xref: /linux/mm/page-writeback.c (revision 7f3edee81fbd49114c28057512906f169caa0bed)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	akpm@zip.com.au
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * The maximum number of pages to writeout in a single bdflush/kupdate
40  * operation.  We do this so we don't hold I_SYNC against an inode for
41  * enormous amounts of time, which would block a userspace task which has
42  * been forced to throttle against that inode.  Also, the code reevaluates
43  * the dirty each time it has written this many pages.
44  */
45 #define MAX_WRITEBACK_PAGES	1024
46 
47 /*
48  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49  * will look to see if it needs to force writeback or throttling.
50  */
51 static long ratelimit_pages = 32;
52 
53 /*
54  * When balance_dirty_pages decides that the caller needs to perform some
55  * non-background writeback, this is how many pages it will attempt to write.
56  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57  * large amounts of I/O are submitted.
58  */
59 static inline long sync_writeback_pages(void)
60 {
61 	return ratelimit_pages + ratelimit_pages / 2;
62 }
63 
64 /* The following parameters are exported via /proc/sys/vm */
65 
66 /*
67  * Start background writeback (via pdflush) at this percentage
68  */
69 int dirty_background_ratio = 5;
70 
71 /*
72  * The generator of dirty data starts writeback at this percentage
73  */
74 int vm_dirty_ratio = 10;
75 
76 /*
77  * The interval between `kupdate'-style writebacks, in jiffies
78  */
79 int dirty_writeback_interval = 5 * HZ;
80 
81 /*
82  * The longest number of jiffies for which data is allowed to remain dirty
83  */
84 int dirty_expire_interval = 30 * HZ;
85 
86 /*
87  * Flag that makes the machine dump writes/reads and block dirtyings.
88  */
89 int block_dump;
90 
91 /*
92  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
93  * a full sync is triggered after this time elapses without any disk activity.
94  */
95 int laptop_mode;
96 
97 EXPORT_SYMBOL(laptop_mode);
98 
99 /* End of sysctl-exported parameters */
100 
101 
102 static void background_writeout(unsigned long _min_pages);
103 
104 /*
105  * Scale the writeback cache size proportional to the relative writeout speeds.
106  *
107  * We do this by keeping a floating proportion between BDIs, based on page
108  * writeback completions [end_page_writeback()]. Those devices that write out
109  * pages fastest will get the larger share, while the slower will get a smaller
110  * share.
111  *
112  * We use page writeout completions because we are interested in getting rid of
113  * dirty pages. Having them written out is the primary goal.
114  *
115  * We introduce a concept of time, a period over which we measure these events,
116  * because demand can/will vary over time. The length of this period itself is
117  * measured in page writeback completions.
118  *
119  */
120 static struct prop_descriptor vm_completions;
121 static struct prop_descriptor vm_dirties;
122 
123 static unsigned long determine_dirtyable_memory(void);
124 
125 /*
126  * couple the period to the dirty_ratio:
127  *
128  *   period/2 ~ roundup_pow_of_two(dirty limit)
129  */
130 static int calc_period_shift(void)
131 {
132 	unsigned long dirty_total;
133 
134 	dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
135 	return 2 + ilog2(dirty_total - 1);
136 }
137 
138 /*
139  * update the period when the dirty ratio changes.
140  */
141 int dirty_ratio_handler(struct ctl_table *table, int write,
142 		struct file *filp, void __user *buffer, size_t *lenp,
143 		loff_t *ppos)
144 {
145 	int old_ratio = vm_dirty_ratio;
146 	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
147 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
148 		int shift = calc_period_shift();
149 		prop_change_shift(&vm_completions, shift);
150 		prop_change_shift(&vm_dirties, shift);
151 	}
152 	return ret;
153 }
154 
155 /*
156  * Increment the BDI's writeout completion count and the global writeout
157  * completion count. Called from test_clear_page_writeback().
158  */
159 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
160 {
161 	__prop_inc_percpu(&vm_completions, &bdi->completions);
162 }
163 
164 static inline void task_dirty_inc(struct task_struct *tsk)
165 {
166 	prop_inc_single(&vm_dirties, &tsk->dirties);
167 }
168 
169 /*
170  * Obtain an accurate fraction of the BDI's portion.
171  */
172 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
173 		long *numerator, long *denominator)
174 {
175 	if (bdi_cap_writeback_dirty(bdi)) {
176 		prop_fraction_percpu(&vm_completions, &bdi->completions,
177 				numerator, denominator);
178 	} else {
179 		*numerator = 0;
180 		*denominator = 1;
181 	}
182 }
183 
184 /*
185  * Clip the earned share of dirty pages to that which is actually available.
186  * This avoids exceeding the total dirty_limit when the floating averages
187  * fluctuate too quickly.
188  */
189 static void
190 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
191 {
192 	long avail_dirty;
193 
194 	avail_dirty = dirty -
195 		(global_page_state(NR_FILE_DIRTY) +
196 		 global_page_state(NR_WRITEBACK) +
197 		 global_page_state(NR_UNSTABLE_NFS));
198 
199 	if (avail_dirty < 0)
200 		avail_dirty = 0;
201 
202 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
203 		bdi_stat(bdi, BDI_WRITEBACK);
204 
205 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
206 }
207 
208 static inline void task_dirties_fraction(struct task_struct *tsk,
209 		long *numerator, long *denominator)
210 {
211 	prop_fraction_single(&vm_dirties, &tsk->dirties,
212 				numerator, denominator);
213 }
214 
215 /*
216  * scale the dirty limit
217  *
218  * task specific dirty limit:
219  *
220  *   dirty -= (dirty/8) * p_{t}
221  */
222 void task_dirty_limit(struct task_struct *tsk, long *pdirty)
223 {
224 	long numerator, denominator;
225 	long dirty = *pdirty;
226 	u64 inv = dirty >> 3;
227 
228 	task_dirties_fraction(tsk, &numerator, &denominator);
229 	inv *= numerator;
230 	do_div(inv, denominator);
231 
232 	dirty -= inv;
233 	if (dirty < *pdirty/2)
234 		dirty = *pdirty/2;
235 
236 	*pdirty = dirty;
237 }
238 
239 /*
240  * Work out the current dirty-memory clamping and background writeout
241  * thresholds.
242  *
243  * The main aim here is to lower them aggressively if there is a lot of mapped
244  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
245  * pages.  It is better to clamp down on writers than to start swapping, and
246  * performing lots of scanning.
247  *
248  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
249  *
250  * We don't permit the clamping level to fall below 5% - that is getting rather
251  * excessive.
252  *
253  * We make sure that the background writeout level is below the adjusted
254  * clamping level.
255  */
256 
257 static unsigned long highmem_dirtyable_memory(unsigned long total)
258 {
259 #ifdef CONFIG_HIGHMEM
260 	int node;
261 	unsigned long x = 0;
262 
263 	for_each_node_state(node, N_HIGH_MEMORY) {
264 		struct zone *z =
265 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
266 
267 		x += zone_page_state(z, NR_FREE_PAGES)
268 			+ zone_page_state(z, NR_INACTIVE)
269 			+ zone_page_state(z, NR_ACTIVE);
270 	}
271 	/*
272 	 * Make sure that the number of highmem pages is never larger
273 	 * than the number of the total dirtyable memory. This can only
274 	 * occur in very strange VM situations but we want to make sure
275 	 * that this does not occur.
276 	 */
277 	return min(x, total);
278 #else
279 	return 0;
280 #endif
281 }
282 
283 static unsigned long determine_dirtyable_memory(void)
284 {
285 	unsigned long x;
286 
287 	x = global_page_state(NR_FREE_PAGES)
288 		+ global_page_state(NR_INACTIVE)
289 		+ global_page_state(NR_ACTIVE);
290 	x -= highmem_dirtyable_memory(x);
291 	return x + 1;	/* Ensure that we never return 0 */
292 }
293 
294 static void
295 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
296 		 struct backing_dev_info *bdi)
297 {
298 	int background_ratio;		/* Percentages */
299 	int dirty_ratio;
300 	long background;
301 	long dirty;
302 	unsigned long available_memory = determine_dirtyable_memory();
303 	struct task_struct *tsk;
304 
305 	dirty_ratio = vm_dirty_ratio;
306 	if (dirty_ratio < 5)
307 		dirty_ratio = 5;
308 
309 	background_ratio = dirty_background_ratio;
310 	if (background_ratio >= dirty_ratio)
311 		background_ratio = dirty_ratio / 2;
312 
313 	background = (background_ratio * available_memory) / 100;
314 	dirty = (dirty_ratio * available_memory) / 100;
315 	tsk = current;
316 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
317 		background += background / 4;
318 		dirty += dirty / 4;
319 	}
320 	*pbackground = background;
321 	*pdirty = dirty;
322 
323 	if (bdi) {
324 		u64 bdi_dirty = dirty;
325 		long numerator, denominator;
326 
327 		/*
328 		 * Calculate this BDI's share of the dirty ratio.
329 		 */
330 		bdi_writeout_fraction(bdi, &numerator, &denominator);
331 
332 		bdi_dirty *= numerator;
333 		do_div(bdi_dirty, denominator);
334 
335 		*pbdi_dirty = bdi_dirty;
336 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
337 		task_dirty_limit(current, pbdi_dirty);
338 	}
339 }
340 
341 /*
342  * balance_dirty_pages() must be called by processes which are generating dirty
343  * data.  It looks at the number of dirty pages in the machine and will force
344  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
345  * If we're over `background_thresh' then pdflush is woken to perform some
346  * writeout.
347  */
348 static void balance_dirty_pages(struct address_space *mapping)
349 {
350 	long nr_reclaimable, bdi_nr_reclaimable;
351 	long nr_writeback, bdi_nr_writeback;
352 	long background_thresh;
353 	long dirty_thresh;
354 	long bdi_thresh;
355 	unsigned long pages_written = 0;
356 	unsigned long write_chunk = sync_writeback_pages();
357 
358 	struct backing_dev_info *bdi = mapping->backing_dev_info;
359 
360 	for (;;) {
361 		struct writeback_control wbc = {
362 			.bdi		= bdi,
363 			.sync_mode	= WB_SYNC_NONE,
364 			.older_than_this = NULL,
365 			.nr_to_write	= write_chunk,
366 			.range_cyclic	= 1,
367 		};
368 
369 		get_dirty_limits(&background_thresh, &dirty_thresh,
370 				&bdi_thresh, bdi);
371 
372 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
373 					global_page_state(NR_UNSTABLE_NFS);
374 		nr_writeback = global_page_state(NR_WRITEBACK);
375 
376 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
377 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
378 
379 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
380 			break;
381 
382 		/*
383 		 * Throttle it only when the background writeback cannot
384 		 * catch-up. This avoids (excessively) small writeouts
385 		 * when the bdi limits are ramping up.
386 		 */
387 		if (nr_reclaimable + nr_writeback <
388 				(background_thresh + dirty_thresh) / 2)
389 			break;
390 
391 		if (!bdi->dirty_exceeded)
392 			bdi->dirty_exceeded = 1;
393 
394 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
395 		 * Unstable writes are a feature of certain networked
396 		 * filesystems (i.e. NFS) in which data may have been
397 		 * written to the server's write cache, but has not yet
398 		 * been flushed to permanent storage.
399 		 */
400 		if (bdi_nr_reclaimable) {
401 			writeback_inodes(&wbc);
402 			pages_written += write_chunk - wbc.nr_to_write;
403 			get_dirty_limits(&background_thresh, &dirty_thresh,
404 				       &bdi_thresh, bdi);
405 		}
406 
407 		/*
408 		 * In order to avoid the stacked BDI deadlock we need
409 		 * to ensure we accurately count the 'dirty' pages when
410 		 * the threshold is low.
411 		 *
412 		 * Otherwise it would be possible to get thresh+n pages
413 		 * reported dirty, even though there are thresh-m pages
414 		 * actually dirty; with m+n sitting in the percpu
415 		 * deltas.
416 		 */
417 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
418 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
419 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
420 		} else if (bdi_nr_reclaimable) {
421 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
422 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
423 		}
424 
425 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
426 			break;
427 		if (pages_written >= write_chunk)
428 			break;		/* We've done our duty */
429 
430 		congestion_wait(WRITE, HZ/10);
431 	}
432 
433 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
434 			bdi->dirty_exceeded)
435 		bdi->dirty_exceeded = 0;
436 
437 	if (writeback_in_progress(bdi))
438 		return;		/* pdflush is already working this queue */
439 
440 	/*
441 	 * In laptop mode, we wait until hitting the higher threshold before
442 	 * starting background writeout, and then write out all the way down
443 	 * to the lower threshold.  So slow writers cause minimal disk activity.
444 	 *
445 	 * In normal mode, we start background writeout at the lower
446 	 * background_thresh, to keep the amount of dirty memory low.
447 	 */
448 	if ((laptop_mode && pages_written) ||
449 			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
450 					  + global_page_state(NR_UNSTABLE_NFS)
451 					  > background_thresh)))
452 		pdflush_operation(background_writeout, 0);
453 }
454 
455 void set_page_dirty_balance(struct page *page, int page_mkwrite)
456 {
457 	if (set_page_dirty(page) || page_mkwrite) {
458 		struct address_space *mapping = page_mapping(page);
459 
460 		if (mapping)
461 			balance_dirty_pages_ratelimited(mapping);
462 	}
463 }
464 
465 /**
466  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
467  * @mapping: address_space which was dirtied
468  * @nr_pages_dirtied: number of pages which the caller has just dirtied
469  *
470  * Processes which are dirtying memory should call in here once for each page
471  * which was newly dirtied.  The function will periodically check the system's
472  * dirty state and will initiate writeback if needed.
473  *
474  * On really big machines, get_writeback_state is expensive, so try to avoid
475  * calling it too often (ratelimiting).  But once we're over the dirty memory
476  * limit we decrease the ratelimiting by a lot, to prevent individual processes
477  * from overshooting the limit by (ratelimit_pages) each.
478  */
479 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
480 					unsigned long nr_pages_dirtied)
481 {
482 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
483 	unsigned long ratelimit;
484 	unsigned long *p;
485 
486 	ratelimit = ratelimit_pages;
487 	if (mapping->backing_dev_info->dirty_exceeded)
488 		ratelimit = 8;
489 
490 	/*
491 	 * Check the rate limiting. Also, we do not want to throttle real-time
492 	 * tasks in balance_dirty_pages(). Period.
493 	 */
494 	preempt_disable();
495 	p =  &__get_cpu_var(ratelimits);
496 	*p += nr_pages_dirtied;
497 	if (unlikely(*p >= ratelimit)) {
498 		*p = 0;
499 		preempt_enable();
500 		balance_dirty_pages(mapping);
501 		return;
502 	}
503 	preempt_enable();
504 }
505 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
506 
507 void throttle_vm_writeout(gfp_t gfp_mask)
508 {
509 	long background_thresh;
510 	long dirty_thresh;
511 
512         for ( ; ; ) {
513 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
514 
515                 /*
516                  * Boost the allowable dirty threshold a bit for page
517                  * allocators so they don't get DoS'ed by heavy writers
518                  */
519                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
520 
521                 if (global_page_state(NR_UNSTABLE_NFS) +
522 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
523                         	break;
524                 congestion_wait(WRITE, HZ/10);
525 
526 		/*
527 		 * The caller might hold locks which can prevent IO completion
528 		 * or progress in the filesystem.  So we cannot just sit here
529 		 * waiting for IO to complete.
530 		 */
531 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
532 			break;
533         }
534 }
535 
536 /*
537  * writeback at least _min_pages, and keep writing until the amount of dirty
538  * memory is less than the background threshold, or until we're all clean.
539  */
540 static void background_writeout(unsigned long _min_pages)
541 {
542 	long min_pages = _min_pages;
543 	struct writeback_control wbc = {
544 		.bdi		= NULL,
545 		.sync_mode	= WB_SYNC_NONE,
546 		.older_than_this = NULL,
547 		.nr_to_write	= 0,
548 		.nonblocking	= 1,
549 		.range_cyclic	= 1,
550 	};
551 
552 	for ( ; ; ) {
553 		long background_thresh;
554 		long dirty_thresh;
555 
556 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
557 		if (global_page_state(NR_FILE_DIRTY) +
558 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
559 				&& min_pages <= 0)
560 			break;
561 		wbc.encountered_congestion = 0;
562 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
563 		wbc.pages_skipped = 0;
564 		writeback_inodes(&wbc);
565 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
566 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
567 			/* Wrote less than expected */
568 			congestion_wait(WRITE, HZ/10);
569 			if (!wbc.encountered_congestion)
570 				break;
571 		}
572 	}
573 }
574 
575 /*
576  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
577  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
578  * -1 if all pdflush threads were busy.
579  */
580 int wakeup_pdflush(long nr_pages)
581 {
582 	if (nr_pages == 0)
583 		nr_pages = global_page_state(NR_FILE_DIRTY) +
584 				global_page_state(NR_UNSTABLE_NFS);
585 	return pdflush_operation(background_writeout, nr_pages);
586 }
587 
588 static void wb_timer_fn(unsigned long unused);
589 static void laptop_timer_fn(unsigned long unused);
590 
591 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
592 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
593 
594 /*
595  * Periodic writeback of "old" data.
596  *
597  * Define "old": the first time one of an inode's pages is dirtied, we mark the
598  * dirtying-time in the inode's address_space.  So this periodic writeback code
599  * just walks the superblock inode list, writing back any inodes which are
600  * older than a specific point in time.
601  *
602  * Try to run once per dirty_writeback_interval.  But if a writeback event
603  * takes longer than a dirty_writeback_interval interval, then leave a
604  * one-second gap.
605  *
606  * older_than_this takes precedence over nr_to_write.  So we'll only write back
607  * all dirty pages if they are all attached to "old" mappings.
608  */
609 static void wb_kupdate(unsigned long arg)
610 {
611 	unsigned long oldest_jif;
612 	unsigned long start_jif;
613 	unsigned long next_jif;
614 	long nr_to_write;
615 	struct writeback_control wbc = {
616 		.bdi		= NULL,
617 		.sync_mode	= WB_SYNC_NONE,
618 		.older_than_this = &oldest_jif,
619 		.nr_to_write	= 0,
620 		.nonblocking	= 1,
621 		.for_kupdate	= 1,
622 		.range_cyclic	= 1,
623 	};
624 
625 	sync_supers();
626 
627 	oldest_jif = jiffies - dirty_expire_interval;
628 	start_jif = jiffies;
629 	next_jif = start_jif + dirty_writeback_interval;
630 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
631 			global_page_state(NR_UNSTABLE_NFS) +
632 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
633 	while (nr_to_write > 0) {
634 		wbc.encountered_congestion = 0;
635 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
636 		writeback_inodes(&wbc);
637 		if (wbc.nr_to_write > 0) {
638 			if (wbc.encountered_congestion)
639 				congestion_wait(WRITE, HZ/10);
640 			else
641 				break;	/* All the old data is written */
642 		}
643 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
644 	}
645 	if (time_before(next_jif, jiffies + HZ))
646 		next_jif = jiffies + HZ;
647 	if (dirty_writeback_interval)
648 		mod_timer(&wb_timer, next_jif);
649 }
650 
651 /*
652  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
653  */
654 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
655 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
656 {
657 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
658 	if (dirty_writeback_interval)
659 		mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
660 	else
661 		del_timer(&wb_timer);
662 	return 0;
663 }
664 
665 static void wb_timer_fn(unsigned long unused)
666 {
667 	if (pdflush_operation(wb_kupdate, 0) < 0)
668 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
669 }
670 
671 static void laptop_flush(unsigned long unused)
672 {
673 	sys_sync();
674 }
675 
676 static void laptop_timer_fn(unsigned long unused)
677 {
678 	pdflush_operation(laptop_flush, 0);
679 }
680 
681 /*
682  * We've spun up the disk and we're in laptop mode: schedule writeback
683  * of all dirty data a few seconds from now.  If the flush is already scheduled
684  * then push it back - the user is still using the disk.
685  */
686 void laptop_io_completion(void)
687 {
688 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
689 }
690 
691 /*
692  * We're in laptop mode and we've just synced. The sync's writes will have
693  * caused another writeback to be scheduled by laptop_io_completion.
694  * Nothing needs to be written back anymore, so we unschedule the writeback.
695  */
696 void laptop_sync_completion(void)
697 {
698 	del_timer(&laptop_mode_wb_timer);
699 }
700 
701 /*
702  * If ratelimit_pages is too high then we can get into dirty-data overload
703  * if a large number of processes all perform writes at the same time.
704  * If it is too low then SMP machines will call the (expensive)
705  * get_writeback_state too often.
706  *
707  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
708  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
709  * thresholds before writeback cuts in.
710  *
711  * But the limit should not be set too high.  Because it also controls the
712  * amount of memory which the balance_dirty_pages() caller has to write back.
713  * If this is too large then the caller will block on the IO queue all the
714  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
715  * will write six megabyte chunks, max.
716  */
717 
718 void writeback_set_ratelimit(void)
719 {
720 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
721 	if (ratelimit_pages < 16)
722 		ratelimit_pages = 16;
723 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
724 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
725 }
726 
727 static int __cpuinit
728 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
729 {
730 	writeback_set_ratelimit();
731 	return NOTIFY_DONE;
732 }
733 
734 static struct notifier_block __cpuinitdata ratelimit_nb = {
735 	.notifier_call	= ratelimit_handler,
736 	.next		= NULL,
737 };
738 
739 /*
740  * Called early on to tune the page writeback dirty limits.
741  *
742  * We used to scale dirty pages according to how total memory
743  * related to pages that could be allocated for buffers (by
744  * comparing nr_free_buffer_pages() to vm_total_pages.
745  *
746  * However, that was when we used "dirty_ratio" to scale with
747  * all memory, and we don't do that any more. "dirty_ratio"
748  * is now applied to total non-HIGHPAGE memory (by subtracting
749  * totalhigh_pages from vm_total_pages), and as such we can't
750  * get into the old insane situation any more where we had
751  * large amounts of dirty pages compared to a small amount of
752  * non-HIGHMEM memory.
753  *
754  * But we might still want to scale the dirty_ratio by how
755  * much memory the box has..
756  */
757 void __init page_writeback_init(void)
758 {
759 	int shift;
760 
761 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
762 	writeback_set_ratelimit();
763 	register_cpu_notifier(&ratelimit_nb);
764 
765 	shift = calc_period_shift();
766 	prop_descriptor_init(&vm_completions, shift);
767 	prop_descriptor_init(&vm_dirties, shift);
768 }
769 
770 /**
771  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
772  * @mapping: address space structure to write
773  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
774  * @writepage: function called for each page
775  * @data: data passed to writepage function
776  *
777  * If a page is already under I/O, write_cache_pages() skips it, even
778  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
779  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
780  * and msync() need to guarantee that all the data which was dirty at the time
781  * the call was made get new I/O started against them.  If wbc->sync_mode is
782  * WB_SYNC_ALL then we were called for data integrity and we must wait for
783  * existing IO to complete.
784  */
785 int write_cache_pages(struct address_space *mapping,
786 		      struct writeback_control *wbc, writepage_t writepage,
787 		      void *data)
788 {
789 	struct backing_dev_info *bdi = mapping->backing_dev_info;
790 	int ret = 0;
791 	int done = 0;
792 	struct pagevec pvec;
793 	int nr_pages;
794 	pgoff_t index;
795 	pgoff_t end;		/* Inclusive */
796 	int scanned = 0;
797 	int range_whole = 0;
798 
799 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
800 		wbc->encountered_congestion = 1;
801 		return 0;
802 	}
803 
804 	pagevec_init(&pvec, 0);
805 	if (wbc->range_cyclic) {
806 		index = mapping->writeback_index; /* Start from prev offset */
807 		end = -1;
808 	} else {
809 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
810 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
811 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
812 			range_whole = 1;
813 		scanned = 1;
814 	}
815 retry:
816 	while (!done && (index <= end) &&
817 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
818 					      PAGECACHE_TAG_DIRTY,
819 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
820 		unsigned i;
821 
822 		scanned = 1;
823 		for (i = 0; i < nr_pages; i++) {
824 			struct page *page = pvec.pages[i];
825 
826 			/*
827 			 * At this point we hold neither mapping->tree_lock nor
828 			 * lock on the page itself: the page may be truncated or
829 			 * invalidated (changing page->mapping to NULL), or even
830 			 * swizzled back from swapper_space to tmpfs file
831 			 * mapping
832 			 */
833 			lock_page(page);
834 
835 			if (unlikely(page->mapping != mapping)) {
836 				unlock_page(page);
837 				continue;
838 			}
839 
840 			if (!wbc->range_cyclic && page->index > end) {
841 				done = 1;
842 				unlock_page(page);
843 				continue;
844 			}
845 
846 			if (wbc->sync_mode != WB_SYNC_NONE)
847 				wait_on_page_writeback(page);
848 
849 			if (PageWriteback(page) ||
850 			    !clear_page_dirty_for_io(page)) {
851 				unlock_page(page);
852 				continue;
853 			}
854 
855 			ret = (*writepage)(page, wbc, data);
856 
857 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
858 				unlock_page(page);
859 				ret = 0;
860 			}
861 			if (ret || (--(wbc->nr_to_write) <= 0))
862 				done = 1;
863 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
864 				wbc->encountered_congestion = 1;
865 				done = 1;
866 			}
867 		}
868 		pagevec_release(&pvec);
869 		cond_resched();
870 	}
871 	if (!scanned && !done) {
872 		/*
873 		 * We hit the last page and there is more work to be done: wrap
874 		 * back to the start of the file
875 		 */
876 		scanned = 1;
877 		index = 0;
878 		goto retry;
879 	}
880 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
881 		mapping->writeback_index = index;
882 	return ret;
883 }
884 EXPORT_SYMBOL(write_cache_pages);
885 
886 /*
887  * Function used by generic_writepages to call the real writepage
888  * function and set the mapping flags on error
889  */
890 static int __writepage(struct page *page, struct writeback_control *wbc,
891 		       void *data)
892 {
893 	struct address_space *mapping = data;
894 	int ret = mapping->a_ops->writepage(page, wbc);
895 	mapping_set_error(mapping, ret);
896 	return ret;
897 }
898 
899 /**
900  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
901  * @mapping: address space structure to write
902  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
903  *
904  * This is a library function, which implements the writepages()
905  * address_space_operation.
906  */
907 int generic_writepages(struct address_space *mapping,
908 		       struct writeback_control *wbc)
909 {
910 	/* deal with chardevs and other special file */
911 	if (!mapping->a_ops->writepage)
912 		return 0;
913 
914 	return write_cache_pages(mapping, wbc, __writepage, mapping);
915 }
916 
917 EXPORT_SYMBOL(generic_writepages);
918 
919 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
920 {
921 	int ret;
922 
923 	if (wbc->nr_to_write <= 0)
924 		return 0;
925 	wbc->for_writepages = 1;
926 	if (mapping->a_ops->writepages)
927 		ret = mapping->a_ops->writepages(mapping, wbc);
928 	else
929 		ret = generic_writepages(mapping, wbc);
930 	wbc->for_writepages = 0;
931 	return ret;
932 }
933 
934 /**
935  * write_one_page - write out a single page and optionally wait on I/O
936  * @page: the page to write
937  * @wait: if true, wait on writeout
938  *
939  * The page must be locked by the caller and will be unlocked upon return.
940  *
941  * write_one_page() returns a negative error code if I/O failed.
942  */
943 int write_one_page(struct page *page, int wait)
944 {
945 	struct address_space *mapping = page->mapping;
946 	int ret = 0;
947 	struct writeback_control wbc = {
948 		.sync_mode = WB_SYNC_ALL,
949 		.nr_to_write = 1,
950 	};
951 
952 	BUG_ON(!PageLocked(page));
953 
954 	if (wait)
955 		wait_on_page_writeback(page);
956 
957 	if (clear_page_dirty_for_io(page)) {
958 		page_cache_get(page);
959 		ret = mapping->a_ops->writepage(page, &wbc);
960 		if (ret == 0 && wait) {
961 			wait_on_page_writeback(page);
962 			if (PageError(page))
963 				ret = -EIO;
964 		}
965 		page_cache_release(page);
966 	} else {
967 		unlock_page(page);
968 	}
969 	return ret;
970 }
971 EXPORT_SYMBOL(write_one_page);
972 
973 /*
974  * For address_spaces which do not use buffers nor write back.
975  */
976 int __set_page_dirty_no_writeback(struct page *page)
977 {
978 	if (!PageDirty(page))
979 		SetPageDirty(page);
980 	return 0;
981 }
982 
983 /*
984  * For address_spaces which do not use buffers.  Just tag the page as dirty in
985  * its radix tree.
986  *
987  * This is also used when a single buffer is being dirtied: we want to set the
988  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
989  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
990  *
991  * Most callers have locked the page, which pins the address_space in memory.
992  * But zap_pte_range() does not lock the page, however in that case the
993  * mapping is pinned by the vma's ->vm_file reference.
994  *
995  * We take care to handle the case where the page was truncated from the
996  * mapping by re-checking page_mapping() inside tree_lock.
997  */
998 int __set_page_dirty_nobuffers(struct page *page)
999 {
1000 	if (!TestSetPageDirty(page)) {
1001 		struct address_space *mapping = page_mapping(page);
1002 		struct address_space *mapping2;
1003 
1004 		if (!mapping)
1005 			return 1;
1006 
1007 		write_lock_irq(&mapping->tree_lock);
1008 		mapping2 = page_mapping(page);
1009 		if (mapping2) { /* Race with truncate? */
1010 			BUG_ON(mapping2 != mapping);
1011 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1012 			if (mapping_cap_account_dirty(mapping)) {
1013 				__inc_zone_page_state(page, NR_FILE_DIRTY);
1014 				__inc_bdi_stat(mapping->backing_dev_info,
1015 						BDI_RECLAIMABLE);
1016 				task_io_account_write(PAGE_CACHE_SIZE);
1017 			}
1018 			radix_tree_tag_set(&mapping->page_tree,
1019 				page_index(page), PAGECACHE_TAG_DIRTY);
1020 		}
1021 		write_unlock_irq(&mapping->tree_lock);
1022 		if (mapping->host) {
1023 			/* !PageAnon && !swapper_space */
1024 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1025 		}
1026 		return 1;
1027 	}
1028 	return 0;
1029 }
1030 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1031 
1032 /*
1033  * When a writepage implementation decides that it doesn't want to write this
1034  * page for some reason, it should redirty the locked page via
1035  * redirty_page_for_writepage() and it should then unlock the page and return 0
1036  */
1037 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1038 {
1039 	wbc->pages_skipped++;
1040 	return __set_page_dirty_nobuffers(page);
1041 }
1042 EXPORT_SYMBOL(redirty_page_for_writepage);
1043 
1044 /*
1045  * If the mapping doesn't provide a set_page_dirty a_op, then
1046  * just fall through and assume that it wants buffer_heads.
1047  */
1048 static int __set_page_dirty(struct page *page)
1049 {
1050 	struct address_space *mapping = page_mapping(page);
1051 
1052 	if (likely(mapping)) {
1053 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1054 #ifdef CONFIG_BLOCK
1055 		if (!spd)
1056 			spd = __set_page_dirty_buffers;
1057 #endif
1058 		return (*spd)(page);
1059 	}
1060 	if (!PageDirty(page)) {
1061 		if (!TestSetPageDirty(page))
1062 			return 1;
1063 	}
1064 	return 0;
1065 }
1066 
1067 int fastcall set_page_dirty(struct page *page)
1068 {
1069 	int ret = __set_page_dirty(page);
1070 	if (ret)
1071 		task_dirty_inc(current);
1072 	return ret;
1073 }
1074 EXPORT_SYMBOL(set_page_dirty);
1075 
1076 /*
1077  * set_page_dirty() is racy if the caller has no reference against
1078  * page->mapping->host, and if the page is unlocked.  This is because another
1079  * CPU could truncate the page off the mapping and then free the mapping.
1080  *
1081  * Usually, the page _is_ locked, or the caller is a user-space process which
1082  * holds a reference on the inode by having an open file.
1083  *
1084  * In other cases, the page should be locked before running set_page_dirty().
1085  */
1086 int set_page_dirty_lock(struct page *page)
1087 {
1088 	int ret;
1089 
1090 	lock_page_nosync(page);
1091 	ret = set_page_dirty(page);
1092 	unlock_page(page);
1093 	return ret;
1094 }
1095 EXPORT_SYMBOL(set_page_dirty_lock);
1096 
1097 /*
1098  * Clear a page's dirty flag, while caring for dirty memory accounting.
1099  * Returns true if the page was previously dirty.
1100  *
1101  * This is for preparing to put the page under writeout.  We leave the page
1102  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1103  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1104  * implementation will run either set_page_writeback() or set_page_dirty(),
1105  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1106  * back into sync.
1107  *
1108  * This incoherency between the page's dirty flag and radix-tree tag is
1109  * unfortunate, but it only exists while the page is locked.
1110  */
1111 int clear_page_dirty_for_io(struct page *page)
1112 {
1113 	struct address_space *mapping = page_mapping(page);
1114 
1115 	BUG_ON(!PageLocked(page));
1116 
1117 	ClearPageReclaim(page);
1118 	if (mapping && mapping_cap_account_dirty(mapping)) {
1119 		/*
1120 		 * Yes, Virginia, this is indeed insane.
1121 		 *
1122 		 * We use this sequence to make sure that
1123 		 *  (a) we account for dirty stats properly
1124 		 *  (b) we tell the low-level filesystem to
1125 		 *      mark the whole page dirty if it was
1126 		 *      dirty in a pagetable. Only to then
1127 		 *  (c) clean the page again and return 1 to
1128 		 *      cause the writeback.
1129 		 *
1130 		 * This way we avoid all nasty races with the
1131 		 * dirty bit in multiple places and clearing
1132 		 * them concurrently from different threads.
1133 		 *
1134 		 * Note! Normally the "set_page_dirty(page)"
1135 		 * has no effect on the actual dirty bit - since
1136 		 * that will already usually be set. But we
1137 		 * need the side effects, and it can help us
1138 		 * avoid races.
1139 		 *
1140 		 * We basically use the page "master dirty bit"
1141 		 * as a serialization point for all the different
1142 		 * threads doing their things.
1143 		 */
1144 		if (page_mkclean(page))
1145 			set_page_dirty(page);
1146 		/*
1147 		 * We carefully synchronise fault handlers against
1148 		 * installing a dirty pte and marking the page dirty
1149 		 * at this point. We do this by having them hold the
1150 		 * page lock at some point after installing their
1151 		 * pte, but before marking the page dirty.
1152 		 * Pages are always locked coming in here, so we get
1153 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1154 		 * for more comments.
1155 		 */
1156 		if (TestClearPageDirty(page)) {
1157 			dec_zone_page_state(page, NR_FILE_DIRTY);
1158 			dec_bdi_stat(mapping->backing_dev_info,
1159 					BDI_RECLAIMABLE);
1160 			return 1;
1161 		}
1162 		return 0;
1163 	}
1164 	return TestClearPageDirty(page);
1165 }
1166 EXPORT_SYMBOL(clear_page_dirty_for_io);
1167 
1168 int test_clear_page_writeback(struct page *page)
1169 {
1170 	struct address_space *mapping = page_mapping(page);
1171 	int ret;
1172 
1173 	if (mapping) {
1174 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1175 		unsigned long flags;
1176 
1177 		write_lock_irqsave(&mapping->tree_lock, flags);
1178 		ret = TestClearPageWriteback(page);
1179 		if (ret) {
1180 			radix_tree_tag_clear(&mapping->page_tree,
1181 						page_index(page),
1182 						PAGECACHE_TAG_WRITEBACK);
1183 			if (bdi_cap_writeback_dirty(bdi)) {
1184 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1185 				__bdi_writeout_inc(bdi);
1186 			}
1187 		}
1188 		write_unlock_irqrestore(&mapping->tree_lock, flags);
1189 	} else {
1190 		ret = TestClearPageWriteback(page);
1191 	}
1192 	if (ret)
1193 		dec_zone_page_state(page, NR_WRITEBACK);
1194 	return ret;
1195 }
1196 
1197 int test_set_page_writeback(struct page *page)
1198 {
1199 	struct address_space *mapping = page_mapping(page);
1200 	int ret;
1201 
1202 	if (mapping) {
1203 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1204 		unsigned long flags;
1205 
1206 		write_lock_irqsave(&mapping->tree_lock, flags);
1207 		ret = TestSetPageWriteback(page);
1208 		if (!ret) {
1209 			radix_tree_tag_set(&mapping->page_tree,
1210 						page_index(page),
1211 						PAGECACHE_TAG_WRITEBACK);
1212 			if (bdi_cap_writeback_dirty(bdi))
1213 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1214 		}
1215 		if (!PageDirty(page))
1216 			radix_tree_tag_clear(&mapping->page_tree,
1217 						page_index(page),
1218 						PAGECACHE_TAG_DIRTY);
1219 		write_unlock_irqrestore(&mapping->tree_lock, flags);
1220 	} else {
1221 		ret = TestSetPageWriteback(page);
1222 	}
1223 	if (!ret)
1224 		inc_zone_page_state(page, NR_WRITEBACK);
1225 	return ret;
1226 
1227 }
1228 EXPORT_SYMBOL(test_set_page_writeback);
1229 
1230 /*
1231  * Return true if any of the pages in the mapping are marked with the
1232  * passed tag.
1233  */
1234 int mapping_tagged(struct address_space *mapping, int tag)
1235 {
1236 	int ret;
1237 	rcu_read_lock();
1238 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1239 	rcu_read_unlock();
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL(mapping_tagged);
1243