folio_test_clear_dirty(folio)) { 2987 long nr = folio_nr_pages(folio); 2988 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2989 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2990 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2991 ret = true; 2992 } 2993 unlocked_inode_to_wb_end(inode, &cookie); 2994 return ret; 2995 } 2996 return folio_test_clear_dirty(folio); 2997 } 2998 EXPORT_SYMBOL(folio_clear_dirty_for_io); 2999 3000 static void wb_inode_writeback_start(struct bdi_writeback *wb) 3001 { 3002 atomic_inc(&wb->writeback_inodes); 3003 } 3004 3005 static void wb_inode_writeback_end(struct bdi_writeback *wb) 3006 { 3007 unsigned long flags; 3008 atomic_dec(&wb->writeback_inodes); 3009 /* 3010 * Make sure estimate of writeback throughput gets updated after 3011 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 3012 * (which is the interval other bandwidth updates use for batching) so 3013 * that if multiple inodes end writeback at a similar time, they get 3014 * batched into one bandwidth update. 3015 */ 3016 spin_lock_irqsave(&wb->work_lock, flags); 3017 if (test_bit(WB_registered, &wb->state)) 3018 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 3019 spin_unlock_irqrestore(&wb->work_lock, flags); 3020 } 3021 3022 bool __folio_end_writeback(struct folio *folio) 3023 { 3024 long nr = folio_nr_pages(folio); 3025 struct address_space *mapping = folio_mapping(folio); 3026 bool ret; 3027 3028 folio_memcg_lock(folio); 3029 if (mapping && mapping_use_writeback_tags(mapping)) { 3030 struct inode *inode = mapping->host; 3031 struct backing_dev_info *bdi = inode_to_bdi(inode); 3032 unsigned long flags; 3033 3034 xa_lock_irqsave(&mapping->i_pages, flags); 3035 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3036 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 3037 PAGECACHE_TAG_WRITEBACK); 3038 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3039 struct bdi_writeback *wb = inode_to_wb(inode); 3040 3041 wb_stat_mod(wb, WB_WRITEBACK, -nr); 3042 __wb_writeout_add(wb, nr); 3043 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 3044 wb_inode_writeback_end(wb); 3045 } 3046 3047 if (mapping->host && !mapping_tagged(mapping, 3048 PAGECACHE_TAG_WRITEBACK)) 3049 sb_clear_inode_writeback(mapping->host); 3050 3051 xa_unlock_irqrestore(&mapping->i_pages, flags); 3052 } else { 3053 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3054 } 3055 3056 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3057 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3058 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3059 folio_memcg_unlock(folio); 3060 3061 return ret; 3062 } 3063 3064 void __folio_start_writeback(struct folio *folio, bool keep_write) 3065 { 3066 long nr = folio_nr_pages(folio); 3067 struct address_space *mapping = folio_mapping(folio); 3068 int access_ret; 3069 3070 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 3071 3072 folio_memcg_lock(folio); 3073 if (mapping && mapping_use_writeback_tags(mapping)) { 3074 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3075 struct inode *inode = mapping->host; 3076 struct backing_dev_info *bdi = inode_to_bdi(inode); 3077 unsigned long flags; 3078 bool on_wblist; 3079 3080 xas_lock_irqsave(&xas, flags); 3081 xas_load(&xas); 3082 folio_test_set_writeback(folio); 3083 3084 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 3085 3086 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3087 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3088 struct bdi_writeback *wb = inode_to_wb(inode); 3089 3090 wb_stat_mod(wb, WB_WRITEBACK, nr); 3091 if (!on_wblist) 3092 wb_inode_writeback_start(wb); 3093 } 3094 3095 /* 3096 * We can come through here when swapping anonymous 3097 * folios, so we don't necessarily have an inode to 3098 * track for sync. 3099 */ 3100 if (mapping->host && !on_wblist) 3101 sb_mark_inode_writeback(mapping->host); 3102 if (!folio_test_dirty(folio)) 3103 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3104 if (!keep_write) 3105 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3106 xas_unlock_irqrestore(&xas, flags); 3107 } else { 3108 folio_test_set_writeback(folio); 3109 } 3110 3111 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3112 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3113 folio_memcg_unlock(folio); 3114 3115 access_ret = arch_make_folio_accessible(folio); 3116 /* 3117 * If writeback has been triggered on a page that cannot be made 3118 * accessible, it is too late to recover here. 3119 */ 3120 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3121 } 3122 EXPORT_SYMBOL(__folio_start_writeback); 3123 3124 /** 3125 * folio_wait_writeback - Wait for a folio to finish writeback. 3126 * @folio: The folio to wait for. 3127 * 3128 * If the folio is currently being written back to storage, wait for the 3129 * I/O to complete. 3130 * 3131 * Context: Sleeps. Must be called in process context and with 3132 * no spinlocks held. Caller should hold a reference on the folio. 3133 * If the folio is not locked, writeback may start again after writeback 3134 * has finished. 3135 */ 3136 void folio_wait_writeback(struct folio *folio) 3137 { 3138 while (folio_test_writeback(folio)) { 3139 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3140 folio_wait_bit(folio, PG_writeback); 3141 } 3142 } 3143 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3144 3145 /** 3146 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3147 * @folio: The folio to wait for. 3148 * 3149 * If the folio is currently being written back to storage, wait for the 3150 * I/O to complete or a fatal signal to arrive. 3151 * 3152 * Context: Sleeps. Must be called in process context and with 3153 * no spinlocks held. Caller should hold a reference on the folio. 3154 * If the folio is not locked, writeback may start again after writeback 3155 * has finished. 3156 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3157 */ 3158 int folio_wait_writeback_killable(struct folio *folio) 3159 { 3160 while (folio_test_writeback(folio)) { 3161 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3162 if (folio_wait_bit_killable(folio, PG_writeback)) 3163 return -EINTR; 3164 } 3165 3166 return 0; 3167 } 3168 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3169 3170 /** 3171 * folio_wait_stable() - wait for writeback to finish, if necessary. 3172 * @folio: The folio to wait on. 3173 * 3174 * This function determines if the given folio is related to a backing 3175 * device that requires folio contents to be held stable during writeback. 3176 * If so, then it will wait for any pending writeback to complete. 3177 * 3178 * Context: Sleeps. Must be called in process context and with 3179 * no spinlocks held. Caller should hold a reference on the folio. 3180 * If the folio is not locked, writeback may start again after writeback 3181 * has finished. 3182 */ 3183 void folio_wait_stable(struct folio *folio) 3184 { 3185 if (mapping_stable_writes(folio_mapping(folio))) 3186 folio_wait_writeback(folio); 3187 } 3188 EXPORT_SYMBOL_GPL(folio_wait_stable); 3189