1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth or update dirty limit at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* 124 * Length of period for aging writeout fractions of bdis. This is an 125 * arbitrarily chosen number. The longer the period, the slower fractions will 126 * reflect changes in current writeout rate. 127 */ 128 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 129 130 #ifdef CONFIG_CGROUP_WRITEBACK 131 132 #define GDTC_INIT(__wb) .wb = (__wb), \ 133 .dom = &global_wb_domain, \ 134 .wb_completions = &(__wb)->completions 135 136 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 137 138 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 139 .dom = mem_cgroup_wb_domain(__wb), \ 140 .wb_completions = &(__wb)->memcg_completions, \ 141 .gdtc = __gdtc 142 143 static bool mdtc_valid(struct dirty_throttle_control *dtc) 144 { 145 return dtc->dom; 146 } 147 148 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 149 { 150 return dtc->dom; 151 } 152 153 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 154 { 155 return mdtc->gdtc; 156 } 157 158 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 159 { 160 return &wb->memcg_completions; 161 } 162 163 static void wb_min_max_ratio(struct bdi_writeback *wb, 164 unsigned long *minp, unsigned long *maxp) 165 { 166 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 167 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 168 unsigned long long min = wb->bdi->min_ratio; 169 unsigned long long max = wb->bdi->max_ratio; 170 171 /* 172 * @wb may already be clean by the time control reaches here and 173 * the total may not include its bw. 174 */ 175 if (this_bw < tot_bw) { 176 if (min) { 177 min *= this_bw; 178 min = div64_ul(min, tot_bw); 179 } 180 if (max < 100 * BDI_RATIO_SCALE) { 181 max *= this_bw; 182 max = div64_ul(max, tot_bw); 183 } 184 } 185 186 *minp = min; 187 *maxp = max; 188 } 189 190 #else /* CONFIG_CGROUP_WRITEBACK */ 191 192 #define GDTC_INIT(__wb) .wb = (__wb), \ 193 .wb_completions = &(__wb)->completions 194 #define GDTC_INIT_NO_WB 195 #define MDTC_INIT(__wb, __gdtc) 196 197 static bool mdtc_valid(struct dirty_throttle_control *dtc) 198 { 199 return false; 200 } 201 202 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 203 { 204 return &global_wb_domain; 205 } 206 207 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 208 { 209 return NULL; 210 } 211 212 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 213 { 214 return NULL; 215 } 216 217 static void wb_min_max_ratio(struct bdi_writeback *wb, 218 unsigned long *minp, unsigned long *maxp) 219 { 220 *minp = wb->bdi->min_ratio; 221 *maxp = wb->bdi->max_ratio; 222 } 223 224 #endif /* CONFIG_CGROUP_WRITEBACK */ 225 226 /* 227 * In a memory zone, there is a certain amount of pages we consider 228 * available for the page cache, which is essentially the number of 229 * free and reclaimable pages, minus some zone reserves to protect 230 * lowmem and the ability to uphold the zone's watermarks without 231 * requiring writeback. 232 * 233 * This number of dirtyable pages is the base value of which the 234 * user-configurable dirty ratio is the effective number of pages that 235 * are allowed to be actually dirtied. Per individual zone, or 236 * globally by using the sum of dirtyable pages over all zones. 237 * 238 * Because the user is allowed to specify the dirty limit globally as 239 * absolute number of bytes, calculating the per-zone dirty limit can 240 * require translating the configured limit into a percentage of 241 * global dirtyable memory first. 242 */ 243 244 /** 245 * node_dirtyable_memory - number of dirtyable pages in a node 246 * @pgdat: the node 247 * 248 * Return: the node's number of pages potentially available for dirty 249 * page cache. This is the base value for the per-node dirty limits. 250 */ 251 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 252 { 253 unsigned long nr_pages = 0; 254 int z; 255 256 for (z = 0; z < MAX_NR_ZONES; z++) { 257 struct zone *zone = pgdat->node_zones + z; 258 259 if (!populated_zone(zone)) 260 continue; 261 262 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 263 } 264 265 /* 266 * Pages reserved for the kernel should not be considered 267 * dirtyable, to prevent a situation where reclaim has to 268 * clean pages in order to balance the zones. 269 */ 270 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 271 272 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 273 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 274 275 return nr_pages; 276 } 277 278 static unsigned long highmem_dirtyable_memory(unsigned long total) 279 { 280 #ifdef CONFIG_HIGHMEM 281 int node; 282 unsigned long x = 0; 283 int i; 284 285 for_each_node_state(node, N_HIGH_MEMORY) { 286 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 287 struct zone *z; 288 unsigned long nr_pages; 289 290 if (!is_highmem_idx(i)) 291 continue; 292 293 z = &NODE_DATA(node)->node_zones[i]; 294 if (!populated_zone(z)) 295 continue; 296 297 nr_pages = zone_page_state(z, NR_FREE_PAGES); 298 /* watch for underflows */ 299 nr_pages -= min(nr_pages, high_wmark_pages(z)); 300 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 301 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 302 x += nr_pages; 303 } 304 } 305 306 /* 307 * Make sure that the number of highmem pages is never larger 308 * than the number of the total dirtyable memory. This can only 309 * occur in very strange VM situations but we want to make sure 310 * that this does not occur. 311 */ 312 return min(x, total); 313 #else 314 return 0; 315 #endif 316 } 317 318 /** 319 * global_dirtyable_memory - number of globally dirtyable pages 320 * 321 * Return: the global number of pages potentially available for dirty 322 * page cache. This is the base value for the global dirty limits. 323 */ 324 static unsigned long global_dirtyable_memory(void) 325 { 326 unsigned long x; 327 328 x = global_zone_page_state(NR_FREE_PAGES); 329 /* 330 * Pages reserved for the kernel should not be considered 331 * dirtyable, to prevent a situation where reclaim has to 332 * clean pages in order to balance the zones. 333 */ 334 x -= min(x, totalreserve_pages); 335 336 x += global_node_page_state(NR_INACTIVE_FILE); 337 x += global_node_page_state(NR_ACTIVE_FILE); 338 339 if (!vm_highmem_is_dirtyable) 340 x -= highmem_dirtyable_memory(x); 341 342 return x + 1; /* Ensure that we never return 0 */ 343 } 344 345 /** 346 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 347 * @dtc: dirty_throttle_control of interest 348 * 349 * Calculate @dtc->thresh and ->bg_thresh considering 350 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 351 * must ensure that @dtc->avail is set before calling this function. The 352 * dirty limits will be lifted by 1/4 for real-time tasks. 353 */ 354 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 355 { 356 const unsigned long available_memory = dtc->avail; 357 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 358 unsigned long bytes = vm_dirty_bytes; 359 unsigned long bg_bytes = dirty_background_bytes; 360 /* convert ratios to per-PAGE_SIZE for higher precision */ 361 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 362 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 363 unsigned long thresh; 364 unsigned long bg_thresh; 365 struct task_struct *tsk; 366 367 /* gdtc is !NULL iff @dtc is for memcg domain */ 368 if (gdtc) { 369 unsigned long global_avail = gdtc->avail; 370 371 /* 372 * The byte settings can't be applied directly to memcg 373 * domains. Convert them to ratios by scaling against 374 * globally available memory. As the ratios are in 375 * per-PAGE_SIZE, they can be obtained by dividing bytes by 376 * number of pages. 377 */ 378 if (bytes) 379 ratio = min(DIV_ROUND_UP(bytes, global_avail), 380 PAGE_SIZE); 381 if (bg_bytes) 382 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 383 PAGE_SIZE); 384 bytes = bg_bytes = 0; 385 } 386 387 if (bytes) 388 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 389 else 390 thresh = (ratio * available_memory) / PAGE_SIZE; 391 392 if (bg_bytes) 393 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 394 else 395 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 396 397 tsk = current; 398 if (rt_or_dl_task(tsk)) { 399 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 400 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 401 } 402 /* 403 * Dirty throttling logic assumes the limits in page units fit into 404 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 405 */ 406 if (thresh > UINT_MAX) 407 thresh = UINT_MAX; 408 /* This makes sure bg_thresh is within 32-bits as well */ 409 if (bg_thresh >= thresh) 410 bg_thresh = thresh / 2; 411 dtc->thresh = thresh; 412 dtc->bg_thresh = bg_thresh; 413 414 /* we should eventually report the domain in the TP */ 415 if (!gdtc) 416 trace_global_dirty_state(bg_thresh, thresh); 417 } 418 419 /** 420 * global_dirty_limits - background-writeback and dirty-throttling thresholds 421 * @pbackground: out parameter for bg_thresh 422 * @pdirty: out parameter for thresh 423 * 424 * Calculate bg_thresh and thresh for global_wb_domain. See 425 * domain_dirty_limits() for details. 426 */ 427 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 428 { 429 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 430 431 gdtc.avail = global_dirtyable_memory(); 432 domain_dirty_limits(&gdtc); 433 434 *pbackground = gdtc.bg_thresh; 435 *pdirty = gdtc.thresh; 436 } 437 438 /** 439 * node_dirty_limit - maximum number of dirty pages allowed in a node 440 * @pgdat: the node 441 * 442 * Return: the maximum number of dirty pages allowed in a node, based 443 * on the node's dirtyable memory. 444 */ 445 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 446 { 447 unsigned long node_memory = node_dirtyable_memory(pgdat); 448 struct task_struct *tsk = current; 449 unsigned long dirty; 450 451 if (vm_dirty_bytes) 452 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 453 node_memory / global_dirtyable_memory(); 454 else 455 dirty = vm_dirty_ratio * node_memory / 100; 456 457 if (rt_or_dl_task(tsk)) 458 dirty += dirty / 4; 459 460 /* 461 * Dirty throttling logic assumes the limits in page units fit into 462 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 463 */ 464 return min_t(unsigned long, dirty, UINT_MAX); 465 } 466 467 /** 468 * node_dirty_ok - tells whether a node is within its dirty limits 469 * @pgdat: the node to check 470 * 471 * Return: %true when the dirty pages in @pgdat are within the node's 472 * dirty limit, %false if the limit is exceeded. 473 */ 474 bool node_dirty_ok(struct pglist_data *pgdat) 475 { 476 unsigned long limit = node_dirty_limit(pgdat); 477 unsigned long nr_pages = 0; 478 479 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 480 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 481 482 return nr_pages <= limit; 483 } 484 485 #ifdef CONFIG_SYSCTL 486 static int dirty_background_ratio_handler(const struct ctl_table *table, int write, 487 void *buffer, size_t *lenp, loff_t *ppos) 488 { 489 int ret; 490 491 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 492 if (ret == 0 && write) 493 dirty_background_bytes = 0; 494 return ret; 495 } 496 497 static int dirty_background_bytes_handler(const struct ctl_table *table, int write, 498 void *buffer, size_t *lenp, loff_t *ppos) 499 { 500 int ret; 501 unsigned long old_bytes = dirty_background_bytes; 502 503 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 504 if (ret == 0 && write) { 505 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > 506 UINT_MAX) { 507 dirty_background_bytes = old_bytes; 508 return -ERANGE; 509 } 510 dirty_background_ratio = 0; 511 } 512 return ret; 513 } 514 515 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer, 516 size_t *lenp, loff_t *ppos) 517 { 518 int old_ratio = vm_dirty_ratio; 519 int ret; 520 521 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 522 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 523 writeback_set_ratelimit(); 524 vm_dirty_bytes = 0; 525 } 526 return ret; 527 } 528 529 static int dirty_bytes_handler(const struct ctl_table *table, int write, 530 void *buffer, size_t *lenp, loff_t *ppos) 531 { 532 unsigned long old_bytes = vm_dirty_bytes; 533 int ret; 534 535 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 536 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 537 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { 538 vm_dirty_bytes = old_bytes; 539 return -ERANGE; 540 } 541 writeback_set_ratelimit(); 542 vm_dirty_ratio = 0; 543 } 544 return ret; 545 } 546 #endif 547 548 static unsigned long wp_next_time(unsigned long cur_time) 549 { 550 cur_time += VM_COMPLETIONS_PERIOD_LEN; 551 /* 0 has a special meaning... */ 552 if (!cur_time) 553 return 1; 554 return cur_time; 555 } 556 557 static void wb_domain_writeout_add(struct wb_domain *dom, 558 struct fprop_local_percpu *completions, 559 unsigned int max_prop_frac, long nr) 560 { 561 __fprop_add_percpu_max(&dom->completions, completions, 562 max_prop_frac, nr); 563 /* First event after period switching was turned off? */ 564 if (unlikely(!dom->period_time)) { 565 /* 566 * We can race with other wb_domain_writeout_add calls here but 567 * it does not cause any harm since the resulting time when 568 * timer will fire and what is in writeout_period_time will be 569 * roughly the same. 570 */ 571 dom->period_time = wp_next_time(jiffies); 572 mod_timer(&dom->period_timer, dom->period_time); 573 } 574 } 575 576 /* 577 * Increment @wb's writeout completion count and the global writeout 578 * completion count. Called from __folio_end_writeback(). 579 */ 580 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 581 { 582 struct wb_domain *cgdom; 583 584 wb_stat_mod(wb, WB_WRITTEN, nr); 585 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 586 wb->bdi->max_prop_frac, nr); 587 588 cgdom = mem_cgroup_wb_domain(wb); 589 if (cgdom) 590 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 591 wb->bdi->max_prop_frac, nr); 592 } 593 594 void wb_writeout_inc(struct bdi_writeback *wb) 595 { 596 unsigned long flags; 597 598 local_irq_save(flags); 599 __wb_writeout_add(wb, 1); 600 local_irq_restore(flags); 601 } 602 EXPORT_SYMBOL_GPL(wb_writeout_inc); 603 604 /* 605 * On idle system, we can be called long after we scheduled because we use 606 * deferred timers so count with missed periods. 607 */ 608 static void writeout_period(struct timer_list *t) 609 { 610 struct wb_domain *dom = from_timer(dom, t, period_timer); 611 int miss_periods = (jiffies - dom->period_time) / 612 VM_COMPLETIONS_PERIOD_LEN; 613 614 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 615 dom->period_time = wp_next_time(dom->period_time + 616 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 617 mod_timer(&dom->period_timer, dom->period_time); 618 } else { 619 /* 620 * Aging has zeroed all fractions. Stop wasting CPU on period 621 * updates. 622 */ 623 dom->period_time = 0; 624 } 625 } 626 627 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 628 { 629 memset(dom, 0, sizeof(*dom)); 630 631 spin_lock_init(&dom->lock); 632 633 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 634 635 dom->dirty_limit_tstamp = jiffies; 636 637 return fprop_global_init(&dom->completions, gfp); 638 } 639 640 #ifdef CONFIG_CGROUP_WRITEBACK 641 void wb_domain_exit(struct wb_domain *dom) 642 { 643 timer_delete_sync(&dom->period_timer); 644 fprop_global_destroy(&dom->completions); 645 } 646 #endif 647 648 /* 649 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 650 * registered backing devices, which, for obvious reasons, can not 651 * exceed 100%. 652 */ 653 static unsigned int bdi_min_ratio; 654 655 static int bdi_check_pages_limit(unsigned long pages) 656 { 657 unsigned long max_dirty_pages = global_dirtyable_memory(); 658 659 if (pages > max_dirty_pages) 660 return -EINVAL; 661 662 return 0; 663 } 664 665 static unsigned long bdi_ratio_from_pages(unsigned long pages) 666 { 667 unsigned long background_thresh; 668 unsigned long dirty_thresh; 669 unsigned long ratio; 670 671 global_dirty_limits(&background_thresh, &dirty_thresh); 672 if (!dirty_thresh) 673 return -EINVAL; 674 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 675 676 return ratio; 677 } 678 679 static u64 bdi_get_bytes(unsigned int ratio) 680 { 681 unsigned long background_thresh; 682 unsigned long dirty_thresh; 683 u64 bytes; 684 685 global_dirty_limits(&background_thresh, &dirty_thresh); 686 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 687 688 return bytes; 689 } 690 691 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 692 { 693 unsigned int delta; 694 int ret = 0; 695 696 if (min_ratio > 100 * BDI_RATIO_SCALE) 697 return -EINVAL; 698 699 spin_lock_bh(&bdi_lock); 700 if (min_ratio > bdi->max_ratio) { 701 ret = -EINVAL; 702 } else { 703 if (min_ratio < bdi->min_ratio) { 704 delta = bdi->min_ratio - min_ratio; 705 bdi_min_ratio -= delta; 706 bdi->min_ratio = min_ratio; 707 } else { 708 delta = min_ratio - bdi->min_ratio; 709 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 710 bdi_min_ratio += delta; 711 bdi->min_ratio = min_ratio; 712 } else { 713 ret = -EINVAL; 714 } 715 } 716 } 717 spin_unlock_bh(&bdi_lock); 718 719 return ret; 720 } 721 722 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 723 { 724 int ret = 0; 725 726 if (max_ratio > 100 * BDI_RATIO_SCALE) 727 return -EINVAL; 728 729 spin_lock_bh(&bdi_lock); 730 if (bdi->min_ratio > max_ratio) { 731 ret = -EINVAL; 732 } else { 733 bdi->max_ratio = max_ratio; 734 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 735 (100 * BDI_RATIO_SCALE); 736 } 737 spin_unlock_bh(&bdi_lock); 738 739 return ret; 740 } 741 742 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 743 { 744 return __bdi_set_min_ratio(bdi, min_ratio); 745 } 746 747 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 748 { 749 return __bdi_set_max_ratio(bdi, max_ratio); 750 } 751 752 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 753 { 754 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 755 } 756 757 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 758 { 759 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 760 } 761 EXPORT_SYMBOL(bdi_set_max_ratio); 762 763 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 764 { 765 return bdi_get_bytes(bdi->min_ratio); 766 } 767 768 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 769 { 770 int ret; 771 unsigned long pages = min_bytes >> PAGE_SHIFT; 772 long min_ratio; 773 774 ret = bdi_check_pages_limit(pages); 775 if (ret) 776 return ret; 777 778 min_ratio = bdi_ratio_from_pages(pages); 779 if (min_ratio < 0) 780 return min_ratio; 781 return __bdi_set_min_ratio(bdi, min_ratio); 782 } 783 784 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 785 { 786 return bdi_get_bytes(bdi->max_ratio); 787 } 788 789 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 790 { 791 int ret; 792 unsigned long pages = max_bytes >> PAGE_SHIFT; 793 long max_ratio; 794 795 ret = bdi_check_pages_limit(pages); 796 if (ret) 797 return ret; 798 799 max_ratio = bdi_ratio_from_pages(pages); 800 if (max_ratio < 0) 801 return max_ratio; 802 return __bdi_set_max_ratio(bdi, max_ratio); 803 } 804 805 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 806 { 807 if (strict_limit > 1) 808 return -EINVAL; 809 810 spin_lock_bh(&bdi_lock); 811 if (strict_limit) 812 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 813 else 814 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 815 spin_unlock_bh(&bdi_lock); 816 817 return 0; 818 } 819 820 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 821 unsigned long bg_thresh) 822 { 823 return (thresh + bg_thresh) / 2; 824 } 825 826 static unsigned long hard_dirty_limit(struct wb_domain *dom, 827 unsigned long thresh) 828 { 829 return max(thresh, dom->dirty_limit); 830 } 831 832 /* 833 * Memory which can be further allocated to a memcg domain is capped by 834 * system-wide clean memory excluding the amount being used in the domain. 835 */ 836 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 837 unsigned long filepages, unsigned long headroom) 838 { 839 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 840 unsigned long clean = filepages - min(filepages, mdtc->dirty); 841 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 842 unsigned long other_clean = global_clean - min(global_clean, clean); 843 844 mdtc->avail = filepages + min(headroom, other_clean); 845 } 846 847 static inline bool dtc_is_global(struct dirty_throttle_control *dtc) 848 { 849 return mdtc_gdtc(dtc) == NULL; 850 } 851 852 /* 853 * Dirty background will ignore pages being written as we're trying to 854 * decide whether to put more under writeback. 855 */ 856 static void domain_dirty_avail(struct dirty_throttle_control *dtc, 857 bool include_writeback) 858 { 859 if (dtc_is_global(dtc)) { 860 dtc->avail = global_dirtyable_memory(); 861 dtc->dirty = global_node_page_state(NR_FILE_DIRTY); 862 if (include_writeback) 863 dtc->dirty += global_node_page_state(NR_WRITEBACK); 864 } else { 865 unsigned long filepages = 0, headroom = 0, writeback = 0; 866 867 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty, 868 &writeback); 869 if (include_writeback) 870 dtc->dirty += writeback; 871 mdtc_calc_avail(dtc, filepages, headroom); 872 } 873 } 874 875 /** 876 * __wb_calc_thresh - @wb's share of dirty threshold 877 * @dtc: dirty_throttle_context of interest 878 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc 879 * 880 * Note that balance_dirty_pages() will only seriously take dirty throttling 881 * threshold as a hard limit when sleeping max_pause per page is not enough 882 * to keep the dirty pages under control. For example, when the device is 883 * completely stalled due to some error conditions, or when there are 1000 884 * dd tasks writing to a slow 10MB/s USB key. 885 * In the other normal situations, it acts more gently by throttling the tasks 886 * more (rather than completely block them) when the wb dirty pages go high. 887 * 888 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 889 * - starving fast devices 890 * - piling up dirty pages (that will take long time to sync) on slow devices 891 * 892 * The wb's share of dirty limit will be adapting to its throughput and 893 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 894 * 895 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term 896 * "dirty" in the context of dirty balancing includes all PG_dirty and 897 * PG_writeback pages. 898 */ 899 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, 900 unsigned long thresh) 901 { 902 struct wb_domain *dom = dtc_dom(dtc); 903 struct bdi_writeback *wb = dtc->wb; 904 u64 wb_thresh; 905 u64 wb_max_thresh; 906 unsigned long numerator, denominator; 907 unsigned long wb_min_ratio, wb_max_ratio; 908 909 /* 910 * Calculate this wb's share of the thresh ratio. 911 */ 912 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 913 &numerator, &denominator); 914 915 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 916 wb_thresh *= numerator; 917 wb_thresh = div64_ul(wb_thresh, denominator); 918 919 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio); 920 921 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 922 923 /* 924 * It's very possible that wb_thresh is close to 0 not because the 925 * device is slow, but that it has remained inactive for long time. 926 * Honour such devices a reasonable good (hopefully IO efficient) 927 * threshold, so that the occasional writes won't be blocked and active 928 * writes can rampup the threshold quickly. 929 */ 930 if (thresh > dtc->dirty) { 931 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) 932 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100); 933 else 934 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8); 935 } 936 937 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 938 if (wb_thresh > wb_max_thresh) 939 wb_thresh = wb_max_thresh; 940 941 return wb_thresh; 942 } 943 944 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 945 { 946 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 947 948 domain_dirty_avail(&gdtc, true); 949 return __wb_calc_thresh(&gdtc, thresh); 950 } 951 952 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) 953 { 954 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 955 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 956 957 domain_dirty_avail(&gdtc, true); 958 domain_dirty_avail(&mdtc, true); 959 domain_dirty_limits(&mdtc); 960 961 return __wb_calc_thresh(&mdtc, mdtc.thresh); 962 } 963 964 /* 965 * setpoint - dirty 3 966 * f(dirty) := 1.0 + (----------------) 967 * limit - setpoint 968 * 969 * it's a 3rd order polynomial that subjects to 970 * 971 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 972 * (2) f(setpoint) = 1.0 => the balance point 973 * (3) f(limit) = 0 => the hard limit 974 * (4) df/dx <= 0 => negative feedback control 975 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 976 * => fast response on large errors; small oscillation near setpoint 977 */ 978 static long long pos_ratio_polynom(unsigned long setpoint, 979 unsigned long dirty, 980 unsigned long limit) 981 { 982 long long pos_ratio; 983 long x; 984 985 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 986 (limit - setpoint) | 1); 987 pos_ratio = x; 988 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 989 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 990 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 991 992 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 993 } 994 995 /* 996 * Dirty position control. 997 * 998 * (o) global/bdi setpoints 999 * 1000 * We want the dirty pages be balanced around the global/wb setpoints. 1001 * When the number of dirty pages is higher/lower than the setpoint, the 1002 * dirty position control ratio (and hence task dirty ratelimit) will be 1003 * decreased/increased to bring the dirty pages back to the setpoint. 1004 * 1005 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 1006 * 1007 * if (dirty < setpoint) scale up pos_ratio 1008 * if (dirty > setpoint) scale down pos_ratio 1009 * 1010 * if (wb_dirty < wb_setpoint) scale up pos_ratio 1011 * if (wb_dirty > wb_setpoint) scale down pos_ratio 1012 * 1013 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 1014 * 1015 * (o) global control line 1016 * 1017 * ^ pos_ratio 1018 * | 1019 * | |<===== global dirty control scope ======>| 1020 * 2.0 * * * * * * * 1021 * | .* 1022 * | . * 1023 * | . * 1024 * | . * 1025 * | . * 1026 * | . * 1027 * 1.0 ................................* 1028 * | . . * 1029 * | . . * 1030 * | . . * 1031 * | . . * 1032 * | . . * 1033 * 0 +------------.------------------.----------------------*-------------> 1034 * freerun^ setpoint^ limit^ dirty pages 1035 * 1036 * (o) wb control line 1037 * 1038 * ^ pos_ratio 1039 * | 1040 * | * 1041 * | * 1042 * | * 1043 * | * 1044 * | * |<=========== span ============>| 1045 * 1.0 .......................* 1046 * | . * 1047 * | . * 1048 * | . * 1049 * | . * 1050 * | . * 1051 * | . * 1052 * | . * 1053 * | . * 1054 * | . * 1055 * | . * 1056 * | . * 1057 * 1/4 ...............................................* * * * * * * * * * * * 1058 * | . . 1059 * | . . 1060 * | . . 1061 * 0 +----------------------.-------------------------------.-------------> 1062 * wb_setpoint^ x_intercept^ 1063 * 1064 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1065 * be smoothly throttled down to normal if it starts high in situations like 1066 * - start writing to a slow SD card and a fast disk at the same time. The SD 1067 * card's wb_dirty may rush to many times higher than wb_setpoint. 1068 * - the wb dirty thresh drops quickly due to change of JBOD workload 1069 */ 1070 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1071 { 1072 struct bdi_writeback *wb = dtc->wb; 1073 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1074 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1075 unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1076 unsigned long wb_thresh = dtc->wb_thresh; 1077 unsigned long x_intercept; 1078 unsigned long setpoint; /* dirty pages' target balance point */ 1079 unsigned long wb_setpoint; 1080 unsigned long span; 1081 long long pos_ratio; /* for scaling up/down the rate limit */ 1082 long x; 1083 1084 dtc->pos_ratio = 0; 1085 1086 if (unlikely(dtc->dirty >= limit)) 1087 return; 1088 1089 /* 1090 * global setpoint 1091 * 1092 * See comment for pos_ratio_polynom(). 1093 */ 1094 setpoint = (freerun + limit) / 2; 1095 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1096 1097 /* 1098 * The strictlimit feature is a tool preventing mistrusted filesystems 1099 * from growing a large number of dirty pages before throttling. For 1100 * such filesystems balance_dirty_pages always checks wb counters 1101 * against wb limits. Even if global "nr_dirty" is under "freerun". 1102 * This is especially important for fuse which sets bdi->max_ratio to 1103 * 1% by default. Without strictlimit feature, fuse writeback may 1104 * consume arbitrary amount of RAM because it is accounted in 1105 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1106 * 1107 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1108 * two values: wb_dirty and wb_thresh. Let's consider an example: 1109 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1110 * limits are set by default to 10% and 20% (background and throttle). 1111 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1112 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1113 * about ~6K pages (as the average of background and throttle wb 1114 * limits). The 3rd order polynomial will provide positive feedback if 1115 * wb_dirty is under wb_setpoint and vice versa. 1116 * 1117 * Note, that we cannot use global counters in these calculations 1118 * because we want to throttle process writing to a strictlimit wb 1119 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1120 * in the example above). 1121 */ 1122 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1123 long long wb_pos_ratio; 1124 1125 if (dtc->wb_dirty >= wb_thresh) 1126 return; 1127 1128 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1129 dtc->wb_bg_thresh); 1130 1131 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1132 return; 1133 1134 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1135 wb_thresh); 1136 1137 /* 1138 * Typically, for strictlimit case, wb_setpoint << setpoint 1139 * and pos_ratio >> wb_pos_ratio. In the other words global 1140 * state ("dirty") is not limiting factor and we have to 1141 * make decision based on wb counters. But there is an 1142 * important case when global pos_ratio should get precedence: 1143 * global limits are exceeded (e.g. due to activities on other 1144 * wb's) while given strictlimit wb is below limit. 1145 * 1146 * "pos_ratio * wb_pos_ratio" would work for the case above, 1147 * but it would look too non-natural for the case of all 1148 * activity in the system coming from a single strictlimit wb 1149 * with bdi->max_ratio == 100%. 1150 * 1151 * Note that min() below somewhat changes the dynamics of the 1152 * control system. Normally, pos_ratio value can be well over 3 1153 * (when globally we are at freerun and wb is well below wb 1154 * setpoint). Now the maximum pos_ratio in the same situation 1155 * is 2. We might want to tweak this if we observe the control 1156 * system is too slow to adapt. 1157 */ 1158 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1159 return; 1160 } 1161 1162 /* 1163 * We have computed basic pos_ratio above based on global situation. If 1164 * the wb is over/under its share of dirty pages, we want to scale 1165 * pos_ratio further down/up. That is done by the following mechanism. 1166 */ 1167 1168 /* 1169 * wb setpoint 1170 * 1171 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1172 * 1173 * x_intercept - wb_dirty 1174 * := -------------------------- 1175 * x_intercept - wb_setpoint 1176 * 1177 * The main wb control line is a linear function that subjects to 1178 * 1179 * (1) f(wb_setpoint) = 1.0 1180 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1181 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1182 * 1183 * For single wb case, the dirty pages are observed to fluctuate 1184 * regularly within range 1185 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1186 * for various filesystems, where (2) can yield in a reasonable 12.5% 1187 * fluctuation range for pos_ratio. 1188 * 1189 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1190 * own size, so move the slope over accordingly and choose a slope that 1191 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1192 */ 1193 if (unlikely(wb_thresh > dtc->thresh)) 1194 wb_thresh = dtc->thresh; 1195 /* 1196 * scale global setpoint to wb's: 1197 * wb_setpoint = setpoint * wb_thresh / thresh 1198 */ 1199 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1200 wb_setpoint = setpoint * (u64)x >> 16; 1201 /* 1202 * Use span=(8*write_bw) in single wb case as indicated by 1203 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1204 * 1205 * wb_thresh thresh - wb_thresh 1206 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1207 * thresh thresh 1208 */ 1209 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1210 x_intercept = wb_setpoint + span; 1211 1212 if (dtc->wb_dirty < x_intercept - span / 4) { 1213 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1214 (x_intercept - wb_setpoint) | 1); 1215 } else 1216 pos_ratio /= 4; 1217 1218 /* 1219 * wb reserve area, safeguard against dirty pool underrun and disk idle 1220 * It may push the desired control point of global dirty pages higher 1221 * than setpoint. 1222 */ 1223 x_intercept = wb_thresh / 2; 1224 if (dtc->wb_dirty < x_intercept) { 1225 if (dtc->wb_dirty > x_intercept / 8) 1226 pos_ratio = div_u64(pos_ratio * x_intercept, 1227 dtc->wb_dirty); 1228 else 1229 pos_ratio *= 8; 1230 } 1231 1232 dtc->pos_ratio = pos_ratio; 1233 } 1234 1235 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1236 unsigned long elapsed, 1237 unsigned long written) 1238 { 1239 const unsigned long period = roundup_pow_of_two(3 * HZ); 1240 unsigned long avg = wb->avg_write_bandwidth; 1241 unsigned long old = wb->write_bandwidth; 1242 u64 bw; 1243 1244 /* 1245 * bw = written * HZ / elapsed 1246 * 1247 * bw * elapsed + write_bandwidth * (period - elapsed) 1248 * write_bandwidth = --------------------------------------------------- 1249 * period 1250 * 1251 * @written may have decreased due to folio_redirty_for_writepage(). 1252 * Avoid underflowing @bw calculation. 1253 */ 1254 bw = written - min(written, wb->written_stamp); 1255 bw *= HZ; 1256 if (unlikely(elapsed > period)) { 1257 bw = div64_ul(bw, elapsed); 1258 avg = bw; 1259 goto out; 1260 } 1261 bw += (u64)wb->write_bandwidth * (period - elapsed); 1262 bw >>= ilog2(period); 1263 1264 /* 1265 * one more level of smoothing, for filtering out sudden spikes 1266 */ 1267 if (avg > old && old >= (unsigned long)bw) 1268 avg -= (avg - old) >> 3; 1269 1270 if (avg < old && old <= (unsigned long)bw) 1271 avg += (old - avg) >> 3; 1272 1273 out: 1274 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1275 avg = max(avg, 1LU); 1276 if (wb_has_dirty_io(wb)) { 1277 long delta = avg - wb->avg_write_bandwidth; 1278 WARN_ON_ONCE(atomic_long_add_return(delta, 1279 &wb->bdi->tot_write_bandwidth) <= 0); 1280 } 1281 wb->write_bandwidth = bw; 1282 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1283 } 1284 1285 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1286 { 1287 struct wb_domain *dom = dtc_dom(dtc); 1288 unsigned long thresh = dtc->thresh; 1289 unsigned long limit = dom->dirty_limit; 1290 1291 /* 1292 * Follow up in one step. 1293 */ 1294 if (limit < thresh) { 1295 limit = thresh; 1296 goto update; 1297 } 1298 1299 /* 1300 * Follow down slowly. Use the higher one as the target, because thresh 1301 * may drop below dirty. This is exactly the reason to introduce 1302 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1303 */ 1304 thresh = max(thresh, dtc->dirty); 1305 if (limit > thresh) { 1306 limit -= (limit - thresh) >> 5; 1307 goto update; 1308 } 1309 return; 1310 update: 1311 dom->dirty_limit = limit; 1312 } 1313 1314 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1315 unsigned long now) 1316 { 1317 struct wb_domain *dom = dtc_dom(dtc); 1318 1319 /* 1320 * check locklessly first to optimize away locking for the most time 1321 */ 1322 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1323 return; 1324 1325 spin_lock(&dom->lock); 1326 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1327 update_dirty_limit(dtc); 1328 dom->dirty_limit_tstamp = now; 1329 } 1330 spin_unlock(&dom->lock); 1331 } 1332 1333 /* 1334 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1335 * 1336 * Normal wb tasks will be curbed at or below it in long term. 1337 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1338 */ 1339 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1340 unsigned long dirtied, 1341 unsigned long elapsed) 1342 { 1343 struct bdi_writeback *wb = dtc->wb; 1344 unsigned long dirty = dtc->dirty; 1345 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1346 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1347 unsigned long setpoint = (freerun + limit) / 2; 1348 unsigned long write_bw = wb->avg_write_bandwidth; 1349 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1350 unsigned long dirty_rate; 1351 unsigned long task_ratelimit; 1352 unsigned long balanced_dirty_ratelimit; 1353 unsigned long step; 1354 unsigned long x; 1355 unsigned long shift; 1356 1357 /* 1358 * The dirty rate will match the writeout rate in long term, except 1359 * when dirty pages are truncated by userspace or re-dirtied by FS. 1360 */ 1361 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1362 1363 /* 1364 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1365 */ 1366 task_ratelimit = (u64)dirty_ratelimit * 1367 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1368 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1369 1370 /* 1371 * A linear estimation of the "balanced" throttle rate. The theory is, 1372 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1373 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1374 * formula will yield the balanced rate limit (write_bw / N). 1375 * 1376 * Note that the expanded form is not a pure rate feedback: 1377 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1378 * but also takes pos_ratio into account: 1379 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1380 * 1381 * (1) is not realistic because pos_ratio also takes part in balancing 1382 * the dirty rate. Consider the state 1383 * pos_ratio = 0.5 (3) 1384 * rate = 2 * (write_bw / N) (4) 1385 * If (1) is used, it will stuck in that state! Because each dd will 1386 * be throttled at 1387 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1388 * yielding 1389 * dirty_rate = N * task_ratelimit = write_bw (6) 1390 * put (6) into (1) we get 1391 * rate_(i+1) = rate_(i) (7) 1392 * 1393 * So we end up using (2) to always keep 1394 * rate_(i+1) ~= (write_bw / N) (8) 1395 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1396 * pos_ratio is able to drive itself to 1.0, which is not only where 1397 * the dirty count meet the setpoint, but also where the slope of 1398 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1399 */ 1400 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1401 dirty_rate | 1); 1402 /* 1403 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1404 */ 1405 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1406 balanced_dirty_ratelimit = write_bw; 1407 1408 /* 1409 * We could safely do this and return immediately: 1410 * 1411 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1412 * 1413 * However to get a more stable dirty_ratelimit, the below elaborated 1414 * code makes use of task_ratelimit to filter out singular points and 1415 * limit the step size. 1416 * 1417 * The below code essentially only uses the relative value of 1418 * 1419 * task_ratelimit - dirty_ratelimit 1420 * = (pos_ratio - 1) * dirty_ratelimit 1421 * 1422 * which reflects the direction and size of dirty position error. 1423 */ 1424 1425 /* 1426 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1427 * task_ratelimit is on the same side of dirty_ratelimit, too. 1428 * For example, when 1429 * - dirty_ratelimit > balanced_dirty_ratelimit 1430 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1431 * lowering dirty_ratelimit will help meet both the position and rate 1432 * control targets. Otherwise, don't update dirty_ratelimit if it will 1433 * only help meet the rate target. After all, what the users ultimately 1434 * feel and care are stable dirty rate and small position error. 1435 * 1436 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1437 * and filter out the singular points of balanced_dirty_ratelimit. Which 1438 * keeps jumping around randomly and can even leap far away at times 1439 * due to the small 200ms estimation period of dirty_rate (we want to 1440 * keep that period small to reduce time lags). 1441 */ 1442 step = 0; 1443 1444 /* 1445 * For strictlimit case, calculations above were based on wb counters 1446 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1447 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1448 * Hence, to calculate "step" properly, we have to use wb_dirty as 1449 * "dirty" and wb_setpoint as "setpoint". 1450 */ 1451 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1452 dirty = dtc->wb_dirty; 1453 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1454 } 1455 1456 if (dirty < setpoint) { 1457 x = min3(wb->balanced_dirty_ratelimit, 1458 balanced_dirty_ratelimit, task_ratelimit); 1459 if (dirty_ratelimit < x) 1460 step = x - dirty_ratelimit; 1461 } else { 1462 x = max3(wb->balanced_dirty_ratelimit, 1463 balanced_dirty_ratelimit, task_ratelimit); 1464 if (dirty_ratelimit > x) 1465 step = dirty_ratelimit - x; 1466 } 1467 1468 /* 1469 * Don't pursue 100% rate matching. It's impossible since the balanced 1470 * rate itself is constantly fluctuating. So decrease the track speed 1471 * when it gets close to the target. Helps eliminate pointless tremors. 1472 */ 1473 shift = dirty_ratelimit / (2 * step + 1); 1474 if (shift < BITS_PER_LONG) 1475 step = DIV_ROUND_UP(step >> shift, 8); 1476 else 1477 step = 0; 1478 1479 if (dirty_ratelimit < balanced_dirty_ratelimit) 1480 dirty_ratelimit += step; 1481 else 1482 dirty_ratelimit -= step; 1483 1484 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1485 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1486 1487 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1488 } 1489 1490 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1491 struct dirty_throttle_control *mdtc, 1492 bool update_ratelimit) 1493 { 1494 struct bdi_writeback *wb = gdtc->wb; 1495 unsigned long now = jiffies; 1496 unsigned long elapsed; 1497 unsigned long dirtied; 1498 unsigned long written; 1499 1500 spin_lock(&wb->list_lock); 1501 1502 /* 1503 * Lockless checks for elapsed time are racy and delayed update after 1504 * IO completion doesn't do it at all (to make sure written pages are 1505 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1506 * division errors. 1507 */ 1508 elapsed = max(now - wb->bw_time_stamp, 1UL); 1509 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1510 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1511 1512 if (update_ratelimit) { 1513 domain_update_dirty_limit(gdtc, now); 1514 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1515 1516 /* 1517 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1518 * compiler has no way to figure that out. Help it. 1519 */ 1520 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1521 domain_update_dirty_limit(mdtc, now); 1522 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1523 } 1524 } 1525 wb_update_write_bandwidth(wb, elapsed, written); 1526 1527 wb->dirtied_stamp = dirtied; 1528 wb->written_stamp = written; 1529 WRITE_ONCE(wb->bw_time_stamp, now); 1530 spin_unlock(&wb->list_lock); 1531 } 1532 1533 void wb_update_bandwidth(struct bdi_writeback *wb) 1534 { 1535 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1536 1537 __wb_update_bandwidth(&gdtc, NULL, false); 1538 } 1539 1540 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1541 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1542 1543 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1544 { 1545 unsigned long now = jiffies; 1546 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1547 1548 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1549 !atomic_read(&wb->writeback_inodes)) { 1550 spin_lock(&wb->list_lock); 1551 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1552 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1553 WRITE_ONCE(wb->bw_time_stamp, now); 1554 spin_unlock(&wb->list_lock); 1555 } 1556 } 1557 1558 /* 1559 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1560 * will look to see if it needs to start dirty throttling. 1561 * 1562 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1563 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1564 * (the number of pages we may dirty without exceeding the dirty limits). 1565 */ 1566 static unsigned long dirty_poll_interval(unsigned long dirty, 1567 unsigned long thresh) 1568 { 1569 if (thresh > dirty) 1570 return 1UL << (ilog2(thresh - dirty) >> 1); 1571 1572 return 1; 1573 } 1574 1575 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1576 unsigned long wb_dirty) 1577 { 1578 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1579 unsigned long t; 1580 1581 /* 1582 * Limit pause time for small memory systems. If sleeping for too long 1583 * time, a small pool of dirty/writeback pages may go empty and disk go 1584 * idle. 1585 * 1586 * 8 serves as the safety ratio. 1587 */ 1588 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1589 t++; 1590 1591 return min_t(unsigned long, t, MAX_PAUSE); 1592 } 1593 1594 static long wb_min_pause(struct bdi_writeback *wb, 1595 long max_pause, 1596 unsigned long task_ratelimit, 1597 unsigned long dirty_ratelimit, 1598 int *nr_dirtied_pause) 1599 { 1600 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1601 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1602 long t; /* target pause */ 1603 long pause; /* estimated next pause */ 1604 int pages; /* target nr_dirtied_pause */ 1605 1606 /* target for 10ms pause on 1-dd case */ 1607 t = max(1, HZ / 100); 1608 1609 /* 1610 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1611 * overheads. 1612 * 1613 * (N * 10ms) on 2^N concurrent tasks. 1614 */ 1615 if (hi > lo) 1616 t += (hi - lo) * (10 * HZ) / 1024; 1617 1618 /* 1619 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1620 * on the much more stable dirty_ratelimit. However the next pause time 1621 * will be computed based on task_ratelimit and the two rate limits may 1622 * depart considerably at some time. Especially if task_ratelimit goes 1623 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1624 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1625 * result task_ratelimit won't be executed faithfully, which could 1626 * eventually bring down dirty_ratelimit. 1627 * 1628 * We apply two rules to fix it up: 1629 * 1) try to estimate the next pause time and if necessary, use a lower 1630 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1631 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1632 * 2) limit the target pause time to max_pause/2, so that the normal 1633 * small fluctuations of task_ratelimit won't trigger rule (1) and 1634 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1635 */ 1636 t = min(t, 1 + max_pause / 2); 1637 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1638 1639 /* 1640 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1641 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1642 * When the 16 consecutive reads are often interrupted by some dirty 1643 * throttling pause during the async writes, cfq will go into idles 1644 * (deadline is fine). So push nr_dirtied_pause as high as possible 1645 * until reaches DIRTY_POLL_THRESH=32 pages. 1646 */ 1647 if (pages < DIRTY_POLL_THRESH) { 1648 t = max_pause; 1649 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1650 if (pages > DIRTY_POLL_THRESH) { 1651 pages = DIRTY_POLL_THRESH; 1652 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1653 } 1654 } 1655 1656 pause = HZ * pages / (task_ratelimit + 1); 1657 if (pause > max_pause) { 1658 t = max_pause; 1659 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1660 } 1661 1662 *nr_dirtied_pause = pages; 1663 /* 1664 * The minimal pause time will normally be half the target pause time. 1665 */ 1666 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1667 } 1668 1669 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1670 { 1671 struct bdi_writeback *wb = dtc->wb; 1672 unsigned long wb_reclaimable; 1673 1674 /* 1675 * wb_thresh is not treated as some limiting factor as 1676 * dirty_thresh, due to reasons 1677 * - in JBOD setup, wb_thresh can fluctuate a lot 1678 * - in a system with HDD and USB key, the USB key may somehow 1679 * go into state (wb_dirty >> wb_thresh) either because 1680 * wb_dirty starts high, or because wb_thresh drops low. 1681 * In this case we don't want to hard throttle the USB key 1682 * dirtiers for 100 seconds until wb_dirty drops under 1683 * wb_thresh. Instead the auxiliary wb control line in 1684 * wb_position_ratio() will let the dirtier task progress 1685 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1686 */ 1687 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); 1688 dtc->wb_bg_thresh = dtc->thresh ? 1689 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1690 1691 /* 1692 * In order to avoid the stacked BDI deadlock we need 1693 * to ensure we accurately count the 'dirty' pages when 1694 * the threshold is low. 1695 * 1696 * Otherwise it would be possible to get thresh+n pages 1697 * reported dirty, even though there are thresh-m pages 1698 * actually dirty; with m+n sitting in the percpu 1699 * deltas. 1700 */ 1701 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1702 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1703 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1704 } else { 1705 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1706 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1707 } 1708 } 1709 1710 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc, 1711 bool strictlimit) 1712 { 1713 unsigned long dirty, thresh; 1714 1715 if (strictlimit) { 1716 dirty = dtc->wb_dirty; 1717 thresh = dtc->wb_thresh; 1718 } else { 1719 dirty = dtc->dirty; 1720 thresh = dtc->thresh; 1721 } 1722 1723 return dirty_poll_interval(dirty, thresh); 1724 } 1725 1726 /* 1727 * Throttle it only when the background writeback cannot catch-up. This avoids 1728 * (excessively) small writeouts when the wb limits are ramping up in case of 1729 * !strictlimit. 1730 * 1731 * In strictlimit case make decision based on the wb counters and limits. Small 1732 * writeouts when the wb limits are ramping up are the price we consciously pay 1733 * for strictlimit-ing. 1734 */ 1735 static void domain_dirty_freerun(struct dirty_throttle_control *dtc, 1736 bool strictlimit) 1737 { 1738 unsigned long dirty, thresh, bg_thresh; 1739 1740 if (unlikely(strictlimit)) { 1741 wb_dirty_limits(dtc); 1742 dirty = dtc->wb_dirty; 1743 thresh = dtc->wb_thresh; 1744 bg_thresh = dtc->wb_bg_thresh; 1745 } else { 1746 dirty = dtc->dirty; 1747 thresh = dtc->thresh; 1748 bg_thresh = dtc->bg_thresh; 1749 } 1750 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh); 1751 } 1752 1753 static void balance_domain_limits(struct dirty_throttle_control *dtc, 1754 bool strictlimit) 1755 { 1756 domain_dirty_avail(dtc, true); 1757 domain_dirty_limits(dtc); 1758 domain_dirty_freerun(dtc, strictlimit); 1759 } 1760 1761 static void wb_dirty_freerun(struct dirty_throttle_control *dtc, 1762 bool strictlimit) 1763 { 1764 dtc->freerun = false; 1765 1766 /* was already handled in domain_dirty_freerun */ 1767 if (strictlimit) 1768 return; 1769 1770 wb_dirty_limits(dtc); 1771 /* 1772 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb 1773 * freerun ceiling. 1774 */ 1775 if (!(current->flags & PF_LOCAL_THROTTLE)) 1776 return; 1777 1778 dtc->freerun = dtc->wb_dirty < 1779 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh); 1780 } 1781 1782 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc, 1783 bool strictlimit) 1784 { 1785 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) && 1786 ((dtc->dirty > dtc->thresh) || strictlimit); 1787 } 1788 1789 /* 1790 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is 1791 * in freerun state. Please don't use these invalid fields in freerun case. 1792 */ 1793 static void balance_wb_limits(struct dirty_throttle_control *dtc, 1794 bool strictlimit) 1795 { 1796 wb_dirty_freerun(dtc, strictlimit); 1797 if (dtc->freerun) 1798 return; 1799 1800 wb_dirty_exceeded(dtc, strictlimit); 1801 wb_position_ratio(dtc); 1802 } 1803 1804 /* 1805 * balance_dirty_pages() must be called by processes which are generating dirty 1806 * data. It looks at the number of dirty pages in the machine and will force 1807 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1808 * If we're over `background_thresh' then the writeback threads are woken to 1809 * perform some writeout. 1810 */ 1811 static int balance_dirty_pages(struct bdi_writeback *wb, 1812 unsigned long pages_dirtied, unsigned int flags) 1813 { 1814 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1815 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1816 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1817 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1818 &mdtc_stor : NULL; 1819 struct dirty_throttle_control *sdtc; 1820 unsigned long nr_dirty; 1821 long period; 1822 long pause; 1823 long max_pause; 1824 long min_pause; 1825 int nr_dirtied_pause; 1826 unsigned long task_ratelimit; 1827 unsigned long dirty_ratelimit; 1828 struct backing_dev_info *bdi = wb->bdi; 1829 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1830 unsigned long start_time = jiffies; 1831 int ret = 0; 1832 1833 for (;;) { 1834 unsigned long now = jiffies; 1835 1836 nr_dirty = global_node_page_state(NR_FILE_DIRTY); 1837 1838 balance_domain_limits(gdtc, strictlimit); 1839 if (mdtc) { 1840 /* 1841 * If @wb belongs to !root memcg, repeat the same 1842 * basic calculations for the memcg domain. 1843 */ 1844 balance_domain_limits(mdtc, strictlimit); 1845 } 1846 1847 /* 1848 * In laptop mode, we wait until hitting the higher threshold 1849 * before starting background writeout, and then write out all 1850 * the way down to the lower threshold. So slow writers cause 1851 * minimal disk activity. 1852 * 1853 * In normal mode, we start background writeout at the lower 1854 * background_thresh, to keep the amount of dirty memory low. 1855 */ 1856 if (!laptop_mode && nr_dirty > gdtc->bg_thresh && 1857 !writeback_in_progress(wb)) 1858 wb_start_background_writeback(wb); 1859 1860 /* 1861 * If memcg domain is in effect, @dirty should be under 1862 * both global and memcg freerun ceilings. 1863 */ 1864 if (gdtc->freerun && (!mdtc || mdtc->freerun)) { 1865 unsigned long intv; 1866 unsigned long m_intv; 1867 1868 free_running: 1869 intv = domain_poll_intv(gdtc, strictlimit); 1870 m_intv = ULONG_MAX; 1871 1872 current->dirty_paused_when = now; 1873 current->nr_dirtied = 0; 1874 if (mdtc) 1875 m_intv = domain_poll_intv(mdtc, strictlimit); 1876 current->nr_dirtied_pause = min(intv, m_intv); 1877 break; 1878 } 1879 1880 /* Start writeback even when in laptop mode */ 1881 if (unlikely(!writeback_in_progress(wb))) 1882 wb_start_background_writeback(wb); 1883 1884 mem_cgroup_flush_foreign(wb); 1885 1886 /* 1887 * Calculate global domain's pos_ratio and select the 1888 * global dtc by default. 1889 */ 1890 balance_wb_limits(gdtc, strictlimit); 1891 if (gdtc->freerun) 1892 goto free_running; 1893 sdtc = gdtc; 1894 1895 if (mdtc) { 1896 /* 1897 * If memcg domain is in effect, calculate its 1898 * pos_ratio. @wb should satisfy constraints from 1899 * both global and memcg domains. Choose the one 1900 * w/ lower pos_ratio. 1901 */ 1902 balance_wb_limits(mdtc, strictlimit); 1903 if (mdtc->freerun) 1904 goto free_running; 1905 if (mdtc->pos_ratio < gdtc->pos_ratio) 1906 sdtc = mdtc; 1907 } 1908 1909 wb->dirty_exceeded = gdtc->dirty_exceeded || 1910 (mdtc && mdtc->dirty_exceeded); 1911 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1912 BANDWIDTH_INTERVAL)) 1913 __wb_update_bandwidth(gdtc, mdtc, true); 1914 1915 /* throttle according to the chosen dtc */ 1916 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1917 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1918 RATELIMIT_CALC_SHIFT; 1919 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1920 min_pause = wb_min_pause(wb, max_pause, 1921 task_ratelimit, dirty_ratelimit, 1922 &nr_dirtied_pause); 1923 1924 if (unlikely(task_ratelimit == 0)) { 1925 period = max_pause; 1926 pause = max_pause; 1927 goto pause; 1928 } 1929 period = HZ * pages_dirtied / task_ratelimit; 1930 pause = period; 1931 if (current->dirty_paused_when) 1932 pause -= now - current->dirty_paused_when; 1933 /* 1934 * For less than 1s think time (ext3/4 may block the dirtier 1935 * for up to 800ms from time to time on 1-HDD; so does xfs, 1936 * however at much less frequency), try to compensate it in 1937 * future periods by updating the virtual time; otherwise just 1938 * do a reset, as it may be a light dirtier. 1939 */ 1940 if (pause < min_pause) { 1941 trace_balance_dirty_pages(wb, 1942 sdtc, 1943 dirty_ratelimit, 1944 task_ratelimit, 1945 pages_dirtied, 1946 period, 1947 min(pause, 0L), 1948 start_time); 1949 if (pause < -HZ) { 1950 current->dirty_paused_when = now; 1951 current->nr_dirtied = 0; 1952 } else if (period) { 1953 current->dirty_paused_when += period; 1954 current->nr_dirtied = 0; 1955 } else if (current->nr_dirtied_pause <= pages_dirtied) 1956 current->nr_dirtied_pause += pages_dirtied; 1957 break; 1958 } 1959 if (unlikely(pause > max_pause)) { 1960 /* for occasional dropped task_ratelimit */ 1961 now += min(pause - max_pause, max_pause); 1962 pause = max_pause; 1963 } 1964 1965 pause: 1966 trace_balance_dirty_pages(wb, 1967 sdtc, 1968 dirty_ratelimit, 1969 task_ratelimit, 1970 pages_dirtied, 1971 period, 1972 pause, 1973 start_time); 1974 if (flags & BDP_ASYNC) { 1975 ret = -EAGAIN; 1976 break; 1977 } 1978 __set_current_state(TASK_KILLABLE); 1979 bdi->last_bdp_sleep = jiffies; 1980 io_schedule_timeout(pause); 1981 1982 current->dirty_paused_when = now + pause; 1983 current->nr_dirtied = 0; 1984 current->nr_dirtied_pause = nr_dirtied_pause; 1985 1986 /* 1987 * This is typically equal to (dirty < thresh) and can also 1988 * keep "1000+ dd on a slow USB stick" under control. 1989 */ 1990 if (task_ratelimit) 1991 break; 1992 1993 /* 1994 * In the case of an unresponsive NFS server and the NFS dirty 1995 * pages exceeds dirty_thresh, give the other good wb's a pipe 1996 * to go through, so that tasks on them still remain responsive. 1997 * 1998 * In theory 1 page is enough to keep the consumer-producer 1999 * pipe going: the flusher cleans 1 page => the task dirties 1 2000 * more page. However wb_dirty has accounting errors. So use 2001 * the larger and more IO friendly wb_stat_error. 2002 */ 2003 if (sdtc->wb_dirty <= wb_stat_error()) 2004 break; 2005 2006 if (fatal_signal_pending(current)) 2007 break; 2008 } 2009 return ret; 2010 } 2011 2012 static DEFINE_PER_CPU(int, bdp_ratelimits); 2013 2014 /* 2015 * Normal tasks are throttled by 2016 * loop { 2017 * dirty tsk->nr_dirtied_pause pages; 2018 * take a snap in balance_dirty_pages(); 2019 * } 2020 * However there is a worst case. If every task exit immediately when dirtied 2021 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 2022 * called to throttle the page dirties. The solution is to save the not yet 2023 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 2024 * randomly into the running tasks. This works well for the above worst case, 2025 * as the new task will pick up and accumulate the old task's leaked dirty 2026 * count and eventually get throttled. 2027 */ 2028 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 2029 2030 /** 2031 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 2032 * @mapping: address_space which was dirtied. 2033 * @flags: BDP flags. 2034 * 2035 * Processes which are dirtying memory should call in here once for each page 2036 * which was newly dirtied. The function will periodically check the system's 2037 * dirty state and will initiate writeback if needed. 2038 * 2039 * See balance_dirty_pages_ratelimited() for details. 2040 * 2041 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2042 * indicate that memory is out of balance and the caller must wait 2043 * for I/O to complete. Otherwise, it will return 0 to indicate 2044 * that either memory was already in balance, or it was able to sleep 2045 * until the amount of dirty memory returned to balance. 2046 */ 2047 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2048 unsigned int flags) 2049 { 2050 struct inode *inode = mapping->host; 2051 struct backing_dev_info *bdi = inode_to_bdi(inode); 2052 struct bdi_writeback *wb = NULL; 2053 int ratelimit; 2054 int ret = 0; 2055 int *p; 2056 2057 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2058 return ret; 2059 2060 if (inode_cgwb_enabled(inode)) 2061 wb = wb_get_create_current(bdi, GFP_KERNEL); 2062 if (!wb) 2063 wb = &bdi->wb; 2064 2065 ratelimit = current->nr_dirtied_pause; 2066 if (wb->dirty_exceeded) 2067 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2068 2069 preempt_disable(); 2070 /* 2071 * This prevents one CPU to accumulate too many dirtied pages without 2072 * calling into balance_dirty_pages(), which can happen when there are 2073 * 1000+ tasks, all of them start dirtying pages at exactly the same 2074 * time, hence all honoured too large initial task->nr_dirtied_pause. 2075 */ 2076 p = this_cpu_ptr(&bdp_ratelimits); 2077 if (unlikely(current->nr_dirtied >= ratelimit)) 2078 *p = 0; 2079 else if (unlikely(*p >= ratelimit_pages)) { 2080 *p = 0; 2081 ratelimit = 0; 2082 } 2083 /* 2084 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2085 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2086 * the dirty throttling and livelock other long-run dirtiers. 2087 */ 2088 p = this_cpu_ptr(&dirty_throttle_leaks); 2089 if (*p > 0 && current->nr_dirtied < ratelimit) { 2090 unsigned long nr_pages_dirtied; 2091 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2092 *p -= nr_pages_dirtied; 2093 current->nr_dirtied += nr_pages_dirtied; 2094 } 2095 preempt_enable(); 2096 2097 if (unlikely(current->nr_dirtied >= ratelimit)) 2098 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2099 2100 wb_put(wb); 2101 return ret; 2102 } 2103 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2104 2105 /** 2106 * balance_dirty_pages_ratelimited - balance dirty memory state. 2107 * @mapping: address_space which was dirtied. 2108 * 2109 * Processes which are dirtying memory should call in here once for each page 2110 * which was newly dirtied. The function will periodically check the system's 2111 * dirty state and will initiate writeback if needed. 2112 * 2113 * Once we're over the dirty memory limit we decrease the ratelimiting 2114 * by a lot, to prevent individual processes from overshooting the limit 2115 * by (ratelimit_pages) each. 2116 */ 2117 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2118 { 2119 balance_dirty_pages_ratelimited_flags(mapping, 0); 2120 } 2121 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2122 2123 /* 2124 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty 2125 * and thresh, but it's for background writeback. 2126 */ 2127 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc) 2128 { 2129 struct bdi_writeback *wb = dtc->wb; 2130 2131 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh); 2132 if (dtc->wb_bg_thresh < 2 * wb_stat_error()) 2133 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE); 2134 else 2135 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE); 2136 } 2137 2138 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc) 2139 { 2140 domain_dirty_avail(dtc, false); 2141 domain_dirty_limits(dtc); 2142 if (dtc->dirty > dtc->bg_thresh) 2143 return true; 2144 2145 wb_bg_dirty_limits(dtc); 2146 if (dtc->wb_dirty > dtc->wb_bg_thresh) 2147 return true; 2148 2149 return false; 2150 } 2151 2152 /** 2153 * wb_over_bg_thresh - does @wb need to be written back? 2154 * @wb: bdi_writeback of interest 2155 * 2156 * Determines whether background writeback should keep writing @wb or it's 2157 * clean enough. 2158 * 2159 * Return: %true if writeback should continue. 2160 */ 2161 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2162 { 2163 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 2164 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; 2165 2166 if (domain_over_bg_thresh(&gdtc)) 2167 return true; 2168 2169 if (mdtc_valid(&mdtc)) 2170 return domain_over_bg_thresh(&mdtc); 2171 2172 return false; 2173 } 2174 2175 #ifdef CONFIG_SYSCTL 2176 /* 2177 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2178 */ 2179 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write, 2180 void *buffer, size_t *length, loff_t *ppos) 2181 { 2182 unsigned int old_interval = dirty_writeback_interval; 2183 int ret; 2184 2185 ret = proc_dointvec(table, write, buffer, length, ppos); 2186 2187 /* 2188 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2189 * and a different non-zero value will wakeup the writeback threads. 2190 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2191 * iterate over all bdis and wbs. 2192 * The reason we do this is to make the change take effect immediately. 2193 */ 2194 if (!ret && write && dirty_writeback_interval && 2195 dirty_writeback_interval != old_interval) 2196 wakeup_flusher_threads(WB_REASON_PERIODIC); 2197 2198 return ret; 2199 } 2200 #endif 2201 2202 void laptop_mode_timer_fn(struct timer_list *t) 2203 { 2204 struct backing_dev_info *backing_dev_info = 2205 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2206 2207 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2208 } 2209 2210 /* 2211 * We've spun up the disk and we're in laptop mode: schedule writeback 2212 * of all dirty data a few seconds from now. If the flush is already scheduled 2213 * then push it back - the user is still using the disk. 2214 */ 2215 void laptop_io_completion(struct backing_dev_info *info) 2216 { 2217 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2218 } 2219 2220 /* 2221 * We're in laptop mode and we've just synced. The sync's writes will have 2222 * caused another writeback to be scheduled by laptop_io_completion. 2223 * Nothing needs to be written back anymore, so we unschedule the writeback. 2224 */ 2225 void laptop_sync_completion(void) 2226 { 2227 struct backing_dev_info *bdi; 2228 2229 rcu_read_lock(); 2230 2231 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2232 timer_delete(&bdi->laptop_mode_wb_timer); 2233 2234 rcu_read_unlock(); 2235 } 2236 2237 /* 2238 * If ratelimit_pages is too high then we can get into dirty-data overload 2239 * if a large number of processes all perform writes at the same time. 2240 * 2241 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2242 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2243 * thresholds. 2244 */ 2245 2246 void writeback_set_ratelimit(void) 2247 { 2248 struct wb_domain *dom = &global_wb_domain; 2249 unsigned long background_thresh; 2250 unsigned long dirty_thresh; 2251 2252 global_dirty_limits(&background_thresh, &dirty_thresh); 2253 dom->dirty_limit = dirty_thresh; 2254 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2255 if (ratelimit_pages < 16) 2256 ratelimit_pages = 16; 2257 } 2258 2259 static int page_writeback_cpu_online(unsigned int cpu) 2260 { 2261 writeback_set_ratelimit(); 2262 return 0; 2263 } 2264 2265 #ifdef CONFIG_SYSCTL 2266 2267 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2268 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2269 2270 static const struct ctl_table vm_page_writeback_sysctls[] = { 2271 { 2272 .procname = "dirty_background_ratio", 2273 .data = &dirty_background_ratio, 2274 .maxlen = sizeof(dirty_background_ratio), 2275 .mode = 0644, 2276 .proc_handler = dirty_background_ratio_handler, 2277 .extra1 = SYSCTL_ZERO, 2278 .extra2 = SYSCTL_ONE_HUNDRED, 2279 }, 2280 { 2281 .procname = "dirty_background_bytes", 2282 .data = &dirty_background_bytes, 2283 .maxlen = sizeof(dirty_background_bytes), 2284 .mode = 0644, 2285 .proc_handler = dirty_background_bytes_handler, 2286 .extra1 = SYSCTL_LONG_ONE, 2287 }, 2288 { 2289 .procname = "dirty_ratio", 2290 .data = &vm_dirty_ratio, 2291 .maxlen = sizeof(vm_dirty_ratio), 2292 .mode = 0644, 2293 .proc_handler = dirty_ratio_handler, 2294 .extra1 = SYSCTL_ZERO, 2295 .extra2 = SYSCTL_ONE_HUNDRED, 2296 }, 2297 { 2298 .procname = "dirty_bytes", 2299 .data = &vm_dirty_bytes, 2300 .maxlen = sizeof(vm_dirty_bytes), 2301 .mode = 0644, 2302 .proc_handler = dirty_bytes_handler, 2303 .extra1 = (void *)&dirty_bytes_min, 2304 }, 2305 { 2306 .procname = "dirty_writeback_centisecs", 2307 .data = &dirty_writeback_interval, 2308 .maxlen = sizeof(dirty_writeback_interval), 2309 .mode = 0644, 2310 .proc_handler = dirty_writeback_centisecs_handler, 2311 }, 2312 { 2313 .procname = "dirty_expire_centisecs", 2314 .data = &dirty_expire_interval, 2315 .maxlen = sizeof(dirty_expire_interval), 2316 .mode = 0644, 2317 .proc_handler = proc_dointvec_minmax, 2318 .extra1 = SYSCTL_ZERO, 2319 }, 2320 #ifdef CONFIG_HIGHMEM 2321 { 2322 .procname = "highmem_is_dirtyable", 2323 .data = &vm_highmem_is_dirtyable, 2324 .maxlen = sizeof(vm_highmem_is_dirtyable), 2325 .mode = 0644, 2326 .proc_handler = proc_dointvec_minmax, 2327 .extra1 = SYSCTL_ZERO, 2328 .extra2 = SYSCTL_ONE, 2329 }, 2330 #endif 2331 { 2332 .procname = "laptop_mode", 2333 .data = &laptop_mode, 2334 .maxlen = sizeof(laptop_mode), 2335 .mode = 0644, 2336 .proc_handler = proc_dointvec_jiffies, 2337 }, 2338 }; 2339 #endif 2340 2341 /* 2342 * Called early on to tune the page writeback dirty limits. 2343 * 2344 * We used to scale dirty pages according to how total memory 2345 * related to pages that could be allocated for buffers. 2346 * 2347 * However, that was when we used "dirty_ratio" to scale with 2348 * all memory, and we don't do that any more. "dirty_ratio" 2349 * is now applied to total non-HIGHPAGE memory, and as such we can't 2350 * get into the old insane situation any more where we had 2351 * large amounts of dirty pages compared to a small amount of 2352 * non-HIGHMEM memory. 2353 * 2354 * But we might still want to scale the dirty_ratio by how 2355 * much memory the box has.. 2356 */ 2357 void __init page_writeback_init(void) 2358 { 2359 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2360 2361 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2362 page_writeback_cpu_online, NULL); 2363 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2364 page_writeback_cpu_online); 2365 #ifdef CONFIG_SYSCTL 2366 register_sysctl_init("vm", vm_page_writeback_sysctls); 2367 #endif 2368 } 2369 2370 /** 2371 * tag_pages_for_writeback - tag pages to be written by writeback 2372 * @mapping: address space structure to write 2373 * @start: starting page index 2374 * @end: ending page index (inclusive) 2375 * 2376 * This function scans the page range from @start to @end (inclusive) and tags 2377 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller 2378 * can then use the TOWRITE tag to identify pages eligible for writeback. 2379 * This mechanism is used to avoid livelocking of writeback by a process 2380 * steadily creating new dirty pages in the file (thus it is important for this 2381 * function to be quick so that it can tag pages faster than a dirtying process 2382 * can create them). 2383 */ 2384 void tag_pages_for_writeback(struct address_space *mapping, 2385 pgoff_t start, pgoff_t end) 2386 { 2387 XA_STATE(xas, &mapping->i_pages, start); 2388 unsigned int tagged = 0; 2389 void *page; 2390 2391 xas_lock_irq(&xas); 2392 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2393 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2394 if (++tagged % XA_CHECK_SCHED) 2395 continue; 2396 2397 xas_pause(&xas); 2398 xas_unlock_irq(&xas); 2399 cond_resched(); 2400 xas_lock_irq(&xas); 2401 } 2402 xas_unlock_irq(&xas); 2403 } 2404 EXPORT_SYMBOL(tag_pages_for_writeback); 2405 2406 static bool folio_prepare_writeback(struct address_space *mapping, 2407 struct writeback_control *wbc, struct folio *folio) 2408 { 2409 /* 2410 * Folio truncated or invalidated. We can freely skip it then, 2411 * even for data integrity operations: the folio has disappeared 2412 * concurrently, so there could be no real expectation of this 2413 * data integrity operation even if there is now a new, dirty 2414 * folio at the same pagecache index. 2415 */ 2416 if (unlikely(folio->mapping != mapping)) 2417 return false; 2418 2419 /* 2420 * Did somebody else write it for us? 2421 */ 2422 if (!folio_test_dirty(folio)) 2423 return false; 2424 2425 if (folio_test_writeback(folio)) { 2426 if (wbc->sync_mode == WB_SYNC_NONE) 2427 return false; 2428 folio_wait_writeback(folio); 2429 } 2430 BUG_ON(folio_test_writeback(folio)); 2431 2432 if (!folio_clear_dirty_for_io(folio)) 2433 return false; 2434 2435 return true; 2436 } 2437 2438 static xa_mark_t wbc_to_tag(struct writeback_control *wbc) 2439 { 2440 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2441 return PAGECACHE_TAG_TOWRITE; 2442 return PAGECACHE_TAG_DIRTY; 2443 } 2444 2445 static pgoff_t wbc_end(struct writeback_control *wbc) 2446 { 2447 if (wbc->range_cyclic) 2448 return -1; 2449 return wbc->range_end >> PAGE_SHIFT; 2450 } 2451 2452 static struct folio *writeback_get_folio(struct address_space *mapping, 2453 struct writeback_control *wbc) 2454 { 2455 struct folio *folio; 2456 2457 retry: 2458 folio = folio_batch_next(&wbc->fbatch); 2459 if (!folio) { 2460 folio_batch_release(&wbc->fbatch); 2461 cond_resched(); 2462 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc), 2463 wbc_to_tag(wbc), &wbc->fbatch); 2464 folio = folio_batch_next(&wbc->fbatch); 2465 if (!folio) 2466 return NULL; 2467 } 2468 2469 folio_lock(folio); 2470 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { 2471 folio_unlock(folio); 2472 goto retry; 2473 } 2474 2475 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2476 return folio; 2477 } 2478 2479 /** 2480 * writeback_iter - iterate folio of a mapping for writeback 2481 * @mapping: address space structure to write 2482 * @wbc: writeback context 2483 * @folio: previously iterated folio (%NULL to start) 2484 * @error: in-out pointer for writeback errors (see below) 2485 * 2486 * This function returns the next folio for the writeback operation described by 2487 * @wbc on @mapping and should be called in a while loop in the ->writepages 2488 * implementation. 2489 * 2490 * To start the writeback operation, %NULL is passed in the @folio argument, and 2491 * for every subsequent iteration the folio returned previously should be passed 2492 * back in. 2493 * 2494 * If there was an error in the per-folio writeback inside the writeback_iter() 2495 * loop, @error should be set to the error value. 2496 * 2497 * Once the writeback described in @wbc has finished, this function will return 2498 * %NULL and if there was an error in any iteration restore it to @error. 2499 * 2500 * Note: callers should not manually break out of the loop using break or goto 2501 * but must keep calling writeback_iter() until it returns %NULL. 2502 * 2503 * Return: the folio to write or %NULL if the loop is done. 2504 */ 2505 struct folio *writeback_iter(struct address_space *mapping, 2506 struct writeback_control *wbc, struct folio *folio, int *error) 2507 { 2508 if (!folio) { 2509 folio_batch_init(&wbc->fbatch); 2510 wbc->saved_err = *error = 0; 2511 2512 /* 2513 * For range cyclic writeback we remember where we stopped so 2514 * that we can continue where we stopped. 2515 * 2516 * For non-cyclic writeback we always start at the beginning of 2517 * the passed in range. 2518 */ 2519 if (wbc->range_cyclic) 2520 wbc->index = mapping->writeback_index; 2521 else 2522 wbc->index = wbc->range_start >> PAGE_SHIFT; 2523 2524 /* 2525 * To avoid livelocks when other processes dirty new pages, we 2526 * first tag pages which should be written back and only then 2527 * start writing them. 2528 * 2529 * For data-integrity writeback we have to be careful so that we 2530 * do not miss some pages (e.g., because some other process has 2531 * cleared the TOWRITE tag we set). The rule we follow is that 2532 * TOWRITE tag can be cleared only by the process clearing the 2533 * DIRTY tag (and submitting the page for I/O). 2534 */ 2535 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2536 tag_pages_for_writeback(mapping, wbc->index, 2537 wbc_end(wbc)); 2538 } else { 2539 wbc->nr_to_write -= folio_nr_pages(folio); 2540 2541 WARN_ON_ONCE(*error > 0); 2542 2543 /* 2544 * For integrity writeback we have to keep going until we have 2545 * written all the folios we tagged for writeback above, even if 2546 * we run past wbc->nr_to_write or encounter errors. 2547 * We stash away the first error we encounter in wbc->saved_err 2548 * so that it can be retrieved when we're done. This is because 2549 * the file system may still have state to clear for each folio. 2550 * 2551 * For background writeback we exit as soon as we run past 2552 * wbc->nr_to_write or encounter the first error. 2553 */ 2554 if (wbc->sync_mode == WB_SYNC_ALL) { 2555 if (*error && !wbc->saved_err) 2556 wbc->saved_err = *error; 2557 } else { 2558 if (*error || wbc->nr_to_write <= 0) 2559 goto done; 2560 } 2561 } 2562 2563 folio = writeback_get_folio(mapping, wbc); 2564 if (!folio) { 2565 /* 2566 * To avoid deadlocks between range_cyclic writeback and callers 2567 * that hold pages in PageWriteback to aggregate I/O until 2568 * the writeback iteration finishes, we do not loop back to the 2569 * start of the file. Doing so causes a page lock/page 2570 * writeback access order inversion - we should only ever lock 2571 * multiple pages in ascending page->index order, and looping 2572 * back to the start of the file violates that rule and causes 2573 * deadlocks. 2574 */ 2575 if (wbc->range_cyclic) 2576 mapping->writeback_index = 0; 2577 2578 /* 2579 * Return the first error we encountered (if there was any) to 2580 * the caller. 2581 */ 2582 *error = wbc->saved_err; 2583 } 2584 return folio; 2585 2586 done: 2587 if (wbc->range_cyclic) 2588 mapping->writeback_index = folio_next_index(folio); 2589 folio_batch_release(&wbc->fbatch); 2590 return NULL; 2591 } 2592 EXPORT_SYMBOL_GPL(writeback_iter); 2593 2594 /** 2595 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2596 * @mapping: address space structure to write 2597 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2598 * @writepage: function called for each page 2599 * @data: data passed to writepage function 2600 * 2601 * Return: %0 on success, negative error code otherwise 2602 * 2603 * Note: please use writeback_iter() instead. 2604 */ 2605 int write_cache_pages(struct address_space *mapping, 2606 struct writeback_control *wbc, writepage_t writepage, 2607 void *data) 2608 { 2609 struct folio *folio = NULL; 2610 int error; 2611 2612 while ((folio = writeback_iter(mapping, wbc, folio, &error))) { 2613 error = writepage(folio, wbc, data); 2614 if (error == AOP_WRITEPAGE_ACTIVATE) { 2615 folio_unlock(folio); 2616 error = 0; 2617 } 2618 } 2619 2620 return error; 2621 } 2622 EXPORT_SYMBOL(write_cache_pages); 2623 2624 static int writeback_use_writepage(struct address_space *mapping, 2625 struct writeback_control *wbc) 2626 { 2627 struct folio *folio = NULL; 2628 struct blk_plug plug; 2629 int err; 2630 2631 blk_start_plug(&plug); 2632 while ((folio = writeback_iter(mapping, wbc, folio, &err))) { 2633 err = mapping->a_ops->writepage(&folio->page, wbc); 2634 if (err == AOP_WRITEPAGE_ACTIVATE) { 2635 folio_unlock(folio); 2636 err = 0; 2637 } 2638 mapping_set_error(mapping, err); 2639 } 2640 blk_finish_plug(&plug); 2641 2642 return err; 2643 } 2644 2645 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2646 { 2647 int ret; 2648 struct bdi_writeback *wb; 2649 2650 if (wbc->nr_to_write <= 0) 2651 return 0; 2652 wb = inode_to_wb_wbc(mapping->host, wbc); 2653 wb_bandwidth_estimate_start(wb); 2654 while (1) { 2655 if (mapping->a_ops->writepages) { 2656 ret = mapping->a_ops->writepages(mapping, wbc); 2657 } else if (mapping->a_ops->writepage) { 2658 ret = writeback_use_writepage(mapping, wbc); 2659 } else { 2660 /* deal with chardevs and other special files */ 2661 ret = 0; 2662 } 2663 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2664 break; 2665 2666 /* 2667 * Lacking an allocation context or the locality or writeback 2668 * state of any of the inode's pages, throttle based on 2669 * writeback activity on the local node. It's as good a 2670 * guess as any. 2671 */ 2672 reclaim_throttle(NODE_DATA(numa_node_id()), 2673 VMSCAN_THROTTLE_WRITEBACK); 2674 } 2675 /* 2676 * Usually few pages are written by now from those we've just submitted 2677 * but if there's constant writeback being submitted, this makes sure 2678 * writeback bandwidth is updated once in a while. 2679 */ 2680 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2681 BANDWIDTH_INTERVAL)) 2682 wb_update_bandwidth(wb); 2683 return ret; 2684 } 2685 2686 /* 2687 * For address_spaces which do not use buffers nor write back. 2688 */ 2689 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2690 { 2691 if (!folio_test_dirty(folio)) 2692 return !folio_test_set_dirty(folio); 2693 return false; 2694 } 2695 EXPORT_SYMBOL(noop_dirty_folio); 2696 2697 /* 2698 * Helper function for set_page_dirty family. 2699 * 2700 * NOTE: This relies on being atomic wrt interrupts. 2701 */ 2702 static void folio_account_dirtied(struct folio *folio, 2703 struct address_space *mapping) 2704 { 2705 struct inode *inode = mapping->host; 2706 2707 trace_writeback_dirty_folio(folio, mapping); 2708 2709 if (mapping_can_writeback(mapping)) { 2710 struct bdi_writeback *wb; 2711 long nr = folio_nr_pages(folio); 2712 2713 inode_attach_wb(inode, folio); 2714 wb = inode_to_wb(inode); 2715 2716 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2717 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2718 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2719 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2720 wb_stat_mod(wb, WB_DIRTIED, nr); 2721 task_io_account_write(nr * PAGE_SIZE); 2722 current->nr_dirtied += nr; 2723 __this_cpu_add(bdp_ratelimits, nr); 2724 2725 mem_cgroup_track_foreign_dirty(folio, wb); 2726 } 2727 } 2728 2729 /* 2730 * Helper function for deaccounting dirty page without writeback. 2731 * 2732 */ 2733 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2734 { 2735 long nr = folio_nr_pages(folio); 2736 2737 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2738 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2739 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2740 task_io_account_cancelled_write(nr * PAGE_SIZE); 2741 } 2742 2743 /* 2744 * Mark the folio dirty, and set it dirty in the page cache. 2745 * 2746 * If warn is true, then emit a warning if the folio is not uptodate and has 2747 * not been truncated. 2748 * 2749 * It is the caller's responsibility to prevent the folio from being truncated 2750 * while this function is in progress, although it may have been truncated 2751 * before this function is called. Most callers have the folio locked. 2752 * A few have the folio blocked from truncation through other means (e.g. 2753 * zap_vma_pages() has it mapped and is holding the page table lock). 2754 * When called from mark_buffer_dirty(), the filesystem should hold a 2755 * reference to the buffer_head that is being marked dirty, which causes 2756 * try_to_free_buffers() to fail. 2757 */ 2758 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2759 int warn) 2760 { 2761 unsigned long flags; 2762 2763 xa_lock_irqsave(&mapping->i_pages, flags); 2764 if (folio->mapping) { /* Race with truncate? */ 2765 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2766 folio_account_dirtied(folio, mapping); 2767 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2768 PAGECACHE_TAG_DIRTY); 2769 } 2770 xa_unlock_irqrestore(&mapping->i_pages, flags); 2771 } 2772 2773 /** 2774 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2775 * @mapping: Address space this folio belongs to. 2776 * @folio: Folio to be marked as dirty. 2777 * 2778 * Filesystems which do not use buffer heads should call this function 2779 * from their dirty_folio address space operation. It ignores the 2780 * contents of folio_get_private(), so if the filesystem marks individual 2781 * blocks as dirty, the filesystem should handle that itself. 2782 * 2783 * This is also sometimes used by filesystems which use buffer_heads when 2784 * a single buffer is being dirtied: we want to set the folio dirty in 2785 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2786 * whereas block_dirty_folio() is a "top-down" dirtying. 2787 * 2788 * The caller must ensure this doesn't race with truncation. Most will 2789 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2790 * folio mapped and the pte lock held, which also locks out truncation. 2791 */ 2792 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2793 { 2794 if (folio_test_set_dirty(folio)) 2795 return false; 2796 2797 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2798 2799 if (mapping->host) { 2800 /* !PageAnon && !swapper_space */ 2801 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2802 } 2803 return true; 2804 } 2805 EXPORT_SYMBOL(filemap_dirty_folio); 2806 2807 /** 2808 * folio_redirty_for_writepage - Decline to write a dirty folio. 2809 * @wbc: The writeback control. 2810 * @folio: The folio. 2811 * 2812 * When a writepage implementation decides that it doesn't want to write 2813 * @folio for some reason, it should call this function, unlock @folio and 2814 * return 0. 2815 * 2816 * Return: True if we redirtied the folio. False if someone else dirtied 2817 * it first. 2818 */ 2819 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2820 struct folio *folio) 2821 { 2822 struct address_space *mapping = folio->mapping; 2823 long nr = folio_nr_pages(folio); 2824 bool ret; 2825 2826 wbc->pages_skipped += nr; 2827 ret = filemap_dirty_folio(mapping, folio); 2828 if (mapping && mapping_can_writeback(mapping)) { 2829 struct inode *inode = mapping->host; 2830 struct bdi_writeback *wb; 2831 struct wb_lock_cookie cookie = {}; 2832 2833 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2834 current->nr_dirtied -= nr; 2835 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2836 wb_stat_mod(wb, WB_DIRTIED, -nr); 2837 unlocked_inode_to_wb_end(inode, &cookie); 2838 } 2839 return ret; 2840 } 2841 EXPORT_SYMBOL(folio_redirty_for_writepage); 2842 2843 /** 2844 * folio_mark_dirty - Mark a folio as being modified. 2845 * @folio: The folio. 2846 * 2847 * The folio may not be truncated while this function is running. 2848 * Holding the folio lock is sufficient to prevent truncation, but some 2849 * callers cannot acquire a sleeping lock. These callers instead hold 2850 * the page table lock for a page table which contains at least one page 2851 * in this folio. Truncation will block on the page table lock as it 2852 * unmaps pages before removing the folio from its mapping. 2853 * 2854 * Return: True if the folio was newly dirtied, false if it was already dirty. 2855 */ 2856 bool folio_mark_dirty(struct folio *folio) 2857 { 2858 struct address_space *mapping = folio_mapping(folio); 2859 2860 if (likely(mapping)) { 2861 /* 2862 * readahead/folio_deactivate could remain 2863 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2864 * About readahead, if the folio is written, the flags would be 2865 * reset. So no problem. 2866 * About folio_deactivate, if the folio is redirtied, 2867 * the flag will be reset. So no problem. but if the 2868 * folio is used by readahead it will confuse readahead 2869 * and make it restart the size rampup process. But it's 2870 * a trivial problem. 2871 */ 2872 if (folio_test_reclaim(folio)) 2873 folio_clear_reclaim(folio); 2874 return mapping->a_ops->dirty_folio(mapping, folio); 2875 } 2876 2877 return noop_dirty_folio(mapping, folio); 2878 } 2879 EXPORT_SYMBOL(folio_mark_dirty); 2880 2881 /* 2882 * folio_mark_dirty() is racy if the caller has no reference against 2883 * folio->mapping->host, and if the folio is unlocked. This is because another 2884 * CPU could truncate the folio off the mapping and then free the mapping. 2885 * 2886 * Usually, the folio _is_ locked, or the caller is a user-space process which 2887 * holds a reference on the inode by having an open file. 2888 * 2889 * In other cases, the folio should be locked before running folio_mark_dirty(). 2890 */ 2891 bool folio_mark_dirty_lock(struct folio *folio) 2892 { 2893 bool ret; 2894 2895 folio_lock(folio); 2896 ret = folio_mark_dirty(folio); 2897 folio_unlock(folio); 2898 return ret; 2899 } 2900 EXPORT_SYMBOL(folio_mark_dirty_lock); 2901 2902 /* 2903 * This cancels just the dirty bit on the kernel page itself, it does NOT 2904 * actually remove dirty bits on any mmap's that may be around. It also 2905 * leaves the page tagged dirty, so any sync activity will still find it on 2906 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2907 * look at the dirty bits in the VM. 2908 * 2909 * Doing this should *normally* only ever be done when a page is truncated, 2910 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2911 * this when it notices that somebody has cleaned out all the buffers on a 2912 * page without actually doing it through the VM. Can you say "ext3 is 2913 * horribly ugly"? Thought you could. 2914 */ 2915 void __folio_cancel_dirty(struct folio *folio) 2916 { 2917 struct address_space *mapping = folio_mapping(folio); 2918 2919 if (mapping_can_writeback(mapping)) { 2920 struct inode *inode = mapping->host; 2921 struct bdi_writeback *wb; 2922 struct wb_lock_cookie cookie = {}; 2923 2924 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2925 2926 if (folio_test_clear_dirty(folio)) 2927 folio_account_cleaned(folio, wb); 2928 2929 unlocked_inode_to_wb_end(inode, &cookie); 2930 } else { 2931 folio_clear_dirty(folio); 2932 } 2933 } 2934 EXPORT_SYMBOL(__folio_cancel_dirty); 2935 2936 /* 2937 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2938 * Returns true if the folio was previously dirty. 2939 * 2940 * This is for preparing to put the folio under writeout. We leave 2941 * the folio tagged as dirty in the xarray so that a concurrent 2942 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2943 * The ->writepage implementation will run either folio_start_writeback() 2944 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2945 * and xarray dirty tag back into sync. 2946 * 2947 * This incoherency between the folio's dirty flag and xarray tag is 2948 * unfortunate, but it only exists while the folio is locked. 2949 */ 2950 bool folio_clear_dirty_for_io(struct folio *folio) 2951 { 2952 struct address_space *mapping = folio_mapping(folio); 2953 bool ret = false; 2954 2955 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2956 2957 if (mapping && mapping_can_writeback(mapping)) { 2958 struct inode *inode = mapping->host; 2959 struct bdi_writeback *wb; 2960 struct wb_lock_cookie cookie = {}; 2961 2962 /* 2963 * Yes, Virginia, this is indeed insane. 2964 * 2965 * We use this sequence to make sure that 2966 * (a) we account for dirty stats properly 2967 * (b) we tell the low-level filesystem to 2968 * mark the whole folio dirty if it was 2969 * dirty in a pagetable. Only to then 2970 * (c) clean the folio again and return 1 to 2971 * cause the writeback. 2972 * 2973 * This way we avoid all nasty races with the 2974 * dirty bit in multiple places and clearing 2975 * them concurrently from different threads. 2976 * 2977 * Note! Normally the "folio_mark_dirty(folio)" 2978 * has no effect on the actual dirty bit - since 2979 * that will already usually be set. But we 2980 * need the side effects, and it can help us 2981 * avoid races. 2982 * 2983 * We basically use the folio "master dirty bit" 2984 * as a serialization point for all the different 2985 * threads doing their things. 2986 */ 2987 if (folio_mkclean(folio)) 2988 folio_mark_dirty(folio); 2989 /* 2990 * We carefully synchronise fault handlers against 2991 * installing a dirty pte and marking the folio dirty 2992 * at this point. We do this by having them hold the 2993 * page lock while dirtying the folio, and folios are 2994 * always locked coming in here, so we get the desired 2995 * exclusion. 2996 */ 2997 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2998 if (folio_test_clear_dirty(folio)) { 2999 long nr = folio_nr_pages(folio); 3000 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 3001 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3002 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 3003 ret = true; 3004 } 3005 unlocked_inode_to_wb_end(inode, &cookie); 3006 return ret; 3007 } 3008 return folio_test_clear_dirty(folio); 3009 } 3010 EXPORT_SYMBOL(folio_clear_dirty_for_io); 3011 3012 static void wb_inode_writeback_start(struct bdi_writeback *wb) 3013 { 3014 atomic_inc(&wb->writeback_inodes); 3015 } 3016 3017 static void wb_inode_writeback_end(struct bdi_writeback *wb) 3018 { 3019 unsigned long flags; 3020 atomic_dec(&wb->writeback_inodes); 3021 /* 3022 * Make sure estimate of writeback throughput gets updated after 3023 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 3024 * (which is the interval other bandwidth updates use for batching) so 3025 * that if multiple inodes end writeback at a similar time, they get 3026 * batched into one bandwidth update. 3027 */ 3028 spin_lock_irqsave(&wb->work_lock, flags); 3029 if (test_bit(WB_registered, &wb->state)) 3030 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 3031 spin_unlock_irqrestore(&wb->work_lock, flags); 3032 } 3033 3034 bool __folio_end_writeback(struct folio *folio) 3035 { 3036 long nr = folio_nr_pages(folio); 3037 struct address_space *mapping = folio_mapping(folio); 3038 bool ret; 3039 3040 if (mapping && mapping_use_writeback_tags(mapping)) { 3041 struct inode *inode = mapping->host; 3042 struct backing_dev_info *bdi = inode_to_bdi(inode); 3043 unsigned long flags; 3044 3045 xa_lock_irqsave(&mapping->i_pages, flags); 3046 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3047 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 3048 PAGECACHE_TAG_WRITEBACK); 3049 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3050 struct bdi_writeback *wb = inode_to_wb(inode); 3051 3052 wb_stat_mod(wb, WB_WRITEBACK, -nr); 3053 __wb_writeout_add(wb, nr); 3054 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 3055 wb_inode_writeback_end(wb); 3056 } 3057 3058 if (mapping->host && !mapping_tagged(mapping, 3059 PAGECACHE_TAG_WRITEBACK)) 3060 sb_clear_inode_writeback(mapping->host); 3061 3062 xa_unlock_irqrestore(&mapping->i_pages, flags); 3063 } else { 3064 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback); 3065 } 3066 3067 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3068 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3069 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3070 3071 return ret; 3072 } 3073 3074 void __folio_start_writeback(struct folio *folio, bool keep_write) 3075 { 3076 long nr = folio_nr_pages(folio); 3077 struct address_space *mapping = folio_mapping(folio); 3078 int access_ret; 3079 3080 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 3081 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3082 3083 if (mapping && mapping_use_writeback_tags(mapping)) { 3084 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3085 struct inode *inode = mapping->host; 3086 struct backing_dev_info *bdi = inode_to_bdi(inode); 3087 unsigned long flags; 3088 bool on_wblist; 3089 3090 xas_lock_irqsave(&xas, flags); 3091 xas_load(&xas); 3092 folio_test_set_writeback(folio); 3093 3094 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); 3095 3096 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3097 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3098 struct bdi_writeback *wb = inode_to_wb(inode); 3099 3100 wb_stat_mod(wb, WB_WRITEBACK, nr); 3101 if (!on_wblist) 3102 wb_inode_writeback_start(wb); 3103 } 3104 3105 /* 3106 * We can come through here when swapping anonymous 3107 * folios, so we don't necessarily have an inode to 3108 * track for sync. 3109 */ 3110 if (mapping->host && !on_wblist) 3111 sb_mark_inode_writeback(mapping->host); 3112 if (!folio_test_dirty(folio)) 3113 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3114 if (!keep_write) 3115 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3116 xas_unlock_irqrestore(&xas, flags); 3117 } else { 3118 folio_test_set_writeback(folio); 3119 } 3120 3121 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3122 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3123 3124 access_ret = arch_make_folio_accessible(folio); 3125 /* 3126 * If writeback has been triggered on a page that cannot be made 3127 * accessible, it is too late to recover here. 3128 */ 3129 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3130 } 3131 EXPORT_SYMBOL(__folio_start_writeback); 3132 3133 /** 3134 * folio_wait_writeback - Wait for a folio to finish writeback. 3135 * @folio: The folio to wait for. 3136 * 3137 * If the folio is currently being written back to storage, wait for the 3138 * I/O to complete. 3139 * 3140 * Context: Sleeps. Must be called in process context and with 3141 * no spinlocks held. Caller should hold a reference on the folio. 3142 * If the folio is not locked, writeback may start again after writeback 3143 * has finished. 3144 */ 3145 void folio_wait_writeback(struct folio *folio) 3146 { 3147 while (folio_test_writeback(folio)) { 3148 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3149 folio_wait_bit(folio, PG_writeback); 3150 } 3151 } 3152 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3153 3154 /** 3155 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3156 * @folio: The folio to wait for. 3157 * 3158 * If the folio is currently being written back to storage, wait for the 3159 * I/O to complete or a fatal signal to arrive. 3160 * 3161 * Context: Sleeps. Must be called in process context and with 3162 * no spinlocks held. Caller should hold a reference on the folio. 3163 * If the folio is not locked, writeback may start again after writeback 3164 * has finished. 3165 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3166 */ 3167 int folio_wait_writeback_killable(struct folio *folio) 3168 { 3169 while (folio_test_writeback(folio)) { 3170 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3171 if (folio_wait_bit_killable(folio, PG_writeback)) 3172 return -EINTR; 3173 } 3174 3175 return 0; 3176 } 3177 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3178 3179 /** 3180 * folio_wait_stable() - wait for writeback to finish, if necessary. 3181 * @folio: The folio to wait on. 3182 * 3183 * This function determines if the given folio is related to a backing 3184 * device that requires folio contents to be held stable during writeback. 3185 * If so, then it will wait for any pending writeback to complete. 3186 * 3187 * Context: Sleeps. Must be called in process context and with 3188 * no spinlocks held. Caller should hold a reference on the folio. 3189 * If the folio is not locked, writeback may start again after writeback 3190 * has finished. 3191 */ 3192 void folio_wait_stable(struct folio *folio) 3193 { 3194 if (mapping_stable_writes(folio_mapping(folio))) 3195 folio_wait_writeback(folio); 3196 } 3197 EXPORT_SYMBOL_GPL(folio_wait_stable); 3198