xref: /linux/mm/page-writeback.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  * mm/page-writeback.c.
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to writing back dirty pages at the
7  * address_space level.
8  *
9  * 10Apr2002	akpm@zip.com.au
10  *		Initial version
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
32 
33 /*
34  * The maximum number of pages to writeout in a single bdflush/kupdate
35  * operation.  We do this so we don't hold I_LOCK against an inode for
36  * enormous amounts of time, which would block a userspace task which has
37  * been forced to throttle against that inode.  Also, the code reevaluates
38  * the dirty each time it has written this many pages.
39  */
40 #define MAX_WRITEBACK_PAGES	1024
41 
42 /*
43  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44  * will look to see if it needs to force writeback or throttling.
45  */
46 static long ratelimit_pages = 32;
47 
48 static long total_pages;	/* The total number of pages in the machine. */
49 static int dirty_exceeded;	/* Dirty mem may be over limit */
50 
51 /*
52  * When balance_dirty_pages decides that the caller needs to perform some
53  * non-background writeback, this is how many pages it will attempt to write.
54  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55  * large amounts of I/O are submitted.
56  */
57 static inline long sync_writeback_pages(void)
58 {
59 	return ratelimit_pages + ratelimit_pages / 2;
60 }
61 
62 /* The following parameters are exported via /proc/sys/vm */
63 
64 /*
65  * Start background writeback (via pdflush) at this percentage
66  */
67 int dirty_background_ratio = 10;
68 
69 /*
70  * The generator of dirty data starts writeback at this percentage
71  */
72 int vm_dirty_ratio = 40;
73 
74 /*
75  * The interval between `kupdate'-style writebacks, in centiseconds
76  * (hundredths of a second)
77  */
78 int dirty_writeback_centisecs = 5 * 100;
79 
80 /*
81  * The longest number of centiseconds for which data is allowed to remain dirty
82  */
83 int dirty_expire_centisecs = 30 * 100;
84 
85 /*
86  * Flag that makes the machine dump writes/reads and block dirtyings.
87  */
88 int block_dump;
89 
90 /*
91  * Flag that puts the machine in "laptop mode".
92  */
93 int laptop_mode;
94 
95 EXPORT_SYMBOL(laptop_mode);
96 
97 /* End of sysctl-exported parameters */
98 
99 
100 static void background_writeout(unsigned long _min_pages);
101 
102 struct writeback_state
103 {
104 	unsigned long nr_dirty;
105 	unsigned long nr_unstable;
106 	unsigned long nr_mapped;
107 	unsigned long nr_writeback;
108 };
109 
110 static void get_writeback_state(struct writeback_state *wbs)
111 {
112 	wbs->nr_dirty = read_page_state(nr_dirty);
113 	wbs->nr_unstable = read_page_state(nr_unstable);
114 	wbs->nr_mapped = read_page_state(nr_mapped);
115 	wbs->nr_writeback = read_page_state(nr_writeback);
116 }
117 
118 /*
119  * Work out the current dirty-memory clamping and background writeout
120  * thresholds.
121  *
122  * The main aim here is to lower them aggressively if there is a lot of mapped
123  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
124  * pages.  It is better to clamp down on writers than to start swapping, and
125  * performing lots of scanning.
126  *
127  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
128  *
129  * We don't permit the clamping level to fall below 5% - that is getting rather
130  * excessive.
131  *
132  * We make sure that the background writeout level is below the adjusted
133  * clamping level.
134  */
135 static void
136 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
137 		struct address_space *mapping)
138 {
139 	int background_ratio;		/* Percentages */
140 	int dirty_ratio;
141 	int unmapped_ratio;
142 	long background;
143 	long dirty;
144 	unsigned long available_memory = total_pages;
145 	struct task_struct *tsk;
146 
147 	get_writeback_state(wbs);
148 
149 #ifdef CONFIG_HIGHMEM
150 	/*
151 	 * If this mapping can only allocate from low memory,
152 	 * we exclude high memory from our count.
153 	 */
154 	if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
155 		available_memory -= totalhigh_pages;
156 #endif
157 
158 
159 	unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
160 
161 	dirty_ratio = vm_dirty_ratio;
162 	if (dirty_ratio > unmapped_ratio / 2)
163 		dirty_ratio = unmapped_ratio / 2;
164 
165 	if (dirty_ratio < 5)
166 		dirty_ratio = 5;
167 
168 	background_ratio = dirty_background_ratio;
169 	if (background_ratio >= dirty_ratio)
170 		background_ratio = dirty_ratio / 2;
171 
172 	background = (background_ratio * available_memory) / 100;
173 	dirty = (dirty_ratio * available_memory) / 100;
174 	tsk = current;
175 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
176 		background += background / 4;
177 		dirty += dirty / 4;
178 	}
179 	*pbackground = background;
180 	*pdirty = dirty;
181 }
182 
183 /*
184  * balance_dirty_pages() must be called by processes which are generating dirty
185  * data.  It looks at the number of dirty pages in the machine and will force
186  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
187  * If we're over `background_thresh' then pdflush is woken to perform some
188  * writeout.
189  */
190 static void balance_dirty_pages(struct address_space *mapping)
191 {
192 	struct writeback_state wbs;
193 	long nr_reclaimable;
194 	long background_thresh;
195 	long dirty_thresh;
196 	unsigned long pages_written = 0;
197 	unsigned long write_chunk = sync_writeback_pages();
198 
199 	struct backing_dev_info *bdi = mapping->backing_dev_info;
200 
201 	for (;;) {
202 		struct writeback_control wbc = {
203 			.bdi		= bdi,
204 			.sync_mode	= WB_SYNC_NONE,
205 			.older_than_this = NULL,
206 			.nr_to_write	= write_chunk,
207 		};
208 
209 		get_dirty_limits(&wbs, &background_thresh,
210 					&dirty_thresh, mapping);
211 		nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
212 		if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
213 			break;
214 
215 		dirty_exceeded = 1;
216 
217 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
218 		 * Unstable writes are a feature of certain networked
219 		 * filesystems (i.e. NFS) in which data may have been
220 		 * written to the server's write cache, but has not yet
221 		 * been flushed to permanent storage.
222 		 */
223 		if (nr_reclaimable) {
224 			writeback_inodes(&wbc);
225 			get_dirty_limits(&wbs, &background_thresh,
226 					&dirty_thresh, mapping);
227 			nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
228 			if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
229 				break;
230 			pages_written += write_chunk - wbc.nr_to_write;
231 			if (pages_written >= write_chunk)
232 				break;		/* We've done our duty */
233 		}
234 		blk_congestion_wait(WRITE, HZ/10);
235 	}
236 
237 	if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
238 		dirty_exceeded = 0;
239 
240 	if (writeback_in_progress(bdi))
241 		return;		/* pdflush is already working this queue */
242 
243 	/*
244 	 * In laptop mode, we wait until hitting the higher threshold before
245 	 * starting background writeout, and then write out all the way down
246 	 * to the lower threshold.  So slow writers cause minimal disk activity.
247 	 *
248 	 * In normal mode, we start background writeout at the lower
249 	 * background_thresh, to keep the amount of dirty memory low.
250 	 */
251 	if ((laptop_mode && pages_written) ||
252 	     (!laptop_mode && (nr_reclaimable > background_thresh)))
253 		pdflush_operation(background_writeout, 0);
254 }
255 
256 /**
257  * balance_dirty_pages_ratelimited - balance dirty memory state
258  * @mapping: address_space which was dirtied
259  *
260  * Processes which are dirtying memory should call in here once for each page
261  * which was newly dirtied.  The function will periodically check the system's
262  * dirty state and will initiate writeback if needed.
263  *
264  * On really big machines, get_writeback_state is expensive, so try to avoid
265  * calling it too often (ratelimiting).  But once we're over the dirty memory
266  * limit we decrease the ratelimiting by a lot, to prevent individual processes
267  * from overshooting the limit by (ratelimit_pages) each.
268  */
269 void balance_dirty_pages_ratelimited(struct address_space *mapping)
270 {
271 	static DEFINE_PER_CPU(int, ratelimits) = 0;
272 	long ratelimit;
273 
274 	ratelimit = ratelimit_pages;
275 	if (dirty_exceeded)
276 		ratelimit = 8;
277 
278 	/*
279 	 * Check the rate limiting. Also, we do not want to throttle real-time
280 	 * tasks in balance_dirty_pages(). Period.
281 	 */
282 	if (get_cpu_var(ratelimits)++ >= ratelimit) {
283 		__get_cpu_var(ratelimits) = 0;
284 		put_cpu_var(ratelimits);
285 		balance_dirty_pages(mapping);
286 		return;
287 	}
288 	put_cpu_var(ratelimits);
289 }
290 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
291 
292 void throttle_vm_writeout(void)
293 {
294 	struct writeback_state wbs;
295 	long background_thresh;
296 	long dirty_thresh;
297 
298         for ( ; ; ) {
299 		get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
300 
301                 /*
302                  * Boost the allowable dirty threshold a bit for page
303                  * allocators so they don't get DoS'ed by heavy writers
304                  */
305                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
306 
307                 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
308                         break;
309                 blk_congestion_wait(WRITE, HZ/10);
310         }
311 }
312 
313 
314 /*
315  * writeback at least _min_pages, and keep writing until the amount of dirty
316  * memory is less than the background threshold, or until we're all clean.
317  */
318 static void background_writeout(unsigned long _min_pages)
319 {
320 	long min_pages = _min_pages;
321 	struct writeback_control wbc = {
322 		.bdi		= NULL,
323 		.sync_mode	= WB_SYNC_NONE,
324 		.older_than_this = NULL,
325 		.nr_to_write	= 0,
326 		.nonblocking	= 1,
327 	};
328 
329 	for ( ; ; ) {
330 		struct writeback_state wbs;
331 		long background_thresh;
332 		long dirty_thresh;
333 
334 		get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
335 		if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
336 				&& min_pages <= 0)
337 			break;
338 		wbc.encountered_congestion = 0;
339 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
340 		wbc.pages_skipped = 0;
341 		writeback_inodes(&wbc);
342 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
343 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
344 			/* Wrote less than expected */
345 			blk_congestion_wait(WRITE, HZ/10);
346 			if (!wbc.encountered_congestion)
347 				break;
348 		}
349 	}
350 }
351 
352 /*
353  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
354  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
355  * -1 if all pdflush threads were busy.
356  */
357 int wakeup_bdflush(long nr_pages)
358 {
359 	if (nr_pages == 0) {
360 		struct writeback_state wbs;
361 
362 		get_writeback_state(&wbs);
363 		nr_pages = wbs.nr_dirty + wbs.nr_unstable;
364 	}
365 	return pdflush_operation(background_writeout, nr_pages);
366 }
367 
368 static void wb_timer_fn(unsigned long unused);
369 static void laptop_timer_fn(unsigned long unused);
370 
371 static struct timer_list wb_timer =
372 			TIMER_INITIALIZER(wb_timer_fn, 0, 0);
373 static struct timer_list laptop_mode_wb_timer =
374 			TIMER_INITIALIZER(laptop_timer_fn, 0, 0);
375 
376 /*
377  * Periodic writeback of "old" data.
378  *
379  * Define "old": the first time one of an inode's pages is dirtied, we mark the
380  * dirtying-time in the inode's address_space.  So this periodic writeback code
381  * just walks the superblock inode list, writing back any inodes which are
382  * older than a specific point in time.
383  *
384  * Try to run once per dirty_writeback_centisecs.  But if a writeback event
385  * takes longer than a dirty_writeback_centisecs interval, then leave a
386  * one-second gap.
387  *
388  * older_than_this takes precedence over nr_to_write.  So we'll only write back
389  * all dirty pages if they are all attached to "old" mappings.
390  */
391 static void wb_kupdate(unsigned long arg)
392 {
393 	unsigned long oldest_jif;
394 	unsigned long start_jif;
395 	unsigned long next_jif;
396 	long nr_to_write;
397 	struct writeback_state wbs;
398 	struct writeback_control wbc = {
399 		.bdi		= NULL,
400 		.sync_mode	= WB_SYNC_NONE,
401 		.older_than_this = &oldest_jif,
402 		.nr_to_write	= 0,
403 		.nonblocking	= 1,
404 		.for_kupdate	= 1,
405 	};
406 
407 	sync_supers();
408 
409 	get_writeback_state(&wbs);
410 	oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100;
411 	start_jif = jiffies;
412 	next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100;
413 	nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
414 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
415 	while (nr_to_write > 0) {
416 		wbc.encountered_congestion = 0;
417 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
418 		writeback_inodes(&wbc);
419 		if (wbc.nr_to_write > 0) {
420 			if (wbc.encountered_congestion)
421 				blk_congestion_wait(WRITE, HZ/10);
422 			else
423 				break;	/* All the old data is written */
424 		}
425 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
426 	}
427 	if (time_before(next_jif, jiffies + HZ))
428 		next_jif = jiffies + HZ;
429 	if (dirty_writeback_centisecs)
430 		mod_timer(&wb_timer, next_jif);
431 }
432 
433 /*
434  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
435  */
436 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
437 		struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
438 {
439 	proc_dointvec(table, write, file, buffer, length, ppos);
440 	if (dirty_writeback_centisecs) {
441 		mod_timer(&wb_timer,
442 			jiffies + (dirty_writeback_centisecs * HZ) / 100);
443 	} else {
444 		del_timer(&wb_timer);
445 	}
446 	return 0;
447 }
448 
449 static void wb_timer_fn(unsigned long unused)
450 {
451 	if (pdflush_operation(wb_kupdate, 0) < 0)
452 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
453 }
454 
455 static void laptop_flush(unsigned long unused)
456 {
457 	sys_sync();
458 }
459 
460 static void laptop_timer_fn(unsigned long unused)
461 {
462 	pdflush_operation(laptop_flush, 0);
463 }
464 
465 /*
466  * We've spun up the disk and we're in laptop mode: schedule writeback
467  * of all dirty data a few seconds from now.  If the flush is already scheduled
468  * then push it back - the user is still using the disk.
469  */
470 void laptop_io_completion(void)
471 {
472 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ);
473 }
474 
475 /*
476  * We're in laptop mode and we've just synced. The sync's writes will have
477  * caused another writeback to be scheduled by laptop_io_completion.
478  * Nothing needs to be written back anymore, so we unschedule the writeback.
479  */
480 void laptop_sync_completion(void)
481 {
482 	del_timer(&laptop_mode_wb_timer);
483 }
484 
485 /*
486  * If ratelimit_pages is too high then we can get into dirty-data overload
487  * if a large number of processes all perform writes at the same time.
488  * If it is too low then SMP machines will call the (expensive)
489  * get_writeback_state too often.
490  *
491  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
492  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
493  * thresholds before writeback cuts in.
494  *
495  * But the limit should not be set too high.  Because it also controls the
496  * amount of memory which the balance_dirty_pages() caller has to write back.
497  * If this is too large then the caller will block on the IO queue all the
498  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
499  * will write six megabyte chunks, max.
500  */
501 
502 static void set_ratelimit(void)
503 {
504 	ratelimit_pages = total_pages / (num_online_cpus() * 32);
505 	if (ratelimit_pages < 16)
506 		ratelimit_pages = 16;
507 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
508 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
509 }
510 
511 static int
512 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
513 {
514 	set_ratelimit();
515 	return 0;
516 }
517 
518 static struct notifier_block ratelimit_nb = {
519 	.notifier_call	= ratelimit_handler,
520 	.next		= NULL,
521 };
522 
523 /*
524  * If the machine has a large highmem:lowmem ratio then scale back the default
525  * dirty memory thresholds: allowing too much dirty highmem pins an excessive
526  * number of buffer_heads.
527  */
528 void __init page_writeback_init(void)
529 {
530 	long buffer_pages = nr_free_buffer_pages();
531 	long correction;
532 
533 	total_pages = nr_free_pagecache_pages();
534 
535 	correction = (100 * 4 * buffer_pages) / total_pages;
536 
537 	if (correction < 100) {
538 		dirty_background_ratio *= correction;
539 		dirty_background_ratio /= 100;
540 		vm_dirty_ratio *= correction;
541 		vm_dirty_ratio /= 100;
542 
543 		if (dirty_background_ratio <= 0)
544 			dirty_background_ratio = 1;
545 		if (vm_dirty_ratio <= 0)
546 			vm_dirty_ratio = 1;
547 	}
548 	mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100);
549 	set_ratelimit();
550 	register_cpu_notifier(&ratelimit_nb);
551 }
552 
553 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
554 {
555 	if (wbc->nr_to_write <= 0)
556 		return 0;
557 	if (mapping->a_ops->writepages)
558 		return mapping->a_ops->writepages(mapping, wbc);
559 	return generic_writepages(mapping, wbc);
560 }
561 
562 /**
563  * write_one_page - write out a single page and optionally wait on I/O
564  *
565  * @page: the page to write
566  * @wait: if true, wait on writeout
567  *
568  * The page must be locked by the caller and will be unlocked upon return.
569  *
570  * write_one_page() returns a negative error code if I/O failed.
571  */
572 int write_one_page(struct page *page, int wait)
573 {
574 	struct address_space *mapping = page->mapping;
575 	int ret = 0;
576 	struct writeback_control wbc = {
577 		.sync_mode = WB_SYNC_ALL,
578 		.nr_to_write = 1,
579 	};
580 
581 	BUG_ON(!PageLocked(page));
582 
583 	if (wait)
584 		wait_on_page_writeback(page);
585 
586 	if (clear_page_dirty_for_io(page)) {
587 		page_cache_get(page);
588 		ret = mapping->a_ops->writepage(page, &wbc);
589 		if (ret == 0 && wait) {
590 			wait_on_page_writeback(page);
591 			if (PageError(page))
592 				ret = -EIO;
593 		}
594 		page_cache_release(page);
595 	} else {
596 		unlock_page(page);
597 	}
598 	return ret;
599 }
600 EXPORT_SYMBOL(write_one_page);
601 
602 /*
603  * For address_spaces which do not use buffers.  Just tag the page as dirty in
604  * its radix tree.
605  *
606  * This is also used when a single buffer is being dirtied: we want to set the
607  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
608  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
609  *
610  * Most callers have locked the page, which pins the address_space in memory.
611  * But zap_pte_range() does not lock the page, however in that case the
612  * mapping is pinned by the vma's ->vm_file reference.
613  *
614  * We take care to handle the case where the page was truncated from the
615  * mapping by re-checking page_mapping() insode tree_lock.
616  */
617 int __set_page_dirty_nobuffers(struct page *page)
618 {
619 	int ret = 0;
620 
621 	if (!TestSetPageDirty(page)) {
622 		struct address_space *mapping = page_mapping(page);
623 		struct address_space *mapping2;
624 
625 		if (mapping) {
626 			write_lock_irq(&mapping->tree_lock);
627 			mapping2 = page_mapping(page);
628 			if (mapping2) { /* Race with truncate? */
629 				BUG_ON(mapping2 != mapping);
630 				if (mapping_cap_account_dirty(mapping))
631 					inc_page_state(nr_dirty);
632 				radix_tree_tag_set(&mapping->page_tree,
633 					page_index(page), PAGECACHE_TAG_DIRTY);
634 			}
635 			write_unlock_irq(&mapping->tree_lock);
636 			if (mapping->host) {
637 				/* !PageAnon && !swapper_space */
638 				__mark_inode_dirty(mapping->host,
639 							I_DIRTY_PAGES);
640 			}
641 		}
642 	}
643 	return ret;
644 }
645 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
646 
647 /*
648  * When a writepage implementation decides that it doesn't want to write this
649  * page for some reason, it should redirty the locked page via
650  * redirty_page_for_writepage() and it should then unlock the page and return 0
651  */
652 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
653 {
654 	wbc->pages_skipped++;
655 	return __set_page_dirty_nobuffers(page);
656 }
657 EXPORT_SYMBOL(redirty_page_for_writepage);
658 
659 /*
660  * If the mapping doesn't provide a set_page_dirty a_op, then
661  * just fall through and assume that it wants buffer_heads.
662  */
663 int fastcall set_page_dirty(struct page *page)
664 {
665 	struct address_space *mapping = page_mapping(page);
666 
667 	if (likely(mapping)) {
668 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
669 		if (spd)
670 			return (*spd)(page);
671 		return __set_page_dirty_buffers(page);
672 	}
673 	if (!PageDirty(page))
674 		SetPageDirty(page);
675 	return 0;
676 }
677 EXPORT_SYMBOL(set_page_dirty);
678 
679 /*
680  * set_page_dirty() is racy if the caller has no reference against
681  * page->mapping->host, and if the page is unlocked.  This is because another
682  * CPU could truncate the page off the mapping and then free the mapping.
683  *
684  * Usually, the page _is_ locked, or the caller is a user-space process which
685  * holds a reference on the inode by having an open file.
686  *
687  * In other cases, the page should be locked before running set_page_dirty().
688  */
689 int set_page_dirty_lock(struct page *page)
690 {
691 	int ret;
692 
693 	lock_page(page);
694 	ret = set_page_dirty(page);
695 	unlock_page(page);
696 	return ret;
697 }
698 EXPORT_SYMBOL(set_page_dirty_lock);
699 
700 /*
701  * Clear a page's dirty flag, while caring for dirty memory accounting.
702  * Returns true if the page was previously dirty.
703  */
704 int test_clear_page_dirty(struct page *page)
705 {
706 	struct address_space *mapping = page_mapping(page);
707 	unsigned long flags;
708 
709 	if (mapping) {
710 		write_lock_irqsave(&mapping->tree_lock, flags);
711 		if (TestClearPageDirty(page)) {
712 			radix_tree_tag_clear(&mapping->page_tree,
713 						page_index(page),
714 						PAGECACHE_TAG_DIRTY);
715 			write_unlock_irqrestore(&mapping->tree_lock, flags);
716 			if (mapping_cap_account_dirty(mapping))
717 				dec_page_state(nr_dirty);
718 			return 1;
719 		}
720 		write_unlock_irqrestore(&mapping->tree_lock, flags);
721 		return 0;
722 	}
723 	return TestClearPageDirty(page);
724 }
725 EXPORT_SYMBOL(test_clear_page_dirty);
726 
727 /*
728  * Clear a page's dirty flag, while caring for dirty memory accounting.
729  * Returns true if the page was previously dirty.
730  *
731  * This is for preparing to put the page under writeout.  We leave the page
732  * tagged as dirty in the radix tree so that a concurrent write-for-sync
733  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
734  * implementation will run either set_page_writeback() or set_page_dirty(),
735  * at which stage we bring the page's dirty flag and radix-tree dirty tag
736  * back into sync.
737  *
738  * This incoherency between the page's dirty flag and radix-tree tag is
739  * unfortunate, but it only exists while the page is locked.
740  */
741 int clear_page_dirty_for_io(struct page *page)
742 {
743 	struct address_space *mapping = page_mapping(page);
744 
745 	if (mapping) {
746 		if (TestClearPageDirty(page)) {
747 			if (mapping_cap_account_dirty(mapping))
748 				dec_page_state(nr_dirty);
749 			return 1;
750 		}
751 		return 0;
752 	}
753 	return TestClearPageDirty(page);
754 }
755 EXPORT_SYMBOL(clear_page_dirty_for_io);
756 
757 int test_clear_page_writeback(struct page *page)
758 {
759 	struct address_space *mapping = page_mapping(page);
760 	int ret;
761 
762 	if (mapping) {
763 		unsigned long flags;
764 
765 		write_lock_irqsave(&mapping->tree_lock, flags);
766 		ret = TestClearPageWriteback(page);
767 		if (ret)
768 			radix_tree_tag_clear(&mapping->page_tree,
769 						page_index(page),
770 						PAGECACHE_TAG_WRITEBACK);
771 		write_unlock_irqrestore(&mapping->tree_lock, flags);
772 	} else {
773 		ret = TestClearPageWriteback(page);
774 	}
775 	return ret;
776 }
777 
778 int test_set_page_writeback(struct page *page)
779 {
780 	struct address_space *mapping = page_mapping(page);
781 	int ret;
782 
783 	if (mapping) {
784 		unsigned long flags;
785 
786 		write_lock_irqsave(&mapping->tree_lock, flags);
787 		ret = TestSetPageWriteback(page);
788 		if (!ret)
789 			radix_tree_tag_set(&mapping->page_tree,
790 						page_index(page),
791 						PAGECACHE_TAG_WRITEBACK);
792 		if (!PageDirty(page))
793 			radix_tree_tag_clear(&mapping->page_tree,
794 						page_index(page),
795 						PAGECACHE_TAG_DIRTY);
796 		write_unlock_irqrestore(&mapping->tree_lock, flags);
797 	} else {
798 		ret = TestSetPageWriteback(page);
799 	}
800 	return ret;
801 
802 }
803 EXPORT_SYMBOL(test_set_page_writeback);
804 
805 /*
806  * Return true if any of the pages in the mapping are marged with the
807  * passed tag.
808  */
809 int mapping_tagged(struct address_space *mapping, int tag)
810 {
811 	unsigned long flags;
812 	int ret;
813 
814 	read_lock_irqsave(&mapping->tree_lock, flags);
815 	ret = radix_tree_tagged(&mapping->page_tree, tag);
816 	read_unlock_irqrestore(&mapping->tree_lock, flags);
817 	return ret;
818 }
819 EXPORT_SYMBOL(mapping_tagged);
820