1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth or update dirty limit at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 bool freerun; 143 bool dirty_exceeded; 144 }; 145 146 /* 147 * Length of period for aging writeout fractions of bdis. This is an 148 * arbitrarily chosen number. The longer the period, the slower fractions will 149 * reflect changes in current writeout rate. 150 */ 151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 152 153 #ifdef CONFIG_CGROUP_WRITEBACK 154 155 #define GDTC_INIT(__wb) .wb = (__wb), \ 156 .dom = &global_wb_domain, \ 157 .wb_completions = &(__wb)->completions 158 159 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 160 161 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 162 .dom = mem_cgroup_wb_domain(__wb), \ 163 .wb_completions = &(__wb)->memcg_completions, \ 164 .gdtc = __gdtc 165 166 static bool mdtc_valid(struct dirty_throttle_control *dtc) 167 { 168 return dtc->dom; 169 } 170 171 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 172 { 173 return dtc->dom; 174 } 175 176 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 177 { 178 return mdtc->gdtc; 179 } 180 181 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 182 { 183 return &wb->memcg_completions; 184 } 185 186 static void wb_min_max_ratio(struct bdi_writeback *wb, 187 unsigned long *minp, unsigned long *maxp) 188 { 189 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 190 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 191 unsigned long long min = wb->bdi->min_ratio; 192 unsigned long long max = wb->bdi->max_ratio; 193 194 /* 195 * @wb may already be clean by the time control reaches here and 196 * the total may not include its bw. 197 */ 198 if (this_bw < tot_bw) { 199 if (min) { 200 min *= this_bw; 201 min = div64_ul(min, tot_bw); 202 } 203 if (max < 100 * BDI_RATIO_SCALE) { 204 max *= this_bw; 205 max = div64_ul(max, tot_bw); 206 } 207 } 208 209 *minp = min; 210 *maxp = max; 211 } 212 213 #else /* CONFIG_CGROUP_WRITEBACK */ 214 215 #define GDTC_INIT(__wb) .wb = (__wb), \ 216 .wb_completions = &(__wb)->completions 217 #define GDTC_INIT_NO_WB 218 #define MDTC_INIT(__wb, __gdtc) 219 220 static bool mdtc_valid(struct dirty_throttle_control *dtc) 221 { 222 return false; 223 } 224 225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 226 { 227 return &global_wb_domain; 228 } 229 230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 231 { 232 return NULL; 233 } 234 235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 236 { 237 return NULL; 238 } 239 240 static void wb_min_max_ratio(struct bdi_writeback *wb, 241 unsigned long *minp, unsigned long *maxp) 242 { 243 *minp = wb->bdi->min_ratio; 244 *maxp = wb->bdi->max_ratio; 245 } 246 247 #endif /* CONFIG_CGROUP_WRITEBACK */ 248 249 /* 250 * In a memory zone, there is a certain amount of pages we consider 251 * available for the page cache, which is essentially the number of 252 * free and reclaimable pages, minus some zone reserves to protect 253 * lowmem and the ability to uphold the zone's watermarks without 254 * requiring writeback. 255 * 256 * This number of dirtyable pages is the base value of which the 257 * user-configurable dirty ratio is the effective number of pages that 258 * are allowed to be actually dirtied. Per individual zone, or 259 * globally by using the sum of dirtyable pages over all zones. 260 * 261 * Because the user is allowed to specify the dirty limit globally as 262 * absolute number of bytes, calculating the per-zone dirty limit can 263 * require translating the configured limit into a percentage of 264 * global dirtyable memory first. 265 */ 266 267 /** 268 * node_dirtyable_memory - number of dirtyable pages in a node 269 * @pgdat: the node 270 * 271 * Return: the node's number of pages potentially available for dirty 272 * page cache. This is the base value for the per-node dirty limits. 273 */ 274 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 275 { 276 unsigned long nr_pages = 0; 277 int z; 278 279 for (z = 0; z < MAX_NR_ZONES; z++) { 280 struct zone *zone = pgdat->node_zones + z; 281 282 if (!populated_zone(zone)) 283 continue; 284 285 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 286 } 287 288 /* 289 * Pages reserved for the kernel should not be considered 290 * dirtyable, to prevent a situation where reclaim has to 291 * clean pages in order to balance the zones. 292 */ 293 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 294 295 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 296 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 297 298 return nr_pages; 299 } 300 301 static unsigned long highmem_dirtyable_memory(unsigned long total) 302 { 303 #ifdef CONFIG_HIGHMEM 304 int node; 305 unsigned long x = 0; 306 int i; 307 308 for_each_node_state(node, N_HIGH_MEMORY) { 309 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 310 struct zone *z; 311 unsigned long nr_pages; 312 313 if (!is_highmem_idx(i)) 314 continue; 315 316 z = &NODE_DATA(node)->node_zones[i]; 317 if (!populated_zone(z)) 318 continue; 319 320 nr_pages = zone_page_state(z, NR_FREE_PAGES); 321 /* watch for underflows */ 322 nr_pages -= min(nr_pages, high_wmark_pages(z)); 323 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 324 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 325 x += nr_pages; 326 } 327 } 328 329 /* 330 * Make sure that the number of highmem pages is never larger 331 * than the number of the total dirtyable memory. This can only 332 * occur in very strange VM situations but we want to make sure 333 * that this does not occur. 334 */ 335 return min(x, total); 336 #else 337 return 0; 338 #endif 339 } 340 341 /** 342 * global_dirtyable_memory - number of globally dirtyable pages 343 * 344 * Return: the global number of pages potentially available for dirty 345 * page cache. This is the base value for the global dirty limits. 346 */ 347 static unsigned long global_dirtyable_memory(void) 348 { 349 unsigned long x; 350 351 x = global_zone_page_state(NR_FREE_PAGES); 352 /* 353 * Pages reserved for the kernel should not be considered 354 * dirtyable, to prevent a situation where reclaim has to 355 * clean pages in order to balance the zones. 356 */ 357 x -= min(x, totalreserve_pages); 358 359 x += global_node_page_state(NR_INACTIVE_FILE); 360 x += global_node_page_state(NR_ACTIVE_FILE); 361 362 if (!vm_highmem_is_dirtyable) 363 x -= highmem_dirtyable_memory(x); 364 365 return x + 1; /* Ensure that we never return 0 */ 366 } 367 368 /** 369 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 370 * @dtc: dirty_throttle_control of interest 371 * 372 * Calculate @dtc->thresh and ->bg_thresh considering 373 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 374 * must ensure that @dtc->avail is set before calling this function. The 375 * dirty limits will be lifted by 1/4 for real-time tasks. 376 */ 377 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 378 { 379 const unsigned long available_memory = dtc->avail; 380 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 381 unsigned long bytes = vm_dirty_bytes; 382 unsigned long bg_bytes = dirty_background_bytes; 383 /* convert ratios to per-PAGE_SIZE for higher precision */ 384 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 385 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 386 unsigned long thresh; 387 unsigned long bg_thresh; 388 struct task_struct *tsk; 389 390 /* gdtc is !NULL iff @dtc is for memcg domain */ 391 if (gdtc) { 392 unsigned long global_avail = gdtc->avail; 393 394 /* 395 * The byte settings can't be applied directly to memcg 396 * domains. Convert them to ratios by scaling against 397 * globally available memory. As the ratios are in 398 * per-PAGE_SIZE, they can be obtained by dividing bytes by 399 * number of pages. 400 */ 401 if (bytes) 402 ratio = min(DIV_ROUND_UP(bytes, global_avail), 403 PAGE_SIZE); 404 if (bg_bytes) 405 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 406 PAGE_SIZE); 407 bytes = bg_bytes = 0; 408 } 409 410 if (bytes) 411 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 412 else 413 thresh = (ratio * available_memory) / PAGE_SIZE; 414 415 if (bg_bytes) 416 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 417 else 418 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 419 420 tsk = current; 421 if (rt_or_dl_task(tsk)) { 422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 424 } 425 /* 426 * Dirty throttling logic assumes the limits in page units fit into 427 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 428 */ 429 if (thresh > UINT_MAX) 430 thresh = UINT_MAX; 431 /* This makes sure bg_thresh is within 32-bits as well */ 432 if (bg_thresh >= thresh) 433 bg_thresh = thresh / 2; 434 dtc->thresh = thresh; 435 dtc->bg_thresh = bg_thresh; 436 437 /* we should eventually report the domain in the TP */ 438 if (!gdtc) 439 trace_global_dirty_state(bg_thresh, thresh); 440 } 441 442 /** 443 * global_dirty_limits - background-writeback and dirty-throttling thresholds 444 * @pbackground: out parameter for bg_thresh 445 * @pdirty: out parameter for thresh 446 * 447 * Calculate bg_thresh and thresh for global_wb_domain. See 448 * domain_dirty_limits() for details. 449 */ 450 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 451 { 452 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 453 454 gdtc.avail = global_dirtyable_memory(); 455 domain_dirty_limits(&gdtc); 456 457 *pbackground = gdtc.bg_thresh; 458 *pdirty = gdtc.thresh; 459 } 460 461 /** 462 * node_dirty_limit - maximum number of dirty pages allowed in a node 463 * @pgdat: the node 464 * 465 * Return: the maximum number of dirty pages allowed in a node, based 466 * on the node's dirtyable memory. 467 */ 468 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 469 { 470 unsigned long node_memory = node_dirtyable_memory(pgdat); 471 struct task_struct *tsk = current; 472 unsigned long dirty; 473 474 if (vm_dirty_bytes) 475 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 476 node_memory / global_dirtyable_memory(); 477 else 478 dirty = vm_dirty_ratio * node_memory / 100; 479 480 if (rt_or_dl_task(tsk)) 481 dirty += dirty / 4; 482 483 /* 484 * Dirty throttling logic assumes the limits in page units fit into 485 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 486 */ 487 return min_t(unsigned long, dirty, UINT_MAX); 488 } 489 490 /** 491 * node_dirty_ok - tells whether a node is within its dirty limits 492 * @pgdat: the node to check 493 * 494 * Return: %true when the dirty pages in @pgdat are within the node's 495 * dirty limit, %false if the limit is exceeded. 496 */ 497 bool node_dirty_ok(struct pglist_data *pgdat) 498 { 499 unsigned long limit = node_dirty_limit(pgdat); 500 unsigned long nr_pages = 0; 501 502 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 503 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 504 505 return nr_pages <= limit; 506 } 507 508 #ifdef CONFIG_SYSCTL 509 static int dirty_background_ratio_handler(const struct ctl_table *table, int write, 510 void *buffer, size_t *lenp, loff_t *ppos) 511 { 512 int ret; 513 514 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 515 if (ret == 0 && write) 516 dirty_background_bytes = 0; 517 return ret; 518 } 519 520 static int dirty_background_bytes_handler(const struct ctl_table *table, int write, 521 void *buffer, size_t *lenp, loff_t *ppos) 522 { 523 int ret; 524 unsigned long old_bytes = dirty_background_bytes; 525 526 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 527 if (ret == 0 && write) { 528 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > 529 UINT_MAX) { 530 dirty_background_bytes = old_bytes; 531 return -ERANGE; 532 } 533 dirty_background_ratio = 0; 534 } 535 return ret; 536 } 537 538 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer, 539 size_t *lenp, loff_t *ppos) 540 { 541 int old_ratio = vm_dirty_ratio; 542 int ret; 543 544 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 545 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 546 writeback_set_ratelimit(); 547 vm_dirty_bytes = 0; 548 } 549 return ret; 550 } 551 552 static int dirty_bytes_handler(const struct ctl_table *table, int write, 553 void *buffer, size_t *lenp, loff_t *ppos) 554 { 555 unsigned long old_bytes = vm_dirty_bytes; 556 int ret; 557 558 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 559 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 560 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { 561 vm_dirty_bytes = old_bytes; 562 return -ERANGE; 563 } 564 writeback_set_ratelimit(); 565 vm_dirty_ratio = 0; 566 } 567 return ret; 568 } 569 #endif 570 571 static unsigned long wp_next_time(unsigned long cur_time) 572 { 573 cur_time += VM_COMPLETIONS_PERIOD_LEN; 574 /* 0 has a special meaning... */ 575 if (!cur_time) 576 return 1; 577 return cur_time; 578 } 579 580 static void wb_domain_writeout_add(struct wb_domain *dom, 581 struct fprop_local_percpu *completions, 582 unsigned int max_prop_frac, long nr) 583 { 584 __fprop_add_percpu_max(&dom->completions, completions, 585 max_prop_frac, nr); 586 /* First event after period switching was turned off? */ 587 if (unlikely(!dom->period_time)) { 588 /* 589 * We can race with other wb_domain_writeout_add calls here but 590 * it does not cause any harm since the resulting time when 591 * timer will fire and what is in writeout_period_time will be 592 * roughly the same. 593 */ 594 dom->period_time = wp_next_time(jiffies); 595 mod_timer(&dom->period_timer, dom->period_time); 596 } 597 } 598 599 /* 600 * Increment @wb's writeout completion count and the global writeout 601 * completion count. Called from __folio_end_writeback(). 602 */ 603 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 604 { 605 struct wb_domain *cgdom; 606 607 wb_stat_mod(wb, WB_WRITTEN, nr); 608 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 609 wb->bdi->max_prop_frac, nr); 610 611 cgdom = mem_cgroup_wb_domain(wb); 612 if (cgdom) 613 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 614 wb->bdi->max_prop_frac, nr); 615 } 616 617 void wb_writeout_inc(struct bdi_writeback *wb) 618 { 619 unsigned long flags; 620 621 local_irq_save(flags); 622 __wb_writeout_add(wb, 1); 623 local_irq_restore(flags); 624 } 625 EXPORT_SYMBOL_GPL(wb_writeout_inc); 626 627 /* 628 * On idle system, we can be called long after we scheduled because we use 629 * deferred timers so count with missed periods. 630 */ 631 static void writeout_period(struct timer_list *t) 632 { 633 struct wb_domain *dom = from_timer(dom, t, period_timer); 634 int miss_periods = (jiffies - dom->period_time) / 635 VM_COMPLETIONS_PERIOD_LEN; 636 637 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 638 dom->period_time = wp_next_time(dom->period_time + 639 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 640 mod_timer(&dom->period_timer, dom->period_time); 641 } else { 642 /* 643 * Aging has zeroed all fractions. Stop wasting CPU on period 644 * updates. 645 */ 646 dom->period_time = 0; 647 } 648 } 649 650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 651 { 652 memset(dom, 0, sizeof(*dom)); 653 654 spin_lock_init(&dom->lock); 655 656 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 657 658 dom->dirty_limit_tstamp = jiffies; 659 660 return fprop_global_init(&dom->completions, gfp); 661 } 662 663 #ifdef CONFIG_CGROUP_WRITEBACK 664 void wb_domain_exit(struct wb_domain *dom) 665 { 666 del_timer_sync(&dom->period_timer); 667 fprop_global_destroy(&dom->completions); 668 } 669 #endif 670 671 /* 672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 673 * registered backing devices, which, for obvious reasons, can not 674 * exceed 100%. 675 */ 676 static unsigned int bdi_min_ratio; 677 678 static int bdi_check_pages_limit(unsigned long pages) 679 { 680 unsigned long max_dirty_pages = global_dirtyable_memory(); 681 682 if (pages > max_dirty_pages) 683 return -EINVAL; 684 685 return 0; 686 } 687 688 static unsigned long bdi_ratio_from_pages(unsigned long pages) 689 { 690 unsigned long background_thresh; 691 unsigned long dirty_thresh; 692 unsigned long ratio; 693 694 global_dirty_limits(&background_thresh, &dirty_thresh); 695 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 696 697 return ratio; 698 } 699 700 static u64 bdi_get_bytes(unsigned int ratio) 701 { 702 unsigned long background_thresh; 703 unsigned long dirty_thresh; 704 u64 bytes; 705 706 global_dirty_limits(&background_thresh, &dirty_thresh); 707 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 708 709 return bytes; 710 } 711 712 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 713 { 714 unsigned int delta; 715 int ret = 0; 716 717 if (min_ratio > 100 * BDI_RATIO_SCALE) 718 return -EINVAL; 719 720 spin_lock_bh(&bdi_lock); 721 if (min_ratio > bdi->max_ratio) { 722 ret = -EINVAL; 723 } else { 724 if (min_ratio < bdi->min_ratio) { 725 delta = bdi->min_ratio - min_ratio; 726 bdi_min_ratio -= delta; 727 bdi->min_ratio = min_ratio; 728 } else { 729 delta = min_ratio - bdi->min_ratio; 730 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 731 bdi_min_ratio += delta; 732 bdi->min_ratio = min_ratio; 733 } else { 734 ret = -EINVAL; 735 } 736 } 737 } 738 spin_unlock_bh(&bdi_lock); 739 740 return ret; 741 } 742 743 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 744 { 745 int ret = 0; 746 747 if (max_ratio > 100 * BDI_RATIO_SCALE) 748 return -EINVAL; 749 750 spin_lock_bh(&bdi_lock); 751 if (bdi->min_ratio > max_ratio) { 752 ret = -EINVAL; 753 } else { 754 bdi->max_ratio = max_ratio; 755 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 756 (100 * BDI_RATIO_SCALE); 757 } 758 spin_unlock_bh(&bdi_lock); 759 760 return ret; 761 } 762 763 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 764 { 765 return __bdi_set_min_ratio(bdi, min_ratio); 766 } 767 768 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 769 { 770 return __bdi_set_max_ratio(bdi, max_ratio); 771 } 772 773 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 774 { 775 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 776 } 777 778 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 779 { 780 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 781 } 782 EXPORT_SYMBOL(bdi_set_max_ratio); 783 784 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 785 { 786 return bdi_get_bytes(bdi->min_ratio); 787 } 788 789 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 790 { 791 int ret; 792 unsigned long pages = min_bytes >> PAGE_SHIFT; 793 unsigned long min_ratio; 794 795 ret = bdi_check_pages_limit(pages); 796 if (ret) 797 return ret; 798 799 min_ratio = bdi_ratio_from_pages(pages); 800 return __bdi_set_min_ratio(bdi, min_ratio); 801 } 802 803 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 804 { 805 return bdi_get_bytes(bdi->max_ratio); 806 } 807 808 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 809 { 810 int ret; 811 unsigned long pages = max_bytes >> PAGE_SHIFT; 812 unsigned long max_ratio; 813 814 ret = bdi_check_pages_limit(pages); 815 if (ret) 816 return ret; 817 818 max_ratio = bdi_ratio_from_pages(pages); 819 return __bdi_set_max_ratio(bdi, max_ratio); 820 } 821 822 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 823 { 824 if (strict_limit > 1) 825 return -EINVAL; 826 827 spin_lock_bh(&bdi_lock); 828 if (strict_limit) 829 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 830 else 831 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 832 spin_unlock_bh(&bdi_lock); 833 834 return 0; 835 } 836 837 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 838 unsigned long bg_thresh) 839 { 840 return (thresh + bg_thresh) / 2; 841 } 842 843 static unsigned long hard_dirty_limit(struct wb_domain *dom, 844 unsigned long thresh) 845 { 846 return max(thresh, dom->dirty_limit); 847 } 848 849 /* 850 * Memory which can be further allocated to a memcg domain is capped by 851 * system-wide clean memory excluding the amount being used in the domain. 852 */ 853 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 854 unsigned long filepages, unsigned long headroom) 855 { 856 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 857 unsigned long clean = filepages - min(filepages, mdtc->dirty); 858 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 859 unsigned long other_clean = global_clean - min(global_clean, clean); 860 861 mdtc->avail = filepages + min(headroom, other_clean); 862 } 863 864 static inline bool dtc_is_global(struct dirty_throttle_control *dtc) 865 { 866 return mdtc_gdtc(dtc) == NULL; 867 } 868 869 /* 870 * Dirty background will ignore pages being written as we're trying to 871 * decide whether to put more under writeback. 872 */ 873 static void domain_dirty_avail(struct dirty_throttle_control *dtc, 874 bool include_writeback) 875 { 876 if (dtc_is_global(dtc)) { 877 dtc->avail = global_dirtyable_memory(); 878 dtc->dirty = global_node_page_state(NR_FILE_DIRTY); 879 if (include_writeback) 880 dtc->dirty += global_node_page_state(NR_WRITEBACK); 881 } else { 882 unsigned long filepages = 0, headroom = 0, writeback = 0; 883 884 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty, 885 &writeback); 886 if (include_writeback) 887 dtc->dirty += writeback; 888 mdtc_calc_avail(dtc, filepages, headroom); 889 } 890 } 891 892 /** 893 * __wb_calc_thresh - @wb's share of dirty threshold 894 * @dtc: dirty_throttle_context of interest 895 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc 896 * 897 * Note that balance_dirty_pages() will only seriously take dirty throttling 898 * threshold as a hard limit when sleeping max_pause per page is not enough 899 * to keep the dirty pages under control. For example, when the device is 900 * completely stalled due to some error conditions, or when there are 1000 901 * dd tasks writing to a slow 10MB/s USB key. 902 * In the other normal situations, it acts more gently by throttling the tasks 903 * more (rather than completely block them) when the wb dirty pages go high. 904 * 905 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 906 * - starving fast devices 907 * - piling up dirty pages (that will take long time to sync) on slow devices 908 * 909 * The wb's share of dirty limit will be adapting to its throughput and 910 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 911 * 912 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term 913 * "dirty" in the context of dirty balancing includes all PG_dirty and 914 * PG_writeback pages. 915 */ 916 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, 917 unsigned long thresh) 918 { 919 struct wb_domain *dom = dtc_dom(dtc); 920 struct bdi_writeback *wb = dtc->wb; 921 u64 wb_thresh; 922 u64 wb_max_thresh; 923 unsigned long numerator, denominator; 924 unsigned long wb_min_ratio, wb_max_ratio; 925 926 /* 927 * Calculate this wb's share of the thresh ratio. 928 */ 929 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 930 &numerator, &denominator); 931 932 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 933 wb_thresh *= numerator; 934 wb_thresh = div64_ul(wb_thresh, denominator); 935 936 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio); 937 938 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 939 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 940 if (wb_thresh > wb_max_thresh) 941 wb_thresh = wb_max_thresh; 942 943 /* 944 * With strictlimit flag, the wb_thresh is treated as 945 * a hard limit in balance_dirty_pages() and wb_position_ratio(). 946 * It's possible that wb_thresh is close to zero, not because 947 * the device is slow, but because it has been inactive. 948 * To prevent occasional writes from being blocked, we raise wb_thresh. 949 */ 950 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 951 unsigned long limit = hard_dirty_limit(dom, dtc->thresh); 952 u64 wb_scale_thresh = 0; 953 954 if (limit > dtc->dirty) 955 wb_scale_thresh = (limit - dtc->dirty) / 100; 956 wb_thresh = max(wb_thresh, min(wb_scale_thresh, wb_max_thresh / 4)); 957 } 958 959 return wb_thresh; 960 } 961 962 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 963 { 964 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 965 966 return __wb_calc_thresh(&gdtc, thresh); 967 } 968 969 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 970 { 971 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 972 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 973 974 domain_dirty_avail(&gdtc, true); 975 domain_dirty_avail(&mdtc, true); 976 domain_dirty_limits(&mdtc); 977 978 return __wb_calc_thresh(&mdtc, mdtc.thresh); 979 } 980 981 /* 982 * setpoint - dirty 3 983 * f(dirty) := 1.0 + (----------------) 984 * limit - setpoint 985 * 986 * it's a 3rd order polynomial that subjects to 987 * 988 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 989 * (2) f(setpoint) = 1.0 => the balance point 990 * (3) f(limit) = 0 => the hard limit 991 * (4) df/dx <= 0 => negative feedback control 992 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 993 * => fast response on large errors; small oscillation near setpoint 994 */ 995 static long long pos_ratio_polynom(unsigned long setpoint, 996 unsigned long dirty, 997 unsigned long limit) 998 { 999 long long pos_ratio; 1000 long x; 1001 1002 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 1003 (limit - setpoint) | 1); 1004 pos_ratio = x; 1005 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 1006 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 1007 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 1008 1009 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 1010 } 1011 1012 /* 1013 * Dirty position control. 1014 * 1015 * (o) global/bdi setpoints 1016 * 1017 * We want the dirty pages be balanced around the global/wb setpoints. 1018 * When the number of dirty pages is higher/lower than the setpoint, the 1019 * dirty position control ratio (and hence task dirty ratelimit) will be 1020 * decreased/increased to bring the dirty pages back to the setpoint. 1021 * 1022 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 1023 * 1024 * if (dirty < setpoint) scale up pos_ratio 1025 * if (dirty > setpoint) scale down pos_ratio 1026 * 1027 * if (wb_dirty < wb_setpoint) scale up pos_ratio 1028 * if (wb_dirty > wb_setpoint) scale down pos_ratio 1029 * 1030 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 1031 * 1032 * (o) global control line 1033 * 1034 * ^ pos_ratio 1035 * | 1036 * | |<===== global dirty control scope ======>| 1037 * 2.0 * * * * * * * 1038 * | .* 1039 * | . * 1040 * | . * 1041 * | . * 1042 * | . * 1043 * | . * 1044 * 1.0 ................................* 1045 * | . . * 1046 * | . . * 1047 * | . . * 1048 * | . . * 1049 * | . . * 1050 * 0 +------------.------------------.----------------------*-------------> 1051 * freerun^ setpoint^ limit^ dirty pages 1052 * 1053 * (o) wb control line 1054 * 1055 * ^ pos_ratio 1056 * | 1057 * | * 1058 * | * 1059 * | * 1060 * | * 1061 * | * |<=========== span ============>| 1062 * 1.0 .......................* 1063 * | . * 1064 * | . * 1065 * | . * 1066 * | . * 1067 * | . * 1068 * | . * 1069 * | . * 1070 * | . * 1071 * | . * 1072 * | . * 1073 * | . * 1074 * 1/4 ...............................................* * * * * * * * * * * * 1075 * | . . 1076 * | . . 1077 * | . . 1078 * 0 +----------------------.-------------------------------.-------------> 1079 * wb_setpoint^ x_intercept^ 1080 * 1081 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1082 * be smoothly throttled down to normal if it starts high in situations like 1083 * - start writing to a slow SD card and a fast disk at the same time. The SD 1084 * card's wb_dirty may rush to many times higher than wb_setpoint. 1085 * - the wb dirty thresh drops quickly due to change of JBOD workload 1086 */ 1087 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1088 { 1089 struct bdi_writeback *wb = dtc->wb; 1090 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1091 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1092 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1093 unsigned long wb_thresh = dtc->wb_thresh; 1094 unsigned long x_intercept; 1095 unsigned long setpoint; /* dirty pages' target balance point */ 1096 unsigned long wb_setpoint; 1097 unsigned long span; 1098 long long pos_ratio; /* for scaling up/down the rate limit */ 1099 long x; 1100 1101 dtc->pos_ratio = 0; 1102 1103 if (unlikely(dtc->dirty >= limit)) 1104 return; 1105 1106 /* 1107 * global setpoint 1108 * 1109 * See comment for pos_ratio_polynom(). 1110 */ 1111 setpoint = (freerun + limit) / 2; 1112 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1113 1114 /* 1115 * The strictlimit feature is a tool preventing mistrusted filesystems 1116 * from growing a large number of dirty pages before throttling. For 1117 * such filesystems balance_dirty_pages always checks wb counters 1118 * against wb limits. Even if global "nr_dirty" is under "freerun". 1119 * This is especially important for fuse which sets bdi->max_ratio to 1120 * 1% by default. Without strictlimit feature, fuse writeback may 1121 * consume arbitrary amount of RAM because it is accounted in 1122 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1123 * 1124 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1125 * two values: wb_dirty and wb_thresh. Let's consider an example: 1126 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1127 * limits are set by default to 10% and 20% (background and throttle). 1128 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1129 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1130 * about ~6K pages (as the average of background and throttle wb 1131 * limits). The 3rd order polynomial will provide positive feedback if 1132 * wb_dirty is under wb_setpoint and vice versa. 1133 * 1134 * Note, that we cannot use global counters in these calculations 1135 * because we want to throttle process writing to a strictlimit wb 1136 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1137 * in the example above). 1138 */ 1139 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1140 long long wb_pos_ratio; 1141 1142 if (dtc->wb_dirty < 8) { 1143 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 1144 2 << RATELIMIT_CALC_SHIFT); 1145 return; 1146 } 1147 1148 if (dtc->wb_dirty >= wb_thresh) 1149 return; 1150 1151 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1152 dtc->wb_bg_thresh); 1153 1154 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1155 return; 1156 1157 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1158 wb_thresh); 1159 1160 /* 1161 * Typically, for strictlimit case, wb_setpoint << setpoint 1162 * and pos_ratio >> wb_pos_ratio. In the other words global 1163 * state ("dirty") is not limiting factor and we have to 1164 * make decision based on wb counters. But there is an 1165 * important case when global pos_ratio should get precedence: 1166 * global limits are exceeded (e.g. due to activities on other 1167 * wb's) while given strictlimit wb is below limit. 1168 * 1169 * "pos_ratio * wb_pos_ratio" would work for the case above, 1170 * but it would look too non-natural for the case of all 1171 * activity in the system coming from a single strictlimit wb 1172 * with bdi->max_ratio == 100%. 1173 * 1174 * Note that min() below somewhat changes the dynamics of the 1175 * control system. Normally, pos_ratio value can be well over 3 1176 * (when globally we are at freerun and wb is well below wb 1177 * setpoint). Now the maximum pos_ratio in the same situation 1178 * is 2. We might want to tweak this if we observe the control 1179 * system is too slow to adapt. 1180 */ 1181 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1182 return; 1183 } 1184 1185 /* 1186 * We have computed basic pos_ratio above based on global situation. If 1187 * the wb is over/under its share of dirty pages, we want to scale 1188 * pos_ratio further down/up. That is done by the following mechanism. 1189 */ 1190 1191 /* 1192 * wb setpoint 1193 * 1194 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1195 * 1196 * x_intercept - wb_dirty 1197 * := -------------------------- 1198 * x_intercept - wb_setpoint 1199 * 1200 * The main wb control line is a linear function that subjects to 1201 * 1202 * (1) f(wb_setpoint) = 1.0 1203 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1204 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1205 * 1206 * For single wb case, the dirty pages are observed to fluctuate 1207 * regularly within range 1208 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1209 * for various filesystems, where (2) can yield in a reasonable 12.5% 1210 * fluctuation range for pos_ratio. 1211 * 1212 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1213 * own size, so move the slope over accordingly and choose a slope that 1214 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1215 */ 1216 if (unlikely(wb_thresh > dtc->thresh)) 1217 wb_thresh = dtc->thresh; 1218 /* 1219 * It's very possible that wb_thresh is close to 0 not because the 1220 * device is slow, but that it has remained inactive for long time. 1221 * Honour such devices a reasonable good (hopefully IO efficient) 1222 * threshold, so that the occasional writes won't be blocked and active 1223 * writes can rampup the threshold quickly. 1224 */ 1225 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1226 /* 1227 * scale global setpoint to wb's: 1228 * wb_setpoint = setpoint * wb_thresh / thresh 1229 */ 1230 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1231 wb_setpoint = setpoint * (u64)x >> 16; 1232 /* 1233 * Use span=(8*write_bw) in single wb case as indicated by 1234 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1235 * 1236 * wb_thresh thresh - wb_thresh 1237 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1238 * thresh thresh 1239 */ 1240 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1241 x_intercept = wb_setpoint + span; 1242 1243 if (dtc->wb_dirty < x_intercept - span / 4) { 1244 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1245 (x_intercept - wb_setpoint) | 1); 1246 } else 1247 pos_ratio /= 4; 1248 1249 /* 1250 * wb reserve area, safeguard against dirty pool underrun and disk idle 1251 * It may push the desired control point of global dirty pages higher 1252 * than setpoint. 1253 */ 1254 x_intercept = wb_thresh / 2; 1255 if (dtc->wb_dirty < x_intercept) { 1256 if (dtc->wb_dirty > x_intercept / 8) 1257 pos_ratio = div_u64(pos_ratio * x_intercept, 1258 dtc->wb_dirty); 1259 else 1260 pos_ratio *= 8; 1261 } 1262 1263 dtc->pos_ratio = pos_ratio; 1264 } 1265 1266 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1267 unsigned long elapsed, 1268 unsigned long written) 1269 { 1270 const unsigned long period = roundup_pow_of_two(3 * HZ); 1271 unsigned long avg = wb->avg_write_bandwidth; 1272 unsigned long old = wb->write_bandwidth; 1273 u64 bw; 1274 1275 /* 1276 * bw = written * HZ / elapsed 1277 * 1278 * bw * elapsed + write_bandwidth * (period - elapsed) 1279 * write_bandwidth = --------------------------------------------------- 1280 * period 1281 * 1282 * @written may have decreased due to folio_redirty_for_writepage(). 1283 * Avoid underflowing @bw calculation. 1284 */ 1285 bw = written - min(written, wb->written_stamp); 1286 bw *= HZ; 1287 if (unlikely(elapsed > period)) { 1288 bw = div64_ul(bw, elapsed); 1289 avg = bw; 1290 goto out; 1291 } 1292 bw += (u64)wb->write_bandwidth * (period - elapsed); 1293 bw >>= ilog2(period); 1294 1295 /* 1296 * one more level of smoothing, for filtering out sudden spikes 1297 */ 1298 if (avg > old && old >= (unsigned long)bw) 1299 avg -= (avg - old) >> 3; 1300 1301 if (avg < old && old <= (unsigned long)bw) 1302 avg += (old - avg) >> 3; 1303 1304 out: 1305 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1306 avg = max(avg, 1LU); 1307 if (wb_has_dirty_io(wb)) { 1308 long delta = avg - wb->avg_write_bandwidth; 1309 WARN_ON_ONCE(atomic_long_add_return(delta, 1310 &wb->bdi->tot_write_bandwidth) <= 0); 1311 } 1312 wb->write_bandwidth = bw; 1313 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1314 } 1315 1316 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1317 { 1318 struct wb_domain *dom = dtc_dom(dtc); 1319 unsigned long thresh = dtc->thresh; 1320 unsigned long limit = dom->dirty_limit; 1321 1322 /* 1323 * Follow up in one step. 1324 */ 1325 if (limit < thresh) { 1326 limit = thresh; 1327 goto update; 1328 } 1329 1330 /* 1331 * Follow down slowly. Use the higher one as the target, because thresh 1332 * may drop below dirty. This is exactly the reason to introduce 1333 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1334 */ 1335 thresh = max(thresh, dtc->dirty); 1336 if (limit > thresh) { 1337 limit -= (limit - thresh) >> 5; 1338 goto update; 1339 } 1340 return; 1341 update: 1342 dom->dirty_limit = limit; 1343 } 1344 1345 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1346 unsigned long now) 1347 { 1348 struct wb_domain *dom = dtc_dom(dtc); 1349 1350 /* 1351 * check locklessly first to optimize away locking for the most time 1352 */ 1353 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1354 return; 1355 1356 spin_lock(&dom->lock); 1357 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1358 update_dirty_limit(dtc); 1359 dom->dirty_limit_tstamp = now; 1360 } 1361 spin_unlock(&dom->lock); 1362 } 1363 1364 /* 1365 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1366 * 1367 * Normal wb tasks will be curbed at or below it in long term. 1368 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1369 */ 1370 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1371 unsigned long dirtied, 1372 unsigned long elapsed) 1373 { 1374 struct bdi_writeback *wb = dtc->wb; 1375 unsigned long dirty = dtc->dirty; 1376 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1377 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1378 unsigned long setpoint = (freerun + limit) / 2; 1379 unsigned long write_bw = wb->avg_write_bandwidth; 1380 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1381 unsigned long dirty_rate; 1382 unsigned long task_ratelimit; 1383 unsigned long balanced_dirty_ratelimit; 1384 unsigned long step; 1385 unsigned long x; 1386 unsigned long shift; 1387 1388 /* 1389 * The dirty rate will match the writeout rate in long term, except 1390 * when dirty pages are truncated by userspace or re-dirtied by FS. 1391 */ 1392 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1393 1394 /* 1395 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1396 */ 1397 task_ratelimit = (u64)dirty_ratelimit * 1398 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1399 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1400 1401 /* 1402 * A linear estimation of the "balanced" throttle rate. The theory is, 1403 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1404 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1405 * formula will yield the balanced rate limit (write_bw / N). 1406 * 1407 * Note that the expanded form is not a pure rate feedback: 1408 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1409 * but also takes pos_ratio into account: 1410 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1411 * 1412 * (1) is not realistic because pos_ratio also takes part in balancing 1413 * the dirty rate. Consider the state 1414 * pos_ratio = 0.5 (3) 1415 * rate = 2 * (write_bw / N) (4) 1416 * If (1) is used, it will stuck in that state! Because each dd will 1417 * be throttled at 1418 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1419 * yielding 1420 * dirty_rate = N * task_ratelimit = write_bw (6) 1421 * put (6) into (1) we get 1422 * rate_(i+1) = rate_(i) (7) 1423 * 1424 * So we end up using (2) to always keep 1425 * rate_(i+1) ~= (write_bw / N) (8) 1426 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1427 * pos_ratio is able to drive itself to 1.0, which is not only where 1428 * the dirty count meet the setpoint, but also where the slope of 1429 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1430 */ 1431 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1432 dirty_rate | 1); 1433 /* 1434 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1435 */ 1436 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1437 balanced_dirty_ratelimit = write_bw; 1438 1439 /* 1440 * We could safely do this and return immediately: 1441 * 1442 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1443 * 1444 * However to get a more stable dirty_ratelimit, the below elaborated 1445 * code makes use of task_ratelimit to filter out singular points and 1446 * limit the step size. 1447 * 1448 * The below code essentially only uses the relative value of 1449 * 1450 * task_ratelimit - dirty_ratelimit 1451 * = (pos_ratio - 1) * dirty_ratelimit 1452 * 1453 * which reflects the direction and size of dirty position error. 1454 */ 1455 1456 /* 1457 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1458 * task_ratelimit is on the same side of dirty_ratelimit, too. 1459 * For example, when 1460 * - dirty_ratelimit > balanced_dirty_ratelimit 1461 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1462 * lowering dirty_ratelimit will help meet both the position and rate 1463 * control targets. Otherwise, don't update dirty_ratelimit if it will 1464 * only help meet the rate target. After all, what the users ultimately 1465 * feel and care are stable dirty rate and small position error. 1466 * 1467 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1468 * and filter out the singular points of balanced_dirty_ratelimit. Which 1469 * keeps jumping around randomly and can even leap far away at times 1470 * due to the small 200ms estimation period of dirty_rate (we want to 1471 * keep that period small to reduce time lags). 1472 */ 1473 step = 0; 1474 1475 /* 1476 * For strictlimit case, calculations above were based on wb counters 1477 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1478 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1479 * Hence, to calculate "step" properly, we have to use wb_dirty as 1480 * "dirty" and wb_setpoint as "setpoint". 1481 * 1482 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1483 * it's possible that wb_thresh is close to zero due to inactivity 1484 * of backing device. 1485 */ 1486 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1487 dirty = dtc->wb_dirty; 1488 if (dtc->wb_dirty < 8) 1489 setpoint = dtc->wb_dirty + 1; 1490 else 1491 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1492 } 1493 1494 if (dirty < setpoint) { 1495 x = min3(wb->balanced_dirty_ratelimit, 1496 balanced_dirty_ratelimit, task_ratelimit); 1497 if (dirty_ratelimit < x) 1498 step = x - dirty_ratelimit; 1499 } else { 1500 x = max3(wb->balanced_dirty_ratelimit, 1501 balanced_dirty_ratelimit, task_ratelimit); 1502 if (dirty_ratelimit > x) 1503 step = dirty_ratelimit - x; 1504 } 1505 1506 /* 1507 * Don't pursue 100% rate matching. It's impossible since the balanced 1508 * rate itself is constantly fluctuating. So decrease the track speed 1509 * when it gets close to the target. Helps eliminate pointless tremors. 1510 */ 1511 shift = dirty_ratelimit / (2 * step + 1); 1512 if (shift < BITS_PER_LONG) 1513 step = DIV_ROUND_UP(step >> shift, 8); 1514 else 1515 step = 0; 1516 1517 if (dirty_ratelimit < balanced_dirty_ratelimit) 1518 dirty_ratelimit += step; 1519 else 1520 dirty_ratelimit -= step; 1521 1522 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1523 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1524 1525 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1526 } 1527 1528 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1529 struct dirty_throttle_control *mdtc, 1530 bool update_ratelimit) 1531 { 1532 struct bdi_writeback *wb = gdtc->wb; 1533 unsigned long now = jiffies; 1534 unsigned long elapsed; 1535 unsigned long dirtied; 1536 unsigned long written; 1537 1538 spin_lock(&wb->list_lock); 1539 1540 /* 1541 * Lockless checks for elapsed time are racy and delayed update after 1542 * IO completion doesn't do it at all (to make sure written pages are 1543 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1544 * division errors. 1545 */ 1546 elapsed = max(now - wb->bw_time_stamp, 1UL); 1547 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1548 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1549 1550 if (update_ratelimit) { 1551 domain_update_dirty_limit(gdtc, now); 1552 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1553 1554 /* 1555 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1556 * compiler has no way to figure that out. Help it. 1557 */ 1558 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1559 domain_update_dirty_limit(mdtc, now); 1560 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1561 } 1562 } 1563 wb_update_write_bandwidth(wb, elapsed, written); 1564 1565 wb->dirtied_stamp = dirtied; 1566 wb->written_stamp = written; 1567 WRITE_ONCE(wb->bw_time_stamp, now); 1568 spin_unlock(&wb->list_lock); 1569 } 1570 1571 void wb_update_bandwidth(struct bdi_writeback *wb) 1572 { 1573 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1574 1575 __wb_update_bandwidth(&gdtc, NULL, false); 1576 } 1577 1578 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1579 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1580 1581 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1582 { 1583 unsigned long now = jiffies; 1584 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1585 1586 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1587 !atomic_read(&wb->writeback_inodes)) { 1588 spin_lock(&wb->list_lock); 1589 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1590 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1591 WRITE_ONCE(wb->bw_time_stamp, now); 1592 spin_unlock(&wb->list_lock); 1593 } 1594 } 1595 1596 /* 1597 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1598 * will look to see if it needs to start dirty throttling. 1599 * 1600 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1601 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1602 * (the number of pages we may dirty without exceeding the dirty limits). 1603 */ 1604 static unsigned long dirty_poll_interval(unsigned long dirty, 1605 unsigned long thresh) 1606 { 1607 if (thresh > dirty) 1608 return 1UL << (ilog2(thresh - dirty) >> 1); 1609 1610 return 1; 1611 } 1612 1613 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1614 unsigned long wb_dirty) 1615 { 1616 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1617 unsigned long t; 1618 1619 /* 1620 * Limit pause time for small memory systems. If sleeping for too long 1621 * time, a small pool of dirty/writeback pages may go empty and disk go 1622 * idle. 1623 * 1624 * 8 serves as the safety ratio. 1625 */ 1626 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1627 t++; 1628 1629 return min_t(unsigned long, t, MAX_PAUSE); 1630 } 1631 1632 static long wb_min_pause(struct bdi_writeback *wb, 1633 long max_pause, 1634 unsigned long task_ratelimit, 1635 unsigned long dirty_ratelimit, 1636 int *nr_dirtied_pause) 1637 { 1638 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1639 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1640 long t; /* target pause */ 1641 long pause; /* estimated next pause */ 1642 int pages; /* target nr_dirtied_pause */ 1643 1644 /* target for 10ms pause on 1-dd case */ 1645 t = max(1, HZ / 100); 1646 1647 /* 1648 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1649 * overheads. 1650 * 1651 * (N * 10ms) on 2^N concurrent tasks. 1652 */ 1653 if (hi > lo) 1654 t += (hi - lo) * (10 * HZ) / 1024; 1655 1656 /* 1657 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1658 * on the much more stable dirty_ratelimit. However the next pause time 1659 * will be computed based on task_ratelimit and the two rate limits may 1660 * depart considerably at some time. Especially if task_ratelimit goes 1661 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1662 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1663 * result task_ratelimit won't be executed faithfully, which could 1664 * eventually bring down dirty_ratelimit. 1665 * 1666 * We apply two rules to fix it up: 1667 * 1) try to estimate the next pause time and if necessary, use a lower 1668 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1669 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1670 * 2) limit the target pause time to max_pause/2, so that the normal 1671 * small fluctuations of task_ratelimit won't trigger rule (1) and 1672 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1673 */ 1674 t = min(t, 1 + max_pause / 2); 1675 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1676 1677 /* 1678 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1679 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1680 * When the 16 consecutive reads are often interrupted by some dirty 1681 * throttling pause during the async writes, cfq will go into idles 1682 * (deadline is fine). So push nr_dirtied_pause as high as possible 1683 * until reaches DIRTY_POLL_THRESH=32 pages. 1684 */ 1685 if (pages < DIRTY_POLL_THRESH) { 1686 t = max_pause; 1687 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1688 if (pages > DIRTY_POLL_THRESH) { 1689 pages = DIRTY_POLL_THRESH; 1690 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1691 } 1692 } 1693 1694 pause = HZ * pages / (task_ratelimit + 1); 1695 if (pause > max_pause) { 1696 t = max_pause; 1697 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1698 } 1699 1700 *nr_dirtied_pause = pages; 1701 /* 1702 * The minimal pause time will normally be half the target pause time. 1703 */ 1704 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1705 } 1706 1707 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1708 { 1709 struct bdi_writeback *wb = dtc->wb; 1710 unsigned long wb_reclaimable; 1711 1712 /* 1713 * wb_thresh is not treated as some limiting factor as 1714 * dirty_thresh, due to reasons 1715 * - in JBOD setup, wb_thresh can fluctuate a lot 1716 * - in a system with HDD and USB key, the USB key may somehow 1717 * go into state (wb_dirty >> wb_thresh) either because 1718 * wb_dirty starts high, or because wb_thresh drops low. 1719 * In this case we don't want to hard throttle the USB key 1720 * dirtiers for 100 seconds until wb_dirty drops under 1721 * wb_thresh. Instead the auxiliary wb control line in 1722 * wb_position_ratio() will let the dirtier task progress 1723 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1724 */ 1725 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); 1726 dtc->wb_bg_thresh = dtc->thresh ? 1727 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1728 1729 /* 1730 * In order to avoid the stacked BDI deadlock we need 1731 * to ensure we accurately count the 'dirty' pages when 1732 * the threshold is low. 1733 * 1734 * Otherwise it would be possible to get thresh+n pages 1735 * reported dirty, even though there are thresh-m pages 1736 * actually dirty; with m+n sitting in the percpu 1737 * deltas. 1738 */ 1739 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1740 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1741 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1742 } else { 1743 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1744 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1745 } 1746 } 1747 1748 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc, 1749 bool strictlimit) 1750 { 1751 unsigned long dirty, thresh; 1752 1753 if (strictlimit) { 1754 dirty = dtc->wb_dirty; 1755 thresh = dtc->wb_thresh; 1756 } else { 1757 dirty = dtc->dirty; 1758 thresh = dtc->thresh; 1759 } 1760 1761 return dirty_poll_interval(dirty, thresh); 1762 } 1763 1764 /* 1765 * Throttle it only when the background writeback cannot catch-up. This avoids 1766 * (excessively) small writeouts when the wb limits are ramping up in case of 1767 * !strictlimit. 1768 * 1769 * In strictlimit case make decision based on the wb counters and limits. Small 1770 * writeouts when the wb limits are ramping up are the price we consciously pay 1771 * for strictlimit-ing. 1772 */ 1773 static void domain_dirty_freerun(struct dirty_throttle_control *dtc, 1774 bool strictlimit) 1775 { 1776 unsigned long dirty, thresh, bg_thresh; 1777 1778 if (unlikely(strictlimit)) { 1779 wb_dirty_limits(dtc); 1780 dirty = dtc->wb_dirty; 1781 thresh = dtc->wb_thresh; 1782 bg_thresh = dtc->wb_bg_thresh; 1783 } else { 1784 dirty = dtc->dirty; 1785 thresh = dtc->thresh; 1786 bg_thresh = dtc->bg_thresh; 1787 } 1788 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh); 1789 } 1790 1791 static void balance_domain_limits(struct dirty_throttle_control *dtc, 1792 bool strictlimit) 1793 { 1794 domain_dirty_avail(dtc, true); 1795 domain_dirty_limits(dtc); 1796 domain_dirty_freerun(dtc, strictlimit); 1797 } 1798 1799 static void wb_dirty_freerun(struct dirty_throttle_control *dtc, 1800 bool strictlimit) 1801 { 1802 dtc->freerun = false; 1803 1804 /* was already handled in domain_dirty_freerun */ 1805 if (strictlimit) 1806 return; 1807 1808 wb_dirty_limits(dtc); 1809 /* 1810 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb 1811 * freerun ceiling. 1812 */ 1813 if (!(current->flags & PF_LOCAL_THROTTLE)) 1814 return; 1815 1816 dtc->freerun = dtc->wb_dirty < 1817 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh); 1818 } 1819 1820 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc, 1821 bool strictlimit) 1822 { 1823 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) && 1824 ((dtc->dirty > dtc->thresh) || strictlimit); 1825 } 1826 1827 /* 1828 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is 1829 * in freerun state. Please don't use these invalid fields in freerun case. 1830 */ 1831 static void balance_wb_limits(struct dirty_throttle_control *dtc, 1832 bool strictlimit) 1833 { 1834 wb_dirty_freerun(dtc, strictlimit); 1835 if (dtc->freerun) 1836 return; 1837 1838 wb_dirty_exceeded(dtc, strictlimit); 1839 wb_position_ratio(dtc); 1840 } 1841 1842 /* 1843 * balance_dirty_pages() must be called by processes which are generating dirty 1844 * data. It looks at the number of dirty pages in the machine and will force 1845 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1846 * If we're over `background_thresh' then the writeback threads are woken to 1847 * perform some writeout. 1848 */ 1849 static int balance_dirty_pages(struct bdi_writeback *wb, 1850 unsigned long pages_dirtied, unsigned int flags) 1851 { 1852 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1853 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1854 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1855 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1856 &mdtc_stor : NULL; 1857 struct dirty_throttle_control *sdtc; 1858 unsigned long nr_dirty; 1859 long period; 1860 long pause; 1861 long max_pause; 1862 long min_pause; 1863 int nr_dirtied_pause; 1864 unsigned long task_ratelimit; 1865 unsigned long dirty_ratelimit; 1866 struct backing_dev_info *bdi = wb->bdi; 1867 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1868 unsigned long start_time = jiffies; 1869 int ret = 0; 1870 1871 for (;;) { 1872 unsigned long now = jiffies; 1873 1874 nr_dirty = global_node_page_state(NR_FILE_DIRTY); 1875 1876 balance_domain_limits(gdtc, strictlimit); 1877 if (mdtc) { 1878 /* 1879 * If @wb belongs to !root memcg, repeat the same 1880 * basic calculations for the memcg domain. 1881 */ 1882 balance_domain_limits(mdtc, strictlimit); 1883 } 1884 1885 /* 1886 * In laptop mode, we wait until hitting the higher threshold 1887 * before starting background writeout, and then write out all 1888 * the way down to the lower threshold. So slow writers cause 1889 * minimal disk activity. 1890 * 1891 * In normal mode, we start background writeout at the lower 1892 * background_thresh, to keep the amount of dirty memory low. 1893 */ 1894 if (!laptop_mode && nr_dirty > gdtc->bg_thresh && 1895 !writeback_in_progress(wb)) 1896 wb_start_background_writeback(wb); 1897 1898 /* 1899 * If memcg domain is in effect, @dirty should be under 1900 * both global and memcg freerun ceilings. 1901 */ 1902 if (gdtc->freerun && (!mdtc || mdtc->freerun)) { 1903 unsigned long intv; 1904 unsigned long m_intv; 1905 1906 free_running: 1907 intv = domain_poll_intv(gdtc, strictlimit); 1908 m_intv = ULONG_MAX; 1909 1910 current->dirty_paused_when = now; 1911 current->nr_dirtied = 0; 1912 if (mdtc) 1913 m_intv = domain_poll_intv(mdtc, strictlimit); 1914 current->nr_dirtied_pause = min(intv, m_intv); 1915 break; 1916 } 1917 1918 /* Start writeback even when in laptop mode */ 1919 if (unlikely(!writeback_in_progress(wb))) 1920 wb_start_background_writeback(wb); 1921 1922 mem_cgroup_flush_foreign(wb); 1923 1924 /* 1925 * Calculate global domain's pos_ratio and select the 1926 * global dtc by default. 1927 */ 1928 balance_wb_limits(gdtc, strictlimit); 1929 if (gdtc->freerun) 1930 goto free_running; 1931 sdtc = gdtc; 1932 1933 if (mdtc) { 1934 /* 1935 * If memcg domain is in effect, calculate its 1936 * pos_ratio. @wb should satisfy constraints from 1937 * both global and memcg domains. Choose the one 1938 * w/ lower pos_ratio. 1939 */ 1940 balance_wb_limits(mdtc, strictlimit); 1941 if (mdtc->freerun) 1942 goto free_running; 1943 if (mdtc->pos_ratio < gdtc->pos_ratio) 1944 sdtc = mdtc; 1945 } 1946 1947 wb->dirty_exceeded = gdtc->dirty_exceeded || 1948 (mdtc && mdtc->dirty_exceeded); 1949 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1950 BANDWIDTH_INTERVAL)) 1951 __wb_update_bandwidth(gdtc, mdtc, true); 1952 1953 /* throttle according to the chosen dtc */ 1954 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1955 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1956 RATELIMIT_CALC_SHIFT; 1957 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1958 min_pause = wb_min_pause(wb, max_pause, 1959 task_ratelimit, dirty_ratelimit, 1960 &nr_dirtied_pause); 1961 1962 if (unlikely(task_ratelimit == 0)) { 1963 period = max_pause; 1964 pause = max_pause; 1965 goto pause; 1966 } 1967 period = HZ * pages_dirtied / task_ratelimit; 1968 pause = period; 1969 if (current->dirty_paused_when) 1970 pause -= now - current->dirty_paused_when; 1971 /* 1972 * For less than 1s think time (ext3/4 may block the dirtier 1973 * for up to 800ms from time to time on 1-HDD; so does xfs, 1974 * however at much less frequency), try to compensate it in 1975 * future periods by updating the virtual time; otherwise just 1976 * do a reset, as it may be a light dirtier. 1977 */ 1978 if (pause < min_pause) { 1979 trace_balance_dirty_pages(wb, 1980 sdtc->thresh, 1981 sdtc->bg_thresh, 1982 sdtc->dirty, 1983 sdtc->wb_thresh, 1984 sdtc->wb_dirty, 1985 dirty_ratelimit, 1986 task_ratelimit, 1987 pages_dirtied, 1988 period, 1989 min(pause, 0L), 1990 start_time); 1991 if (pause < -HZ) { 1992 current->dirty_paused_when = now; 1993 current->nr_dirtied = 0; 1994 } else if (period) { 1995 current->dirty_paused_when += period; 1996 current->nr_dirtied = 0; 1997 } else if (current->nr_dirtied_pause <= pages_dirtied) 1998 current->nr_dirtied_pause += pages_dirtied; 1999 break; 2000 } 2001 if (unlikely(pause > max_pause)) { 2002 /* for occasional dropped task_ratelimit */ 2003 now += min(pause - max_pause, max_pause); 2004 pause = max_pause; 2005 } 2006 2007 pause: 2008 trace_balance_dirty_pages(wb, 2009 sdtc->thresh, 2010 sdtc->bg_thresh, 2011 sdtc->dirty, 2012 sdtc->wb_thresh, 2013 sdtc->wb_dirty, 2014 dirty_ratelimit, 2015 task_ratelimit, 2016 pages_dirtied, 2017 period, 2018 pause, 2019 start_time); 2020 if (flags & BDP_ASYNC) { 2021 ret = -EAGAIN; 2022 break; 2023 } 2024 __set_current_state(TASK_KILLABLE); 2025 bdi->last_bdp_sleep = jiffies; 2026 io_schedule_timeout(pause); 2027 2028 current->dirty_paused_when = now + pause; 2029 current->nr_dirtied = 0; 2030 current->nr_dirtied_pause = nr_dirtied_pause; 2031 2032 /* 2033 * This is typically equal to (dirty < thresh) and can also 2034 * keep "1000+ dd on a slow USB stick" under control. 2035 */ 2036 if (task_ratelimit) 2037 break; 2038 2039 /* 2040 * In the case of an unresponsive NFS server and the NFS dirty 2041 * pages exceeds dirty_thresh, give the other good wb's a pipe 2042 * to go through, so that tasks on them still remain responsive. 2043 * 2044 * In theory 1 page is enough to keep the consumer-producer 2045 * pipe going: the flusher cleans 1 page => the task dirties 1 2046 * more page. However wb_dirty has accounting errors. So use 2047 * the larger and more IO friendly wb_stat_error. 2048 */ 2049 if (sdtc->wb_dirty <= wb_stat_error()) 2050 break; 2051 2052 if (fatal_signal_pending(current)) 2053 break; 2054 } 2055 return ret; 2056 } 2057 2058 static DEFINE_PER_CPU(int, bdp_ratelimits); 2059 2060 /* 2061 * Normal tasks are throttled by 2062 * loop { 2063 * dirty tsk->nr_dirtied_pause pages; 2064 * take a snap in balance_dirty_pages(); 2065 * } 2066 * However there is a worst case. If every task exit immediately when dirtied 2067 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 2068 * called to throttle the page dirties. The solution is to save the not yet 2069 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 2070 * randomly into the running tasks. This works well for the above worst case, 2071 * as the new task will pick up and accumulate the old task's leaked dirty 2072 * count and eventually get throttled. 2073 */ 2074 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 2075 2076 /** 2077 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 2078 * @mapping: address_space which was dirtied. 2079 * @flags: BDP flags. 2080 * 2081 * Processes which are dirtying memory should call in here once for each page 2082 * which was newly dirtied. The function will periodically check the system's 2083 * dirty state and will initiate writeback if needed. 2084 * 2085 * See balance_dirty_pages_ratelimited() for details. 2086 * 2087 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2088 * indicate that memory is out of balance and the caller must wait 2089 * for I/O to complete. Otherwise, it will return 0 to indicate 2090 * that either memory was already in balance, or it was able to sleep 2091 * until the amount of dirty memory returned to balance. 2092 */ 2093 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2094 unsigned int flags) 2095 { 2096 struct inode *inode = mapping->host; 2097 struct backing_dev_info *bdi = inode_to_bdi(inode); 2098 struct bdi_writeback *wb = NULL; 2099 int ratelimit; 2100 int ret = 0; 2101 int *p; 2102 2103 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2104 return ret; 2105 2106 if (inode_cgwb_enabled(inode)) 2107 wb = wb_get_create_current(bdi, GFP_KERNEL); 2108 if (!wb) 2109 wb = &bdi->wb; 2110 2111 ratelimit = current->nr_dirtied_pause; 2112 if (wb->dirty_exceeded) 2113 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2114 2115 preempt_disable(); 2116 /* 2117 * This prevents one CPU to accumulate too many dirtied pages without 2118 * calling into balance_dirty_pages(), which can happen when there are 2119 * 1000+ tasks, all of them start dirtying pages at exactly the same 2120 * time, hence all honoured too large initial task->nr_dirtied_pause. 2121 */ 2122 p = this_cpu_ptr(&bdp_ratelimits); 2123 if (unlikely(current->nr_dirtied >= ratelimit)) 2124 *p = 0; 2125 else if (unlikely(*p >= ratelimit_pages)) { 2126 *p = 0; 2127 ratelimit = 0; 2128 } 2129 /* 2130 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2131 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2132 * the dirty throttling and livelock other long-run dirtiers. 2133 */ 2134 p = this_cpu_ptr(&dirty_throttle_leaks); 2135 if (*p > 0 && current->nr_dirtied < ratelimit) { 2136 unsigned long nr_pages_dirtied; 2137 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2138 *p -= nr_pages_dirtied; 2139 current->nr_dirtied += nr_pages_dirtied; 2140 } 2141 preempt_enable(); 2142 2143 if (unlikely(current->nr_dirtied >= ratelimit)) 2144 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2145 2146 wb_put(wb); 2147 return ret; 2148 } 2149 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2150 2151 /** 2152 * balance_dirty_pages_ratelimited - balance dirty memory state. 2153 * @mapping: address_space which was dirtied. 2154 * 2155 * Processes which are dirtying memory should call in here once for each page 2156 * which was newly dirtied. The function will periodically check the system's 2157 * dirty state and will initiate writeback if needed. 2158 * 2159 * Once we're over the dirty memory limit we decrease the ratelimiting 2160 * by a lot, to prevent individual processes from overshooting the limit 2161 * by (ratelimit_pages) each. 2162 */ 2163 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2164 { 2165 balance_dirty_pages_ratelimited_flags(mapping, 0); 2166 } 2167 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2168 2169 /* 2170 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty 2171 * and thresh, but it's for background writeback. 2172 */ 2173 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc) 2174 { 2175 struct bdi_writeback *wb = dtc->wb; 2176 2177 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh); 2178 if (dtc->wb_bg_thresh < 2 * wb_stat_error()) 2179 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE); 2180 else 2181 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE); 2182 } 2183 2184 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc) 2185 { 2186 domain_dirty_avail(dtc, false); 2187 domain_dirty_limits(dtc); 2188 if (dtc->dirty > dtc->bg_thresh) 2189 return true; 2190 2191 wb_bg_dirty_limits(dtc); 2192 if (dtc->wb_dirty > dtc->wb_bg_thresh) 2193 return true; 2194 2195 return false; 2196 } 2197 2198 /** 2199 * wb_over_bg_thresh - does @wb need to be written back? 2200 * @wb: bdi_writeback of interest 2201 * 2202 * Determines whether background writeback should keep writing @wb or it's 2203 * clean enough. 2204 * 2205 * Return: %true if writeback should continue. 2206 */ 2207 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2208 { 2209 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 2210 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 2211 2212 if (domain_over_bg_thresh(&gdtc)) 2213 return true; 2214 2215 if (mdtc_valid(&mdtc)) 2216 return domain_over_bg_thresh(&mdtc); 2217 2218 return false; 2219 } 2220 2221 #ifdef CONFIG_SYSCTL 2222 /* 2223 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2224 */ 2225 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write, 2226 void *buffer, size_t *length, loff_t *ppos) 2227 { 2228 unsigned int old_interval = dirty_writeback_interval; 2229 int ret; 2230 2231 ret = proc_dointvec(table, write, buffer, length, ppos); 2232 2233 /* 2234 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2235 * and a different non-zero value will wakeup the writeback threads. 2236 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2237 * iterate over all bdis and wbs. 2238 * The reason we do this is to make the change take effect immediately. 2239 */ 2240 if (!ret && write && dirty_writeback_interval && 2241 dirty_writeback_interval != old_interval) 2242 wakeup_flusher_threads(WB_REASON_PERIODIC); 2243 2244 return ret; 2245 } 2246 #endif 2247 2248 void laptop_mode_timer_fn(struct timer_list *t) 2249 { 2250 struct backing_dev_info *backing_dev_info = 2251 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2252 2253 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2254 } 2255 2256 /* 2257 * We've spun up the disk and we're in laptop mode: schedule writeback 2258 * of all dirty data a few seconds from now. If the flush is already scheduled 2259 * then push it back - the user is still using the disk. 2260 */ 2261 void laptop_io_completion(struct backing_dev_info *info) 2262 { 2263 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2264 } 2265 2266 /* 2267 * We're in laptop mode and we've just synced. The sync's writes will have 2268 * caused another writeback to be scheduled by laptop_io_completion. 2269 * Nothing needs to be written back anymore, so we unschedule the writeback. 2270 */ 2271 void laptop_sync_completion(void) 2272 { 2273 struct backing_dev_info *bdi; 2274 2275 rcu_read_lock(); 2276 2277 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2278 del_timer(&bdi->laptop_mode_wb_timer); 2279 2280 rcu_read_unlock(); 2281 } 2282 2283 /* 2284 * If ratelimit_pages is too high then we can get into dirty-data overload 2285 * if a large number of processes all perform writes at the same time. 2286 * 2287 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2288 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2289 * thresholds. 2290 */ 2291 2292 void writeback_set_ratelimit(void) 2293 { 2294 struct wb_domain *dom = &global_wb_domain; 2295 unsigned long background_thresh; 2296 unsigned long dirty_thresh; 2297 2298 global_dirty_limits(&background_thresh, &dirty_thresh); 2299 dom->dirty_limit = dirty_thresh; 2300 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2301 if (ratelimit_pages < 16) 2302 ratelimit_pages = 16; 2303 } 2304 2305 static int page_writeback_cpu_online(unsigned int cpu) 2306 { 2307 writeback_set_ratelimit(); 2308 return 0; 2309 } 2310 2311 #ifdef CONFIG_SYSCTL 2312 2313 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2314 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2315 2316 static struct ctl_table vm_page_writeback_sysctls[] = { 2317 { 2318 .procname = "dirty_background_ratio", 2319 .data = &dirty_background_ratio, 2320 .maxlen = sizeof(dirty_background_ratio), 2321 .mode = 0644, 2322 .proc_handler = dirty_background_ratio_handler, 2323 .extra1 = SYSCTL_ZERO, 2324 .extra2 = SYSCTL_ONE_HUNDRED, 2325 }, 2326 { 2327 .procname = "dirty_background_bytes", 2328 .data = &dirty_background_bytes, 2329 .maxlen = sizeof(dirty_background_bytes), 2330 .mode = 0644, 2331 .proc_handler = dirty_background_bytes_handler, 2332 .extra1 = SYSCTL_LONG_ONE, 2333 }, 2334 { 2335 .procname = "dirty_ratio", 2336 .data = &vm_dirty_ratio, 2337 .maxlen = sizeof(vm_dirty_ratio), 2338 .mode = 0644, 2339 .proc_handler = dirty_ratio_handler, 2340 .extra1 = SYSCTL_ZERO, 2341 .extra2 = SYSCTL_ONE_HUNDRED, 2342 }, 2343 { 2344 .procname = "dirty_bytes", 2345 .data = &vm_dirty_bytes, 2346 .maxlen = sizeof(vm_dirty_bytes), 2347 .mode = 0644, 2348 .proc_handler = dirty_bytes_handler, 2349 .extra1 = (void *)&dirty_bytes_min, 2350 }, 2351 { 2352 .procname = "dirty_writeback_centisecs", 2353 .data = &dirty_writeback_interval, 2354 .maxlen = sizeof(dirty_writeback_interval), 2355 .mode = 0644, 2356 .proc_handler = dirty_writeback_centisecs_handler, 2357 }, 2358 { 2359 .procname = "dirty_expire_centisecs", 2360 .data = &dirty_expire_interval, 2361 .maxlen = sizeof(dirty_expire_interval), 2362 .mode = 0644, 2363 .proc_handler = proc_dointvec_minmax, 2364 .extra1 = SYSCTL_ZERO, 2365 }, 2366 #ifdef CONFIG_HIGHMEM 2367 { 2368 .procname = "highmem_is_dirtyable", 2369 .data = &vm_highmem_is_dirtyable, 2370 .maxlen = sizeof(vm_highmem_is_dirtyable), 2371 .mode = 0644, 2372 .proc_handler = proc_dointvec_minmax, 2373 .extra1 = SYSCTL_ZERO, 2374 .extra2 = SYSCTL_ONE, 2375 }, 2376 #endif 2377 { 2378 .procname = "laptop_mode", 2379 .data = &laptop_mode, 2380 .maxlen = sizeof(laptop_mode), 2381 .mode = 0644, 2382 .proc_handler = proc_dointvec_jiffies, 2383 }, 2384 }; 2385 #endif 2386 2387 /* 2388 * Called early on to tune the page writeback dirty limits. 2389 * 2390 * We used to scale dirty pages according to how total memory 2391 * related to pages that could be allocated for buffers. 2392 * 2393 * However, that was when we used "dirty_ratio" to scale with 2394 * all memory, and we don't do that any more. "dirty_ratio" 2395 * is now applied to total non-HIGHPAGE memory, and as such we can't 2396 * get into the old insane situation any more where we had 2397 * large amounts of dirty pages compared to a small amount of 2398 * non-HIGHMEM memory. 2399 * 2400 * But we might still want to scale the dirty_ratio by how 2401 * much memory the box has.. 2402 */ 2403 void __init page_writeback_init(void) 2404 { 2405 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2406 2407 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2408 page_writeback_cpu_online, NULL); 2409 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2410 page_writeback_cpu_online); 2411 #ifdef CONFIG_SYSCTL 2412 register_sysctl_init("vm", vm_page_writeback_sysctls); 2413 #endif 2414 } 2415 2416 /** 2417 * tag_pages_for_writeback - tag pages to be written by writeback 2418 * @mapping: address space structure to write 2419 * @start: starting page index 2420 * @end: ending page index (inclusive) 2421 * 2422 * This function scans the page range from @start to @end (inclusive) and tags 2423 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2424 * can then use the TOWRITE tag to identify pages eligible for writeback. 2425 * This mechanism is used to avoid livelocking of writeback by a process 2426 * steadily creating new dirty pages in the file (thus it is important for this 2427 * function to be quick so that it can tag pages faster than a dirtying process 2428 * can create them). 2429 */ 2430 void tag_pages_for_writeback(struct address_space *mapping, 2431 pgoff_t start, pgoff_t end) 2432 { 2433 XA_STATE(xas, &mapping->i_pages, start); 2434 unsigned int tagged = 0; 2435 void *page; 2436 2437 xas_lock_irq(&xas); 2438 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2439 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2440 if (++tagged % XA_CHECK_SCHED) 2441 continue; 2442 2443 xas_pause(&xas); 2444 xas_unlock_irq(&xas); 2445 cond_resched(); 2446 xas_lock_irq(&xas); 2447 } 2448 xas_unlock_irq(&xas); 2449 } 2450 EXPORT_SYMBOL(tag_pages_for_writeback); 2451 2452 static bool folio_prepare_writeback(struct address_space *mapping, 2453 struct writeback_control *wbc, struct folio *folio) 2454 { 2455 /* 2456 * Folio truncated or invalidated. We can freely skip it then, 2457 * even for data integrity operations: the folio has disappeared 2458 * concurrently, so there could be no real expectation of this 2459 * data integrity operation even if there is now a new, dirty 2460 * folio at the same pagecache index. 2461 */ 2462 if (unlikely(folio->mapping != mapping)) 2463 return false; 2464 2465 /* 2466 * Did somebody else write it for us? 2467 */ 2468 if (!folio_test_dirty(folio)) 2469 return false; 2470 2471 if (folio_test_writeback(folio)) { 2472 if (wbc->sync_mode == WB_SYNC_NONE) 2473 return false; 2474 folio_wait_writeback(folio); 2475 } 2476 BUG_ON(folio_test_writeback(folio)); 2477 2478 if (!folio_clear_dirty_for_io(folio)) 2479 return false; 2480 2481 return true; 2482 } 2483 2484 static xa_mark_t wbc_to_tag(struct writeback_control *wbc) 2485 { 2486 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2487 return PAGECACHE_TAG_TOWRITE; 2488 return PAGECACHE_TAG_DIRTY; 2489 } 2490 2491 static pgoff_t wbc_end(struct writeback_control *wbc) 2492 { 2493 if (wbc->range_cyclic) 2494 return -1; 2495 return wbc->range_end >> PAGE_SHIFT; 2496 } 2497 2498 static struct folio *writeback_get_folio(struct address_space *mapping, 2499 struct writeback_control *wbc) 2500 { 2501 struct folio *folio; 2502 2503 retry: 2504 folio = folio_batch_next(&wbc->fbatch); 2505 if (!folio) { 2506 folio_batch_release(&wbc->fbatch); 2507 cond_resched(); 2508 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2509 wbc_to_tag(wbc), &wbc->fbatch); 2510 folio = folio_batch_next(&wbc->fbatch); 2511 if (!folio) 2512 return NULL; 2513 } 2514 2515 folio_lock(folio); 2516 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2517 folio_unlock(folio); 2518 goto retry; 2519 } 2520 2521 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2522 return folio; 2523 } 2524 2525 /** 2526 * writeback_iter - iterate folio of a mapping for writeback 2527 * @mapping: address space structure to write 2528 * @wbc: writeback context 2529 * @folio: previously iterated folio (%NULL to start) 2530 * @error: in-out pointer for writeback errors (see below) 2531 * 2532 * This function returns the next folio for the writeback operation described by 2533 * @wbc on @mapping and should be called in a while loop in the ->writepages 2534 * implementation. 2535 * 2536 * To start the writeback operation, %NULL is passed in the @folio argument, and 2537 * for every subsequent iteration the folio returned previously should be passed 2538 * back in. 2539 * 2540 * If there was an error in the per-folio writeback inside the writeback_iter() 2541 * loop, @error should be set to the error value. 2542 * 2543 * Once the writeback described in @wbc has finished, this function will return 2544 * %NULL and if there was an error in any iteration restore it to @error. 2545 * 2546 * Note: callers should not manually break out of the loop using break or goto 2547 * but must keep calling writeback_iter() until it returns %NULL. 2548 * 2549 * Return: the folio to write or %NULL if the loop is done. 2550 */ 2551 struct folio *writeback_iter(struct address_space *mapping, 2552 struct writeback_control *wbc, struct folio *folio, int *error) 2553 { 2554 if (!folio) { 2555 folio_batch_init(&wbc->fbatch); 2556 wbc->saved_err = *error = 0; 2557 2558 /* 2559 * For range cyclic writeback we remember where we stopped so 2560 * that we can continue where we stopped. 2561 * 2562 * For non-cyclic writeback we always start at the beginning of 2563 * the passed in range. 2564 */ 2565 if (wbc->range_cyclic) 2566 wbc->index = mapping->writeback_index; 2567 else 2568 wbc->index = wbc->range_start >> PAGE_SHIFT; 2569 2570 /* 2571 * To avoid livelocks when other processes dirty new pages, we 2572 * first tag pages which should be written back and only then 2573 * start writing them. 2574 * 2575 * For data-integrity writeback we have to be careful so that we 2576 * do not miss some pages (e.g., because some other process has 2577 * cleared the TOWRITE tag we set). The rule we follow is that 2578 * TOWRITE tag can be cleared only by the process clearing the 2579 * DIRTY tag (and submitting the page for I/O). 2580 */ 2581 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2582 tag_pages_for_writeback(mapping, wbc->index, 2583 wbc_end(wbc)); 2584 } else { 2585 wbc->nr_to_write -= folio_nr_pages(folio); 2586 2587 WARN_ON_ONCE(*error > 0); 2588 2589 /* 2590 * For integrity writeback we have to keep going until we have 2591 * written all the folios we tagged for writeback above, even if 2592 * we run past wbc->nr_to_write or encounter errors. 2593 * We stash away the first error we encounter in wbc->saved_err 2594 * so that it can be retrieved when we're done. This is because 2595 * the file system may still have state to clear for each folio. 2596 * 2597 * For background writeback we exit as soon as we run past 2598 * wbc->nr_to_write or encounter the first error. 2599 */ 2600 if (wbc->sync_mode == WB_SYNC_ALL) { 2601 if (*error && !wbc->saved_err) 2602 wbc->saved_err = *error; 2603 } else { 2604 if (*error || wbc->nr_to_write <= 0) 2605 goto done; 2606 } 2607 } 2608 2609 folio = writeback_get_folio(mapping, wbc); 2610 if (!folio) { 2611 /* 2612 * To avoid deadlocks between range_cyclic writeback and callers 2613 * that hold pages in PageWriteback to aggregate I/O until 2614 * the writeback iteration finishes, we do not loop back to the 2615 * start of the file. Doing so causes a page lock/page 2616 * writeback access order inversion - we should only ever lock 2617 * multiple pages in ascending page->index order, and looping 2618 * back to the start of the file violates that rule and causes 2619 * deadlocks. 2620 */ 2621 if (wbc->range_cyclic) 2622 mapping->writeback_index = 0; 2623 2624 /* 2625 * Return the first error we encountered (if there was any) to 2626 * the caller. 2627 */ 2628 *error = wbc->saved_err; 2629 } 2630 return folio; 2631 2632 done: 2633 if (wbc->range_cyclic) 2634 mapping->writeback_index = folio_next_index(folio); 2635 folio_batch_release(&wbc->fbatch); 2636 return NULL; 2637 } 2638 EXPORT_SYMBOL_GPL(writeback_iter); 2639 2640 /** 2641 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2642 * @mapping: address space structure to write 2643 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2644 * @writepage: function called for each page 2645 * @data: data passed to writepage function 2646 * 2647 * Return: %0 on success, negative error code otherwise 2648 * 2649 * Note: please use writeback_iter() instead. 2650 */ 2651 int write_cache_pages(struct address_space *mapping, 2652 struct writeback_control *wbc, writepage_t writepage, 2653 void *data) 2654 { 2655 struct folio *folio = NULL; 2656 int error; 2657 2658 while ((folio = writeback_iter(mapping, wbc, folio, &error))) { 2659 error = writepage(folio, wbc, data); 2660 if (error == AOP_WRITEPAGE_ACTIVATE) { 2661 folio_unlock(folio); 2662 error = 0; 2663 } 2664 } 2665 2666 return error; 2667 } 2668 EXPORT_SYMBOL(write_cache_pages); 2669 2670 static int writeback_use_writepage(struct address_space *mapping, 2671 struct writeback_control *wbc) 2672 { 2673 struct folio *folio = NULL; 2674 struct blk_plug plug; 2675 int err; 2676 2677 blk_start_plug(&plug); 2678 while ((folio = writeback_iter(mapping, wbc, folio, &err))) { 2679 err = mapping->a_ops->writepage(&folio->page, wbc); 2680 if (err == AOP_WRITEPAGE_ACTIVATE) { 2681 folio_unlock(folio); 2682 err = 0; 2683 } 2684 mapping_set_error(mapping, err); 2685 } 2686 blk_finish_plug(&plug); 2687 2688 return err; 2689 } 2690 2691 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2692 { 2693 int ret; 2694 struct bdi_writeback *wb; 2695 2696 if (wbc->nr_to_write <= 0) 2697 return 0; 2698 wb = inode_to_wb_wbc(mapping->host, wbc); 2699 wb_bandwidth_estimate_start(wb); 2700 while (1) { 2701 if (mapping->a_ops->writepages) { 2702 ret = mapping->a_ops->writepages(mapping, wbc); 2703 } else if (mapping->a_ops->writepage) { 2704 ret = writeback_use_writepage(mapping, wbc); 2705 } else { 2706 /* deal with chardevs and other special files */ 2707 ret = 0; 2708 } 2709 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2710 break; 2711 2712 /* 2713 * Lacking an allocation context or the locality or writeback 2714 * state of any of the inode's pages, throttle based on 2715 * writeback activity on the local node. It's as good a 2716 * guess as any. 2717 */ 2718 reclaim_throttle(NODE_DATA(numa_node_id()), 2719 VMSCAN_THROTTLE_WRITEBACK); 2720 } 2721 /* 2722 * Usually few pages are written by now from those we've just submitted 2723 * but if there's constant writeback being submitted, this makes sure 2724 * writeback bandwidth is updated once in a while. 2725 */ 2726 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2727 BANDWIDTH_INTERVAL)) 2728 wb_update_bandwidth(wb); 2729 return ret; 2730 } 2731 2732 /* 2733 * For address_spaces which do not use buffers nor write back. 2734 */ 2735 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2736 { 2737 if (!folio_test_dirty(folio)) 2738 return !folio_test_set_dirty(folio); 2739 return false; 2740 } 2741 EXPORT_SYMBOL(noop_dirty_folio); 2742 2743 /* 2744 * Helper function for set_page_dirty family. 2745 * 2746 * NOTE: This relies on being atomic wrt interrupts. 2747 */ 2748 static void folio_account_dirtied(struct folio *folio, 2749 struct address_space *mapping) 2750 { 2751 struct inode *inode = mapping->host; 2752 2753 trace_writeback_dirty_folio(folio, mapping); 2754 2755 if (mapping_can_writeback(mapping)) { 2756 struct bdi_writeback *wb; 2757 long nr = folio_nr_pages(folio); 2758 2759 inode_attach_wb(inode, folio); 2760 wb = inode_to_wb(inode); 2761 2762 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2763 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2764 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2765 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2766 wb_stat_mod(wb, WB_DIRTIED, nr); 2767 task_io_account_write(nr * PAGE_SIZE); 2768 current->nr_dirtied += nr; 2769 __this_cpu_add(bdp_ratelimits, nr); 2770 2771 mem_cgroup_track_foreign_dirty(folio, wb); 2772 } 2773 } 2774 2775 /* 2776 * Helper function for deaccounting dirty page without writeback. 2777 * 2778 */ 2779 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2780 { 2781 long nr = folio_nr_pages(folio); 2782 2783 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2784 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2785 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2786 task_io_account_cancelled_write(nr * PAGE_SIZE); 2787 } 2788 2789 /* 2790 * Mark the folio dirty, and set it dirty in the page cache. 2791 * 2792 * If warn is true, then emit a warning if the folio is not uptodate and has 2793 * not been truncated. 2794 * 2795 * It is the caller's responsibility to prevent the folio from being truncated 2796 * while this function is in progress, although it may have been truncated 2797 * before this function is called. Most callers have the folio locked. 2798 * A few have the folio blocked from truncation through other means (e.g. 2799 * zap_vma_pages() has it mapped and is holding the page table lock). 2800 * When called from mark_buffer_dirty(), the filesystem should hold a 2801 * reference to the buffer_head that is being marked dirty, which causes 2802 * try_to_free_buffers() to fail. 2803 */ 2804 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2805 int warn) 2806 { 2807 unsigned long flags; 2808 2809 xa_lock_irqsave(&mapping->i_pages, flags); 2810 if (folio->mapping) { /* Race with truncate? */ 2811 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2812 folio_account_dirtied(folio, mapping); 2813 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2814 PAGECACHE_TAG_DIRTY); 2815 } 2816 xa_unlock_irqrestore(&mapping->i_pages, flags); 2817 } 2818 2819 /** 2820 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2821 * @mapping: Address space this folio belongs to. 2822 * @folio: Folio to be marked as dirty. 2823 * 2824 * Filesystems which do not use buffer heads should call this function 2825 * from their dirty_folio address space operation. It ignores the 2826 * contents of folio_get_private(), so if the filesystem marks individual 2827 * blocks as dirty, the filesystem should handle that itself. 2828 * 2829 * This is also sometimes used by filesystems which use buffer_heads when 2830 * a single buffer is being dirtied: we want to set the folio dirty in 2831 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2832 * whereas block_dirty_folio() is a "top-down" dirtying. 2833 * 2834 * The caller must ensure this doesn't race with truncation. Most will 2835 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2836 * folio mapped and the pte lock held, which also locks out truncation. 2837 */ 2838 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2839 { 2840 if (folio_test_set_dirty(folio)) 2841 return false; 2842 2843 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2844 2845 if (mapping->host) { 2846 /* !PageAnon && !swapper_space */ 2847 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2848 } 2849 return true; 2850 } 2851 EXPORT_SYMBOL(filemap_dirty_folio); 2852 2853 /** 2854 * folio_redirty_for_writepage - Decline to write a dirty folio. 2855 * @wbc: The writeback control. 2856 * @folio: The folio. 2857 * 2858 * When a writepage implementation decides that it doesn't want to write 2859 * @folio for some reason, it should call this function, unlock @folio and 2860 * return 0. 2861 * 2862 * Return: True if we redirtied the folio. False if someone else dirtied 2863 * it first. 2864 */ 2865 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2866 struct folio *folio) 2867 { 2868 struct address_space *mapping = folio->mapping; 2869 long nr = folio_nr_pages(folio); 2870 bool ret; 2871 2872 wbc->pages_skipped += nr; 2873 ret = filemap_dirty_folio(mapping, folio); 2874 if (mapping && mapping_can_writeback(mapping)) { 2875 struct inode *inode = mapping->host; 2876 struct bdi_writeback *wb; 2877 struct wb_lock_cookie cookie = {}; 2878 2879 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2880 current->nr_dirtied -= nr; 2881 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2882 wb_stat_mod(wb, WB_DIRTIED, -nr); 2883 unlocked_inode_to_wb_end(inode, &cookie); 2884 } 2885 return ret; 2886 } 2887 EXPORT_SYMBOL(folio_redirty_for_writepage); 2888 2889 /** 2890 * folio_mark_dirty - Mark a folio as being modified. 2891 * @folio: The folio. 2892 * 2893 * The folio may not be truncated while this function is running. 2894 * Holding the folio lock is sufficient to prevent truncation, but some 2895 * callers cannot acquire a sleeping lock. These callers instead hold 2896 * the page table lock for a page table which contains at least one page 2897 * in this folio. Truncation will block on the page table lock as it 2898 * unmaps pages before removing the folio from its mapping. 2899 * 2900 * Return: True if the folio was newly dirtied, false if it was already dirty. 2901 */ 2902 bool folio_mark_dirty(struct folio *folio) 2903 { 2904 struct address_space *mapping = folio_mapping(folio); 2905 2906 if (likely(mapping)) { 2907 /* 2908 * readahead/folio_deactivate could remain 2909 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2910 * About readahead, if the folio is written, the flags would be 2911 * reset. So no problem. 2912 * About folio_deactivate, if the folio is redirtied, 2913 * the flag will be reset. So no problem. but if the 2914 * folio is used by readahead it will confuse readahead 2915 * and make it restart the size rampup process. But it's 2916 * a trivial problem. 2917 */ 2918 if (folio_test_reclaim(folio)) 2919 folio_clear_reclaim(folio); 2920 return mapping->a_ops->dirty_folio(mapping, folio); 2921 } 2922 2923 return noop_dirty_folio(mapping, folio); 2924 } 2925 EXPORT_SYMBOL(folio_mark_dirty); 2926 2927 /* 2928 * set_page_dirty() is racy if the caller has no reference against 2929 * page->mapping->host, and if the page is unlocked. This is because another 2930 * CPU could truncate the page off the mapping and then free the mapping. 2931 * 2932 * Usually, the page _is_ locked, or the caller is a user-space process which 2933 * holds a reference on the inode by having an open file. 2934 * 2935 * In other cases, the page should be locked before running set_page_dirty(). 2936 */ 2937 int set_page_dirty_lock(struct page *page) 2938 { 2939 int ret; 2940 2941 lock_page(page); 2942 ret = set_page_dirty(page); 2943 unlock_page(page); 2944 return ret; 2945 } 2946 EXPORT_SYMBOL(set_page_dirty_lock); 2947 2948 /* 2949 * This cancels just the dirty bit on the kernel page itself, it does NOT 2950 * actually remove dirty bits on any mmap's that may be around. It also 2951 * leaves the page tagged dirty, so any sync activity will still find it on 2952 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2953 * look at the dirty bits in the VM. 2954 * 2955 * Doing this should *normally* only ever be done when a page is truncated, 2956 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2957 * this when it notices that somebody has cleaned out all the buffers on a 2958 * page without actually doing it through the VM. Can you say "ext3 is 2959 * horribly ugly"? Thought you could. 2960 */ 2961 void __folio_cancel_dirty(struct folio *folio) 2962 { 2963 struct address_space *mapping = folio_mapping(folio); 2964 2965 if (mapping_can_writeback(mapping)) { 2966 struct inode *inode = mapping->host; 2967 struct bdi_writeback *wb; 2968 struct wb_lock_cookie cookie = {}; 2969 2970 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2971 2972 if (folio_test_clear_dirty(folio)) 2973 folio_account_cleaned(folio, wb); 2974 2975 unlocked_inode_to_wb_end(inode, &cookie); 2976 } else { 2977 folio_clear_dirty(folio); 2978 } 2979 } 2980 EXPORT_SYMBOL(__folio_cancel_dirty); 2981 2982 /* 2983 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2984 * Returns true if the folio was previously dirty. 2985 * 2986 * This is for preparing to put the folio under writeout. We leave 2987 * the folio tagged as dirty in the xarray so that a concurrent 2988 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2989 * The ->writepage implementation will run either folio_start_writeback() 2990 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2991 * and xarray dirty tag back into sync. 2992 * 2993 * This incoherency between the folio's dirty flag and xarray tag is 2994 * unfortunate, but it only exists while the folio is locked. 2995 */ 2996 bool folio_clear_dirty_for_io(struct folio *folio) 2997 { 2998 struct address_space *mapping = folio_mapping(folio); 2999 bool ret = false; 3000 3001 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3002 3003 if (mapping && mapping_can_writeback(mapping)) { 3004 struct inode *inode = mapping->host; 3005 struct bdi_writeback *wb; 3006 struct wb_lock_cookie cookie = {}; 3007 3008 /* 3009 * Yes, Virginia, this is indeed insane. 3010 * 3011 * We use this sequence to make sure that 3012 * (a) we account for dirty stats properly 3013 * (b) we tell the low-level filesystem to 3014 * mark the whole folio dirty if it was 3015 * dirty in a pagetable. Only to then 3016 * (c) clean the folio again and return 1 to 3017 * cause the writeback. 3018 * 3019 * This way we avoid all nasty races with the 3020 * dirty bit in multiple places and clearing 3021 * them concurrently from different threads. 3022 * 3023 * Note! Normally the "folio_mark_dirty(folio)" 3024 * has no effect on the actual dirty bit - since 3025 * that will already usually be set. But we 3026 * need the side effects, and it can help us 3027 * avoid races. 3028 * 3029 * We basically use the folio "master dirty bit" 3030 * as a serialization point for all the different 3031 * threads doing their things. 3032 */ 3033 if (folio_mkclean(folio)) 3034 folio_mark_dirty(folio); 3035 /* 3036 * We carefully synchronise fault handlers against 3037 * installing a dirty pte and marking the folio dirty 3038 * at this point. We do this by having them hold the 3039 * page lock while dirtying the folio, and folios are 3040 * always locked coming in here, so we get the desired 3041 * exclusion. 3042 */ 3043 wb = unlocked_inode_to_wb_begin(inode, &cookie); 3044 if (folio_test_clear_dirty(folio)) { 3045 long nr = folio_nr_pages(folio); 3046 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 3047 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3048 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 3049 ret = true; 3050 } 3051 unlocked_inode_to_wb_end(inode, &cookie); 3052 return ret; 3053 } 3054 return folio_test_clear_dirty(folio); 3055 } 3056 EXPORT_SYMBOL(folio_clear_dirty_for_io); 3057 3058 static void wb_inode_writeback_start(struct bdi_writeback *wb) 3059 { 3060 atomic_inc(&wb->writeback_inodes); 3061 } 3062 3063 static void wb_inode_writeback_end(struct bdi_writeback *wb) 3064 { 3065 unsigned long flags; 3066 atomic_dec(&wb->writeback_inodes); 3067 /* 3068 * Make sure estimate of writeback throughput gets updated after 3069 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 3070 * (which is the interval other bandwidth updates use for batching) so 3071 * that if multiple inodes end writeback at a similar time, they get 3072 * batched into one bandwidth update. 3073 */ 3074 spin_lock_irqsave(&wb->work_lock, flags); 3075 if (test_bit(WB_registered, &wb->state)) 3076 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 3077 spin_unlock_irqrestore(&wb->work_lock, flags); 3078 } 3079 3080 bool __folio_end_writeback(struct folio *folio) 3081 { 3082 long nr = folio_nr_pages(folio); 3083 struct address_space *mapping = folio_mapping(folio); 3084 bool ret; 3085 3086 if (mapping && mapping_use_writeback_tags(mapping)) { 3087 struct inode *inode = mapping->host; 3088 struct backing_dev_info *bdi = inode_to_bdi(inode); 3089 unsigned long flags; 3090 3091 xa_lock_irqsave(&mapping->i_pages, flags); 3092 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3093 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 3094 PAGECACHE_TAG_WRITEBACK); 3095 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3096 struct bdi_writeback *wb = inode_to_wb(inode); 3097 3098 wb_stat_mod(wb, WB_WRITEBACK, -nr); 3099 __wb_writeout_add(wb, nr); 3100 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 3101 wb_inode_writeback_end(wb); 3102 } 3103 3104 if (mapping->host && !mapping_tagged(mapping, 3105 PAGECACHE_TAG_WRITEBACK)) 3106 sb_clear_inode_writeback(mapping->host); 3107 3108 xa_unlock_irqrestore(&mapping->i_pages, flags); 3109 } else { 3110 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3111 } 3112 3113 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3114 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3115 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3116 3117 return ret; 3118 } 3119 3120 void __folio_start_writeback(struct folio *folio, bool keep_write) 3121 { 3122 long nr = folio_nr_pages(folio); 3123 struct address_space *mapping = folio_mapping(folio); 3124 int access_ret; 3125 3126 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 3127 3128 if (mapping && mapping_use_writeback_tags(mapping)) { 3129 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3130 struct inode *inode = mapping->host; 3131 struct backing_dev_info *bdi = inode_to_bdi(inode); 3132 unsigned long flags; 3133 bool on_wblist; 3134 3135 xas_lock_irqsave(&xas, flags); 3136 xas_load(&xas); 3137 folio_test_set_writeback(folio); 3138 3139 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 3140 3141 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3142 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3143 struct bdi_writeback *wb = inode_to_wb(inode); 3144 3145 wb_stat_mod(wb, WB_WRITEBACK, nr); 3146 if (!on_wblist) 3147 wb_inode_writeback_start(wb); 3148 } 3149 3150 /* 3151 * We can come through here when swapping anonymous 3152 * folios, so we don't necessarily have an inode to 3153 * track for sync. 3154 */ 3155 if (mapping->host && !on_wblist) 3156 sb_mark_inode_writeback(mapping->host); 3157 if (!folio_test_dirty(folio)) 3158 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3159 if (!keep_write) 3160 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3161 xas_unlock_irqrestore(&xas, flags); 3162 } else { 3163 folio_test_set_writeback(folio); 3164 } 3165 3166 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3167 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3168 3169 access_ret = arch_make_folio_accessible(folio); 3170 /* 3171 * If writeback has been triggered on a page that cannot be made 3172 * accessible, it is too late to recover here. 3173 */ 3174 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3175 } 3176 EXPORT_SYMBOL(__folio_start_writeback); 3177 3178 /** 3179 * folio_wait_writeback - Wait for a folio to finish writeback. 3180 * @folio: The folio to wait for. 3181 * 3182 * If the folio is currently being written back to storage, wait for the 3183 * I/O to complete. 3184 * 3185 * Context: Sleeps. Must be called in process context and with 3186 * no spinlocks held. Caller should hold a reference on the folio. 3187 * If the folio is not locked, writeback may start again after writeback 3188 * has finished. 3189 */ 3190 void folio_wait_writeback(struct folio *folio) 3191 { 3192 while (folio_test_writeback(folio)) { 3193 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3194 folio_wait_bit(folio, PG_writeback); 3195 } 3196 } 3197 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3198 3199 /** 3200 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3201 * @folio: The folio to wait for. 3202 * 3203 * If the folio is currently being written back to storage, wait for the 3204 * I/O to complete or a fatal signal to arrive. 3205 * 3206 * Context: Sleeps. Must be called in process context and with 3207 * no spinlocks held. Caller should hold a reference on the folio. 3208 * If the folio is not locked, writeback may start again after writeback 3209 * has finished. 3210 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3211 */ 3212 int folio_wait_writeback_killable(struct folio *folio) 3213 { 3214 while (folio_test_writeback(folio)) { 3215 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3216 if (folio_wait_bit_killable(folio, PG_writeback)) 3217 return -EINTR; 3218 } 3219 3220 return 0; 3221 } 3222 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3223 3224 /** 3225 * folio_wait_stable() - wait for writeback to finish, if necessary. 3226 * @folio: The folio to wait on. 3227 * 3228 * This function determines if the given folio is related to a backing 3229 * device that requires folio contents to be held stable during writeback. 3230 * If so, then it will wait for any pending writeback to complete. 3231 * 3232 * Context: Sleeps. Must be called in process context and with 3233 * no spinlocks held. Caller should hold a reference on the folio. 3234 * If the folio is not locked, writeback may start again after writeback 3235 * has finished. 3236 */ 3237 void folio_wait_stable(struct folio *folio) 3238 { 3239 if (mapping_stable_writes(folio_mapping(folio))) 3240 folio_wait_writeback(folio); 3241 } 3242 EXPORT_SYMBOL_GPL(folio_wait_stable); 3243