1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 }; 143 144 /* 145 * Length of period for aging writeout fractions of bdis. This is an 146 * arbitrarily chosen number. The longer the period, the slower fractions will 147 * reflect changes in current writeout rate. 148 */ 149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 150 151 #ifdef CONFIG_CGROUP_WRITEBACK 152 153 #define GDTC_INIT(__wb) .wb = (__wb), \ 154 .dom = &global_wb_domain, \ 155 .wb_completions = &(__wb)->completions 156 157 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 158 159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 160 .dom = mem_cgroup_wb_domain(__wb), \ 161 .wb_completions = &(__wb)->memcg_completions, \ 162 .gdtc = __gdtc 163 164 static bool mdtc_valid(struct dirty_throttle_control *dtc) 165 { 166 return dtc->dom; 167 } 168 169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 175 { 176 return mdtc->gdtc; 177 } 178 179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 180 { 181 return &wb->memcg_completions; 182 } 183 184 static void wb_min_max_ratio(struct bdi_writeback *wb, 185 unsigned long *minp, unsigned long *maxp) 186 { 187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 189 unsigned long long min = wb->bdi->min_ratio; 190 unsigned long long max = wb->bdi->max_ratio; 191 192 /* 193 * @wb may already be clean by the time control reaches here and 194 * the total may not include its bw. 195 */ 196 if (this_bw < tot_bw) { 197 if (min) { 198 min *= this_bw; 199 min = div64_ul(min, tot_bw); 200 } 201 if (max < 100 * BDI_RATIO_SCALE) { 202 max *= this_bw; 203 max = div64_ul(max, tot_bw); 204 } 205 } 206 207 *minp = min; 208 *maxp = max; 209 } 210 211 #else /* CONFIG_CGROUP_WRITEBACK */ 212 213 #define GDTC_INIT(__wb) .wb = (__wb), \ 214 .wb_completions = &(__wb)->completions 215 #define GDTC_INIT_NO_WB 216 #define MDTC_INIT(__wb, __gdtc) 217 218 static bool mdtc_valid(struct dirty_throttle_control *dtc) 219 { 220 return false; 221 } 222 223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 224 { 225 return &global_wb_domain; 226 } 227 228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 229 { 230 return NULL; 231 } 232 233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 234 { 235 return NULL; 236 } 237 238 static void wb_min_max_ratio(struct bdi_writeback *wb, 239 unsigned long *minp, unsigned long *maxp) 240 { 241 *minp = wb->bdi->min_ratio; 242 *maxp = wb->bdi->max_ratio; 243 } 244 245 #endif /* CONFIG_CGROUP_WRITEBACK */ 246 247 /* 248 * In a memory zone, there is a certain amount of pages we consider 249 * available for the page cache, which is essentially the number of 250 * free and reclaimable pages, minus some zone reserves to protect 251 * lowmem and the ability to uphold the zone's watermarks without 252 * requiring writeback. 253 * 254 * This number of dirtyable pages is the base value of which the 255 * user-configurable dirty ratio is the effective number of pages that 256 * are allowed to be actually dirtied. Per individual zone, or 257 * globally by using the sum of dirtyable pages over all zones. 258 * 259 * Because the user is allowed to specify the dirty limit globally as 260 * absolute number of bytes, calculating the per-zone dirty limit can 261 * require translating the configured limit into a percentage of 262 * global dirtyable memory first. 263 */ 264 265 /** 266 * node_dirtyable_memory - number of dirtyable pages in a node 267 * @pgdat: the node 268 * 269 * Return: the node's number of pages potentially available for dirty 270 * page cache. This is the base value for the per-node dirty limits. 271 */ 272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 273 { 274 unsigned long nr_pages = 0; 275 int z; 276 277 for (z = 0; z < MAX_NR_ZONES; z++) { 278 struct zone *zone = pgdat->node_zones + z; 279 280 if (!populated_zone(zone)) 281 continue; 282 283 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 284 } 285 286 /* 287 * Pages reserved for the kernel should not be considered 288 * dirtyable, to prevent a situation where reclaim has to 289 * clean pages in order to balance the zones. 290 */ 291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 292 293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 295 296 return nr_pages; 297 } 298 299 static unsigned long highmem_dirtyable_memory(unsigned long total) 300 { 301 #ifdef CONFIG_HIGHMEM 302 int node; 303 unsigned long x = 0; 304 int i; 305 306 for_each_node_state(node, N_HIGH_MEMORY) { 307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 308 struct zone *z; 309 unsigned long nr_pages; 310 311 if (!is_highmem_idx(i)) 312 continue; 313 314 z = &NODE_DATA(node)->node_zones[i]; 315 if (!populated_zone(z)) 316 continue; 317 318 nr_pages = zone_page_state(z, NR_FREE_PAGES); 319 /* watch for underflows */ 320 nr_pages -= min(nr_pages, high_wmark_pages(z)); 321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 323 x += nr_pages; 324 } 325 } 326 327 /* 328 * Make sure that the number of highmem pages is never larger 329 * than the number of the total dirtyable memory. This can only 330 * occur in very strange VM situations but we want to make sure 331 * that this does not occur. 332 */ 333 return min(x, total); 334 #else 335 return 0; 336 #endif 337 } 338 339 /** 340 * global_dirtyable_memory - number of globally dirtyable pages 341 * 342 * Return: the global number of pages potentially available for dirty 343 * page cache. This is the base value for the global dirty limits. 344 */ 345 static unsigned long global_dirtyable_memory(void) 346 { 347 unsigned long x; 348 349 x = global_zone_page_state(NR_FREE_PAGES); 350 /* 351 * Pages reserved for the kernel should not be considered 352 * dirtyable, to prevent a situation where reclaim has to 353 * clean pages in order to balance the zones. 354 */ 355 x -= min(x, totalreserve_pages); 356 357 x += global_node_page_state(NR_INACTIVE_FILE); 358 x += global_node_page_state(NR_ACTIVE_FILE); 359 360 if (!vm_highmem_is_dirtyable) 361 x -= highmem_dirtyable_memory(x); 362 363 return x + 1; /* Ensure that we never return 0 */ 364 } 365 366 /** 367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 368 * @dtc: dirty_throttle_control of interest 369 * 370 * Calculate @dtc->thresh and ->bg_thresh considering 371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 372 * must ensure that @dtc->avail is set before calling this function. The 373 * dirty limits will be lifted by 1/4 for real-time tasks. 374 */ 375 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 376 { 377 const unsigned long available_memory = dtc->avail; 378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 379 unsigned long bytes = vm_dirty_bytes; 380 unsigned long bg_bytes = dirty_background_bytes; 381 /* convert ratios to per-PAGE_SIZE for higher precision */ 382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 384 unsigned long thresh; 385 unsigned long bg_thresh; 386 struct task_struct *tsk; 387 388 /* gdtc is !NULL iff @dtc is for memcg domain */ 389 if (gdtc) { 390 unsigned long global_avail = gdtc->avail; 391 392 /* 393 * The byte settings can't be applied directly to memcg 394 * domains. Convert them to ratios by scaling against 395 * globally available memory. As the ratios are in 396 * per-PAGE_SIZE, they can be obtained by dividing bytes by 397 * number of pages. 398 */ 399 if (bytes) 400 ratio = min(DIV_ROUND_UP(bytes, global_avail), 401 PAGE_SIZE); 402 if (bg_bytes) 403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 404 PAGE_SIZE); 405 bytes = bg_bytes = 0; 406 } 407 408 if (bytes) 409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 410 else 411 thresh = (ratio * available_memory) / PAGE_SIZE; 412 413 if (bg_bytes) 414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 415 else 416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 417 418 if (bg_thresh >= thresh) 419 bg_thresh = thresh / 2; 420 tsk = current; 421 if (rt_task(tsk)) { 422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 424 } 425 dtc->thresh = thresh; 426 dtc->bg_thresh = bg_thresh; 427 428 /* we should eventually report the domain in the TP */ 429 if (!gdtc) 430 trace_global_dirty_state(bg_thresh, thresh); 431 } 432 433 /** 434 * global_dirty_limits - background-writeback and dirty-throttling thresholds 435 * @pbackground: out parameter for bg_thresh 436 * @pdirty: out parameter for thresh 437 * 438 * Calculate bg_thresh and thresh for global_wb_domain. See 439 * domain_dirty_limits() for details. 440 */ 441 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 442 { 443 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 444 445 gdtc.avail = global_dirtyable_memory(); 446 domain_dirty_limits(&gdtc); 447 448 *pbackground = gdtc.bg_thresh; 449 *pdirty = gdtc.thresh; 450 } 451 452 /** 453 * node_dirty_limit - maximum number of dirty pages allowed in a node 454 * @pgdat: the node 455 * 456 * Return: the maximum number of dirty pages allowed in a node, based 457 * on the node's dirtyable memory. 458 */ 459 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 460 { 461 unsigned long node_memory = node_dirtyable_memory(pgdat); 462 struct task_struct *tsk = current; 463 unsigned long dirty; 464 465 if (vm_dirty_bytes) 466 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 467 node_memory / global_dirtyable_memory(); 468 else 469 dirty = vm_dirty_ratio * node_memory / 100; 470 471 if (rt_task(tsk)) 472 dirty += dirty / 4; 473 474 return dirty; 475 } 476 477 /** 478 * node_dirty_ok - tells whether a node is within its dirty limits 479 * @pgdat: the node to check 480 * 481 * Return: %true when the dirty pages in @pgdat are within the node's 482 * dirty limit, %false if the limit is exceeded. 483 */ 484 bool node_dirty_ok(struct pglist_data *pgdat) 485 { 486 unsigned long limit = node_dirty_limit(pgdat); 487 unsigned long nr_pages = 0; 488 489 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 490 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 491 492 return nr_pages <= limit; 493 } 494 495 #ifdef CONFIG_SYSCTL 496 static int dirty_background_ratio_handler(struct ctl_table *table, int write, 497 void *buffer, size_t *lenp, loff_t *ppos) 498 { 499 int ret; 500 501 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 502 if (ret == 0 && write) 503 dirty_background_bytes = 0; 504 return ret; 505 } 506 507 static int dirty_background_bytes_handler(struct ctl_table *table, int write, 508 void *buffer, size_t *lenp, loff_t *ppos) 509 { 510 int ret; 511 512 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 513 if (ret == 0 && write) 514 dirty_background_ratio = 0; 515 return ret; 516 } 517 518 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 519 size_t *lenp, loff_t *ppos) 520 { 521 int old_ratio = vm_dirty_ratio; 522 int ret; 523 524 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 525 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 526 writeback_set_ratelimit(); 527 vm_dirty_bytes = 0; 528 } 529 return ret; 530 } 531 532 static int dirty_bytes_handler(struct ctl_table *table, int write, 533 void *buffer, size_t *lenp, loff_t *ppos) 534 { 535 unsigned long old_bytes = vm_dirty_bytes; 536 int ret; 537 538 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 539 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 540 writeback_set_ratelimit(); 541 vm_dirty_ratio = 0; 542 } 543 return ret; 544 } 545 #endif 546 547 static unsigned long wp_next_time(unsigned long cur_time) 548 { 549 cur_time += VM_COMPLETIONS_PERIOD_LEN; 550 /* 0 has a special meaning... */ 551 if (!cur_time) 552 return 1; 553 return cur_time; 554 } 555 556 static void wb_domain_writeout_add(struct wb_domain *dom, 557 struct fprop_local_percpu *completions, 558 unsigned int max_prop_frac, long nr) 559 { 560 __fprop_add_percpu_max(&dom->completions, completions, 561 max_prop_frac, nr); 562 /* First event after period switching was turned off? */ 563 if (unlikely(!dom->period_time)) { 564 /* 565 * We can race with other __bdi_writeout_inc calls here but 566 * it does not cause any harm since the resulting time when 567 * timer will fire and what is in writeout_period_time will be 568 * roughly the same. 569 */ 570 dom->period_time = wp_next_time(jiffies); 571 mod_timer(&dom->period_timer, dom->period_time); 572 } 573 } 574 575 /* 576 * Increment @wb's writeout completion count and the global writeout 577 * completion count. Called from __folio_end_writeback(). 578 */ 579 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 580 { 581 struct wb_domain *cgdom; 582 583 wb_stat_mod(wb, WB_WRITTEN, nr); 584 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 585 wb->bdi->max_prop_frac, nr); 586 587 cgdom = mem_cgroup_wb_domain(wb); 588 if (cgdom) 589 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 590 wb->bdi->max_prop_frac, nr); 591 } 592 593 void wb_writeout_inc(struct bdi_writeback *wb) 594 { 595 unsigned long flags; 596 597 local_irq_save(flags); 598 __wb_writeout_add(wb, 1); 599 local_irq_restore(flags); 600 } 601 EXPORT_SYMBOL_GPL(wb_writeout_inc); 602 603 /* 604 * On idle system, we can be called long after we scheduled because we use 605 * deferred timers so count with missed periods. 606 */ 607 static void writeout_period(struct timer_list *t) 608 { 609 struct wb_domain *dom = from_timer(dom, t, period_timer); 610 int miss_periods = (jiffies - dom->period_time) / 611 VM_COMPLETIONS_PERIOD_LEN; 612 613 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 614 dom->period_time = wp_next_time(dom->period_time + 615 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 616 mod_timer(&dom->period_timer, dom->period_time); 617 } else { 618 /* 619 * Aging has zeroed all fractions. Stop wasting CPU on period 620 * updates. 621 */ 622 dom->period_time = 0; 623 } 624 } 625 626 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 627 { 628 memset(dom, 0, sizeof(*dom)); 629 630 spin_lock_init(&dom->lock); 631 632 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 633 634 dom->dirty_limit_tstamp = jiffies; 635 636 return fprop_global_init(&dom->completions, gfp); 637 } 638 639 #ifdef CONFIG_CGROUP_WRITEBACK 640 void wb_domain_exit(struct wb_domain *dom) 641 { 642 del_timer_sync(&dom->period_timer); 643 fprop_global_destroy(&dom->completions); 644 } 645 #endif 646 647 /* 648 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 649 * registered backing devices, which, for obvious reasons, can not 650 * exceed 100%. 651 */ 652 static unsigned int bdi_min_ratio; 653 654 static int bdi_check_pages_limit(unsigned long pages) 655 { 656 unsigned long max_dirty_pages = global_dirtyable_memory(); 657 658 if (pages > max_dirty_pages) 659 return -EINVAL; 660 661 return 0; 662 } 663 664 static unsigned long bdi_ratio_from_pages(unsigned long pages) 665 { 666 unsigned long background_thresh; 667 unsigned long dirty_thresh; 668 unsigned long ratio; 669 670 global_dirty_limits(&background_thresh, &dirty_thresh); 671 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 672 673 return ratio; 674 } 675 676 static u64 bdi_get_bytes(unsigned int ratio) 677 { 678 unsigned long background_thresh; 679 unsigned long dirty_thresh; 680 u64 bytes; 681 682 global_dirty_limits(&background_thresh, &dirty_thresh); 683 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 684 685 return bytes; 686 } 687 688 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 689 { 690 unsigned int delta; 691 int ret = 0; 692 693 if (min_ratio > 100 * BDI_RATIO_SCALE) 694 return -EINVAL; 695 696 spin_lock_bh(&bdi_lock); 697 if (min_ratio > bdi->max_ratio) { 698 ret = -EINVAL; 699 } else { 700 if (min_ratio < bdi->min_ratio) { 701 delta = bdi->min_ratio - min_ratio; 702 bdi_min_ratio -= delta; 703 bdi->min_ratio = min_ratio; 704 } else { 705 delta = min_ratio - bdi->min_ratio; 706 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 707 bdi_min_ratio += delta; 708 bdi->min_ratio = min_ratio; 709 } else { 710 ret = -EINVAL; 711 } 712 } 713 } 714 spin_unlock_bh(&bdi_lock); 715 716 return ret; 717 } 718 719 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 720 { 721 int ret = 0; 722 723 if (max_ratio > 100 * BDI_RATIO_SCALE) 724 return -EINVAL; 725 726 spin_lock_bh(&bdi_lock); 727 if (bdi->min_ratio > max_ratio) { 728 ret = -EINVAL; 729 } else { 730 bdi->max_ratio = max_ratio; 731 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 732 (100 * BDI_RATIO_SCALE); 733 } 734 spin_unlock_bh(&bdi_lock); 735 736 return ret; 737 } 738 739 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 740 { 741 return __bdi_set_min_ratio(bdi, min_ratio); 742 } 743 744 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 745 { 746 return __bdi_set_max_ratio(bdi, max_ratio); 747 } 748 749 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 750 { 751 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 752 } 753 754 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 755 { 756 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 757 } 758 EXPORT_SYMBOL(bdi_set_max_ratio); 759 760 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 761 { 762 return bdi_get_bytes(bdi->min_ratio); 763 } 764 765 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 766 { 767 int ret; 768 unsigned long pages = min_bytes >> PAGE_SHIFT; 769 unsigned long min_ratio; 770 771 ret = bdi_check_pages_limit(pages); 772 if (ret) 773 return ret; 774 775 min_ratio = bdi_ratio_from_pages(pages); 776 return __bdi_set_min_ratio(bdi, min_ratio); 777 } 778 779 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 780 { 781 return bdi_get_bytes(bdi->max_ratio); 782 } 783 784 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 785 { 786 int ret; 787 unsigned long pages = max_bytes >> PAGE_SHIFT; 788 unsigned long max_ratio; 789 790 ret = bdi_check_pages_limit(pages); 791 if (ret) 792 return ret; 793 794 max_ratio = bdi_ratio_from_pages(pages); 795 return __bdi_set_max_ratio(bdi, max_ratio); 796 } 797 798 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 799 { 800 if (strict_limit > 1) 801 return -EINVAL; 802 803 spin_lock_bh(&bdi_lock); 804 if (strict_limit) 805 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 806 else 807 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 808 spin_unlock_bh(&bdi_lock); 809 810 return 0; 811 } 812 813 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 814 unsigned long bg_thresh) 815 { 816 return (thresh + bg_thresh) / 2; 817 } 818 819 static unsigned long hard_dirty_limit(struct wb_domain *dom, 820 unsigned long thresh) 821 { 822 return max(thresh, dom->dirty_limit); 823 } 824 825 /* 826 * Memory which can be further allocated to a memcg domain is capped by 827 * system-wide clean memory excluding the amount being used in the domain. 828 */ 829 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 830 unsigned long filepages, unsigned long headroom) 831 { 832 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 833 unsigned long clean = filepages - min(filepages, mdtc->dirty); 834 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 835 unsigned long other_clean = global_clean - min(global_clean, clean); 836 837 mdtc->avail = filepages + min(headroom, other_clean); 838 } 839 840 /** 841 * __wb_calc_thresh - @wb's share of dirty throttling threshold 842 * @dtc: dirty_throttle_context of interest 843 * 844 * Note that balance_dirty_pages() will only seriously take it as a hard limit 845 * when sleeping max_pause per page is not enough to keep the dirty pages under 846 * control. For example, when the device is completely stalled due to some error 847 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 848 * In the other normal situations, it acts more gently by throttling the tasks 849 * more (rather than completely block them) when the wb dirty pages go high. 850 * 851 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 852 * - starving fast devices 853 * - piling up dirty pages (that will take long time to sync) on slow devices 854 * 855 * The wb's share of dirty limit will be adapting to its throughput and 856 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 857 * 858 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 859 * dirty balancing includes all PG_dirty and PG_writeback pages. 860 */ 861 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 862 { 863 struct wb_domain *dom = dtc_dom(dtc); 864 unsigned long thresh = dtc->thresh; 865 u64 wb_thresh; 866 unsigned long numerator, denominator; 867 unsigned long wb_min_ratio, wb_max_ratio; 868 869 /* 870 * Calculate this BDI's share of the thresh ratio. 871 */ 872 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 873 &numerator, &denominator); 874 875 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 876 wb_thresh *= numerator; 877 wb_thresh = div64_ul(wb_thresh, denominator); 878 879 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 880 881 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 882 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE)) 883 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 884 885 return wb_thresh; 886 } 887 888 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 889 { 890 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 891 .thresh = thresh }; 892 return __wb_calc_thresh(&gdtc); 893 } 894 895 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 896 { 897 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 898 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 899 unsigned long filepages = 0, headroom = 0, writeback = 0; 900 901 gdtc.avail = global_dirtyable_memory(); 902 gdtc.dirty = global_node_page_state(NR_FILE_DIRTY) + 903 global_node_page_state(NR_WRITEBACK); 904 905 mem_cgroup_wb_stats(wb, &filepages, &headroom, 906 &mdtc.dirty, &writeback); 907 mdtc.dirty += writeback; 908 mdtc_calc_avail(&mdtc, filepages, headroom); 909 domain_dirty_limits(&mdtc); 910 911 return __wb_calc_thresh(&mdtc); 912 } 913 914 /* 915 * setpoint - dirty 3 916 * f(dirty) := 1.0 + (----------------) 917 * limit - setpoint 918 * 919 * it's a 3rd order polynomial that subjects to 920 * 921 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 922 * (2) f(setpoint) = 1.0 => the balance point 923 * (3) f(limit) = 0 => the hard limit 924 * (4) df/dx <= 0 => negative feedback control 925 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 926 * => fast response on large errors; small oscillation near setpoint 927 */ 928 static long long pos_ratio_polynom(unsigned long setpoint, 929 unsigned long dirty, 930 unsigned long limit) 931 { 932 long long pos_ratio; 933 long x; 934 935 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 936 (limit - setpoint) | 1); 937 pos_ratio = x; 938 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 939 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 940 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 941 942 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 943 } 944 945 /* 946 * Dirty position control. 947 * 948 * (o) global/bdi setpoints 949 * 950 * We want the dirty pages be balanced around the global/wb setpoints. 951 * When the number of dirty pages is higher/lower than the setpoint, the 952 * dirty position control ratio (and hence task dirty ratelimit) will be 953 * decreased/increased to bring the dirty pages back to the setpoint. 954 * 955 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 956 * 957 * if (dirty < setpoint) scale up pos_ratio 958 * if (dirty > setpoint) scale down pos_ratio 959 * 960 * if (wb_dirty < wb_setpoint) scale up pos_ratio 961 * if (wb_dirty > wb_setpoint) scale down pos_ratio 962 * 963 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 964 * 965 * (o) global control line 966 * 967 * ^ pos_ratio 968 * | 969 * | |<===== global dirty control scope ======>| 970 * 2.0 * * * * * * * 971 * | .* 972 * | . * 973 * | . * 974 * | . * 975 * | . * 976 * | . * 977 * 1.0 ................................* 978 * | . . * 979 * | . . * 980 * | . . * 981 * | . . * 982 * | . . * 983 * 0 +------------.------------------.----------------------*-------------> 984 * freerun^ setpoint^ limit^ dirty pages 985 * 986 * (o) wb control line 987 * 988 * ^ pos_ratio 989 * | 990 * | * 991 * | * 992 * | * 993 * | * 994 * | * |<=========== span ============>| 995 * 1.0 .......................* 996 * | . * 997 * | . * 998 * | . * 999 * | . * 1000 * | . * 1001 * | . * 1002 * | . * 1003 * | . * 1004 * | . * 1005 * | . * 1006 * | . * 1007 * 1/4 ...............................................* * * * * * * * * * * * 1008 * | . . 1009 * | . . 1010 * | . . 1011 * 0 +----------------------.-------------------------------.-------------> 1012 * wb_setpoint^ x_intercept^ 1013 * 1014 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1015 * be smoothly throttled down to normal if it starts high in situations like 1016 * - start writing to a slow SD card and a fast disk at the same time. The SD 1017 * card's wb_dirty may rush to many times higher than wb_setpoint. 1018 * - the wb dirty thresh drops quickly due to change of JBOD workload 1019 */ 1020 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1021 { 1022 struct bdi_writeback *wb = dtc->wb; 1023 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1024 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1025 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1026 unsigned long wb_thresh = dtc->wb_thresh; 1027 unsigned long x_intercept; 1028 unsigned long setpoint; /* dirty pages' target balance point */ 1029 unsigned long wb_setpoint; 1030 unsigned long span; 1031 long long pos_ratio; /* for scaling up/down the rate limit */ 1032 long x; 1033 1034 dtc->pos_ratio = 0; 1035 1036 if (unlikely(dtc->dirty >= limit)) 1037 return; 1038 1039 /* 1040 * global setpoint 1041 * 1042 * See comment for pos_ratio_polynom(). 1043 */ 1044 setpoint = (freerun + limit) / 2; 1045 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1046 1047 /* 1048 * The strictlimit feature is a tool preventing mistrusted filesystems 1049 * from growing a large number of dirty pages before throttling. For 1050 * such filesystems balance_dirty_pages always checks wb counters 1051 * against wb limits. Even if global "nr_dirty" is under "freerun". 1052 * This is especially important for fuse which sets bdi->max_ratio to 1053 * 1% by default. Without strictlimit feature, fuse writeback may 1054 * consume arbitrary amount of RAM because it is accounted in 1055 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1056 * 1057 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1058 * two values: wb_dirty and wb_thresh. Let's consider an example: 1059 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1060 * limits are set by default to 10% and 20% (background and throttle). 1061 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1062 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1063 * about ~6K pages (as the average of background and throttle wb 1064 * limits). The 3rd order polynomial will provide positive feedback if 1065 * wb_dirty is under wb_setpoint and vice versa. 1066 * 1067 * Note, that we cannot use global counters in these calculations 1068 * because we want to throttle process writing to a strictlimit wb 1069 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1070 * in the example above). 1071 */ 1072 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1073 long long wb_pos_ratio; 1074 1075 if (dtc->wb_dirty < 8) { 1076 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 1077 2 << RATELIMIT_CALC_SHIFT); 1078 return; 1079 } 1080 1081 if (dtc->wb_dirty >= wb_thresh) 1082 return; 1083 1084 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1085 dtc->wb_bg_thresh); 1086 1087 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1088 return; 1089 1090 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1091 wb_thresh); 1092 1093 /* 1094 * Typically, for strictlimit case, wb_setpoint << setpoint 1095 * and pos_ratio >> wb_pos_ratio. In the other words global 1096 * state ("dirty") is not limiting factor and we have to 1097 * make decision based on wb counters. But there is an 1098 * important case when global pos_ratio should get precedence: 1099 * global limits are exceeded (e.g. due to activities on other 1100 * wb's) while given strictlimit wb is below limit. 1101 * 1102 * "pos_ratio * wb_pos_ratio" would work for the case above, 1103 * but it would look too non-natural for the case of all 1104 * activity in the system coming from a single strictlimit wb 1105 * with bdi->max_ratio == 100%. 1106 * 1107 * Note that min() below somewhat changes the dynamics of the 1108 * control system. Normally, pos_ratio value can be well over 3 1109 * (when globally we are at freerun and wb is well below wb 1110 * setpoint). Now the maximum pos_ratio in the same situation 1111 * is 2. We might want to tweak this if we observe the control 1112 * system is too slow to adapt. 1113 */ 1114 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1115 return; 1116 } 1117 1118 /* 1119 * We have computed basic pos_ratio above based on global situation. If 1120 * the wb is over/under its share of dirty pages, we want to scale 1121 * pos_ratio further down/up. That is done by the following mechanism. 1122 */ 1123 1124 /* 1125 * wb setpoint 1126 * 1127 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1128 * 1129 * x_intercept - wb_dirty 1130 * := -------------------------- 1131 * x_intercept - wb_setpoint 1132 * 1133 * The main wb control line is a linear function that subjects to 1134 * 1135 * (1) f(wb_setpoint) = 1.0 1136 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1137 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1138 * 1139 * For single wb case, the dirty pages are observed to fluctuate 1140 * regularly within range 1141 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1142 * for various filesystems, where (2) can yield in a reasonable 12.5% 1143 * fluctuation range for pos_ratio. 1144 * 1145 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1146 * own size, so move the slope over accordingly and choose a slope that 1147 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1148 */ 1149 if (unlikely(wb_thresh > dtc->thresh)) 1150 wb_thresh = dtc->thresh; 1151 /* 1152 * It's very possible that wb_thresh is close to 0 not because the 1153 * device is slow, but that it has remained inactive for long time. 1154 * Honour such devices a reasonable good (hopefully IO efficient) 1155 * threshold, so that the occasional writes won't be blocked and active 1156 * writes can rampup the threshold quickly. 1157 */ 1158 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1159 /* 1160 * scale global setpoint to wb's: 1161 * wb_setpoint = setpoint * wb_thresh / thresh 1162 */ 1163 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1164 wb_setpoint = setpoint * (u64)x >> 16; 1165 /* 1166 * Use span=(8*write_bw) in single wb case as indicated by 1167 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1168 * 1169 * wb_thresh thresh - wb_thresh 1170 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1171 * thresh thresh 1172 */ 1173 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1174 x_intercept = wb_setpoint + span; 1175 1176 if (dtc->wb_dirty < x_intercept - span / 4) { 1177 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1178 (x_intercept - wb_setpoint) | 1); 1179 } else 1180 pos_ratio /= 4; 1181 1182 /* 1183 * wb reserve area, safeguard against dirty pool underrun and disk idle 1184 * It may push the desired control point of global dirty pages higher 1185 * than setpoint. 1186 */ 1187 x_intercept = wb_thresh / 2; 1188 if (dtc->wb_dirty < x_intercept) { 1189 if (dtc->wb_dirty > x_intercept / 8) 1190 pos_ratio = div_u64(pos_ratio * x_intercept, 1191 dtc->wb_dirty); 1192 else 1193 pos_ratio *= 8; 1194 } 1195 1196 dtc->pos_ratio = pos_ratio; 1197 } 1198 1199 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1200 unsigned long elapsed, 1201 unsigned long written) 1202 { 1203 const unsigned long period = roundup_pow_of_two(3 * HZ); 1204 unsigned long avg = wb->avg_write_bandwidth; 1205 unsigned long old = wb->write_bandwidth; 1206 u64 bw; 1207 1208 /* 1209 * bw = written * HZ / elapsed 1210 * 1211 * bw * elapsed + write_bandwidth * (period - elapsed) 1212 * write_bandwidth = --------------------------------------------------- 1213 * period 1214 * 1215 * @written may have decreased due to folio_redirty_for_writepage(). 1216 * Avoid underflowing @bw calculation. 1217 */ 1218 bw = written - min(written, wb->written_stamp); 1219 bw *= HZ; 1220 if (unlikely(elapsed > period)) { 1221 bw = div64_ul(bw, elapsed); 1222 avg = bw; 1223 goto out; 1224 } 1225 bw += (u64)wb->write_bandwidth * (period - elapsed); 1226 bw >>= ilog2(period); 1227 1228 /* 1229 * one more level of smoothing, for filtering out sudden spikes 1230 */ 1231 if (avg > old && old >= (unsigned long)bw) 1232 avg -= (avg - old) >> 3; 1233 1234 if (avg < old && old <= (unsigned long)bw) 1235 avg += (old - avg) >> 3; 1236 1237 out: 1238 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1239 avg = max(avg, 1LU); 1240 if (wb_has_dirty_io(wb)) { 1241 long delta = avg - wb->avg_write_bandwidth; 1242 WARN_ON_ONCE(atomic_long_add_return(delta, 1243 &wb->bdi->tot_write_bandwidth) <= 0); 1244 } 1245 wb->write_bandwidth = bw; 1246 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1247 } 1248 1249 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1250 { 1251 struct wb_domain *dom = dtc_dom(dtc); 1252 unsigned long thresh = dtc->thresh; 1253 unsigned long limit = dom->dirty_limit; 1254 1255 /* 1256 * Follow up in one step. 1257 */ 1258 if (limit < thresh) { 1259 limit = thresh; 1260 goto update; 1261 } 1262 1263 /* 1264 * Follow down slowly. Use the higher one as the target, because thresh 1265 * may drop below dirty. This is exactly the reason to introduce 1266 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1267 */ 1268 thresh = max(thresh, dtc->dirty); 1269 if (limit > thresh) { 1270 limit -= (limit - thresh) >> 5; 1271 goto update; 1272 } 1273 return; 1274 update: 1275 dom->dirty_limit = limit; 1276 } 1277 1278 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1279 unsigned long now) 1280 { 1281 struct wb_domain *dom = dtc_dom(dtc); 1282 1283 /* 1284 * check locklessly first to optimize away locking for the most time 1285 */ 1286 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1287 return; 1288 1289 spin_lock(&dom->lock); 1290 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1291 update_dirty_limit(dtc); 1292 dom->dirty_limit_tstamp = now; 1293 } 1294 spin_unlock(&dom->lock); 1295 } 1296 1297 /* 1298 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1299 * 1300 * Normal wb tasks will be curbed at or below it in long term. 1301 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1302 */ 1303 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1304 unsigned long dirtied, 1305 unsigned long elapsed) 1306 { 1307 struct bdi_writeback *wb = dtc->wb; 1308 unsigned long dirty = dtc->dirty; 1309 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1310 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1311 unsigned long setpoint = (freerun + limit) / 2; 1312 unsigned long write_bw = wb->avg_write_bandwidth; 1313 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1314 unsigned long dirty_rate; 1315 unsigned long task_ratelimit; 1316 unsigned long balanced_dirty_ratelimit; 1317 unsigned long step; 1318 unsigned long x; 1319 unsigned long shift; 1320 1321 /* 1322 * The dirty rate will match the writeout rate in long term, except 1323 * when dirty pages are truncated by userspace or re-dirtied by FS. 1324 */ 1325 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1326 1327 /* 1328 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1329 */ 1330 task_ratelimit = (u64)dirty_ratelimit * 1331 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1332 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1333 1334 /* 1335 * A linear estimation of the "balanced" throttle rate. The theory is, 1336 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1337 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1338 * formula will yield the balanced rate limit (write_bw / N). 1339 * 1340 * Note that the expanded form is not a pure rate feedback: 1341 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1342 * but also takes pos_ratio into account: 1343 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1344 * 1345 * (1) is not realistic because pos_ratio also takes part in balancing 1346 * the dirty rate. Consider the state 1347 * pos_ratio = 0.5 (3) 1348 * rate = 2 * (write_bw / N) (4) 1349 * If (1) is used, it will stuck in that state! Because each dd will 1350 * be throttled at 1351 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1352 * yielding 1353 * dirty_rate = N * task_ratelimit = write_bw (6) 1354 * put (6) into (1) we get 1355 * rate_(i+1) = rate_(i) (7) 1356 * 1357 * So we end up using (2) to always keep 1358 * rate_(i+1) ~= (write_bw / N) (8) 1359 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1360 * pos_ratio is able to drive itself to 1.0, which is not only where 1361 * the dirty count meet the setpoint, but also where the slope of 1362 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1363 */ 1364 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1365 dirty_rate | 1); 1366 /* 1367 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1368 */ 1369 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1370 balanced_dirty_ratelimit = write_bw; 1371 1372 /* 1373 * We could safely do this and return immediately: 1374 * 1375 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1376 * 1377 * However to get a more stable dirty_ratelimit, the below elaborated 1378 * code makes use of task_ratelimit to filter out singular points and 1379 * limit the step size. 1380 * 1381 * The below code essentially only uses the relative value of 1382 * 1383 * task_ratelimit - dirty_ratelimit 1384 * = (pos_ratio - 1) * dirty_ratelimit 1385 * 1386 * which reflects the direction and size of dirty position error. 1387 */ 1388 1389 /* 1390 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1391 * task_ratelimit is on the same side of dirty_ratelimit, too. 1392 * For example, when 1393 * - dirty_ratelimit > balanced_dirty_ratelimit 1394 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1395 * lowering dirty_ratelimit will help meet both the position and rate 1396 * control targets. Otherwise, don't update dirty_ratelimit if it will 1397 * only help meet the rate target. After all, what the users ultimately 1398 * feel and care are stable dirty rate and small position error. 1399 * 1400 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1401 * and filter out the singular points of balanced_dirty_ratelimit. Which 1402 * keeps jumping around randomly and can even leap far away at times 1403 * due to the small 200ms estimation period of dirty_rate (we want to 1404 * keep that period small to reduce time lags). 1405 */ 1406 step = 0; 1407 1408 /* 1409 * For strictlimit case, calculations above were based on wb counters 1410 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1411 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1412 * Hence, to calculate "step" properly, we have to use wb_dirty as 1413 * "dirty" and wb_setpoint as "setpoint". 1414 * 1415 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1416 * it's possible that wb_thresh is close to zero due to inactivity 1417 * of backing device. 1418 */ 1419 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1420 dirty = dtc->wb_dirty; 1421 if (dtc->wb_dirty < 8) 1422 setpoint = dtc->wb_dirty + 1; 1423 else 1424 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1425 } 1426 1427 if (dirty < setpoint) { 1428 x = min3(wb->balanced_dirty_ratelimit, 1429 balanced_dirty_ratelimit, task_ratelimit); 1430 if (dirty_ratelimit < x) 1431 step = x - dirty_ratelimit; 1432 } else { 1433 x = max3(wb->balanced_dirty_ratelimit, 1434 balanced_dirty_ratelimit, task_ratelimit); 1435 if (dirty_ratelimit > x) 1436 step = dirty_ratelimit - x; 1437 } 1438 1439 /* 1440 * Don't pursue 100% rate matching. It's impossible since the balanced 1441 * rate itself is constantly fluctuating. So decrease the track speed 1442 * when it gets close to the target. Helps eliminate pointless tremors. 1443 */ 1444 shift = dirty_ratelimit / (2 * step + 1); 1445 if (shift < BITS_PER_LONG) 1446 step = DIV_ROUND_UP(step >> shift, 8); 1447 else 1448 step = 0; 1449 1450 if (dirty_ratelimit < balanced_dirty_ratelimit) 1451 dirty_ratelimit += step; 1452 else 1453 dirty_ratelimit -= step; 1454 1455 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1456 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1457 1458 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1459 } 1460 1461 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1462 struct dirty_throttle_control *mdtc, 1463 bool update_ratelimit) 1464 { 1465 struct bdi_writeback *wb = gdtc->wb; 1466 unsigned long now = jiffies; 1467 unsigned long elapsed; 1468 unsigned long dirtied; 1469 unsigned long written; 1470 1471 spin_lock(&wb->list_lock); 1472 1473 /* 1474 * Lockless checks for elapsed time are racy and delayed update after 1475 * IO completion doesn't do it at all (to make sure written pages are 1476 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1477 * division errors. 1478 */ 1479 elapsed = max(now - wb->bw_time_stamp, 1UL); 1480 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1481 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1482 1483 if (update_ratelimit) { 1484 domain_update_dirty_limit(gdtc, now); 1485 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1486 1487 /* 1488 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1489 * compiler has no way to figure that out. Help it. 1490 */ 1491 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1492 domain_update_dirty_limit(mdtc, now); 1493 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1494 } 1495 } 1496 wb_update_write_bandwidth(wb, elapsed, written); 1497 1498 wb->dirtied_stamp = dirtied; 1499 wb->written_stamp = written; 1500 WRITE_ONCE(wb->bw_time_stamp, now); 1501 spin_unlock(&wb->list_lock); 1502 } 1503 1504 void wb_update_bandwidth(struct bdi_writeback *wb) 1505 { 1506 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1507 1508 __wb_update_bandwidth(&gdtc, NULL, false); 1509 } 1510 1511 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1512 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1513 1514 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1515 { 1516 unsigned long now = jiffies; 1517 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1518 1519 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1520 !atomic_read(&wb->writeback_inodes)) { 1521 spin_lock(&wb->list_lock); 1522 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1523 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1524 WRITE_ONCE(wb->bw_time_stamp, now); 1525 spin_unlock(&wb->list_lock); 1526 } 1527 } 1528 1529 /* 1530 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1531 * will look to see if it needs to start dirty throttling. 1532 * 1533 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1534 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1535 * (the number of pages we may dirty without exceeding the dirty limits). 1536 */ 1537 static unsigned long dirty_poll_interval(unsigned long dirty, 1538 unsigned long thresh) 1539 { 1540 if (thresh > dirty) 1541 return 1UL << (ilog2(thresh - dirty) >> 1); 1542 1543 return 1; 1544 } 1545 1546 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1547 unsigned long wb_dirty) 1548 { 1549 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1550 unsigned long t; 1551 1552 /* 1553 * Limit pause time for small memory systems. If sleeping for too long 1554 * time, a small pool of dirty/writeback pages may go empty and disk go 1555 * idle. 1556 * 1557 * 8 serves as the safety ratio. 1558 */ 1559 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1560 t++; 1561 1562 return min_t(unsigned long, t, MAX_PAUSE); 1563 } 1564 1565 static long wb_min_pause(struct bdi_writeback *wb, 1566 long max_pause, 1567 unsigned long task_ratelimit, 1568 unsigned long dirty_ratelimit, 1569 int *nr_dirtied_pause) 1570 { 1571 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1572 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1573 long t; /* target pause */ 1574 long pause; /* estimated next pause */ 1575 int pages; /* target nr_dirtied_pause */ 1576 1577 /* target for 10ms pause on 1-dd case */ 1578 t = max(1, HZ / 100); 1579 1580 /* 1581 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1582 * overheads. 1583 * 1584 * (N * 10ms) on 2^N concurrent tasks. 1585 */ 1586 if (hi > lo) 1587 t += (hi - lo) * (10 * HZ) / 1024; 1588 1589 /* 1590 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1591 * on the much more stable dirty_ratelimit. However the next pause time 1592 * will be computed based on task_ratelimit and the two rate limits may 1593 * depart considerably at some time. Especially if task_ratelimit goes 1594 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1595 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1596 * result task_ratelimit won't be executed faithfully, which could 1597 * eventually bring down dirty_ratelimit. 1598 * 1599 * We apply two rules to fix it up: 1600 * 1) try to estimate the next pause time and if necessary, use a lower 1601 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1602 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1603 * 2) limit the target pause time to max_pause/2, so that the normal 1604 * small fluctuations of task_ratelimit won't trigger rule (1) and 1605 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1606 */ 1607 t = min(t, 1 + max_pause / 2); 1608 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1609 1610 /* 1611 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1612 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1613 * When the 16 consecutive reads are often interrupted by some dirty 1614 * throttling pause during the async writes, cfq will go into idles 1615 * (deadline is fine). So push nr_dirtied_pause as high as possible 1616 * until reaches DIRTY_POLL_THRESH=32 pages. 1617 */ 1618 if (pages < DIRTY_POLL_THRESH) { 1619 t = max_pause; 1620 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1621 if (pages > DIRTY_POLL_THRESH) { 1622 pages = DIRTY_POLL_THRESH; 1623 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1624 } 1625 } 1626 1627 pause = HZ * pages / (task_ratelimit + 1); 1628 if (pause > max_pause) { 1629 t = max_pause; 1630 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1631 } 1632 1633 *nr_dirtied_pause = pages; 1634 /* 1635 * The minimal pause time will normally be half the target pause time. 1636 */ 1637 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1638 } 1639 1640 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1641 { 1642 struct bdi_writeback *wb = dtc->wb; 1643 unsigned long wb_reclaimable; 1644 1645 /* 1646 * wb_thresh is not treated as some limiting factor as 1647 * dirty_thresh, due to reasons 1648 * - in JBOD setup, wb_thresh can fluctuate a lot 1649 * - in a system with HDD and USB key, the USB key may somehow 1650 * go into state (wb_dirty >> wb_thresh) either because 1651 * wb_dirty starts high, or because wb_thresh drops low. 1652 * In this case we don't want to hard throttle the USB key 1653 * dirtiers for 100 seconds until wb_dirty drops under 1654 * wb_thresh. Instead the auxiliary wb control line in 1655 * wb_position_ratio() will let the dirtier task progress 1656 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1657 */ 1658 dtc->wb_thresh = __wb_calc_thresh(dtc); 1659 dtc->wb_bg_thresh = dtc->thresh ? 1660 div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1661 1662 /* 1663 * In order to avoid the stacked BDI deadlock we need 1664 * to ensure we accurately count the 'dirty' pages when 1665 * the threshold is low. 1666 * 1667 * Otherwise it would be possible to get thresh+n pages 1668 * reported dirty, even though there are thresh-m pages 1669 * actually dirty; with m+n sitting in the percpu 1670 * deltas. 1671 */ 1672 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1673 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1674 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1675 } else { 1676 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1677 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1678 } 1679 } 1680 1681 /* 1682 * balance_dirty_pages() must be called by processes which are generating dirty 1683 * data. It looks at the number of dirty pages in the machine and will force 1684 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1685 * If we're over `background_thresh' then the writeback threads are woken to 1686 * perform some writeout. 1687 */ 1688 static int balance_dirty_pages(struct bdi_writeback *wb, 1689 unsigned long pages_dirtied, unsigned int flags) 1690 { 1691 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1692 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1693 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1694 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1695 &mdtc_stor : NULL; 1696 struct dirty_throttle_control *sdtc; 1697 unsigned long nr_reclaimable; /* = file_dirty */ 1698 long period; 1699 long pause; 1700 long max_pause; 1701 long min_pause; 1702 int nr_dirtied_pause; 1703 bool dirty_exceeded = false; 1704 unsigned long task_ratelimit; 1705 unsigned long dirty_ratelimit; 1706 struct backing_dev_info *bdi = wb->bdi; 1707 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1708 unsigned long start_time = jiffies; 1709 int ret = 0; 1710 1711 for (;;) { 1712 unsigned long now = jiffies; 1713 unsigned long dirty, thresh, bg_thresh; 1714 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1715 unsigned long m_thresh = 0; 1716 unsigned long m_bg_thresh = 0; 1717 1718 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1719 gdtc->avail = global_dirtyable_memory(); 1720 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1721 1722 domain_dirty_limits(gdtc); 1723 1724 if (unlikely(strictlimit)) { 1725 wb_dirty_limits(gdtc); 1726 1727 dirty = gdtc->wb_dirty; 1728 thresh = gdtc->wb_thresh; 1729 bg_thresh = gdtc->wb_bg_thresh; 1730 } else { 1731 dirty = gdtc->dirty; 1732 thresh = gdtc->thresh; 1733 bg_thresh = gdtc->bg_thresh; 1734 } 1735 1736 if (mdtc) { 1737 unsigned long filepages, headroom, writeback; 1738 1739 /* 1740 * If @wb belongs to !root memcg, repeat the same 1741 * basic calculations for the memcg domain. 1742 */ 1743 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1744 &mdtc->dirty, &writeback); 1745 mdtc->dirty += writeback; 1746 mdtc_calc_avail(mdtc, filepages, headroom); 1747 1748 domain_dirty_limits(mdtc); 1749 1750 if (unlikely(strictlimit)) { 1751 wb_dirty_limits(mdtc); 1752 m_dirty = mdtc->wb_dirty; 1753 m_thresh = mdtc->wb_thresh; 1754 m_bg_thresh = mdtc->wb_bg_thresh; 1755 } else { 1756 m_dirty = mdtc->dirty; 1757 m_thresh = mdtc->thresh; 1758 m_bg_thresh = mdtc->bg_thresh; 1759 } 1760 } 1761 1762 /* 1763 * In laptop mode, we wait until hitting the higher threshold 1764 * before starting background writeout, and then write out all 1765 * the way down to the lower threshold. So slow writers cause 1766 * minimal disk activity. 1767 * 1768 * In normal mode, we start background writeout at the lower 1769 * background_thresh, to keep the amount of dirty memory low. 1770 */ 1771 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh && 1772 !writeback_in_progress(wb)) 1773 wb_start_background_writeback(wb); 1774 1775 /* 1776 * Throttle it only when the background writeback cannot 1777 * catch-up. This avoids (excessively) small writeouts 1778 * when the wb limits are ramping up in case of !strictlimit. 1779 * 1780 * In strictlimit case make decision based on the wb counters 1781 * and limits. Small writeouts when the wb limits are ramping 1782 * up are the price we consciously pay for strictlimit-ing. 1783 * 1784 * If memcg domain is in effect, @dirty should be under 1785 * both global and memcg freerun ceilings. 1786 */ 1787 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1788 (!mdtc || 1789 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1790 unsigned long intv; 1791 unsigned long m_intv; 1792 1793 free_running: 1794 intv = dirty_poll_interval(dirty, thresh); 1795 m_intv = ULONG_MAX; 1796 1797 current->dirty_paused_when = now; 1798 current->nr_dirtied = 0; 1799 if (mdtc) 1800 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1801 current->nr_dirtied_pause = min(intv, m_intv); 1802 break; 1803 } 1804 1805 /* Start writeback even when in laptop mode */ 1806 if (unlikely(!writeback_in_progress(wb))) 1807 wb_start_background_writeback(wb); 1808 1809 mem_cgroup_flush_foreign(wb); 1810 1811 /* 1812 * Calculate global domain's pos_ratio and select the 1813 * global dtc by default. 1814 */ 1815 if (!strictlimit) { 1816 wb_dirty_limits(gdtc); 1817 1818 if ((current->flags & PF_LOCAL_THROTTLE) && 1819 gdtc->wb_dirty < 1820 dirty_freerun_ceiling(gdtc->wb_thresh, 1821 gdtc->wb_bg_thresh)) 1822 /* 1823 * LOCAL_THROTTLE tasks must not be throttled 1824 * when below the per-wb freerun ceiling. 1825 */ 1826 goto free_running; 1827 } 1828 1829 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1830 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1831 1832 wb_position_ratio(gdtc); 1833 sdtc = gdtc; 1834 1835 if (mdtc) { 1836 /* 1837 * If memcg domain is in effect, calculate its 1838 * pos_ratio. @wb should satisfy constraints from 1839 * both global and memcg domains. Choose the one 1840 * w/ lower pos_ratio. 1841 */ 1842 if (!strictlimit) { 1843 wb_dirty_limits(mdtc); 1844 1845 if ((current->flags & PF_LOCAL_THROTTLE) && 1846 mdtc->wb_dirty < 1847 dirty_freerun_ceiling(mdtc->wb_thresh, 1848 mdtc->wb_bg_thresh)) 1849 /* 1850 * LOCAL_THROTTLE tasks must not be 1851 * throttled when below the per-wb 1852 * freerun ceiling. 1853 */ 1854 goto free_running; 1855 } 1856 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1857 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1858 1859 wb_position_ratio(mdtc); 1860 if (mdtc->pos_ratio < gdtc->pos_ratio) 1861 sdtc = mdtc; 1862 } 1863 1864 if (dirty_exceeded != wb->dirty_exceeded) 1865 wb->dirty_exceeded = dirty_exceeded; 1866 1867 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1868 BANDWIDTH_INTERVAL)) 1869 __wb_update_bandwidth(gdtc, mdtc, true); 1870 1871 /* throttle according to the chosen dtc */ 1872 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1873 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1874 RATELIMIT_CALC_SHIFT; 1875 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1876 min_pause = wb_min_pause(wb, max_pause, 1877 task_ratelimit, dirty_ratelimit, 1878 &nr_dirtied_pause); 1879 1880 if (unlikely(task_ratelimit == 0)) { 1881 period = max_pause; 1882 pause = max_pause; 1883 goto pause; 1884 } 1885 period = HZ * pages_dirtied / task_ratelimit; 1886 pause = period; 1887 if (current->dirty_paused_when) 1888 pause -= now - current->dirty_paused_when; 1889 /* 1890 * For less than 1s think time (ext3/4 may block the dirtier 1891 * for up to 800ms from time to time on 1-HDD; so does xfs, 1892 * however at much less frequency), try to compensate it in 1893 * future periods by updating the virtual time; otherwise just 1894 * do a reset, as it may be a light dirtier. 1895 */ 1896 if (pause < min_pause) { 1897 trace_balance_dirty_pages(wb, 1898 sdtc->thresh, 1899 sdtc->bg_thresh, 1900 sdtc->dirty, 1901 sdtc->wb_thresh, 1902 sdtc->wb_dirty, 1903 dirty_ratelimit, 1904 task_ratelimit, 1905 pages_dirtied, 1906 period, 1907 min(pause, 0L), 1908 start_time); 1909 if (pause < -HZ) { 1910 current->dirty_paused_when = now; 1911 current->nr_dirtied = 0; 1912 } else if (period) { 1913 current->dirty_paused_when += period; 1914 current->nr_dirtied = 0; 1915 } else if (current->nr_dirtied_pause <= pages_dirtied) 1916 current->nr_dirtied_pause += pages_dirtied; 1917 break; 1918 } 1919 if (unlikely(pause > max_pause)) { 1920 /* for occasional dropped task_ratelimit */ 1921 now += min(pause - max_pause, max_pause); 1922 pause = max_pause; 1923 } 1924 1925 pause: 1926 trace_balance_dirty_pages(wb, 1927 sdtc->thresh, 1928 sdtc->bg_thresh, 1929 sdtc->dirty, 1930 sdtc->wb_thresh, 1931 sdtc->wb_dirty, 1932 dirty_ratelimit, 1933 task_ratelimit, 1934 pages_dirtied, 1935 period, 1936 pause, 1937 start_time); 1938 if (flags & BDP_ASYNC) { 1939 ret = -EAGAIN; 1940 break; 1941 } 1942 __set_current_state(TASK_KILLABLE); 1943 bdi->last_bdp_sleep = jiffies; 1944 io_schedule_timeout(pause); 1945 1946 current->dirty_paused_when = now + pause; 1947 current->nr_dirtied = 0; 1948 current->nr_dirtied_pause = nr_dirtied_pause; 1949 1950 /* 1951 * This is typically equal to (dirty < thresh) and can also 1952 * keep "1000+ dd on a slow USB stick" under control. 1953 */ 1954 if (task_ratelimit) 1955 break; 1956 1957 /* 1958 * In the case of an unresponsive NFS server and the NFS dirty 1959 * pages exceeds dirty_thresh, give the other good wb's a pipe 1960 * to go through, so that tasks on them still remain responsive. 1961 * 1962 * In theory 1 page is enough to keep the consumer-producer 1963 * pipe going: the flusher cleans 1 page => the task dirties 1 1964 * more page. However wb_dirty has accounting errors. So use 1965 * the larger and more IO friendly wb_stat_error. 1966 */ 1967 if (sdtc->wb_dirty <= wb_stat_error()) 1968 break; 1969 1970 if (fatal_signal_pending(current)) 1971 break; 1972 } 1973 return ret; 1974 } 1975 1976 static DEFINE_PER_CPU(int, bdp_ratelimits); 1977 1978 /* 1979 * Normal tasks are throttled by 1980 * loop { 1981 * dirty tsk->nr_dirtied_pause pages; 1982 * take a snap in balance_dirty_pages(); 1983 * } 1984 * However there is a worst case. If every task exit immediately when dirtied 1985 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1986 * called to throttle the page dirties. The solution is to save the not yet 1987 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1988 * randomly into the running tasks. This works well for the above worst case, 1989 * as the new task will pick up and accumulate the old task's leaked dirty 1990 * count and eventually get throttled. 1991 */ 1992 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1993 1994 /** 1995 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 1996 * @mapping: address_space which was dirtied. 1997 * @flags: BDP flags. 1998 * 1999 * Processes which are dirtying memory should call in here once for each page 2000 * which was newly dirtied. The function will periodically check the system's 2001 * dirty state and will initiate writeback if needed. 2002 * 2003 * See balance_dirty_pages_ratelimited() for details. 2004 * 2005 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2006 * indicate that memory is out of balance and the caller must wait 2007 * for I/O to complete. Otherwise, it will return 0 to indicate 2008 * that either memory was already in balance, or it was able to sleep 2009 * until the amount of dirty memory returned to balance. 2010 */ 2011 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2012 unsigned int flags) 2013 { 2014 struct inode *inode = mapping->host; 2015 struct backing_dev_info *bdi = inode_to_bdi(inode); 2016 struct bdi_writeback *wb = NULL; 2017 int ratelimit; 2018 int ret = 0; 2019 int *p; 2020 2021 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2022 return ret; 2023 2024 if (inode_cgwb_enabled(inode)) 2025 wb = wb_get_create_current(bdi, GFP_KERNEL); 2026 if (!wb) 2027 wb = &bdi->wb; 2028 2029 ratelimit = current->nr_dirtied_pause; 2030 if (wb->dirty_exceeded) 2031 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2032 2033 preempt_disable(); 2034 /* 2035 * This prevents one CPU to accumulate too many dirtied pages without 2036 * calling into balance_dirty_pages(), which can happen when there are 2037 * 1000+ tasks, all of them start dirtying pages at exactly the same 2038 * time, hence all honoured too large initial task->nr_dirtied_pause. 2039 */ 2040 p = this_cpu_ptr(&bdp_ratelimits); 2041 if (unlikely(current->nr_dirtied >= ratelimit)) 2042 *p = 0; 2043 else if (unlikely(*p >= ratelimit_pages)) { 2044 *p = 0; 2045 ratelimit = 0; 2046 } 2047 /* 2048 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2049 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2050 * the dirty throttling and livelock other long-run dirtiers. 2051 */ 2052 p = this_cpu_ptr(&dirty_throttle_leaks); 2053 if (*p > 0 && current->nr_dirtied < ratelimit) { 2054 unsigned long nr_pages_dirtied; 2055 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2056 *p -= nr_pages_dirtied; 2057 current->nr_dirtied += nr_pages_dirtied; 2058 } 2059 preempt_enable(); 2060 2061 if (unlikely(current->nr_dirtied >= ratelimit)) 2062 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2063 2064 wb_put(wb); 2065 return ret; 2066 } 2067 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2068 2069 /** 2070 * balance_dirty_pages_ratelimited - balance dirty memory state. 2071 * @mapping: address_space which was dirtied. 2072 * 2073 * Processes which are dirtying memory should call in here once for each page 2074 * which was newly dirtied. The function will periodically check the system's 2075 * dirty state and will initiate writeback if needed. 2076 * 2077 * Once we're over the dirty memory limit we decrease the ratelimiting 2078 * by a lot, to prevent individual processes from overshooting the limit 2079 * by (ratelimit_pages) each. 2080 */ 2081 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2082 { 2083 balance_dirty_pages_ratelimited_flags(mapping, 0); 2084 } 2085 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2086 2087 /** 2088 * wb_over_bg_thresh - does @wb need to be written back? 2089 * @wb: bdi_writeback of interest 2090 * 2091 * Determines whether background writeback should keep writing @wb or it's 2092 * clean enough. 2093 * 2094 * Return: %true if writeback should continue. 2095 */ 2096 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2097 { 2098 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 2099 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 2100 struct dirty_throttle_control * const gdtc = &gdtc_stor; 2101 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 2102 &mdtc_stor : NULL; 2103 unsigned long reclaimable; 2104 unsigned long thresh; 2105 2106 /* 2107 * Similar to balance_dirty_pages() but ignores pages being written 2108 * as we're trying to decide whether to put more under writeback. 2109 */ 2110 gdtc->avail = global_dirtyable_memory(); 2111 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 2112 domain_dirty_limits(gdtc); 2113 2114 if (gdtc->dirty > gdtc->bg_thresh) 2115 return true; 2116 2117 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); 2118 if (thresh < 2 * wb_stat_error()) 2119 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2120 else 2121 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2122 2123 if (reclaimable > thresh) 2124 return true; 2125 2126 if (mdtc) { 2127 unsigned long filepages, headroom, writeback; 2128 2129 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 2130 &writeback); 2131 mdtc_calc_avail(mdtc, filepages, headroom); 2132 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 2133 2134 if (mdtc->dirty > mdtc->bg_thresh) 2135 return true; 2136 2137 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); 2138 if (thresh < 2 * wb_stat_error()) 2139 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2140 else 2141 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2142 2143 if (reclaimable > thresh) 2144 return true; 2145 } 2146 2147 return false; 2148 } 2149 2150 #ifdef CONFIG_SYSCTL 2151 /* 2152 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2153 */ 2154 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 2155 void *buffer, size_t *length, loff_t *ppos) 2156 { 2157 unsigned int old_interval = dirty_writeback_interval; 2158 int ret; 2159 2160 ret = proc_dointvec(table, write, buffer, length, ppos); 2161 2162 /* 2163 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2164 * and a different non-zero value will wakeup the writeback threads. 2165 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2166 * iterate over all bdis and wbs. 2167 * The reason we do this is to make the change take effect immediately. 2168 */ 2169 if (!ret && write && dirty_writeback_interval && 2170 dirty_writeback_interval != old_interval) 2171 wakeup_flusher_threads(WB_REASON_PERIODIC); 2172 2173 return ret; 2174 } 2175 #endif 2176 2177 void laptop_mode_timer_fn(struct timer_list *t) 2178 { 2179 struct backing_dev_info *backing_dev_info = 2180 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2181 2182 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2183 } 2184 2185 /* 2186 * We've spun up the disk and we're in laptop mode: schedule writeback 2187 * of all dirty data a few seconds from now. If the flush is already scheduled 2188 * then push it back - the user is still using the disk. 2189 */ 2190 void laptop_io_completion(struct backing_dev_info *info) 2191 { 2192 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2193 } 2194 2195 /* 2196 * We're in laptop mode and we've just synced. The sync's writes will have 2197 * caused another writeback to be scheduled by laptop_io_completion. 2198 * Nothing needs to be written back anymore, so we unschedule the writeback. 2199 */ 2200 void laptop_sync_completion(void) 2201 { 2202 struct backing_dev_info *bdi; 2203 2204 rcu_read_lock(); 2205 2206 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2207 del_timer(&bdi->laptop_mode_wb_timer); 2208 2209 rcu_read_unlock(); 2210 } 2211 2212 /* 2213 * If ratelimit_pages is too high then we can get into dirty-data overload 2214 * if a large number of processes all perform writes at the same time. 2215 * 2216 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2217 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2218 * thresholds. 2219 */ 2220 2221 void writeback_set_ratelimit(void) 2222 { 2223 struct wb_domain *dom = &global_wb_domain; 2224 unsigned long background_thresh; 2225 unsigned long dirty_thresh; 2226 2227 global_dirty_limits(&background_thresh, &dirty_thresh); 2228 dom->dirty_limit = dirty_thresh; 2229 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2230 if (ratelimit_pages < 16) 2231 ratelimit_pages = 16; 2232 } 2233 2234 static int page_writeback_cpu_online(unsigned int cpu) 2235 { 2236 writeback_set_ratelimit(); 2237 return 0; 2238 } 2239 2240 #ifdef CONFIG_SYSCTL 2241 2242 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2243 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2244 2245 static struct ctl_table vm_page_writeback_sysctls[] = { 2246 { 2247 .procname = "dirty_background_ratio", 2248 .data = &dirty_background_ratio, 2249 .maxlen = sizeof(dirty_background_ratio), 2250 .mode = 0644, 2251 .proc_handler = dirty_background_ratio_handler, 2252 .extra1 = SYSCTL_ZERO, 2253 .extra2 = SYSCTL_ONE_HUNDRED, 2254 }, 2255 { 2256 .procname = "dirty_background_bytes", 2257 .data = &dirty_background_bytes, 2258 .maxlen = sizeof(dirty_background_bytes), 2259 .mode = 0644, 2260 .proc_handler = dirty_background_bytes_handler, 2261 .extra1 = SYSCTL_LONG_ONE, 2262 }, 2263 { 2264 .procname = "dirty_ratio", 2265 .data = &vm_dirty_ratio, 2266 .maxlen = sizeof(vm_dirty_ratio), 2267 .mode = 0644, 2268 .proc_handler = dirty_ratio_handler, 2269 .extra1 = SYSCTL_ZERO, 2270 .extra2 = SYSCTL_ONE_HUNDRED, 2271 }, 2272 { 2273 .procname = "dirty_bytes", 2274 .data = &vm_dirty_bytes, 2275 .maxlen = sizeof(vm_dirty_bytes), 2276 .mode = 0644, 2277 .proc_handler = dirty_bytes_handler, 2278 .extra1 = (void *)&dirty_bytes_min, 2279 }, 2280 { 2281 .procname = "dirty_writeback_centisecs", 2282 .data = &dirty_writeback_interval, 2283 .maxlen = sizeof(dirty_writeback_interval), 2284 .mode = 0644, 2285 .proc_handler = dirty_writeback_centisecs_handler, 2286 }, 2287 { 2288 .procname = "dirty_expire_centisecs", 2289 .data = &dirty_expire_interval, 2290 .maxlen = sizeof(dirty_expire_interval), 2291 .mode = 0644, 2292 .proc_handler = proc_dointvec_minmax, 2293 .extra1 = SYSCTL_ZERO, 2294 }, 2295 #ifdef CONFIG_HIGHMEM 2296 { 2297 .procname = "highmem_is_dirtyable", 2298 .data = &vm_highmem_is_dirtyable, 2299 .maxlen = sizeof(vm_highmem_is_dirtyable), 2300 .mode = 0644, 2301 .proc_handler = proc_dointvec_minmax, 2302 .extra1 = SYSCTL_ZERO, 2303 .extra2 = SYSCTL_ONE, 2304 }, 2305 #endif 2306 { 2307 .procname = "laptop_mode", 2308 .data = &laptop_mode, 2309 .maxlen = sizeof(laptop_mode), 2310 .mode = 0644, 2311 .proc_handler = proc_dointvec_jiffies, 2312 }, 2313 }; 2314 #endif 2315 2316 /* 2317 * Called early on to tune the page writeback dirty limits. 2318 * 2319 * We used to scale dirty pages according to how total memory 2320 * related to pages that could be allocated for buffers. 2321 * 2322 * However, that was when we used "dirty_ratio" to scale with 2323 * all memory, and we don't do that any more. "dirty_ratio" 2324 * is now applied to total non-HIGHPAGE memory, and as such we can't 2325 * get into the old insane situation any more where we had 2326 * large amounts of dirty pages compared to a small amount of 2327 * non-HIGHMEM memory. 2328 * 2329 * But we might still want to scale the dirty_ratio by how 2330 * much memory the box has.. 2331 */ 2332 void __init page_writeback_init(void) 2333 { 2334 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2335 2336 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2337 page_writeback_cpu_online, NULL); 2338 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2339 page_writeback_cpu_online); 2340 #ifdef CONFIG_SYSCTL 2341 register_sysctl_init("vm", vm_page_writeback_sysctls); 2342 #endif 2343 } 2344 2345 /** 2346 * tag_pages_for_writeback - tag pages to be written by writeback 2347 * @mapping: address space structure to write 2348 * @start: starting page index 2349 * @end: ending page index (inclusive) 2350 * 2351 * This function scans the page range from @start to @end (inclusive) and tags 2352 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2353 * can then use the TOWRITE tag to identify pages eligible for writeback. 2354 * This mechanism is used to avoid livelocking of writeback by a process 2355 * steadily creating new dirty pages in the file (thus it is important for this 2356 * function to be quick so that it can tag pages faster than a dirtying process 2357 * can create them). 2358 */ 2359 void tag_pages_for_writeback(struct address_space *mapping, 2360 pgoff_t start, pgoff_t end) 2361 { 2362 XA_STATE(xas, &mapping->i_pages, start); 2363 unsigned int tagged = 0; 2364 void *page; 2365 2366 xas_lock_irq(&xas); 2367 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2368 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2369 if (++tagged % XA_CHECK_SCHED) 2370 continue; 2371 2372 xas_pause(&xas); 2373 xas_unlock_irq(&xas); 2374 cond_resched(); 2375 xas_lock_irq(&xas); 2376 } 2377 xas_unlock_irq(&xas); 2378 } 2379 EXPORT_SYMBOL(tag_pages_for_writeback); 2380 2381 static bool folio_prepare_writeback(struct address_space *mapping, 2382 struct writeback_control *wbc, struct folio *folio) 2383 { 2384 /* 2385 * Folio truncated or invalidated. We can freely skip it then, 2386 * even for data integrity operations: the folio has disappeared 2387 * concurrently, so there could be no real expectation of this 2388 * data integrity operation even if there is now a new, dirty 2389 * folio at the same pagecache index. 2390 */ 2391 if (unlikely(folio->mapping != mapping)) 2392 return false; 2393 2394 /* 2395 * Did somebody else write it for us? 2396 */ 2397 if (!folio_test_dirty(folio)) 2398 return false; 2399 2400 if (folio_test_writeback(folio)) { 2401 if (wbc->sync_mode == WB_SYNC_NONE) 2402 return false; 2403 folio_wait_writeback(folio); 2404 } 2405 BUG_ON(folio_test_writeback(folio)); 2406 2407 if (!folio_clear_dirty_for_io(folio)) 2408 return false; 2409 2410 return true; 2411 } 2412 2413 static xa_mark_t wbc_to_tag(struct writeback_control *wbc) 2414 { 2415 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2416 return PAGECACHE_TAG_TOWRITE; 2417 return PAGECACHE_TAG_DIRTY; 2418 } 2419 2420 static pgoff_t wbc_end(struct writeback_control *wbc) 2421 { 2422 if (wbc->range_cyclic) 2423 return -1; 2424 return wbc->range_end >> PAGE_SHIFT; 2425 } 2426 2427 static struct folio *writeback_get_folio(struct address_space *mapping, 2428 struct writeback_control *wbc) 2429 { 2430 struct folio *folio; 2431 2432 retry: 2433 folio = folio_batch_next(&wbc->fbatch); 2434 if (!folio) { 2435 folio_batch_release(&wbc->fbatch); 2436 cond_resched(); 2437 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2438 wbc_to_tag(wbc), &wbc->fbatch); 2439 folio = folio_batch_next(&wbc->fbatch); 2440 if (!folio) 2441 return NULL; 2442 } 2443 2444 folio_lock(folio); 2445 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2446 folio_unlock(folio); 2447 goto retry; 2448 } 2449 2450 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2451 return folio; 2452 } 2453 2454 /** 2455 * writeback_iter - iterate folio of a mapping for writeback 2456 * @mapping: address space structure to write 2457 * @wbc: writeback context 2458 * @folio: previously iterated folio (%NULL to start) 2459 * @error: in-out pointer for writeback errors (see below) 2460 * 2461 * This function returns the next folio for the writeback operation described by 2462 * @wbc on @mapping and should be called in a while loop in the ->writepages 2463 * implementation. 2464 * 2465 * To start the writeback operation, %NULL is passed in the @folio argument, and 2466 * for every subsequent iteration the folio returned previously should be passed 2467 * back in. 2468 * 2469 * If there was an error in the per-folio writeback inside the writeback_iter() 2470 * loop, @error should be set to the error value. 2471 * 2472 * Once the writeback described in @wbc has finished, this function will return 2473 * %NULL and if there was an error in any iteration restore it to @error. 2474 * 2475 * Note: callers should not manually break out of the loop using break or goto 2476 * but must keep calling writeback_iter() until it returns %NULL. 2477 * 2478 * Return: the folio to write or %NULL if the loop is done. 2479 */ 2480 struct folio *writeback_iter(struct address_space *mapping, 2481 struct writeback_control *wbc, struct folio *folio, int *error) 2482 { 2483 if (!folio) { 2484 folio_batch_init(&wbc->fbatch); 2485 wbc->saved_err = *error = 0; 2486 2487 /* 2488 * For range cyclic writeback we remember where we stopped so 2489 * that we can continue where we stopped. 2490 * 2491 * For non-cyclic writeback we always start at the beginning of 2492 * the passed in range. 2493 */ 2494 if (wbc->range_cyclic) 2495 wbc->index = mapping->writeback_index; 2496 else 2497 wbc->index = wbc->range_start >> PAGE_SHIFT; 2498 2499 /* 2500 * To avoid livelocks when other processes dirty new pages, we 2501 * first tag pages which should be written back and only then 2502 * start writing them. 2503 * 2504 * For data-integrity writeback we have to be careful so that we 2505 * do not miss some pages (e.g., because some other process has 2506 * cleared the TOWRITE tag we set). The rule we follow is that 2507 * TOWRITE tag can be cleared only by the process clearing the 2508 * DIRTY tag (and submitting the page for I/O). 2509 */ 2510 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2511 tag_pages_for_writeback(mapping, wbc->index, 2512 wbc_end(wbc)); 2513 } else { 2514 wbc->nr_to_write -= folio_nr_pages(folio); 2515 2516 WARN_ON_ONCE(*error > 0); 2517 2518 /* 2519 * For integrity writeback we have to keep going until we have 2520 * written all the folios we tagged for writeback above, even if 2521 * we run past wbc->nr_to_write or encounter errors. 2522 * We stash away the first error we encounter in wbc->saved_err 2523 * so that it can be retrieved when we're done. This is because 2524 * the file system may still have state to clear for each folio. 2525 * 2526 * For background writeback we exit as soon as we run past 2527 * wbc->nr_to_write or encounter the first error. 2528 */ 2529 if (wbc->sync_mode == WB_SYNC_ALL) { 2530 if (*error && !wbc->saved_err) 2531 wbc->saved_err = *error; 2532 } else { 2533 if (*error || wbc->nr_to_write <= 0) 2534 goto done; 2535 } 2536 } 2537 2538 folio = writeback_get_folio(mapping, wbc); 2539 if (!folio) { 2540 /* 2541 * To avoid deadlocks between range_cyclic writeback and callers 2542 * that hold pages in PageWriteback to aggregate I/O until 2543 * the writeback iteration finishes, we do not loop back to the 2544 * start of the file. Doing so causes a page lock/page 2545 * writeback access order inversion - we should only ever lock 2546 * multiple pages in ascending page->index order, and looping 2547 * back to the start of the file violates that rule and causes 2548 * deadlocks. 2549 */ 2550 if (wbc->range_cyclic) 2551 mapping->writeback_index = 0; 2552 2553 /* 2554 * Return the first error we encountered (if there was any) to 2555 * the caller. 2556 */ 2557 *error = wbc->saved_err; 2558 } 2559 return folio; 2560 2561 done: 2562 if (wbc->range_cyclic) 2563 mapping->writeback_index = folio->index + folio_nr_pages(folio); 2564 folio_batch_release(&wbc->fbatch); 2565 return NULL; 2566 } 2567 2568 /** 2569 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2570 * @mapping: address space structure to write 2571 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2572 * @writepage: function called for each page 2573 * @data: data passed to writepage function 2574 * 2575 * Return: %0 on success, negative error code otherwise 2576 * 2577 * Note: please use writeback_iter() instead. 2578 */ 2579 int write_cache_pages(struct address_space *mapping, 2580 struct writeback_control *wbc, writepage_t writepage, 2581 void *data) 2582 { 2583 struct folio *folio = NULL; 2584 int error; 2585 2586 while ((folio = writeback_iter(mapping, wbc, folio, &error))) { 2587 error = writepage(folio, wbc, data); 2588 if (error == AOP_WRITEPAGE_ACTIVATE) { 2589 folio_unlock(folio); 2590 error = 0; 2591 } 2592 } 2593 2594 return error; 2595 } 2596 EXPORT_SYMBOL(write_cache_pages); 2597 2598 static int writeback_use_writepage(struct address_space *mapping, 2599 struct writeback_control *wbc) 2600 { 2601 struct folio *folio = NULL; 2602 struct blk_plug plug; 2603 int err; 2604 2605 blk_start_plug(&plug); 2606 while ((folio = writeback_iter(mapping, wbc, folio, &err))) { 2607 err = mapping->a_ops->writepage(&folio->page, wbc); 2608 if (err == AOP_WRITEPAGE_ACTIVATE) { 2609 folio_unlock(folio); 2610 err = 0; 2611 } 2612 mapping_set_error(mapping, err); 2613 } 2614 blk_finish_plug(&plug); 2615 2616 return err; 2617 } 2618 2619 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2620 { 2621 int ret; 2622 struct bdi_writeback *wb; 2623 2624 if (wbc->nr_to_write <= 0) 2625 return 0; 2626 wb = inode_to_wb_wbc(mapping->host, wbc); 2627 wb_bandwidth_estimate_start(wb); 2628 while (1) { 2629 if (mapping->a_ops->writepages) { 2630 ret = mapping->a_ops->writepages(mapping, wbc); 2631 } else if (mapping->a_ops->writepage) { 2632 ret = writeback_use_writepage(mapping, wbc); 2633 } else { 2634 /* deal with chardevs and other special files */ 2635 ret = 0; 2636 } 2637 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2638 break; 2639 2640 /* 2641 * Lacking an allocation context or the locality or writeback 2642 * state of any of the inode's pages, throttle based on 2643 * writeback activity on the local node. It's as good a 2644 * guess as any. 2645 */ 2646 reclaim_throttle(NODE_DATA(numa_node_id()), 2647 VMSCAN_THROTTLE_WRITEBACK); 2648 } 2649 /* 2650 * Usually few pages are written by now from those we've just submitted 2651 * but if there's constant writeback being submitted, this makes sure 2652 * writeback bandwidth is updated once in a while. 2653 */ 2654 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2655 BANDWIDTH_INTERVAL)) 2656 wb_update_bandwidth(wb); 2657 return ret; 2658 } 2659 2660 /* 2661 * For address_spaces which do not use buffers nor write back. 2662 */ 2663 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2664 { 2665 if (!folio_test_dirty(folio)) 2666 return !folio_test_set_dirty(folio); 2667 return false; 2668 } 2669 EXPORT_SYMBOL(noop_dirty_folio); 2670 2671 /* 2672 * Helper function for set_page_dirty family. 2673 * 2674 * Caller must hold folio_memcg_lock(). 2675 * 2676 * NOTE: This relies on being atomic wrt interrupts. 2677 */ 2678 static void folio_account_dirtied(struct folio *folio, 2679 struct address_space *mapping) 2680 { 2681 struct inode *inode = mapping->host; 2682 2683 trace_writeback_dirty_folio(folio, mapping); 2684 2685 if (mapping_can_writeback(mapping)) { 2686 struct bdi_writeback *wb; 2687 long nr = folio_nr_pages(folio); 2688 2689 inode_attach_wb(inode, folio); 2690 wb = inode_to_wb(inode); 2691 2692 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2693 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2694 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2695 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2696 wb_stat_mod(wb, WB_DIRTIED, nr); 2697 task_io_account_write(nr * PAGE_SIZE); 2698 current->nr_dirtied += nr; 2699 __this_cpu_add(bdp_ratelimits, nr); 2700 2701 mem_cgroup_track_foreign_dirty(folio, wb); 2702 } 2703 } 2704 2705 /* 2706 * Helper function for deaccounting dirty page without writeback. 2707 * 2708 * Caller must hold folio_memcg_lock(). 2709 */ 2710 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2711 { 2712 long nr = folio_nr_pages(folio); 2713 2714 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2715 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2716 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2717 task_io_account_cancelled_write(nr * PAGE_SIZE); 2718 } 2719 2720 /* 2721 * Mark the folio dirty, and set it dirty in the page cache, and mark 2722 * the inode dirty. 2723 * 2724 * If warn is true, then emit a warning if the folio is not uptodate and has 2725 * not been truncated. 2726 * 2727 * The caller must hold folio_memcg_lock(). It is the caller's 2728 * responsibility to prevent the folio from being truncated while 2729 * this function is in progress, although it may have been truncated 2730 * before this function is called. Most callers have the folio locked. 2731 * A few have the folio blocked from truncation through other means (e.g. 2732 * zap_vma_pages() has it mapped and is holding the page table lock). 2733 * When called from mark_buffer_dirty(), the filesystem should hold a 2734 * reference to the buffer_head that is being marked dirty, which causes 2735 * try_to_free_buffers() to fail. 2736 */ 2737 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2738 int warn) 2739 { 2740 unsigned long flags; 2741 2742 xa_lock_irqsave(&mapping->i_pages, flags); 2743 if (folio->mapping) { /* Race with truncate? */ 2744 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2745 folio_account_dirtied(folio, mapping); 2746 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2747 PAGECACHE_TAG_DIRTY); 2748 } 2749 xa_unlock_irqrestore(&mapping->i_pages, flags); 2750 } 2751 2752 /** 2753 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2754 * @mapping: Address space this folio belongs to. 2755 * @folio: Folio to be marked as dirty. 2756 * 2757 * Filesystems which do not use buffer heads should call this function 2758 * from their dirty_folio address space operation. It ignores the 2759 * contents of folio_get_private(), so if the filesystem marks individual 2760 * blocks as dirty, the filesystem should handle that itself. 2761 * 2762 * This is also sometimes used by filesystems which use buffer_heads when 2763 * a single buffer is being dirtied: we want to set the folio dirty in 2764 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2765 * whereas block_dirty_folio() is a "top-down" dirtying. 2766 * 2767 * The caller must ensure this doesn't race with truncation. Most will 2768 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2769 * folio mapped and the pte lock held, which also locks out truncation. 2770 */ 2771 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2772 { 2773 folio_memcg_lock(folio); 2774 if (folio_test_set_dirty(folio)) { 2775 folio_memcg_unlock(folio); 2776 return false; 2777 } 2778 2779 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2780 folio_memcg_unlock(folio); 2781 2782 if (mapping->host) { 2783 /* !PageAnon && !swapper_space */ 2784 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2785 } 2786 return true; 2787 } 2788 EXPORT_SYMBOL(filemap_dirty_folio); 2789 2790 /** 2791 * folio_redirty_for_writepage - Decline to write a dirty folio. 2792 * @wbc: The writeback control. 2793 * @folio: The folio. 2794 * 2795 * When a writepage implementation decides that it doesn't want to write 2796 * @folio for some reason, it should call this function, unlock @folio and 2797 * return 0. 2798 * 2799 * Return: True if we redirtied the folio. False if someone else dirtied 2800 * it first. 2801 */ 2802 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2803 struct folio *folio) 2804 { 2805 struct address_space *mapping = folio->mapping; 2806 long nr = folio_nr_pages(folio); 2807 bool ret; 2808 2809 wbc->pages_skipped += nr; 2810 ret = filemap_dirty_folio(mapping, folio); 2811 if (mapping && mapping_can_writeback(mapping)) { 2812 struct inode *inode = mapping->host; 2813 struct bdi_writeback *wb; 2814 struct wb_lock_cookie cookie = {}; 2815 2816 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2817 current->nr_dirtied -= nr; 2818 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2819 wb_stat_mod(wb, WB_DIRTIED, -nr); 2820 unlocked_inode_to_wb_end(inode, &cookie); 2821 } 2822 return ret; 2823 } 2824 EXPORT_SYMBOL(folio_redirty_for_writepage); 2825 2826 /** 2827 * folio_mark_dirty - Mark a folio as being modified. 2828 * @folio: The folio. 2829 * 2830 * The folio may not be truncated while this function is running. 2831 * Holding the folio lock is sufficient to prevent truncation, but some 2832 * callers cannot acquire a sleeping lock. These callers instead hold 2833 * the page table lock for a page table which contains at least one page 2834 * in this folio. Truncation will block on the page table lock as it 2835 * unmaps pages before removing the folio from its mapping. 2836 * 2837 * Return: True if the folio was newly dirtied, false if it was already dirty. 2838 */ 2839 bool folio_mark_dirty(struct folio *folio) 2840 { 2841 struct address_space *mapping = folio_mapping(folio); 2842 2843 if (likely(mapping)) { 2844 /* 2845 * readahead/folio_deactivate could remain 2846 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2847 * About readahead, if the folio is written, the flags would be 2848 * reset. So no problem. 2849 * About folio_deactivate, if the folio is redirtied, 2850 * the flag will be reset. So no problem. but if the 2851 * folio is used by readahead it will confuse readahead 2852 * and make it restart the size rampup process. But it's 2853 * a trivial problem. 2854 */ 2855 if (folio_test_reclaim(folio)) 2856 folio_clear_reclaim(folio); 2857 return mapping->a_ops->dirty_folio(mapping, folio); 2858 } 2859 2860 return noop_dirty_folio(mapping, folio); 2861 } 2862 EXPORT_SYMBOL(folio_mark_dirty); 2863 2864 /* 2865 * set_page_dirty() is racy if the caller has no reference against 2866 * page->mapping->host, and if the page is unlocked. This is because another 2867 * CPU could truncate the page off the mapping and then free the mapping. 2868 * 2869 * Usually, the page _is_ locked, or the caller is a user-space process which 2870 * holds a reference on the inode by having an open file. 2871 * 2872 * In other cases, the page should be locked before running set_page_dirty(). 2873 */ 2874 int set_page_dirty_lock(struct page *page) 2875 { 2876 int ret; 2877 2878 lock_page(page); 2879 ret = set_page_dirty(page); 2880 unlock_page(page); 2881 return ret; 2882 } 2883 EXPORT_SYMBOL(set_page_dirty_lock); 2884 2885 /* 2886 * This cancels just the dirty bit on the kernel page itself, it does NOT 2887 * actually remove dirty bits on any mmap's that may be around. It also 2888 * leaves the page tagged dirty, so any sync activity will still find it on 2889 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2890 * look at the dirty bits in the VM. 2891 * 2892 * Doing this should *normally* only ever be done when a page is truncated, 2893 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2894 * this when it notices that somebody has cleaned out all the buffers on a 2895 * page without actually doing it through the VM. Can you say "ext3 is 2896 * horribly ugly"? Thought you could. 2897 */ 2898 void __folio_cancel_dirty(struct folio *folio) 2899 { 2900 struct address_space *mapping = folio_mapping(folio); 2901 2902 if (mapping_can_writeback(mapping)) { 2903 struct inode *inode = mapping->host; 2904 struct bdi_writeback *wb; 2905 struct wb_lock_cookie cookie = {}; 2906 2907 folio_memcg_lock(folio); 2908 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2909 2910 if (folio_test_clear_dirty(folio)) 2911 folio_account_cleaned(folio, wb); 2912 2913 unlocked_inode_to_wb_end(inode, &cookie); 2914 folio_memcg_unlock(folio); 2915 } else { 2916 folio_clear_dirty(folio); 2917 } 2918 } 2919 EXPORT_SYMBOL(__folio_cancel_dirty); 2920 2921 /* 2922 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2923 * Returns true if the folio was previously dirty. 2924 * 2925 * This is for preparing to put the folio under writeout. We leave 2926 * the folio tagged as dirty in the xarray so that a concurrent 2927 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2928 * The ->writepage implementation will run either folio_start_writeback() 2929 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2930 * and xarray dirty tag back into sync. 2931 * 2932 * This incoherency between the folio's dirty flag and xarray tag is 2933 * unfortunate, but it only exists while the folio is locked. 2934 */ 2935 bool folio_clear_dirty_for_io(struct folio *folio) 2936 { 2937 struct address_space *mapping = folio_mapping(folio); 2938 bool ret = false; 2939 2940 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2941 2942 if (mapping && mapping_can_writeback(mapping)) { 2943 struct inode *inode = mapping->host; 2944 struct bdi_writeback *wb; 2945 struct wb_lock_cookie cookie = {}; 2946 2947 /* 2948 * Yes, Virginia, this is indeed insane. 2949 * 2950 * We use this sequence to make sure that 2951 * (a) we account for dirty stats properly 2952 * (b) we tell the low-level filesystem to 2953 * mark the whole folio dirty if it was 2954 * dirty in a pagetable. Only to then 2955 * (c) clean the folio again and return 1 to 2956 * cause the writeback. 2957 * 2958 * This way we avoid all nasty races with the 2959 * dirty bit in multiple places and clearing 2960 * them concurrently from different threads. 2961 * 2962 * Note! Normally the "folio_mark_dirty(folio)" 2963 * has no effect on the actual dirty bit - since 2964 * that will already usually be set. But we 2965 * need the side effects, and it can help us 2966 * avoid races. 2967 * 2968 * We basically use the folio "master dirty bit" 2969 * as a serialization point for all the different 2970 * threads doing their things. 2971 */ 2972 if (folio_mkclean(folio)) 2973 folio_mark_dirty(folio); 2974 /* 2975 * We carefully synchronise fault handlers against 2976 * installing a dirty pte and marking the folio dirty 2977 * at this point. We do this by having them hold the 2978 * page lock while dirtying the folio, and folios are 2979 * always locked coming in here, so we get the desired 2980 * exclusion. 2981 */ 2982 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2983 if (folio_test_clear_dirty(folio)) { 2984 long nr = folio_nr_pages(folio); 2985 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2986 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2987 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2988 ret = true; 2989 } 2990 unlocked_inode_to_wb_end(inode, &cookie); 2991 return ret; 2992 } 2993 return folio_test_clear_dirty(folio); 2994 } 2995 EXPORT_SYMBOL(folio_clear_dirty_for_io); 2996 2997 static void wb_inode_writeback_start(struct bdi_writeback *wb) 2998 { 2999 atomic_inc(&wb->writeback_inodes); 3000 } 3001 3002 static void wb_inode_writeback_end(struct bdi_writeback *wb) 3003 { 3004 unsigned long flags; 3005 atomic_dec(&wb->writeback_inodes); 3006 /* 3007 * Make sure estimate of writeback throughput gets updated after 3008 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 3009 * (which is the interval other bandwidth updates use for batching) so 3010 * that if multiple inodes end writeback at a similar time, they get 3011 * batched into one bandwidth update. 3012 */ 3013 spin_lock_irqsave(&wb->work_lock, flags); 3014 if (test_bit(WB_registered, &wb->state)) 3015 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 3016 spin_unlock_irqrestore(&wb->work_lock, flags); 3017 } 3018 3019 bool __folio_end_writeback(struct folio *folio) 3020 { 3021 long nr = folio_nr_pages(folio); 3022 struct address_space *mapping = folio_mapping(folio); 3023 bool ret; 3024 3025 folio_memcg_lock(folio); 3026 if (mapping && mapping_use_writeback_tags(mapping)) { 3027 struct inode *inode = mapping->host; 3028 struct backing_dev_info *bdi = inode_to_bdi(inode); 3029 unsigned long flags; 3030 3031 xa_lock_irqsave(&mapping->i_pages, flags); 3032 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3033 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 3034 PAGECACHE_TAG_WRITEBACK); 3035 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3036 struct bdi_writeback *wb = inode_to_wb(inode); 3037 3038 wb_stat_mod(wb, WB_WRITEBACK, -nr); 3039 __wb_writeout_add(wb, nr); 3040 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 3041 wb_inode_writeback_end(wb); 3042 } 3043 3044 if (mapping->host && !mapping_tagged(mapping, 3045 PAGECACHE_TAG_WRITEBACK)) 3046 sb_clear_inode_writeback(mapping->host); 3047 3048 xa_unlock_irqrestore(&mapping->i_pages, flags); 3049 } else { 3050 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3051 } 3052 3053 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3054 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3055 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3056 folio_memcg_unlock(folio); 3057 3058 return ret; 3059 } 3060 3061 void __folio_start_writeback(struct folio *folio, bool keep_write) 3062 { 3063 long nr = folio_nr_pages(folio); 3064 struct address_space *mapping = folio_mapping(folio); 3065 int access_ret; 3066 3067 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 3068 3069 folio_memcg_lock(folio); 3070 if (mapping && mapping_use_writeback_tags(mapping)) { 3071 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3072 struct inode *inode = mapping->host; 3073 struct backing_dev_info *bdi = inode_to_bdi(inode); 3074 unsigned long flags; 3075 bool on_wblist; 3076 3077 xas_lock_irqsave(&xas, flags); 3078 xas_load(&xas); 3079 folio_test_set_writeback(folio); 3080 3081 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 3082 3083 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3084 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3085 struct bdi_writeback *wb = inode_to_wb(inode); 3086 3087 wb_stat_mod(wb, WB_WRITEBACK, nr); 3088 if (!on_wblist) 3089 wb_inode_writeback_start(wb); 3090 } 3091 3092 /* 3093 * We can come through here when swapping anonymous 3094 * folios, so we don't necessarily have an inode to 3095 * track for sync. 3096 */ 3097 if (mapping->host && !on_wblist) 3098 sb_mark_inode_writeback(mapping->host); 3099 if (!folio_test_dirty(folio)) 3100 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3101 if (!keep_write) 3102 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3103 xas_unlock_irqrestore(&xas, flags); 3104 } else { 3105 folio_test_set_writeback(folio); 3106 } 3107 3108 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3109 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3110 folio_memcg_unlock(folio); 3111 3112 access_ret = arch_make_folio_accessible(folio); 3113 /* 3114 * If writeback has been triggered on a page that cannot be made 3115 * accessible, it is too late to recover here. 3116 */ 3117 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3118 } 3119 EXPORT_SYMBOL(__folio_start_writeback); 3120 3121 /** 3122 * folio_wait_writeback - Wait for a folio to finish writeback. 3123 * @folio: The folio to wait for. 3124 * 3125 * If the folio is currently being written back to storage, wait for the 3126 * I/O to complete. 3127 * 3128 * Context: Sleeps. Must be called in process context and with 3129 * no spinlocks held. Caller should hold a reference on the folio. 3130 * If the folio is not locked, writeback may start again after writeback 3131 * has finished. 3132 */ 3133 void folio_wait_writeback(struct folio *folio) 3134 { 3135 while (folio_test_writeback(folio)) { 3136 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3137 folio_wait_bit(folio, PG_writeback); 3138 } 3139 } 3140 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3141 3142 /** 3143 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3144 * @folio: The folio to wait for. 3145 * 3146 * If the folio is currently being written back to storage, wait for the 3147 * I/O to complete or a fatal signal to arrive. 3148 * 3149 * Context: Sleeps. Must be called in process context and with 3150 * no spinlocks held. Caller should hold a reference on the folio. 3151 * If the folio is not locked, writeback may start again after writeback 3152 * has finished. 3153 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3154 */ 3155 int folio_wait_writeback_killable(struct folio *folio) 3156 { 3157 while (folio_test_writeback(folio)) { 3158 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3159 if (folio_wait_bit_killable(folio, PG_writeback)) 3160 return -EINTR; 3161 } 3162 3163 return 0; 3164 } 3165 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3166 3167 /** 3168 * folio_wait_stable() - wait for writeback to finish, if necessary. 3169 * @folio: The folio to wait on. 3170 * 3171 * This function determines if the given folio is related to a backing 3172 * device that requires folio contents to be held stable during writeback. 3173 * If so, then it will wait for any pending writeback to complete. 3174 * 3175 * Context: Sleeps. Must be called in process context and with 3176 * no spinlocks held. Caller should hold a reference on the folio. 3177 * If the folio is not locked, writeback may start again after writeback 3178 * has finished. 3179 */ 3180 void folio_wait_stable(struct folio *folio) 3181 { 3182 if (mapping_stable_writes(folio_mapping(folio))) 3183 folio_wait_writeback(folio); 3184 } 3185 EXPORT_SYMBOL_GPL(folio_wait_stable); 3186