xref: /linux/mm/page-writeback.c (revision 881f1bb5e25c8982ed963b2d319fc0fc732e55db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 static int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 static unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 static int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 static int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 static unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116 
117 EXPORT_SYMBOL(laptop_mode);
118 
119 /* End of sysctl-exported parameters */
120 
121 struct wb_domain global_wb_domain;
122 
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 	struct wb_domain	*dom;
127 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
128 #endif
129 	struct bdi_writeback	*wb;
130 	struct fprop_local_percpu *wb_completions;
131 
132 	unsigned long		avail;		/* dirtyable */
133 	unsigned long		dirty;		/* file_dirty + write + nfs */
134 	unsigned long		thresh;		/* dirty threshold */
135 	unsigned long		bg_thresh;	/* dirty background threshold */
136 
137 	unsigned long		wb_dirty;	/* per-wb counterparts */
138 	unsigned long		wb_thresh;
139 	unsigned long		wb_bg_thresh;
140 
141 	unsigned long		pos_ratio;
142 };
143 
144 /*
145  * Length of period for aging writeout fractions of bdis. This is an
146  * arbitrarily chosen number. The longer the period, the slower fractions will
147  * reflect changes in current writeout rate.
148  */
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150 
151 #ifdef CONFIG_CGROUP_WRITEBACK
152 
153 #define GDTC_INIT(__wb)		.wb = (__wb),				\
154 				.dom = &global_wb_domain,		\
155 				.wb_completions = &(__wb)->completions
156 
157 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
158 
159 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
160 				.dom = mem_cgroup_wb_domain(__wb),	\
161 				.wb_completions = &(__wb)->memcg_completions, \
162 				.gdtc = __gdtc
163 
164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
165 {
166 	return dtc->dom;
167 }
168 
169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170 {
171 	return dtc->dom;
172 }
173 
174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175 {
176 	return mdtc->gdtc;
177 }
178 
179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180 {
181 	return &wb->memcg_completions;
182 }
183 
184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185 			     unsigned long *minp, unsigned long *maxp)
186 {
187 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
188 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 	unsigned long long min = wb->bdi->min_ratio;
190 	unsigned long long max = wb->bdi->max_ratio;
191 
192 	/*
193 	 * @wb may already be clean by the time control reaches here and
194 	 * the total may not include its bw.
195 	 */
196 	if (this_bw < tot_bw) {
197 		if (min) {
198 			min *= this_bw;
199 			min = div64_ul(min, tot_bw);
200 		}
201 		if (max < 100 * BDI_RATIO_SCALE) {
202 			max *= this_bw;
203 			max = div64_ul(max, tot_bw);
204 		}
205 	}
206 
207 	*minp = min;
208 	*maxp = max;
209 }
210 
211 #else	/* CONFIG_CGROUP_WRITEBACK */
212 
213 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
214 				.wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
217 
218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
219 {
220 	return false;
221 }
222 
223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224 {
225 	return &global_wb_domain;
226 }
227 
228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229 {
230 	return NULL;
231 }
232 
233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234 {
235 	return NULL;
236 }
237 
238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239 			     unsigned long *minp, unsigned long *maxp)
240 {
241 	*minp = wb->bdi->min_ratio;
242 	*maxp = wb->bdi->max_ratio;
243 }
244 
245 #endif	/* CONFIG_CGROUP_WRITEBACK */
246 
247 /*
248  * In a memory zone, there is a certain amount of pages we consider
249  * available for the page cache, which is essentially the number of
250  * free and reclaimable pages, minus some zone reserves to protect
251  * lowmem and the ability to uphold the zone's watermarks without
252  * requiring writeback.
253  *
254  * This number of dirtyable pages is the base value of which the
255  * user-configurable dirty ratio is the effective number of pages that
256  * are allowed to be actually dirtied.  Per individual zone, or
257  * globally by using the sum of dirtyable pages over all zones.
258  *
259  * Because the user is allowed to specify the dirty limit globally as
260  * absolute number of bytes, calculating the per-zone dirty limit can
261  * require translating the configured limit into a percentage of
262  * global dirtyable memory first.
263  */
264 
265 /**
266  * node_dirtyable_memory - number of dirtyable pages in a node
267  * @pgdat: the node
268  *
269  * Return: the node's number of pages potentially available for dirty
270  * page cache.  This is the base value for the per-node dirty limits.
271  */
272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273 {
274 	unsigned long nr_pages = 0;
275 	int z;
276 
277 	for (z = 0; z < MAX_NR_ZONES; z++) {
278 		struct zone *zone = pgdat->node_zones + z;
279 
280 		if (!populated_zone(zone))
281 			continue;
282 
283 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 	}
285 
286 	/*
287 	 * Pages reserved for the kernel should not be considered
288 	 * dirtyable, to prevent a situation where reclaim has to
289 	 * clean pages in order to balance the zones.
290 	 */
291 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292 
293 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295 
296 	return nr_pages;
297 }
298 
299 static unsigned long highmem_dirtyable_memory(unsigned long total)
300 {
301 #ifdef CONFIG_HIGHMEM
302 	int node;
303 	unsigned long x = 0;
304 	int i;
305 
306 	for_each_node_state(node, N_HIGH_MEMORY) {
307 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 			struct zone *z;
309 			unsigned long nr_pages;
310 
311 			if (!is_highmem_idx(i))
312 				continue;
313 
314 			z = &NODE_DATA(node)->node_zones[i];
315 			if (!populated_zone(z))
316 				continue;
317 
318 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
319 			/* watch for underflows */
320 			nr_pages -= min(nr_pages, high_wmark_pages(z));
321 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 			x += nr_pages;
324 		}
325 	}
326 
327 	/*
328 	 * Make sure that the number of highmem pages is never larger
329 	 * than the number of the total dirtyable memory. This can only
330 	 * occur in very strange VM situations but we want to make sure
331 	 * that this does not occur.
332 	 */
333 	return min(x, total);
334 #else
335 	return 0;
336 #endif
337 }
338 
339 /**
340  * global_dirtyable_memory - number of globally dirtyable pages
341  *
342  * Return: the global number of pages potentially available for dirty
343  * page cache.  This is the base value for the global dirty limits.
344  */
345 static unsigned long global_dirtyable_memory(void)
346 {
347 	unsigned long x;
348 
349 	x = global_zone_page_state(NR_FREE_PAGES);
350 	/*
351 	 * Pages reserved for the kernel should not be considered
352 	 * dirtyable, to prevent a situation where reclaim has to
353 	 * clean pages in order to balance the zones.
354 	 */
355 	x -= min(x, totalreserve_pages);
356 
357 	x += global_node_page_state(NR_INACTIVE_FILE);
358 	x += global_node_page_state(NR_ACTIVE_FILE);
359 
360 	if (!vm_highmem_is_dirtyable)
361 		x -= highmem_dirtyable_memory(x);
362 
363 	return x + 1;	/* Ensure that we never return 0 */
364 }
365 
366 /**
367  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368  * @dtc: dirty_throttle_control of interest
369  *
370  * Calculate @dtc->thresh and ->bg_thresh considering
371  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
372  * must ensure that @dtc->avail is set before calling this function.  The
373  * dirty limits will be lifted by 1/4 for real-time tasks.
374  */
375 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
376 {
377 	const unsigned long available_memory = dtc->avail;
378 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379 	unsigned long bytes = vm_dirty_bytes;
380 	unsigned long bg_bytes = dirty_background_bytes;
381 	/* convert ratios to per-PAGE_SIZE for higher precision */
382 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
384 	unsigned long thresh;
385 	unsigned long bg_thresh;
386 	struct task_struct *tsk;
387 
388 	/* gdtc is !NULL iff @dtc is for memcg domain */
389 	if (gdtc) {
390 		unsigned long global_avail = gdtc->avail;
391 
392 		/*
393 		 * The byte settings can't be applied directly to memcg
394 		 * domains.  Convert them to ratios by scaling against
395 		 * globally available memory.  As the ratios are in
396 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
397 		 * number of pages.
398 		 */
399 		if (bytes)
400 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
401 				    PAGE_SIZE);
402 		if (bg_bytes)
403 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404 				       PAGE_SIZE);
405 		bytes = bg_bytes = 0;
406 	}
407 
408 	if (bytes)
409 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
410 	else
411 		thresh = (ratio * available_memory) / PAGE_SIZE;
412 
413 	if (bg_bytes)
414 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
415 	else
416 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
417 
418 	if (bg_thresh >= thresh)
419 		bg_thresh = thresh / 2;
420 	tsk = current;
421 	if (rt_task(tsk)) {
422 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
424 	}
425 	dtc->thresh = thresh;
426 	dtc->bg_thresh = bg_thresh;
427 
428 	/* we should eventually report the domain in the TP */
429 	if (!gdtc)
430 		trace_global_dirty_state(bg_thresh, thresh);
431 }
432 
433 /**
434  * global_dirty_limits - background-writeback and dirty-throttling thresholds
435  * @pbackground: out parameter for bg_thresh
436  * @pdirty: out parameter for thresh
437  *
438  * Calculate bg_thresh and thresh for global_wb_domain.  See
439  * domain_dirty_limits() for details.
440  */
441 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
442 {
443 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
444 
445 	gdtc.avail = global_dirtyable_memory();
446 	domain_dirty_limits(&gdtc);
447 
448 	*pbackground = gdtc.bg_thresh;
449 	*pdirty = gdtc.thresh;
450 }
451 
452 /**
453  * node_dirty_limit - maximum number of dirty pages allowed in a node
454  * @pgdat: the node
455  *
456  * Return: the maximum number of dirty pages allowed in a node, based
457  * on the node's dirtyable memory.
458  */
459 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
460 {
461 	unsigned long node_memory = node_dirtyable_memory(pgdat);
462 	struct task_struct *tsk = current;
463 	unsigned long dirty;
464 
465 	if (vm_dirty_bytes)
466 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
467 			node_memory / global_dirtyable_memory();
468 	else
469 		dirty = vm_dirty_ratio * node_memory / 100;
470 
471 	if (rt_task(tsk))
472 		dirty += dirty / 4;
473 
474 	return dirty;
475 }
476 
477 /**
478  * node_dirty_ok - tells whether a node is within its dirty limits
479  * @pgdat: the node to check
480  *
481  * Return: %true when the dirty pages in @pgdat are within the node's
482  * dirty limit, %false if the limit is exceeded.
483  */
484 bool node_dirty_ok(struct pglist_data *pgdat)
485 {
486 	unsigned long limit = node_dirty_limit(pgdat);
487 	unsigned long nr_pages = 0;
488 
489 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
490 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
491 
492 	return nr_pages <= limit;
493 }
494 
495 #ifdef CONFIG_SYSCTL
496 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
497 		void *buffer, size_t *lenp, loff_t *ppos)
498 {
499 	int ret;
500 
501 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
502 	if (ret == 0 && write)
503 		dirty_background_bytes = 0;
504 	return ret;
505 }
506 
507 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
508 		void *buffer, size_t *lenp, loff_t *ppos)
509 {
510 	int ret;
511 
512 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
513 	if (ret == 0 && write)
514 		dirty_background_ratio = 0;
515 	return ret;
516 }
517 
518 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
519 		size_t *lenp, loff_t *ppos)
520 {
521 	int old_ratio = vm_dirty_ratio;
522 	int ret;
523 
524 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
525 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
526 		writeback_set_ratelimit();
527 		vm_dirty_bytes = 0;
528 	}
529 	return ret;
530 }
531 
532 static int dirty_bytes_handler(struct ctl_table *table, int write,
533 		void *buffer, size_t *lenp, loff_t *ppos)
534 {
535 	unsigned long old_bytes = vm_dirty_bytes;
536 	int ret;
537 
538 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
539 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
540 		writeback_set_ratelimit();
541 		vm_dirty_ratio = 0;
542 	}
543 	return ret;
544 }
545 #endif
546 
547 static unsigned long wp_next_time(unsigned long cur_time)
548 {
549 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
550 	/* 0 has a special meaning... */
551 	if (!cur_time)
552 		return 1;
553 	return cur_time;
554 }
555 
556 static void wb_domain_writeout_add(struct wb_domain *dom,
557 				   struct fprop_local_percpu *completions,
558 				   unsigned int max_prop_frac, long nr)
559 {
560 	__fprop_add_percpu_max(&dom->completions, completions,
561 			       max_prop_frac, nr);
562 	/* First event after period switching was turned off? */
563 	if (unlikely(!dom->period_time)) {
564 		/*
565 		 * We can race with other __bdi_writeout_inc calls here but
566 		 * it does not cause any harm since the resulting time when
567 		 * timer will fire and what is in writeout_period_time will be
568 		 * roughly the same.
569 		 */
570 		dom->period_time = wp_next_time(jiffies);
571 		mod_timer(&dom->period_timer, dom->period_time);
572 	}
573 }
574 
575 /*
576  * Increment @wb's writeout completion count and the global writeout
577  * completion count. Called from __folio_end_writeback().
578  */
579 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
580 {
581 	struct wb_domain *cgdom;
582 
583 	wb_stat_mod(wb, WB_WRITTEN, nr);
584 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
585 			       wb->bdi->max_prop_frac, nr);
586 
587 	cgdom = mem_cgroup_wb_domain(wb);
588 	if (cgdom)
589 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
590 				       wb->bdi->max_prop_frac, nr);
591 }
592 
593 void wb_writeout_inc(struct bdi_writeback *wb)
594 {
595 	unsigned long flags;
596 
597 	local_irq_save(flags);
598 	__wb_writeout_add(wb, 1);
599 	local_irq_restore(flags);
600 }
601 EXPORT_SYMBOL_GPL(wb_writeout_inc);
602 
603 /*
604  * On idle system, we can be called long after we scheduled because we use
605  * deferred timers so count with missed periods.
606  */
607 static void writeout_period(struct timer_list *t)
608 {
609 	struct wb_domain *dom = from_timer(dom, t, period_timer);
610 	int miss_periods = (jiffies - dom->period_time) /
611 						 VM_COMPLETIONS_PERIOD_LEN;
612 
613 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
614 		dom->period_time = wp_next_time(dom->period_time +
615 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
616 		mod_timer(&dom->period_timer, dom->period_time);
617 	} else {
618 		/*
619 		 * Aging has zeroed all fractions. Stop wasting CPU on period
620 		 * updates.
621 		 */
622 		dom->period_time = 0;
623 	}
624 }
625 
626 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
627 {
628 	memset(dom, 0, sizeof(*dom));
629 
630 	spin_lock_init(&dom->lock);
631 
632 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
633 
634 	dom->dirty_limit_tstamp = jiffies;
635 
636 	return fprop_global_init(&dom->completions, gfp);
637 }
638 
639 #ifdef CONFIG_CGROUP_WRITEBACK
640 void wb_domain_exit(struct wb_domain *dom)
641 {
642 	del_timer_sync(&dom->period_timer);
643 	fprop_global_destroy(&dom->completions);
644 }
645 #endif
646 
647 /*
648  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
649  * registered backing devices, which, for obvious reasons, can not
650  * exceed 100%.
651  */
652 static unsigned int bdi_min_ratio;
653 
654 static int bdi_check_pages_limit(unsigned long pages)
655 {
656 	unsigned long max_dirty_pages = global_dirtyable_memory();
657 
658 	if (pages > max_dirty_pages)
659 		return -EINVAL;
660 
661 	return 0;
662 }
663 
664 static unsigned long bdi_ratio_from_pages(unsigned long pages)
665 {
666 	unsigned long background_thresh;
667 	unsigned long dirty_thresh;
668 	unsigned long ratio;
669 
670 	global_dirty_limits(&background_thresh, &dirty_thresh);
671 	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
672 
673 	return ratio;
674 }
675 
676 static u64 bdi_get_bytes(unsigned int ratio)
677 {
678 	unsigned long background_thresh;
679 	unsigned long dirty_thresh;
680 	u64 bytes;
681 
682 	global_dirty_limits(&background_thresh, &dirty_thresh);
683 	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
684 
685 	return bytes;
686 }
687 
688 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
689 {
690 	unsigned int delta;
691 	int ret = 0;
692 
693 	if (min_ratio > 100 * BDI_RATIO_SCALE)
694 		return -EINVAL;
695 
696 	spin_lock_bh(&bdi_lock);
697 	if (min_ratio > bdi->max_ratio) {
698 		ret = -EINVAL;
699 	} else {
700 		if (min_ratio < bdi->min_ratio) {
701 			delta = bdi->min_ratio - min_ratio;
702 			bdi_min_ratio -= delta;
703 			bdi->min_ratio = min_ratio;
704 		} else {
705 			delta = min_ratio - bdi->min_ratio;
706 			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
707 				bdi_min_ratio += delta;
708 				bdi->min_ratio = min_ratio;
709 			} else {
710 				ret = -EINVAL;
711 			}
712 		}
713 	}
714 	spin_unlock_bh(&bdi_lock);
715 
716 	return ret;
717 }
718 
719 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
720 {
721 	int ret = 0;
722 
723 	if (max_ratio > 100 * BDI_RATIO_SCALE)
724 		return -EINVAL;
725 
726 	spin_lock_bh(&bdi_lock);
727 	if (bdi->min_ratio > max_ratio) {
728 		ret = -EINVAL;
729 	} else {
730 		bdi->max_ratio = max_ratio;
731 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
732 						(100 * BDI_RATIO_SCALE);
733 	}
734 	spin_unlock_bh(&bdi_lock);
735 
736 	return ret;
737 }
738 
739 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
740 {
741 	return __bdi_set_min_ratio(bdi, min_ratio);
742 }
743 
744 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
745 {
746 	return __bdi_set_max_ratio(bdi, max_ratio);
747 }
748 
749 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
750 {
751 	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
752 }
753 
754 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
755 {
756 	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
757 }
758 EXPORT_SYMBOL(bdi_set_max_ratio);
759 
760 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
761 {
762 	return bdi_get_bytes(bdi->min_ratio);
763 }
764 
765 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
766 {
767 	int ret;
768 	unsigned long pages = min_bytes >> PAGE_SHIFT;
769 	unsigned long min_ratio;
770 
771 	ret = bdi_check_pages_limit(pages);
772 	if (ret)
773 		return ret;
774 
775 	min_ratio = bdi_ratio_from_pages(pages);
776 	return __bdi_set_min_ratio(bdi, min_ratio);
777 }
778 
779 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
780 {
781 	return bdi_get_bytes(bdi->max_ratio);
782 }
783 
784 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
785 {
786 	int ret;
787 	unsigned long pages = max_bytes >> PAGE_SHIFT;
788 	unsigned long max_ratio;
789 
790 	ret = bdi_check_pages_limit(pages);
791 	if (ret)
792 		return ret;
793 
794 	max_ratio = bdi_ratio_from_pages(pages);
795 	return __bdi_set_max_ratio(bdi, max_ratio);
796 }
797 
798 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
799 {
800 	if (strict_limit > 1)
801 		return -EINVAL;
802 
803 	spin_lock_bh(&bdi_lock);
804 	if (strict_limit)
805 		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
806 	else
807 		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
808 	spin_unlock_bh(&bdi_lock);
809 
810 	return 0;
811 }
812 
813 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
814 					   unsigned long bg_thresh)
815 {
816 	return (thresh + bg_thresh) / 2;
817 }
818 
819 static unsigned long hard_dirty_limit(struct wb_domain *dom,
820 				      unsigned long thresh)
821 {
822 	return max(thresh, dom->dirty_limit);
823 }
824 
825 /*
826  * Memory which can be further allocated to a memcg domain is capped by
827  * system-wide clean memory excluding the amount being used in the domain.
828  */
829 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
830 			    unsigned long filepages, unsigned long headroom)
831 {
832 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
833 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
834 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
835 	unsigned long other_clean = global_clean - min(global_clean, clean);
836 
837 	mdtc->avail = filepages + min(headroom, other_clean);
838 }
839 
840 /**
841  * __wb_calc_thresh - @wb's share of dirty throttling threshold
842  * @dtc: dirty_throttle_context of interest
843  *
844  * Note that balance_dirty_pages() will only seriously take it as a hard limit
845  * when sleeping max_pause per page is not enough to keep the dirty pages under
846  * control. For example, when the device is completely stalled due to some error
847  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
848  * In the other normal situations, it acts more gently by throttling the tasks
849  * more (rather than completely block them) when the wb dirty pages go high.
850  *
851  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
852  * - starving fast devices
853  * - piling up dirty pages (that will take long time to sync) on slow devices
854  *
855  * The wb's share of dirty limit will be adapting to its throughput and
856  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
857  *
858  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
859  * dirty balancing includes all PG_dirty and PG_writeback pages.
860  */
861 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
862 {
863 	struct wb_domain *dom = dtc_dom(dtc);
864 	unsigned long thresh = dtc->thresh;
865 	u64 wb_thresh;
866 	unsigned long numerator, denominator;
867 	unsigned long wb_min_ratio, wb_max_ratio;
868 
869 	/*
870 	 * Calculate this BDI's share of the thresh ratio.
871 	 */
872 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
873 			      &numerator, &denominator);
874 
875 	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
876 	wb_thresh *= numerator;
877 	wb_thresh = div64_ul(wb_thresh, denominator);
878 
879 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
880 
881 	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
882 	if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
883 		wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
884 
885 	return wb_thresh;
886 }
887 
888 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
889 {
890 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
891 					       .thresh = thresh };
892 	return __wb_calc_thresh(&gdtc);
893 }
894 
895 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
896 {
897 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
898 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
899 	unsigned long filepages = 0, headroom = 0, writeback = 0;
900 
901 	gdtc.avail = global_dirtyable_memory();
902 	gdtc.dirty = global_node_page_state(NR_FILE_DIRTY) +
903 		     global_node_page_state(NR_WRITEBACK);
904 
905 	mem_cgroup_wb_stats(wb, &filepages, &headroom,
906 			    &mdtc.dirty, &writeback);
907 	mdtc.dirty += writeback;
908 	mdtc_calc_avail(&mdtc, filepages, headroom);
909 	domain_dirty_limits(&mdtc);
910 
911 	return __wb_calc_thresh(&mdtc);
912 }
913 
914 /*
915  *                           setpoint - dirty 3
916  *        f(dirty) := 1.0 + (----------------)
917  *                           limit - setpoint
918  *
919  * it's a 3rd order polynomial that subjects to
920  *
921  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
922  * (2) f(setpoint) = 1.0 => the balance point
923  * (3) f(limit)    = 0   => the hard limit
924  * (4) df/dx      <= 0	 => negative feedback control
925  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
926  *     => fast response on large errors; small oscillation near setpoint
927  */
928 static long long pos_ratio_polynom(unsigned long setpoint,
929 					  unsigned long dirty,
930 					  unsigned long limit)
931 {
932 	long long pos_ratio;
933 	long x;
934 
935 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
936 		      (limit - setpoint) | 1);
937 	pos_ratio = x;
938 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
939 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
940 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
941 
942 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
943 }
944 
945 /*
946  * Dirty position control.
947  *
948  * (o) global/bdi setpoints
949  *
950  * We want the dirty pages be balanced around the global/wb setpoints.
951  * When the number of dirty pages is higher/lower than the setpoint, the
952  * dirty position control ratio (and hence task dirty ratelimit) will be
953  * decreased/increased to bring the dirty pages back to the setpoint.
954  *
955  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
956  *
957  *     if (dirty < setpoint) scale up   pos_ratio
958  *     if (dirty > setpoint) scale down pos_ratio
959  *
960  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
961  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
962  *
963  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
964  *
965  * (o) global control line
966  *
967  *     ^ pos_ratio
968  *     |
969  *     |            |<===== global dirty control scope ======>|
970  * 2.0  * * * * * * *
971  *     |            .*
972  *     |            . *
973  *     |            .   *
974  *     |            .     *
975  *     |            .        *
976  *     |            .            *
977  * 1.0 ................................*
978  *     |            .                  .     *
979  *     |            .                  .          *
980  *     |            .                  .              *
981  *     |            .                  .                 *
982  *     |            .                  .                    *
983  *   0 +------------.------------------.----------------------*------------->
984  *           freerun^          setpoint^                 limit^   dirty pages
985  *
986  * (o) wb control line
987  *
988  *     ^ pos_ratio
989  *     |
990  *     |            *
991  *     |              *
992  *     |                *
993  *     |                  *
994  *     |                    * |<=========== span ============>|
995  * 1.0 .......................*
996  *     |                      . *
997  *     |                      .   *
998  *     |                      .     *
999  *     |                      .       *
1000  *     |                      .         *
1001  *     |                      .           *
1002  *     |                      .             *
1003  *     |                      .               *
1004  *     |                      .                 *
1005  *     |                      .                   *
1006  *     |                      .                     *
1007  * 1/4 ...............................................* * * * * * * * * * * *
1008  *     |                      .                         .
1009  *     |                      .                           .
1010  *     |                      .                             .
1011  *   0 +----------------------.-------------------------------.------------->
1012  *                wb_setpoint^                    x_intercept^
1013  *
1014  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1015  * be smoothly throttled down to normal if it starts high in situations like
1016  * - start writing to a slow SD card and a fast disk at the same time. The SD
1017  *   card's wb_dirty may rush to many times higher than wb_setpoint.
1018  * - the wb dirty thresh drops quickly due to change of JBOD workload
1019  */
1020 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1021 {
1022 	struct bdi_writeback *wb = dtc->wb;
1023 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1024 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1025 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1026 	unsigned long wb_thresh = dtc->wb_thresh;
1027 	unsigned long x_intercept;
1028 	unsigned long setpoint;		/* dirty pages' target balance point */
1029 	unsigned long wb_setpoint;
1030 	unsigned long span;
1031 	long long pos_ratio;		/* for scaling up/down the rate limit */
1032 	long x;
1033 
1034 	dtc->pos_ratio = 0;
1035 
1036 	if (unlikely(dtc->dirty >= limit))
1037 		return;
1038 
1039 	/*
1040 	 * global setpoint
1041 	 *
1042 	 * See comment for pos_ratio_polynom().
1043 	 */
1044 	setpoint = (freerun + limit) / 2;
1045 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1046 
1047 	/*
1048 	 * The strictlimit feature is a tool preventing mistrusted filesystems
1049 	 * from growing a large number of dirty pages before throttling. For
1050 	 * such filesystems balance_dirty_pages always checks wb counters
1051 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1052 	 * This is especially important for fuse which sets bdi->max_ratio to
1053 	 * 1% by default. Without strictlimit feature, fuse writeback may
1054 	 * consume arbitrary amount of RAM because it is accounted in
1055 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1056 	 *
1057 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1058 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1059 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1060 	 * limits are set by default to 10% and 20% (background and throttle).
1061 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1062 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1063 	 * about ~6K pages (as the average of background and throttle wb
1064 	 * limits). The 3rd order polynomial will provide positive feedback if
1065 	 * wb_dirty is under wb_setpoint and vice versa.
1066 	 *
1067 	 * Note, that we cannot use global counters in these calculations
1068 	 * because we want to throttle process writing to a strictlimit wb
1069 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1070 	 * in the example above).
1071 	 */
1072 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1073 		long long wb_pos_ratio;
1074 
1075 		if (dtc->wb_dirty < 8) {
1076 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1077 					   2 << RATELIMIT_CALC_SHIFT);
1078 			return;
1079 		}
1080 
1081 		if (dtc->wb_dirty >= wb_thresh)
1082 			return;
1083 
1084 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1085 						    dtc->wb_bg_thresh);
1086 
1087 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1088 			return;
1089 
1090 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1091 						 wb_thresh);
1092 
1093 		/*
1094 		 * Typically, for strictlimit case, wb_setpoint << setpoint
1095 		 * and pos_ratio >> wb_pos_ratio. In the other words global
1096 		 * state ("dirty") is not limiting factor and we have to
1097 		 * make decision based on wb counters. But there is an
1098 		 * important case when global pos_ratio should get precedence:
1099 		 * global limits are exceeded (e.g. due to activities on other
1100 		 * wb's) while given strictlimit wb is below limit.
1101 		 *
1102 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1103 		 * but it would look too non-natural for the case of all
1104 		 * activity in the system coming from a single strictlimit wb
1105 		 * with bdi->max_ratio == 100%.
1106 		 *
1107 		 * Note that min() below somewhat changes the dynamics of the
1108 		 * control system. Normally, pos_ratio value can be well over 3
1109 		 * (when globally we are at freerun and wb is well below wb
1110 		 * setpoint). Now the maximum pos_ratio in the same situation
1111 		 * is 2. We might want to tweak this if we observe the control
1112 		 * system is too slow to adapt.
1113 		 */
1114 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1115 		return;
1116 	}
1117 
1118 	/*
1119 	 * We have computed basic pos_ratio above based on global situation. If
1120 	 * the wb is over/under its share of dirty pages, we want to scale
1121 	 * pos_ratio further down/up. That is done by the following mechanism.
1122 	 */
1123 
1124 	/*
1125 	 * wb setpoint
1126 	 *
1127 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1128 	 *
1129 	 *                        x_intercept - wb_dirty
1130 	 *                     := --------------------------
1131 	 *                        x_intercept - wb_setpoint
1132 	 *
1133 	 * The main wb control line is a linear function that subjects to
1134 	 *
1135 	 * (1) f(wb_setpoint) = 1.0
1136 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1137 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1138 	 *
1139 	 * For single wb case, the dirty pages are observed to fluctuate
1140 	 * regularly within range
1141 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1142 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1143 	 * fluctuation range for pos_ratio.
1144 	 *
1145 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1146 	 * own size, so move the slope over accordingly and choose a slope that
1147 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1148 	 */
1149 	if (unlikely(wb_thresh > dtc->thresh))
1150 		wb_thresh = dtc->thresh;
1151 	/*
1152 	 * It's very possible that wb_thresh is close to 0 not because the
1153 	 * device is slow, but that it has remained inactive for long time.
1154 	 * Honour such devices a reasonable good (hopefully IO efficient)
1155 	 * threshold, so that the occasional writes won't be blocked and active
1156 	 * writes can rampup the threshold quickly.
1157 	 */
1158 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1159 	/*
1160 	 * scale global setpoint to wb's:
1161 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1162 	 */
1163 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1164 	wb_setpoint = setpoint * (u64)x >> 16;
1165 	/*
1166 	 * Use span=(8*write_bw) in single wb case as indicated by
1167 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1168 	 *
1169 	 *        wb_thresh                    thresh - wb_thresh
1170 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1171 	 *         thresh                           thresh
1172 	 */
1173 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1174 	x_intercept = wb_setpoint + span;
1175 
1176 	if (dtc->wb_dirty < x_intercept - span / 4) {
1177 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1178 				      (x_intercept - wb_setpoint) | 1);
1179 	} else
1180 		pos_ratio /= 4;
1181 
1182 	/*
1183 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1184 	 * It may push the desired control point of global dirty pages higher
1185 	 * than setpoint.
1186 	 */
1187 	x_intercept = wb_thresh / 2;
1188 	if (dtc->wb_dirty < x_intercept) {
1189 		if (dtc->wb_dirty > x_intercept / 8)
1190 			pos_ratio = div_u64(pos_ratio * x_intercept,
1191 					    dtc->wb_dirty);
1192 		else
1193 			pos_ratio *= 8;
1194 	}
1195 
1196 	dtc->pos_ratio = pos_ratio;
1197 }
1198 
1199 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1200 				      unsigned long elapsed,
1201 				      unsigned long written)
1202 {
1203 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1204 	unsigned long avg = wb->avg_write_bandwidth;
1205 	unsigned long old = wb->write_bandwidth;
1206 	u64 bw;
1207 
1208 	/*
1209 	 * bw = written * HZ / elapsed
1210 	 *
1211 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1212 	 * write_bandwidth = ---------------------------------------------------
1213 	 *                                          period
1214 	 *
1215 	 * @written may have decreased due to folio_redirty_for_writepage().
1216 	 * Avoid underflowing @bw calculation.
1217 	 */
1218 	bw = written - min(written, wb->written_stamp);
1219 	bw *= HZ;
1220 	if (unlikely(elapsed > period)) {
1221 		bw = div64_ul(bw, elapsed);
1222 		avg = bw;
1223 		goto out;
1224 	}
1225 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1226 	bw >>= ilog2(period);
1227 
1228 	/*
1229 	 * one more level of smoothing, for filtering out sudden spikes
1230 	 */
1231 	if (avg > old && old >= (unsigned long)bw)
1232 		avg -= (avg - old) >> 3;
1233 
1234 	if (avg < old && old <= (unsigned long)bw)
1235 		avg += (old - avg) >> 3;
1236 
1237 out:
1238 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1239 	avg = max(avg, 1LU);
1240 	if (wb_has_dirty_io(wb)) {
1241 		long delta = avg - wb->avg_write_bandwidth;
1242 		WARN_ON_ONCE(atomic_long_add_return(delta,
1243 					&wb->bdi->tot_write_bandwidth) <= 0);
1244 	}
1245 	wb->write_bandwidth = bw;
1246 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1247 }
1248 
1249 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1250 {
1251 	struct wb_domain *dom = dtc_dom(dtc);
1252 	unsigned long thresh = dtc->thresh;
1253 	unsigned long limit = dom->dirty_limit;
1254 
1255 	/*
1256 	 * Follow up in one step.
1257 	 */
1258 	if (limit < thresh) {
1259 		limit = thresh;
1260 		goto update;
1261 	}
1262 
1263 	/*
1264 	 * Follow down slowly. Use the higher one as the target, because thresh
1265 	 * may drop below dirty. This is exactly the reason to introduce
1266 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1267 	 */
1268 	thresh = max(thresh, dtc->dirty);
1269 	if (limit > thresh) {
1270 		limit -= (limit - thresh) >> 5;
1271 		goto update;
1272 	}
1273 	return;
1274 update:
1275 	dom->dirty_limit = limit;
1276 }
1277 
1278 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1279 				      unsigned long now)
1280 {
1281 	struct wb_domain *dom = dtc_dom(dtc);
1282 
1283 	/*
1284 	 * check locklessly first to optimize away locking for the most time
1285 	 */
1286 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1287 		return;
1288 
1289 	spin_lock(&dom->lock);
1290 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1291 		update_dirty_limit(dtc);
1292 		dom->dirty_limit_tstamp = now;
1293 	}
1294 	spin_unlock(&dom->lock);
1295 }
1296 
1297 /*
1298  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1299  *
1300  * Normal wb tasks will be curbed at or below it in long term.
1301  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1302  */
1303 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1304 				      unsigned long dirtied,
1305 				      unsigned long elapsed)
1306 {
1307 	struct bdi_writeback *wb = dtc->wb;
1308 	unsigned long dirty = dtc->dirty;
1309 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1310 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1311 	unsigned long setpoint = (freerun + limit) / 2;
1312 	unsigned long write_bw = wb->avg_write_bandwidth;
1313 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1314 	unsigned long dirty_rate;
1315 	unsigned long task_ratelimit;
1316 	unsigned long balanced_dirty_ratelimit;
1317 	unsigned long step;
1318 	unsigned long x;
1319 	unsigned long shift;
1320 
1321 	/*
1322 	 * The dirty rate will match the writeout rate in long term, except
1323 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1324 	 */
1325 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1326 
1327 	/*
1328 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1329 	 */
1330 	task_ratelimit = (u64)dirty_ratelimit *
1331 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1332 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1333 
1334 	/*
1335 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1336 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1337 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1338 	 * formula will yield the balanced rate limit (write_bw / N).
1339 	 *
1340 	 * Note that the expanded form is not a pure rate feedback:
1341 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1342 	 * but also takes pos_ratio into account:
1343 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1344 	 *
1345 	 * (1) is not realistic because pos_ratio also takes part in balancing
1346 	 * the dirty rate.  Consider the state
1347 	 *	pos_ratio = 0.5						     (3)
1348 	 *	rate = 2 * (write_bw / N)				     (4)
1349 	 * If (1) is used, it will stuck in that state! Because each dd will
1350 	 * be throttled at
1351 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1352 	 * yielding
1353 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1354 	 * put (6) into (1) we get
1355 	 *	rate_(i+1) = rate_(i)					     (7)
1356 	 *
1357 	 * So we end up using (2) to always keep
1358 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1359 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1360 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1361 	 * the dirty count meet the setpoint, but also where the slope of
1362 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1363 	 */
1364 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1365 					   dirty_rate | 1);
1366 	/*
1367 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1368 	 */
1369 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1370 		balanced_dirty_ratelimit = write_bw;
1371 
1372 	/*
1373 	 * We could safely do this and return immediately:
1374 	 *
1375 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1376 	 *
1377 	 * However to get a more stable dirty_ratelimit, the below elaborated
1378 	 * code makes use of task_ratelimit to filter out singular points and
1379 	 * limit the step size.
1380 	 *
1381 	 * The below code essentially only uses the relative value of
1382 	 *
1383 	 *	task_ratelimit - dirty_ratelimit
1384 	 *	= (pos_ratio - 1) * dirty_ratelimit
1385 	 *
1386 	 * which reflects the direction and size of dirty position error.
1387 	 */
1388 
1389 	/*
1390 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1391 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1392 	 * For example, when
1393 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1394 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1395 	 * lowering dirty_ratelimit will help meet both the position and rate
1396 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1397 	 * only help meet the rate target. After all, what the users ultimately
1398 	 * feel and care are stable dirty rate and small position error.
1399 	 *
1400 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1401 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1402 	 * keeps jumping around randomly and can even leap far away at times
1403 	 * due to the small 200ms estimation period of dirty_rate (we want to
1404 	 * keep that period small to reduce time lags).
1405 	 */
1406 	step = 0;
1407 
1408 	/*
1409 	 * For strictlimit case, calculations above were based on wb counters
1410 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1411 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1412 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1413 	 * "dirty" and wb_setpoint as "setpoint".
1414 	 *
1415 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1416 	 * it's possible that wb_thresh is close to zero due to inactivity
1417 	 * of backing device.
1418 	 */
1419 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1420 		dirty = dtc->wb_dirty;
1421 		if (dtc->wb_dirty < 8)
1422 			setpoint = dtc->wb_dirty + 1;
1423 		else
1424 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1425 	}
1426 
1427 	if (dirty < setpoint) {
1428 		x = min3(wb->balanced_dirty_ratelimit,
1429 			 balanced_dirty_ratelimit, task_ratelimit);
1430 		if (dirty_ratelimit < x)
1431 			step = x - dirty_ratelimit;
1432 	} else {
1433 		x = max3(wb->balanced_dirty_ratelimit,
1434 			 balanced_dirty_ratelimit, task_ratelimit);
1435 		if (dirty_ratelimit > x)
1436 			step = dirty_ratelimit - x;
1437 	}
1438 
1439 	/*
1440 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1441 	 * rate itself is constantly fluctuating. So decrease the track speed
1442 	 * when it gets close to the target. Helps eliminate pointless tremors.
1443 	 */
1444 	shift = dirty_ratelimit / (2 * step + 1);
1445 	if (shift < BITS_PER_LONG)
1446 		step = DIV_ROUND_UP(step >> shift, 8);
1447 	else
1448 		step = 0;
1449 
1450 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1451 		dirty_ratelimit += step;
1452 	else
1453 		dirty_ratelimit -= step;
1454 
1455 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1456 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1457 
1458 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1459 }
1460 
1461 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1462 				  struct dirty_throttle_control *mdtc,
1463 				  bool update_ratelimit)
1464 {
1465 	struct bdi_writeback *wb = gdtc->wb;
1466 	unsigned long now = jiffies;
1467 	unsigned long elapsed;
1468 	unsigned long dirtied;
1469 	unsigned long written;
1470 
1471 	spin_lock(&wb->list_lock);
1472 
1473 	/*
1474 	 * Lockless checks for elapsed time are racy and delayed update after
1475 	 * IO completion doesn't do it at all (to make sure written pages are
1476 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1477 	 * division errors.
1478 	 */
1479 	elapsed = max(now - wb->bw_time_stamp, 1UL);
1480 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1481 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1482 
1483 	if (update_ratelimit) {
1484 		domain_update_dirty_limit(gdtc, now);
1485 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1486 
1487 		/*
1488 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1489 		 * compiler has no way to figure that out.  Help it.
1490 		 */
1491 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1492 			domain_update_dirty_limit(mdtc, now);
1493 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1494 		}
1495 	}
1496 	wb_update_write_bandwidth(wb, elapsed, written);
1497 
1498 	wb->dirtied_stamp = dirtied;
1499 	wb->written_stamp = written;
1500 	WRITE_ONCE(wb->bw_time_stamp, now);
1501 	spin_unlock(&wb->list_lock);
1502 }
1503 
1504 void wb_update_bandwidth(struct bdi_writeback *wb)
1505 {
1506 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1507 
1508 	__wb_update_bandwidth(&gdtc, NULL, false);
1509 }
1510 
1511 /* Interval after which we consider wb idle and don't estimate bandwidth */
1512 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1513 
1514 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1515 {
1516 	unsigned long now = jiffies;
1517 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1518 
1519 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1520 	    !atomic_read(&wb->writeback_inodes)) {
1521 		spin_lock(&wb->list_lock);
1522 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1523 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1524 		WRITE_ONCE(wb->bw_time_stamp, now);
1525 		spin_unlock(&wb->list_lock);
1526 	}
1527 }
1528 
1529 /*
1530  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1531  * will look to see if it needs to start dirty throttling.
1532  *
1533  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1534  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1535  * (the number of pages we may dirty without exceeding the dirty limits).
1536  */
1537 static unsigned long dirty_poll_interval(unsigned long dirty,
1538 					 unsigned long thresh)
1539 {
1540 	if (thresh > dirty)
1541 		return 1UL << (ilog2(thresh - dirty) >> 1);
1542 
1543 	return 1;
1544 }
1545 
1546 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1547 				  unsigned long wb_dirty)
1548 {
1549 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1550 	unsigned long t;
1551 
1552 	/*
1553 	 * Limit pause time for small memory systems. If sleeping for too long
1554 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1555 	 * idle.
1556 	 *
1557 	 * 8 serves as the safety ratio.
1558 	 */
1559 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1560 	t++;
1561 
1562 	return min_t(unsigned long, t, MAX_PAUSE);
1563 }
1564 
1565 static long wb_min_pause(struct bdi_writeback *wb,
1566 			 long max_pause,
1567 			 unsigned long task_ratelimit,
1568 			 unsigned long dirty_ratelimit,
1569 			 int *nr_dirtied_pause)
1570 {
1571 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1572 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1573 	long t;		/* target pause */
1574 	long pause;	/* estimated next pause */
1575 	int pages;	/* target nr_dirtied_pause */
1576 
1577 	/* target for 10ms pause on 1-dd case */
1578 	t = max(1, HZ / 100);
1579 
1580 	/*
1581 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1582 	 * overheads.
1583 	 *
1584 	 * (N * 10ms) on 2^N concurrent tasks.
1585 	 */
1586 	if (hi > lo)
1587 		t += (hi - lo) * (10 * HZ) / 1024;
1588 
1589 	/*
1590 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1591 	 * on the much more stable dirty_ratelimit. However the next pause time
1592 	 * will be computed based on task_ratelimit and the two rate limits may
1593 	 * depart considerably at some time. Especially if task_ratelimit goes
1594 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1595 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1596 	 * result task_ratelimit won't be executed faithfully, which could
1597 	 * eventually bring down dirty_ratelimit.
1598 	 *
1599 	 * We apply two rules to fix it up:
1600 	 * 1) try to estimate the next pause time and if necessary, use a lower
1601 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1602 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1603 	 * 2) limit the target pause time to max_pause/2, so that the normal
1604 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1605 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1606 	 */
1607 	t = min(t, 1 + max_pause / 2);
1608 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1609 
1610 	/*
1611 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1612 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1613 	 * When the 16 consecutive reads are often interrupted by some dirty
1614 	 * throttling pause during the async writes, cfq will go into idles
1615 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1616 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1617 	 */
1618 	if (pages < DIRTY_POLL_THRESH) {
1619 		t = max_pause;
1620 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1621 		if (pages > DIRTY_POLL_THRESH) {
1622 			pages = DIRTY_POLL_THRESH;
1623 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1624 		}
1625 	}
1626 
1627 	pause = HZ * pages / (task_ratelimit + 1);
1628 	if (pause > max_pause) {
1629 		t = max_pause;
1630 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1631 	}
1632 
1633 	*nr_dirtied_pause = pages;
1634 	/*
1635 	 * The minimal pause time will normally be half the target pause time.
1636 	 */
1637 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1638 }
1639 
1640 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1641 {
1642 	struct bdi_writeback *wb = dtc->wb;
1643 	unsigned long wb_reclaimable;
1644 
1645 	/*
1646 	 * wb_thresh is not treated as some limiting factor as
1647 	 * dirty_thresh, due to reasons
1648 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1649 	 * - in a system with HDD and USB key, the USB key may somehow
1650 	 *   go into state (wb_dirty >> wb_thresh) either because
1651 	 *   wb_dirty starts high, or because wb_thresh drops low.
1652 	 *   In this case we don't want to hard throttle the USB key
1653 	 *   dirtiers for 100 seconds until wb_dirty drops under
1654 	 *   wb_thresh. Instead the auxiliary wb control line in
1655 	 *   wb_position_ratio() will let the dirtier task progress
1656 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1657 	 */
1658 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1659 	dtc->wb_bg_thresh = dtc->thresh ?
1660 		div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1661 
1662 	/*
1663 	 * In order to avoid the stacked BDI deadlock we need
1664 	 * to ensure we accurately count the 'dirty' pages when
1665 	 * the threshold is low.
1666 	 *
1667 	 * Otherwise it would be possible to get thresh+n pages
1668 	 * reported dirty, even though there are thresh-m pages
1669 	 * actually dirty; with m+n sitting in the percpu
1670 	 * deltas.
1671 	 */
1672 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1673 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1674 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1675 	} else {
1676 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1677 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1678 	}
1679 }
1680 
1681 /*
1682  * balance_dirty_pages() must be called by processes which are generating dirty
1683  * data.  It looks at the number of dirty pages in the machine and will force
1684  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1685  * If we're over `background_thresh' then the writeback threads are woken to
1686  * perform some writeout.
1687  */
1688 static int balance_dirty_pages(struct bdi_writeback *wb,
1689 			       unsigned long pages_dirtied, unsigned int flags)
1690 {
1691 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1692 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1693 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1694 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1695 						     &mdtc_stor : NULL;
1696 	struct dirty_throttle_control *sdtc;
1697 	unsigned long nr_reclaimable;	/* = file_dirty */
1698 	long period;
1699 	long pause;
1700 	long max_pause;
1701 	long min_pause;
1702 	int nr_dirtied_pause;
1703 	bool dirty_exceeded = false;
1704 	unsigned long task_ratelimit;
1705 	unsigned long dirty_ratelimit;
1706 	struct backing_dev_info *bdi = wb->bdi;
1707 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1708 	unsigned long start_time = jiffies;
1709 	int ret = 0;
1710 
1711 	for (;;) {
1712 		unsigned long now = jiffies;
1713 		unsigned long dirty, thresh, bg_thresh;
1714 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1715 		unsigned long m_thresh = 0;
1716 		unsigned long m_bg_thresh = 0;
1717 
1718 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1719 		gdtc->avail = global_dirtyable_memory();
1720 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1721 
1722 		domain_dirty_limits(gdtc);
1723 
1724 		if (unlikely(strictlimit)) {
1725 			wb_dirty_limits(gdtc);
1726 
1727 			dirty = gdtc->wb_dirty;
1728 			thresh = gdtc->wb_thresh;
1729 			bg_thresh = gdtc->wb_bg_thresh;
1730 		} else {
1731 			dirty = gdtc->dirty;
1732 			thresh = gdtc->thresh;
1733 			bg_thresh = gdtc->bg_thresh;
1734 		}
1735 
1736 		if (mdtc) {
1737 			unsigned long filepages, headroom, writeback;
1738 
1739 			/*
1740 			 * If @wb belongs to !root memcg, repeat the same
1741 			 * basic calculations for the memcg domain.
1742 			 */
1743 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1744 					    &mdtc->dirty, &writeback);
1745 			mdtc->dirty += writeback;
1746 			mdtc_calc_avail(mdtc, filepages, headroom);
1747 
1748 			domain_dirty_limits(mdtc);
1749 
1750 			if (unlikely(strictlimit)) {
1751 				wb_dirty_limits(mdtc);
1752 				m_dirty = mdtc->wb_dirty;
1753 				m_thresh = mdtc->wb_thresh;
1754 				m_bg_thresh = mdtc->wb_bg_thresh;
1755 			} else {
1756 				m_dirty = mdtc->dirty;
1757 				m_thresh = mdtc->thresh;
1758 				m_bg_thresh = mdtc->bg_thresh;
1759 			}
1760 		}
1761 
1762 		/*
1763 		 * In laptop mode, we wait until hitting the higher threshold
1764 		 * before starting background writeout, and then write out all
1765 		 * the way down to the lower threshold.  So slow writers cause
1766 		 * minimal disk activity.
1767 		 *
1768 		 * In normal mode, we start background writeout at the lower
1769 		 * background_thresh, to keep the amount of dirty memory low.
1770 		 */
1771 		if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1772 		    !writeback_in_progress(wb))
1773 			wb_start_background_writeback(wb);
1774 
1775 		/*
1776 		 * Throttle it only when the background writeback cannot
1777 		 * catch-up. This avoids (excessively) small writeouts
1778 		 * when the wb limits are ramping up in case of !strictlimit.
1779 		 *
1780 		 * In strictlimit case make decision based on the wb counters
1781 		 * and limits. Small writeouts when the wb limits are ramping
1782 		 * up are the price we consciously pay for strictlimit-ing.
1783 		 *
1784 		 * If memcg domain is in effect, @dirty should be under
1785 		 * both global and memcg freerun ceilings.
1786 		 */
1787 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1788 		    (!mdtc ||
1789 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1790 			unsigned long intv;
1791 			unsigned long m_intv;
1792 
1793 free_running:
1794 			intv = dirty_poll_interval(dirty, thresh);
1795 			m_intv = ULONG_MAX;
1796 
1797 			current->dirty_paused_when = now;
1798 			current->nr_dirtied = 0;
1799 			if (mdtc)
1800 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1801 			current->nr_dirtied_pause = min(intv, m_intv);
1802 			break;
1803 		}
1804 
1805 		/* Start writeback even when in laptop mode */
1806 		if (unlikely(!writeback_in_progress(wb)))
1807 			wb_start_background_writeback(wb);
1808 
1809 		mem_cgroup_flush_foreign(wb);
1810 
1811 		/*
1812 		 * Calculate global domain's pos_ratio and select the
1813 		 * global dtc by default.
1814 		 */
1815 		if (!strictlimit) {
1816 			wb_dirty_limits(gdtc);
1817 
1818 			if ((current->flags & PF_LOCAL_THROTTLE) &&
1819 			    gdtc->wb_dirty <
1820 			    dirty_freerun_ceiling(gdtc->wb_thresh,
1821 						  gdtc->wb_bg_thresh))
1822 				/*
1823 				 * LOCAL_THROTTLE tasks must not be throttled
1824 				 * when below the per-wb freerun ceiling.
1825 				 */
1826 				goto free_running;
1827 		}
1828 
1829 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1830 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1831 
1832 		wb_position_ratio(gdtc);
1833 		sdtc = gdtc;
1834 
1835 		if (mdtc) {
1836 			/*
1837 			 * If memcg domain is in effect, calculate its
1838 			 * pos_ratio.  @wb should satisfy constraints from
1839 			 * both global and memcg domains.  Choose the one
1840 			 * w/ lower pos_ratio.
1841 			 */
1842 			if (!strictlimit) {
1843 				wb_dirty_limits(mdtc);
1844 
1845 				if ((current->flags & PF_LOCAL_THROTTLE) &&
1846 				    mdtc->wb_dirty <
1847 				    dirty_freerun_ceiling(mdtc->wb_thresh,
1848 							  mdtc->wb_bg_thresh))
1849 					/*
1850 					 * LOCAL_THROTTLE tasks must not be
1851 					 * throttled when below the per-wb
1852 					 * freerun ceiling.
1853 					 */
1854 					goto free_running;
1855 			}
1856 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1857 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1858 
1859 			wb_position_ratio(mdtc);
1860 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1861 				sdtc = mdtc;
1862 		}
1863 
1864 		if (dirty_exceeded != wb->dirty_exceeded)
1865 			wb->dirty_exceeded = dirty_exceeded;
1866 
1867 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1868 					   BANDWIDTH_INTERVAL))
1869 			__wb_update_bandwidth(gdtc, mdtc, true);
1870 
1871 		/* throttle according to the chosen dtc */
1872 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1873 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1874 							RATELIMIT_CALC_SHIFT;
1875 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1876 		min_pause = wb_min_pause(wb, max_pause,
1877 					 task_ratelimit, dirty_ratelimit,
1878 					 &nr_dirtied_pause);
1879 
1880 		if (unlikely(task_ratelimit == 0)) {
1881 			period = max_pause;
1882 			pause = max_pause;
1883 			goto pause;
1884 		}
1885 		period = HZ * pages_dirtied / task_ratelimit;
1886 		pause = period;
1887 		if (current->dirty_paused_when)
1888 			pause -= now - current->dirty_paused_when;
1889 		/*
1890 		 * For less than 1s think time (ext3/4 may block the dirtier
1891 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1892 		 * however at much less frequency), try to compensate it in
1893 		 * future periods by updating the virtual time; otherwise just
1894 		 * do a reset, as it may be a light dirtier.
1895 		 */
1896 		if (pause < min_pause) {
1897 			trace_balance_dirty_pages(wb,
1898 						  sdtc->thresh,
1899 						  sdtc->bg_thresh,
1900 						  sdtc->dirty,
1901 						  sdtc->wb_thresh,
1902 						  sdtc->wb_dirty,
1903 						  dirty_ratelimit,
1904 						  task_ratelimit,
1905 						  pages_dirtied,
1906 						  period,
1907 						  min(pause, 0L),
1908 						  start_time);
1909 			if (pause < -HZ) {
1910 				current->dirty_paused_when = now;
1911 				current->nr_dirtied = 0;
1912 			} else if (period) {
1913 				current->dirty_paused_when += period;
1914 				current->nr_dirtied = 0;
1915 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1916 				current->nr_dirtied_pause += pages_dirtied;
1917 			break;
1918 		}
1919 		if (unlikely(pause > max_pause)) {
1920 			/* for occasional dropped task_ratelimit */
1921 			now += min(pause - max_pause, max_pause);
1922 			pause = max_pause;
1923 		}
1924 
1925 pause:
1926 		trace_balance_dirty_pages(wb,
1927 					  sdtc->thresh,
1928 					  sdtc->bg_thresh,
1929 					  sdtc->dirty,
1930 					  sdtc->wb_thresh,
1931 					  sdtc->wb_dirty,
1932 					  dirty_ratelimit,
1933 					  task_ratelimit,
1934 					  pages_dirtied,
1935 					  period,
1936 					  pause,
1937 					  start_time);
1938 		if (flags & BDP_ASYNC) {
1939 			ret = -EAGAIN;
1940 			break;
1941 		}
1942 		__set_current_state(TASK_KILLABLE);
1943 		bdi->last_bdp_sleep = jiffies;
1944 		io_schedule_timeout(pause);
1945 
1946 		current->dirty_paused_when = now + pause;
1947 		current->nr_dirtied = 0;
1948 		current->nr_dirtied_pause = nr_dirtied_pause;
1949 
1950 		/*
1951 		 * This is typically equal to (dirty < thresh) and can also
1952 		 * keep "1000+ dd on a slow USB stick" under control.
1953 		 */
1954 		if (task_ratelimit)
1955 			break;
1956 
1957 		/*
1958 		 * In the case of an unresponsive NFS server and the NFS dirty
1959 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1960 		 * to go through, so that tasks on them still remain responsive.
1961 		 *
1962 		 * In theory 1 page is enough to keep the consumer-producer
1963 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1964 		 * more page. However wb_dirty has accounting errors.  So use
1965 		 * the larger and more IO friendly wb_stat_error.
1966 		 */
1967 		if (sdtc->wb_dirty <= wb_stat_error())
1968 			break;
1969 
1970 		if (fatal_signal_pending(current))
1971 			break;
1972 	}
1973 	return ret;
1974 }
1975 
1976 static DEFINE_PER_CPU(int, bdp_ratelimits);
1977 
1978 /*
1979  * Normal tasks are throttled by
1980  *	loop {
1981  *		dirty tsk->nr_dirtied_pause pages;
1982  *		take a snap in balance_dirty_pages();
1983  *	}
1984  * However there is a worst case. If every task exit immediately when dirtied
1985  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1986  * called to throttle the page dirties. The solution is to save the not yet
1987  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1988  * randomly into the running tasks. This works well for the above worst case,
1989  * as the new task will pick up and accumulate the old task's leaked dirty
1990  * count and eventually get throttled.
1991  */
1992 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1993 
1994 /**
1995  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1996  * @mapping: address_space which was dirtied.
1997  * @flags: BDP flags.
1998  *
1999  * Processes which are dirtying memory should call in here once for each page
2000  * which was newly dirtied.  The function will periodically check the system's
2001  * dirty state and will initiate writeback if needed.
2002  *
2003  * See balance_dirty_pages_ratelimited() for details.
2004  *
2005  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2006  * indicate that memory is out of balance and the caller must wait
2007  * for I/O to complete.  Otherwise, it will return 0 to indicate
2008  * that either memory was already in balance, or it was able to sleep
2009  * until the amount of dirty memory returned to balance.
2010  */
2011 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2012 					unsigned int flags)
2013 {
2014 	struct inode *inode = mapping->host;
2015 	struct backing_dev_info *bdi = inode_to_bdi(inode);
2016 	struct bdi_writeback *wb = NULL;
2017 	int ratelimit;
2018 	int ret = 0;
2019 	int *p;
2020 
2021 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2022 		return ret;
2023 
2024 	if (inode_cgwb_enabled(inode))
2025 		wb = wb_get_create_current(bdi, GFP_KERNEL);
2026 	if (!wb)
2027 		wb = &bdi->wb;
2028 
2029 	ratelimit = current->nr_dirtied_pause;
2030 	if (wb->dirty_exceeded)
2031 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2032 
2033 	preempt_disable();
2034 	/*
2035 	 * This prevents one CPU to accumulate too many dirtied pages without
2036 	 * calling into balance_dirty_pages(), which can happen when there are
2037 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2038 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2039 	 */
2040 	p =  this_cpu_ptr(&bdp_ratelimits);
2041 	if (unlikely(current->nr_dirtied >= ratelimit))
2042 		*p = 0;
2043 	else if (unlikely(*p >= ratelimit_pages)) {
2044 		*p = 0;
2045 		ratelimit = 0;
2046 	}
2047 	/*
2048 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2049 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2050 	 * the dirty throttling and livelock other long-run dirtiers.
2051 	 */
2052 	p = this_cpu_ptr(&dirty_throttle_leaks);
2053 	if (*p > 0 && current->nr_dirtied < ratelimit) {
2054 		unsigned long nr_pages_dirtied;
2055 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2056 		*p -= nr_pages_dirtied;
2057 		current->nr_dirtied += nr_pages_dirtied;
2058 	}
2059 	preempt_enable();
2060 
2061 	if (unlikely(current->nr_dirtied >= ratelimit))
2062 		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2063 
2064 	wb_put(wb);
2065 	return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2068 
2069 /**
2070  * balance_dirty_pages_ratelimited - balance dirty memory state.
2071  * @mapping: address_space which was dirtied.
2072  *
2073  * Processes which are dirtying memory should call in here once for each page
2074  * which was newly dirtied.  The function will periodically check the system's
2075  * dirty state and will initiate writeback if needed.
2076  *
2077  * Once we're over the dirty memory limit we decrease the ratelimiting
2078  * by a lot, to prevent individual processes from overshooting the limit
2079  * by (ratelimit_pages) each.
2080  */
2081 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2082 {
2083 	balance_dirty_pages_ratelimited_flags(mapping, 0);
2084 }
2085 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2086 
2087 /**
2088  * wb_over_bg_thresh - does @wb need to be written back?
2089  * @wb: bdi_writeback of interest
2090  *
2091  * Determines whether background writeback should keep writing @wb or it's
2092  * clean enough.
2093  *
2094  * Return: %true if writeback should continue.
2095  */
2096 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2097 {
2098 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2099 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2100 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
2101 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2102 						     &mdtc_stor : NULL;
2103 	unsigned long reclaimable;
2104 	unsigned long thresh;
2105 
2106 	/*
2107 	 * Similar to balance_dirty_pages() but ignores pages being written
2108 	 * as we're trying to decide whether to put more under writeback.
2109 	 */
2110 	gdtc->avail = global_dirtyable_memory();
2111 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2112 	domain_dirty_limits(gdtc);
2113 
2114 	if (gdtc->dirty > gdtc->bg_thresh)
2115 		return true;
2116 
2117 	thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2118 	if (thresh < 2 * wb_stat_error())
2119 		reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2120 	else
2121 		reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2122 
2123 	if (reclaimable > thresh)
2124 		return true;
2125 
2126 	if (mdtc) {
2127 		unsigned long filepages, headroom, writeback;
2128 
2129 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2130 				    &writeback);
2131 		mdtc_calc_avail(mdtc, filepages, headroom);
2132 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
2133 
2134 		if (mdtc->dirty > mdtc->bg_thresh)
2135 			return true;
2136 
2137 		thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2138 		if (thresh < 2 * wb_stat_error())
2139 			reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2140 		else
2141 			reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2142 
2143 		if (reclaimable > thresh)
2144 			return true;
2145 	}
2146 
2147 	return false;
2148 }
2149 
2150 #ifdef CONFIG_SYSCTL
2151 /*
2152  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2153  */
2154 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2155 		void *buffer, size_t *length, loff_t *ppos)
2156 {
2157 	unsigned int old_interval = dirty_writeback_interval;
2158 	int ret;
2159 
2160 	ret = proc_dointvec(table, write, buffer, length, ppos);
2161 
2162 	/*
2163 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2164 	 * and a different non-zero value will wakeup the writeback threads.
2165 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2166 	 * iterate over all bdis and wbs.
2167 	 * The reason we do this is to make the change take effect immediately.
2168 	 */
2169 	if (!ret && write && dirty_writeback_interval &&
2170 		dirty_writeback_interval != old_interval)
2171 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2172 
2173 	return ret;
2174 }
2175 #endif
2176 
2177 void laptop_mode_timer_fn(struct timer_list *t)
2178 {
2179 	struct backing_dev_info *backing_dev_info =
2180 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2181 
2182 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2183 }
2184 
2185 /*
2186  * We've spun up the disk and we're in laptop mode: schedule writeback
2187  * of all dirty data a few seconds from now.  If the flush is already scheduled
2188  * then push it back - the user is still using the disk.
2189  */
2190 void laptop_io_completion(struct backing_dev_info *info)
2191 {
2192 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2193 }
2194 
2195 /*
2196  * We're in laptop mode and we've just synced. The sync's writes will have
2197  * caused another writeback to be scheduled by laptop_io_completion.
2198  * Nothing needs to be written back anymore, so we unschedule the writeback.
2199  */
2200 void laptop_sync_completion(void)
2201 {
2202 	struct backing_dev_info *bdi;
2203 
2204 	rcu_read_lock();
2205 
2206 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2207 		del_timer(&bdi->laptop_mode_wb_timer);
2208 
2209 	rcu_read_unlock();
2210 }
2211 
2212 /*
2213  * If ratelimit_pages is too high then we can get into dirty-data overload
2214  * if a large number of processes all perform writes at the same time.
2215  *
2216  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2217  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2218  * thresholds.
2219  */
2220 
2221 void writeback_set_ratelimit(void)
2222 {
2223 	struct wb_domain *dom = &global_wb_domain;
2224 	unsigned long background_thresh;
2225 	unsigned long dirty_thresh;
2226 
2227 	global_dirty_limits(&background_thresh, &dirty_thresh);
2228 	dom->dirty_limit = dirty_thresh;
2229 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2230 	if (ratelimit_pages < 16)
2231 		ratelimit_pages = 16;
2232 }
2233 
2234 static int page_writeback_cpu_online(unsigned int cpu)
2235 {
2236 	writeback_set_ratelimit();
2237 	return 0;
2238 }
2239 
2240 #ifdef CONFIG_SYSCTL
2241 
2242 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2243 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2244 
2245 static struct ctl_table vm_page_writeback_sysctls[] = {
2246 	{
2247 		.procname   = "dirty_background_ratio",
2248 		.data       = &dirty_background_ratio,
2249 		.maxlen     = sizeof(dirty_background_ratio),
2250 		.mode       = 0644,
2251 		.proc_handler   = dirty_background_ratio_handler,
2252 		.extra1     = SYSCTL_ZERO,
2253 		.extra2     = SYSCTL_ONE_HUNDRED,
2254 	},
2255 	{
2256 		.procname   = "dirty_background_bytes",
2257 		.data       = &dirty_background_bytes,
2258 		.maxlen     = sizeof(dirty_background_bytes),
2259 		.mode       = 0644,
2260 		.proc_handler   = dirty_background_bytes_handler,
2261 		.extra1     = SYSCTL_LONG_ONE,
2262 	},
2263 	{
2264 		.procname   = "dirty_ratio",
2265 		.data       = &vm_dirty_ratio,
2266 		.maxlen     = sizeof(vm_dirty_ratio),
2267 		.mode       = 0644,
2268 		.proc_handler   = dirty_ratio_handler,
2269 		.extra1     = SYSCTL_ZERO,
2270 		.extra2     = SYSCTL_ONE_HUNDRED,
2271 	},
2272 	{
2273 		.procname   = "dirty_bytes",
2274 		.data       = &vm_dirty_bytes,
2275 		.maxlen     = sizeof(vm_dirty_bytes),
2276 		.mode       = 0644,
2277 		.proc_handler   = dirty_bytes_handler,
2278 		.extra1     = (void *)&dirty_bytes_min,
2279 	},
2280 	{
2281 		.procname   = "dirty_writeback_centisecs",
2282 		.data       = &dirty_writeback_interval,
2283 		.maxlen     = sizeof(dirty_writeback_interval),
2284 		.mode       = 0644,
2285 		.proc_handler   = dirty_writeback_centisecs_handler,
2286 	},
2287 	{
2288 		.procname   = "dirty_expire_centisecs",
2289 		.data       = &dirty_expire_interval,
2290 		.maxlen     = sizeof(dirty_expire_interval),
2291 		.mode       = 0644,
2292 		.proc_handler   = proc_dointvec_minmax,
2293 		.extra1     = SYSCTL_ZERO,
2294 	},
2295 #ifdef CONFIG_HIGHMEM
2296 	{
2297 		.procname	= "highmem_is_dirtyable",
2298 		.data		= &vm_highmem_is_dirtyable,
2299 		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2300 		.mode		= 0644,
2301 		.proc_handler	= proc_dointvec_minmax,
2302 		.extra1		= SYSCTL_ZERO,
2303 		.extra2		= SYSCTL_ONE,
2304 	},
2305 #endif
2306 	{
2307 		.procname	= "laptop_mode",
2308 		.data		= &laptop_mode,
2309 		.maxlen		= sizeof(laptop_mode),
2310 		.mode		= 0644,
2311 		.proc_handler	= proc_dointvec_jiffies,
2312 	},
2313 };
2314 #endif
2315 
2316 /*
2317  * Called early on to tune the page writeback dirty limits.
2318  *
2319  * We used to scale dirty pages according to how total memory
2320  * related to pages that could be allocated for buffers.
2321  *
2322  * However, that was when we used "dirty_ratio" to scale with
2323  * all memory, and we don't do that any more. "dirty_ratio"
2324  * is now applied to total non-HIGHPAGE memory, and as such we can't
2325  * get into the old insane situation any more where we had
2326  * large amounts of dirty pages compared to a small amount of
2327  * non-HIGHMEM memory.
2328  *
2329  * But we might still want to scale the dirty_ratio by how
2330  * much memory the box has..
2331  */
2332 void __init page_writeback_init(void)
2333 {
2334 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2335 
2336 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2337 			  page_writeback_cpu_online, NULL);
2338 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2339 			  page_writeback_cpu_online);
2340 #ifdef CONFIG_SYSCTL
2341 	register_sysctl_init("vm", vm_page_writeback_sysctls);
2342 #endif
2343 }
2344 
2345 /**
2346  * tag_pages_for_writeback - tag pages to be written by writeback
2347  * @mapping: address space structure to write
2348  * @start: starting page index
2349  * @end: ending page index (inclusive)
2350  *
2351  * This function scans the page range from @start to @end (inclusive) and tags
2352  * all pages that have DIRTY tag set with a special TOWRITE tag.  The caller
2353  * can then use the TOWRITE tag to identify pages eligible for writeback.
2354  * This mechanism is used to avoid livelocking of writeback by a process
2355  * steadily creating new dirty pages in the file (thus it is important for this
2356  * function to be quick so that it can tag pages faster than a dirtying process
2357  * can create them).
2358  */
2359 void tag_pages_for_writeback(struct address_space *mapping,
2360 			     pgoff_t start, pgoff_t end)
2361 {
2362 	XA_STATE(xas, &mapping->i_pages, start);
2363 	unsigned int tagged = 0;
2364 	void *page;
2365 
2366 	xas_lock_irq(&xas);
2367 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2368 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2369 		if (++tagged % XA_CHECK_SCHED)
2370 			continue;
2371 
2372 		xas_pause(&xas);
2373 		xas_unlock_irq(&xas);
2374 		cond_resched();
2375 		xas_lock_irq(&xas);
2376 	}
2377 	xas_unlock_irq(&xas);
2378 }
2379 EXPORT_SYMBOL(tag_pages_for_writeback);
2380 
2381 static bool folio_prepare_writeback(struct address_space *mapping,
2382 		struct writeback_control *wbc, struct folio *folio)
2383 {
2384 	/*
2385 	 * Folio truncated or invalidated. We can freely skip it then,
2386 	 * even for data integrity operations: the folio has disappeared
2387 	 * concurrently, so there could be no real expectation of this
2388 	 * data integrity operation even if there is now a new, dirty
2389 	 * folio at the same pagecache index.
2390 	 */
2391 	if (unlikely(folio->mapping != mapping))
2392 		return false;
2393 
2394 	/*
2395 	 * Did somebody else write it for us?
2396 	 */
2397 	if (!folio_test_dirty(folio))
2398 		return false;
2399 
2400 	if (folio_test_writeback(folio)) {
2401 		if (wbc->sync_mode == WB_SYNC_NONE)
2402 			return false;
2403 		folio_wait_writeback(folio);
2404 	}
2405 	BUG_ON(folio_test_writeback(folio));
2406 
2407 	if (!folio_clear_dirty_for_io(folio))
2408 		return false;
2409 
2410 	return true;
2411 }
2412 
2413 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2414 {
2415 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2416 		return PAGECACHE_TAG_TOWRITE;
2417 	return PAGECACHE_TAG_DIRTY;
2418 }
2419 
2420 static pgoff_t wbc_end(struct writeback_control *wbc)
2421 {
2422 	if (wbc->range_cyclic)
2423 		return -1;
2424 	return wbc->range_end >> PAGE_SHIFT;
2425 }
2426 
2427 static struct folio *writeback_get_folio(struct address_space *mapping,
2428 		struct writeback_control *wbc)
2429 {
2430 	struct folio *folio;
2431 
2432 retry:
2433 	folio = folio_batch_next(&wbc->fbatch);
2434 	if (!folio) {
2435 		folio_batch_release(&wbc->fbatch);
2436 		cond_resched();
2437 		filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2438 				wbc_to_tag(wbc), &wbc->fbatch);
2439 		folio = folio_batch_next(&wbc->fbatch);
2440 		if (!folio)
2441 			return NULL;
2442 	}
2443 
2444 	folio_lock(folio);
2445 	if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2446 		folio_unlock(folio);
2447 		goto retry;
2448 	}
2449 
2450 	trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2451 	return folio;
2452 }
2453 
2454 /**
2455  * writeback_iter - iterate folio of a mapping for writeback
2456  * @mapping: address space structure to write
2457  * @wbc: writeback context
2458  * @folio: previously iterated folio (%NULL to start)
2459  * @error: in-out pointer for writeback errors (see below)
2460  *
2461  * This function returns the next folio for the writeback operation described by
2462  * @wbc on @mapping and  should be called in a while loop in the ->writepages
2463  * implementation.
2464  *
2465  * To start the writeback operation, %NULL is passed in the @folio argument, and
2466  * for every subsequent iteration the folio returned previously should be passed
2467  * back in.
2468  *
2469  * If there was an error in the per-folio writeback inside the writeback_iter()
2470  * loop, @error should be set to the error value.
2471  *
2472  * Once the writeback described in @wbc has finished, this function will return
2473  * %NULL and if there was an error in any iteration restore it to @error.
2474  *
2475  * Note: callers should not manually break out of the loop using break or goto
2476  * but must keep calling writeback_iter() until it returns %NULL.
2477  *
2478  * Return: the folio to write or %NULL if the loop is done.
2479  */
2480 struct folio *writeback_iter(struct address_space *mapping,
2481 		struct writeback_control *wbc, struct folio *folio, int *error)
2482 {
2483 	if (!folio) {
2484 		folio_batch_init(&wbc->fbatch);
2485 		wbc->saved_err = *error = 0;
2486 
2487 		/*
2488 		 * For range cyclic writeback we remember where we stopped so
2489 		 * that we can continue where we stopped.
2490 		 *
2491 		 * For non-cyclic writeback we always start at the beginning of
2492 		 * the passed in range.
2493 		 */
2494 		if (wbc->range_cyclic)
2495 			wbc->index = mapping->writeback_index;
2496 		else
2497 			wbc->index = wbc->range_start >> PAGE_SHIFT;
2498 
2499 		/*
2500 		 * To avoid livelocks when other processes dirty new pages, we
2501 		 * first tag pages which should be written back and only then
2502 		 * start writing them.
2503 		 *
2504 		 * For data-integrity writeback we have to be careful so that we
2505 		 * do not miss some pages (e.g., because some other process has
2506 		 * cleared the TOWRITE tag we set).  The rule we follow is that
2507 		 * TOWRITE tag can be cleared only by the process clearing the
2508 		 * DIRTY tag (and submitting the page for I/O).
2509 		 */
2510 		if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2511 			tag_pages_for_writeback(mapping, wbc->index,
2512 					wbc_end(wbc));
2513 	} else {
2514 		wbc->nr_to_write -= folio_nr_pages(folio);
2515 
2516 		WARN_ON_ONCE(*error > 0);
2517 
2518 		/*
2519 		 * For integrity writeback we have to keep going until we have
2520 		 * written all the folios we tagged for writeback above, even if
2521 		 * we run past wbc->nr_to_write or encounter errors.
2522 		 * We stash away the first error we encounter in wbc->saved_err
2523 		 * so that it can be retrieved when we're done.  This is because
2524 		 * the file system may still have state to clear for each folio.
2525 		 *
2526 		 * For background writeback we exit as soon as we run past
2527 		 * wbc->nr_to_write or encounter the first error.
2528 		 */
2529 		if (wbc->sync_mode == WB_SYNC_ALL) {
2530 			if (*error && !wbc->saved_err)
2531 				wbc->saved_err = *error;
2532 		} else {
2533 			if (*error || wbc->nr_to_write <= 0)
2534 				goto done;
2535 		}
2536 	}
2537 
2538 	folio = writeback_get_folio(mapping, wbc);
2539 	if (!folio) {
2540 		/*
2541 		 * To avoid deadlocks between range_cyclic writeback and callers
2542 		 * that hold pages in PageWriteback to aggregate I/O until
2543 		 * the writeback iteration finishes, we do not loop back to the
2544 		 * start of the file.  Doing so causes a page lock/page
2545 		 * writeback access order inversion - we should only ever lock
2546 		 * multiple pages in ascending page->index order, and looping
2547 		 * back to the start of the file violates that rule and causes
2548 		 * deadlocks.
2549 		 */
2550 		if (wbc->range_cyclic)
2551 			mapping->writeback_index = 0;
2552 
2553 		/*
2554 		 * Return the first error we encountered (if there was any) to
2555 		 * the caller.
2556 		 */
2557 		*error = wbc->saved_err;
2558 	}
2559 	return folio;
2560 
2561 done:
2562 	if (wbc->range_cyclic)
2563 		mapping->writeback_index = folio->index + folio_nr_pages(folio);
2564 	folio_batch_release(&wbc->fbatch);
2565 	return NULL;
2566 }
2567 
2568 /**
2569  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2570  * @mapping: address space structure to write
2571  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2572  * @writepage: function called for each page
2573  * @data: data passed to writepage function
2574  *
2575  * Return: %0 on success, negative error code otherwise
2576  *
2577  * Note: please use writeback_iter() instead.
2578  */
2579 int write_cache_pages(struct address_space *mapping,
2580 		      struct writeback_control *wbc, writepage_t writepage,
2581 		      void *data)
2582 {
2583 	struct folio *folio = NULL;
2584 	int error;
2585 
2586 	while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2587 		error = writepage(folio, wbc, data);
2588 		if (error == AOP_WRITEPAGE_ACTIVATE) {
2589 			folio_unlock(folio);
2590 			error = 0;
2591 		}
2592 	}
2593 
2594 	return error;
2595 }
2596 EXPORT_SYMBOL(write_cache_pages);
2597 
2598 static int writeback_use_writepage(struct address_space *mapping,
2599 		struct writeback_control *wbc)
2600 {
2601 	struct folio *folio = NULL;
2602 	struct blk_plug plug;
2603 	int err;
2604 
2605 	blk_start_plug(&plug);
2606 	while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2607 		err = mapping->a_ops->writepage(&folio->page, wbc);
2608 		if (err == AOP_WRITEPAGE_ACTIVATE) {
2609 			folio_unlock(folio);
2610 			err = 0;
2611 		}
2612 		mapping_set_error(mapping, err);
2613 	}
2614 	blk_finish_plug(&plug);
2615 
2616 	return err;
2617 }
2618 
2619 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2620 {
2621 	int ret;
2622 	struct bdi_writeback *wb;
2623 
2624 	if (wbc->nr_to_write <= 0)
2625 		return 0;
2626 	wb = inode_to_wb_wbc(mapping->host, wbc);
2627 	wb_bandwidth_estimate_start(wb);
2628 	while (1) {
2629 		if (mapping->a_ops->writepages) {
2630 			ret = mapping->a_ops->writepages(mapping, wbc);
2631 		} else if (mapping->a_ops->writepage) {
2632 			ret = writeback_use_writepage(mapping, wbc);
2633 		} else {
2634 			/* deal with chardevs and other special files */
2635 			ret = 0;
2636 		}
2637 		if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2638 			break;
2639 
2640 		/*
2641 		 * Lacking an allocation context or the locality or writeback
2642 		 * state of any of the inode's pages, throttle based on
2643 		 * writeback activity on the local node. It's as good a
2644 		 * guess as any.
2645 		 */
2646 		reclaim_throttle(NODE_DATA(numa_node_id()),
2647 			VMSCAN_THROTTLE_WRITEBACK);
2648 	}
2649 	/*
2650 	 * Usually few pages are written by now from those we've just submitted
2651 	 * but if there's constant writeback being submitted, this makes sure
2652 	 * writeback bandwidth is updated once in a while.
2653 	 */
2654 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2655 				   BANDWIDTH_INTERVAL))
2656 		wb_update_bandwidth(wb);
2657 	return ret;
2658 }
2659 
2660 /*
2661  * For address_spaces which do not use buffers nor write back.
2662  */
2663 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2664 {
2665 	if (!folio_test_dirty(folio))
2666 		return !folio_test_set_dirty(folio);
2667 	return false;
2668 }
2669 EXPORT_SYMBOL(noop_dirty_folio);
2670 
2671 /*
2672  * Helper function for set_page_dirty family.
2673  *
2674  * Caller must hold folio_memcg_lock().
2675  *
2676  * NOTE: This relies on being atomic wrt interrupts.
2677  */
2678 static void folio_account_dirtied(struct folio *folio,
2679 		struct address_space *mapping)
2680 {
2681 	struct inode *inode = mapping->host;
2682 
2683 	trace_writeback_dirty_folio(folio, mapping);
2684 
2685 	if (mapping_can_writeback(mapping)) {
2686 		struct bdi_writeback *wb;
2687 		long nr = folio_nr_pages(folio);
2688 
2689 		inode_attach_wb(inode, folio);
2690 		wb = inode_to_wb(inode);
2691 
2692 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2693 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2694 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2695 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2696 		wb_stat_mod(wb, WB_DIRTIED, nr);
2697 		task_io_account_write(nr * PAGE_SIZE);
2698 		current->nr_dirtied += nr;
2699 		__this_cpu_add(bdp_ratelimits, nr);
2700 
2701 		mem_cgroup_track_foreign_dirty(folio, wb);
2702 	}
2703 }
2704 
2705 /*
2706  * Helper function for deaccounting dirty page without writeback.
2707  *
2708  * Caller must hold folio_memcg_lock().
2709  */
2710 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2711 {
2712 	long nr = folio_nr_pages(folio);
2713 
2714 	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2715 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2716 	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2717 	task_io_account_cancelled_write(nr * PAGE_SIZE);
2718 }
2719 
2720 /*
2721  * Mark the folio dirty, and set it dirty in the page cache, and mark
2722  * the inode dirty.
2723  *
2724  * If warn is true, then emit a warning if the folio is not uptodate and has
2725  * not been truncated.
2726  *
2727  * The caller must hold folio_memcg_lock().  It is the caller's
2728  * responsibility to prevent the folio from being truncated while
2729  * this function is in progress, although it may have been truncated
2730  * before this function is called.  Most callers have the folio locked.
2731  * A few have the folio blocked from truncation through other means (e.g.
2732  * zap_vma_pages() has it mapped and is holding the page table lock).
2733  * When called from mark_buffer_dirty(), the filesystem should hold a
2734  * reference to the buffer_head that is being marked dirty, which causes
2735  * try_to_free_buffers() to fail.
2736  */
2737 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2738 			     int warn)
2739 {
2740 	unsigned long flags;
2741 
2742 	xa_lock_irqsave(&mapping->i_pages, flags);
2743 	if (folio->mapping) {	/* Race with truncate? */
2744 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2745 		folio_account_dirtied(folio, mapping);
2746 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2747 				PAGECACHE_TAG_DIRTY);
2748 	}
2749 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2750 }
2751 
2752 /**
2753  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2754  * @mapping: Address space this folio belongs to.
2755  * @folio: Folio to be marked as dirty.
2756  *
2757  * Filesystems which do not use buffer heads should call this function
2758  * from their dirty_folio address space operation.  It ignores the
2759  * contents of folio_get_private(), so if the filesystem marks individual
2760  * blocks as dirty, the filesystem should handle that itself.
2761  *
2762  * This is also sometimes used by filesystems which use buffer_heads when
2763  * a single buffer is being dirtied: we want to set the folio dirty in
2764  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2765  * whereas block_dirty_folio() is a "top-down" dirtying.
2766  *
2767  * The caller must ensure this doesn't race with truncation.  Most will
2768  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2769  * folio mapped and the pte lock held, which also locks out truncation.
2770  */
2771 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2772 {
2773 	folio_memcg_lock(folio);
2774 	if (folio_test_set_dirty(folio)) {
2775 		folio_memcg_unlock(folio);
2776 		return false;
2777 	}
2778 
2779 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2780 	folio_memcg_unlock(folio);
2781 
2782 	if (mapping->host) {
2783 		/* !PageAnon && !swapper_space */
2784 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2785 	}
2786 	return true;
2787 }
2788 EXPORT_SYMBOL(filemap_dirty_folio);
2789 
2790 /**
2791  * folio_redirty_for_writepage - Decline to write a dirty folio.
2792  * @wbc: The writeback control.
2793  * @folio: The folio.
2794  *
2795  * When a writepage implementation decides that it doesn't want to write
2796  * @folio for some reason, it should call this function, unlock @folio and
2797  * return 0.
2798  *
2799  * Return: True if we redirtied the folio.  False if someone else dirtied
2800  * it first.
2801  */
2802 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2803 		struct folio *folio)
2804 {
2805 	struct address_space *mapping = folio->mapping;
2806 	long nr = folio_nr_pages(folio);
2807 	bool ret;
2808 
2809 	wbc->pages_skipped += nr;
2810 	ret = filemap_dirty_folio(mapping, folio);
2811 	if (mapping && mapping_can_writeback(mapping)) {
2812 		struct inode *inode = mapping->host;
2813 		struct bdi_writeback *wb;
2814 		struct wb_lock_cookie cookie = {};
2815 
2816 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2817 		current->nr_dirtied -= nr;
2818 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2819 		wb_stat_mod(wb, WB_DIRTIED, -nr);
2820 		unlocked_inode_to_wb_end(inode, &cookie);
2821 	}
2822 	return ret;
2823 }
2824 EXPORT_SYMBOL(folio_redirty_for_writepage);
2825 
2826 /**
2827  * folio_mark_dirty - Mark a folio as being modified.
2828  * @folio: The folio.
2829  *
2830  * The folio may not be truncated while this function is running.
2831  * Holding the folio lock is sufficient to prevent truncation, but some
2832  * callers cannot acquire a sleeping lock.  These callers instead hold
2833  * the page table lock for a page table which contains at least one page
2834  * in this folio.  Truncation will block on the page table lock as it
2835  * unmaps pages before removing the folio from its mapping.
2836  *
2837  * Return: True if the folio was newly dirtied, false if it was already dirty.
2838  */
2839 bool folio_mark_dirty(struct folio *folio)
2840 {
2841 	struct address_space *mapping = folio_mapping(folio);
2842 
2843 	if (likely(mapping)) {
2844 		/*
2845 		 * readahead/folio_deactivate could remain
2846 		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2847 		 * About readahead, if the folio is written, the flags would be
2848 		 * reset. So no problem.
2849 		 * About folio_deactivate, if the folio is redirtied,
2850 		 * the flag will be reset. So no problem. but if the
2851 		 * folio is used by readahead it will confuse readahead
2852 		 * and make it restart the size rampup process. But it's
2853 		 * a trivial problem.
2854 		 */
2855 		if (folio_test_reclaim(folio))
2856 			folio_clear_reclaim(folio);
2857 		return mapping->a_ops->dirty_folio(mapping, folio);
2858 	}
2859 
2860 	return noop_dirty_folio(mapping, folio);
2861 }
2862 EXPORT_SYMBOL(folio_mark_dirty);
2863 
2864 /*
2865  * set_page_dirty() is racy if the caller has no reference against
2866  * page->mapping->host, and if the page is unlocked.  This is because another
2867  * CPU could truncate the page off the mapping and then free the mapping.
2868  *
2869  * Usually, the page _is_ locked, or the caller is a user-space process which
2870  * holds a reference on the inode by having an open file.
2871  *
2872  * In other cases, the page should be locked before running set_page_dirty().
2873  */
2874 int set_page_dirty_lock(struct page *page)
2875 {
2876 	int ret;
2877 
2878 	lock_page(page);
2879 	ret = set_page_dirty(page);
2880 	unlock_page(page);
2881 	return ret;
2882 }
2883 EXPORT_SYMBOL(set_page_dirty_lock);
2884 
2885 /*
2886  * This cancels just the dirty bit on the kernel page itself, it does NOT
2887  * actually remove dirty bits on any mmap's that may be around. It also
2888  * leaves the page tagged dirty, so any sync activity will still find it on
2889  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2890  * look at the dirty bits in the VM.
2891  *
2892  * Doing this should *normally* only ever be done when a page is truncated,
2893  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2894  * this when it notices that somebody has cleaned out all the buffers on a
2895  * page without actually doing it through the VM. Can you say "ext3 is
2896  * horribly ugly"? Thought you could.
2897  */
2898 void __folio_cancel_dirty(struct folio *folio)
2899 {
2900 	struct address_space *mapping = folio_mapping(folio);
2901 
2902 	if (mapping_can_writeback(mapping)) {
2903 		struct inode *inode = mapping->host;
2904 		struct bdi_writeback *wb;
2905 		struct wb_lock_cookie cookie = {};
2906 
2907 		folio_memcg_lock(folio);
2908 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2909 
2910 		if (folio_test_clear_dirty(folio))
2911 			folio_account_cleaned(folio, wb);
2912 
2913 		unlocked_inode_to_wb_end(inode, &cookie);
2914 		folio_memcg_unlock(folio);
2915 	} else {
2916 		folio_clear_dirty(folio);
2917 	}
2918 }
2919 EXPORT_SYMBOL(__folio_cancel_dirty);
2920 
2921 /*
2922  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2923  * Returns true if the folio was previously dirty.
2924  *
2925  * This is for preparing to put the folio under writeout.  We leave
2926  * the folio tagged as dirty in the xarray so that a concurrent
2927  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2928  * The ->writepage implementation will run either folio_start_writeback()
2929  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2930  * and xarray dirty tag back into sync.
2931  *
2932  * This incoherency between the folio's dirty flag and xarray tag is
2933  * unfortunate, but it only exists while the folio is locked.
2934  */
2935 bool folio_clear_dirty_for_io(struct folio *folio)
2936 {
2937 	struct address_space *mapping = folio_mapping(folio);
2938 	bool ret = false;
2939 
2940 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2941 
2942 	if (mapping && mapping_can_writeback(mapping)) {
2943 		struct inode *inode = mapping->host;
2944 		struct bdi_writeback *wb;
2945 		struct wb_lock_cookie cookie = {};
2946 
2947 		/*
2948 		 * Yes, Virginia, this is indeed insane.
2949 		 *
2950 		 * We use this sequence to make sure that
2951 		 *  (a) we account for dirty stats properly
2952 		 *  (b) we tell the low-level filesystem to
2953 		 *      mark the whole folio dirty if it was
2954 		 *      dirty in a pagetable. Only to then
2955 		 *  (c) clean the folio again and return 1 to
2956 		 *      cause the writeback.
2957 		 *
2958 		 * This way we avoid all nasty races with the
2959 		 * dirty bit in multiple places and clearing
2960 		 * them concurrently from different threads.
2961 		 *
2962 		 * Note! Normally the "folio_mark_dirty(folio)"
2963 		 * has no effect on the actual dirty bit - since
2964 		 * that will already usually be set. But we
2965 		 * need the side effects, and it can help us
2966 		 * avoid races.
2967 		 *
2968 		 * We basically use the folio "master dirty bit"
2969 		 * as a serialization point for all the different
2970 		 * threads doing their things.
2971 		 */
2972 		if (folio_mkclean(folio))
2973 			folio_mark_dirty(folio);
2974 		/*
2975 		 * We carefully synchronise fault handlers against
2976 		 * installing a dirty pte and marking the folio dirty
2977 		 * at this point.  We do this by having them hold the
2978 		 * page lock while dirtying the folio, and folios are
2979 		 * always locked coming in here, so we get the desired
2980 		 * exclusion.
2981 		 */
2982 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2983 		if (folio_test_clear_dirty(folio)) {
2984 			long nr = folio_nr_pages(folio);
2985 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2986 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2987 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2988 			ret = true;
2989 		}
2990 		unlocked_inode_to_wb_end(inode, &cookie);
2991 		return ret;
2992 	}
2993 	return folio_test_clear_dirty(folio);
2994 }
2995 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2996 
2997 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2998 {
2999 	atomic_inc(&wb->writeback_inodes);
3000 }
3001 
3002 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3003 {
3004 	unsigned long flags;
3005 	atomic_dec(&wb->writeback_inodes);
3006 	/*
3007 	 * Make sure estimate of writeback throughput gets updated after
3008 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3009 	 * (which is the interval other bandwidth updates use for batching) so
3010 	 * that if multiple inodes end writeback at a similar time, they get
3011 	 * batched into one bandwidth update.
3012 	 */
3013 	spin_lock_irqsave(&wb->work_lock, flags);
3014 	if (test_bit(WB_registered, &wb->state))
3015 		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3016 	spin_unlock_irqrestore(&wb->work_lock, flags);
3017 }
3018 
3019 bool __folio_end_writeback(struct folio *folio)
3020 {
3021 	long nr = folio_nr_pages(folio);
3022 	struct address_space *mapping = folio_mapping(folio);
3023 	bool ret;
3024 
3025 	folio_memcg_lock(folio);
3026 	if (mapping && mapping_use_writeback_tags(mapping)) {
3027 		struct inode *inode = mapping->host;
3028 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3029 		unsigned long flags;
3030 
3031 		xa_lock_irqsave(&mapping->i_pages, flags);
3032 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3033 		__xa_clear_mark(&mapping->i_pages, folio_index(folio),
3034 					PAGECACHE_TAG_WRITEBACK);
3035 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3036 			struct bdi_writeback *wb = inode_to_wb(inode);
3037 
3038 			wb_stat_mod(wb, WB_WRITEBACK, -nr);
3039 			__wb_writeout_add(wb, nr);
3040 			if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3041 				wb_inode_writeback_end(wb);
3042 		}
3043 
3044 		if (mapping->host && !mapping_tagged(mapping,
3045 						     PAGECACHE_TAG_WRITEBACK))
3046 			sb_clear_inode_writeback(mapping->host);
3047 
3048 		xa_unlock_irqrestore(&mapping->i_pages, flags);
3049 	} else {
3050 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3051 	}
3052 
3053 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3054 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3055 	node_stat_mod_folio(folio, NR_WRITTEN, nr);
3056 	folio_memcg_unlock(folio);
3057 
3058 	return ret;
3059 }
3060 
3061 void __folio_start_writeback(struct folio *folio, bool keep_write)
3062 {
3063 	long nr = folio_nr_pages(folio);
3064 	struct address_space *mapping = folio_mapping(folio);
3065 	int access_ret;
3066 
3067 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3068 
3069 	folio_memcg_lock(folio);
3070 	if (mapping && mapping_use_writeback_tags(mapping)) {
3071 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3072 		struct inode *inode = mapping->host;
3073 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3074 		unsigned long flags;
3075 		bool on_wblist;
3076 
3077 		xas_lock_irqsave(&xas, flags);
3078 		xas_load(&xas);
3079 		folio_test_set_writeback(folio);
3080 
3081 		on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3082 
3083 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3084 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3085 			struct bdi_writeback *wb = inode_to_wb(inode);
3086 
3087 			wb_stat_mod(wb, WB_WRITEBACK, nr);
3088 			if (!on_wblist)
3089 				wb_inode_writeback_start(wb);
3090 		}
3091 
3092 		/*
3093 		 * We can come through here when swapping anonymous
3094 		 * folios, so we don't necessarily have an inode to
3095 		 * track for sync.
3096 		 */
3097 		if (mapping->host && !on_wblist)
3098 			sb_mark_inode_writeback(mapping->host);
3099 		if (!folio_test_dirty(folio))
3100 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3101 		if (!keep_write)
3102 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3103 		xas_unlock_irqrestore(&xas, flags);
3104 	} else {
3105 		folio_test_set_writeback(folio);
3106 	}
3107 
3108 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3109 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3110 	folio_memcg_unlock(folio);
3111 
3112 	access_ret = arch_make_folio_accessible(folio);
3113 	/*
3114 	 * If writeback has been triggered on a page that cannot be made
3115 	 * accessible, it is too late to recover here.
3116 	 */
3117 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3118 }
3119 EXPORT_SYMBOL(__folio_start_writeback);
3120 
3121 /**
3122  * folio_wait_writeback - Wait for a folio to finish writeback.
3123  * @folio: The folio to wait for.
3124  *
3125  * If the folio is currently being written back to storage, wait for the
3126  * I/O to complete.
3127  *
3128  * Context: Sleeps.  Must be called in process context and with
3129  * no spinlocks held.  Caller should hold a reference on the folio.
3130  * If the folio is not locked, writeback may start again after writeback
3131  * has finished.
3132  */
3133 void folio_wait_writeback(struct folio *folio)
3134 {
3135 	while (folio_test_writeback(folio)) {
3136 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3137 		folio_wait_bit(folio, PG_writeback);
3138 	}
3139 }
3140 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3141 
3142 /**
3143  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3144  * @folio: The folio to wait for.
3145  *
3146  * If the folio is currently being written back to storage, wait for the
3147  * I/O to complete or a fatal signal to arrive.
3148  *
3149  * Context: Sleeps.  Must be called in process context and with
3150  * no spinlocks held.  Caller should hold a reference on the folio.
3151  * If the folio is not locked, writeback may start again after writeback
3152  * has finished.
3153  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3154  */
3155 int folio_wait_writeback_killable(struct folio *folio)
3156 {
3157 	while (folio_test_writeback(folio)) {
3158 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3159 		if (folio_wait_bit_killable(folio, PG_writeback))
3160 			return -EINTR;
3161 	}
3162 
3163 	return 0;
3164 }
3165 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3166 
3167 /**
3168  * folio_wait_stable() - wait for writeback to finish, if necessary.
3169  * @folio: The folio to wait on.
3170  *
3171  * This function determines if the given folio is related to a backing
3172  * device that requires folio contents to be held stable during writeback.
3173  * If so, then it will wait for any pending writeback to complete.
3174  *
3175  * Context: Sleeps.  Must be called in process context and with
3176  * no spinlocks held.  Caller should hold a reference on the folio.
3177  * If the folio is not locked, writeback may start again after writeback
3178  * has finished.
3179  */
3180 void folio_wait_stable(struct folio *folio)
3181 {
3182 	if (mapping_stable_writes(folio_mapping(folio)))
3183 		folio_wait_writeback(folio);
3184 }
3185 EXPORT_SYMBOL_GPL(folio_wait_stable);
3186